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1-Perfect Codes Over the Quad-Cube
Pranava K. Jha

Abstract— A vertex subset S of a graph G constitutes a
1-perfect code if the one-balls centered at the nodes in S effect
a vertex partition of G. This paper considers the quad-cube
CQm that is a connected (m + 2)-regular spanning subgraph
of the hypercube Q4m+2, and shows that CQm admits a vertex
partition into 1-perfect codes iff m = 2k − 3, where k ≥ 2.
The scheme for that purpose makes use of a procedure by Jha
and Slutzki that constructs Hamming codes using a Latin square.
The result closely parallels the existence of a 1-perfect code over
the dual-cube, which is another derivative of the hypercube.

Index Terms— Graph theory, error-correction codes, quad-
cubes, hypercubes, Hamming codes, metacube, perfect dominat-
ing set, error-detection codes.

I. INTRODUCTION

A1-PERFECT code has the capability to correct a sin-
gle error, and detect two or fewer errors. Applications

abound in areas such as communication systems, network
systems, multiprocessor systems, and computer architecture in
the wide digital world. Not surprisingly, the topic commands
a rich literature [10]. Among various codes, the 1-perfect
Hamming codes and 3-perfect Golay codes based on the
topology of the hypercube, are the foremost [10], [15].

A quad-cube (formally defined below) is a special version of
a more general network topology called the metacube, devised
by Li et al. [19], that itself is derivable from the hypercube.
The basic idea is to mitigate the problem of the rapid increase
in the degree of the hypercube when the node size exceeds
several million. It retains most good characteristics of the
hypercube, notably, efficient collective communication, high
connectivity, fault tolerance, low diameter, and easy rout-
ing [19]. This paper adds another significant property to that
list, viz., a vertex partition of the graph into 1-perfect codes.
In an analogous study, the author [14] earlier presented a
perfect code over the dual-cube that is another (relatively
simpler) version of the metacube.

Motivation: Assuming that there is a maximum of one
error, any possible word in a message transmission can,
in a unique way, be corrected to one of the words in a
1-perfect code. Optimal resource placement in an intercon-
nection network is another area of application. In particular,
elements of a 1-perfect code may be viewed as nodes that
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house (expensive) resources such as power sources, function
libraries and algorithmic information, whereas other nodes
are users of the resources. Since every user node is adjacent
to a unique resource node, optimality is achieved in the
number of resource nodes. A closely related concept is that
of domination. Indeed, a 1-perfect code corresponds to a
smallest (independent) dominating set in the graph in an
obvious way. Other applications include construction of an
efficient backbone for routing and partition of a network into
small clusters.

A. Related Studies

Apart from the study of perfect codes on hypercube-like
networks, there have been a number of such studies in other
settings, too. For example, Biggs [2] presented codes on the
topology of general graphs, and Kratochvil [17], [18] later
followed with several useful results. The stimulus comes from
applications of the idea in engineering, computer science and
the related disciplines.

Products of graphs [6] are natural candidates where to
seek perfect codes. Not surprisingly, they command a rich
literature. In particular, the famous r-perfect Lee metric codes
by Golomb and Welch [7] are over the Cartesian product
of finitely many cycles. For later studies in this area, see
Špacapan [22] and Mollard [21]. For r-perfect codes over
the Kronecker product (also known as direct product and
tensor product) of finitely many cycles, the author [11]–[13]
presented several results that eventually led to a complete
characterization by Žerovnik [25]. For analogous studies over
the strong product and the lexicographic product, see Abay-
Asmerom et al. [1] and Taylor [23], respectively.

Perfect codes have been a topic of study in several
other contexts, notably, Cayley graphs and circulant graphs
[4], [9], [20], Towers-of-Hanoi graphs [3], and Sierpinski
graphs [16]. See Heden [8] for a survey of 1-perfect binary
codes.

B. Definitions and Preliminaries

A graph connotes a finite, simple, undirected and connected
graph. Let G be a graph, and let dist(u, v) denote the (shortest)
distance between vertices u and v in G [24]. Further, let dia(G)
denote the diameter of G, i.e., the largest of the distances
between any two nodes in G.

For a vertex subset S of a graph G, let �S� denote its closed
neighborhood, i.e., S ∪ {x ∈ V (G) | x is adjacent to some
vertex in S}. S is said to constitute a dominating set of G
if �S� = V (G). If, in addition, the distance between any two
distinct elements of S is at least three, then S constitutes a
1-perfect code. Thus the closed neighborhoods of the vertices
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TABLE I

AN ILLUSTRATION OF DEFINITION 1.1 FOR 0 ≤ x ≤ 23 − 1

in a 1-perfect code are mutually exclusive and collectively
exhaustive.

The problem of obtaining a smallest dominating set is
NP-complete, and so is the problem of deciding whether or
not a graph admits a 1-perfect code [18]. For any undefined
term, see West [24].

For n-bit binary strings x and y, let Ham(x, y) denote
the Hamming distance between the two, i.e., the number
of bit positions in which they differ from each other. The
n-dimensional hypercube Qn (also called the n-cube) is the
graph on the vertex set {0, 1}n, where nodes x and y are
adjacent iff Ham(x, y) = 1.

Let x · y (or xy) denote the concatenation of the binary
strings x and y, and for sets X and Y of binary strings, let
X •Y := {xy | x ∈ X and y ∈ Y }. Meanwhile let a := 1−a,
where a ∈ {0, 1}.

Definition 1.1: For an n-bit binary string x = bn−1 . . . b0

(so 0 ≤ x ≤ 2n − 1 in decimal), let x(a) be the n-bit integer
obtainable from x by replacing ba by ba, where 0 ≤ a ≤ n−1.

It is clear that x(0), . . . , x(n−1) are precisely the neighbors
of x in Qn. See Table I for an illustration, where n = 3, and
x, x(0), x(1), and x(2) are in decimal.

Definition 1.2: For n-bit binary strings x and y, let x � y
denote the n-bit string obtainable by the bitwise XOR oper-
ation between x and y. Further, for integers r and s, where
0 ≤ r, s ≤ 2n−1, let r� s denote the integer N(b(r) � b(s)),
where b(r) and b(s) are n-bit strings that represent r and s,
respectively.

Note: A precise definition of N(x) appears below, x being
a binary string.

Proposition 1.1 (Gale [5]):

1) � is commutative as well as associative.
2) (Cancelation law) x � y = x � z iff y = z.
3) x = y � z iff y = x � z.
Remark: The XOR operation between two bits is viewable

as an addition modulo two.
Proposition 1.2: Let x and y be n-bit binary strings, and

let 0 ≤ a, b ≤ n − 1. Then

1) x(a) = x � 2a.
2) Ham(x, x(a)) = 1.
3) If a �= b, then Ham(x(a), x(b)) = 2.

Definition 1.3: For a set X of n-bit strings, let X(a) =
{x(a) |x ∈ X}, 0 ≤ a ≤ n − 1.

Proposition 1.3: Let X and Y be sets of n-bit strings of
equal cardinality. Then

1) X(a) = Y iff Y (a) = X , and
2) If X(a) = Y , then there exists a “perfect” matching

between X and Y , given by x ↔ x(a).
Definition 1.4: For m ≥ 1, the quad-cube CQm is a

spanning subgraph of the hypercube Q4m+2. Its edge set is
given by E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4, where

1) E0 = {{ux00, ux(0)00}, . . . , {ux00, ux(m−1)00} | u ∈
{0, 1}3m and x ∈ {0, 1}m}

2) E1 = {{uvx01, uv(0)x01}, . . . , {uvx01, uv(m−1)x01} |
u ∈ {0, 1}2m and v, x ∈ {0, 1}m}

3) E2 = {{uvx10, uv(0)x10}, . . . , {uvx10, uv(m−1)x10} |
u, v ∈ {0, 1}m and x ∈ {0, 1}2m}

4) E3 = {{ux11, u(0)x11}, . . . , {ux11, u(m−1)x11} | u ∈
{0, 1}m and x ∈ {0, 1}3m}, and

5) E4 = {{u00, u01}, {u00, u10}, {u01, u11}, {u10, u11}|
u ∈ {0, 1}4m}.

Definition 1.5: The nodes of CQm are distinguishable into
four types, as follows:

• Type 0: those that are of the form u00 (binary) or 4i+0
(decimal)

• Type 1: those that are of the form u01 (binary) or 4i+1
(decimal)

• Type 2: those that are of the form u10 (binary) or 4i+2
(decimal), and

• Type 3: those that are of the form u11 (binary) or 4i+3
(decimal).

Let e ∈ E(CQm). Call e an edge of Type i if e ∈ Ei,
0 ≤ i ≤ 3, and call e a cross edge if e ∈ E4. See Figure 1
for a depiction of the five edge types. Meanwhile, a node of
the hypercube/quad-cube is viewable both as a binary string,
say, x and as the corresponding nonnegative integer N(x).
A formula for the latter appears below.

N(x) =

⎧⎪⎨
⎪⎩

0 if x = 0
1 if x = 1
2|v|N(u) + N(v) if x = uv, and |u|, |v| ≥ 1.

Theorem 1.4 ([19]): CQm is a regular graph of degree
m + 2, and its diameter is equal to 4(m + 1).

Corollary 1.5: If CQm admits a 1-perfect code, then
m = 2k − 3, k ≥ 2.

Proof: CQm is a regular graph of degree m + 2, so the
closed neighborhood of each vertex in it consists of m+3 ver-
tices. In that light, the existence of a 1-perfect code requires
that m + 3 divide |V (CQm)| = 22m+1, i.e., m + 3 must be a
power of two. Hence the result. �

The central objective of this paper is to prove that the
converse of Corollary 1.5 holds true. For the special case of
CQ1, see Figure 2, where nodes that are circled constitute
a 1-perfect code of the graph. It is further clear from the
depiction that this graph admits a vertex partition into such
codes.
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Fig. 1. The five edge types of CQm, vide Definition 1.4.

Fig. 2. The quad-cube CQ1.

Proposition 1.6 ([19]): CQm admits a vertex partition into
a total of 23m+2 m-cubes, segregated into four kinds as
follows.

• Collection 0 (based on the nodes of Type 0) in which
the i-th cube is on the vertex set {2m+2i + 4a | 0 ≤ a ≤
2m − 1}, 0 ≤ i ≤ 23m − 1.

• Collection 1 (based on the nodes of Type 1) in which
the i-th cube is on the vertex set {22m+2q + 4r + 1 +
2m+2a | 0 ≤ a ≤ 2m − 1}, where 0 ≤ i ≤ 23m − 1,
q = 
 i

2m �, and r = i mod 2m.

• Collection 2 (based on the nodes of Type 2) in which
the i-th cube is on the vertex set {23m+2q + 4r + 2 +
22m+2a | 0 ≤ a ≤ 2m − 1}, where 0 ≤ i ≤ 23m − 1,
q = 
 i

22m �, and r = i mod 22m.
• Collection 3 (based on the nodes of Type 3) in which

the i-th cube is on the vertex set {4i + 3 + 23m+2a | 0 ≤
a ≤ 2m − 1}, 0 ≤ i ≤ 23m − 1.

See Figure 3 for a set of certain 5-cubes in CQ5.
Definition 1.6: For an integer i and a set S of integers, let

i + S denote the set {i + x | x ∈ S}.
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Fig. 3. A set of certain 5-cubes in CQ5.

C. A Special Latin Square

An r × r Latin square is a matrix, in which each of 0, . . . ,
r − 1 appears exactly once in each row and each col-
umn. Let r be a power of two. For a permutation(

0 1 . . . r − 1
p0 p1 . . . pr−1

)
, let L(p0, . . . , pr−1) be the Latin

square, defined below.

L(p2i, p2i+1) =
(

p2i p2i+1

p2i+1 p2i

)
, where i ≥ 0, and

L(p0, . . . , pr−1) =
(

L(p0, . . . , ps−1) L(ps, . . . , pr−1)
L(ps, . . . , pr−1) L(p0, . . . , ps−1)

)
,

where r = 2k; s = r/2; and k ≥ 2.
It is not difficult to see that L(p0, . . . , pr−1) is a well-

defined, symmetric matrix.
Definition 1.7: Let Mr = L(0, . . . , r − 1), i.e., the r × r

Latin square on the identity permutation.
See Table II for M4 and M8.
Proposition 1.7 (Gale [5], p. 192): Mr[i, j] = i � j, where

0 ≤ i, j ≤ r − 1.

D. A Permutation Function π

Definition 1.8: Let r be a power of two, r ≥ 4, and let

1) π4(i) =

⎧⎪⎪⎨
⎪⎪⎩

0 i = 0
3 i = 1
2 i = 2
1 i = 3

and

2) π2r(i)=

⎧⎨
⎩

πr(i) 0 ≤ i ≤ (r/2)−1
r + πr(i − r/2) r/2 ≤ i ≤ (3r/2)−1
πr(i − r) 3r/2 ≤ i ≤ 2r−1.

TABLE II

LATIN SQUARES M4 AND M8 AS PER DEFINITION 1.7

Here is how the π2r-array is obtainable from the
πr-array:

• Copy the elements in the leftmost r/2 cells of the
πr-array to the leftmost cells (indexed 0 to (r/2) − 1)
of the π2r-array

• Copy the elements in the rightmost r/2 cells of the
πr-array to the rightmost cells (indexed 3r/2 to 2r − 1)
of the π2r-array, and
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Fig. 4. Recursive structure of P2r vis-à-vis Pr .

• Add r to each element of the πr-array, and systemat-
ically copy the resulting elements to the cells in the
“middle” segment (indexed r/2 to (3r/2) − 1) of the
π2r-array.

Let Pr = L(πr). See Figure 4 for the recursive structure
of P2r vis-à-vis Pr. Further, π4, π8 and π16 appear in
Equation (1), shown at the bottom of the page, whereas P4 and
P8 appear in Table III.

