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Convex Formulation of Overparameterized Deep
Neural Networks
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Abstract— The analysis of over-parameterized neural networks
has drawn significant attention in recent years. It was shown
that such systems behave like convex systems under various
restricted settings, such as for two-layer neural networks, and
when learning is only restricted locally in the so-called neural
tangent kernel space around specialized initializations. However,
there is a lack of powerful theoretical techniques that can analyze
fully trained deep neural networks under general conditions.
This paper considers this fundamental problem by investigat-
ing such overparameterized deep neural networks when fully
trained. Specifically, we characterize a deep neural network by
its features’ distributions and propose a metric to intuitively
measure the usefulness of feature representations. Under certain
regularizers that bounds the metric, we show deep neural
networks can be reformulated as a convex optimization and the
system can guarantee effective feature representations in terms
of the metric. Our new analysis is more consistent with empirical
observations that deep neural networks are capable of learning
efficient feature representations. Empirical studies confirm that
predictions of our theory are consistent with results observed in
practice.

Index Terms—Deep learning, convex reformulation, feature
representation.

I. INTRODUCTION

EEP Neural Networks (DNNs) have achieved great suc-

cesses in numerous real applications, such as image
classification [1]-[3], face recognition [4], video understand-
ing [5], neural language processing [6], etc. Compared to the
empirical successes, the theoretical understanding of DNNs
falls far behind. Part of the reasons might be a general
perception that DNNs are highly non-convex learning models.
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However, it is observed in practice that with the help
of a number of tricks, DNNs can be reliably trained from
random initialization with reproducible results. The solutions
from proper training procedures behave well and consistently.
In other words, two different random initializations (using
the same initialization and training strategy) generally lead
to models that give similar predictions on test data. Therefore,
we may conclude that proper training leads to similar solutions
for neural networks. This behavior resembles that of convex
optimization, instead of generic non-convex optimization that
tends to get stuck in suboptimal local stationary solutions.
This empirical observation appears to be rather mysterious and
requires further understanding.

In recent years, there have been significant break-
throughs [7]-[10] in analyzing over-parameterized Neural
Networks (NNs), which are NNs with many neurons in the
hidden layer(s). It is observed from empirical studies that
such NNs are easy to train [11]. And it was noted that
under some restrictive settings, such as two-layer NNs [7],
[8] and when learning is only restricted locally in the neural
tangent kernel space around certain initializations [9], [10],
NNs behave like convex systems when the number of the
hidden neurons goes to infinity. Unfortunately, existing studies
failed to analyze fully trained DNNs under general settings.
Moreover, the analysis cannot explain how DNNs can learn
discriminative features specifically for the underlying learning
task, as observed in real applications and argued to be one of
the contributors for the success of deep learning [12], [13].

To remedy the gap between the existing theories and prac-
tical observations, this paper develops a new theoretical tool
that can be used to study fully trained DNNs. Our results
show that under suitable conditions, in the limit of an infinite
number of hidden neurons, DNNs are infinite-dimensional
convex learning models with appropriate re-parameterization.
In our framework, given a DNN, the hidden layers are regarded
as features and the model output is given by a simple linear
model using features of the top hidden layer. The output of
a DNN, in the limit of an infinite number of hidden neurons,
depends on the distributions that can represent features, the
weights that connect the layers, and the final linear model.
We show the closeness of continuous DNN with its discretiza-
tion and further study the variance of such approximation.
The variance motivates us to propose a new metric that can
intuitively measure the usefulness of feature representations.
Then the feature learning process of a deep neural network is
characterized by a class of regularizers that upper bound our
proposed metric under mild conditions. We show under suit-
able re-parameterization, the objective function can be largely
simplified. Especially, when such regularizers are imposed,
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the overall program under a special re-parameterization can
be convex. Unlike the Neural Tangent Kernel approach, our
theoretical framework for DNN does not require the variables
to be confined in an infinitesimal region.

More concretely, the paper is organized as follows.
Section II discusses the relationship of this paper to earlier
studies, especially recent works on the analysis of over-
parameterized NNs. Section III introduces the basic defini-
tion of discrete DNNs. Section IV describes the continuous
DNN when the number of hidden nodes goes to infinity in
the discrete DNN. In this formulation, each hidden layer is
represented by a distribution over an abstract space that can
represent features, i.e. function values on the hidden units of
the input. We further interpret a discrete DNN as a random
sample of hidden nodes from a continuous DNN at each layer,
and then study the variance of such random discretization. The
variance formula motivates the study of a class of regulariza-
tion conditions for DNNs that measure the usefulness of the
feature representations. Section V studies the DNN training
problem, in which we specialize the abstract space by R
which are feature spaces for the training samples. We show
that the overall program can be re-parameterized into a convex
optimization problem. Section VI discusses the implications
of the convex reformulation. We explain why (noisy) gradient
descent finds a global minimum. In particular, we show the
critical points of the continuous DNN in a particular space
attains the global minimum. Section VII presents experiments
to demonstrate that our theory is consistent with empirical
observations.

The main contributions of this work can be described as
follows.

e We propose a new framework for analyzing over-
parameterized DNNs. We show that DNNs can be
re-parameterized as a convex optimization problem under
certain conditions.

o We propose a metric that can be intuitively used to mea-
sure the usefulness of feature representations. We then
propose a class of regularizers, and we show that under
certain conditions, such regularizers are approximately an
upper bound of such a metric.

o We conduct empirical studies to validate the consistency
of our theory with practice.

A. Notations

For a vector z € R?, we denote ||-||; and ||-|| to be its £; and
/5 norms, respectively. We let 2" be the transpose of 2 and
x) be the value of k-th dimension of z with k = 1,...,d. Let
[m] ={1,2,...,m} for a positive integer m. For a function
f(x) : R? — R, we denote V,f to be the gradient of f with
respect to x. For two real valued numbers a and b, we denote
a Vb to be max(a,b). If 4 and v are two measures on the
same measurable space, we denote i < v if p is absolutely
continuous with respect to v, and p ~ v if p < v and v < p.

