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On the Convergence of Orthogonal/Vector AMP:
Long-Memory Message-Passing Strategy

Keigo Takeuchi , Member, IEEE

Abstract— Orthogonal/vector approximate message-passing
(AMP) is a powerful message-passing (MP) algorithm for signal
reconstruction in compressed sensing. This paper proves the
convergence of Bayes-optimal orthogonal/vector AMP in the large
system limit. The proof strategy is based on a novel long-memory
(LM) MP approach: A first step is a construction of LM-MP
that is guaranteed to converge systematically. A second step is
a large-system analysis of LM-MP via an existing framework of
state evolution. A third step is to prove the convergence of state
evolution recursions for Bayes-optimal LM-MP via a new statis-
tical interpretation of existing LM damping. The last is an exact
reduction of the state evolution recursions for Bayes-optimal
LM-MP to those for Bayes-optimal orthogonal/vector AMP. The
convergence of the state evolution recursions for Bayes-optimal
LM-MP implies that for Bayes-optimal orthogonal/vector AMP.
Numerical simulations are presented to show the verification of
state evolution results for damped orthogonal/vector AMP and a
negative aspect of LM-MP in finite-sized systems.

Index Terms— Compressed sensing, orthogonal/vector approx-
imate message-passing (AMP), long memory, damping, state
evolution, convergence analysis.

I. INTRODUCTION

A. Motivation

CONSIDER a reconstruction of an N -dimensional sparse
signal vector x ∈ R

N with N−1
E[�x�2] = 1 from

compressed, noisy, and linear measurements y ∈ R
M [1], [2]

with M ≤ N , given by

y = Ax + w. (1)

In (1), A ∈ R
M×N is a known sensing matrix. The vector w ∈

R
M denotes an additive noise vector with σ2 = M−1

E[�w�2].
A goal of compressed sensing is to reconstruct the signal
vector x from the knowledge on the sensing matrix A and
the measurement vector y.

Compressed sensing has been applied to several practical
issues, such as magnetic resonance imaging [3], radar [4],
image super-resolution [5], channel estimation [6], spec-
trum sensing [7], error-correcting codes [8], and multiuser
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detection [9]. The prior distribution of the sparse sig-
nal vector is known in specific instances, such as error-
correcting codes or multiuser detection, while it is unknown
in many signal processing instances. This paper is more
relevant to such specific instances—the prior distribution is
known—since the knowledge on the prior distribution is
utilized in the theoretical analysis of iterative reconstruction
algorithms.

Approximate message-passing (AMP) [10], [11] is a power-
ful message-passing (MP) algorithm for signal reconstruction.
AMP with Bayes-optimal denoiser—called Bayes-optimal
AMP—can be regarded as an exact approximation of loopy
belief propagation in the large system limit [12], where
both M and N tend to infinity while the compression
ratio δ = M/N ∈ (0, 1] is kept constant. Furthermore,
Bayes-optimal AMP was proved to achieve the Bayes-optimal
performance [13]–[16] for zero-mean, independent and iden-
tically distributed (i.i.d.), and sub-Gaussian sensing matri-
ces [17], [18] if the fixed-point (FP) equations describing the
Bayes-optimal performance have a unique solution. Spatial
coupling [19] is required when the FP equations have multiple
solutions. See [20]–[23] for the details.

The main weakness of AMP is that AMP does not converge
for sensing matrices beyond zero-mean i.i.d. matrices, such as
non-zero mean matrices [24] or ill-conditioned matrices [25].
To tackle this convergence issue, several modified MP algo-
rithms [26]–[31] were proposed. In particular, orthogonal
AMP (OAMP) [30] or equivalently vector AMP (VAMP) [31]
is a promising algorithm to solve the weakness of AMP. Since
they are equivalent to each other in the linear measurement
system (1), the two MP algorithms are referred to as OAMP
in this paper.

The main feature of OAMP is the use of extrinsic messages
to eliminate intractable dependencies between the current
message and all preceding messages. The extrinsic messages
were originally used in a single loop algorithm to solve a FP of
the expectation consistency (EC) free energy [32], inspired by
expectation propagation [33]. In fact, Bayes-optimal OAMP
can be regarded as an exact approximation of EP in the large
system limit [34], [35].

The asymptotic performance of OAMP can be character-
ized via rigorous state evolution [31], [35]. Bayes-optimal
OAMP was proved to achieve the Bayes-optimal performance
[36]–[38] for all orthogonally invariant sensing matrices if the
FP equations describing the Bayes-optimal performance have
a unique solution. The class of orthogonally invariant matrices
is a general class beyond zero-mean i.i.d. sensing matrices.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3921-7082


8122 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 12, DECEMBER 2022

Strictly speaking, state evolution [17], [18], [31], [35] does
not guarantee the convergence1 of MP algorithms for AMP or
OAMP while it describes the asymptotic dynamics of these MP
algorithms rigorously. As a result, we need to investigate the
convergence of state evolution recursions to a FP for individual
problems, e.g. [39]–[41].

For finite-sized systems, damping [25] is used to improve
the convergence property of MP algorithms. Conventional state
evolution cannot describe the dynamics of damped AMP or
OAMP anymore. To the best of author’s knowledge, theoretical
analysis for damped MP algorithms are very limited [25], [42].

This paper addresses these two issues by proposing a
novel damped MP algorithm that realizes the convergence
in principle and the exact description for its dynamics. The
damping issue has been already solved in [43] via the frame-
work of long-memory (LM) MP [44]. LM-MP utilizes all
preceding messages in computing the current message while
conventional MP uses messages only in the latest iteration to
update the current message. LM-MP was originally used to
solve the Thouless-Anderson-Palmer (TAP) equation for Ising
models with orthogonally invariant spin interaction via non-
rigorous dynamical functional theory [45]. In this direction,
Fan [46] proposed an LM-MP algorithm and analyzed the
dynamics of the LM-MP algorithm rigorously. See [47] for
a generalization of [46].

The state evolution framework for LM-MP in [44] is fully
general, so that rigorous state evolution results for LM-MP
can be obtained just by confirming whether the model of esti-
mation errors for the LM-MP is included into a general error
model proposed in [44]. In this direction, convolutional AMP
(CAMP) [44], [48] was proposed as an LM generalization
of AMP. The framework was used to construct VAMP with
warm-started conjugate gradient (WS-CG) in [49]. To solve
an convergence issue in CAMP for sensing matrices with
high condition numbers [50], memory AMP (MAMP) [43]
was proposed. State evolution results in [43] can describe the
exact dynamics of MAMP even if damping is used. Since
the main purpose of these LM-MP algorithms is to reduce
the complexity of OAMP, such LM-MP algorithms are out
of the scope of this paper.

The “convergence in principle” is the main idea to prove
the convergence of OAMP. It means that the convergence
of an iterative algorithm is intuitively trivial while the con-
vergence of conventional MP algorithms is non-trivial and
therefore needs to be proved for individual problems. The
current message in LM-MP can be regarded as an additional
measurement for the signal vector that is correlated with all
preceding messages. When all measurements are utilized in
a Bayes-optimal manner to estimate the signal vector, using
the additional measurements never degrades the estimation
performance. As a result, the performance of the obtained
Bayes-optimal LM-MP is monotonically convergent in prin-
ciple as the iteration proceeds.

1Throughout this paper, we only consider the convergence of state evolution
recursions for MP algorithms in the large system limit, which may be phrased
as the convergence of MP algorithms in the large system limit or more simply
as the convergence of MP algorithms. Thus, convergence for finite-sized
systems is out of the scope of this paper.

To design the Bayes-optimal estimation of the signal
vector in each iteration, we start with an LM generaliza-
tion of OAMP—called LM-OAMP. The estimation errors
in LM-OAMP are proved to be jointly Gaussian-distributed
for all iterations in the large system limit via the unified
framework of state evolution [44]. Thus, the design issue of
Bayes-optimal LM-OAMP reduces to a solvable issue, i.e. the
Bayes-optimal estimation of the signal vector from correlated
additive white Gaussian noise (AWGN) measurements. The
convergence of Bayes-optimal OAMP is guaranteed by prov-
ing the equivalence between Bayes-optimal LM-OAMP and
OAMP.

B. Contributions

The main contributions of this paper are threefold. In par-
ticular, the first two contributions were presented in [51].

A first contribution is a statistical interpretation for the
optimization of damping in [43]. This paper derives the
optimized damping in terms of a sufficient statistic, without
using state evolution recursions, while it was obtained via an
optimization problem for state evolution recursions [43]. This
statistical interpretation is a key technical tool to prove the
convergence of Bayes-optimal LM-OAMP rigorously.

A second contribution is a derivation of state evolution
recursions for LM-OAMP (Theorems 1 and 2) and a rigorous
convergence analysis of state evolution recursions for Bayes-
optimal LM-OAMP (Theorem 3), as well as an exact reduction
of Bayes-optimal LM-OAMP to conventional Bayes-optimal
OAMP [30]. These results provide a rigorous proof for the
convergence of conventional Bayes-optimal OAMP in the
large system limit.

The last contribution is a negative aspect of LM-OAMP.
Numerical simulations show that LM-OAMP requires larger
systems than conventional OAMP for state evolution to pro-
vide a good approximation for finite-sized systems. As a
result, damped LM-OAMP is slightly inferior to OAMP with
heuristic damping for small-to-moderate system sizes while
it is consistent with state evolution for large systems. This
observation explains why MAMP with the optimized LM
damping [43] needs large systems to realize good convergence
properties.

C. Organization

After summarizing the notation used in this paper, Section II
presents the statistical interpretation and technical results in
the first contribution as preliminaries to propose LM-OAMP
in Section III. Section IV presents state evolution results for
LM-OAMP. The convergence of state evolution recursions for
Bayes-optimal LM-OAMP is analyzed in Section V. Numer-
ical simulations for damped LM-OAMP are presented in
Section VI. Section VII concludes this paper. Several theorems
and lemmas are proved in the appendices.

D. Notation

Throughout this paper, MT, Tr(M ), and detM denote the
transpose, trace, and determinant of a matrix M , respectively.
The notation [M ]t′,t represents the (t�, t) element of M .



TAKEUCHI: ON THE CONVERGENCE OF ORTHOGONAL/VECTOR AMP: LONG-MEMORY MESSAGE-PASSING STRATEGY 8123

For a vector vt with a subscript t, the nth element of vt

is written as vn,t. The notation � · · · � denotes the Euclidean
norm. The vector 1 represents a vector whose elements are all
one while en is the nth column of the identity matrix I . The
notations ⊗ and δi,j denote the Kronecker product and delta,
respectively.

The Gaussian distribution with mean µ and covariance Σ
is written as N (µ,Σ). The notations

a.s.→ and
a.s.= represent the

almost sure convergence and equivalence, respectively.
For a function f : R

t → R of t variables, the notation
f(x1, . . . ,xt) means the element-wise application of f , i.e.
[f(x1, . . . ,xt)]n = f([x1]n, . . . , [xt]n). For a vector v ∈ R

N ,
the arithmetic mean of v is written as �v� = N−1

∑N
n=1 vn.

Combining these notations, we find that �f(x,y)� means
N−1

∑N
n=1 f(xn, yn) for x,y ∈ R

N .
For any finite set T of non-negative integers, we define the

one-to-one mapping i = IT (t) ∈ {1, . . . , |T |} to represent that
t ∈ T is the ith minimum element in T , e.g. for T = {2, 3, 4}
we have IT (2) = 1, IT (3) = 2, and IT (4) = 3.

II. PRELIMINARIES

A. Measurement Model

The purpose of Section II is to present the technical back-
ground of LM-OAMP proposed in Section III. This section is
separated from the other sections in terms of the notation.