Lemma 1.8: The i-th element and the (r − 1 − i)-th ele-
ment of the πr-array differ in exactly the rightmost bit, i.e.,
(πr(i))(0) = πr(r − 1 − i), where 0 ≤ i ≤ r − 1 and r = 2k,
k ≥ 2.

Proof: Use induction on r. For r = 4, the claim follows
by an inspection of π4. For the induction step, recall the
construction of the π2r-array from the πr-array that follows
Definition 1.8, and make use of the fact that (r + πr(i))(0) =
r + (πr(i))(0), since r = 2k, k ≥ 2. �

Observe next that the way Pr is obtainable from πr is
identical to the way Mr is obtainable from the identity
permutation, hence the following result.

Proposition 1.9: Pr[i, j] = πr

(
Mr[i, j]

)
= πr(i � j),

where 0 ≤ i, j ≤ r − 1.

TABLE III

LATIN SQUARES P4 AND P8 , AS PER DEFINITION 1.8

Lemma 1.10: If r = 2k, k ≥ 2, and 0 ≤ i ≤ r − 1, then{
(πr(i))(0) = πr(i � (r − 1))
(πr(i))(1) = πr(i � (r − 2)).

Proof: First observe that i � (r − 1) = r − 1 − i, since
r − 1 = 11 . . . 1

k 1s

(binary). By Lemma 1.8 then, (πr(i))(0) =

πr(i � (r − 1)).
For the second identity, use induction on r to show that

Pr[i, r−2] = (πr(i))(1). To that end, first check to see that the
following hold with respect to P4 (that appears in Table III):

• P4[0, 0] = 0, and P4[0, 2] = 2 = 0(1)

• P4[1, 0] = 3, and P4[1, 2] = 1 = 3(1)

• P4[2, 0] = 2, and P4[2, 2] = 0 = 2(1), and
• P4[3, 0] = 1, and P4[3, 2] = 3 = 1(1).

Consider Pr, whose structure appears in Figure 4(a), and
notice that each of L and L′ is an (r/2)×(r/2) matrix, where
r is a power of two. The following properties are immediate:

1) Pr[i, 0] = L[i, 0] and Pr [i, r−2] = L′[i, r/2−2], where
0 ≤ i ≤ (r/2) − 1, and

2) Pr[i, 0] = L′[i − r/2, 0] and Pr[i, r − 2] = L[i −
r/2, r/2 − 2], where r/2 ≤ i ≤ r − 1.

Examine P2r next, whose structure appears in Figure 4(b).

1) For 0 ≤ i ≤ (r/2) − 1, P2r[i, 0] = L[i, 0] and
P2r[i, 2r−2] = L′[i, r/2−2]. Let P2r[i, 0] = j, whence

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π4 =

(
0 1 2 3
0 3 2 1

)

π8 =

(
0 1 2 3 4 5 6 7
0 3 4 7 6 5 2 1

)

π16 =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 3 4 7 8 11 12 15 14 13 10 9 6 5 2 1

)
(1)
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L[i, 0] = j. By induction hypothesis, L′[i, r/2 − 2] =
j(1). Accordingly, P2r[i, 2r − 2] = j(1).

2) For r/2 ≤ i ≤ r − 1, P2r [i, 0] = r + L[i − r/2, 0] and
P2r[i, 2r−2] = r +L′[i− r/2, r/2−2]. Let P2r[i, 0] =
r + x, where L[i− r/2, 0] = x. It is clear that 0 ≤ x ≤
r − 1. By induction hypothesis, L′[i − r/2, r/2 − 2] =
x(1). It follows that P2r[i, 2r−2] = r+x(1) = (r+x)(1).

3) For r ≤ i ≤ 3r/2 − 1, P2r [i, 0] = r + L′[i − r, 0] and
P2r[i, 2r − 2] = r + L[i − r, r/2 − 2] The rest of the
argument is similar to that in (2) above.

4) For 3r/2 ≤ i ≤ 2r − 1, P2r[i, 0] = L′[i − 3r/2, 0] and
P2r[i, 2r − 2] = L[i − 3r/2, r/2 − 2]. The rest of the
argument is similar to that in (1) above. �

Corollary 1.11: If r = 2k, k ≥ 2, then {πr(i), (πr(i))0,
(πr(i))1} ∩ {πr(i � 1), . . . , πr(i � (r − 3))} = ∅, where
0 ≤ i ≤ r − 1.

Corollary 1.12: If r = 2k, k ≥ 2, then πr(i) � 1 = πr(i �
(r−1)) and πr(i) � 2 = πr(i � (r−2)), where 0 ≤ i ≤ r−1.

Proof: Observe that πr(i) � 1 = πr(i))0 and πr(i) � 2 =
πr(i))1. The claim is then immediate from Lemma 1.10. �

E. A Distinguishing Function φ

Let k ≥ 3 and m = 2k − 3.
Definition 1.9: Let p0 = 0, and let p1, . . . , pm−k be the

integers between 1 and m that are not powers of two.
The statement of Definition 1.9 itself is well-defined in

view of the fact that there are exactly k integers between
1 and m that are powers of two, viz., 20, . . . , 2k−1. Here are
p0, p1, . . . , pm−k for k = 4:

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

0 3 5 6 7 9 10 11 12 13

Definition 1.10: let φ : {0, . . . , 2m−k − 1} → {0, . . . ,
2k − 1} be the map, where φ(r) is equal to

• 0 if r = 0
• px+1 if r = 2x and 0 ≤ x ≤ m − k − 1, and
• pxd+1 � . . . � px1+1 if r = 2xd + . . . + 2x1 , xd > . . . >

x1 ≥ 0 and 2 ≤ d ≤ m − k.

where p1, . . . , pm−k are as in Definition 1.9.
It is easy to see that φ is well-defined. Next, φ(2xd + . . . +

2x1) = φ(2xd) � . . . � φ(2x1). See Table IV for an illustration.
Lemma 1.13: If 0 ≤ r ≤ 2m−k − 1, then φ(r(x)) = φ(r) �

px+1, where 0 ≤ x ≤ m − k − 1.
Proof: Note that r(x) is equal to either r + 2x or r − 2x.

First suppose that r(x) = r+2x. then φ(r(x)) = φ(r) � px+1.
Next suppose that r(x) = r− 2x. Then r = r(x) +2x, whence
φ(r) = φ(r(x)) � px+1. By Prop. 1.1(3), φ(r(x)) = φ(r) �
px+1. �

Lemma 1.14: If 0 ≤ r ≤ 2m−k − 1, then φ(r) �= φ(r(x)),
where 0 ≤ x ≤ m − k − 1.

Proof: By Lemma 1.13, φ(r(x)) = φ(r) � px+1. Further,
px+1 > 0 for all x ≥ 0. �

Lemma 1.15: If r1 �= r2 and φ(r1) = φ(r2), then
Ham(r1, r2) ≥ 3, where 0 ≤ r1, r2 ≤ 2m−k − 1.

Proof: Proceed by contradiction. First suppose that
Ham(r1, r2) = 1, in which case |r1 − r2| = 2t for some
t, so φ(r1) = φ(r2) � pt+1. Therefore, φ(r1) �= φ(r2).

TABLE IV

ILLUSTRATING DEFINITION 1.10

Next suppose that Ham(r1, r2) = 2. Without loss of
generality, let r1 and r2 differ in the rightmost two bits. Then
r1 = xab (binary) and r2 = xab (binary), where a, b ∈ {0, 1}.

• Let a = 0 and b = 0. Then r1 = 4x and r2 = 4x + 3.
In that light, φ(r1) = φ(4x) and φ(r2) = φ(4x) � p2 � p1,
whence φ(r1) �= φ(r2).

• Let a = 0 and b = 1. Then r1 = 4x+1 and r2 = 4x+2.
In that light, φ(r1) = φ(4x) � p1 and φ(r2) = φ(4x) � p2,
whence φ(r1) �= φ(r2).

The other two cases are similar. �

F. Method of Attack

The evolution of the 1-perfect code in this paper crucially
relies upon a number of concepts and results. To that end, let
n = 2k − 1, k ≥ 3, and m = n − 2.

At heart of the code construction is a scheme [15] that
constructs Hamming codes using a Latin square. See Section II
for the scheme itself. In a nutshell, it returns a partition
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Fig. 5. Top-level vertex partition.

of V (Qn) into Hamming codes, say, V0, . . . , Vn, each of
cardinality 2n−k.

Other major concepts/results employed are as follows:
1) A mapping δ : {0, . . . , 2m−1} → {0, . . . , 2k−1}, where

δ(j) = i iff j ∈ Wi, where Wi itself is the collection of
the numerically smallest first quarter of the elements of
Vi (see Definition 3.1)

2) A quadripartition of each Vi into equal-size sets Ai,
Bi, Ci and Di, based on elements of Vi distinguishable
modulo four (see Definition 3.2), and

3) Relationships among V0, . . . , Vn (vide Results 3.1
through 3.9, particularly Theorem 3.7).

Section III presents the theoretical foundation of the over-
all procedure. It systematically builds upon the scheme of
Section II, and derives a number of results that are crucial
to the correctness of the claims in the sequel.

The code construction itself relies on a vertex partition
of CQm into 23m subsets, each of cardinality 2m+2, where
exactly 2m−k+2 elements of each such subset are carefully
designated as code elements, which themselves come from a
set among V0, . . . , Vm+2. Figure 5 depicts this idea.

The foregoing vertex partition is further refined in
Section IV that also presents the scheme itself. (See Figure 10.)
The four sections that come next are then devoted to proving
that the set returned by the main scheme is indeed a 1-perfect
code of the graph.

Section IX takes the final step of proving that CQm admits
a vertex partition into 1-perfect codes, whereas Section X
presents certain concluding remarks.

II. A SCHEME TO CONSTRUCT HAMMING CODES

This section recapitulates a scheme [15] that builds
Hamming codes over Qn. See Algorithm 1.

Theorem 2.1: [15] For n = 2k − 1, k ≥ 2, Algorithm 1
returns a partition, say, �V0, . . . , Vn� of V (Qn) having the
following properties:

1) |Vi| = 2n/(n + 1), 0 ≤ i ≤ n, and
2) Every pair of two distinct elements in each set is at

a Hamming distance of at least three, and the set is
maximal with respect to this property.

Algorithm 1 A Scheme to Construct Hamming Codes

1: let k ≥ 2 and n = 2k − 1
2: if (k = 2) then
3: return�{000, 111}, {001, 110}, {010, 101}, {011, 100}�
4: end if
5: assume that, for some k ≥ 2, �U0, . . . , Un� is a sequence

of sets constituting the partition of V (Qn) into Hamming
codes, where Ui = {ui,0, . . . , ui,r−1}, 0 ≤ i ≤ n, where
r = 2n/(n + 1) = 2n−k

6: for (i = 0 to n) do
7: let Ci = {ui,0 · bi,0, . . . , ui,r−1 · bi,r−1} and
8: let Di = {ui,0 · bi,0, . . . , ui,r−1 · bi,r−1},
9: where bi,j = 0 if ui,j is of even parity,

10: and bi,j = 1 if ui,j is of odd parity
11: end for
12: Comment: The sets C0, . . . , Cn, and D0, . . . , Dn together

constitute a partition of V (Qn+1).
13: let T = (ti,j) be the (n+1)× (n+1) Latin square on the

identity permutation, vide Definition 1.7
14: return the sequence of sets �V0, . . . , V2n+1�, where

Vi = (C0 • Uti,0)
⋃

. . .
⋃

(Cn • Uti,n)
= (C0 • Ui � 0)

⋃
. . .
⋃

(Cn • Ui � n)
Vn+1+i = (D0 • Uti,0)

⋃
. . .
⋃

(Dn • Uti,n)
= (D0 • Ui � 0)

⋃
. . .
⋃

(Dn • Ui � n)

⎫⎪⎪⎬
⎪⎪⎭

where 0 ≤ i ≤ n
15: Comment: Correctness of the second equality for each of

Vi and Vn+1+i at Step 14 follows from an application of
Prop. 1.7.

Whereas any (n + 1) × (n + 1) Latin square (at Step 13
of Algorithm 1) would lead to a partition of V (Qn) into
Hamming codes, the schemes in this paper exclusively employ
the Latin square on the identity permutation, viz., Mr. (See
Definition 1.7 and Table II in Section I-C.) Further, the
resulting vertex partition �V0, . . . , Vn� of Qn is referred to
as the canonical partition, where Vi = {vi,0, . . . , vi,r−1}, r =
2n/(n+1) and 0 ≤ i ≤ n. Additionally, each Vi is deemed to
be sorted into the ascending order. See Tables V, VI and VII
that illustrate the working of the algorithm.
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TABLE V

SETS AT STEPS 2 - 4 AND STEPS 6 - 11 (N = 3) OF ALGORITHM 1

TABLE VI

BUILDING THE CANONICAL PARTITION OF V (Q7) USING ALGORITHM 1

TABLE VII

THE CANONICAL PARTITION OF V (Q7) USING ALGORITHM 1

Remark: Algorithm 1 is extendable to a scheme that leads
to an upper bound on the (independent) domination number
of the hypercube that is within twice the optimal [15].

III. THEORETICAL FOUNDATION

This section derives a number of useful properties relating
to the canonical partition �V0, . . . , Vn�. Let k ≥ 3, n = 2k−1,
and m = n − 2 throughout.

Lemma 3.1: There exists a “perfect matching” between
each pair of distinct Vi and Vj .

Proof: Let v ∈ Vi, where 0 ≤ i ≤ n. Because of the
distance-three property of each Vj and the degree of v being
equal to n, it is easy to see that v has a unique neighbor in
each Vj , j �= i. �

Lemma 3.2: Let Ui, Ci and Di be as in Algorithm 1, 0 ≤
i ≤ n. Then

1) C
(0)
i = Di (hence D

(0)
i = Ci), and

2) If U
(a)
i = Uj , then C

(a+1)
i = Dj and D

(a+1)
i = Cj ,

where 0 ≤ a ≤ n − 1.

