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Convex Formulation of Overparameterized Deep
Neural Networks

Cong Fang , Yihong Gu, Weizhong Zhang, and Tong Zhang , Fellow, IEEE

Abstract— The analysis of over-parameterized neural networks1

has drawn significant attention in recent years. It was shown2

that such systems behave like convex systems under various3

restricted settings, such as for two-layer neural networks, and4

when learning is only restricted locally in the so-called neural5

tangent kernel space around specialized initializations. However,6

there is a lack of powerful theoretical techniques that can analyze7

fully trained deep neural networks under general conditions.8

This paper considers this fundamental problem by investigat-9

ing such overparameterized deep neural networks when fully10

trained. Specifically, we characterize a deep neural network by11

its features’ distributions and propose a metric to intuitively12

measure the usefulness of feature representations. Under certain13

regularizers that bounds the metric, we show deep neural14

networks can be reformulated as a convex optimization and the15

system can guarantee effective feature representations in terms16

of the metric. Our new analysis is more consistent with empirical17

observations that deep neural networks are capable of learning18

efficient feature representations. Empirical studies confirm that19

predictions of our theory are consistent with results observed in20

practice.21

Index Terms— Deep learning, convex reformulation, feature22

representation.23

I. INTRODUCTION24

DEEP Neural Networks (DNNs) have achieved great suc-25

cesses in numerous real applications, such as image26

classification [1]–[3], face recognition [4], video understand-27

ing [5], neural language processing [6], etc. Compared to the28

empirical successes, the theoretical understanding of DNNs29

falls far behind. Part of the reasons might be a general30

perception that DNNs are highly non-convex learning models.31
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However, it is observed in practice that with the help 32

of a number of tricks, DNNs can be reliably trained from 33

random initialization with reproducible results. The solutions 34

from proper training procedures behave well and consistently. 35

In other words, two different random initializations (using 36

the same initialization and training strategy) generally lead 37

to models that give similar predictions on test data. Therefore, 38

we may conclude that proper training leads to similar solutions 39

for neural networks. This behavior resembles that of convex 40

optimization, instead of generic non-convex optimization that 41

tends to get stuck in suboptimal local stationary solutions. 42

This empirical observation appears to be rather mysterious and 43

requires further understanding. 44

In recent years, there have been significant break- 45

throughs [7]–[10] in analyzing over-parameterized Neural 46

Networks (NNs), which are NNs with many neurons in the 47

hidden layer(s). It is observed from empirical studies that 48

such NNs are easy to train [11]. And it was noted that 49

under some restrictive settings, such as two-layer NNs [7], 50

[8] and when learning is only restricted locally in the neural 51

tangent kernel space around certain initializations [9], [10], 52

NNs behave like convex systems when the number of the 53

hidden neurons goes to infinity. Unfortunately, existing studies 54

failed to analyze fully trained DNNs under general settings. 55

Moreover, the analysis cannot explain how DNNs can learn 56

discriminative features specifically for the underlying learning 57

task, as observed in real applications and argued to be one of 58

the contributors for the success of deep learning [12], [13]. 59

To remedy the gap between the existing theories and prac- 60

tical observations, this paper develops a new theoretical tool 61

that can be used to study fully trained DNNs. Our results 62

show that under suitable conditions, in the limit of an infinite 63

number of hidden neurons, DNNs are infinite-dimensional 64

convex learning models with appropriate re-parameterization. 65

In our framework, given a DNN, the hidden layers are regarded 66

as features and the model output is given by a simple linear 67

model using features of the top hidden layer. The output of 68

a DNN, in the limit of an infinite number of hidden neurons, 69

depends on the distributions that can represent features, the 70

weights that connect the layers, and the final linear model. 71

We show the closeness of continuous DNN with its discretiza- 72

tion and further study the variance of such approximation. 73

The variance motivates us to propose a new metric that can 74

intuitively measure the usefulness of feature representations. 75

Then the feature learning process of a deep neural network is 76

characterized by a class of regularizers that upper bound our 77

proposed metric under mild conditions. We show under suit- 78

able re-parameterization, the objective function can be largely 79

simplified. Especially, when such regularizers are imposed, 80

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5076-7897
https://orcid.org/0000-0002-5511-2558


FANG et al.: CONVEX FORMULATION OF OVERPARAMETERIZED DEEP NEURAL NETWORKS 5341

the overall program under a special re-parameterization can81

be convex. Unlike the Neural Tangent Kernel approach, our82

theoretical framework for DNN does not require the variables83

to be confined in an infinitesimal region.84

More concretely, the paper is organized as follows.85

Section II discusses the relationship of this paper to earlier86

studies, especially recent works on the analysis of over-87

parameterized NNs. Section III introduces the basic defini-88

tion of discrete DNNs. Section IV describes the continuous89

DNN when the number of hidden nodes goes to infinity in90

the discrete DNN. In this formulation, each hidden layer is91

represented by a distribution over an abstract space that can92

represent features, i.e. function values on the hidden units of93

the input. We further interpret a discrete DNN as a random94

sample of hidden nodes from a continuous DNN at each layer,95

and then study the variance of such random discretization. The96

variance formula motivates the study of a class of regulariza-97

tion conditions for DNNs that measure the usefulness of the98

feature representations. Section V studies the DNN training99

problem, in which we specialize the abstract space by R
N

100

which are feature spaces for the training samples. We show101

that the overall program can be re-parameterized into a convex102

optimization problem. Section VI discusses the implications103

of the convex reformulation. We explain why (noisy) gradient104

descent finds a global minimum. In particular, we show the105

critical points of the continuous DNN in a particular space106

attains the global minimum. Section VII presents experiments107

to demonstrate that our theory is consistent with empirical108

observations.109

The main contributions of this work can be described as110

follows.111

• We propose a new framework for analyzing over-112

parameterized DNNs. We show that DNNs can be113

re-parameterized as a convex optimization problem under114

certain conditions.115

• We propose a metric that can be intuitively used to mea-116

sure the usefulness of feature representations. We then117

propose a class of regularizers, and we show that under118

certain conditions, such regularizers are approximately an119

upper bound of such a metric.120

• We conduct empirical studies to validate the consistency121

of our theory with practice.122

A. Notations123

For a vector x ∈ R
d, we denote ‖·‖1 and ‖·‖ to be its �1 and124

�2 norms, respectively. We let x� be the transpose of x and125

xk be the value of k-th dimension of x with k = 1, . . . , d. Let126

[m] = {1, 2, . . . , m} for a positive integer m. For a function127

f(x) : R
d → R, we denote ∇xf to be the gradient of f with128

respect to x. For two real valued numbers a and b, we denote129

a ∨ b to be max(a, b). If μ and ν are two measures on the130

same measurable space, we denote μ � ν if μ is absolutely131

continuous with respect to ν, and μ ∼ ν if μ � ν and ν � μ.132

II. RELATED WORK133

There have been a number of significant developments to134

obtain better theoretical understandings of over-parameterized135

NNs, which are NNs that contain a large number of hidden 136

nodes. The motivation of overparameterization comes from the 137

empirical observation that over-parameterized DNNs are much 138

easier to train and often achieve better performances [11]. 139

In some earlier works, a number of researchers [14]–[19] 140

studied the landscape of NNs under special conditions either 141

for input data or for NN architectures. By carefully charac- 142

terizing the geometric landscapes of the objective function, 143

these early works showed that some special NNs satisfy the 144

so-called strict saddle property [20]. One can then use some 145

recent results in nonconvex optimization [21]–[23] to show 146

that first-order algorithms for such NNs can efficiently escape 147

saddle points and converge to some local mimima. 148

In the generic setting, one popular approach to study 149

two-layer NNs is the mean-field analysis. This point of view 150

models the continuous NN as a distribution over the NN’s 151

parameters, and it studies the evolution of the distribution as a 152

Wasserstein gradient flow during the training process [7], [8], 153

[24]–[27]. The process can be represented by a partial differ- 154

ential equation, which can be further studied mathematically. 155

For two-layer continuous NNs, it is known that the objective 156

function with respect to the distribution of parameters is 157

convex in the continuous limit. And it was shown that (noisy) 158

Gradient Decent can find globally optimal solutions under 159

certain conditions. However, the mean-field analysis relies on 160

the special observation that a two-layer continuous NN is 161

naturally a linear model with respect to the distribution of NN 162

parameters, and this observation is not applicable to multi- 163

layer architectures. Consequently, it is difficult to generalize 164

the view to analyze DNNs. In fact, in the recent attempts [28], 165

the technique of mean-field analysis is applied to DNNs. 166

Though they proved the 0 loss phenomenon for the Gradient 167

Descent algorithm, their analysis is under restricted conditions 168

and no regularizer can be incorporated during training. 169

One remarkable direction to extend the mean-field view 170

to analyze DNNs is to restrict the DNN parameters in an 171

infinitesimal region around the initial values. With proper 172

scaling and random initialization, DNN can be regarded as 173

a linear model in this infinitesimal region, which makes the 174

training dynamics solvable. This point of view is referred to 175

as the Neural Tangent Kernel (NTK) view [9], [10], [29]–[37], 176

since the evolution of the trainable parameters, when restricted 177

to the infinitesimal region, can be characterized by a kernel 178

in the tangent space. However, NTK essentially approximates 179

a nonlinear NN by a linear model of the infinite-dimensional 180

random features associated with the NTK, and so NTK view 181

cannot explain how NNs learn the feature. 182

Another line of research [38]–[42] study DNNs by studying 183

the duality of the DNNs. They proposed a special convex 184

duality and show under suitable conditions the strong duality 185

holds. In this way, NNs can be learned by semi-defined 186

programming in polynomial computational complexities under 187

suitable conditions. Compared with our work, these works 188

mainly study the standard �2 regularizers. They novelly 189

learn the NNs in the dual space. In contrast, we study 190

�1,p norm (p ≥ 1) and show the critical points of the 191

continuous DNN under our reformulation attains the global 192

minimum. 193
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The most related work is [43], which was a short conference194