II. RELATED WORK

There have been a number of significant developments to
obtain better theoretical understandings of over-parameterized
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NNs, which are NNs that contain a large number of hidden
nodes. The motivation of overparameterization comes from the
empirical observation that over-parameterized DNNs are much
easier to train and often achieve better performances [11].

In some earlier works, a number of researchers [14]-[19]
studied the landscape of NNs under special conditions either
for input data or for NN architectures. By carefully charac-
terizing the geometric landscapes of the objective function,
these early works showed that some special NNs satisfy the
so-called strict saddle property [20]. One can then use some
recent results in nonconvex optimization [21]-[23] to show
that first-order algorithms for such NNs can efficiently escape
saddle points and converge to some local mimima.

In the generic setting, one popular approach to study
two-layer NNs is the mean-field analysis. This point of view
models the continuous NN as a distribution over the NN’s
parameters, and it studies the evolution of the distribution as a
Wasserstein gradient flow during the training process [7], [8],
[24]-[27]. The process can be represented by a partial differ-
ential equation, which can be further studied mathematically.
For two-layer continuous NNs, it is known that the objective
function with respect to the distribution of parameters is
convex in the continuous limit. And it was shown that (noisy)
Gradient Decent can find globally optimal solutions under
certain conditions. However, the mean-field analysis relies on
the special observation that a two-layer continuous NN is
naturally a linear model with respect to the distribution of NN
parameters, and this observation is not applicable to multi-
layer architectures. Consequently, it is difficult to generalize
the view to analyze DNNS. In fact, in the recent attempts [28],
the technique of mean-field analysis is applied to DNNs.
Though they proved the 0 loss phenomenon for the Gradient
Descent algorithm, their analysis is under restricted conditions
and no regularizer can be incorporated during training.

One remarkable direction to extend the mean-field view
to analyze DNNs is to restrict the DNN parameters in an
infinitesimal region around the initial values. With proper
scaling and random initialization, DNN can be regarded as
a linear model in this infinitesimal region, which makes the
training dynamics solvable. This point of view is referred to
as the Neural Tangent Kernel (NTK) view [9], [10], [29]-[37],
since the evolution of the trainable parameters, when restricted
to the infinitesimal region, can be characterized by a kernel
in the tangent space. However, NTK essentially approximates
a nonlinear NN by a linear model of the infinite-dimensional
random features associated with the NTK, and so NTK view
cannot explain how NNs learn the feature.

Another line of research [38]-[42] study DNNs by studying
the duality of the DNNs. They proposed a special convex
duality and show under suitable conditions the strong duality
holds. In this way, NNs can be learned by semi-defined
programming in polynomial computational complexities under
suitable conditions. Compared with our work, these works
mainly study the standard /¢y regularizers. They novelly
learn the NNs in the dual space. In contrast, we study
l1, norm (p > 1) and show the critical points of the
continuous DNN under our reformulation attains the global
minimum.
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The most related work is [43], which was a short conference
paper focusing on preliminary and mainly empirical studies of
loss landscape for convolutional neural networks, evolved from
an earlier version of the current paper. The major differences
between the present paper and [43] are summarized as follows.
First, the starting points of the two papers are different. [43]
only aims to simplify the landscape of NNs. In contrast,
the present paper provides a thorough study for DNNs by
understanding DNNs from the view of feature representation:
We treat a discrete DNN as a collection of hidden nodes
samples from a continuous DNN with weights connecting
them, thus the study of the variance for such random dis-
cretization leads to a new type of regularizers. Therefore, under
our framework, not only the optimization of DNNs can be
re-parameterized as a convex program, but also we can explain
that DNNs are capable of learning effective features in terms of
representation for the learning task. Second, the experimental
goal in [43] is to validate the fact that the solution paths with
different random initialization are essentially the same during
the training. In contrast, the experiments in this paper focus on
the consistency of our theory with practice and involve detailed
analysis including the verification of optimal condition, the
role of variance of approximation, etc. Overall the current
paper is a deeper and more comprehensive investigation of
neural network convexification and its consequences.

The work of [44] proposed after our work rigorously studies
the Gradient Descent dynamic equation. Based on our continu-
ous framework, they show that with the number of hidden units
for the discrete NN going to infinity and the step size going to
0, the Gradient Descent algorithm converges to a continuous
dynamic called neural feature flow. Moreover, under certain
conditions, neural feature flow converges to 0 training loss.
In their analysis, no regularizer is considered.

III. PRELIMINARY: DISCRETE DEEP NEURAL NETWORKS

In this section, we introduce the discrete fully connected
DNNs. We consider a DNN f with L hidden layers. For input
z € R?, we can define f recursively as a function of z.

Specifically, we define f;o)(x) = z; for j € [d]. Let
m(®) = d. Then for ¢ € [L], we define the nodes in the /-th
layer as

7@ =0 (37 @). (M)
with
(=1
) p(l—
> widfi V@),

k=1

. 1
9 (@) =

- ; 9
7 - m(efl) .7 € [m ]ﬂ

where h(9 is the activation function and w(®) € Rmxm "

is the weight matrix of the /-th layer comprised of m?) rows,
=1y L

ie., wy) = [wyl)7 . .,wﬁ.?n(,__l)] € ij " with j € [m®)].

At the top layer, we define the output f(z) as

(L)
1 m

f@) = —5 > wif{" @),
j=1

)
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where u; € RE is a vector. This defines an (L +1)-layer fully
connected deep neural network with m(?) nodes in each layer.

IV. CONTINUOUS DEEP NEURAL NETWORKS

In this section, we introduce the continuous DNN formula-
tion according to the definition of discrete DNN in Section III
and then show the relationship between the continuous and
discrete DNNGs.