Proof: Let r = 2n−k, and let Ui = {ui,0, . . . , ui,r−1},
where |ui,k| = n, and 0 ≤ k ≤ r − 1.

1) It is clear that there exists a matching between sets Ci

and Di given by ui,k · bi,k ↔ ui,k · bi,k, where bi,k ∈
{0, 1}, 0 ≤ k ≤ r − 1. Accordingly, C

(0)
i = Di.

2) Let U
(a)
i = Uj , and note that Ci = {ui,0 · bi,0, ui,1 ·

bi,1, . . . , ui,r−1 · bi,r−1} and Dj = {uj,0 · bj,0, uj,1 ·
bj,1, . . . , uj,r−1 · bj,r−1}. It is clear that ui,k and uj,k

differ in exactly the a-th bit position, so they are of
different parities. Therefore, bi,k = 0 iff bj,k = 1, i.e.,
bi,k = bj,k. It follows that ui,k · bi,k and uj,k · bj,k

differ in precisely the (a + 1)-st bit position. Accord-

ingly, C
(a+1)
i = Dj . By a symmetrical argument,

D
(a+1)
i = Cj . �

Lemma 3.3: For 0 ≤ a ≤ n − 1, (Ci • Uj)(a) = Ci • U
(a)
j

and (Di • Uj)(a) = Di • U
(a)
j , where Ci, Di, and Uj are as

in Algorithm 1, and where 0 ≤ i, j ≤ n.
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Fig. 6. Sets U0, U1, U2 and U3 (vide proof of Theorem 3.7).

Proof: Each binary string in Ci (resp. Di) is of length
n+1, whereas that in Uj is of length n. The claim then follows
from the fact that a is between 0 and n − 1. �

Lemma 3.4: For n ≤ a ≤ 2n, (Ci • Uj)(a) = C
(a−n)
i • Uj

and (Di • Uj)(a) = D
(a−n)
i • Uj , where Ci, Di, and Uj are

as in Algorithm 1, and where 0 ≤ i, j ≤ n.
Lemma 3.5: If 0 ≤ d, i ≤ n = 2k − 1, then

1) (Cd � 0 • Ui � 0)
⋃

. . .
⋃

(Cd � n • Ui � n) = (C0 •
Ui � d � 0)

⋃
. . .
⋃

(Cn • Ui � d � n), and
2) (Dd � 0 • Ui � 0)

⋃
. . .
⋃

(Dd � n • Ui � n) = (D0 •
Ui � d � 0)

⋃
. . .
⋃

(Dn • Ui � d � n).
Proof: First note that each of (d � 0, . . . , d � n) and

(i � 0, . . . , i � n) is a permutation of (0, . . . , n). Next observe
that Cd � x uniquely “conjugates” with Ui � x in the expression
(Cd � 0 • Ui � 0)

⋃
. . .
⋃

(Cd � n • Ui � n), where 0 ≤ d, x ≤
n. Accordingly, Cd � (d � x) (that is equal to Cx) uniquely
conjugates with Ui � (d � x). (1) follows. The argument for (2)
is similar. �

Lemma 3.6: If 0 ≤ x, y ≤ n, then (x + n + 1) � y =
(n + 1) + (x � y).

Proof: Note that n + 1 = 2k ≤ (x + n + 1) ≤ 2n + 1 =
2k+1 − 1, so x + n + 1 = 1u (binary), where u is a k-bit
number that is equal to x (decimal). On the other hand, y = 0v
(binary), where v is a k-bit number that is equal to y (decimal).
In that light, (x + n + 1) � y = (1u) � (0v) = 1(u � v)
that (in decimal) is equal to 2k + N(u � v) = (n + 1) +
(x � y). �

The following is a key result.
Theorem 3.7: V

(a)
i = Vi � (a+1), where 0 ≤ i ≤ n; 0 ≤

a ≤ n − 1; and n = 2k − 1, k ≥ 2.
Proof: Use induction on n, and make use of the notations

as in Algorithm 1. For n = 3, see Figure 6, where Ui −→(t)

Uj stands for U
(t)
i = Uj .

The induction hypothesis states that U
(a)
i = Ui � (a+1),

where 0 ≤ i ≤ n and 0 ≤ a ≤ n − 1, whereas the
induction step calls for proving that V

(a)
i = Vi � (a+1), where

0 ≤ i ≤ 2n + 1 and 0 ≤ a ≤ 2n.
There are four cases.

1) Let 0 ≤ i ≤ n and 0 ≤ a ≤ n − 1. Then Vi = (C0 •
Ui � 0)

⋃
. . .
⋃

(Cn • Ui � n), so V
(a)
i is equal to

= (C0 • Ui � 0)(a)
⋃

. . .
⋃

(Cn • Ui � n)(a)

= (C0 • U
(a)
i � 0)

⋃
. . .
⋃

(Cn • U
(a)
i � n) by Lemma 3.3

= (C0 • Ui � 0 � (a+1))
⋃

. . .
⋃

(Cn • Ui � n � (a+1))
by induction hypothesis

= (C0 • U(i � (a+1)) � 0)
⋃

. . .
⋃

(Cn • U(i � (a+1)) � n)
= Vi � (a+1) vide Step 14 of Algorithm 1.
Note here that each of i and a + 1 is between 0 and
n = 2k − 1, so each is a k-bit number, hence so must
be i � (a + 1). It follows that i � (a + 1) is between
0 and n.

2) Let 0 ≤ i ≤ n and n ≤ a ≤ 2n. Then V
(a)
i is equal to

(C0 • Ui � 0)(a)
⋃

. . .
⋃

(Cn • Ui � n)(a)

= (C(a−n)
0 • Ui � 0)

⋃
. . .
⋃

(C(a−n)
n • Ui � n)

by Lemma 3.4.
It turns out that C

(a−n)
d = D(a−n) � d, where 0 ≤ d ≤ n.

A reasoning follows.

• First suppose that a − n = 0. By Lemma 3.2(1),
C

(a−n)
d = Dd = D(a−n) � d.

• Next suppose that 1 ≤ (a − n) ≤ n, so 0 ≤
(a − n − 1) ≤ n − 1. By induction hypothesis,
U

(a−n−1)
d = U(a−n) � d. By Lemma 3.2(2) next,

C
(a−n)
d = D(a−n) � d.

In that light, V
(a)
i is given by

(D(a−n) � 0 • Ui � 0)
⋃

. . .
⋃

(D(a−n) � n • Ui � n)
= (D0 • U(a−n) � i � 0)

⋃
. . .
⋃

(Dn • U(a−n) � i � n)
by Lemma 3.5(2)

= V(n+1)+(i � (a−n)) vide Step 14 of Algorithm 1
= Vi � (a+1) by Lemma 3.6.
Note that i � (a + 1) in this case is of the form 1u
(binary), where u is a k-bit number. Therefore, i � (a+1)
is between n + 1 and 2n + 1 (decimal).

3) Let n + 1 ≤ i ≤ 2n + 1 and 0 ≤ a ≤ n− 1. Then Vi is
equal to
(D0 • U(i−(n+1)) � 0)

⋃
. . .
⋃

(Dn • U(i−(n+1)) � n)
vide Step 14 of Algorithm 1
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Fig. 7. Illustrating various cases in the proof of Theorem 3.7.

= (D0 • Uj � 0)
⋃

. . .
⋃

(Dn • Uj � n),
where j = i − (n + 1), so 0 ≤ j ≤ n.

Accordingly, V
(a)
i is equal to

(D0 • U
(a)
j � 0)

⋃
. . .
⋃

(Dn • U
(a)
j � n) by Lemma 3.3

= (D0 • Uj � (a+1) � 0)
⋃

. . .
⋃

(Dn • Uj � (a+1) � n)
by induction hypothesis

= V(n+1)+(j � (a+1)) by Step 13 of Algorithm 1
= V(n+1+j) � (a+1) by Lemma 3.6
= Vi � (a+1).
Analogous to (2) above, i � (a + 1) in this case is
between n + 1 and 2n + 1.

4) Let n + 1 ≤ i ≤ 2n + 1 and n ≤ a ≤ 2n. Then Vi is
equal to
(D0 • U(i−(n+1)) � 0)

⋃
. . .
⋃

(Dn • U(i−(n+1)) � n)
= (D0 • Uj � 0)

⋃
. . .
⋃

(Dn • Uj � n),
where j = i − (n + 1), so 0 ≤ j ≤ n.

In that light, V
(a)
i is equal to

(D0 • Uj � 0)(a)
⋃

. . .
⋃

(Dn • Uj � n)(a)

= (D(a−n)
0 • Uj � 0)

⋃
. . .
⋃

(D(a−n)
n • Uj � n)

by Lemma 3.4
= (C(a−n) � 0 • Uj � 0)

⋃
. . .
⋃

(C(a−n) � n • Uj � n)
by a reasoning as in (2) above

= (C0 • U(a−n) � j � 0)
⋃

. . .
⋃

(Cn • U(a−n) � j � n)
by Lemma 3.5(1)

= V(a−n) � j

= V(a−n) � (i−(n+1)).

Notice at this point that i and a + 1, in this case, are
representable in binary as 1u and 1v, respectively, where
u and v are k-bit numbers that denote (i − (n + 1))
and (a − n), respectively. In that light, i � (a + 1) =
(1u)� (1v) = u � v that is equal to (i−(n+1))� (a−n).
It follows that V

(a)
i = Vi � (a+1). Meanwhile, i � (a+1),

in this case, is between 0 and n. �
Figure 7 illustrates the four cases in the proof of Theo-

rem 3.7 for the collection �V0, . . . , V7� with respect to Q7.
(See Table VII in Section II for descriptions of V0, . . . , V7.)

Lemma 3.8: V
(a)
i = V

(b)
i iff a = b, where 0 ≤ i ≤ n;

0 ≤ a, b ≤ n − 1; and n = 2k − 1, k ≥ 2.
Proof: Assume that V

(a)
i = V

(b)
i . By Theorem 3.7 then,

Vi � (a+1) = Vi � (b+1). It is clear that each of (i � (a+1)) and
(i � (b + 1)) is between 0 and n. Also, x = y iff Vx = Vy ,
where 0 ≤ x, y ≤ n. It then follows that i � (a + 1) =
i � (b + 1). By Prop. 1.1(2), a + 1 = b + 1, i.e., a = b. The
converse is obvious. �

Theorem 3.9: For 0 ≤ a ≤ 2n−k−2 − 1, each “horizontal”
block (vi,4a, vi,4a+1, vi,4a+2, vi,4a+3) of four consecutive
nodes in each Vi contains one element each of Type 0, Type 1,
Type 2, and Type 3 (not necessarily in that order), where
0 ≤ i ≤ n.

Proof: Use induction on n. For n = 7, the claim follows
by an inspection of the sets in Table VII in Section II.
Using the notations as in Algorithm 1, each element of Vi
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Fig. 8. An illustration of the statement of Theorem 3.10.

is of the form u · v (binary), where u ∈ Cp (or u ∈ Dp)
and v ∈ Uq for some p and q, with |u| = n + 1 and
|v| = n. Notice that N(uv) = 2|v|N(u) + N(v), and that
0 ≤ N(v) ≤ 2|v|−1 < 2|v|. Accordingly, N(uv) ≡ i (mod 4)
iff N(v) ≡ i (mod 4), where 0 ≤ i ≤ 3. By induction hypoth-
esis, every block of four nodes (starting at an index divisible
by four) in Uq has the stated property. That property is, in turn,
inherited by the set Cp •Uq (or Dp•Uq) and the union of such
disjoint sets. �

The next result shows that the elements in each Vi are
uniformly “spread out.”

Theorem 3.10: For 0 ≤ i ≤ n, let

• Wi = {v ∈ Vi | 0 ≤ v ≤ 2n−2 − 1}
• Xi = {v ∈ Vi | 2n−2 ≤ v ≤ 2 · 2n−2 − 1}
• Yi = {v ∈ Vi | 2 · 2n−2 ≤ v ≤ 3 · 2n−2 − 1}, and
• Zi = {v ∈ Vi | 3 · 2n−2 ≤ v ≤ 4 · 2n−2 − 1}.

Then |Wi| = |Xi| = |Yi| = |Zi| = 1
4 |Vi|.

Proof: Recall that each element of each Vi is between
0 and 2n − 1. Therefore, the sets Wi, Xi, Yi and Zi are well-
defined. (See Figure 8 for an illustration.)

To prove the claim, use induction on n, the basis being clear
from the sets that appear in Table VII in Section II. For the
induction step, first examine the sets Ci and Di in the “for”
loop at Steps 6 − 11 in Algorithm 1, where 0 ≤ i ≤ n. The
elements in each such set are between 0 and 2n+1 − 1.

By induction hypothesis, each of U0, . . . , Un (appearing at
Step 5 of the algorithm) has the stated property. Note next that

1) If x ∈ Ui, then either 2x ∈ Ci and 2x + 1 ∈ Di,
or 2x + 1 ∈ Ci and 2x ∈ Di, and

2) For 0 ≤ t ≤ 3, if t 2m ≤ x ≤ (t + 1) 2m − 1, then
t 2m+1 ≤ 2x < 2x + 1 ≤ (t + 1) 2m+1 − 1.

It follows that each Ci or Di admits a partition into four
(sub)sets in which the elements range (i) from 0 to 2n−1 − 1,
(ii) from 2n−1 to 2 ·2n−1−1, (iii) from 2 ·2n−1 to 3 ·2n−1−1,
and (iv) from 3 · 2n−1 to 4 · 2n−1 − 1, respectively.

Consider next the sets Ca • Ub and Da • Ub that appear in
the unions at Step 14 of Algorithm 1, where 0 ≤ a, b ≤ n,
and note that

1) x ∈ Ca (resp. Da) and y ∈ Ub iff 2nx + y ∈ Ca • Ub

(resp. Da • Ub),
2) if x is in the first quarter (resp. second quarter, third

quarter or fourth quarter) of Ca or Da, and y ∈ Ub,
then 2nx + y is in the respective quarter of Ca • Ub or
Da • Ub.