Consider correlated (t + 1) AWGN measurements {Yτ ∈
R}t

τ=0 for a signal X ∈ R. For a subset Tτ ⊂ {0, . . . , τ},
we reconstruct the signal X from partial measurements Y τ ∈
R

1×|Tτ | that consist of {Yt′ : t� ∈ Tτ}, given by

Y τ = X1T + W τ , (2)

where W τ = {Wt′ : t� ∈ Tτ} ∼ N (0,Στ ) denotes a zero-
mean Gaussian row vector with covariance E[W T

τ W τ ] =
Στ ∈ R

|Tτ |×|Tτ |. The covariance matrix Στ is assumed to
be positive definite. When all measurements are used, i.e.
Tτ = {0, . . . , τ}, Στ is the (τ + 1) × (τ + 1) upper-left
submatrix in Σt for all τ < t. The goal is to estimate the
signal X from the knowledge on the measurement vector Y τ .

We know that the posterior mean estimator E[X |Y τ ] is the
best among all possible estimators f(Y τ ) in terms of the
mean-square error (MSE) E[{X − f(Y τ )}2]. In computing
the posterior mean estimator, we use a two-step approach:
A first step is the derivation of a sufficient statistic Sτ for
estimation of X based on the measurements Y τ . The second
step is to compute the conditional mean of X given the
sufficient statistic Sτ , instead of the original measurements
Y τ . This two-step approach is useful in proving technical
lemmas to establish the main results while it is equivalent
to direct computation of the posterior mean estimator, i.e.
E[X |Y τ ] = E[X |Sτ ].

B. Sufficient Statistic

We evaluate a sufficient statistic for estimation of X
based on the measurements Y τ . By definition, the probability

density function (pdf) of Y τ given X is defined as

p(Y τ |X) =
exp{−(Y τ −X1T)Σ−1

τ (Y τ −X1T)T/2}
{(2π)|Tτ | detΣτ}1/2

.

(3)
Evaluating the exponent in the pdf yields

(Y τ −X1T)Σ−1
τ (Y τ −X1T)T

=Y τΣ−1
τ Y T

τ − 2XY τΣ−1
τ 1 +X21TΣ−1

τ 1, (4)

which implies that Y τΣ−1
τ 1 is a sufficient statistic for esti-

mation of X given Y τ . Normalizing this sufficient statistic,
we arrive at

Sτ =
Y τΣ−1

τ 1
1TΣ−1

τ 1
= X + W̃τ , (5)

with

W̃τ =
W τΣ−1

τ 1
1TΣ−1

τ 1
. (6)

It is straightforward to confirm that W̃τ is a zero-mean
Gaussian random variable with variance E[W̃ 2

τ ], given by

E[W̃ 2
τ ] =

1
1TΣ−1

τ 1
. (7)

Furthermore, the correlation E[W̃τ ′W̃τ ] is given by

E[W̃τ ′W̃τ ] =
1TΣ−1

τ ′ E[W T
τ ′W τ ]Σ−1

τ 1
1TΣ−1

τ ′ 11TΣ−1
τ 1

. (8)

When all measurements are used, i.e. Tτ = {0, . . . , τ}, the
correlation (8) reduces to

E[W̃τ ′W̃τ ] =
1

1TΣ−1
τ 1

= E[W̃ 2
τ ] (9)

for all τ � ≤ τ , since E[W T
τ ′W τ ] = (Iτ ′+1,O)Στ holds for

W τ = (W0, . . . ,Wτ ). This property is used to prove the con-
vergence of the error covariance in Bayes-optimal LM-OAMP
via that of its diagonal elements, which are monotonically
decreasing MSEs when we use the posterior mean estimator
of the signal vector given all preceding messages.

Finally, we investigate the impact of small eigenvalues for
Στ on the variance E[W̃ 2

τ ].
Proposition 1: Suppose that E[W̃ 2

τ ] > σ2
0 holds for some

σ2
0 > 0. For the eigen-decomposition Στ =

∑
τ ′ λτ ′uτ ′uT

τ ′ ,
we have

1Tuτ ′ = O(
√
λτ ′) as λτ ′ ↓ 0. (10)

Proof: Applying the eigen-decomposition of Σ−1
τ to the

definition of E[W̃ 2
τ ] in (7), we obtain

E[W̃ 2
τ ] =

{∑
τ ′

(1Tuτ ′)2

λτ ′

}−1

> σ2
0 , (11)

which implies (1Tuτ ′)2/λτ ′ < σ−2
0 for all τ �. Thus, we arrive

at (10).
The quantity σ2

0 in Proposition 1 may be obtained via
the Bayes-optimal performance for the original compressed
sensing problem (1). There exists σ2

0 > 0 as long as noisy
measurements are considered.

Proposition 1 implies that the inner product 1Tuτ ′ must
tend to zero as some eigenvalue λτ ′ > 0 goes to zero. In other
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words, all eigenvectors associated with small eigenvalues have
a tendency to be orthogonal to the vector 1. Unless this
asymptotic orthogonality holds, error-free estimation of X is
possible via the matched filter (MF) Y τuτ ′/1Tuτ ′ → X in
probability as λτ ′ ↓ 0.

C. Extrinsic Denoiser

The Bayes-optimal estimator is defined as the posterior
mean estimator fopt(St) = E[X |St] of X given the sufficient
statistic St. By definition, we have E[X |St] = E[X |Y t].
To realize asymptotic Gaussianity in LM-OAMP, we define
the extrinsic denoiser f ext

t : R
|Tt| → R as

f ext
t (Y t) =

fopt(St) −
∑

τ∈Tt
ξτ,tYτ

1 −
∑

τ∈Tt
ξτ,t

, (12)

where ξτ,t for τ ∈ Tt denotes the averaged partial derivative
of fopt(St) with respect to Yτ , given by

ξτ,t = E[f �
opt(St)]

eT
ITt (τ)Σ

−1
t 1

1TΣ−1
t 1

. (13)

See Section I-D for the definition of the mapping ITt(·).
By definition, we have

∑
τ∈Tt

ξτ,t = E[f �
opt(St)].

The numerator in the extrinsic denoiser (12) is the Onsager
correction of the Bayes-optimal estimator fopt(St), which
originates from a general error model in [44]. The significance
of the denominator is presented in the following proposition:

Proposition 2: Among all possible Lipschitz-continuous
extrinsic denoisers ψt : R

|Tt| → R satisfying
E[∂ψ(Y t)/∂Yτ ] = 0 for all τ ∈ Tt, the extrinsic denoiser
f ext

t configured from the Bayes-optimal estimator minimizes
E[{ψt(Y t) −X}2].

Proof: See Appendix A-A.
Proposition 2 implies that the denominator is the best option

in terms of the MSE, as long as the Bayes-optimal denoiser
is used.

D. Estimator for Error Covariance

For denoisers ft′ and ft, LM-OAMP needs a consistent
estimator for the error covariance E[{X − ft′(St′)}{X −
ft(St)}] under the assumption of the known signal power
E[X2] and covariance E[W̃t′W̃t]. When the Bayes-optimal
estimators ft′ = fopt(St′) and ft = fopt(St) are used,
we can use the posterior covariance C(St′ , St) as a consistent
estimator, given by

C(St′ , St) = E[{X−fopt(St′)}{X−fopt(St)}|St′ , St]. (14)

In particular, C(St, St) reduces to the posterior variance
E[{X − fopt(St)}2|St]. However, it is not straightforward to
construct a consistent estimator for general denoisers.

We derive a consistent estimator of the error covariance for
general ft′ and ft. For any t� and t, let {St′,n, St,n}N

n=1 denote
independent samples that follow the same joint distribution as
for the two sufficient statistics (St′ , St), i.e.

St,n = Xn + W̃t,n, (15)

where {Xn} are independent random variables satisfying
Xn ∼ X , while {W̃t′,n, W̃t,n}N

n=1 are independent zero-mean

Gaussian random variables with covariance E[W̃t′,nW̃t,n] =
E[W̃t′W̃t].

Lemma 1: Suppose that ft′ and ft are Lipschitz-continuous
denoisers and let

Ĉ(St′,n, St,n) = E[X2] + ft′(St′,n)ft(St,n)
+E[W̃t′W̃t]f �

t(St,n) − St′,nft(St,n)
+E[W̃t′W̃t]f �

t′(St′,n) − St,nft′(St′,n). (16)

Then, the sample average of {Ĉ(St′,n, St,n)}N
n=1 is a con-

sistent estimator: N−1
∑N

n=1 Ĉ(St′,n, St,n) converges almost
surely to the error covariance E[{X− ft′(St′)}{X− ft(St)}]
as N → ∞.

Proof: See Appendix A-B.
Corollary 1: Suppose that ft is a Lipschitz-continuous

denoiser and let

Ĉ(St,n) = E[X2] + E[W̃ 2
t ]f �

t(St,n) − St,nft(St,n). (17)

Then, the sample average N−1
∑N

n=1 Ĉ(St,n) is a consistent
estimator for E[X{X − ft(St)}] as N → ∞.

Proof: Use Lemma 1 for St′ = St and ft′ = 0.

E. Properties of Bayes-Optimal Estimator

We investigate properties of the Bayes-optimal estimator
fopt(St) = E[X |St]. We have the following technical tools
to analyze Bayes-optimal LM-OAMP:

Lemma 2: Let Tτ = {0, . . . , τ} for all τ .

• The monotonicity E[{X − fopt(St′)}2] ≥ E[{X −
fopt(St)}2] and E[W̃ 2

t′ ] ≥ E[W̃ 2
t ] holds for all t� < t.

• The identity C(St′ , St) = C(St, St) for the posterior
covariance (14) holds for t� ≤ t if E[W̃t′W̃t] = E[W̃ 2

t ]
is satisfied.

Proof: See Appendix A-C.
Lemma 3: Let Tτ = {0, . . . , τ} for all τ and suppose that

the covariance Σt for the noise vector W t in (2) satisfies
[Σt]τ ′,τ = [Σt]τ,τ ′ = [Σt]τ,τ for all τ � < τ . If {Στ}t

τ=1 are
positive definite, the following properties hold:

• The monotonicity [Σt]τ,τ > [Σt]τ+1,τ+1 holds for all
τ ∈ {0, . . . , t− 1}.

• The identity E[W̃ 2
t ] = E[W 2

t ] holds for W̃t given in (6).
• The identities St = Yt and ξτ,t = 0 hold for all τ �= t.

Proof: See Appendix A-D.
The former property in Lemma 2 is used to prove the

convergence of state evolution recursions for Bayes-optimal
LM-OAMP. The latter property and Lemma 3 are useful in
proving an exact reduction of Bayes-optimal LM-OAMP to
conventional Bayes-optimal OAMP.

III. LONG-MEMORY OAMP

A. Outline

LM-OAMP is a generalization of conventional OAMP
[30], [31]. OAMP consists of two modules—called modules
A and B in this paper. Module A uses a linear filter to
compute a posterior message of the signal vector x while
module B utilizes a separable denoiser to refine the posterior
message for each signal element. A crucial step in each
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Fig. 1. Diagram of LM-OAMP.

module is the so-called Onsager correction to obtain extrinsic
messages of x. This step realizes asymptotic Gaussianity for
the estimation errors in the two modules [31], [35]. The
obtained messages may be damped in a heuristic manner to
improve the convergence property of OAMP for finite-sized
systems.

LM-OAMP consists of two modules in Fig. 1, of which
each has four steps. In the first two steps, each module utilizes
all preceding messages to compute a posterior message of x
while OAMP only uses those in the latest iteration. A first
step in computing the posterior message is computation of
a sufficient statistic for estimation of x given all preceding
messages, as presented in Section II. The second step com-
putes a posterior message of x based on the sufficient statistic.
This step corresponds to the computation of the posterior
messages in conventional OAMP. While the first two steps
are equivalent to direct computation of the posterior message
given all preceding messages, the two-step approach simplifies
the formulation of the Onsager correction in a third step.