paper focusing on preliminary and mainly empirical studies of195

loss landscape for convolutional neural networks, evolved from196

an earlier version of the current paper. The major differences197

between the present paper and [43] are summarized as follows.198

First, the starting points of the two papers are different. [43]199

only aims to simplify the landscape of NNs. In contrast,200

the present paper provides a thorough study for DNNs by201

understanding DNNs from the view of feature representation:202

We treat a discrete DNN as a collection of hidden nodes203

samples from a continuous DNN with weights connecting204

them, thus the study of the variance for such random dis-205

cretization leads to a new type of regularizers. Therefore, under206

our framework, not only the optimization of DNNs can be207

re-parameterized as a convex program, but also we can explain208

that DNNs are capable of learning effective features in terms of209

representation for the learning task. Second, the experimental210

goal in [43] is to validate the fact that the solution paths with211

different random initialization are essentially the same during212

the training. In contrast, the experiments in this paper focus on213

the consistency of our theory with practice and involve detailed214

analysis including the verification of optimal condition, the215

role of variance of approximation, etc. Overall the current216

paper is a deeper and more comprehensive investigation of217

neural network convexification and its consequences.218

The work of [44] proposed after our work rigorously studies219

the Gradient Descent dynamic equation. Based on our continu-220

ous framework, they show that with the number of hidden units221

for the discrete NN going to infinity and the step size going to222

0, the Gradient Descent algorithm converges to a continuous223

dynamic called neural feature flow. Moreover, under certain224

conditions, neural feature flow converges to 0 training loss.225

In their analysis, no regularizer is considered.226

III. PRELIMINARY: DISCRETE DEEP NEURAL NETWORKS227

In this section, we introduce the discrete fully connected228

DNNs. We consider a DNN f̂ with L hidden layers. For input229

x ∈ R
d, we can define f̂ recursively as a function of x.230

Specifically, we define f̂
(0)
j (x) = xj for j ∈ [d]. Let231

m(0) = d. Then for � ∈ [L], we define the nodes in the �-th232

layer as233

f̂
(�)
j (x) = h(�)

(
ĝ
(�)
j (x)

)
, (1)234

with235

ĝ
(�)
j (x) =

1
m(�−1)

m(�−1)∑
k=1

w
(�)
j,kf̂

(�−1)
k (x), j ∈ [m(�)],236

where h(�) is the activation function and w(�) ∈ R
m(�)×m(�−1)

237

is the weight matrix of the �-th layer comprised of m(�) rows,238

i.e., w
(�)
j = [w(�)

j,1 , . . . , w
(�)

j,m(�−1) ] ∈ R
m(�−1)

with j ∈ [m(�)].239

At the top layer, we define the output f̂(x) as240

f̂(x) =
1

m(L)

m(L)∑
j=1

uj f̂
(L)
j (x), (2)241

where uj ∈ RK is a vector. This defines an (L+1)-layer fully 242

connected deep neural network with m(�) nodes in each layer. 243

IV. CONTINUOUS DEEP NEURAL NETWORKS 244

In this section, we introduce the continuous DNN formula- 245

tion according to the definition of discrete DNN in Section III 246

and then show the relationship between the continuous and 247

discrete DNNs. 248

A. Continuous DNN Formulation 249

In the case of continuous DNN, for each � ∈ [L], we first 250

consider an abstract space Z(�) equipped with a probability 251

measure ρ(�) to represent the states of the hidden units at layer 252

�. Then we introduce function w(�) : Z(�−1) × Z(�) → R 253

to represent the weights that connected from layer � − 1 to 254

�. We let ρ = {ρ(0), . . . , ρ(L)} and w = {w(1), . . . , w(L)}. 255

The details for the continuous DNN formulation are presented 256

below. 257

At 0-th layer, we define Z(0) := [d] as the node space 258

corresponding to the d components of the input x. Let ρ(0) be 259

the uniform distribution on Z(0). For each node z(0) ∈ Z(0), 260

we let 261

f (0)(ρ, w, z(0); x) = xz(0) . 262

Consider the �-th layer with � ∈ [L]. Because z(�) can 263

be regarded as a hidden node in layer �, and z(�−1) as a 264

hidden node in the (� − 1)-th layer, thus w(�)(z(�), z(�−1)) 265

is the analogy of w
(�)
i,j in discrete DNN, which is the weight 266

connecting node i and j in layer � and � − 1. Using this 267

notation, we define the function associated with the node z(�)
268

in �-th layer of the continuous NN as follows: 269

f (�)(ρ, w, z(�); x) =h(�)
(
g(�)(ρ, w, z(�); x)

)
, (3) 270

where h(�)(·) is the activation function of the �-th layer, and 271

g(�)(ρ, w, z(�); x) 272

=
∫

w(�)(z(�), z(�−1))f (�−1)(ρ, z(�−1); x) dρ(�−1)(z(�−1)). 273

Moreover, we let ρ(�) be a probability measure over Z(�).1 274

Finally, for the output layer, let u(·) : Z(L) → R
K be a 275

K-dimensional vector valued function on Z(L), then we can 276

define the final output of continuous DNN as 277

f(ρ, w, u; x)=
∫

u(z(L))f (L)(ρ, w, z(L); x) dρ(L)(z(L)). (4) 278

We will establish the relationship between the continuous 279

and discrete DNNs. 280

B. Assumptions 281

Before presenting the result, we specify the necessary 282

assumptions first. These assumptions are mild. 283

Assumption 1 (Bounded Gradient Condition): We assume 284

the activation function is differentiable, and its derivative is 285

1f(�) and g(�) depend only on the components of ρ up until the �-th layer.
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bounded. That is, there exists a constant c0 > 0, such that286 ∣∣∣∇h(�)(x)
∣∣∣ ≤ c0, � ∈ [L].287

Assumption 2 (Continuous Gradient Condition): We further288

assume that there exist two constants α > 0 and c1 > 0 such289

that290 ∣∣∣∇h(�)(x) −∇h(�)(y)
∣∣∣ ≤ c1|x − y|α, � ∈ [L].291

Assumption 2 is a special type of modulus of continuity292

for ∇h(�)(x). When α = 1, Assumption 2 is the standard293

L-smooth condition for the activation function h(�)(x). When294

α < 1, it holds more generally in the local region. When295

proving Theorem 2, our moment condition in Assumption 3296

depends on α. We note that most commonly-used activation297

functions, e.g. sigmoid, tanh, and smooth relu, admit this298

assumption for all 0 < α ≤ 1.299

Assumption 3 ((q0, q1)-Bounded Moment Condition): We300

assume for all � ∈ [2 : L], we have301

Ez(�−1),...,z(L)

∣∣∣∣∣‖u(L)(z(L))‖ ∨ 1
L∏

i=�+1

(
|w(i)(z(i), z(i−1))| ∨ 1

)
302

[
w(�)(z(�), z(�−1))f (�−1)(ρ, w, z(�−1); x)−g(�)(ρ, w, z(�); x)

]∣∣∣∣∣
q0

303

≤ cM .304

Moreover, we assume305

Ez(L)

∥∥∥u(L)f (L)(ρ, z(L); x) − f(ρ, u; x)
∥∥∥q1 ≤ cM1 .306

The constants q0 and q1 in Assumption 3 will be specified307

later based on our theorem statements.308

C. Relationship Between Discrete and Continuous DNNs309

We now investigate the relationship between the discrete and310

continuous DNNs. Given a continuous DNN, we can construct311

a discrete one by sampling hidden nodes from the probability312

measure sequence ρ. The detailed procedure is as follows:313

1) Keep the input layer of the discrete DNN identical to314

that of the continuous DNN.315

2) For each hidden layer � ∈ [L], draw m(�) i.i.d. samples316

{z(�)
i : i ∈ [m(�)], z(�)

i ∈ Z(�)}, which is denoted as317

Ẑ(�), from ρ(�) of continuous DNN, and set the weights318

w
(�)
i,j = w(�)(z(�)

i , z
(�−1)
j )319

with i ∈ [m(�)] and j ∈ [m(�−1)].320

3) For the top layer, set321

uj = u(z(L)
j ),322

for each sampled z
(L)
j with j = [m(L)].323

The following result shows when m(�) → ∞ for all � ∈ [L],324

the final output converges to that of the continuous DNN in325

L1. All the proofs in this paper are left to the appendices.326

Theorem 1 (Consistence of Discretization): Given a contin-327

uous NN, under Assumptions 1 and 3 with q0 = q1 = 1 + cε328

for any cε > 0, suppose there is a discrete NN constructed329

from the continuous DNN using the procedure above, then 330

for any input x, we have 331

for any k ≥ 2 and j ∈ [m(k)], given z
(k)
j ,(i) 332

lim
m(�)→∞,�∈[k−1]