A. Continuous DNN Formulation

In the case of continuous DNN, for each ¢ € [L], we first
consider an abstract space Z(©) equipped with a probability
measure p(*) to represent the states of the hidden units at layer
(. Then we introduce function w® : Z(¢=1 »x z() R
to represent the weights that connected from layer ¢/ — 1 to
0. Welet p = {p@ ... p"} and w = {w®, ... w}
The details for the continuous DNN formulation are presented
below.

At 0O-th layer, we define Z(9) := [d] as the node space
corresponding to the d components of the input z. Let p(°) be
the uniform distribution on Z(®. For each node z(®) € 2,
we let

f(o)(ﬂa w, Z(O)5$) = T () -

Consider the (-th layer with ¢ € [L]. Because z(*) can
be regarded as a hidden node in layer ¢, and 2~ as a
hidden node in the (¢ — 1)-th layer, thus w(® (2(9), 2(¢=1))
is the analogy of wf? in discrete DNN, which is the weight
connecting node ¢ and j in layer ¢ and ¢ — 1. Using this
notation, we define the function associated with the node z(¥)
in /-th layer of the continuous NN as follows:

FO(p,w, 29, 2) =h® (9“)(pvw7z(“;x)) :

where h(¥)(-) is the activation function of the ¢-th layer, and

3)

99 (p,w, 21; )
— /w(f) (z(f),2(471))f(471)(p,Z(éfl)m) dp(éfl)(z(ffl)).

Moreover, we let p() be a probability measure over Z() !

Finally, for the output layer, let u(-) : Z(*) — RX be a
K -dimensional vector valued function on Z(X), then we can
define the final output of continuous DNN as

Fpow,us ) = / WD) D (pw, 2B ) dpD (D). (@)

We will establish the relationship between the continuous
and discrete DNNs.

B. Assumptions

Before presenting the result, we specify the necessary
assumptions first. These assumptions are mild.

Assumption 1 (Bounded Gradient Condition): We assume
the activation function is differentiable, and its derivative is

lf @) and g(z) depend only on the components of p up until the ¢-th layer.
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bounded. That is, there exists a constant ¢y > 0, such that

)’Sco, =i

Assumption 2 (Continuous Gradient Condition): We further
assume that there exist two constants « > 0 and ¢; > 0 such
that

‘Vh(e)(x) —Vh(e)(y)‘ <clr—yl®, felLl.

Assumption 2 is a special type of modulus of continuity
for VA® (x). When « = 1, Assumption 2 is the standard
L-smooth condition for the activation function () (z). When
a < 1, it holds more generally in the local region. When
proving Theorem 2, our moment condition in Assumption 3
depends on «. We note that most commonly-used activation
functions, e.g. sigmoid, tanh, and smooth relu, admit this
assumption for all 0 < a < 1.

Assumption 3 ((qo, q1)-Bounded Moment Condition): We
assume for all £ € [2: L], we have

L
[P VT (@020 v1)

i=0+1

{ww) (20, 26D FE=D (2D ) — g (O (p aw, 2O, x)}

E,¢n 2D

g0

S CM -
Moreover, we assume

q1
‘U’(L)f(L)(p7Z(L)7x) _f(p7u7x)H S CM, -

The constants gg and ¢; in Assumption 3 will be specified
later based on our theorem statements.

E.w

C. Relationship Between Discrete and Continuous DNNs

We now investigate the relationship between the discrete and
continuous DNNSs. Given a continuous DNN, we can construct
a discrete one by sampling hidden nodes from the probability
measure sequence p. The detailed procedure is as follows:

1) Keep the input layer of the discrete DNN identical to
that of the continuous DNN.

2) For each hidden layer ¢ € [L], draw m(®) i.i.d. samples
{29 i e m®],29 € Z®}, which is denoted as
Z®_ from p® of continuous DNN, and set the weights

¢ £ _(e—1
i) = w0, 70
with i € [m®] and j € [m~1)].
3) For the top layer, set

L
uj = u(zj( ))a

for each sampled zj(-L) with j = [m()].

The following result shows when m(?) — oo for all £ € [L],
the final output converges to that of the continuous DNN in
L'. All the proofs in this paper are left to the appendices.

Theorem 1 (Consistence of Discretization): Given a contin-
uous NN, under Assumptions 1 and 3 with g9 = ¢q; =1+ ¢
for any c. > 0, suppose there is a discrete NN constructed
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from the continuous DNN using the procedure above, then
for any input z, we have

(i) forany k> 2 and j € [m(k)], given zj(-k),

i FR) () — p(R) (k). (k)y _
7r1,(/r)_>1010I2€[k 1]E [fj (l’) f (pvwvzj ,QC)] | O'(Z] ) 0,
! |F@) = £ wi]| =0
(ﬁ&)ﬁlorgéew f@) = flp,u,w;z

The part (i) of the theorem above does not cover the case
of k = 1, since it is trivial to show that f™)(p, w, A ), x) =
fj(l)( ) holds for all j € [m(©)].

Conversely, given a discrete DNN, we may ask if there
is a continuous DNN that can construct the discrete one by
sampling the hidden nodes. Consider the discrete DNN that
is initialized by some standard initialization strategy and is
trained by (Scaled) Gradient Descent which may be of our
central interest. Its hidden units are correlated since they
all depend on a common set of outputs from the previous
layer and have interactions during training. However, they are
actually “nearly independent” when the number of hidden
units is large enough in the sense that there is always an
approximated discrete DNN that can be constructed from the
procedure above for a certain continuous DNN. Similar to
Theorem 1, the two DNNs approximate to each other with the
increase of hidden units. The result was shown in [44] by
a similar argument from the propagation of chaos. Therefore,
in most cases, the discrete DNN can be interpreted as a random
sample of hidden nodes from a continuous DNN at each
layer.