To realize asymptotic Gaussianity in LM-OAMP, each
module computes the Onsager correction of each posterior
message. This third step is heavily based on a general frame-
work of state evolution [44], which can evaluate asymptotic
correlations between the current message and all preceding
messages rigorously.

The last step is optional: LM damping [43] is employed
to improve the convergence property of LM-OAMP for
finite-sized systems. As long as the Onsager-corrected mes-
sages in the third step are damped, LM damping does not
break asymptotic Gaussianity for the estimation errors while
heuristic damping of posterior messages breaks asymptotic
Gaussianity [44].

B. Notation

The notations used in LM-OAMP are summarized. Let
xA→B,t ∈ R

N and {vA→B,t′,t ∈ R}t
t′=0 denote mean and

covariance messages for the signal vector x, respectively,
passed from module A to module B in iteration t. The
covariance vA→B,τ ′,τ corresponds to an estimate of the true
error covariance N−1

E[(xA→B,τ ′ −x)T(xA→B,τ −x)] for all
iterations τ �, τ ∈ {0, . . . , t}. For notational convenience, we
define the infinite-dimensional real symmetric matrix V A→B

satisfying [V A→B]τ ′,τ = [V A→B]τ,τ ′ = vA→B,τ ′,τ . Messages
passed in the opposite direction are written as xB→A,t ∈ R

N ,
{vB→A,t′,t ∈ R}t

t′=0, and V B→A.
The two modules utilize part of preceding messages in each

iteration t. Let TA,t ⊂ {0, . . . , t} and TB,t ⊂ {0, . . . , t} denote
subsets of indices that represent preceding messages used in
iteration t for modules A and B, respectively. We assume that
both subsets TA,t and TB,t contain the current index t.

We write the message matrix obtained by arranging the
preceding messages {xA→B,t′ : t� ∈ TB,t} as XA→B,t ∈
R

N×|TB,t|. More precisely, xA→B,t′ for t� ∈ TB,t is the ith
column in XA→B,t with i = ITB,t(t�), defined in Section I-D.
Furthermore, we define V A→B,t′,t ∈ R

|TB,t′ |×|TB,t| as the
matrix obtained by extracting the (τ �, τ) elements from V A→B

for all (τ �, τ) ∈ TB,t′ × TB,t.
Similarly, we define the message matrices XB→A,t and

V B→A,t′,t ∈ R
|TA,t′ |×|TA,t| passed in the opposite direction

via the preceding messages {xB→A,t′ : t� ∈ TA,t} and
V B→A. In particular, LM-OAMP reduces to conventional
OAMP [30] when the subsets TA,t = TB,t = {t} are used,
while TA,t = TB,t = {0, . . . , t} is the best in terms of the
estimation performance. Interestingly, this paper proves that
Bayes-optimal LM-OAMP reduces to Bayes-optimal OAMP
for TA,t = TB,t = {0, . . . , t}.

Update rules in LM-OAMP are defined so as to realize
asymptotic Gaussianity for {xA→B,t′}. While a mathemati-
cally rigorous definition for asymptotic Gaussianity is pre-
sented shortly, a rough intuition is to regard the estimation
errors ht = xA→B,t − x and bt = V T(xB→A,t − x)
for the singular-value decomposition (SVD) A = UΣV T

as zero-mean Gaussian vectors with covariance E[hτhT
τ ′ ] =

[V A→B]τ ′,τIN and E[bτbT
τ ′ ] = [V B→A]τ ′,τIN , respectively.

These properties help us understand LM-OAMP intuitively
while they are too strong to justify. Asymptotic Gaussianity
proved in Theorem 1 is enough strong to prove the Bayes-
optimality of LM-OAMP while it is weaker than the properties
mentioned above.

C. Module A (Linear Estimation)

Module A consists of four steps in each iteration t.
In the first step, module A uses the preceding message
matrix XB→A,t and the covariance messages {vB→A,τ ′,τ :
τ �, τ ∈ {0, . . . , t}} to compute a sufficient statistic xsuf

B→A,t ∈
R

N for estimation of x and the corresponding covariance
{vsuf

B→A,t′,t}t
t′=0, given by

xsuf
B→A,t =

XB→A,tV
−1
B→A,t,t1

1TV −1
B→A,t,t1

, (18)

vsuf
B→A,t′,t =

1TV −1
B→A,t′,t′V B→A,t′,tV

−1
B→A,t,t1

1TV −1
B→A,t′,t′11

TV −1
B→A,t,t1

. (19)



8126 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 12, DECEMBER 2022

For the initial iteration t = 0, we use xB→A,0 = 0 and
vB→A,0,0 = E[�x�2]/N . These update rules are obtained by
regarding the estimation errors {xA→B,t′ − x} as zero-mean
Gaussian vectors with covariance E[(xA→B,τ −x)(xA→B,τ ′−
x)T] = [V B→A,t]τ ′,τIN . See Section II for the derivation.

The covariance matrix V B→A,t,t is guaranteed to be asymp-
totically positive definite via state evolution as long as t is
finite. However, V B→A,t,t has small positive eigenvalues that
converge to zero as t→ ∞. Nonetheless, such small eigenval-
ues causes no numerical issues in computing V −1

B→A,t,t1 since
the eigenvectors associated with such small eigenvalues should
be orthogonal to the vector 1, as proved in Proposition 1.

Remark 1: The sufficient statistic (18) is a normalized
linear combination of {xB→A,t′}t

t′=0 while it might not be
a convex combination. Thus, (18) can be regarded as a
damped estimate in module B. In fact, (18) was originally
obtained via the optimization of damping [43]. Nonetheless,
the interpretation in terms of a sufficient statistic is important
in analyzing the convergence of LM-OAMP as a technical
tool.

The second step is computation of the posterior mean
xpost

A,t ∈ R
N and covariance {vpost

A,t′,t ∈ R}t
t′=0. A linear filter

W t ∈ R
M×N is applied to the residual after interference

subtraction based on the sufficient statistic (18).

xpost
A,t = xsuf

B→A,t + W T
t (y − Axsuf

B→A,t), (20)

vpost
A,t′,t = γt′,tv

suf
B→A,t′,t +

σ2

N
Tr
(
W t′W

T
t

)
, (21)

with

γt′,t =
1
N

Tr
{(

IN − W T
t′A
)T (

IN − W T
t A
)}

. (22)

The formula (21) for the posterior covariance is justified in
the large system limit via state evolution while the posterior
mean (20) is equivalent to that in conventional OAMP [30].

The third step is the Onsager correction to realize asymp-
totic Gaussianity. Module A computes the extrinsic mean
xext

A,t ∈ R
N and covariance {vext

A,t′,t}t
t′=0, given by

xext
A,t =

xpost
A,t −

∑
t′∈TA,t

ξA,t′,txB→A,t′

1 − ξA,t
, (23)

vext
A,t′,t =

vpost
A,t′,t − ξA,t′ξA,tv

suf
B→A,t′,t

(1 − ξA,t′)(1 − ξA,t)
, (24)

where ξA,t′,t ∈ R is given by

ξA,t′,t = ξA,t

eT
ITA,t

(t′)V
−1
B→A,t,t1

1TV −1
B→A,t,t1

(25)

for t� ∈ TA,t, with

ξA,t =
1
N

Tr
(
IN − W T

t A
)
. (26)

The factor ξA,t′,t is the empirical average for the partial
derivatives of the posterior mean xpost

A,t with respect to the
elements in xB→A,t′ . The formula (24) for the covariance is
justified via state evolution.

The numerator in (23) is the Onsager correction of the
posterior message xpost

A,t to realize asymptotic Gaussianity, and

originates from a general error model in [44]. The denom-
inator in (23) has been selected to simplify state evolution,
as considered in VAMP [31]. In particular, this selection is
the best when the true posterior mean estimator is used. See
Section II-C for the details.

The last step is LM damping [43] of the extrinsic mes-
sages. Module A feeds the damped messages xA→B,t and
{vA→B,t′,t}t

t′=0 forward to module B.

xA→B,t =
t∑

τ=0

θA,τ,tx
ext
A,τ , (27)

vA→B,t′,t =
t′∑

τ ′=0

t∑
τ=0

θA,τ ′,t′θA,τ,tv
ext
A,τ ′,τ , (28)

where the damping factors {θA,τ,t} satisfy the following
normalization condition:

t∑
τ=0

θA,τ,t = 1, θA,t,t �= 0 (29)

for all t, where the condition θA,t,t �= 0 circumvents rank-
deficient V A→B,t,t. Note that the positivity of the damping
factors is not assumed since it is not required in state evolution.

The main novelty for module A in LM-OAMP is in the
sufficient statistic (18), the correction (23) for the posterior
message to realize asymptotic Gaussianity, and the update
rules (19), (21), (24), and (28) for the covariance messages.
In particular, the sufficient statistic is a key technical tool
to analyze the convergence of state evolution recursions for
LM-OAMP rigorously.

Example 1 (LMMSE): Consider the linear minimum mean-
square error (LMMSE) filter

W t = vsuf
B→A,t,t

(
σ2IM + vsuf

B→A,t,tAAT
)−1

A. (30)

We know that the LMMSE filter minimizes the posterior
variance vpost

A,t,t in (21). Let η(x) denote the η-transform [52]
of the empirical eigenvalue distribution of ATA, given by

η(x) =
1
N

Tr
{(

IN + xATA
)−1

}
. (31)

It is straightforward to confirm that the variance vpost
A,t,t in (21)

reduces to

vpost
A,t,t = ξA,tv

suf
B→A,t,t, (32)

where ξA,t in (26) is given by

ξA,t = η

(
vsuf
B→A,t,t

σ2

)
. (33)

For t� �= t, on the other hand, vpost
A,t′,t reduces to

vpost
A,t′,t = γt′,tv

suf
B→A,t′,t +

vsuf
B→A,t′,t′v

suf
B→A,t,t

vsuf
B→A,t′,t′ − vsuf

B→A,t,t

·
{
η

(
vsuf
B→A,t,t

σ2

)
− η

(
vsuf
B→A,t′,t′

σ2

)}
, (34)
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where γt′,t in (22) is given by

γt′,t =
vsuf
B→A,t′,t′

vsuf
B→A,t′,t′ − vsuf

B→A,t,t

η

(
vsuf
B→A,t′,t′

σ2

)

−
vsuf
B→A,t,t

vsuf
B→A,t′,t′ − vsuf

B→A,t,t

η

(
vsuf
B→A,t,t

σ2

)
. (35)

D. Module B (Nonlinear Estimation)

Module B is formulated in the same manner as in module A.
The only exception is element-wise nonlinear denoising while
module A has used the linear filter to mitigate the interference.
Thus, the same explanation is omitted as in module A.

In the first step, module B uses the preceding mes-
sage matrix XA→B,t and covariance {vA→B,τ ′,τ : τ �, τ ∈
{0, . . . , t}} in iteration t to compute a sufficient statistic
xsuf

A→B,t and the corresponding covariance {vsuf
A→B,t′,t}t

t′=0,
given by

xsuf
A→B,t =

XA→B,tV
−1
A→B,t,t1

1TV −1
A→B,t,t1

, (36)

vsuf
A→B,t′,t =

1TV −1
A→B,t′,t′V A→B,t′,tV

−1
A→B,t,t1

1TV −1
A→B,t′,t′11TV −1

A→B,t,t1
. (37)

The second step is computation of the posterior mean
xpost

B,t+1 ∈ R
N and covariance2 {vpost

B,t′+1,t+1}t
t′=0, which are

defined with a scalar denoiser ft : R → R as

xpost
B,t+1 = ft(xsuf

A→B,t), (38)

vpost
B,t′+1,t+1 = 1 +

1
N
fT

t′ (x
suf
A→B,t′)ft(xsuf

A→B,t)

+ vsuf
A→B,t′,tξB,t −

1
N
fT

t (xsuf
A→B,t)x

suf
A→B,t′

+ vsuf
A→B,t′,tξB,t′ −

1
N
fT

t′ (x
suf
A→B,t′)x

suf
A→B,t, (39)

with
ξB,t = �f �

t(x
suf
A→B,t)�. (40)

The posterior mean message xpost
B,t+1 is used as an estimator

of the signal vector x. Since the sufficient statistic xsuf
A→B,t

depends on the preceding messages XA→B,t, the posterior
message xpost

B,t+1 is a function of the preceding message matrix
XB→A,t. In this sense, module B utilizes LM denoising.