E [f̂ (k)
j (x) − f (k)(ρ, w, z

(k)
j ; x)] | σ(z(k)

j ) = 0, 333

lim
m(�)→∞,�∈[L]

E

∥∥∥f̂(x) − f(ρ, u, w; x)
∥∥∥ = 0.(ii) 334

The part (i) of the theorem above does not cover the case 335

of k = 1, since it is trivial to show that f (1)(ρ, w, z
(1)
j ; x) ≡ 336

f̂
(1)
j (x) holds for all j ∈ [m(0)]. 337

Conversely, given a discrete DNN, we may ask if there 338

is a continuous DNN that can construct the discrete one by 339

sampling the hidden nodes. Consider the discrete DNN that 340

is initialized by some standard initialization strategy and is 341

trained by (Scaled) Gradient Descent which may be of our 342

central interest. Its hidden units are correlated since they 343

all depend on a common set of outputs from the previous 344

layer and have interactions during training. However, they are 345

actually “nearly independent” when the number of hidden 346

units is large enough in the sense that there is always an 347

approximated discrete DNN that can be constructed from the 348

procedure above for a certain continuous DNN. Similar to 349

Theorem 1, the two DNNs approximate to each other with the 350

increase of hidden units. The result was shown in [44] by 351

a similar argument from the propagation of chaos. Therefore, 352

in most cases, the discrete DNN can be interpreted as a random 353

sample of hidden nodes from a continuous DNN at each 354

layer. 355

D. Variance of Discrete Approximation 356

We further estimate the variance of such approximation with 357

a slightly strong condition. 358

Theorem 2 (Variance of Discrete Approximation): We 359

denote ∂f(ρ,w,u;x)

∂z(L) = u(z(L)) and 360

∂f(ρ, w, u; x)
∂z(�)

= Ez(�+1)

[
A(�+1) ∂f(ρ, w, u; x)

∂z(�+1)

]
361

where A(�+1) = w(�+1)(z(�+1), z(�))∇h(�+1)
(
g(ρ, w, z(�+1); x)

)
362

and � ∈ [L − 1]. Then under Assumptions 1, 2, and 3 with 363

q0 = 2(1 + α)L, q1 = 2 and treating c0, c1, α, cM , cM1 , and 364

L as constants, we have 365

E

∥∥∥f̂(x) − f(ρ, w, u; x)
∥∥∥2

(5) 366

=
L−1∑
�=1

1
m(�)

Ez(�)

∣∣∣∣Ez(�+1)
∂f(ρ, w, u; x)

∂z(�+1)
Δ̄�+1

∣∣∣∣
2

367

+
1

m(L)
Ez(L)

∥∥Δ̄L+1

∥∥2 + O
(

L∑
�=1

(m(�))−2

)
368

+ O
(

L∑
�=1

(m(�))−(1+α/2)

)
, 369

where 370

Δ̄L+1 = f (L)(ρ, w, z(L); x)u(z(L)) − f(ρ, w, u; x), 371
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and372

Δ̄� =f (�−1)(ρ, w, z(�); x)w(�)(z(�), z(�−1))−g(�)(ρ, w, z(�); x),373

for � ∈ [2 : L].374

In Theorem 2, for � ∈ [L−1], we can choose α = O ( 1
L1+ν

)
375

with ν ≥ 0. Thus, the assumption only requires the bounded376

2 + O ( 1
Lν

)
-th moment.377

Theorem 2 shows that the variance of the approxima-378

tion decreases with a rate of
∑L

�=1 O(1/m(�)). We can379

use the terms on the right hand side of (5), i.e.380 ∣∣∣Ez(�+1)
∂f(ρ,w,u;x)

∂z(�+1) Δ̄�+1

∣∣∣2 (� ∈ [L−1]) and Ez(L)

∥∥Δ̄L+1

∥∥2 as381

a metric to measure the usefulness of the feature representa-382

tions. That is, if the variance of the corresponding discrete383

approximation is small, then a discrete DNN with a small384

number of hidden neurons can represent the target f . This385

inspires us to impose an appropriate regularization condition to386

guarantee the usefulness of the feature representations. Specif-387

ically, if we assume that both |f (�)(ρ, w, z(�); x)∂f(ρ,w,u;x)

∂z(�+1) |388

and |f (L)(ρ, z(L); x)| are bounded, then in order to minimize389

the variance, Theorem 2 implies that we can minimize the390

following regularization (see the proofs of (7) and (8) in391

Appendix B.4):392

R(w,u) =
L∑

�=1

λ(�)R(�)
w (ρ, w) + λ(u)R(u)(ρ, u), (6)393

with394

R(�)
w (ρ, w) (7)395

=
∫ (∫

|w(�)(z(�), z(�−1))|dρ(�)(z(�))
)2

dρ(�−1)(z(�−1)),396

R(u)(ρ, u) =
∫ ∥∥∥u(z(L))

∥∥∥2

dρ(L)(z(L)), (8)397

the parameters λ(1), . . . , λ(L) and λ(u) being non-negative.398

Thus, we propose a new regularizer that controls the efficacy399

of the learned feature distributions in terms of efficient rep-400

resentation under random sampling. Under the regularizers,401

the variance decreases with
∑L

�=1 O(1/m(�)). We remark that402

our unexpected result in Section V will show that with this403

regularizer, the learning problem is convex under suitable re-404

parameterization. Moreover, in the discrete formulation, the405

regularizer is the simple �1,2 norm regularizer if we write406

w(�)(z(�), z(�−1)) as a matrix with the (j, i)-th entry being407

w(�)(z(i), z(j)), which is a convex regularizer.408

V. CONVEXIFY DNN409

In this section, we study the training problem of DNNs.410

We show the learning program can be reparameterized as a411

convex optimization.412

A. Problem Setup413

Consider training a DNN, where we are given N training414

pairs {xi, yi}N
i=1 with xi ∈ R

d and y ∈ R
k and our target is415

to minimize the loss:416

Q̂(w, u) =
1
N

N∑
i=1

φ(f̂(xi), yi) + R̂(w, u), (9)417

where φ(·, ·) is the loss function used to measure the quality 418

of prediction and R̂ is the regularizer. We assume that loss 419

is convex in the first argument and consider the �1,2 norm 420

regularizer written as: 421

R̂(w, u) =

[
L∑

�=1

λ(�)R̂(�)
w (ρ, w) + λ(u)R̂(u)(ρ, u)

]
, (10) 422

where 423

R̂(�)
w (w(�)) =

1
m(�−1)

m(�−1)∑
k=1

∣∣∣∣∣∣
1

m(�)

m(�)∑
j=1

∣∣∣w(�)
j,k

∣∣∣
∣∣∣∣∣∣
2

, (11) 424

R̂(u)(u) =
1

m(L)

m(L)∑
j=1

‖uj‖2, (12) 425

the parameters λ(1), . . . , λ(L) and λ(u) are non-negative. The 426

regularizer is not necessary for our convex argument, but is 427

capable of controlling the efficiency of the feature under our 428

proposed metric. 429

B. Specialize Z(�) as Feature Space 430

Observe that the feature for the N -training samples can be 431

written as N -dimensional vector. We specify Z(�) as R
N for 432

� ∈ [2 : L]. In this way, a continuous DNN is character- 433

ized by the distributions and functions of the features. The 434

overall learning program becomes a constrained optimization, 435

where the complicated recursive composition structure of the 436

forward propagation is simplified as independent constraints. 437

We present the details below, following a similar argument in 438

Section IV. 439

(1) At 0-th layer, we denote X =
[
x1, x2, . . . , xN

]� ∈ 440

R
N×d. 441

(2) At 1-st layer, because each hidden node (before the 442

activation function) is computed by a linear mapping of 443

the input data, each node can be indexed by the weights 444

connecting it to the input. We define Z(1) as R
d and let 445

ρ(1) be the probability measure over R
d,2 then for all 446

z(1) ∈ supp(ρ(1)), the outputs of the nodes z(1) satisfy: 447

θ1(z(1)) :=
1
d
Xz(1). (13) 448

(3) At 2-nd layer, recall that the output of each node, i.e., 449

the feature, for the training samples is a N -dimensional 450

vector. We define Z(2) as R
N and let ρ(2) be the prob- 451

ability measure over R
N that describes the distribution 452

of features in the second layer. Moreover, we introduce 453

function w(2) : R
d × R

N → R to denote the weights 454

on the connections from layer 1 to 2. We have for any 455

z(2) ∈ supp(ρ(2)), 456∫
w(2)(z(1), z(2)) ḣ

(
θ1(z(1))