It follows that each of Ca•Ub and Da•Ub admits a partition
into four subsets having the stated property. Finally, this

property is seamlessly inherited by each union appearing at
Step 14 of Algorithm 1. �

Corollary 3.11: W
(a)
i = Wi � (a+1), where 0 ≤ i ≤ n and

0 ≤ a ≤ n − 3, and where Wi is as in the statement of
Theorem 3.10.

Remark: The sets W0, . . . , Wn appear pretty frequently in
the rest of the paper.

Definition 3.1: Let δ : {0, . . . , 2m − 1} → {0, . . . , 2k − 1}
be given by δ(i) = j iff i ∈ Wj .

See Figure 9 for an illustration of Definition 3.1.
Corollary 3.12: If δ(x) = δ(y), x �= y, then

Ham(x, y) ≥ 3.
Lemma 3.13: δ(i(t)) = δ(i) � (t + 1), where 0 ≤ i ≤

2m − 1 and 0 ≤ t ≤ m − 1.
Proof: Note that i is an m-bit integer, so i(t) itself is an m-

bit integer, which is in Wδ(i(t)), vide Definition 3.1. Next, i is

in Wδ(i), so i(t) is in W
(t)
δ(i) = Wδ(i) � (t+1), by Corollary 3.11.

Note further that each of δ(i), δ(i(t)), and t+1 is less than or
equal to m + 2 = 2k − 1. Therefore, 0 ≤ (δ(i) � (t + 1)

) ≤
2k − 1. It follows that δ(i(t)) = δ(i) � (t + 1). �

Corollary 3.14: If δ(i) = δ(j), then δ(i(a)) = δ(j(a)),
where 0 ≤ i, j ≤ 2m − 1 and 0 ≤ a ≤ m − 1.

Definition 3.2: For 0 ≤ i ≤ m + 2, let
1) Ai = {x ∈ Vi | x ≡ 0 (mod 4)}
2) Bi = {x ∈ Vi | x ≡ 1 (mod 4)}
3) Ci = {x ∈ Vi | x ≡ 2 (mod 4)}, and
4) Di = {x ∈ Vi | x ≡ 3 (mod 4)}.
By Theorem 3.9, |Ai| = |Bi| = |Ci| = |Di| = 1

4 |Vi| =
2m/(m+3) = 2m−k. Table VIII presents the sets Ai, Bi, Ci,
and Di, where m = 5 and 0 ≤ i ≤ 7. Since each element
in each Vi is between 0m+2 and 1m+2 (binary), or between
0 and 2m+2 − 1 (decimal), so is each element in each of Ai,
Bi, Ci and Di.

Remark: The sets Ci and Di appearing in Definition 3.2
have nothing to do with those in the description of
Algorithm 1.

IV. THE MAIN SCHEME

This section presents the main scheme that returns a
1-perfect code of CQm. See Algorithm 2. The scheme itself
relies on successive vertex partitions of the graph, depicted in
Figure 10 that, in turn, is viewable as a refinement of the
partition that appeared in Figure 5 in Section I. As stated
earlier, the smallest unit in the vertex partition is a set of
the form 2m+2x + {0, . . . , 2m+2 − 1}, of which a sub-
set 2m+2x + Vi is designated as a set of code elements,
0 ≤ x ≤ 23m − 1.

The next four sections are devoted to proving that the set
returned by the main scheme is indeed a 1-perfect code of the
graph.

V. STEP 1

This section focuses on the innermost two loops of the
main scheme, which themselves appear in Algorithm 3 for
a quick reference. It builds a code set that is a subset of⋃2k−1

c=0

(⋃2m−1
d=0 T0,0,c,d

)
, where Ta,b,c,d is as at Line 12 of

Algorithm 2. As usual, m = 2k − 3, k ≥ 3.
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Fig. 9. An illustration of Definition 3.1 (m = 5).

TABLE VIII

SETS Ai , Bi , Ci AND Di (m = 5), 0 ≤ i ≤ m + 2

Algorithm 2 Main Scheme

Require: k ≥ 3 and m = 2k − 3
1: Z = ∅
2: for (a = 0 to 2m − 1) do
3: let Pa = 23m+2 a + {0, . . . , 23m+2 − 1}
4: Comment: |Pa| = 23m+2; and P 0, . . . , P 2m − 1 constitute a partition of V (CQm) = {0, . . . , 24m+2 − 1}.
5: for (b = 0 to 2m−k − 1) do
6: let Q a, b = 23m+2 a + 22m+k+2 b + {0, . . . , 22m+k+2 − 1}
7: Comment |Q a, b| = 22m+k+2; and Q a,0, . . . , Q a,2m−k − 1 constitute a partition of Pa.
8: for (c = 0 to 2k − 1) do
9: let R a, b, c = 23m+2 a + 22m+k+2 b + 22m+2 c + {0, . . . , 22m+2 − 1}

10: Comment: |R a, b, c| = 22m+2; and R a, b, 0, . . . , R a, b, 2k − 1 constitute a partition of Q a, b.
11: for (d = 0 to 2m − 1) do
12: let T a, b, c, d = 23m+2 a + 22m+k+2 b + 22m+2 c + 2m+2 d + {0, . . . , 2m+2 − 1}
13: Comment: |T a, b, c, d| = 2m+2; and T a, b, c, 0, . . . , T a, b, c, 2m − 1 constitute a partition of R a, b, c.
14: Z = Z

⋃(
23m+2 a + 22m+k+2 b + 22m+2 c + 2m+2 d + Vπ(δ(a) � φ(b) � c � δ(d))

)
15: Comment: V0, . . . , Vm+2 are the sets as in the statement of Theorem 2.1 (vide Algorithm 1).
16: end for
17: end for
18: end for
19: end for
20: return Z

Lemma 5.1: If 0 ≤ c ≤ 2k − 1 and 0 ≤ d ≤ 2m − 1, then〈
2m+2(2mc + d) + Aπ(c � δ(d))

〉
consists of the following sets

that are mutually disjoint:

1) 2m+2(2mc+d)+
(
Aπ(c � δ(d) � 0)∪Cπ(c � δ(d) � (m+1)) ∪

Bπ(c � δ(d) � (m+2))

)
, and

2) 2m+2(2mc+d)+
(
Aπ(c � δ(d) � 1) ∪ Aπ(c � δ(d) � 2)∪. . .∪

Aπ(c � δ(d) � m)

)
.

Proof: δ(d) is between 0 and 2k − 1, and so is
c � δ(d), hence

(
(c � δ(d)) � 0, . . . , (c � δ(d) � (m +

2))
)

is a permutation of
(
0, . . . , 2k − 1

)
, and

so must be
(
π(c � δ(d) � 0), . . . , π(c �

δ(d) � (m + 2))
)
.

Let x ∈ (2m+2(2mc + d) + Aπ(c � δ(d))

)
. Then 0 ≤ x ≤

(22m+2+k +22m+2− 1). Next, each element of Ar being less
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Fig. 10. Successive vertex partitions of CQm (vide Algorithm 2).

Algorithm 3 Innermost Two Loops of Algorithm 2

1: S = ∅
2: for (c = 0 to 2k − 1) do � 2k − 1 = m + 2
3: for (d = 0 to 2m − 1) do
4: S = S

⋃(
22m+2 c + 2m+2 d + Vπ(c � δ(d))

)
5: end for
6: end for
7: Comment: At this point, |S| = 22m+2.
8: return S

Fig. 11. Structure of the element x, vide proof of Lemma 5.1.

than or equal to 2m+2 − 1 (where 0 ≤ r ≤ m + 2), it is
clear that x = uv00 (binary), where u = 2mc + d (decimal),
|u| = m + k; |v| = m and v00 ∈ Aπ(c � δ(d)). The structure
of x appears in Figure 11. Note that x ≡ 0 (mod 4). Here are
the m + 2 neighbors of uv00 in CQm, vide Definition 1.4:

• uv01 and uv10 (binary), and
• uv(0)00, . . . , uv(m−1)00 (binary).

Observe that v00 ∈ Vπ(c � δ(d)), so (v00)(0) = v01 is in

V
(0)
π(c � δ(d)) that is equal to Vπ(c � δ(d)) � 1, by Theorem 3.7.

Next, v01 ≡ 1 (mod 4), so v01 ∈ Bπ(c � δ(d)) � 1. Similarly,
(v00)(1) = v10 ∈ Cπ(c � δ(d)) � 2.

By Corollary 1.12, π(c � δ(d)) � 1 = π(c � δ(d) � (m+2))
and π(c � δ(d)) � 2 = π(c � δ(d) � (m + 1)). In that
light, v01 ∈ Bπ(c � δ(d) � (m+2)) and v10 ∈ Cπ(c � δ(d) � (m+1)).
By an argument as in the proof of Lemma 3.1, v00 is
not adjacent to any other node in Vπ(c � δ(d) � (m+1))

or Vπ(c � δ(d) � (m+2)). Accordingly,
〈
Aπ(c � δ(d)

〉
is disjoint

from Aπ(c � δ(d) � (m+1))∪Aπ(c � δ(d) � (m+2)). Therefore, each
of v(0)00, . . . , v(m−1)00 belongs to a unique set among
Aπ(c � δ(d) � 1), . . . , Aπ(c � δ(d) � m). It is easy to see that the
sets involved are pairwise disjoint. The claim follows. �

Figure 12 illustrates the argument in the proof of Lemma 5.1
for the case where m = 5, and where X −→ Y stands for
(the binary relation) “Set Y is dominated by Set X .”

Corollary 5.2:
(
2m+2(2mc + d) + Aπ(c � δ(d) � (m+1))

)
and(

2m+2(2mc + d) + Aπ(c � δ(d) � (m+2))

)
are not dominated by(

2m+2(2mc + d) + Aπ(c � δ(d))

)
.

Corollary 5.3:
〈
2m+2(2mc + d) + Aπ(c � δ(d))

〉
is a subset

of
(
2m+2(2mc + d) + {0, . . . , 2m+2 − 1}).

Corollary 5.4: If 0 ≤ c1, c2 ≤ 2k − 1 and 0 ≤ d1, d2 ≤
2m − 1, where c1 �= c2 or d1 �= d2, then

〈
2m+2(2mc1 +

d1) + Aπ(c1 � δ(d1))

〉
and

〈
2m+2(2mc2 + d2) + Aπ(c2 � δ(d2))

〉
are mutually disjoint.
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Fig. 12. An illustration of the argument in the proof of Lemma 5.1.

Proof: If c1 �= c2, then 2mc1 + d1 �= 2mc2 + d2. This
is because 2m > d1, d2. An identical conclusion is reached if
c1 = c2 and d1 �= d2. The claim then follows from Lemma 5.1
and the fact that each element of each Ax, By or Cz is smaller
than 2m+2, where 0 ≤ x, y, z ≤ 2k − 1. �

Lemma 5.5: If 0 ≤ c ≤ 2k − 1 and 0 ≤ d ≤ 2m − 1, then〈
2m+2(2mc + d) + Bπ(c � δ(d))

〉
consists of the following sets

that are mutually disjoint:

1) 22m+2c+2m+2d+
(
Bπ(c � δ(d) � 0)∪Dπ(c � δ(d) � (m+1))∪

Aπ(c � δ(d) � (m+2))

)
, and

2)
(
22m+2c +

(
2m+2d(0) +

Bπ(c � δ(d) � 0)

))
, . . . ,

(
22m+2c +

(
2m+2d(m−1) +

Bπ(c � δ(d) � 0)

))
.

Proof: Let x ∈ (
2m+2(2mc + d) + Bπ(c � δ(d))

)
. Then

x = uv01 (binary) where u = 2mc+d (decimal); |u| = m+k;
|v| = m; and v01 ∈ Bπ(c � δ(d)). The structure of x is similar
to that of the node that appears in Figure 11, with the trailing
“00” replaced by “01”. Note that x ≡ 1 (mod 4). Here are the
m + 2 neighbors of uv01 in CQm:

• uv11 and uv00 (binary), and
•
(
2m+2(2mc + d(0)) + v01

)
,
(
2m+2(2mc + d(1)) +

v01
)
, . . . ,

(
2m+2(2mc + d(m−1)) + v01

)
.

Note that v01 ∈ Vπ(c � δ(d)), so (v01)(1) = v11 ∈
V

(1)
π(c � δ(d)) = Vπ(c � δ(d)) � 2 = Vπ(c � δ(d) � (m+1)). Next,

v11 ≡ 3 (mod 4), so v11 ∈ Dπ(c � δ(d) � (m+1)), and
each element of Dπ(c � δ(d) � (m+1)) being smaller than 2m+2,
uv11 ∈ (

2m+2(2mc + d) + Dπ(c � δ(d) � (m+1))

)
. Similarly,

uv00 ∈ (2m+2(2mc + d) + Aπ(c � δ(d) � (m+2))

)
.

Notice next that d is an m-bit integer, hence so must be each
of d(0), . . . , d(m−1). In that light, (2m+2(2mc + d(t)) + v01)
belongs to

(
2m+2(2mc + d(t))+ Bπ(c � δ(d))

)
, 0 ≤ t ≤ m− 1.

Finally, it is easy to see that the sets involved are mutually
disjoint. �

Figure 13 illustrates the argument in the proof of Lemma 5.5
for the case where m = 5. Meanwhile, the following result is
analogous to Corollary 5.4.

Corollary 5.6: If 0 ≤ c1, c2 ≤ 2k − 1 and 0 ≤ d1, d2 ≤
2m − 1, where c1 �= c2 or d1 �= d2, then

〈
2m+2(2mc1 +

d1) + Bπ(c1 � δ(d1))

〉
and

〈
2m+2(2mc2 + d2) + Bπ(c2 � δ(d2))

〉
are mutually disjoint.

Fig. 13. An illustration of the argument in the proof of Lemma 5.5.