D. Variance of Discrete Approximation

We further estimate the variance of such approximation with
a slightly strong condition.
Theorem 2 (Variance of Discrete Approximation): We

denote w u(z)) and
8f(pawau7x) (£+1) 8f(p)w Us .1?)
W = Ez(e+1) A W
where AUFD = (D) (2D 2 OYTREFD (g(p, w, 2H); 1))
and ¢ € [L — 1]. Then under Assumptlons 1, 2, and 3 with

g0 = 2(1 + @), ¢1 = 2 and treating ¢y, c1, a, car, e, and
L as constants, we have

. 2
(2) = f(p w,us )| )
| Of (p,w,u;x) « 2
= 2 e B =gy — Ao
=1

1 - L
+ — 5B [Ap | +0 (Z(mw)?)

{=1

L
(Z (5) (1-5-a/2)>7

where

ALJrl = f(L)(pvwvz(L)vx)u(z(L)) - f(p,w,u;x),
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and

Ag=f""D(p,w, 29 )w® (20 D)= g0 (p,w, 29; 2),
forte[2: L]

In Theorem 2, for ¢ € [L—1], we can choose a« = O (#)
with v > 0. Thus, the assumption only requires the bounded
2+ O (4)-th moment.

Theorem 2 shows that the variance of the approxima-
tion decreases with a rate of 25:1 O(1/m®). We can

use the terms on thg right hand side of (5), ie.

Ez(z-u) %A“_l‘ (f S [L—l]) and EZ(L) ||AL+1H2 as
a metric to measure the usefulness of the feature representa-
tions. That is, if the variance of the corresponding discrete
approximation is small, then a discrete DNN with a small
number of hidden neurons can represent the target f. This
inspires us to impose an appropriate regularization condition to
guarantee the usefulness of the feature representations. Specif-
ically, if we assume that both | ) (p, w z(e)'x)w
y Wy ) 9z (1)
and | f)(p, 2(F); z)| are bounded, then in order to minimize
the variance, Theorem 2 implies that we can minimize the
following regularization (see the proofs of (7) and (8) in

Appendix B.4):

L
RO =3 " XORY (p,w) + X RM (p,u),  (6)

=1
with
R (p,w) @
2
:/(/|w<e>(z<e>7Z(e—1>)|dp<e>(z<e>)) dp=D (21D,
2
R o) = [ [Jut ) g0, ®)
the parameters AV, ... A() and A\(*) being non-negative.

Thus, we propose a new regularizer that controls the efficacy
of the learned feature distributions in terms of efficient rep-
resentation under random samLpling. Under the regularizers,
the variance decreases with >, O(1/m?)). We remark that
our unexpected result in Section V will show that with this
regularizer, the learning problem is convex under suitable re-
parameterization. Moreover, in the discrete formulation, the
regularizer is the simple ¢; o norm regularizer if we write
w® (20, 2(6=1)) as a matrix with the (j,4)-th entry being
w® (2 209)), which is a convex regularizer.

V. CONVEXIFY DNN

In this section, we study the training problem of DNNs.
We show the learning program can be reparameterized as a
convex optimization.

A. Problem Setup

Consider training a DNN, where we are given N training
pairs {z%, 4"} | with 2 € R? and y € R* and our target is
to minimize the loss:

Q(wau) = NZ(j)(f({Ez),yz) +R(wau)v 9)
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where ¢(-,-) is the loss function used to measure the quality
of prediction and R is the regularizer. We assume that loss
is convex in the first argument and consider the ¢; » norm
regularizer written as:

L
Bw,u) = | S ADRD (o, 10) + XO R, u>] . a0
=1
where
Lo m 2
() (D) — O
B () = e 2 mui}\“’m b
= ‘]:
) (D)
ROw) = —75 > llusll?, (12)
Jj=1
the parameters A1), ..., A(X) and A(*) are non-negative. The

regularizer is not necessary for our convex argument, but is
capable of controlling the efficiency of the feature under our
proposed metric.

B. Specialize Z\Y) as Feature Space

Observe that the feature for the N-training samples can be
written as N-dimensional vector. We specify Z() as RN for
¢ € [2 : L]. In this way, a continuous DNN is character-
ized by the distributions and functions of the features. The
overall learning program becomes a constrained optimization,
where the complicated recursive composition structure of the
forward propagation is simplified as independent constraints.
We present the details below, following a similar argument in
Section IV.

(1) At O-th layer, we denote X =
RN X d'

(2) At 1-st layer, because each hidden node (before the
activation function) is computed by a linear mapping of
the input data, each node can be indexed by the weights
connecting it to the input. We define Z(1) as R¢ and let
p(M) be the probability measure over R%? then for all
21 € supp(p()), the outputs of the nodes z(!) satisfy:

1
0:(zY) := EXz(l). (13)

(3) At 2-nd layer, recall that the output of each node, i.e.,
the feature, for the training samples is a /N-dimensional
vector. We define Z(2) as R and let p(®) be the prob-
ability measure over R™ that describes the distribution
of features in the second layer. Moreover, we introduce
function w® : R x RN — R to denote the weights
on the connections from layer 1 to 2. We have for any
2@ e supp(p?),

/w@) (M, 2@ ) (91(2<1>)) Ao (z0) = @)

(14)

2The state of the first layer can also be characterized by the output of the
linear mapping.
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where 7 : RN — R¥ is the entrywise operation of the
activation function h such that h(a); = h(a;) for i € [N]
and a € RY.

(4) Similarly, for ¢ € [3 : L], let ZW0 = RN be the space
of the features and let p(®) be the probability measure
over RY that describes the distribution of the features in
the ¢-th layer. We also introduce function w(® : RN x
RY — R to denote the weights on the connections from
layer £ — 1 to £. Then for any z(©) € supp(p?)), we have

/ww) (=D, @) j, (,Z(efl)) dp=D (2D = O
(15)
(5) Finally, introducing u : RN — R*, we have

/u(z(m) i, (z(m) dp D) (5(1)) = I4D),

Therefore the overall learning problem for a continuous DNN
(p,w,u) can be formulated as the following constrained
optimization program:

(16)

N

Z ( (L+1) n)+ R(w.u) (p,w,u)

-1
s.t. for all 2 ¢ supp( ),

/w(2> M), @) h( (=) )dpu)(z(l)) — @),
for all z) € supp(p?), L€ [3: L),
/w< TGOS (,Z(efl)) dp=D (2D = O

/u(z(m) i, (z(m) dp D) (1)) = 4D,

min Q(p, w, u)
prw,u

a7

C. Convex Reformulation

In Program (17), z“) can be arbitrary element in supp(p?).
Thus there is an infinite number of constraints. The optimiza-
tion variables are p, w, and u. The program is still non-convex
since there are multiplications of variables in the constraints.
We show it is possible to re-parameterize the program as a
convex optimization, which will lead to a great simplification
for the landscape analysis of DNNs.