)
dρ(1)(z(1)) = z(2), 457

(14) 458

2The state of the first layer can also be characterized by the output of the
linear mapping.
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where ḣ : R
N → R

N is the entrywise operation of the459

activation function h such that ḣ(a)i = h(ai) for i ∈ [N ]460

and a ∈ R
N .461

(4) Similarly, for � ∈ [3 : L], let Z(�) = R
N be the space462

of the features and let ρ(�) be the probability measure463

over R
N that describes the distribution of the features in464

the �-th layer. We also introduce function w(�) : R
N ×465

R
N → R to denote the weights on the connections from466

layer �−1 to �. Then for any z(�) ∈ supp(ρ(�)), we have467 ∫
w(�)(z(�−1), z(�)) ḣ

(
z(�−1)

)
dρ(�−1)(z(�−1)) = z(�).468

(15)469

(5) Finally, introducing u : R
N → R

k, we have470 ∫
u(z(L)) ḣ

(
z(L)
)

dρ(L)(z(L)) = z(L+1). (16)471

Therefore the overall learning problem for a continuous DNN472

(ρ, w, u) can be formulated as the following constrained473

optimization program:474

min
ρ,w,u

Q(ρ, w, u) =
1
N

N∑
n=1

φ
(
z(L+1)

n , yn
)
+ R(w,u)(ρ, w, u)475

s.t. for all z(2) ∈ supp(ρ(2)),476 ∫
w(2)(z(1), z(2)) ḣ

(
θ1(z(1))

)
dρ(1)(z(1)) = z(2),477

for all z(�) ∈ supp(ρ(�)), � ∈ [3 : L],478 ∫
w(�)(z(�−1), z(�)) ḣ

(
z(�−1)

)
dρ(�−1)(z(�−1)) = z(�),479 ∫

u(z(L)) ḣ
(
z(L)
)

dρ(L)(z(L)) = z(L+1). (17)480

C. Convex Reformulation481

In Program (17), z(�) can be arbitrary element in supp(ρ�).482

Thus there is an infinite number of constraints. The optimiza-483

tion variables are ρ, w, and u. The program is still non-convex484

since there are multiplications of variables in the constraints.485

We show it is possible to re-parameterize the program as a486

convex optimization, which will lead to a great simplification487

for the landscape analysis of DNNs.488

To begin with, we first introduce some basic distributions489

ρ0 = {ρ(1)
0 , . . . , ρ

(L)
0 }. In general, ρ

(�)
0 can be set as any490

distribution. We consider narrowing down the search space of491

the optimization variable to Θρ0 = {(ρ, w, u) : ρ(�) ∼ ρ
(�)
0 , � ∈492

[L]}. This does not degenerate the problem much as we can493

pick ρ0 as standard gaussian distributions for example. We494

then define495

p(�)(z(�)) =
dρ(�)

dρ
(�)
0

(z(�)), � ∈ [L],496

as the Radon-Nikodym derivative of ρ(�) with respect to497

ρ
(�)
0 for all � ∈ [L]. Then in the search space {(ρ, w, u) :498

ρ(�) ∼ ρ
(�)
0 , � ∈ [L]}, we have 0 < p(�)(z(�)) < ∞ ρ

(�)
0 -499

a.e.. Furthermore, we consider a change of variables below to500

eliminate the explicit multiplication between variables: 501

w̃(2)(z(1), z(2)) = w(2)(z(1), z(2))p(1)(z(1))p(2)(z(2)), (18) 502

for � ∈ [2 : L − 1], w̃(�+1)(z(�), z(�+1)) 503

= w(�+1)(z(�), z(�+1))p(�)(z(�))p(�+1)(z(�+1)), (19) 504

ũ(z(L)) = u(z(L))p(L)(z(L)). (20) 505

This re-parameterization can significantly simplify the pro- 506

gram in the sense that all the “hardness” of the problem is 507

now wrapped into the regularizer. Specifically, by plugging 508

(18), (19), and (20) into Program (17), we have that 509

min
p,w̃,ũ

Q̃(p, w̃, ũ) =
1
N

N∑
n=1

φ
(
z(L+1)

n , yn
)

+ R̃(p, w̃, ũ) 510

s.t. for all z(2) ∈ R
N , z(2)p(2)(z(2)) 511

=
∫

w̃(2)(z(1), z(2)) ḣ
(
θ1(z(1))

)
dρ

(1)
0 (z(1)), 512

for all z(�) ∈ R
N , � ∈ [3 : L], z(�)p(�)(z(�)) 513

=
∫

w̃(�)(z(�−1), z(�)) ḣ
(
z(�−1)

)
dρ

(�−1)
0 (z(�−1)), 514∫

ũ(z(L)) ḣ
(
z(L)
)

dρ
(L)
0 (z(L)) = z(L+1), (21) 515

where 516

R̃(p, w̃, ũ) =
L∑

�=1

λ(�)R̃(�)
w (p, w̃) + λ(u)R̃(u)(p, ũ), (22) 517

with 518

R̃(�)
w (p, w̃) (23) 519

=
∫ (∫ |w̃(�)(z(�), z(�−1))|dρ

(�)
0 (z(�))

)2

p(�−1)(z(�−1))
dρ

(�−1)
0 (z(�−1)), 520

R̃(u)(p, ũ) =
∫ ∥∥ũ(z(L))

∥∥2
p(L)(z(L))

dρ
(L)
0 (z(L)). (24) 521

Program (21) only has linear constraints. Next, we show one 522

of the core results of this paper which states that for �1,2 norm 523

regularizer, Program (21) is convex. 524

Theorem 3: Assume φ(·; ·) is convex on the first argument, 525

then Program (21) is joint convex. 526

Remark 4: Theorem 3 can hold more generally. For �1,r 527

norm regularizer with r ≥ 2, Program (21) is convex. 528

Observe that in the space {(ρ, w, u) : ρ(�) ∼ ρ
(�)
0 , � ∈ [L]}, 529

our new reparameterization (p, w̃, ũ) has one-to-one corre- 530

spondence with the original parameterization (ρ, w, u). Since 531

the objective function is convex under the reparameterization, 532

we conclude that a local solution of NN in the original 533

parameterization is a global solution. 534

Theorem 5: Under the assumptions of Theorem 3, in the 535

space {(ρ, w, u) : ρ(�) ∼ ρ
(�)
0 , � ∈ [L]}, if (ρ∗, w∗, u∗) 536

is a critical point (17), then (ρ∗, w∗, u∗) attains the global 537

minimum of (17). 538

Theorem 5 sheds light on the landscape of the continuous 539

DNN, which shows the non-existence of bad local minima in 540

the space {(ρ, w, u) : ρ(�) ∼ ρ
(�)
0 , � ∈ [L]}. We may impose an 541

additional appropriate convex regularizer R′(ρ) to restrict the 542
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variables into the desired space. For example, we may consider543

DKL

(
ρ(�)‖ρ(�)

0

)
+DKL

(
ρ
(�)
0 ‖ρ(�)

)
, where DKL(·‖·) denotes544

relative entropy and � ∈ [L]. Then the nonequivalence of ρ(�)
545

and ρ
(�)
0 would push the objective function to +∞.546

VI. IMPLICATIONS547

A. Convex Feature Learning548

In the view of NTK, DNNs in effect only exploit the random549

features. In contrast, we show under �1,2 norm, features550

are learned from the underlying task. Specifically, by the551

convexity argument in Theorem 3 with the relationship of552

the re-parameterization built in Theorem 5, we can establish553

specific properties satisfied by the optimal solutions of DNNs.554

Proposition 1: Under the assumptions of Theorem 3, in the555

space {(ρ, w, u) : ρ(�) ∼ ρ
(�)
0 , � ∈ [L]}, if (ρ∗, w∗, u∗) is an556

optimal solution of the DNN, and ρ
(�)
∗ ∼ ρ

(�)
0 , then there exists557

a real number sequence {Λ}�∈[L], i.e. Λ(�) ∈ R for all � ∈ [L],558

so that the following equations hold: (1) for all � ∈ [L − 1]559

and ž(�) ∈ Z(�), we have560

λ(�+1)

(∫ ∣∣∣w(�+1)(ž(�+1), ž(�))
∣∣∣ dρ�+1

∗ (ž(�+1))
)2

561

=2λ�B(ž(�)) + Λ(�);562

(2) for all ž(L) ∈ Z(L), we have563

Λ(L) + 2λ(L)B(ž(L)) = λ(u)
∥∥∥u∗(ž(L))