The posterior covariance (39) is a consistent estimator of the
covariance N−1

E[{x−ft′(xsuf
A→B,t′)}T{x−ft(xsuf

A→B,t)}] for
the estimation errors. See Section II-D for the details.

The third step is the Onsager correction to realize asymp-
totic Gaussianity. Module B computes the extrinsic mean
xext

B,t+1 ∈ R
N and covariance {vext

B,t′+1,t+1}t
t′=0,

xext
B,t+1 =

xpost
B,t+1 −

∑
t′∈TB,t

ξB,t′,txA→B,t′

1 − ξB,t
, (41)

vext
B,t′+1,t+1 =

vpost
B,t′+1,t+1 − ξB,t′ξB,tv

suf
A→B,t′,t

(1 − ξB,t′)(1 − ξB,t)
, (42)

2If the true prior distribution of x is available, (39) should be replaced with
the posterior covariance 〈C(xsuf

A→B,t′ , x
suf
A→B,t)〉 in (14) while vpost

B,0,t+1

should be set to the posterior variance 〈C(xsuf
A→B,t, x

suf
A→B,t)〉.

with

ξB,t′,t = ξB,t

eT
ITB,t

(t′)V
−1
A→B,t,t1

1TV −1
A→B,t,t1

(43)

for t� ∈ TB,t, where ξB,t is given by (40).
The last step is LM damping of the extrinsic messages.

Module B feeds the obtained messages xB→A,t+1 ∈ R
N and

{vB→A,t′,t+1}t+1
t′=0 back to module A. For t�, t ≥ 0,

xB→A,t+1 =
t∑

τ=0

θB,τ,tx
ext
B,τ+1, (44)

vB→A,t′+1,t+1 =
t′∑

τ ′=0

t∑
τ=0

θB,τ ′,t′θB,τ,tv
ext
B,τ ′+1,τ+1, (45)

with
t∑

τ=0

θB,τ,t = 1, θB,t,t �= 0. (46)

Otherwise, for t ≥ 0 we use

vB→A,0,t+1 =
t∑

τ=0

θB,τ,tv
post
B,0,τ+1

1 − ξB,τ
, (47)

with

vpost
B,0,t+1 = 1 + vsuf

A→B,t,tξB,t −
1
N
fT

t (xsuf
A→B,t)x

suf
A→B,t. (48)

IV. THEORETICAL ANALYSIS

A. State Evolution

We analyze the dynamics of LM-OAMP in the large sys-
tem limit via state evolution [44]. A first step is a proof
of asymptotic Gaussianity for the estimation errors in LM-
OAMP. Asymptotic Gaussianity is proved by confirming that
the error model for LM-OAMP is included into a general
error model proposed in [44], which guarantees asymptotic
Gaussianity. A second step is a derivation of state evolution
recursions via asymptotic Gaussianity.

We first postulate technical assumptions to justify asymp-
totic Gaussianity.

Assumption 1: The signal vector x has i.i.d. elements with
zero mean, unit variance, and bounded (2 + 
)th moment for
some 
 > 0.

Assumption 1 is an assumption to simplify state evolu-
tion analysis. We would need non-separable denoising if we
postulated dependent signal elements. See [53]–[55] for non-
separable denoising.

Assumption 2: The sensing matrix A is right-orthogonally
invariant: For any orthogonal matrix Φ independent of A, the
equivalence in distribution AΦ ∼ A holds. More precisely, for
the SVD A = UΣV T the orthogonal matrix V is indepen-
dent of UΣ and Haar-distributed [52], [56]. Furthermore, the
empirical eigenvalue distribution of ATA converges almost
surely to a compactly supported deterministic distribution with
unit first moment in the large system limit.

The unit-first-moment assumption is equivalent to the
almost sure convergence N−1Tr(ATA) a.s.→ 1 in the large
system limit. The right-orthogonal invariance is an important
assumption to justify asymptotic Gaussianity, for which a
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rough intuition is as follows: Let m ∈ R
N denote a vector

independent of V . Since V is Haar-distributed, the orthogonal
transform V m is distributed as (�m�/�z�)z for a standard
Gaussian vector z. If the amplitude �m�/�z� converges in
probability to a constant a > 0 as N → ∞, V m is distributed
as if it followed N (0, a2IN ).

It is a challenging issue in random matrix theory to weaken
the right-orthogonal invariance to more practical assump-
tions, including discrete cosine transform (DCT) or Hadamard
matrices with random permutation [57]. See [58]–[60] for
theoretical progress in this direction.

Assumption 3: The noise vector w is orthogonally invari-
ant: For any orthogonal matrix Φ independent of w, the
equivalence in distribution Φw ∼ w holds. Furthermore,
the almost sure convergence M−1�w�2 a.s.→ σ2 holds for the
variance σ2 > 0. The vector w has bounded (2+
)th moments
for some 
 > 0.

The AWGN vector w ∼ N (0, σ2IM ) with variance σ2

satisfies Assumption 3. When the sensing matrix is left-
orthogonally invariant, the orthogonal invariance in w can be
induced from A.

Assumption 4: The linear filter matrix W t in module A has
the same SVD structure as the sensing matrix A, i.e. W t =
UW̃ tV

T for A = UΣV T. Furthermore, the diagonal matrix
W̃

T
W̃ is in the space spanned by {Λj}∞j=0 with Λ = ΣTΣ.

Assumption 4 contains practically important linear filters,
such as the MF W t = A and the LMMSE filter (30).

Assumption 5: The scalar denoiser ft in module B is
Lipschitz-continuous and nonlinear.

The Lipschitz-continuity in Assumption 5 is a standard
assumption in state evolution analysis [17], [31], [35], [44]
while the nonlinearity is required for the positive definiteness
of V B→A,t,t. In module A, Assumption 4 and the compact
support in Assumption 2 are substituted for Assumption 5.

We are ready to present asymptotic Gaussianity for the
estimation errors in LM-OAMP.

Theorem 1 (Asymptotic Gaussianity): Suppose that
Assumptions 1–5 are satisfied and consider any iteration t.
Then, the following results hold for all iterations
τ �, τ ∈ {0, . . . , t}.

• The covariance N−1(xB→A,τ ′ −x)T(xB→A,τ −x) con-
verges almost surely to some constant v̄B→A,τ ′,τ in the
large system limit. Furthermore, the (t + 1) × (t + 1)
upper-left block of the matrix V̄ B→A with [V̄ B→A]τ ′,τ =
v̄B→A,τ ′,τ is positive definite as long as t is finite.

• Let V̄ B→A,t′,t ∈ R
|TA,t′ |×|TA,t| denote the matrix

obtained by extracting the elements v̄B→A,τ ′,τ for all
τ � ∈ TA,t′ and τ ∈ TA,t from the covariance matrix
V̄ B→A defined in the first property. Then, the covari-
ance N−1(xpost

A,τ ′ − x)T(xpost
A,τ − x) converges almost

surely to some constant v̄post
A,τ ′,τ in the large system limit,

given by

v̄post
A,τ ′,τ = lim

M=δN→∞

{
γτ ′,τ v̄

suf
B→A,τ ′,τ

+
σ2

N
Tr
(
W τ ′W T

τ

)}
, (49)

where γτ ′,τ is given by (22), with

v̄suf
B→A,τ ′,τ =

1TV −1
B→A,τ ′,τ ′V̄ B→A,τ ′,τV −1

B→A,τ,τ1

1TV −1
B→A,τ ′,τ ′11TV −1

B→A,τ,τ1
.

(50)
• The covariance N−1(xA→B,τ ′ −x)T(xA→B,τ −x) con-

verges almost surely to some constant v̄A→B,τ ′,τ in the
large system limit. Furthermore, the (t + 1) × (t + 1)
upper-left block of the matrix V̄ A→B with [V̄ A→B]τ ′,τ =
v̄A→B,τ ′,τ is positive definite as long as t is finite.

• Let V̄ A→B,t′,t ∈ R
|TB,t′ |×|TB,t| denote the matrix

defined by extracting the elements v̄A→B,τ ′,τ for all
τ � ∈ TB,t′ and τ ∈ TB,t from the covariance matrix
V̄ A→B defined in the third property. Then, the covariance
N−1(xpost

B,τ ′+1−x)T(xpost
B,τ+1−x) converges almost surely

to some constant v̄post
B,τ ′+1,τ+1 in the large system limit,

v̄post
B,τ ′+1,τ+1 = E[{fτ ′(x1 + zτ ′) − x1}

· {fτ (x1 + zτ ) − x1}], (51)

where {zτ ′, zτ} are independent of the signal element x1

and zero-mean Gaussian random variables with covari-
ance E[zτ ′zτ ] = v̄suf

A→B,τ ′,τ , given by

v̄suf
A→B,τ ′,τ =

1TV −1
A→B,τ ′,τ ′V̄ A→B,τ ′,τV −1

A→B,τ,τ1

1TV −1
A→B,τ ′,τ ′11TV −1

A→B,τ,τ1
.

(52)
Furthermore, ξB,τ in (40) converges almost surely to ξ̄B,τ

in the large system limit,

ξ̄B,τ = E[f �
τ (x1 + zτ )]. (53)

Proof: See Appendix B.
The second and fourth results in Theorem 1 are the precise

meaning of asymptotic Gaussianity for LM-OAMP while the
asymptotic Gaussianity for the second result is not explicit,
because of the linear filter in module A. We cannot claim
the joint Gaussianity for the estimation errors: the conver-
gence of the joint distribution of {xsuf

A→B,τ − x}t
τ=0 toward

a joint Gaussian distribution with covariance E[(xsuf
A→B,τ −

x)(xsuf
A→B,τ ′ − x)T] = v̄suf

A→B,τ ′,τI . We only claim the
almost sure convergence of N−1(xpost

B,τ ′+1 − x)T(xpost
B,τ+1 −

x) toward (51) given via the zero-mean Gaussian random
variables zτ ′ and zτ with covariance E[zτ ′zτ ] = v̄suf

A→B,τ ′,τ .
We next derive state evolution recursions by evaluating the

covariance v̄A→B,τ ′,τ and v̄B→A,τ ′,τ in Theorem 1.
Theorem 2 (State Evolution): Suppose that Assump-

tions 1–5 are satisfied. Then, the state evolution recursions
for module A are given by

v̄suf
B→A,t′,t =

1TV̄
−1
B→A,t′,t′V̄ B→A,t′,tV̄

−1
B→A,t,t1

1TV̄
−1
B→A,t′,t′11TV̄

−1
B→A,t,t1

, (54)

ξ̄A,t = lim
M=δN→∞

1
N

Tr
(
IN − W T

t A
)
, (55)

v̄ext
A,t′,t =

v̄post
A,t′,t − ξ̄A,t′ ξ̄A,tv̄

suf
B→A,t′,t

(1 − ξ̄A,t′)(1 − ξ̄A,t)
, (56)

v̄A→B,t′,t =
t′∑

τ ′=0

t∑
τ=0

θA,τ ′,t′θA,τ,tv̄
ext
A,τ ′,τ , (57)
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with v̄B→A,0,0 = 1, where v̄post
A,t′,t is defined in (49). In these

expressions, vsuf
B→A,t,t in W t is replaced with v̄suf

B→A,t,t. On the
other hand, the state evolution recursions for module B are
given by

v̄suf
A→B,t′,t =

1TV̄
−1
A→B,t′,t′V̄ A→B,t′,tV̄

−1
A→B,t,t1

1TV̄
−1
A→B,t′,t′11

TV̄
−1
A→B,t,t1

, (58)

v̄ext
B,t′+1,t+1 =

v̄post
B,t′+1,t+1 − ξ̄B,t′ ξ̄B,tv̄

suf
A→B,t′,t

(1 − ξ̄B,t′)(1 − ξ̄B,t)
, (59)

v̄B→A,t′+1,t+1 =
t′∑

τ ′=0

t∑
τ=0

θB,τ ′,t′θB,τ,tv̄
ext
B,τ ′+1,τ+1 (60)

for t�, t ≥ 0, where v̄post
B,t′+1,t+1 and ξ̄B,t are defined as (51)

and (53), respectively. For t� = −1, (60) is replaced with

v̄B→A,0,t+1 =
t∑

τ=0

θB,τ,tv̄
post
B,0,τ+1

1 − ξ̄B,τ
(61)

for t ≥ 0, with

v̄post
B,0,τ+1 = E[x1{x1 − fτ (x1 + zτ )}], (62)

where zτ is independent of x1 and a zero-mean Gaussian
random variable with variance E[z2

τ ] = v̄suf
A→B,τ,τ .