Proof: First note that each element of
(
2m+2d + (Bx ∪

Dy ∪ Az)
)

is smaller than 22m+2, and so is each element
of
(
2m+2d(t) + Bx

)
, where 0 ≤ x, y, z ≤ 2k − 1; and 0 ≤

t ≤ m − 1. In that light, if c1 �= c2, then
〈
2m+2(2mc1 +

d1) + Bπ(c1 � δ(d1))

〉
and

〈
2m+2(2mc2 + d2) + Bπ(c2 � δ(d2))

〉
are mutually disjoint, vide Lemma 5.5.

Let c1 = c2 and d1 �= d2 next.

1) If δ(d1) = δ(d2), then Ham(d1, d2) ≥ 3
(vide Corollary 3.12), so {d1, d

(0)
1 , d

(1)
1 , . . . , d

(m−1)
1 } ∩

{d2, d
(0)
2 , d

(1)
2 , . . . , d

(m−1)
2 } = ∅, and the claim follows.

2) If δ(d1) �= δ(d2), then d1 = d
(t)
2 (for some t) is a distinct

possibility; however, Bπ(c1 � δ(d1)) ∩ Bπ(c2 � δ(d2)) = ∅.
Also, Dπ(c1 � δ(d1) � (m+1)) ∩ Dπ(c2 � δ(d2) � (m+1)) = ∅
and Aπ(c1 � δ(d1) � (m+2)) ∩ Aπ(c2 � δ(d2) � (m+2)) = ∅,
and the claim is immediate. �

Corollary 5.7: If 0 ≤ c ≤ 2k − 1 and 0 ≤ d ≤ 2m − 1,
then

〈
2m+2(2mc + d) + Bπ(c � δ(d))

〉
is a subset of 22m+2c +

{0, . . . , 22m+2 − 1}.
Proof: Each of 2m+2d and 2m+2d(0), 2m+2d(1), . . . ,

2m+2d(m−1) is less than or equal to 2m+2(2m − 1) Accord-
ingly, each of (2m+2d+Bx), (2m+2d+Dy), and (2m+2d+Az)
is a subset of {0, . . . , 22m+2−1}, and so is (2m+2d(t) +Bx),
where 0 ≤ x, y, z ≤ 2k − 1; and 0 ≤ t ≤ m − 1. The claim
follows. �

Corollary 5.8: If 0 ≤ c ≤ 2k −1 and 0 ≤ d ≤ 2m−1, then
2m+2(2mc+d)+Bπ(c � δ(d) � t) is dominated by 2m+2(2mc+
d(t−1)) + Bπ(c � δ(d) � t), where 1 ≤ t ≤ m.

Proof: Let 1 ≤ t ≤ m. By Lemma 5.5,

• 2m+2(2mc + d(t−1)) + Bπ(c � δ(d)) is dominated by
2m+2(2mc + d) + Bπ(c � δ(d)).

Like d, each of d(0), . . . , d(m−1) is between 0 and 2m − 1.
Also, (d(t−1))(t−1) = d. Therefore, the statement obtainable
by substituting d(t−1) for d in (•) holds. The claim then fol-
lows by an application of the following identity: δ(d(t−1)) =
δ(d) � t. �

Figure 14 illustrates the argument in the proof of
Corollary 5.8 for the case where m = 5. As stated earlier,
“X −→ Y ” stands for (the binary relation) “Set Y is
dominated by Set X .”
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Fig. 14. An illustration of the argument in the proof of Corollary 5.8.

Fig. 15. An illustration of the argument in the proof of Lemma 5.9.

Lemma 5.9: If 0 ≤ c ≤ 2k − 1 and 0 ≤ d ≤ 2m − 1, then〈
2m+2(2mc + d) + Cπ(c � δ(d))

〉
consists of the following sets

that are mutually disjoint:

1) 2m+2(2mc+d)+
(
Cπ(c � δ(d) � 0) ∪Aπ(c � δ(d) � (m+1)) ∪

Dπ(c � δ(d) � (m+2))

)
2)
(
2m+2(2mc(0) + d) + Cπ(c � δ(d) � 0)

)
, . . . ,(

2m+2(2mc(k−1) + d) + Cπ(c � δ(d) � 0)

)
, and

3)
(
22m+k+2 + 2m+2(2mc + d) + Cπ(c � δ(d) � 0)

)
, . . . ,(

23m+1 + 2m+2(2mc + d) + Cπ(c � δ(d) � 0)

)
.

Proof: Let x ∈ (
2m+2(2mc + d) + Cπ(c � δ(d))

)
. Then

x = uv10 (binary), where u = 2mc + d (decimal), |v| = m
and v10 ∈ Cπ(c � δ(d)). The structure of x is similar to that
of the node that appears in Figure 11, with the trailing “00”
replaced by “10”. Note that x ≡ 2 (mod 4). Here are the
m + 2 neighbors of uv10 in CQm, vide Definition 1.4:

• uv00 and uv11 (binary)
•
(
2m+2(2mc(0) + d) + v10

)
, . . . ,

(
2m+2(2mc(k−1) + d) +

v10
)
, the count being k, and

•
(
22m+k+2 + 2m+2(2mc + d) + v10

)
, . . . ,

(
23m+1 +

2m+2(2mc + d) + v10
)
, the count being m − k.

Since c is a k-bit integer, so must be each of
c(0), . . . , c(k−1). The rest of the argument is similar to that
in the proof of Lemma 5.5. �

Figure 15 illustrates the argument in the proof of Lemma 5.9
for the case where m = 5.

Corollary 5.10: If 0 ≤ c1, c2 ≤ 2k − 1 and 0 ≤ d1, d2 ≤
2m − 1, where c1 �= c2 or d1 �= d2, then

〈
2m+2(2mc1 +

d1) + Cπ(c1 � δ(d1))

〉
and

〈
2m+2(2mc2 + d2) + Cπ(c2 � δ(d2))

〉
are mutually disjoint.

Fig. 16. An illustration of the argument in the proof of Corollary 5.11.

Fig. 17. An illustration of the argument in the proof of Lemma 5.12.

Proof: First let d1 �= d2. Then 2m+2(2mc1 + d1) �=
2m+2(2mc2 + d2), since 2m+2(2mc1 + d1) mod 22m+2 is
different from 2m+2(2mc2 + d2) mod 22m+2. This and
the fact that each element of Cx, Dy or Az is smaller
than 2m+2 together imply that 2m+2(2mp + d1) + X and
2m+2(2mq + d2) + Y are disjoint, even if X = Y , where
p ∈ {c1, c

(0)
1 , . . . c

(k−1)
1 }, and q ∈ {c2, c

(0)
2 , . . . c

(k−1)
2 }.

Similarly, 22m+k+2+t +2m+2(2mc1 +d1)+Cπ(c1 � δ(d1)) and
22m+k+2+t + 2m+2(2mc2 + d2) + Cπ(c2 � δ(d2)) are disjoint,
where 0 ≤ t ≤ m − k − 1.

Next let c1 �= c2 and d1 = d2. Then π(c1 � δ(d1)) and
π(c2 � δ(d2)) are necessarily distinct. The claim follows. �

Corollary 5.11: If 0 ≤ c ≤ 2k − 1, and 0 ≤ d ≤ 2m −
1, then 2m+2(2mc + d) + Cπ(c(t−1) � δ(d)) is dominated by
2m+2(2mc(t−1) + d) + Cπ(c(t−1) � δ(d)), where 1 ≤ t ≤ k.

Proof: Similar to that of Corollary 5.8. �
Remark: The expression c(t−1) may be replaced by c � 2t−1,

vide Prop. 1.2(1).
Figure 16 illustrates the argument in the proof of

Corollary 5.11 for the case where m = 5, where ‘?’ indicates
that the respective sets are yet to be dominated.

Lemma 5.12: If 0 ≤ c ≤ 2k − 1 and 0 ≤ d ≤ 2m − 1, then〈
2m+2(2mc + d) + Dπ(c � δ(d))

〉
consists of the following sets

that are mutually disjoint:

1) 2m+2(2mc + d) +
(
Dπ(c � δ(d)) ∪ Bπ(c � δ(d) � (m+1)) ∪

Cπ(c � δ(d) � (m+2))

)
and

2)
(
23m+2+2m+2(2mc+d)+Dπ(c� δ(d))

)∪. . .∪(24m+1+
2m+2(2mc + d) + Dπ(c � δ(d))

)
.

Proof: Let x ∈ (
2m+2(2mc + d) + Dπ(c � δ(d))

)
. Then

x = uv11 (binary), where u = 2mc + d (decimal), |v| = m
and v11 ∈ Dπ(c � δ(d)). The structure of x is similar to that
of the node that appears in Figure 11, with the trailing “00”
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Fig. 18. A depiction of the statements of Lemmas 5.1(1)/5.5(1)/5.9(1)/5.12(1).

replaced by “11”. Note that x ≡ 3 (mod 4). Here are the
m + 2 neighbors of uv11 in CQm, vide Definition 1.4:

• uv10 and uv01 (binary), and
•
(
23m+2 + 2m+2(2mc + d) + v11

)
, . . . ,

(
24m+1 +

2m+2(2mc + d) + v11
)
, the count being m.

The rest of the argument is similar to that in the proof of
Lemma 5.9. �

Figure 17 illustrates the argument in the proof of
Lemma 5.12 for m = 5, whereas Figure 18 depicts the
statements of Lemmas 5.1(1)/5.5(1)/5.9(1)/5.12(1) for m = 5.
Based on the distance-three property,

〈
2m+2(2mc + d) +

Vπ(c � δ(d))

〉
is equal to the union of

〈
2m+2(2mc + d) +

Aπ(c � δ(d))

〉
,
〈
2m+2(2mc + d) + Bπ(c � δ(d))

〉
,
〈
2m+2(2mc +

d) + Cπ(c � δ(d))

〉
, and

〈
2m+2(2mc + d) + Dπ(c � δ(d))

〉
. Fig-

ure 19 depicts
〈
27 × 0 + V0

〉
.

Corollary 5.13: If 0 ≤ c1, c2 ≤ 2k − 1 and 0 ≤ d1, d2 ≤
2m − 1, where c1 �= c2 or d1 �= d2, then

〈
2m+2(2mc1 +

d1) + Dπ(c1 � δ(d1))

〉
and

〈
2m+2(2mc2 + d2) + Dπ(c2 � δ(d2))

〉
are mutually disjoint.

Proof: Similar to that of Corollary 5.10. �
Theorem 5.14: Algorithm 3 returns the set

⋃2k−1
c=0(⋃2m−1

d=0

(
2m+2(2mc + d) + Vπ(c � δ(d))

))
that dominates the

following sets that are mutually disjoint:

1) The set of all elements of Type 0 between 0 and
22m+k+2 − 1, the count being 22m+k.

2) The set of all elements of Type 1 between 0 and
22m+k+2 − 1, the count being 22m+k.

3) a)
⋃2k−1

c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) + (S1 ∪ S2)

))
,

where

i) S1 =
(
Cπ(c � δ(d) � 0) ∪ Cπ(c � δ(d) � (m+1)) ∪

Cπ(c � δ(d) � (m+2))

)
ii) S2 =

(
Cπ(c � 20 � δ(d))∪. . .∪Cπ(c � 2k−1 � δ(d))

)
,

i.e., (3+k)·22m elements of Type 2, between 0 and
22m+k+2 − 1, and

b) (22m+k+2 + S) ∪ . . . ∪ (23m+1 + S), where S =⋃2k−1
c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) + Cπ(c � δ(d))

))
,

i.e., (m − k) · 22m elements of Type 2, between
22m+k+2 and 23m+2 − 1.

4) a)
⋃2k−1

c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) + (Dπ(c � δ(d)) ∪

Dπ(c � δ(d) � (m+1)) ∪ Dπ(c � δ(d) � (m+2)))
))

, i.e.,

3 · 22m elements of Type 3, between 0 and
22m+k+2 − 1, and

b) (23m+2 + S) ∪ . . . ∪ (24m+1 + S), where S =⋃2k−1
c=0

(⋃2m−1
d=0

(
2m+2(2mc+ d)+Dπ(c � δ(d))

))
,

i.e., m22m elements of Type 3, between 23m+2 and
24m+2 − 1.

Proof: Let 0 ≤ c ≤ 2k − 1 and 0 ≤ d ≤ 2m − 1.

1) By Lemmas 5.1(1-2), 5.9(1) and 5.5(1), 2m+2(2mc +
d)+

(
Aπ(c � δ(d) � 0) ∪ . . .∪Aπ(c � δ(d) � (m+2))

)
is dom-

inated by 2m+2(2mc+ d)+
(
Aπ(c � δ(d)) ∪Bπ(c � δ(d)) ∪

Cπ(c � δ(d))

)
that is a subset of 2m+2(2mc + d) +

Vπ(c � δ(d)). At this point, note that
(
π(c � δ(d) �

0), . . . , π(c � δ(d) � (m + 2))
)

is a permutation
of
(
0, . . . , m + 2

)
. Accordingly, 2m+2(2mc + d) +(

A0 ∪ . . . ∪ Am+2

)
is dominated by 2m+2(2mc +

d) + Vπ(c � δ(d)). Finally, it is easy to see that⋃2k−1
c=0

(⋃2m−1
d=0

(
2m+2(2mc+d)+(A0∪. . .∪Am+2)

))
is equal to

⋃2m+k−1
j=0

(
2m+2j + (A0 ∪ . . . ∪ Am+2)

)
,

which consists of all elements of Type 0 between 0 and
22m+k+2 − 1, the count being 22m+k.

2) The set 2m+2(2mc + d) +
(
Bπ(c � δ(d) � 0) ∪

Bπ(c � δ(d) � (m+1)) ∪ Bπ(c � δ(d) � (m+2))

)
is dominated

by 2m+2(2mc + d) +
(
Bπ(c � δ(d)) ∪ Dπ(c � δ(d)) ∪

Aπ(c � δ(d))

)
, vide Lemmas 5.5(1), 5.12(1) and 5.1(1).