∥∥∥2 ,564

and565

1
N

N∑
n=1

φ′(z(L+1)
n , yn)[ḣ(ž(L))]n = −2λ(u)u∗(ž(L)),566

where567

B(ž(�)) =
∫∫ ∣∣∣w(�)(z(�), ž(�−1))

∣∣∣ dρ�
∗(z

(�))568 ∣∣∣w(�)(ž(�), ž(�−1))
∣∣∣ dρ

(�−1)
∗ (ž(�−1))569

for � ∈ [2 : L]. In the above formulas, we abbreviate brackets570

in the superscripts.571

Proposition 1 shows that the optimal feature distribution572

sequence ρ∗ relies on (w∗, u∗). There are lots of triples573

(ρ, w, u) that can reach the same layer of the training loss as574

(ρ∗, w∗, u∗) does, whereas (ρ∗, w∗, u∗) is the one that achieves575

the minimum �1,2 norm regularization value under this equiva-576

lent class. Since the �1,2 norm regularization upper bounds the577

variance of discrete approximation of the continuous DNN in578

Theorem 2, a small �1,2 norm implies that a small number579

of hidden units are needed to represent f(ρ∗, w∗, u∗; ·) in580

the randomly sampled discrete DNN. This means that �1,2581

norm regularization leads to efficient feature representations.582

Proposition 1 will be validated in our experiment.583

B. Relationship With Gradient Descent584

We study the relationship of the convex reformulation and585

Gradient Descent in the original weight space in this section.586

We consider the Scaled Mini-norm (Sub)-Gradient Descent587

algorithm with the meta-algorithm shown in Algorithm 1. 588

The sub-gradient Ĝ is composed of the part from the loss 589

and the regularizers. The loss part is differentiated and can 590

be obtained by the standard backward-propagation algorithm, 591

whereas the �1,2 norm is not differentiated. However, it has 592

sub-gradients at every point thanks to its convexity. We choose 593

the sub-gradient that has the minimum norm (see (25) and 594

(26)) as Ĝ. We also study a different step size for layers 595

compared with the standard Gradient Descent algorithm. These 596

appropriate step sizes (time scales) for the parameters match 597

the scale in the continuous limit and are also adopted in all 598

existing mean-field theory of DNNs [28], [44], [45]. 599

When the step size goes to 0, we can define the correspond- 600

ing gradient flow for training discrete NNs by: 601

dw
(�),t
i,j

dt
= −[m�−1m�

]Ĝt

w
(�)
i,j

, � ∈ [L], i ∈ [m�−1], j ∈ [m�], 602

dut
i

dt
= − [mL

]Ĝt
ui

i ∈ [mL], 603

where the mini-norm sub-gradient Ĝt satisfies that 604

Ĝt =∇L̂(wt, ut) (25) 605

+ argmin
ξ

{∥∥∥∇L̂(wt, ut) + ξ
∥∥∥ : ξ ∈ ∂R̂(wt, ut)

}
606

and Ĝt

w
(�)
i,j

and Ĝt
ui

are the corresponding elements of Ĝt. 607

Note the above gradient flow exists a unique solution, 608

which can be obtained by the same argument in Proposition 609

2.3 in [8] (also see Section 2.1 in [46]) due to the choice of the 610

mini-norm sub-gradient for the regularizers. And the standard 611

results from gradient flow indicate the monotonic non-increase 612

of the objective. That is 613

dQ̂t

dt
= −

L∑
�=1

m�−1∑
i=1

m�∑
j=1

m�−1m�

∥∥∥∥Ĝt

w
(�)
i,j

∥∥∥∥
2

−
mL∑
i=1

mL

∥∥∥Ĝt
ui

∥∥∥2

. 614

Now consider the continuous limit where all the number 615

of hidden units diverges. When there is no regularizer, it 616

was shown in [44] that the discrete gradient flow provably 617

converges to a continuous gradient flow called neural feature 618

flow, which is a solution of an infinitely dimensional non-linear 619

dynamic ODE system under suitable conditions. Generally 620

speaking, neural feature flow tracks the trajectories for the 621

weights and the features to capture the learning process of the 622

continuous DNNs. 623

In the continuous DNN formulation (17), the network is 624

parameterized with respect to (ρ, w, u). However, the gradient 625

flow only modifies the network parameters (w, u) but does 626

not modify ρ directly. But it is clear that changing (w, u) 627

modifies ρ accordingly. Specifically, we can write down the 628

continuous sub-gradients. Specifically, by back-propagation, 629

for each training sample n ∈ [N ], we introduce intermediate 630

terms3: 631

D(L+1)
n (ρ, u; z(L+1)) = ∇1φ(z(L+1)

n , yn), 632

D(L)
n (ρ, w, u; z(L))h′(z(L)

n )
(
u(z(L))�D(L+1)

n (ρ, u; z(L+1))
)

, 633

3D
(�)
n depend only on the components of ρ and w after �-th layer.
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Algorithm 1 Scaled Gradient Descent for Training a DNN

1: Input the data {xi, yi}N
i=1, step size η, and initial weights (w0, u0).

2: for k = 0, 1, . . . , K − 1 do
3: Perform forward-propagation to compute the loss.
4: Perform backward-propagation to compute the gradient (Ĝwk , Ĝuk).
5: Perform scaled Gradient Descent:

w
(�)
k+1,i,j = w

(�)
k,i,j −

�
ηm�−1m�

�Ĝ
w

(�)
k,i,j

� ∈ [L], i ∈ [m�−1], j ∈ [m�],

uk+1,i = uk,i −
�
ηmL

�Ĝuk,i i ∈ [mL].

6: end for
7: Output the weights (wK , uK).

D(�)
n (ρ, w, u; z(�)) = h′(z(�)

n ))·634 (∫
w(�+1)(z̆(�+1), z(�)D(�+1)

n (ρ, w, u; z̆(�+1))dρ(�+1)(z̆(�+1))
)
,635

where ∇1φ : R
k → R

k is the gradient of φ on the first636

argument, z
(�)
n is n-th coordinate of z(�) ∈ R

n. Then we have637

for all � ∈ [L]638

G(�)(ρ, w, u; z(�), z(�−1))=
1
N

N∑
n=1

D(�)
n (ρ, w, u; z(�))h(z(�−1)

n )639

+ 2λ(�)V (�)(z(�−1))|w(�)(z(�), z(�−1))|′,640

and641

G(u)(ρ, u; z(L))642

=
1
N

N∑
n=1

D(L+1)
n (ρ, u; z(L+1))h(z(L)

n ) + 2λ(u)u(zL),643

where V (�)(z(�−1)) =
∫ ∣∣w(�)(z̆(�), z(�−1))

∣∣ dρ(�)(z̆(�))644

and |w(�)(z(�), z(�−1))|′ is properly set to ensure that645

G(�)(ρ, w, u; z(�), z(�−1)) has the mini-norm. That is646 ∣∣∣w(�)(z(�), z(�−1))
∣∣∣′ (26)647

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if w(�)(z(�), z(�−1)) > 0,

0, if w(�)(z(�), z(�−1)) = 0, V (�)(z(�−1)) = 0,

−1, if w(�)(z(�), z(�−1)) < 0

max(min(− 1
N

�N
n=1 D(�)

n (ρ,w,u;z(�))h(z(�−1)
n )

2λ(�)V (�)(z(�−1))
, 1),−1), else.

648

When there are suitable regularizers, if the solution of the649

neural feature flow also exists, then analogously to discrete650

gradient flow, we have651

dQt

dt
652

= −
L∑

�=1

∫ ∥∥∥G(�)(ρt, wt, ut; z(�), z(�−1))
∥∥∥2653

× dρ
(�)
t (z(�))dρ

(�−1)
t (z(�−1))654

−
∫ ∥∥∥G(u)(ρt, ut; z(L))

∥∥∥2 dρ
(L)
t (z(L)). (27)655

Now we give intuitions on why this continuous gradient656

flow achieves a global minimum based on our convex refor-657

mulation. Suppose there is a point (ρ∗, w∗, u∗). We show if658

G(�)(ρ∗, w∗, u∗; z(�−1), z(�)) = 0 and G(u)(ρ∗, w∗, u∗; z(L)) =659

0 holds almost surely, it converges to the solution of the 660

convex reformulation. Note that because the gradient flow only 661

directly updates the neural network original parameters (w, u), 662

it is not clear that (ρ∗, w∗, u∗) will be a local minima in (17). 663

Hence Theorem 5 is not directly applicable. 664

Theorem 6: Under the assumptions of Theorem 3, 665

in the space {(ρ, w, u) : ρ(�) ∼ ρ
(�)
0 , � ∈ [L]}, for 666

all � ∈ [L], if G(�)(ρ∗, w∗, u∗; z(�−1), z(�)) = 0 and 667

G(u)(ρ∗, w∗, u∗; z(L)) = 0 holds almost surely, then 668

(ρ∗, w∗, u∗) achieves the global minimal of Programs (17) and 669

(21). 670

Theorem 6 only provides some intuitions on why this con- 671

tinuous gradient flow achieves a global minimum. We should 672

mention that there are still several challenges to rigorously 673

prove necessary results. The main challenges are listed below 674

and left as open questions for future research. 675

1) The biggest challenge is to prove that 676∫ ∥∥∥G(�)(ρt, wt, ut; z(�), z(�−1))
∥∥∥2dρ