Proof: See Appendix C.
Theorem 2 presents the state evolution recursions for LM-

OAMP, which justify the update rules for the covariance mes-
sages in LM-OAMP. In particular, the MSE N−1�xpost

B,t+1 −
x�2 converges almost surely to v̄post

B,t+1,t+1 in the large system
limit.

Example 2: As an example of Theorem 2, we derive state
evolution recursions for damped OAMP. Let TA,t = TB,t =
{t} and consider damping θA,0,t = (1−θA)t, θA,τ,t = θA(1−
θA)t−τ for all τ > 0 in (27) with some θA ∈ [0, 1], and
θB,0,t = (1 − θB)t, θB,τ,t = θB(1 − θB)t−τ for all τ > 0 in
(44) with some θB ∈ [0, 1] [31]. From (27) we have xA→B,0 =
xext

A,0 and

xA→B,t = θA

t∑
τ=1

(1 − θA)t−τxext
A,τ + (1 − θA)txext

A,0

= θAxext
A,t + (1 − θA)xA→B,t−1 (63)

for t > 0. Similarly, from (44) we have xB→A,1 = xext
B→A,1

and for t > 0

xB→A,t+1 = θBxext
B,t+1 + (1 − θB)xB→A,t. (64)

The state evolution recursion for module A in damped
OAMP is given by

v̄ext
A,t′,t =

v̄post
A,t′,t − ξ̄A,t′ ξ̄A,tv̄B→A,t′,t

(1 − ξ̄A,t′)(1 − ξ̄A,t)
, (65)

where v̄post
A,t′,t is defined in (49) with v̄suf

B→A,t′,t = v̄B→A,t′,t.
Furthermore, we have v̄A→B,0,0 = v̄ext

A,0,0 and

v̄A→B,0,t = θAv̄
ext
A,0,t + (1 − θA)c̄A,0,t−1, (66)

v̄A→B,t′,t = θAc̄A,t′,t + (1 − θA)v̄A→B,t′−1,t, (67)

for all t�, t > 0, with

lc̄A,t′,t = lim
M=δN→∞

1
N

(xext
A,t′ − x)T(xA→B,t − x)

a.s.= θAv̄
ext
A,t′,t + (1 − θA)c̄A,t′,t−1, c̄A,t′,0 = v̄ext

A,t′,0. (68)

The state evolution recursions for module B reduce to

v̄ext
B,0,t+1 =

v̄post
B,0,t+1

1 − ξ̄B,t
, (69)

v̄ext
B,t′+1,t+1 =

v̄post
B,t′+1,t+1 − ξ̄B,t′ ξ̄B,tv̄A→B,t′,t

(1 − ξ̄B,t′)(1 − ξ̄B,t)
(70)

for t� ≥ 0, where v̄post
B,t′+1,t+1 is given by (51) with

v̄suf
A→B,τ ′,τ = v̄A→B,τ ′,τ . Furthermore, we have v̄B→A,0,0 = 1,
v̄B→A,0,1 = v̄ext

B,0,1, v̄B→A,1,1 = v̄ext
B,1,1, and

v̄B→A,0,t+1 = θBv̄
ext
B,0,t+1 + (1 − θB)v̄B→A,0,t, (71)

v̄B→A,1,t+1 = θBv̄
ext
B,1,t+1 + (1 − θB)c̄B,1,t, (72)

v̄B→A,t′+1,t+1 = θBc̄B,t′+1,t+1 + (1 − θB)v̄B→A,t′,t+1 (73)

for all t�, t > 0, with

c̄B,t′,t+1 = lim
M=δN→∞

1
N

(xext
B,t′ − x)T(xB→A,t+1 − x)

a.s.= θBv̄
ext
B,t′,t+1 + (1 − θB)c̄B,t′,t, c̄B,t′,1 = v̄ext

B,t′,1. (74)

These results imply that the correct state evolution recur-
sions for damped OAMP are the two-dimensional discrete
systems with respect to the covariance messages. Equivalent
results were derived for the MF W t = A and zero-mean i.i.d.
Gaussian sensing matrices [42].

The following heuristic damping for the variance messages
was used:

1
vA→B,t,t

=θA

(
1

vpost
A,t,t

− 1
vB→A,t,t

)
+

1−θA
vA→B,t−1,t−1

, (75)

1
vB→A,t+1,t+1

=θB

(
1

vpost
B,t+1,t+1

− 1
vA→B,t,t

)
+

1 − θB
vB→A,t,t

(76)

in precision domain [31] or

vA→B,t,t =θA

(
1

vpost
A,t,t

− 1
vB→A,t,t

)−1

+ (1 − θA)vA→B,t−1,t−1, (77)

vB→A,t+1,t+1 =θB

(
1

vpost
B,t+1,t+1

− 1
vB→A,t,t

)−1

+ (1 − θB)vA→B,t,t (78)

in variance domain. The heuristic damping cannot provide
accurate estimates for the MSE in each module while it results
in a one-dimensional discrete system to describe the variance
messages in OAMP.
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V. OPTIMIZATION

A. Damping

LM-OAMP has several design parameters such as the sub-
sets of indices TA,t, TB,t, the linear filter W t, damping factors
{θA,τ,t}, {θB,τ,t}, and the denoiser ft. Since this paper focuses
on the Bayes-optimal LM-OAMP, the LMMSE filter (30) and
the Bayes-optimal denoiser are used. Thus, the remaining
design parameters are TA,t, TB,t, {θA,τ,t}, and {θB,τ,t}.

We use Theorem 2 to optimize the damping factors {θA,τ,t}
and {θB,τ,t}. A reasonable criterion is the minimization of
the variance v̄suf

B→A,t,t and v̄suf
A→B,t,t for the sufficient statistics

given in (54) and (58). This criterion results in greedy mini-
mization of the MSEs v̄post

A,t,t and v̄post
B,t+1,t+1 for the posterior

estimators.
When all preceding messages are used, i.e. TA,t = TB,t =

{0, . . . , t}, we have

v̄suf
B→A,t,t =

1

1TV̄
−1
B→A,t,t1

, v̄suf
A→B,t,t =

1

1TV̄
−1
A→B,t,t1

.

(79)

In this case, the damping factors can be optimized via the
following lemma:

Lemma 4: For any T , let CT ∈ R
(T+1)×(T+1) denote

a positive-definite symmetric matrix with [CT ]τ ′,τ = cτ ′,τ .
Suppose that V T ∈ R

(T+1)×(T+1) has the (t�, t) element vt′,t

for t�, t ∈ {0, . . . , T}, given by

vt′,t =
t′∑

τ ′=0

t∑
τ=0

cτ ′,τθτ ′,t′θτ,t, (80)

where {θτ,t}t
τ=0 satisfy the normalization condition,

t∑
τ=0

θτ,t = 1. (81)

Define the upper triangular matrix ΘT ∈ R
(T+1)×(T+1) as

ΘT =

⎡
⎢⎣
θ0,0 · · · θ0,T

. . .
...

O θT,T

⎤
⎥⎦ . (82)

If ΘT has full rank, then the following identity holds:

1TV −1
T 1 = 1TC−1

T 1. (83)

Proof: By definition, V T is represented as V T =
ΘT

T CTΘT . Since both V T and ΘT are invertible, we have
1TV −1

T 1 = 1TΘ−1
T C−1

T (Θ−1
T )T1. The normalization (81)

implies 1TΘT = 1T, so that 1T = 1TΘTΘ−1
T = 1TΘ−1

T

holds. Combining these results, we arrive at Lemma 4.
Using Lemma 4 for (57) and (60), we find that the

damping factors {θA,τ,t} and {θB,τ,t} are independent of the
variance (79) for the sufficient statistics if TA,t = TB,t =
{0, . . . , t} are used. This observation is intuitively trivial since
xsuf

B→A,t and xsuf
A→B,t in (18) and (36) are sufficient statistics.

Thus, we assume no damping θA,τ,t = θB,τ,t = δτ,t when all
preceding information TA,t = TB,t = {0, . . . , t} are used.

B. Bayes-Optimal LM-OAMP

We consider Bayes-optimal LM-OAMP. In general, the
state evolution recursions in Theorem 2 are two-dimensional
discrete systems. Interestingly, the systems reduce to one-
dimensional systems when all preceding information TA,t =
TB,t = {0, . . . , t}, the LMMSE filter (30), and the
Bayes-optimal denoiser are used in each iteration.

The Bayes-optimal denoiser is defined as the denoiser fτ

that minimizes the MSE v̄post
B,τ+1,τ+1 in (51). By definition,

the Bayes-optimal denoiser is equal to the posterior mean
estimator fτ = E[x1|x1 + zτ ] with zτ defined in Theorem 1.

To present the state evolution recursions for the Bayes-
optimal LM-OAMP, we review state evolution recursions
for conventional Bayes-optimal OAMP [31], [35], which are
one-dimensional systems with respect to two variance para-
meters v̄A→B,t and v̄B→A,t,

v̄A→B,t =
(

1
ξ̄A,tv̄B→A,t

− 1
v̄B→A,t

)−1

, (84)

v̄B→A,t+1 =

(
1

v̄post
B,t+1

− 1
v̄A→B,t

)−1

, (85)

with v̄B→A,0 = 1. In (84), ξ̄A,t is given by

ξ̄A,t = 1 − lim
M=δN→∞

v̄B→A,t

N
Tr
{

AAT

·
(
σ2IM + v̄B→A,tAAT

)−1
}
. (86)

Furthermore, v̄post
B,t+1 = E[{E[x1|x1 + zt] − x1}2] in (85)

corresponds to the MSE for Bayes-optimal OAMP in the
large system limit, with zt denoting a zero-mean independent
Gaussian random variable with variance v̄A→B,t.

Theorem 3 (Bayes-Optimal LM-OAMP): Suppose that
Assumptions 1–5 are satisfied. Consider TA,t = TB,t =
{0, . . . , t}, θA,τ,t = θB,τ,t = δτ,t, the LMMSE filter (30), and
the Bayes-optimal denoiser. Then,

• The state evolution recursions for the Bayes-optimal LM-
OAMP with the initialization v̄B→A,0,0 = 1 satisfy
v̄A→B,t′,t = v̄A→B,t and v̄B→A,t′+1,t+1 = v̄B→A,t+1

for all t� ≤ t, which are defined via the state evolution
recursions (84) and (85) for Bayes-optimal OAMP.

• The state (v̄A→B,t′,t, v̄B→A,t′+1,t+1) converges to a FP
as t tends to infinity for all t� ≤ t.