In that light, it suffices to show that each of(
2m+2(2mc + d) + Bπ(c � δ(d) � 1)

)
, . . . ,

(
2m+2(2mc +

d) + Bπ(c � δ(d) � m)

)
is dominated by a subset of the

set returned by the algorithm.
By Corollary 5.8 and the fact that δ(d(t−1)) = δ(d) � t,
2m+2(2mc + d) + Bπ(c � δ(d) � 1) is dominated by
2m+2(2mc + d(0)) + Bπ(c � δ(d) � 1).
...
2m+2(2mc + d) + Bπ(c � δ(d) � m) is dominated by
2m+2(2mc + d(m−1)) + Bπ(c � δ(d) � m).
It follows that 2m+2(2mc + d) +

(
Bπ(c � δ(d) � 1) ∪

. . . ∪ Bπ(c � δ(d) � m)

)
is dominated by

(
2m+2(2mc +

d(0)) + Vπ(c � δ(d) � 1)

)⋃
. . .
⋃(

2m+2(2mc + d(m−1)) +
Vπ(c � δ(d) � m)

)
.

Finally, observe that
⋃2k−1

c=0

(⋃2m−1
d=0

(
2m+2(2mc+d)+

(B0 ∪ . . .∪Bm+2)
))

consists of all elements of Type 1

between 0 and 22m+k+2 − 1, the count being 22m+k.



JHA: 1-PERFECT CODES OVER THE QUAD-CUBE 6497

Fig. 19. Depicting
�
27 × 0 + V0

�
.

3) a) By Lemmas 5.9(1), 5.1(1) and 5.12(1),
2m+2(2mc + d) +

(
Cπ(c � δ(d) � 0) ∪

Cπ(c � δ(d) � (m+1)) ∪ Cπ(c � δ(d) � (m+2))

)
is

dominated by 2m+2(2mc + d) + Vπ(c � δ(d)).
By Corollary 5.11 next,

(
2m+2(2mc +

d) + Cπ(c(t−1) � δ(d))

)
is dominated by(

2m+2(2mc(t−1) + d) + Cπ(c(t−1) � δ(d))

)
,

1 ≤ t ≤ k. It is clear that 0 ≤ c(t−1) ≤ m + 2.
Finally, c(t−1) = c � 2t−1, vide Prop. 1.2(1).

b) Immediate from Lemma 5.9(3).

4) a) By Lemmas 5.12(1), 5.5(1) and 5.9(1),
2m+2(2mc + d) +

(
Dπ(c � δ(d) � 0) ∪

Dπ(c � δ(d) � (m+1)) ∪ Dπ(c � δ(d) � (m+2))

)
is

dominated by 2m+2(2mc + d) + Vπ(c � δ(d)).
b) Immediate from Lemma 5.12(2).

It is easy to see that the sets involved are mutually
disjoint, �

Corollary 5.15: Among elements between 0 and
22m+k+2 − 1, those in the following sets are not dominated
by the set returned by Algorithm 3:



6498 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

1) 2m+2(2mc + d) +
(
Cπ(c � δ(d) � p1) ∪ . . . ∪

Cπ(c � δ(d) � pm−k)

)
, the number of elements being

equal to (m − k)22m and
2) 2m+2(2mc+d)+

(
Dπ(c � δ(d) � 1)∪. . .∪Dπ(c � δ(d) � m)

)
,

the number of elements being equal to m22m,

where 0 ≤ c ≤ 2k − 1 and 0 ≤ d ≤ 2m − 1, and where
p1, . . . , pm−k are as in Definition 1.9.

Remark: Theorem 5.14 (3b and 4b) enumerates the elements
outside of {0, . . . , 22m+k+2−1} that are dominated by the set
returned by Algorithm 3.

Example: Let m = 5, and consider the set⋃23−1
c=0

(⋃25−1
d=0

(
27(25c + d) + Vπ(c � δ(d))

))
, say, S.

Figure 20 depicts the elements within {0, . . . , 212 − 1} that
are dominated by S in the light of Theorem 5.14.

VI. STEP 2

The objective of the present section is to slowly “spread the
wings” beyond what appeared in Section V. See Algorithm 4
that subsumes Algorithm 3. In particular, it returns a code set
that is a subset of

⋃2k−1
c=0

(⋃2m−1
d=0 T0,b,c,d

)
, where 0 ≤ b ≤

2m−k − 1. (See Line 12 of Algorithm 2 for the definition of
Ta,b,c,d.) As usual, k ≥ 3 and m = 2k − 3.

Algorithm 4 Innermost Two Loops of Algorithm 2

Require: Integer b between 0 and 2m−k − 1
1: S = ∅;
2: for (c = 0 to 2k − 1) do � 2k − 1 = m + 2
3: for (d = 0 to 2m − 1) do
4: S = S

⋃(
22m+k+2 b + 22m+2 c + 2m+2 d

5: + Vπ(φ(b) � c � δ(d))

)
6: end for
7: end for
8: Comment: At this point, |S| = 22m+2.
9: return S

10: Comment Fix b = 0 in this algorithm, and what results is
Algorithm 3.

Theorem 6.1: For an arbitrary but fixed integer b
between 0 and 2m−k − 1, Algorithm 4 returns the
set

⋃2k−1
c=0

(⋃2m−1
d=0

(
22m+k+2 b + 2m+2(2mc + d) +

Vπ(φ(b) � c � δ(d))

))
that dominates the following sets that are

mutually disjoint:
1) The set of all elements of Type 0 between 22m+k+2 b

and 22m+k+2 (b + 1) − 1, the count being 22m+k.
2) The set of all elements of Type 1 between 22m+k+2 b

and 22m+k+2 (b + 1) − 1, the count being 22m+k.

3) a) 22m+k+2 b +
⋃2k−1

c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) +

(S1 ∪ S2)
))

, where

• S1 =
(
Cπ(φ(b) � c � δ(d) � 0) ∪

Cπ(φ(b) � c � δ(d) � (m+1)) ∪
Cπ(φ(b) � c � δ(d) � (m+2))

)
• S2 =

(
Cπ(φ(b) � c � 20 � δ(d)) ∪

Cπ(φ(b) � c � 21 � δ(d)) ∪ . . . ∪
Cπ(φ(b) � c � 2k−1 � δ(d))

)
.

Algorithm 5 Innermost Three Loops of Algorithm 2

Require: m = 2k − 3, k ≥ 3
1: S = ∅;
2: for (b = 0 to 2m−k − 1) do
3: for (c = 0 to 2k − 1) do
4: for (d = 0 to 2m − 1) do
5: S = S

⋃(
22m+k+2 b + 22m+2 c + 2m+2 d

6: + Vπ(φ(b) � c � δ(d))

)
7: end for
8: end for
9: end for

10: Comment: At this point, |S| = 23m−k+2.
11: return S;

i.e., (3 + k) · 22m elements of Type 2 between
22m+k+2 b and 22m+k+2 (b + 1) − 1, and

b) (22m+k+2 b(0)+S)∪. . .∪(22m+k+2 b(m−k−1)+S),
where S =

⋃2k−1
c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) +

Cπ(φ(b) � c � δ(d))

))
, i.e., (m−k) ·22m elements of

Type 2 between 0 and 23m+2 − 1.
4) a) 22m+k+2b +

⋃2k−1
c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) +

S
))

, where

S = (Dπ(φ(b) � c � δ(d) � 0) ∪
Dπ(φ(b) � c � δ(d) � (m+1)) ∪
Dπ(φ(b) � c � δ(d) � (m+2))), i.e., 3 · 22m elements of
Type 3 between 22m+k+2b and 22m+k+2 (b+1)−1,
and

b) (23m+2 + S) ∪ . . . ∪ (24m+1 + S), where S =
22m+k+2b +

⋃2k−1
c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) +

Dπ(φ(b) � c � δ(d))

))
, i.e., m22m elements of Type

3 between 23m+2 and 24m+2 − 1.
Proof: The arguments in this case are practically identical

to those in the proof of Theorem 5.14. �
The following is analogous to Corollary 5.15.
Corollary 6.2: Among the elements between 22m+k+2b and

22m+k+2(b + 1) − 1, those in the following sets are not
dominated by the set returned by Algorithm 4:

1) 22m+k+2b + 2m+2(2mc + d) +
(
Cπ(φ(b) � c � δ(d) � p1) ∪

Cπ(φ(b) � c � δ(d) � p2)∪ . . .∪Cπ(φ(b) � c � δ(d) � pm−k)

)
, the

number of elements being equal to (m − k)22m, and
2) 22m+k+2b + 2m+2(2mc + d) +

(
Dπ(φ(b) � c � δ(d) � 1) ∪

Dπ(φ(b) � c � δ(d) � 2) ∪ . . . ∪ Dπ(φ(b) � c � δ(d) � m)

)
the

number of elements being equal to m22m,

where 0 ≤ b ≤ 2m−k − 1; 0 ≤ c ≤ 2k − 1; 0 ≤ d ≤ 2m − 1,
and p1, . . . , pm−k are as in Definition 1.9.

VII. STEP 3

This section focuses on the inner three loops of
the main scheme, viz., Algorithm 2 of Section IV.
In the process, it builds a code set that is a subset
of
⋃2m−k−1

b=0

(⋃2k−1
c=0

(⋃2m−1
d=0 T0,b,c,d

))
. See Algorithm 5.

As usual, k ≥ 3 and m = 2k − 3.
See Figure 21 for the basic element used in Algorithm 5.
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Fig. 20. Depicting the statements of Theorem 5.14(1, 2, 3(a), and 4(a)).

Fig. 21. Structure of an element used in Algorithm 5.

Lemma 7.1: If 0 ≤ b ≤ 2m−k − 1; 0 ≤ c ≤ 2k − 1;
and 0 ≤ d ≤ 2m − 1; then

〈
22m+k+2 b + 2m+2(2mc +

d) + Aπ(φ(b) � c � δ(d))

〉
consists of the following sets that are

mutually disjoint:

1) 22m+k+2 b + 2m+2(2mc + d) +
(
Aπ(φ(b) � c � δ(d) � 0) ∪

Cπ(φ(b) � c � δ(d) � (m+1))∪Bπ(φ(b) � c � δ(d) � (m+2))

)
, and

2) 22m+k+2 b + 2m+2(2mc + d) +(⋃m
t=1 Aπ(φ(b) � c � δ(d) � t)

)
.

Proof: Similar to that of Lemma 5.1. �
Corollary 7.2: If 0 ≤ b1, b2 ≤ 2m−k − 1; 0 ≤ c1, c2 ≤

2k − 1; and 0 ≤ d1, d2 ≤ 2m − 1; where (b1 �= b2 or c1 �=
c2 or d1 �= d2), then

〈
22m+k+2 b1 + 2m+2(2mc1 + d1) +

Aπ(φ(b1) � c1 � δ(d1))

〉
and

〈
22m+k+2 b2 + 2m+2(2mc2 + d2) +

Aπ(φ(b2) � c2 � δ(d2))

〉
are mutually disjoint.

Proof: If b1 �= b2, then the claim follows from the fact
that 22m+k+2 is greater than 2m+2(2mc + d) for all c and
d, where c ≤ 2k − 1 and d ≤ 2m − 1. On the other hand,
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if b1 = b2 and (c1 �= c2 or d1 �= d2), then the claim follows
from the proof of Corollary 5.4. �

Lemma 7.3: If 0 ≤ b ≤ 2m−k − 1; 0 ≤ c ≤ 2k − 1;
and 0 ≤ d ≤ 2m − 1; then

〈
22m+k+2 b + 2m+2(2mc +

d) + Bπ(φ(b) � c � δ(d))

〉
consists of the following sets that are

mutually disjoint:
1) 22m+k+2 b + 2m+2(2mc + d) +

(
Bπ(φ(b) � c � δ(d) � 0) ∪

Dπ(φ(b) � c � δ(d) � (m+1))∪Aπ(φ(b) � c � δ(d) � (m+2))

)
, and

2) 22m+k+2 b + 22m+2c +
⋃m−1

t=0

(
2m+2d(t) +

Bπ(φ(b) � c � δ(d))

)
Proof: Similar to that of Lemma 5.5. �

Corollary 7.4: If 0 ≤ b1, b2 ≤ 2m−k − 1; 0 ≤ c1, c2 ≤
2k − 1; and 0 ≤ d1, d2 ≤ 2m − 1; where (b1 �= b2 or c1 �=
c2 or d1 �= d2), then

〈
22m+k+2 b1 + 2m+2(2mc1 + d1) +

Bπ(φ(b1) � c1 � δ(d1))

〉
and

〈
22m+k+2 b2 + 2m+2(2mc2 + d2) +

Bπ(φ(b2) � c2 � δ(d2))

〉
are mutually disjoint.

Proof: Make use of an argument as in the proof of
Corollary 7.2, and invoke Corollary 5.6. �

Lemma 7.5: If 0 ≤ b ≤ 2m−k − 1; 0 ≤ c ≤ 2k − 1;
and 0 ≤ d ≤ 2m − 1; then

〈
22m+k+2 b + 2m+2(2mc +

d) + Cπ(φ(b) � c � δ(d))

〉
consists of the following sets that are

mutually disjoint:
• X(b, c, d) := 22m+k+2 b + 2m+2(2mc + d)

+
(
Cπ(φ(b) � c � δ(d) � 0) ∪ Aπ(φ(b) � c � δ(d) � (m+1))

∪ Dπ(φ(b) � c � δ(d) � (m+2))

)
• Y (b, c, d) := 22m+k+2 b+

⋃k−1
t=0

(
2m+2(2mc(t) + d)+

Cπ(φ(b) � c � δ(d) � 0)

)
, and

• Z(b, c, d) :=
⋃m−k

t=1

(
22m+k+2 b(t−1) +2m+2(2mc+d)+

Cπ(φ(b) � c � δ(d) � 0)

)
.

Proof: Similar to that of Lemma 5.9. �
The following result is analogous to Corollary 5.8.