To begin with, we first introduce some basic distributions

{p(l) ...,péL)}. In general, p((f) can be set as any
dlstrlbutlon We consider narrowing down the search space of
the optimization variable to © ,, = {(p, w,u) : p*) ~ p((f),ﬁ €
[L]}. This does not degenerate the problem much as we can
pick po as standard gaussian distributions for example. We
then define

PO (:0) = dp_zz(z(a

dpy
as the Radon-Nikodym derivative of p*) with respect to
p((f) for all ¢ € [L]. Then in the search space {(p,w,u) :
P~ péé),é € [L]}, we have 0 < p)(2)) < o0 p()
a.e.. Furthermore, we consider a change of variables below to

), LelL],
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eliminate the explicit multiplication between variables:
@(2)(2(1), 2(2)) - w(Q)(z(l), 2(2))p(1)(z(l))p@)(z@)), (18)
ford € [2: L—1], w0 D)
= w(@rl)(z(f)7 Z(Hl))p(@)(z(é))p(@rl)(z(@rl)), (19)
i(zM) = u(z)p™ (1), (20)

This re-parameterization can significantly simplify the pro-
gram in the sense that all the “hardness” of the problem is
now wrapped into the regularizer. Specifically, by plugging
(18), (19), and (20) into Program (17), we have that

=< Z¢( B0, y) + R(p, b, )
Z<2>p<2>(z<2>)

min Q(p, w, )

s.t. forall 22 e RN,
_ /1;,@)(2(1),2(2)) i (91(Z<1>)) aplD (),
forall 2 e RN, £ € [3: L], 20p®(2)

_ /w<e>(2<e—1>,z<e>) i (20D dpl e,

/ﬁ(z(L)) h (z(L)) dpéL)(z(L)) = L+, 21
where
P, W, 1) ZA“)R“) Y+ ADR®(p.a),  (22)
with
RY (p. ) (23)

RINPRG) 2
) gl (=) D D)
p<e 1>(Z(e—1>) 0 :

J 1
/(
R (p, ) = /H“

Program (21) only has l1near constraints. Next, we show one
of the core results of this paper which states that for /; » norm
regularizer, Program (21) is convex.

Theorem 3: Assume ¢(+; ) is convex on the first argument,
then Program (21) is joint convex.

Remark 4: Theorem 3 can hold more generally. For /; ,
norm regularizer with r > 2, Program (21) is convex.

Observe that in the space {(p,w,u) : p©) ~ p((f),ﬁ € [L]},
our new reparameterization (p,w, %) has one-to-one corre-
spondence with the original parameterization (p,w,u). Since
the objective function is convex under the reparameterization,
we conclude that a local solution of NN in the original
parameterization is a global solution.

Theorem 5: Under the assum tions of Theorem 3, in the
space {(p,w,u) = p@ ~ 0 € (L]}, if (pevwn,un)
is a critical point (17), then (p*,w*,u*) attains the global
minimum of (17).

Theorem 5 sheds light on the landscape of the continuous
DNN, which shows the non-existence of bad local minima in
the space {(p, w,u) : p) ~ pée), ¢ € [L]}. We may impose an
additional appropriate convex regularizer R'(p) to restrict the

H dp(L)( (L)). (24)
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variables into the desired space. For example, we may consider
Dk (p“) ||p(()€)) +DxL (p(()z) ||p(€))» where Dx,(+||-) denotes
relative entropy and ¢ € [L]. Then the nonequivalence of p(*)
and p((f) would push the objective function to +o0.

VI. IMPLICATIONS
A. Convex Feature Learning

In the view of NTK, DNNSs in effect only exploit the random
features. In contrast, we show under /;, norm, features
are learned from the underlying task. Specifically, by the
convexity argument in Theorem 3 with the relationship of
the re-parameterization built in Theorem 5, we can establish
specific properties satisfied by the optimal solutions of DNNs.

Proposition 1: Under the assumptions of Theorem 3, in the
space {(p,w,u) : p ~ p, 0 € [LI}, if (p,we, ) is an
optimal solution of the DNN, and pg) ~ p((f), then there exists
a real number sequence {A}yc(z), ie. A) € R forall £ € [L],
so that the following equations hold: (1) for all £ € [L — 1]
and 20 € 2O we have

2
A ( / [0 (D, 200)| dpfi“(z“*”))

=2X’B(z") +
(2) for all (1) € Z(I) we have

A(ﬁ);

AD) 4 2D B30 — \@ ‘u*(é(m)HQ’

and

MAE)]n = =22 u, (2,

il Z e (L+1)

where
B(0) = // ‘w(a(Zm, 2(@—1))‘ dpt (19)

‘ww)(é(a, 2(@—1>)‘ dpltD (561

for £ € [2: L]. In the above formulas, we abbreviate brackets
in the superscripts.

Proposition 1 shows that the optimal feature distribution
sequence p, relies on (w,,u,). There are lots of triples
(p,w,u) that can reach the same layer of the training loss as
(s, Wy, uy) does, whereas (px, Wy, u.) is the one that achieves
the minimum /¢, » norm regularization value under this equiva-
lent class. Since the ¢; 5 norm regularization upper bounds the
variance of discrete approximation of the continuous DNN in
Theorem 2, a small ¢; o norm implies that a small number
of hidden units are needed to represent f(p.,ws,us;) in
the randomly sampled discrete DNN. This means that ¢; o
norm regularization leads to efficient feature representations.
Proposition 1 will be validated in our experiment.

