
5496 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

Storage-Computation-Communication Tradeoff in
Distributed Computing: Fundamental Limits

and Complexity
Qifa Yan , Member, IEEE, Sheng Yang , Member, IEEE, and Michèle Wigger , Senior Member, IEEE

Abstract— Distributed computing has become one of the most1

important frameworks in dealing with large computation tasks.2

In this paper, we propose a systematic construction of coded3

computing schemes for MapReduce-type distributed systems. The4

construction builds upon placement delivery arrays (PDA), origi-5

nally proposed by Yan et al. for coded caching schemes. The main6

contributions of our work are three-fold. First, we identify a class7

of PDAs, called Comp-PDAs, and show how to obtain a coded8

computing scheme from any Comp-PDA. We also characterize9

the normalized number of stored files (storage load), computed10

intermediate values (computation load), and communicated bits11

(communication load), of the obtained schemes in terms of the12

Comp-PDA parameters. Then, we show that the performance13

achieved by Comp-PDAs describing Maddah-Ali and Niesen’s14

coded caching schemes matches a new information-theoretic con-15

verse, thus establishing the fundamental region of all achievable16

performance triples. In particular, we characterize all the Comp-17

PDAs achieving the pareto-optimal storage, computation, and18

communication (SCC) loads of the fundamental region. Finally,19

we investigate the file complexity of the proposed schemes, i.e.,20

the smallest number of files required for implementation. In par-21

ticular, we describe Comp-PDAs that achieve pareto-optimal SCC22

triples with significantly lower file complexity than the originally23

proposed Comp-PDAs.24

Index Terms— Distributed computing, storage, communication,25

MapReduce, placement delivery array.26

I. INTRODUCTION27

MASSIVELY large distributed systems have emerged28

as one of the most important forms to run big data29

Manuscript received 9 September 2019; revised 12 February 2022; accepted
23 February 2022. Date of publication 18 March 2022; date of current version
13 July 2022. The work of Qifa Yan and Michèle Wigger was supported by
the European Union’s Horizon 2020 Research and Innovation Program under
Grant 715111. The work of Qifa Yan was supported in part by the National
Natural Science Foundation of China under Grant 61941106 and Grant
62101464. An earlier version of this paper was presented in part at 2018 IEEE
Information Theory Workshop (ITW) [1] [DOI: 10.1109/ITW.2018.8613519].
(Corresponding author: Qifa Yan.)

Qifa Yan was with LTCI, Tèlècom Paris, IP Paris, 91120 Palaiseau,
France, and also with L2S, (UMR CNRS 8506), CentraleSupèlec, Paris-Saclay
University, 91192 Gif-sur-Yvette, France. He is now with the Information
Coding and Transmission Key Laboratory of Sichuan Province, CSNMT
International Cooperation Research Centre (MoST), Southwest Jiaotong Uni-
versity, Chengdu 611756, China (e-mail: qifayan@swjtu.edu.cn).

Sheng Yang is with L2S, (UMR CNRS 8506), CentraleSupèlec,
Paris-Saclay University, 91192 Gif-sur-Yvette, France (e-mail: sheng.yang@
centralesupelec.fr).

Michèle Wigger is with LTCI, Tèlècom Paris, IP Paris, 91120 Palaiseau,
France (e-mail: michele.wigger@telecom-paristech.fr).

Communicated by A. Jiang, Associate Editor for Coding Theory.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2022.3158828.
Digital Object Identifier 10.1109/TIT.2022.3158828

Fig. 1. A computing task with N = 6 files and K = 3 output functions
(original image from [4]). The small and big red circles, green squares, and
blue triangles denote IVAs and results belonging to different output functions.