(By Lemma 1.13, φ(b(t−1)) = φ(b) � pt, t ≥ 1.)
Corollary 7.6: If 0 ≤ b ≤ 2m−k − 1; 0 ≤ c ≤ 2k − 1;

and 0 ≤ d ≤ 2m − 1; then
(
22m+k+2 b + 2m+2(2mc +

d)+Cπ(φ(b(t−1)) � c � δ(d))

)
is dominated by

(
22m+k+2 b(t−1)+

2m+2(2mc+d)+Cπ(φ(b(t−1)) � c � δ(d))

)
, where 1 ≤ t ≤ m−k.

Corollary 7.7: If 0 ≤ b1, b2 ≤ 2m−k − 1; 0 ≤ c1, c2 ≤
2k − 1; and 0 ≤ d1, d2 ≤ 2m − 1; where (b1 �= b2 or c1 �=
c2 or d1 �= d2), then

〈
22m+k+2 b1 + 2m+2(2mc1 + d1) +

Cπ(φ(b1) � c1 � δ(d1))

〉
and

〈
22m+k+2 b2 + 2m+2(2mc2 + d2) +

Cπ(φ(b2) � c2 � δ(d2))

〉
are mutually disjoint.

Proof: First note the following:

• If b1 = b2 (in which case c1 �= c2 or d1 �= d2), then the
claim follows from Corollary 5.10.

• If b1 �= b2 and Ham(b1, b2) ≥ 3, then
{b1, b

(0)
1 , . . . , b

(m−k−1)
1 } ∩ {b2, b

(0)
2 , . . . , b

(m−k−1)
2 } = ∅,

and the claim is immediate.

In what follows, let 1 ≤ Ham(b1, b2) ≤ 2, and assume
that

〈
22m+k+2 b1 + 2m+2(2mc1 + d1) + Cπ(φ(b1) � c1 � δ(d1))

〉
and

〈
22m+k+2 b2 + 2m+2(2mc2 + d2) + Cπ(φ(b2) � c2 � δ(d2))

〉
are not disjoint. Using notations as in the statement of
Lemma 7.5 and the fact that b1 �= b2, it is easy to see that
X(b1, c1, d1) ∪ Y (b1, c1, d1) is disjoint from X(b2, c2, d2) ∪
Y (b2, c2, d2). Accordingly, there are two essential possi-
bilities: (1) X(b2, c2, d2) ∩ Z(b1, c1, d1) �= ∅ and (2)
Y (b2, c2, d2) ∩ Z(b1, c1, d1) �= ∅.

1) Let X(b2, c2, d2) ∩ Z(b1, c1, d1) �= ∅. Then there exists
some s, where 0 ≤ s ≤ m − k − 1, such that(
22m+k+2 b2 +2m+2(2mc2 +d2)+Cπ(φ(b2) � c2 � δ(d2))

)
is equal to

(
22m+k+2b

(s)
1 + 2m+2(2mc1 + d1) +

Cπ(φ(b1) � c1 � δ(d1))

)
. The conditions on various para-

meters are such that the following hold: b2 = b
(s)
1 ;

c2 = c1; and d2 = d1. In addition,
(
φ(b2) � c2 �

δ(d2)
)

=
(
φ(b1) � c1 � δ(d1)

)
that, in turn, means that

φ(b2) = φ(b1), i.e., φ(b(s)
1 ) = φ(b1), so φ(b1) � ps+1 =

φ(b1), which leads to ps+1 = 0, a contradiction, vide
Definition 1.9. (Notice that Ham(b1, b2) = 1 in this
case.)

2) Let Y (b2, c2, d2) ∩ Z(b1, c1, d1) �= ∅. Then there exist
some s and t, where 0 ≤ s ≤ m − k − 1 and
0 ≤ t ≤ m + 2, such that

(
22m+k+2 b2 + 2m+2(2mc2 +

d2) + Cπ(φ(b2) � c2 � δ(d2))

)
is equal to

(
22m+k+2b

(s)
1 +

2m+2(2mc
(t)
1 + d1) + Cπ(φ(b1) � c1 � δ(d1))

)
. Again, the

conditions on various parameters are such that the
following hold: b2 = b

(s)
1 ; c2 = c

(t)
1 ; and d2 = d1.

In addition,
(
φ(b2)� c2 � δ(d2)

)
=
(
φ(b1)� c1 � δ(d1)

)
.

Note that b2 = b
(s)
1 implies that φ(b2) = φ(b1) � ps+1,

and c2 = c
(t)
1 implies that c2 = c1 � 2t. In that light,(

φ(b1) � ps+1 � c1 � 2t � δ(d1)
)

=
(
φ(b1) � c1 � δ(d1)

)
.

For this equality to hold, ps+1 = 2t. However, ps+1 is
not a power of two, vide Definition 1.9; a contradiction.
(Notice that Ham(b1, b2) = 2 in this case.) �

Lemma 7.8: If 0 ≤ b ≤ 2m−k − 1; 0 ≤ c ≤ m + 2;
and 0 ≤ d ≤ 2m − 1; then

〈
22m+k+2 b + 2m+2(2mc +

d) + Dπ(φ(b) � c � δ(d))

〉
consists of the following sets that are

mutually disjoint:

• X(b, c, d) := 22m+k+2 b + 2m+2(2mc + d)
+

(
Dπ(φ(b) � c � δ(d) � 0) ∪ Bπ(φ(b) � c � δ(d) � (m+1))

∪ Cπ(φ(b) � c � δ(d) � (m+2))

)
, and

• Y (b, c, d) :=
⋃m−1

t=0

(
23m+2+t + 22m+k+2 b +

2m+2(2mc + d) + Dπ(φ(b) � c � δ(d) � 0)

)
.

Proof: Similar to that of Lemma 5.12. �
Corollary 7.9: If 0 ≤ b1, b2 ≤ 2m−k − 1; 0 ≤ c1, c2 ≤

m + 2; and 0 ≤ d1, d2 ≤ 2m − 1, where (b1 �= b2 or c1 �=
c2 or d1 �= d2), then

〈
22m+k+2 b1 + 2m+2(2mc1 + d1) +

Dπ(φ(b1) � c1 � δ(d1))

〉
and

〈
22m+k+2 b2 + 2m+2(2mc2 + d2) +

Dπ(φ(b2) � c2 � δ(d2))

〉
are mutually disjoint.

Proof: If b1 = b2 (in which case c1 �= c2 or d1 �= d2), then
the claim follows from Corollary 5.13. On the other hand, if
b1 �= b2, then the claim follows from the fact that 22m+k+2 is
greater than the maximum of 2m+2(2mc+d)+2m+2−1; and
2m+2 is greater than each element of Dx, By or Cz , where
0 ≤ c ≤ 2k − 1 and 0 ≤ d ≤ 2m − 1. �

Theorem 7.10: Algorithm 5 returns the set⋃2m−k−1
b=0

(
22m+k+2 b +

⋃2k−1
c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) +

Vπ(φ(b) � c � δ(d))

)))
that dominates the following sets that

are mutually disjoint:

1) The set of all elements of Type 0, between 0 and
23m+2 − 1, the count being 23m.

2) The set of all elements of Type 1, between 0 and
23m+2 − 1, the count being 23m.
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3) The set of all elements of Type 2, between 0 and
23m+2 − 1, the count being 23m.

4) a)
⋃2m−k−1

b=0

(
22m+k+2 b +

⋃2k−1
c=0

(⋃2m−1
d=0

(
2m+2

(2mc + d) + S
)))

, where S =

(Dπ(φ(b) � c � δ(d) � 0) ∪ Dπ(φ(b) � c � δ(d) � (m+1)) ∪
Dπ(φ(b) � c � δ(d) � (m+2))), i.e., 3 · 23m−k elements
of Type 3, between 0 and 23m+2 − 1, and

b)
(
23m+2 + S

)∪ (23m+3 + S
)∪ . . .∪ (24m+1 + S

)
,

where S =
⋃2m−k−1

b=0

(
22m+k+2b +⋃2k−1

c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) +

Dπ(φ(b) � c � δ(d))

)))
, i.e., m23m−k elements

of Type 3, between 23m+2 and 24m+2 − 1.
Proof:

1) Let S = Aπ(φ(b) � c � δ(d)) ∪ Bπ(φ(b) � c � δ(d)) ∪
Cπ(φ(b) � c � δ(d)). For 0 ≤ b ≤ 2m−k − 1, the set

22m+k+2 b +
⋃2k−1

c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) + S

))
dominates all elements of Type 0 between 22m+k+2 b
and 22m+k+2(b + 1) − 1, the count being 22m+k.
This follows by an application of Lemmas 7.1, 7.3(1),
and 7.5(1). Accordingly,

⋃2m−k−1
b=0

(
22m+k+2 b +⋃2k−1

c=0

(⋃2m−1
d=0

(
2m+2(2mc+ d)+S

)))
dominates all

elements of Type 0 between 0 and 23m+2−1, the count
being 23m.

2) Let S = Bπ(φ(b) � c � δ(d)) ∪ Dπ(φ(b) � c � δ(d)) ∪
Aπ(φ(b) � c � δ(d)). For 0 ≤ b ≤ 2m−k − 1, the set

22m+k+2 b +
⋃2k−1

c=0

(⋃2m−1
d=0

(
2m+2(2mc + d) + S

))
dominates all elements of Type 1 between 22m+k+2 b
and 22m+k+2(b + 1) − 1, the count being 22m+k.
This follows by an application of Lemmas 7.3, 7.8(1),
and 7.1(1). Accordingly,

⋃2m−k−1
b=0

(
22m+k+2 b +⋃2k−1

c=0

(⋃2m−1
d=0

(
2m+2(2mc+ d)+S

)))
dominates all

elements of Type 1 between 0 and 23m+2−1, the count
being 23m.

3) The set returned by Algorithm 5 is a superset
of that returned by Algorithm 4. Next, of the
m + 3 sets, viz.,

(
22m+k+2b + 2m+2(2mc + d) +

Cπ(φ(b) � c � δ(d) � 0)

)
, . . . ,

(
22m+k+2b + 2m+2(2mc +

d)+Cπ(φ(b) � c � δ(d) � (m+2))

)
, the following are exactly

those not dominated by the set returned by Algorithm 4,
vide Corollary 6.2(1):
22m+k+2b + 2m+2(2mc + d) + Cπ(φ(b) � c � δ(d) � p1)

22m+k+2b + 2m+2(2mc + d) + Cπ(φ(b) � c � δ(d) � p2)

...
22m+k+2b + 2m+2(2mc + d) + Cπ(φ(b) � c � δ(d) � pm−k).
In that light, it suffices to show that the foregoing sets are
dominated by the set returned by Algorithm 5. To that
end, use Corollary 7.6 and the fact that φ(b(t−1)) =
φ(b) � pt (vide Lemma 1.13), whence

•
(
22m+k+2b+2m+2(2mc+d)+Cπ(φ(b) � c � δ(d) � pt)

)
is dominated by

(
22m+k+2b(t−1)+2m+2(2mc+d)+

Cπ(φ(b) � c � δ(d) � pt)

)
, where 1 ≤ t ≤ m − k.

The disjointness of the sets in this case follows from
Corollary 7.7.

4) a) Immediate from Lemmas 7.8(1), 7.3(1) and 7.5(1).
b) Immediate from Lemmas 7.8(2).

The disjointness of various sets in this case follows from
Corollary 7.9. �

Figure 22 presents the count of the elements of Type 3,
dominated by the set returned by Algorithm 5. Meanwhile the
following is analogous to Corollary 5.15 and Corollary 6.2.

Corollary 7.11: Among the elements between 0 and
24m+2−1, the following are not dominated by the set returned
by Algorithm 5, vide Theorem 7.10:

1) The set of elements of Type 0 between 23m+2 and
24m+2 − 1, the count being 23m+2(2m − 1)

2) The set of elements of Type 1 between 23m+2 and
24m+2 − 1, the count being 23m+2(2m − 1)

3) The set of elements of Type 2 between 23m+2 and
24m+2 − 1, the count being 23m+2(2m − 1), and

4) The set of elements of Type 3 between 0 and 24m+2−1,
other than those appearing in the statement of Theo-
rem 7.10(4), the count being 23m+2(2m − 1).

VIII. STEP 4

This section zeroes in on the main result. See Algorithm 6
that is a miniature of Algorithm 2 in Section IV. Further,
see Figure 23 for the element used in this section. As usual,
k ≥ 3 and m = 2k − 3.

Algorithm 6 Main Scheme (Algorithm 2) in a Miniature Form

1: Z = ∅;
2: for (a = 0 to 2m − 1) do
3: for (b = 0 to 2m−k − 1) do
4: for (c = 0 to 2k − 1) do
5: for (d = 0 to 2m − 1) do
6: Z = Z

⋃(
23m+2 a + 22m+k+2 b + 22m+2 c

7: + 2m+2 d + Vπ(δ(a) � φ(b) � c � δ(d))

)
8: end for
9: end for

10: end for
11: end for
12: Comment: At this point, |Z| = 24m−k+2.
13: return Z;

Lemma 8.1: If 0 ≤ a ≤ 2m − 1; 0 ≤ b ≤ 2m−k − 1;
0 ≤ c ≤ 2k − 1; and 0 ≤ d ≤ 2m − 1; then

〈
23m+2 a +

22m+k+2 b+2m+2(2mc+d) + Aπ(δ(a) � φ(b) � c � δ(d))

〉
consists

of the following sets that are mutually disjoint:

1) 23m+2 a + 22m+k+2b + 2m+2(2mc + d) +(
Aπ(δ(a)�φ(b)�c�δ(d)�,0) cup Cπ(δ(a)�φ(b)�c�δ(d)�(m+1))

∪ Bπ(δ(a)�φ(b)�c�δ(d)�(m+2))

)
, and

2) 23m+2a + 22m+k+2b + 2m+2(2mc + d) +(⋃m
t=1 Aπ(δ(a)�φ(b)�c�δ(d)�t)

)
.