B. Relationship With Gradient Descent

We study the relationship of the convex reformulation and
Gradient Descent in the original weight space in this section.
We consider the Scaled Mini-norm (Sub)-Gradient Descent
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algorithm with the meta-algorithm shown in Algorithm 1.
The sub-gradient G is composed of the part from the loss
and the regularizers. The loss part is differentiated and can
be obtained by the standard backward-propagation algorithm,
whereas the /; o norm is not differentiated. However, it has
sub-gradients at every point thanks to its convexity. We choose
the sub-gradient that has the minimum norm (see (25) and
(26)) as é We also study a different step size for layers
compared with the standard Gradient Descent algorithm. These
appropriate step sizes (time scales) for the parameters match
the scale in the continuous limit and are also adopted in all
existing mean-field theory of DNNs [28], [44], [45].

When the step size goes to 0, we can define the correspond-
ing gradient flow for training discrete NNs by:

dw'")t 5
C;;f] = [m€71m€} gqtp(é?v tell], ic[me], j € lmd,
dut 5 .
dtl =— [mL} gfh (S [mL]a

where the mini-norm sub-gradient _C’;t satisfies that
Gt :vz(wt’ ut) (25)
+ argmin{“Vf/(wt,ut) + fH €€ aﬁ(wt,ut)}

and G' o) and g are the corresponding elements of gt

Note ‘the above gradient flow exists a unique solution,
which can be obtained by the same argument in Proposition
2.3 in [8] (also see Section 2.1 in [46]) due to the choice of the
mini-norm sub-gradient for the regularizers. And the standard
results from gradient flow indicate the monotonic non-increase
of the objective. That is

L me—1 my

R I IR

(=1 i=1 j=1

R 2
t
g (1’) guL

mr,
Y |
i=1

Now consider the continuous limit where all the number
of hidden units diverges. When there is no regularizer, it
was shown in [44] that the discrete gradient flow provably
converges to a continuous gradient flow called neural feature
flow, which is a solution of an infinitely dimensional non-linear
dynamic ODE system under suitable conditions. Generally
speaking, neural feature flow tracks the trajectories for the
weights and the features to capture the learning process of the
continuous DNNs.

In the continuous DNN formulation (17), the network is
parameterized with respect to (p, w, u). However, the gradient
flow only modifies the network parameters (w,u) but does
not modify p directly. But it is clear that changing (w,u)
modifies p accordingly. Specifically, we can write down the
continuous sub-gradients. Specifically, by back-propagation,
for each training sample n € [N], we introduce intermediate

terms>:

DD (p,u; 24Dy = V(24D ym),
DB (py 10,5 2N (L) (=) T D (s 2D

3D£f) depend only on the components of p and w after ¢-th layer.
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Algorithm 1 Scaled Gradient Descent for Training a DNN

1: Input the data {z*, 3}, step size 7, and initial weights (wo, uo).

2: for k=0,1,..., K —1do

e [L], i € [me—1], 7 € [m],

3:  Perform forward-propagation to compute the loss. . .
4:  Perform backward-propagation to compute the gradient (Gu, , Gu, )-
5.  Perform scaled Gradient Descent:
(£) _ (£) 5
Witriy = Whiy — [mme—im] gw,(fi ;
Uk4+1,i = Uk — [nmL]QAuM 1€ [myz].
6: end for

7: Output the weights (wx, ur).

DY (p, w,u; 20) = W(=(0))-
([0 0D s 2 g (004,

where V¢ : RF — RP is the gradient of ¢ on the first
argument, zﬁf) is n-th coordinate of 2(¥) € R™. Then we have
for all ¢ € [L]

GO (p, w,u; 20, 2(-D) = ZD(@) (p, w, u; 2O (2L V)

n 1

+ 0@ (Z(f—l))|w(€) (Z(l)7 Z(f—l))|/7
and

G (p,u; 21))
L
LS D g SO + 221,
n=1
where VOEED) = [ [w®(50, 26D} g0 (50)
and |w® (20, 2(=D)" is properly set to ensure that
GO (p,w,u; 29, 2(*=1)) has the mini-norm. That is

w® (0, 27 1) ‘ (26)
]_7 if w(z) (2(4)72(471)) > O,
if w® (20 (E=1)y — () (,(6-1)y _
0, w9 (20 2 )=0, V®(z ) =0,
—Y-1, if w(é)( 0, =Dy <
. L DO (pow,usz ) n (2T
maX(mln( Zn QA(Z)gf(Z;)(:(jﬁm)) (2 )71),—1), else.

When there are suitable regularizers, if the solution of the
neural feature flow also exists, then analogously to discrete
gradient flow, we have

aQ
dt

L 2
:_Z/Hg“)(ptawhut;z(é)aZ(e_l))H
=1
x i (gD ()
2
—/Hg(“)(pt,ut;z( ))H dpi" (z1)).

Now we give intuitions on why this continuous gradient
flow achieves a global minimum based on our convex refor-
mulation. Suppose there is a point (p., wy, u.). We show if
g(@)(p*’ Wiy 3 271, Z(Z)) =0and g (s W, U Z(L)) =

27)

0 holds almost surely, it converges to the solution of the
convex reformulation. Note that because the gradient flow only
directly updates the neural network original parameters (w, u),
it is not clear that (p., w., u,) will be a local minima in (17).
Hence Theorem 5 is not directly applicable.

Theorem 6: Under the assumptions of Theorem 3,
in the space {(p,w,u) : p¥) ~ p((f),ﬁ € [L]}, for
all ¢ € [L], if GU(p.,wi,us;2"1 20) = 0 and
G (py,wi,us; 27)) = 0 holds almost surely, then
(ps«, Wy, uy) achieves the global minimal of Programs (17) and
(21).

Theorem 6 only provides some intuitions on why this con-
tinuous gradient flow achieves a global minimum. We should
mention that there are still several challenges to rigorously
prove necessary results. The main challenges are listed below
and left as open questions for future research.