Proof: See Appendix D.
Theorem 3 implies that the Bayes-optimal LM-OAMP

converges for general signal prior and asymptotic eigen-
value distributions of ATA, while conventional MP
algorithms require convergence analysis for individual
problems [39]–[41].

The state evolution recursions for the Bayes-optimal
LM-OAMP are essentially one-dimensional: v̄A→B,t′,t and
v̄B→A,t′+1,t+1 are well defined via the one-dimensional recur-
sions (84) and (85) for Bayes-optimal OAMP [31], [35].
As a by-product, we arrive at the convergence of conventional
Bayes-optimal OAMP.

Corollary 2 (Bayes-Optimal OAMP): Suppose that
Assumptions 1–5 are satisfied. Then, the state evolution
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recursions (84) and (85) for conventional Bayes-optimal
OAMP converge to a FP. Furthermore, the FP characterizes
the Bayes-optimal performance if it is unique.

Proof: Since the Bayes-optimality of the unique FP is due
to [30], we only prove the convergence of the state evolution
recursions for Bayes-optimal OAMP.

The latter property in Theorem 3 implies the convergence
of v̄A→B,t′,t and v̄B→A,t′,t for the Bayes-optimal LM-OAMP
to a FP. Furthermore, the former property in Theorem 3
claims that the diagonal elements v̄A→B,t,t and v̄B→A,t,t

are respectively equal to v̄A→B,t and v̄B→A,t in the state
evolution recursions (84) and (85) for Bayes-optimal OAMP
[31], [35]. These observations imply the convergence of
the state evolution recursions for Bayes-optimal OAMP to
a FP.

Theorem 3 implies that the dynamics of the MSE perfor-
mance for the Bayes-optimal LM-OAMP is equal to that for
Bayes-optimal OAMP. Interestingly, we can confirm an equiv-
alence between the Bayes-optimal LM-OAMP and Bayes-
optimal OAMP.

Proposition 3: Consider TA,t = TB,t = {0, . . . , t}, θA,τ,t =
θB,τ,t = δτ,t, the LMMSE filter (30), and the Bayes-optimal
denoiser. If the covariance matrices V A→B,t,t and V B→A,t,t

given via (28) and (45) are positive definite for all t, then
the Bayes-optimal LM-OAMP is equivalent to Bayes-optimal
OAMP.

Proof: Repeating the proof of the former property in
Theorem 3, we can prove the identities vA→B,t′,t = vA→B,t,t

and vB→A,t′+1,t+1 = vB→A,t+1,t+1 for all t� ≤ t. From the
positive definiteness of V A→B,t,t and V B→A,t,t, we can use
the last property in Lemma 3 to find that (18) and (36) reduce
to xsuf

B→A,t = xB→A,t and xsuf
A→B,t = xA→B,t, respectively,

and that ξA,t′,t = ξB,t′,t = 0 in (25) and (43) holds for all
t� �= t.

The former observation implies that one can skip the com-
putation of the sufficient statistics in the first step of the Bayes-
optimal LM-OAMP. The latter observation indicates that the
extrinsic mean messages in (23) and (41) are equivalent to
those in Bayes-optimal OAMP [30]. Thus, the Bayes-optimal
LM-OAMP is equivalent to Bayes-optimal OAMP.

Theorem 1 justifies the positive-definiteness assumption in
Proposition 3 in the large system limit. Intuitively, Proposi-
tion 3 holds since xA→B,t and xB→A,t are sufficient statistics
for estimation of the signal vector given all preceding mes-
sages in each module. The Bayes-optimal LM-OAMP may
be regarded as a theoretical tool to prove that xA→B,t and
xB→A,t are sufficient statistics. These observations imply that
conventional Bayes-optimal OAMP is the best option among
all possible LM-MP algorithms in terms of the reconstruction
performance.

VI. NUMERICAL RESULTS

A. Simulation Conditions

In all numerical results, we assume an i.i.d. Bernoulli-
Gaussian (BG) signal vector x and artificial sensing matrices
A. Each signal element xn is independently sampled from the
Gaussian distribution N (0, ρ−1) with probability ρ ∈ [0, 1].

Otherwise, xn takes zero. See [44, Appendix F] for properties
of the BG prior.

In artificial sensing matrices with condition number κ > 1,
A is assumed to have non-zero singular values σ0 ≥ · · · ≥
σM−1 > 0 satisfying the condition number κ = σ0/σM−1,
σm/σm−1 = κ−1/(M−1), and σ2

0 = N(1 − κ−2/(M−1))/(1 −
κ−2M/(M−1)). As shown in [44, Eq. (65)], the η-transform η
in (31) converges almost surely to

η(x) a.s.→ 1 − 1
C

ln
(
κ2 − 1 + κ2Cx

κ2 − 1 + Cx

)
(87)

in the large system limit, with C = 2δ−1 lnκ. The
η-transform (87) is used in solving state evolution recursions.

To reduce the computational complexity, we assume the
SVD structure A = ΣV T, in which V denotes a Hadamard
matrix with random row permutation. Such orthogonal matri-
ces V may be regarded as a practical alternative of Haar
orthogonal matrices [58]–[60].

B. Implementation

We consider the LMMSE filter (30) in module A and the
Bayes-optimal denoiser ft(st) = E[x1|st] with st = x1 + zt

in module B, in which {zτ} are defined in Theorem 1.
In computing the covariance message vpost

B,t′+1,t+1, we use
the posterior covariance vpost

B,t′+1,t+1 = �C(xsuf
A→B,t′ ,x

suf
A→B,t)�

with C(st′ , st) = E[{x1 − ft′(st′)}{x1 − ft(st)}|st′ , st],
instead of (39). See [44, Appendix F] for the details.

Let V ext
B,t,t ∈ R

|TB,t|×|TB,t| denote the covariance matrix
with [V ext

B,t,t]τ ′,τ = vext
B,τ ′,τ given in (42). The matrix V ext

B,t,t is
guaranteed to be positive definite in the large system limit. For
finite-sized systems, however, it might not be positive definite
for some t. To circumvent this issue, it is recommended to
replace vext

B,τ ′,τ and vext
B,τ,τ ′ with vext

B,τ,τ if vext
B,τ ′,τ ′vext

B,τ,τ −
(vext

B,τ ′,τ )2 < 
 holds for small 
 > 0, which was set to

 = 10−6 in numerical simulations.

As discussed in Section II, this replacement implies that the
AWGN observation sτ = x1 + zτ in Theorem 1 becomes a
sufficient statistic for estimation of x1 based on both sτ ′ and
sτ for τ � < τ . In other words, it means that sτ ′ is not used
since it is correlated with sτ strongly.

C. Numerical Simulations

Damped OAMP with the correct state evolution (67) and
(73)—called LM-OAMP—is compared to damped OAMP
with the heuristic damping (77) and (78) [31]—called OAMP.
See Example 2 for the details.

We first verify the correctness of the state evolution results
via numerical simulations for large systems N = 213. Figure 2
shows the MSEs versus the number of iterations for LM-
OAMP with damping only in module B, i.e. θA = 1 and
θB ∈ (0, 1). The state evolution results predict the MSEs of
LM-OAMP accurately while OAMP is not in agreement with
the state evolution results for small θB.

We next compare LM-OAMP with OAMP for smaller
systems than in Fig. 2. As shown in Fig. 3, LM-OAMP is
slightly inferior to OAMP especially for small systems. This is
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Fig. 2. MSE versus the number of iterations for M = 212, N = 213, BG
signals with signal density ρ = 0.1, condition number κ = 103, θA = 1,
and SNR 1/σ2 = 40 dB.

Fig. 3. MSE versus the number of iterations for compression ratio δ = 0.5,
BG signals with signal density ρ = 0.1, condition number κ = 104, θA = 1,
and SNR 1/σ2 = 40 dB.

surprising since LM-OAMP uses the consistent state evolution
in the large system limit.

This result is intuitively understood as follows: LM-OAMP
uses the covariance messages in all preceding iterations to
compute the state evolution prediction in the current iteration.
As a result, all prediction errors in the preceding iterations
are accumulated for finite-sized systems, so that LM-OAMP
should have larger prediction errors than conventional OAMP
without LM processing. Figure 3 shows that this prediction
errors due to finite size effects are more dominant than the
inconsistency of the heuristic damping in the large system
limit.

VII. CONCLUSION

This paper has proposed LM-MP, constructed by adding
computation of sufficient statistics for estimation of the signal
vector given all preceding messages to the beginning of

each module in conventional MP. The proposed LM-MP is
a modification of conventional MP in two points.

In one point, the Bayes-optimal LM-MP provides a proof
strategy to guarantee the convergence of state evolution recur-
sions for conventional Bayes-optimal MP systematically. In the
proof strategy, one-dimensional state evolution recursions for
the Bayes-optimal MP are embedded into two-dimensional
state evolution recursions for the Bayes-optimal LM-MP,
which are systematically guaranteed to converge. As a result,
one can prove the convergence of the state evolution recursions
for the Bayes-optimal MP. While it has been applied to Bayes-
optimal OAMP [30], [31] in this paper, the proposed LM-MP
strategy is general and applicable to the convergence analysis
of the other Bayes-optimal MP algorithms.

The other point is that LM-MP may improve the conver-
gence properties of conventional MP. If state evolution recur-
sions for MP with Bayes-optimal denoiser are not embedded
into those for the corresponding LM-MP, the LM-MP strategy
indicates that the conventional MP has room for improvement:
The constructed LM-MP improves the convergence properties
of the conventional MP for large systems. In this sense,
MAMP [43] can be regarded as a modification of an MP
algorithm without LM damping.

Possible directions for future work are summarized to con-
clude this paper. A first issue is another criterion for optimality
such as the maximum a posteriori (MAP) scenario while this
paper has focused on the minimum MSE (MMSE) scenario.
It is an interesting direction whether the LM-MP strategy can
be generalized to the other criteria for optimality.

The other issue is an improvement of the state evolution
prediction for LM-MP in finite-sized systems. State evolution
recursions for LM-MP are more sensitive to finite size effects
than for conventional MP while they are consistent in the large
system limit. It is important to construct covariance estimators
that are consistent in the large system limit and accurate
for finite-sized systems. Such covariance estimators should
increase practical value of LM-MP for finite-sized systems
while the numerical simulations in this paper have shown the
inferiority of damped LM-OAMP to OAMP with heuristic
damping for finite-sized systems.

APPENDIX A
PROOFS

A. Proof of Proposition 2

We follow [30, Appendix B] to prove Proposition 2. We use
the definition fopt(St) = E[X |St] to obtain

E[(ψt −X)2] = E[(ψt − fopt + fopt −X)2]

= E[(ψt − fopt)2] + E[(fopt −X)2]. (88)

Thus, the minimization of E[(ψt −X)2] is equivalent to that
of E[(ψt − fopt)2].

To evaluate E[(ψt − fopt)2], we repeat the same argument
for the extrinsic denoiser f ext

t to obtain

E[(ψt − fopt)2] = E[(ψt − f ext
t + f ext

t − fopt)2]
=E[(ψt − f ext

t )2] + 2E[(ψt − f ext
t )(f ext

t − fopt)]

+ E[(f ext
t − fopt)2], (89)
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which implies that ψt = f ext
t minimizes E[(ψt−fopt)2] if the

second term is equal to zero for all extrinsic denoisers ψt.
To complete the proof of Proposition 2, it is sufficient to

prove E[ψt(f ext
t − fopt)] = 0 for any Lipschitz-continuous

extrinsic denoiser ψt with E[∂ψt/∂Yτ ] = 0. From the defini-
tion of f ext

t in (12), we have

f ext
t − fopt =

∑
τ∈Tt

ξτ,t(fopt−X −Wτ )
1 −

∑
τ∈Tt

ξτ,t
. (90)

Since {Wτ : τ ∈ Tt} are zero-mean Gaussian, we can use
[44, Lemma 2] for Lipschitz-continuous ψt to obtain

E[Wτψt] =
∑
t′∈Tt

E[WτWt′ ]E
[
∂ψt

∂Yt′

]
= 0, (91)

where the last follows from the assumption E[∂ψt/∂Yt′ ] = 0.
Thus, we have

E[ψt(f ext
t − fopt)] =

∑
τ∈Tt

ξτ,tE[ψt(fopt −X)]
1 −

∑
τ∈Tt

ξτ,t
= 0, (92)

where the last equality follows from E[ψtX ] = E[ψtfopt]
due to the definition fopt(St) = E[X |St] = E[X |Y t]. Thus,
Proposition 2 holds.