(�)
0 (z(�))dρ

(�−1)
0 (z(�−1)) 677

→ 0 (and
∫ ∥∥G(u)(ρt, ut; z(L))

∥∥2 dρ
(L)
0 (z(L)) → 0) with 678

t → ∞. One important step is to prove that dρ
(�)
t

dρ
(�)
0

(z(�)) 679

will be strictly bounded away from 0 for any t > 0. Note 680

that from (27), for some region R ∈ R
N , if ρ

(�)
t (R) = 681

0 for t > t0, then
∥∥G(�)(ρt, wt, ut; z(�), z(�−1))

∥∥2 may 682

not be 0 on R. As we mentioned before, one possible 683

direction to deal with the issue is to impose additional 684

regularizers, such as relative entropy regularizers, and 685

then to show that ρ
(�)
∗ would satisfy some useful proper- 686

ties, such as the Logarithmic Sobolev property. However, 687

we still lack some technique to rigorously achieve this 688

result. Moreover, adding a non-trivial regularizer also 689

brings more difficulties to prove the existence of the 690

solution for neural feature flow. See (3). 691

2) (27) only ensures (ρt, wt, ut) converges in a weak sense. 692

Even after we overcome challenge (1), one still cannot 693

show that Q(ρt, wt, ut) converges to its minimal value 694

(directly using Theorem 6). Nevertheless, we believe 695

this is not a fundamental problem, and a method to deal 696

with this difficulty is to properly smooth (the amount 697

of smoothing can be arbitrarily small) the parameters 698

so that the slightly smoothed distribution has point-wise 699

convergence. 700
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3) When there are non-trivial regularizers, the existence of701

the solution for the neural feature flow is not rigorously702

proven. [44] achieves the result only when there are703

no regularizers by using Picard-Lindelöf theorem (see704

Theorem 4 in [44]). It is still open how to analyze the705

evolution of DNNs with non-trivial regularizers such as706

�1,2 norm and relative entropy regularizer.707

4) Finally, even if we prove the convergence of the contin-708

uous dynamics, it still requires some treatment to show709

the convergence of the discrete dynamics. We suspect710

that this difficulty can be solved by using the argu-711

ment from the propagation of chaos, (see e.g. Theorem712

6 in [44]).713

Despite the challenges, we believe that our explanation would714

bring some value in understanding the Gradient Descent715

algorithm to train the DNNs.716

VII. EXPERIMENTS717

The experiments are designed to qualitatively verify the718

following.719

1) Optimality condition: We demonstrate that fully trained720

overparameterized DNNs are consistent with our convex721

reformulation argument by verifying the optimality con-722

dition in Proposition 1. Here we consider the relationship723

between724

u
(�)
j =

λ(�)

m(�)m(�−1)

m(�−1)∑
k=1

(m(�)∑
j′=1

|w(�)
k,j′ |
)|w(�)

k,j | (28)725

and726

v
(�)
j =

{
λ(�+1)

(
1

m(�+1)

∑m(�+1)

i=1 |w(�+1)
j,i |)2 � ∈ [L − 1]

λ(u)‖uj‖2 � = L
727

(29)728

for one neuron j in layer � ∈ [L], which are the estimates729

of730

λ(�)

∫∫
|w(z̃(�), z(�−1))|dρ(z̃(�))|w(z(�), z(�−1))|dρ(z(�−1))731

and732 {
λ(�+1)

( ∫ |w(z(�+1), z(�))|dρ(z(�+1))
)2

� ∈ [L − 1]
λ(u)
∥∥u(z(L))

∥∥2 � = L,
733

respectively.734

2) Deep versus Shallow Networks: We show that by735

increasing L, the number of hidden layers, fully con-736

nected NN can learn hierarchical feature representations737

that can reduce the variance of approximation described738

in Theorem 2. This verifies the benefit of using deeper739

networks for certain problems.740

3) Compactness: We show that compared with other regu-741

larizers, the proposed regularizer can learn better (more742

compact) feature representations.743

4) Convex Landscape: We visualize the landscape of neural744

network in our formulation and show it is convex.745

Note that similar to [47], we use the approximation variance746

of discretization V (w, u) to measure the effectiveness of747

feature representation, based on the theoretical findings of 748

Theorem 2: 749

V (w, u) =
1

(m(L))2

m(L)∑
j=1

∥∥∥uj f̂
(L)
j (x) − f̂(x)

∥∥∥2

+ 750

Ex

L∑
�=2

1
(m(�−1))2

m(�−1)∑
j=1

⎛
⎝m(�)∑

i=1

ai(x)
(
f̂

(�−1)
j (x)w(�)

i,j − ĝ
(�)
i (x)

)⎞⎠
2

, 751

where ai(x) = ∂f̂(x)

∂ĝ
(�)
i (x)

. 752

A. Synthetic 1-D Regression Task 753

We begin to empirically validate our claims in a synthetic 754

1-D regression task. Since the feature representation f
(�)
j (x) 755

corresponding to each neuron in each layer � ∈ [L] is a single- 756

variable function, it can be easily visualized. 757

Here we consider the function f(x) = 2(2 cos2(x)−1)2−1 758

introduced by [48]. We draw 60k training samples and 60k test 759

samples uniformly from [−2π, 2π] for x and set y = f(x). 760

We use a fully-connected NN with m(�) = 1000 × 2L−�
761

hidden units in each hidden layer � to learn this target function. 762

We take L = {1, · · · , 4}, and use the Adam optimizer with 763

an initial learning rate 1e-4 in our experiments, and let the 764

activation function be σ(x) = tanh(x). For fair comparison, 765

we tune the hyper-parameters of the weight of regularizer so 766

that for different L, the NN could reach training RMSE of 767

1e-4 at converge. This controls the representation power of 768

the NN. 769

We first validate that fully trained overparameterized NN 770

satisfies the optimality condition of Proposition 1. Here we 771

consider the case of L = 4, and the top row in Fig. 1 plots the 772

estimated quantities u
(�)
j and v

(�)
j . We can see that these two 773

quantities are approximately linearly correlated, as predicted 774

by Proposition 1. 775

To compare the performance of shallow versus deep net- 776

works, Fig. 2 (a) reports how the approximated variance 777

changes when L increases. It demonstrates that the approx- 778

imated variance decreases as L increases. Moreover, the 779

approximate variance gap between L = 2 and L = 3 is very 780

large while that between L = 3 and L = 4 is small. This is 781

consistent with the fact that the hierarchical composition of 782

the target function f(x) has depth 3 (i.e. f(x) = h(h(cosx)), 783

where h(u) = u2 − 1). At the same time, we can observe that 784

for larger L, the regularizer in subplot (b) and training RMSE 785

in subplot (c) decrease much faster, which also demonstrate 786

the effectiveness of increasing L for this target function. 787

Fig. 3 shows representative features (as 1D-functions) at 788

each layer after convergence. We reach the following conclu- 789

sion from visualization of different L: DNN is able to learn 790

hierarchical feature representations when we take optimization 791

process into consideration. To be more specific, the layer next 792

to the input layer tends to learn low-frequency signals while 793

the upper layers take these lower-frequency signals to form 794

higher-frequency signals. 795

We further compare the compactness of different regulariz- 796

ers. Here we use the notation �a,b to represent the regularizer 797
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Fig. 1. Property of optimal solution for L = 4 hidden-layer fully connected NN. The top (synthetic 1-d regression) and bottom (mini-imagenet) rows
are scatter-plots of the estimated quantities for each sampled neuron after convergence. For each subplot, one point (x, y) represents one sampled neuron
j ∈ [m(�)], where x = u

(�)
j and y = v

(�)
j defined in (28) and (29), respectively. The correlation coefficient of these points for the top four figures are 0.88,

0.82, 0.92 and 0.99 from left to right, and that for the bottom four figures are 0.87, 0.96, 0.92 and 0.86 from left to right, which demonstrates the existence
of strong linear association between u

(�)
j and v

(�)
j .