Proof: Similar to that of Lemma 7.1. �
Corollary 8.2: If 0 ≤ a1, a2 ≤ 2m − 1; 0 ≤ b1, b2 ≤

2m−k − 1; 0 ≤ c1, c2 ≤ 2k − 1; and 0 ≤ d1, d2 ≤
2m − 1; where (a1 �= a2 or b1 �= b2 or c1 �= c2 or
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Fig. 22. Count of the elements of Type 3, vide Theorem 7.10(4).

Fig. 23. Structure of an element used in Algorithm 6.

d1 �= d2), then
〈
23m+2 a1+22m+k+2 b1+2m+2(2mc1+d1)+

Aπ(δ(a1) � φ(b1) � c1 � δ(d1))

〉
and

〈
23m+2 a2 + 22m+k+2 b2 +

2m+2(2mc2 + d2) + Aπ(δ(a2) � φ(b2) � c2 � δ(d2))

〉
are mutually

disjoint.
Proof: Similar to that of Corollary 7.2. �

Lemma 8.3: If 0 ≤ a ≤ 2m − 1; 0 ≤ b ≤ 2m−k − 1;
0 ≤ c ≤ 2k − 1; and 0 ≤ d ≤ 2m − 1; then

〈
23m+2 a +

22m+k+2 b+2m+2(2mc+d)+Bπ(δ(a) � φ(b) � c � δ(d))

〉
consists

of the following sets that are mutually disjoint:

1) 23m+2a + 22m+k+2b + 2m+2(2mc + d) +(
Bπ(δ(a)�φ(b)�c�δ(d)�0) ∪ Dπ(δ(a)�φ(b)�c�δ(d)�(m+1)) ∪

Aπ(δ(a)�φ(b)�c�δ(d)�(m+2))

)
, and

2) 23m+2a + 22m+k+2b + 22m+2c +
⋃m−1

t=0

(
2m+2d(t) +

Bπ(δ(a)�φ(b)�c�δ(d))

)
.

Proof: Similar to that of Lemma 7.3. �
Corollary 8.4: If 0 ≤ a1, a2 ≤ 2m − 1; 0 ≤ b1, b2 ≤

2m−k − 1; 0 ≤ c1, c2 ≤ 2k − 1; and 0 ≤ d1, d2 ≤
2m − 1; where (a1 �= a2 or b1 �= b2 or c1 �= c2 or
d1 �= d2), then

〈
23m+2 a1+22m+k+2 b1+2m+2(2mc1+d1)+

Bπ(δ(a1) � φ(b1) � c1 � δ(d1))

〉
and

〈
23m+2 a2 + 22m+k+2 b2 +

2m+2(2mc2 + d2) + Bπ(δ(a2) � φ(b2) � c2 � δ(d2))

〉
are mutually

disjoint.
Proof: Similar to that of Corollary 7.4. �

Lemma 8.5: If 0 ≤ a ≤ 2m − 1; 0 ≤ b ≤ 2m−k − 1;
0 ≤ c ≤ 2k − 1; and 0 ≤ d ≤ 2m − 1; then

〈
23m+2 a +

22m+k+2 b+2m+2(2mc+d)+Cπ(δ(a) � φ(b) � c � δ(d))

〉
consists

of the following sets that are mutually disjoint:

1) X(a, b, c, d) := 23m+2a + 22m+k+2b + 2m+2(2mc + d)
+
(
Cπ(δ(a)�φ(b)�c�δ(d)�0) ∪ Aπ(δ(a)�φ(b)�c�δ(d)�(m+1))

∪ Dπ(δ(a)�φ(b)�c�δ(d)�(m+2))

)
2) Y (a, b, c, d) := 23m+2a + 22m+k+2b +

⋃k−1
t=0(

2m+2(2mc(t) + d) + Cπ(δ(a)�φ(b)�c�δ(d))

)
,

and
3) Z(a, b, c, d) := 23m+2a +

⋃m−k
t=1

(
22m+k+2b(t−1) +

2m+2(2mc + d) + Cπ(δ(a)�φ(b)�c�δ(d))

)
.

Proof: Similar to that of Lemma 7.5. �
Corollary 8.6: If 0 ≤ a1, a2 ≤ 2m − 1; 0 ≤ b1, b2 ≤

2m−k − 1; 0 ≤ c1, c2 ≤ 2k − 1; and 0 ≤ d1, d2 ≤
2m − 1; where (a1 �= a2 or b1 �= b2 or c1 �= c2 or
d1 �= d2), then

〈
23m+2 a1+22m+k+2 b1+2m+2(2mc1+d1)+

Cπ(δ(a1) � φ(b1) � c1 � δ(d1))

〉
and

〈
23m+2 a2 + 22m+k+2 b2 +

2m+2(2mc2 + d2) + Cπ(δ(a2) � φ(b2) � c2 � δ(d2))

〉
are mutually

disjoint.
Proof: Similar to that of Corollary 7.6. �

Lemma 8.7: If 0 ≤ a ≤ 2m − 1; 0 ≤ b ≤ 2m−k − 1;
0 ≤ c ≤ m + 2; and 0 ≤ d ≤ 2m − 1; then

〈
23m+2 a +

22m+k+2 b+2m+2(2mc+d)+Dπ(δ(a) � φ(b) � c � δ(d))

〉
consists

of the following sets that are mutually disjoint:
• 23m+2 a + 22m+k+2 b + 2m+2(2mc + d)+(

Dπ(δ(a) � φ(b) � c � δ(d) � 0)

∪Bπ(δ(a) � φ(b) � c � δ(d) � (m+1))

∪Cπ(δ(a) � φ(b) � c � δ(d) � (m+2))

)
• (23m+2 a(0) + 22m+k+2 b + 2m+2(2mc + d)+

Dπ(δ(a) � φ(b) � c � δ(d))

)
• (23m+2 a(1) + 22m+k+2 b + 2m+2(2mc + d)+

Dπ(δ(a) � φ(b) � c � δ(d))

)
...

• (23m+2 a(m−1) + 22m+k+2 b + 2m+2(2mc + d)+
Dπ(δ(a) � φ(b) � c � δ(d))

)
.

Proof: Similar to that of Lemma 5.12. �
The following result is analogous to Corollary 5.8 as well

as Corollary 7.6.
Corollary 8.8: If 0 ≤ a ≤ 2m − 1; 0 ≤ b ≤ 2m−k − 1;

0 ≤ c ≤ 2k − 1; and 0 ≤ d ≤ 2m − 1; then
(
23m+2 a +

22m+k+2 b + 2m+2(2mc + d) + Dπ(δ(a) � φ(b) � c � δ(d) � t)

)
is

dominated by
(
23m+2 a(t−1) +22m+k+2 b+2m+2(2mc+d)+

Dπ(δ(a(t−1)) � φ(b) � c � δ(d))

)
, where 1 ≤ t ≤ m.
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Corollary 8.9: If 0 ≤ a1, a2 ≤ 2m − 1; 0 ≤ b1, b2 ≤
2m−k − 1; 0 ≤ c1, c2 ≤ m + 2; and 0 ≤ d1, d2 ≤
2m − 1; where (a1 �= a2 or b1 �= b2 or c1 �= c2 or
d1 �= d2), then

〈
23m+2 a1+22m+k+2 b1+2m+2(2mc1+d1)+

Dπ(δ(a1) � φ(b1) � c1 � δ(d1))

〉
and

〈
23m+2 a2 + 22m+k+2 b2 +

2m+2(2mc2 + d2) + Dπ(δ(a2) � φ(b2) � c2 � δ(d2))

〉
are mutually

disjoint.
Proof: If a1 = a2 (in which case b1 �= b2, or c1 �= c2,

or d1 �= d2), then the claim follows from Corollary 7.9. On the
other hand, if a1 �= a2, then the claim follows from the facts
that (i) 23m+2 is greater than the maximum of 22m+k+2 b +
2m+2(2mc + d) + 2m+2 − 1, (ii) 22m+k+2 is greater than the
maximum of 2m+2(2mc + d) + 2m+2 − 1, and (iii) 2m+2 is
greater than each element of Dx, By or Cz , where 0 ≤ b ≤
2m−k − 1, 0 ≤ c ≤ 2k − 1, and 0 ≤ d ≤ 2m − 1. �

Theorem 8.10: Algorithm 6 returns the set Z that is equal
to⋃23m+2−1

a=0

(
23m+2 a +

(⋃2m−k−1
b=0

(
22m+k+2 b +(⋃2k−1

c=0

⋃2m−1
d=0

(
2m+2(2mc + d) +

Vπ(δ(a) � φ(b) � c � δ(d))

)))))
having cardinality 24m−k+2, and

that dominates all vertices of CQm.
Proof: The set Z dominates all vertices of Type 0, Type 1

and Type 2. This follows by arguments similar to those in the
proofs of Theorems 7.10(1), 7.10(2), and 7.10(3), respectively.
In what follows, consider the vertices of Type 3, and let
0 ≤ a ≤ 2m − 1; 0 ≤ b ≤ 2m−k − 1; 0 ≤ c ≤ 2k − 1;
and 0 ≤ d ≤ 2m − 1. By Lemmas 8.7, 8.5 and 8.3, the set

(23m+2 a + 22m+k+2b + 2m+2(2mc + d))+(
Dπ(δ(d) � φ(b) � c � δ(d) � 0) ∪ Dπ(δ(d) � φ(b) � c � δ(d) � (m+1))

∪Dπ(δ(d) � φ(b) � c � δ(d) � (m+2))

)
is dominated by

(23m+2 a + 22m+k+2b + 2m+2(2mc + d))+(
Dπ(δ(d) � φ(b) � c � δ(d)) ∪ Cπ(δ(d) � φ(b) � c � δ(d))

∪Bπ(δ(d) � φ(b) � c � δ(d))

)
.

The sets that remain are as follows:
• (23m+2 a + 22m+k+2b + 2m+2(2mc + d)+

Dπ(δ(a) � φ(b) � c � δ(d) � 1)

)
• (23m+2 a + 22m+k+2b + 2m+2(2mc + d)+

Dπ(δ(a) � φ(b) � c � δ(d) � 2)

)
...

• (23m+2 a + 22m+k+2b + 2m+2(2mc + d)+
Dπ(δ(a) � φ(b) � c � δ(d) � m)

)
.

By Corollary 8.8,
(
23m+2 a+22m+k+2b+2m+2(2mc+d)+

Dπ(δ(a) � φ(b) � c � δ(d) � t)

)
is dominated by

(
23m+2 a(t−1) +

22m+k+2 b + 2m+2(2mc + d) + Dπ(δ(a(t−1)) � φ(b) � c � δ(d))

)
,

where 1 ≤ t ≤ m. Observe that the latter set is a subset of
the set returned by Algorithm 6. �

Corollary 8.11: 1) CQm admits a 1-perfect code.
2) The (independent) domination number of CQm is equal

to the theoretical minimum of 24m−k+2.

IX. VERTEX PARTITION OF THE QUAD-CUBE

INTO 1-PERFECT CODES

It turns out that the main scheme admits a generalization.
See Algorithm 7, where a new parameter t has been intro-
duced, 0 ≤ t ≤ 2k − 1.

Algorithm 7 The General Algorithm

Require: m = 2k − 3, k ≥ 3, and t ∈ {0, . . . , 2k − 1}
1: Z = ∅;
2: for (a = 0 to 2m − 1) do
3: for (b = 0 to 2m−k − 1) do
4: for (c = 0 to 2k − 1) do
5: for (d = 0 to 2m − 1) do
6: Z = Z

⋃(
23m+2 a + 22m+k+2 b + 22m+2 c

7: + 2m+2 d + Vπ(δ(a) � φ(b) � c � δ(d) � t)

)
8: end for
9: end for

10: end for
11: end for
12: Comment: At this point, |Z| = 24m−k+2.
13: return Z;

Theorem 9.1: Algorthm 7 returns a 1-perfect code
of CQm.

Proof: Algorithm 7 differs from Algorithm 6 at
Step 7, where Vπ(δ(a) � φ(b) � c � δ(d)) has been replaced by
Vπ(δ(a) � φ(b) � c � δ(d) � t), 0 ≤ t ≤ 2k − 1. It is easy to see
that 0 ≤ π(δ(a) � φ(b) � c � δ(d) � t) ≤ 2k − 1.

By symmetry, every claim relating to the set returned by
Algorithm 6 holds true with respect to the set returned by
Algorithm 7. Hence the result. �

Corollary 9.2: If m = 2k − 3, k ≥ 2, then CQm admits a
vertex partition into 1-perfect codes.

Proof: See Figure 2 in Section I for a vertex partition
of CQ1 (m = 3 and k = 2) into 1-perfect codes. In what
follows, let k ≥ 3.

For every quadruple (a, b, c, d), if t1 �= t2,
then π(δ(a) � φ(b) � c � δ(d) � t1) is different

from π(δ(a) � φ(b) � c � δ(d) � t2), hence

Vπ(δ(a) � φ(b) � c � δ(d) � t1) and Vπ(δ(a) � φ(b) � c � δ(d) � t2)

are disjoint, where a, b, c, d are as in Algorithm 7 and
0 ≤ t1, t2 ≤ 2k − 1. In that light, run Algorithm 7
systematically for t ranging from 0 to 2k − 1. Each time,
it returns a 1-perfect code of the graph, vide Theorem 9.1.
Further, the 2k sets thus obtainable are vertex-disjoint. It is
easy to see that the codes collectively constitute a vertex
partition of the graph. �

X. CONCLUDING REMARKS

A quad-cube CQm is a special case of a more general
topology, called the metacube [19] that itself is derivable from
the hypercube. This paper presents a vertex partition of CQm

into 1-perfect codes, where m = 2k − 3, k ≥ 2. In an earlier
study [14], the author presented an analogous result over the
dual-cube that is a simpler version of the metacube.

There exist other more complex versions of the metacube,
notably, the oct-cube that merit a similar study.
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