1) The biggest challenge is to prove that
/Hg“)(pt,wt,ut, @), 21 Hd/) (z)dpy (&= 1)(3(5—1))

— 0 (and [ ||G™)(ps, ug; 22)) || dp(L) z(L)) — O) with

t — o0o. One important step is to prove that % Les(29)
dpy

will be strictly bounded away from 0 for any £ > 0. Note

that from (27), for some region R € RY, if p(é) R) =

0 for t > tg, then Hg(@ pt,wt,ut,z“),z“ 1) || may

not be 0 on R. As we mentioned before, one possible

direction to deal with the issue is to impose additional

regularizers, such as relative entropy regularizers, and

then to show that pg) would satisfy some useful proper-
ties, such as the Logarithmic Sobolev property. However,
we still lack some technique to rigorously achieve this
result. Moreover, adding a non-trivial regularizer also
brings more difficulties to prove the existence of the
solution for neural feature flow. See (3).

2) (27) only ensures (p;, we, uy) converges in a weak sense.
Even after we overcome challenge (1), one still cannot
show that Q(p, wy, u) converges to its minimal value
(directly using Theorem 6). Nevertheless, we believe
this is not a fundamental problem, and a method to deal
with this difficulty is to properly smooth (the amount
of smoothing can be arbitrarily small) the parameters
so that the slightly smoothed distribution has point-wise
convergence.
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3) When there are non-trivial regularizers, the existence of
the solution for the neural feature flow is not rigorously
proven. [44] achieves the result only when there are
no regularizers by using Picard-Lindelof theorem (see
Theorem 4 in [44]). It is still open how to analyze the
evolution of DNNs with non-trivial regularizers such as
{12 norm and relative entropy regularizer.

4) Finally, even if we prove the convergence of the contin-
uous dynamics, it still requires some treatment to show
the convergence of the discrete dynamics. We suspect
that this difficulty can be solved by using the argu-
ment from the propagation of chaos, (see e.g. Theorem
6 in [44]).

Despite the challenges, we believe that our explanation would
bring some value in understanding the Gradient Descent
algorithm to train the DNNs.

VII. EXPERIMENTS

The experiments are designed to qualitatively verify the

following.

1) Optimality condition: We demonstrate that fully trained
overparameterized DNNs are consistent with our convex
reformulation argument by verifying the optimality con-
dition in Proposition 1. Here we consider the relationship

between
)\([) mE=1 0

) _ (0) (z)

7 I 7 o Z ZW’ Dol @8
and

m et (6+1 2
Wy A (s S e ) e (L -]
LT Dy ||2 (=1L
(29)

for one neuron j in layer ¢ € [L], which are the estimates

)\(éy lw (4
d

XD ([ (=D, 20)|dp(D))* e [L-1]
A<u>||u(z<L>)||2 (=1

2D)dp(EO)w (=, 27 V)|dp(21 )

respectively.

2) Deep versus Shallow Networks: We show that by
increasing L, the number of hidden layers, fully con-
nected NN can learn hierarchical feature representations
that can reduce the variance of approximation described
in Theorem 2. This verifies the benefit of using deeper
networks for certain problems.

3) Compactness: We show that compared with other regu-
larizers, the proposed regularizer can learn better (more
compact) feature representations.

4) Convex Landscape: We visualize the landscape of neural
network in our formulation and show it is convex.

Note that similar to [47], we use the approximation variance
of discretization V' (w,u) to measure the effectiveness of
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feature representation, based on the theoretical findings of
Theorem 2:

L)
1 m AL R 2
Vi(w,u) = ()2 > Hujf; () —f(ﬂ?)H +
j=1
L M= [ (O 2
Af 1) © _ A(E)
Emme MZ Z (F P @wl) - g0 w@) |,
2
where a;(z) = ‘2{22‘8)

A. Synthetic 1-D Regression Task

We begin to empirically validate our claims in a synthetic
1-D regression task. Since the feature representation f;e) (x)
corresponding to each neuron in each layer ¢ € [L] is a single-
variable function, it can be easily visualized.

Here we consider the function f(z) = 2(2cos?(z) —1)%—1
introduced by [48]. We draw 60k training samples and 60k test
samples uniformly from [—27,27] for z and set y = f(z).
We use a fully-connected NN with m() = 1000 x 2L—¢
hidden units in each hidden layer ¢ to learn this target function.
We take L = {1,---,4}, and use the Adam optimizer with
an initial learning rate le-4 in our experiments, and let the
activation function be o(z) = tanh(x). For fair comparison,
we tune the hyper-parameters of the weight of regularizer so
that for different L, the NN could reach training RMSE of
le-4 at converge. This controls the representation power of
the NN.

We first validate that fully trained overparameterized NN
satisfies the optimality condition of Proposition 1. Here we
consider the case of L = 4, and the top row in Fig. 1 plots the

estimated quantities uy) and v'". We can see that these two

quantities are approximately liilearly correlated, as predicted
by Proposition 1.

To compare the performance of shallow versus deep net-
works, Fig. 2 (a) reports how the approximated variance
changes when L increases. It demonstrates that the approx-
imated variance decreases as L increases. Moreover, the
approximate variance gap between L = 2 and L = 3 is very
large while that between L = 3 and L = 4 is small. This is
consistent with the fact that the hierarchical composition of
the target function f(x) has depth 3 (i.e. f(x) = h(h(cosx)),
where h(u) = u? —1). At the same time, we can observe that
for larger L, the regularizer in subplot (b) and training RMSE
in subplot (c) decrease much faster, which also demonstrate
the effectiveness of increasing L for this target function.

Fig. 3 shows representative features (as 1D-functions) at
each layer after convergence. We reach the following conclu-
sion from visualization of different L: DNN is able to learn
hierarchical feature representations when we take optimization
process into consideration. To be more specific, the layer next
to the input layer tends to learn low-frequency signals while
the upper layers take these lower-frequency signals to form
higher-frequency signals.