B. Proof of Lemma 1

Since {St′,n, St,n}N
n=1 are independent samples, we use the

strong law of large numbers to obtain

lim
N→∞

1
N

N∑
n=1

Ĉ(St′,n, St,n) a.s.= E[Ĉ(St′ , St)]. (93)

Thus, it is sufficient to prove the unbiasedness of Ĉ, i.e.

E[Ĉ(St′ , St)] = E[{X − ft′(St′)}{X − ft(St)}]. (94)

We first evaluate the expectation E[St′ft(St)]. Substituting
St′ = X + W̃t′ and using Stein’s lemma [61] for Lipschitz-
continuous ft, we have

E[St′ft(St)] = E[Xft(St)] + E[W̃t′W̃t]E[f �
t(St)]. (95)

Applying this result to (16), we arrive at

E[Ĉ(St′ , St)] =E[X2] + E[ft′(St′)ft(St)]
− E[Xft(St)] − E[Xft′(St′)]

=E[{X − ft′(St′)}{X − ft(St)}]. (96)

Thus, Lemma 1 holds.

C. Proof of Lemma 2

We prove the former property. Since {Yτ}t
τ=0 contains

{Yτ}t′

τ=0 for t� < t, the optimality of the posterior mean
estimator fopt(St) implies E[{X − fopt(St)}2] ≤ E[{X −
fopt(St′)}2]. The monotonicity E[W̃ 2

t′ ] ≥ E[W̃ 2
t ] follows from

the monotonicity of the MSE E[{X−fopt(St)}2] with respect
to the variance E[W̃ 2

t ].
We next prove the latter property. When E[W̃t′W̃t] =

E[W̃ 2
t ] holds, we have the following representation for the

sufficient statistic:

St′ = St + Zt′ , St = X + W̃t, (97)

where Zt′ is a zero-mean Gaussian random variable with
variance E[W̃ 2

t′ ] − E[W̃ 2
t ] ≥ 0 and independent of X and

W̃t. The representation (97) can be verified from

E[(W̃t +Zt′)2] = E[W̃ 2
t′ ], E[(W̃t +Zt′)W̃t] = E[W̃ 2

t ]. (98)

The representation (97) implies that St is a sufficient
statistic for estimation of X given both St′ and St. Thus,
we have E[X |St′ , St] = E[X |St] = fopt(St). Applying this
identity to the definition of C(St′ , St) in (14), we arrive at

C(St′ , St) − C(St, St)
={fopt(St) − fopt(St′)} {E[X |St′ , St] − fopt(St)}
=0. (99)

Thus, the latter property holds.

D. Proof of Lemma 3

We first prove the first property. It is straightforward to
confirm

detΣt = [Σt]t,t
t−1∏
τ=0

ΔΣτ,t, (100)

with ΔΣτ,t = [Σt]τ,τ − [Σt]τ+1,τ+1. Since {Στ}t
τ=1 have

been assumed to be positive definite, we have the positivity
{detΣτ > 0}t

τ=1. Using (100) yields the first property
ΔΣτ,t > 0 for all τ .

Let us prove (100). Since [Σt]τ ′,τ = [Σt]τ,τ ′ = [Σt]τ,τ

holds for all τ � < τ , we subtract the (τ + 1)th column in Σt

from the τ th column for all τ ∈ {0, . . . , t− 1} to obtain the
upper triangular expression for the determinant,

detΣt =

∣∣∣∣∣∣∣∣∣∣

ΔΣ0,t · · · ΔΣt−1,t [Σt]t,t

O
. . .

...
...

...
. . . ΔΣt−1,t

...
O · · · O [Σt]t,t

∣∣∣∣∣∣∣∣∣∣
, (101)

which implies (100). Thus, the first property holds.
We next prove the second property. Using the assumption

[Σt]τ ′,τ = [Σt]τ,τ and the first property [Σt]τ ′,τ ′ > [Σt]τ,τ

for all τ � < τ , we have the following representation for {Yτ}:

Yt = X +Wt, Yτ−1 = Yτ + Vτ−1 (102)

for τ ∈ {1, . . . , t}, where {Vτ−1} are independent zero-mean
Gaussian random variables with E[V 2

τ−1] = ΔΣτ−1,t > 0.
This representation implies that Yt is a sufficient statistic for
estimation of X based on {Yτ}t

τ=0. Thus, we arrive at E[{X−
fopt(St)}2] = E[{X − fopt(Yt)}2], which implies E[W̃ 2

t ] =
E[W 2

t ].
Finally, the last property follows immediately from the

definitions of St and ξτ,t in (5) and (13), and the identity
Σ−1

t 1 = ([Σt]t,t)−1et. The identity St = Yt provides an
alternative proof of the second property: E[W̃ 2

t ] = E[(St −
X)2] = E[(Yt −X)2] = E[W 2

t ].
The identity Σ−1

t 1 = ([Σt]t,t)−1et can be confirmed as
follows: From the assumption in Lemma 3, Σt has the last
column [Σt]t,t1. Thus, we have Σtet = [Σt]t,t1, which is
equivalent to the identity Σ−1

t 1 = ([Σt]t,t)−1et.
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APPENDIX B
PROOF OF THEOREM 1

Asymptotic Gaussianity has been proved for a general
error model proposed in [44]. Thus, we first prove that the
error model for LM-OAMP is included into the general error
model.

Lemma 5: Suppose that Assumption 4 holds. Let ht =
xA→B,t − x denote the estimation error before denoising in
iteration t. Define an error vector qt+1 associated with the
estimation error after denoising by

qt+1 =
t∑

τ=0

θB,τ,t

1 − ξB,τ
(xpost

B,τ+1 − x). (103)

Then, the error model for LM-OAMP is included into the
general error model in [44] and given by

bt = V Tq̃t, (104)

mt =
t∑

τ=0

θA,τ,t

1 − ξA,τ
V T(xpost

A,τ − x), (105)

m̃t =
t∑

τ=0

θA,τ,t{V T(xpost
A,τ − x) −

∑
t′∈TA,τ

ξA,t′,τbt′}
1 − ξA,τ

,

(106)

V T(xpost
A,t − x) =

(
IN − W̃

T

t Σ
) BtV

−1
B→A,t,t1

1TV −1
B→A,t,t1

+ W̃
T

t UTw, (107)

ht = V m̃t, (108)

q̃t+1 =
t∑

τ=0

θB,τ,t(x
post
B,τ+1 − x −

∑
t′∈TB,τ

ξB,t′,τht′)

1 − ξB,τ
,

(109)

with q̃0 = −x, where Bt ∈ R
N×|TA,t| consists of {bτ : τ ∈

TA,t}. In particular, q̃t = xB→A,t − x holds.
Proof: We first prove

rlq̃t+1 = qt+1 −
t∑

t′=0

(
1
N

N∑
n=1

∂qn,t+1

∂hn,t′

)
ht′ , (110)

which is equivalent to the definition in [44, Eq. (9)]. From the
definition of qt+1 in (103), we have

1
N

N∑
n=1

∂qn,t+1

∂hn,t′
=

1
N

N∑
n=1

t∑
τ=0

θB,τ,t

1 − ξB,τ

∂xpost
B,n,τ+1

∂hn,t′
. (111)

We define the error matrix Ht = XA→B,t − 1T ⊗ x for
the preceding messages before denoising, so that Ht consists
of the columns {ht′ : t� ∈ TB,t}. Using the definition of
xpost

B,t+1 in (38) with (36), we find that xpost
B,t+1 is a function of

{ht′ : t� ∈ TB,t} since the sufficient statistic (36) is a function

of XA→B,t = 1T ⊗ x + Ht. Thus, we obtain

1
N

N∑
n=1

∂xpost
B,n,τ+1

∂hn,t′
=

1
N

N∑
n=1

f �
τ (xsuf

A→B,n,τ )

· ∂

∂hn,t′

([1T ⊗ x + Hτ ],n)TV −1
B→A,τ,τ1

1TV −1
B→A,τ,τ1

=�f �
τ (xsuf

A→B,τ )�
eT

ITB,τ
(t′)V

−1
B→A,τ,τ1

1TV −1
B→A,τ,τ1

= ξB,t′,τ (112)

for t� ∈ TB,τ , with ξB,t′,τ defined in (43), where [· · · ],n
denotes the nth row of · · · . Substituting these results and
the definition of qt+1 in (103) into (110), we arrive at the
equivalence between (109) and (110).

We next prove q̃t+1 = xB→A,t+1 −x. Using the definition
of xext

B,t in (41) and ht = xA→B,t − x yields

xext
B,t+1 − x =

xpost
B,t+1 − x −

∑
t′∈TB,t

ξB,t′,tht′

1 − ξB,t
, (113)

where we have used
∑

t′∈TB,t
ξB,t′,t = ξB,t. Applying this

expression to (109), we have

q̃t+1 =
t∑

τ=0

θB,τ,t(xext
B,τ+1 − x). (114)

Using the definition of xB→A,t+1 in (44) and the normaliza-
tion (46), we arrive at q̃t+1 = xB→A,t+1 − x.

We shall derive (107). Applying q̃t = xB→A,t − x to the
sufficient statistic (18) yields

xsuf
B→A,t = x +

Q̃tV
−1
B→A,t,t1

1TV −1
B→A,t,t1

, (115)

with Q̃t = XB→A,t − (1T ⊗ x). Substituting this result and
the measurement model (1) into the definition of xpost

A,t in (20),
we have

xpost
A,t −x =

(
IN − W T

t A
) Q̃tV

−1
B→A,t,t1

1TV −1
B→A,t,t1

+WT
t w. (116)

For the SVD A = UΣV T, applying the SVD W t =
UW̃ tV

T in Assumption 4 to (116) and using the definition
of bt in (104), we arrive at (107) with Bt = V TQ̃t.

Let us prove

m̃t = mt −
t∑

t′=0

(
1
N

N∑
n=1

∂mn,t

∂bn,t′

)
bt′ , (117)

which is equivalent to the definition in [44, Eq. (11)]. Using the
expression for mt in (105) with (107), we repeat the derivation
of (112) to have

1
N

N∑
n=1

∂mn,t

∂bn,t′
=

t∑
τ=0

θA,τ,tξA,t′,τ

1 − ξA,τ
(118)

for t� ∈ TA,t, with ξA,t′,t defined in (25), where we have used

the identity Tr(IN −W̃
T

t Σ) = Tr(IN −W T
t A). Substituting

this expression and the definition of mt in (105) into (117),
we arrive at the equivalence between (106) and (117).
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We have so far proved that the error model (104)–(109) is
included into the general error model in [44]. To complete the
proof of Lemma 5, we prove ht = V m̃t. From the definition
of m̃t in (106), we have

V m̃t =
t∑

τ=0

θA,τ,t

xpost
A,τ − x −

∑
t′∈TA,τ

ξA,t′,τ q̃t′

1 − ξA,τ
, (119)

with q̃t = V bt. Using the definition of xext
A,t in (23) yields

xext
A,t − x =

xpost
A,t − x −

∑
t′∈TA,t

ξA,t′,tq̃t′

1 − ξA,t
, (120)

with q̃t = xB→A,t − x, where we have used the identity∑
t′∈TA,t

ξA,t′,t = ξA,t. Thus, we have

V m̃t =
t∑

τ=0

θA,τ,t(xext
A,τ − x) = xA→B,t − x = ht, (121)

where the second equality follows from the definition of
xA→B,t in (27) and the normalization (29). Thus, Lemma 5
holds.