Fig. 2. The visualization of optimization process when training multilayer NNs with different L.

in the form of r1(x) = |x|a and r2(x) = |x|b. �1,2 regular-798

izer is the proposed regularizer, which is an upper-bound of799

the approximation variance. �2,1 regularizer is the traditional800

L2 regularizer (i.e. �2 weight decay). From Fig. 4, we found801

that the proposed regularizer leads to sparser weights, and802

thus has a more compact representation. We have also tried803

the �1/2,4 regularizer, and found that the sparsity of �1/2,4804

regularizer isn’t significantly better than the proposed �1,2805

regularizer. This verifies the effectiveness of the proposed806

regularizer to obtain sparse weights because by decreasing807

parameter from 1 to 1/2 cannot significantly increase the808

sparisity of weights as shown in Fig. 4.809

B. Mini-Imagenet Classification Task810

We have also performed experiments on real data. Mini-811

Imagenet dataset is a simplified version of ILSVRC’12812

dataset [49], which consists of 600 84 × 84 × 3 images813

sampled from 100 classes each. Here we consider the data814

split introduced by [50], which consists of 64 classes and815

38.4k images as our full dataset. We divide the dataset into816

train/valid/test split by 7:1:2.817

Since fully-connected NNs do not have the capacity to deal 818

with such image data, we first train a base CNN embedding 819

network with a four block architecture as in [51]. We then 820

take the 1600-dimensional output of the embedding layer and 821

feed it to an L layer NN for classification. The training 822

configurations and network architectures are the same as 823

those for the synthetic 1-D experiment, except that we tune 824

the regularization parameters to achieve the best validation 825

accuracy. Since the feature function of this task is hard to 826

visualize, we only consider the optimality condition, shallow 827

versus deep networks and compactness. 828

Similar to the results in the synthetic 1-D experiment, the 829

sub-figures in the bottom row of Fig. 1 show that the two 830

quantities we care about are also linearly correlated in each 831

layer, which is consistent with our theory. Fig. 5 reports 832

how approximation variance, test RMSE, and train RMSE 833

change during the model training procedure. We can see that 834

the approximation variance decreases as L increases, and 835

the gap between L = 1 and L = 2 is very large. This 836

demonstrates the benefits of using deeper neural network. 837

Moreover, the generalization performance also increases as L 838

increases. 839
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Fig. 3. Representative features as 1-D functions for fully-connected NNs with different hidden-layers: a) 1-hidden-layer b) 2-hidden-layers c) 3-hidden-layers
d) 4-hidden-layers. For each architecture, we sample 20 neurons from each layer and plot the single-variable feature function f

(�)
j (x) of the sampled neurons.

Fig. 4. The comparison of sparsity of weights in different layers between different regularizers. The i-th figure demonstrate the sparsity of weights in i-th
layer for different regularizers. The point (x, y) on one curve suggests that there are 100 × y% weights in such layer lies in [−x,x]. We could see that the
red curve is lower-bounded by the blue one, which suggests that our proposed regularizer will result in more sparse representations compared with traditional
regularizer.

Fig. 5. Visualization of the optimization process when training multilayer NNs with different L.

Fig. 6 shows that the proposed �1,2 regularizer leads to more840

compact weights for each layer than the traditional �2,1.841

C. Visualization of Landscape842

Given three discrete neural network θ1, θ2, and θ3. In this843

section, we conduct experiments to show that the feature844

distribution linear interpolation between these three neural845

networks, i.e., the function 846

L(α, β) = Q(ρ̆α,β , w̆α,β , ŭα,β) 847

is convex. Here the interpolation neural network θ̆α,β = 848

(ρ̆α,β , w̆α,β , ŭα,β) satisfies ρ
(�)
α,β = αρ

(�)
θ1

+ βρ
(�)
θ2

+ (1 − α − 849

β)ρ(�)
θ3

, which means its feature distribution at each layer is 850

close to the mixture of empirical feature distributions of θ1, 851
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Fig. 6. Comparison of weight sparsity at different layers for different regularizers on the Mini-Imagenet classification task. The i-th figure demonstrates the
weight sparsity at layer i for different regularizers. A point (x, y) indicates that there are 100 × y% weight values lying in [−x, x]. We can see that the red
curve dominates the blue one, which suggests that the proposed regularizer leads to sparser solutions than those of the traditional �2 regularizer.

Fig. 7. Different views of landscape of neural network in feature distribution view: L(α, β): for any point (x, y, z) on the surface, (x, y) represents coefficient
(α, β) = (x, y) and z represents the loss value of θ̆α,β .

θ2, and θ3 with coefficient α, β, and 1 − α − β, and852

w̆α,β , ŭα,β853

=argminw,u{Q(ρ̆α,β, w, u) :(ρ̆α,β , w, u) satisfies constraints}854

chosen to satisfy all constraints and attain the minimal loss855

value. This supports our claim that the loss function with856

respect to the feature distributions at each layer is convex in857

our feature distribution view.858

We use same dataset and similar training configurations as859

what we do for 1-D synthetic regression task. To make three860

neural network θ1, θ2, and θ3 have different and meaningful861

feature distributions, we let θ1, θ2, and θ3 be neural network862

that was fully trained on data whose features x lies in three863

disjoint sets D1, D2, and D3, respectively. So they all learn864

parts of but not perfect features about the regression task. The865

intuitive idea of constructing the interpolation neural network866

θ̆α,β is to make sure its pre-activation set close to the mixture867

of that of θ1, θ2 and θ3 with corresponding coefficients, where868

the pre-activation set of θ is defined as869

V̂(�)
θ = {v(�)