We further compare the compactness of different regulariz-
ers. Here we use the notation ¢, ; to represent the regularizer
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Fig. 1.

(g) mini-imagenet, { = 3 (h) mini-imagenet, ¢ = 4

Property of optimal solution for L = 4 hidden-layer fully connected NN. The top (synthetic 1-d regression) and bottom (mini-imagenet) rows

are scatter-plots of the estimated quantities for each sampled neuron after convergence. For each subplot, one point (z,y) represents one sampled neuron

(&

§ € [m®)], where z = ul® and y = v

defined in (28) and (29), respectively. The correlation coefficient of these points for the top four figures are 0.88,

0.82, 0.92 and 0.99 from left to right, and that for the bottom four figures are 0.87, 0.96, 0.92 and 0.86 from left to right, which demonstrates the existence

of strong linear association between u;* and v,
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Fig. 2. The visualization of optimization process when training multilayer NNs with different L.

in the form of r1(z) = |z|® and ra(z) = |2|°. ¢12 regular-
izer is the proposed regularizer, which is an upper-bound of
the approximation variance. ¢ ; regularizer is the traditional
Lo regularizer (i.e. /o weight decay). From Fig. 4, we found
that the proposed regularizer leads to sparser weights, and
thus has a more compact representation. We have also tried
the /y,; 4 regularizer, and found that the sparsity of ;54
regularizer isn’t significantly better than the proposed /; >
regularizer. This verifies the effectiveness of the proposed
regularizer to obtain sparse weights because by decreasing
parameter from 1 to 1/2 cannot significantly increase the
sparisity of weights as shown in Fig. 4.

B. Mini-Imagenet Classification Task

We have also performed experiments on real data. Mini-
Imagenet dataset is a simplified version of ILSVRC’12
dataset [49], which consists of 600 84 x 84 x 3 images
sampled from 100 classes each. Here we consider the data
split introduced by [50], which consists of 64 classes and
38.4k images as our full dataset. We divide the dataset into
train/valid/test split by 7:1:2.

Since fully-connected NNs do not have the capacity to deal
with such image data, we first train a base CNN embedding
network with a four block architecture as in [51]. We then
take the 1600-dimensional output of the embedding layer and
feed it to an L layer NN for classification. The training
configurations and network architectures are the same as
those for the synthetic 1-D experiment, except that we tune
the regularization parameters to achieve the best validation
accuracy. Since the feature function of this task is hard to
visualize, we only consider the optimality condition, shallow
versus deep networks and compactness.

Similar to the results in the synthetic 1-D experiment, the
sub-figures in the bottom row of Fig. 1 show that the two
quantities we care about are also linearly correlated in each
layer, which is consistent with our theory. Fig. 5 reports
how approximation variance, test RMSE, and train RMSE
change during the model training procedure. We can see that
the approximation variance decreases as L increases, and
the gap between L = 1 and L = 2 is very large. This
demonstrates the benefits of using deeper neural network.
Moreover, the generalization performance also increases as L
increases.
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d) 4-hidden-layers. For each architecture, we sample 20 neurons from each layer and plot the single-variable feature function f /) (z) of the sampled neurons.
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Fig. 6 shows that the proposed /; 5 regularizer leads to more
compact weights for each layer than the traditional {5 ;.

C. Visualization of Landscape

Given three discrete neural network 61, 02, and 3. In this
section, we conduct experiments to show that the feature
distribution linear interpolation between these three neural
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Visualization of the optimization process when training multilayer NNs with different L.

networks, i.e., the function
L(a, 8) = Q(Pap, Wa 8 lia,3)
is convex. Here the interpolation neural network ém g =
o o o . ¢ ¢ ¢
(Pa,Bs Wa, B3, Ua,p) satisfies p((l)ﬁ = apél) + Bpéz) +(1-a-—

B)pé?, which means its feature distribution at each layer is
close to the mixture of empirical feature distributions of 64,
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(o, B) = (@, y) and z represents the loss value of 6, g.

02, and 03 with coefficient a, 5, and 1 — o — 3, and

Wa, 3 U,
=argmin,, , {Q(Pa,p, w,u): (Pa,p,w, ) satisfies constraints}

chosen to satisfy all constraints and attain the minimal loss
value. This supports our claim that the loss function with
respect to the feature distributions at each layer is convex in
our feature distribution view.

We use same dataset and similar training configurations as
what we do for 1-D synthetic regression task. To make three
neural network 6y, 03, and 63 have different and meaningful
feature distributions, we let 01, 65, and 63 be neural network
that was fully trained on data whose features x lies in three
disjoint sets Dy, D2, and Ds, respectively. So they all learn
parts of but not perfect features about the regression task. The
intuitive idea of constructing the interpolation neural network
ém g 1s to make sure its pre-activation set close to the mixture
of that of 61, 6> and A3 with corresponding coefficients, where
the pre-activation set of § is defined as

V) = (o) = 16 ;00,8 O30w)] 5 € (D)),

A layerwise optimization-based algorithm is designed to
construct éa, s in Appendix D. The result is shown in Fig. 7.
For any point (z,y, z) on the surface, (x,y) represents coef-
ficient (o, 3) = (x,y) and z represents the loss value of
éa, 3. The three corners are corresponding to the loss of neural
network 61, 0 and 03 and the other points in the simplex in
(z,y) plane are corresponding to the loss of neural network
éa, s with specific interpolation coefficients. We can see from
the image that the landscape of neural network in feature

distribution view is unimodal and it looks convex.

VIII. CONCLUSION

This paper analyzed over-parameterized DNNs and showed
that it is possible to reformulate overparameterized DNNs as

convex systems. Moreover, when fully trained, DNNs learn
effective feature representations suitable for the underlying
learning task via regularization. Our analysis is consistent with
empirical observations. Our newly introduced method paves
the way for establishing global convergence results of standard
optimization algorithms such as (noisy) gradient descent for
overparameterized DNNs. We will leave the study as a future
work.
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