Lemma 5 and Assumptions 1–5 allow us to use [44, Theo-
rem 6] to prove Theorem 1. The first property in Theorem 1
follows from [44, Theorem 6 (B4) and Eq. (107)]. Similarly,
the third property follows from [44, Theorem 6 (A4) and
Eq. (98)].

We next prove the second property. Using (107) and [44,
Eq. (94)] yields

1
N

(xpost
A,τ ′ − x)T(xpost

A,τ − x)

a.s.=
1
N

1TV −1
B→A,τ ′,τ ′

1TV −1
B→A,τ ′,τ ′1

E

[
BT

τ ′Dτ ′,τBτ

] V −1
B→A,τ,τ1

1TV −1
B→A,τ,τ1

+N−1
E

[
wTUW̃ τ ′W̃

T

τ UTw
]

+ o(1) (122)

in the large system limit, with

Dτ ′,τ =
(
IN − W̃

T

τ ′Σ
)T (

IN − W̃
T

τ Σ
)
, (123)

where {Bτ} follow zero-mean Gaussian random matrices with
covariance E[bτbT

τ ′ ] = v̄B→A,τ ′,τIN while UTw follows
N (0, σ2IM ). Evaluating the expectation in (122) with the
identities Tr(Dτ ′,τ ) = Tr{(IN − W T

τ ′A)T(IN − W T
τ A)}

and Tr(W̃ τ ′W̃
T

τ ) = Tr(W τ ′W T
τ ), we find that the right-

hand side (RHS) is equal to (49) in the large system limit.
Thus, the second property in Theorem 1 holds.

Finally, we prove the last property. Repeating the derivation
of (115) for the sufficient statistic (36) yields

xsuf
A→B,t = x + zt, zt =

HtV
−1
A→B,t,t1

1TV −1
A→B,t,t1

. (124)

We use the definition of xB,τ+1 in (38) and [44, Eq. (103)]
to obtain

1
N

(xpost
B,τ ′+1 − x)T(xpost

B,τ+1 − x)

a.s.=
1
N

N∑
n=1

E [{fτ ′(xn + zn,τ ′) − xn}{fτ(xn + zn,τ ) − xn}]

+ o(1), (125)

where {Hτ} in (124) follow zero-mean Gaussian random
matrices with covariance E[hτhT

τ ′ ] = v̄A→B,τ ′,τIN . Evalu-
ating the correlation E[zn,τ ′zn,τ ] with (8), we arrive at (51).

The almost sure convergence of ξB,τ in (43) to ξ̄B,τ follows
from Assumption 5 and [44, Eq. (104)]. Thus, Theorem 1
holds.

APPENDIX C
PROOF OF THEOREM 2

We first evaluate the covariance v̄A→B,t′,t. Lemma 5 implies

v̄A→B,t′,t = lim
M=δN→∞

1
N

m̃T
t′m̃t, (126)

where m̃t is given by (106). By definition, we have

v̄A→B,t′,t
a.s.=

t′∑
τ ′=0

t∑
τ=0

θA,τ ′,t′θA,τ,tv̄
ext
A,τ ′,τ + o(1), (127)

which is equal to (57), with

(1 − ξA,t′)(1 − ξA,t)v̄ext
A,t′,t

=v̄post
A,t′,t −

∑
τ ′∈TA,t′

ξA,τ ′,t′
bT

τ ′V T(xpost
A,t − x)
N

−
∑

τ∈TA,t

ξA,τ,t

(xpost
A,t′ − x)TV bτ

N

+
∑

τ ′∈TA,t′

∑
τ∈TA,t

ξA,τ ′,t′ξA,τ,tv̄B→A,τ ′,τ , (128)

where N−1bT
τ ′bτ = N−1q̃T

τ ′ q̃τ
a.s.→ v̄B→A,τ ′,τ has been used.

We apply (26), (107), and [44, Eq. (31)] to obtain

1
N

bT
τ ′V T(xpost

A,t −x) a.s.=
∑

τ∈TA,t

ξA,τ,tv̄B→A,τ ′,τ +o(1), (129)

where we have used (25). Applying this result to (128) yields

(1 − ξA,t′)(1 − ξA,t)v̄ext
A,t′,t

a.s.= v̄post
A,t′,t

−
∑

τ ′∈TA,t′

∑
τ∈TA,t

ξA,τ ′,t′ξA,τ,tv̄B→A,τ ′,τ + o(1)

= v̄post
A,t′,t − ξ̄A,t′ ξ̄A,tv̄

suf
B→A,t′,t + o(1), (130)

where the second equality follows from (25), (50), and (55).
Thus, we have arrived at (56) with v̄suf

B→A,t′,t given by (50),
instead of (54).

We next evaluate v̄B→A,t′+1,t+1 for t�, t ≥ 0. Lemma 5
implies

v̄B→A,t′+1,t+1 =
1
N

q̃T
t′+1q̃t+1, (131)

where q̃t+1 is given by (109). We use the definition of ξB,t′,t

in (43) and Theorem 1 to obtain

v̄B→A,t′+1,t+1
a.s.=

t′∑
τ ′=0

t∑
τ=0

θB,τ ′,t′θB,τ,tv̄
ext
B,τ ′+1,τ+1 + o(1),

(132)
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which is equal to (60), with

(1 − ξ̄B,t′)(1 − ξ̄B,t)v̄ext
B,t′+1,t+1

=v̄post
B,t′+1,t+1 −

1
N

∑
τ∈TB,t

ξB,τ,t(x
post
B,t′+1 − x)Thτ

− 1
N

∑
τ ′∈TB,t′

ξB,τ ′,t′h
T
τ ′(xpost

B,t+1 − x)

+
1
N

∑
τ ′∈TB,t′

∑
τ∈TB,t

ξB,τ ′,t′ξB,τ,th
T
τ ′hτ . (133)

Utilizing [44, Eq. (30)] for xpost
B,t+1 given in (38) with (36),

and applying (43) and Theorem 1, we have

1
N

hT
τ ′(xpost

B,t+1 −x) a.s.=
∑

τ∈TB,t

ξB,t′,tv̄A→B,τ ′,τ + o(1). (134)

Substituting this result into (133) and repeating the derivation
of the second equality in (130), we arrive at (59) with
v̄suf
A→B,t′,t given by (52), instead of (58).

Finally, we evaluate v̄B→A,0,t+1 = N−1q̃T
0 q̃t+1. By defin-

ition, v̄B→A,0,0 = 1 is trivial. Using q̃0 = −x, the definition
of q̃t+1 in (109), and Theorem 1, we arrive at (61) for t ≥ 0.

To complete the proof of Theorem 2, we derive (54)
and (58). Since we have defined the covariance messages
that are consistent to the state evolution recursions in the
large system limit, we have V A→B,τ,τ

a.s.→ V̄ A→B,τ,τ and
V B→A,τ,τ

a.s.→ V̄ B→A,τ,τ . Thus, (50) and (52) reduce to
(54) and (58), respectively. This justifies the replacement of
vsuf
B→A,t,t in W t with v̄suf

B→A,t,t.

APPENDIX D
POOF OF THEOREM 3

We first prove the identity v̄A→B,t′,t = v̄A→B,t for all t� ≤ t.
When all preceding information TA,t = TB,t = {0, . . . , t} is
used for all t, v̄suf

B→A,t′,t in (54) for t� ≤ t reduces to

v̄suf
B→A,t′,t =

1TV̄
−1
B→A,t′,t′(It′ ,O)V̄ B→A,t,tV̄

−1
B→A,t,t1

1TV̄
−1
B→A,t′,t′11

TV̄
−1
B→A,t,t1

=
1

1TV̄
−1
B→A,t,t1

, (135)

as shown in (9). Using this result, the definition of γt′,t in (22),
the LMMSE filter (30) with vsuf

B→A,t,t replaced by v̄suf
B→A,t,t,

we find that v̄post
A,t′,t in (49) for t� ≤ t reduces to

v̄post
A,t′,t

a.s.= o(1) +
σ2

N
Tr
(
Ξt′AATΞt

)
+
v̄suf
B→A,t,t

N
Tr
{(

IN − ATΞt′A
)(

IN − ATΞtA
)}

=
v̄suf
B→A,t,t

N
Tr
(
IN − ATΞtA

)
+ o(1)

= ξ̄A,tv̄
suf
B→A,t,t + o(1), (136)

with

Ξt = v̄suf
B→A,t,t

(
σ2IM + v̄suf

B→A,t,tAAT
)−1

, (137)

where the last equality follows from (55). This expression is
independent of t�. Thus, we have v̄post

A,t′,t = v̄post
A,t,t. Substituting

ξ̄A,t = v̄post
A,t,t/v̄

suf
B→A,t,t into (56), we find that, for all t� ≤

t, v̄A→B,t′,t in (57) is equal to v̄A→B,t given in (84) with
v̄B→A,t,t replaced by v̄suf

B→A,t,t.
We next prove the identity v̄B→A,t′+1,t+1 = v̄B→A,t+1 for

all t� ≤ t. Repeating the same derivation for (58) as in (135),
we find

v̄suf
A→B,t′,t =

1

1TV̄
−1
A→B,t,t1

= v̄suf
A→B,t,t (138)

for all t� ≤ t. Using the second property in Lemma 2 yields
v̄post
B,t′,t = v̄post

B,t,t for all t� ≤ t. Furthermore, we have the gen-
eral relationship ξ̄B,t = v̄post

B,t+1,t+1/v̄
suf
A→B,t,t [35, Lemma 2]

between the Bayes-optimal denoiser and the MMSE. Applying
these results to (59), we find that, for all t� ≤ t, v̄B→A,t′+1,t+1

in (60) is equal to v̄B→A,t+1 given in (85) with v̄A→B,t,t

replaced by v̄suf
A→B,t,t.

To complete the proof of the former property in Theorem 3,
we need to prove the identities v̄suf

A→B,t,t = v̄A→B,t,t and
v̄suf
B→A,t,t = v̄B→A,t,t. Without loss of generality, we focus

on the former v̄suf
A→B,t,t = v̄A→B,t,t.

We have already proved v̄A→B,t′,t = v̄A→B,t,t for all t� ≤ t.
Furthermore, Theorem 1 implies that {V̄ A→B,τ,τ}t

τ=1 are
positive definite. Thus, we can use the second property in
Lemma 3 to arrive at v̄suf

A→B,t,t = v̄A→B,t,t, so that the former
property in Theorem 3 holds.

Let us prove the latter property in Theorem 3. Since
v̄suf
A→B,t,t = v̄A→B,t,t and v̄suf

B→A,t,t = v̄B→A,t,t hold, the
first property in Lemma 2 implies that {v̄A→B,t,t ≥ 0} and
{v̄B→A,t,t ≥ 0} are monotonically non-increasing sequences
with respect to t. Also, it is possible to prove that {v̄A→B,t,t ≥
0} and {v̄B→A,t,t ≥ 0} are strictly deceasing sequences,
by using the first property in Lemma 3. Thus, there are the
limits limt→∞ v̄A→B,t,t = v̄A→B and limt→∞ v̄B→A,t,t =
v̄B→A, which imply the convergence of v̄post

B,t+1,t+1 in (51)
to some constant v̄post

B . From (53) and (86), ξ̄B,t and ξ̄A,t

converge to some constants ξ̄B and ξ̄A as t → ∞. These
observations imply that v̄A→B,t′,t = v̄A→B,t and v̄B→A,t′,t =
v̄B→A,t given in (84) and (85) converge to a FP as t tends to
infinity for all t� ≤ t.
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