j = [ĝ(�)
j (θ; x1), · · · , ĝ

(�)
j (θ; xN )] : j ∈ [m(�)]}.870

A layerwise optimization-based algorithm is designed to871

construct θ̆α,β in Appendix D. The result is shown in Fig. 7.872

For any point (x, y, z) on the surface, (x, y) represents coef-873

ficient (α, β) = (x, y) and z represents the loss value of874

θ̆α,β . The three corners are corresponding to the loss of neural875

network θ1, θ2 and θ3 and the other points in the simplex in876

(x, y) plane are corresponding to the loss of neural network877

θ̆α,β with specific interpolation coefficients. We can see from878

the image that the landscape of neural network in feature879

distribution view is unimodal and it looks convex.880

VIII. CONCLUSION881

This paper analyzed over-parameterized DNNs and showed882

that it is possible to reformulate overparameterized DNNs as883

convex systems. Moreover, when fully trained, DNNs learn 884

effective feature representations suitable for the underlying 885

learning task via regularization. Our analysis is consistent with 886

empirical observations. Our newly introduced method paves 887

the way for establishing global convergence results of standard 888

optimization algorithms such as (noisy) gradient descent for 889

overparameterized DNNs. We will leave the study as a future 890

work. 891

ACKNOWLEDGMENT 892

The authors would like to thank Jason Lee, Xiang Wang, 893

and Pengkun Yang for very helpful discussions. 894

REFERENCES 895

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification 896

with deep convolutional neural networks,” in Proc. Adv. Neural Inf. 897

Process. Syst., 2012, pp. 1097–1105. 898

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for 899

large-scale image recognition,” in Proc. Int. Conf. Learn. Represent., 900

2015. 901

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 902

image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 903

(CVPR), Jun. 2016, pp. 770–778. 904

[4] Y. Sun, X. Wang, and X. Tang, “Deep learning face representation from 905

predicting 10,000 classes,” in Proc. IEEE Conf. Comput. Vis. Pattern 906

Recognit., Jun. 2014, pp. 1891–1898. 907

[5] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, 908

and G. Toderici, “Beyond short snippets: Deep networks for video 909

classification,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 910

(CVPR), Jun. 2015, pp. 4694–4702. 911

[6] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to 912

attention-based neural machine translation,” in Proc. Conf. Empirical 913

Methods Natural Lang. Process., 2015, pp. 1412–1421. 914

[7] S. Mei, A. Montanari, and P.-M. Nguyen, “A mean field view of the 915

landscape of two-layer neural networks,” Proc. Nat. Acad. Sci. USA, 916

vol. 115, no. 33, pp. E7665–E7671, 2018. 917

[8] L. Chizat and F. Bach, “On the global convergence of gradient descent 918

for over-parameterized models using optimal transport,” in Proc. Adv. 919

Neural Inf. Process. Syst., 2018, pp. 3036–3046. 920

[9] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent 921

finds global minima of deep neural networks,” in Proc. Int. Conf. Mach. 922

Learn., 2019, pp. 1675–1685. 923



5352 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

[10] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep924

learning via over-parameterization,” in Proc. Int. Conf. Mach. Learn.,925

2019, pp. 242–252.926

[11] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-927

ing deep learning(still) requires rethinking generalization,” Commun.928

ACM, vol. 64, no. 3, pp. 107–115, 2021.929

[12] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-930

volutional networks,” in Proc. Eur. Conf. Comput. Vis. Cham,931

Switzerland: Springer, 2014, pp. 818–833.932

[13] T. Wiatowski and H. Bölcskei, “A mathematical theory of deep convolu-933

tional neural networks for feature extraction,” IEEE Trans. Inf. Theory,934

vol. 64, no. 3, pp. 1845–1866, Mar. 2018.935

[14] M. Hardt and T. Ma, “Identity matters in deep learning,” in Proc. Int.936

Conf. Learn. Represent., 2016.937

[15] C. D. Freeman and J. Bruna, “Topology and geometry of half-rectified938

network optimization,” 2016, arXiv:1611.01540.939

[16] A. Brutzkus and A. Globerson, “Globally optimal gradient descent for940

a ConvNet with Gaussian inputs,” 2017, arXiv:1702.07966.941

[17] R. Ge, J. D. Lee, and T. Ma, “Learning one-hidden-layer neural networks942

with landscape design,” 2017, arXiv:1711.00501.943

[18] A. Bakshi, R. Jayaram, and D. P. Woodruff, “Learning two layer rectified944

neural networks in polynomial time,” 2018, arXiv:1811.01885.945

[19] M. Soltanolkotabi, A. Javanmard, and J. D. Lee, “Theoretical insights946

into the optimization landscape of over-parameterized shallow neural947

networks,” IEEE Trans. Inf. Theory, vol. 65, no. 2, pp. 742–769,948

Feb. 2019.949

[20] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle points—950

Online stochastic gradient for tensor decomposition,” in Proc. Annu.951

Conf. Learn. Theory, 2015, pp. 797–842.952

[21] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to953

escape saddle points efficiently,” in Proc. Int. Conf. Mach. Learn., 2017,954

pp. 1724–1732.955

[22] C. Fang, C. J. Li, Z. Lin, and T. Zhang, “SPIDER: Near-optimal non-956

convex optimization via stochastic path-integrated differential estima-957

tor,” in Advances in Neural Information Processing Systems, vol. 31,958

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,959

and R. Garnett, Eds. Curran Associates, 2018.960

[23] C. Fang, Z. Lin, and T. Zhang, “Sharp analysis for nonconvex SGD961

escaping from saddle points,” in Proc. Annu. Conf. Learn. Theory, 2019,962

pp. 1192–1234.963

[24] J. Sirignano and K. Spiliopoulos, “Mean field analysis of neural net-964

works: A central limit theorem,” Stochastic Processes Their Appl.,965

vol. 130, no. 3, pp. 1820–1852, Mar. 2020.966

[25] G. M. Rotskoff and E. Vanden-Eijnden, “Trainability and accuracy of967

neural networks: An interacting particle system approach,” May 2018,968

arXiv:1805.00915.969

[26] S. Mei, T. Misiakiewicz, and A. Montanari, “Mean-field theory of two-970

layers neural networks: Dimension-free bounds and kernel limit,” in971

Proc. Annu. Conf. Learn. Theory, 2019, pp. 2388–2464.972

[27] C. Wei, J. D. Lee, Q. Liu, and T. Ma, “Regularization matters: Gen-973

eralization and optimization of neural nets vs their induced kernel,” in974

Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 9712–9724.975

[28] H. T. Pham and P.-M. Nguyen, “Global convergence of three-layer neural976

networks in the mean field regime,” in Proc. Int. Conf. Learn. Represent.,977

2020.978

[29] S. S. Du, X. Zhai, B. Poczos, and A. Singh, “Gradient descent provably979

optimizes over-parameterized neural networks,” in Proc. Int. Conf.980

Learn. Represent., 2018.981

[30] Y. Li and Y. Liang, “Learning overparameterized neural networks via982

stochastic gradient descent on structured data,” in Advances in Neural983

Information Processing Systems, vol. 31, 2018.984

[31] S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang, “Fine-grained analysis of985

optimization and generalization for overparameterized two-layer neural986

networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 322-332.987

[32] L. Su and P. Yang, “On learning over-parameterized neural networks:988

A functional approximation prospective,” in Advances in Neural Infor-989

mation Processing Systems, vol. 32, 2019.990

[33] J. Lee, J. Sohl-Dickstein, J. Pennington, R. Novak, S. Schoenholz,991

and Y. Bahri, “Deep neural networks as Gaussian processes,”992

in Proc. Int. Conf. Learn. Represent., 2018. [Online]. Available:993

https://openreview.net/forum?id=B1EA-M-0Z994

[34] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Conver-995

gence and generalization in neural networks,” in Advances in Neural996

Information Processing Systems, vol. 31, 2018.997

[35] Z. Allen-Zhu, Y. Li, and Y. Liang, “Learning and generalization in over-998

parameterized neural networks, going beyond two layers,” in Advances999

in Neural Information Processing Systems, vol. 32, 2019.1000

[36] D. Zou, Y. Cao, D. Zhou, and Q. Gu, “Stochastic gradient descent opti- 1001

mizes over-parameterized deep relu networks,” Mach. Learn., vol. 109, 1002

pp. 467–492, 2018. 1003

[37] T. V. Nguyen, R. K. W. Wong, and C. Hegde, “Benefits of jointly training 1004

autoencoders: An improved neural tangent kernel analysis,” IEEE Trans. 1005

Inf. Theory, vol. 67, no. 7, pp. 4669–4692, Jul. 2021. 1006

[38] M. Pilanci and T. Ergen, “Neural networks are convex regularizers: 1007

Exact polynomial-time convex optimization formulations for two-layer 1008

networks,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 7695–7705. 1009

[39] T. Ergen and M. Pilanci, “Implicit convex regularizers of CNN archi- 1010

tectures: Convex optimization of two- and three-layer networks in 1011

polynomial time,” 2020, arXiv:2006.14798. 1012

[40] T. Ergen and M. Pilanci, “Convex geometry and duality of over- 1013

parameterized neural networks,” J. Mach. Learn. Res., vol. 22, no. 212, 1014

pp. 1–63, 2021. 1015

[41] B. Bartan and M. Pilanci, “Training quantized neural networks to global 1016

optimality via semidefinite programming,” 2021, arXiv:2105.01420. 1017

[42] T. Ergen and M. Pilanci, “Revealing the structure of deep neural 1018

networks via convex duality,” in Proc. Int. Conf. Mach. Learn., 2021, 1019

pp. 3004–3014. 1020

[43] Y. Gu, W. Zhang, C. Fang, J. D. Lee, and T. Zhang, “How to characterize 1021

the landscape of overparameterized convolutional neural networks,” in 1022

Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 3797–3807. 1023

[44] C. Fang, J. D. Lee, P. Yang, and T. Zhang, “Modeling from features: 1024

A mean-field framework for over-parameterized deep neural networks,” 1025

in Proc. Annu. Conf. Learn. Theory, 2021, pp. 1887–1936. 1026

[45] D. Araújo, R. I. Oliveira, and D. Yukimura, “A mean-field limit for 1027

certain deep neural networks,” 2019, arXiv:1906.00193. 1028

[46] F. Santambrogio, “{Euclidean, metric, and Wasserstein} gradient flows: 1029

An overview,” 2016, arXiv:1609.03890. 1030

[47] C. Fang, H. Dong, and T. Zhang, “Over parameterized two-level neural 1031

networks can learn near optimal feature representations,” Oct. 2019, 1032

arXiv:1910.11508. 1033

[48] H. Mhaskar, Q. Liao, and T. Poggio, “When and why are deep networks 1034

better than shallow ones?” in Proc. 31st AAAI Conf. Artif. Intell., vol. 31, 1035

no. 1, 2017. 1036

[49] O. Russakovsky et al., “ImageNet large scale visual recognition chal- 1037

lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015. 1038

[50] S. Ravi and H. Larochelle, “Optimization as a model for few-shot 1039

learning,” in Proc. Int. Conf. Learn. Represent., 2017. 1040

[51] O. Vinyals et al., “Matching networks for one shot learning,” in Proc. 1041

Adv. Neural Inf. Process. Syst., 2016, pp. 3630–3638. 1042

[52] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic View- 1043

point, vol. 48. Cambridge, U.K.: Cambridge Univ. Press, 2019. 1044

[53] R. Ibragimov and S. Sharakhmetov, “Analogues of Khintchine, 1045

Marcinkiewicz–Zygmund and Rosenthal inequalities for symmetric sta- 1046

tistics,” Scandin. J. Statist., vol. 26, no. 4, pp. 621–633, Dec. 1999. 1047

Cong Fang received the Ph.D. degree from Peking University in 2019. 1048

He was a Post-Doctoral Researcher with Princeton University in 2020 and the 1049

University of Pennsylvania in 2021. He is an Assistant Professor with Peking 1050

University, Beijing, China. His research interests include machine learning 1051

and optimization. 1052

Yihong Gu received the B.Eng. degree in computer science from Tsinghua 1053

University in 2019. He is currently pursuing the Ph.D. degree in operation 1054

research and financial engineering with Princeton University. His research 1055

interests span statistics and machine learning. 1056

Weizhong Zhang received the B.S. and Ph.D. degrees from Zhejiang Univer- 1057

sity in 2012 and 2017, respectively. He is a Research Assistant Professor with 1058

the Department of Mathematics, The Hong Kong University of Science and 1059

Technology. His research interests include sparse neural networks training, 1060

robustness, and out-of-distribution generalization. 1061

Tong Zhang (Fellow, IEEE) received the B.S. degree from Cornell University 1062

and the Ph.D. degree from Stanford University. He is a Chair Professor 1063

with the Mathematics and Computer Science Departments, The Hong Kong 1064

University of Science and Technology. His research interests include statistics, 1065

machine learning, optimization, and their applications. 1066



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