and machine learning algorithms, so that data-parallel com- 30

putations can be executed across clusters of many individ- 31

ual computing nodes. In particular, distributed programs like 32

MapReduce [2] and Dryad [3] have become popular and can 33

handle computing tasks involving data sizes as large as tens of 34

terabytes. As illustrated in Fig. 1 and detailed in the following, 35

computations in these systems are typically decomposed into 36

“map” functions and “reduce” functions. 37

Consider the task of computing K output functions at K 38

nodes and that each output function is of the form 39

φk(w1, . . . , wN) = hk(fk,1(w1), . . . , fk,N (wN)), (1) 40

k = 1, . . . ,K. 41

Here, each output function φk depends on all N data blocks 42

w1, . . . , wN , but can be decomposed into: 43

• N map functions fk,1, . . . , fk,N , each only depending on 44

one block; and 45

• a reduce function hk that combines the outcomes of the 46

N map functions. 47

Computation of such functions can be performed in a 48

distributed way following three phases: In the first phase, the 49

map phase, each node k = 1, . . . ,K locally stores a subset 50

of the input data Mk ⊆ {w1, . . . , wN}, and calculates all 51

intermediate values (IVAs) that depend on the stored data: 52

Ck � {fq,n(wn) : q ∈ {1, . . . ,K}, n ∈ Mk}. 53

In the subsequent shuffle phase, the nodes exchange the IVAs 54

computed during the map phase, so that each node k is aware 55

of all the IVAs fk,1(w1), . . . , fk,N (wN) required to calculate 56

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0746-9819
https://orcid.org/0000-0002-0643-0445
https://orcid.org/0000-0002-6737-5427

YAN et al.: STORAGE-COMPUTATION-COMMUNICATION TRADEOFF IN DISTRIBUTED COMPUTING 5497

its own output function φk . In the final reduce phase, each57

node k combines the IVAs with the reduce function hk as58

indicated in (1).59

Recently, Li et al. [5] proposed a so-called coded dis-60

tributed computing (CDC) that stores files multiple times61

across different nodes in the map phase so as to create mul-62

ticast opportunities for the shuffle phase. This approach can63

significantly reduce the communication load over traditional64

uncoded schemes, and was proved in [5] to have the smallest65

communication load among all coded computing schemes with66

the same total storage requirements. It is worth mentioning67

that Li et al. in [5] used the term computation-communication68

tradeoff, because they assumed that each node calculates all69

the IVAs that can be obtained from the data stored at that70

node, irrespective of whether these IVAs are used in the sequel71

or not. In this sense, the total number of calculated IVAs is72

actually a measure of the total storage load consumed across73

the nodes. This is why we would rather refer to it as the74

storage-communication tradeoff.75

In this paper, we investigate a more general setup, where76

each node is allowed to choose for each IVA that it can77

calculate from its locally stored data, whether or not to78

perform this calculation. The number of IVAs effectively79

calculated at all the nodes, normalized by the total number80

of IVAs, is then used to measure the real computation load.81

Thus, we extend the storage-communication tradeoff in [5]82

to a storage-computation-communication tradeoff. Notice that83

other interesting extensions have recently been proposed. For84

example, [7]–[16] included straggler nodes but restricted to85

map functions that are matrix-vector or matrix-matrix mul-86

tiplications; straggler nodes with general linear map func-87

tions were considered in [17]; [18] studied optimal allocation88

of computation resources; [19]–[22] investigated distributed89

computing in wireless networks; [23]–[25] investigated the90

iterative procedures of data computing and shuffling; [26]91

studied the case when each node has been randomly allocated92

files; [27] investigated the case with random connectivity93

between nodes; [28]–[31] designed codes for computing gra-94

dient distributedly, which is particularly useful in machine95

learning.96

One of our main contributions is a framework to con-97

struct a coded computing scheme from a given placement98

delivery array (PDA) [33], and to characterize the storage,99

computation, and communication (SCC) loads of the resulting100

scheme in terms of the PDA parameters. In this paper we101

focus on a class of PDAs that we call PDAs for distributed102

computing, for short Comp-PDA. Notice that PDAs were103

introduced in [33] to describe placement and delivery phases104

in a shared-link caching network. The connections between105

this caching network and the proposed distributed computing106

systems have been noticed and exploited in various previ-107

ous works [5], [36]–[38]. In particular, PDAs were used to108

characterize the storage and communication loads in [39],109

[40]. Here, we make the connection precise in the case of110

Comp-PDA based schemes, by exactly characterizing the SCC111

loads of these schemes for distributed computing. Notice that112

in contrast to shared-link caching systems, for the proposed113

distributed computing system, Comp-PDA based schemes turn 114

out to be optimal. It means that they can attain all achievable 115

SCC loads, and in particular the pareto-optimal SCC surface. 116

Such optimality is proved in this paper by means of an 117

information-theoretic converse that is not restricted to Comp- 118

PDA based schemes. Moreover, in a follow-up work [41], 119

we show that Comp-PDAs allow us to design coded computing 120

schemes for systems with straggling nodes. 121

Our results show that the (3-dimensional) pareto-optimal 122

tradeoff surface can be obtained by sequentially pasting K−2 123

triangles next to each other. The corner points of these triangles 124

are achieved by Comp-PDAs that also describe Maddah-Ali 125

and Niesen’s coded caching scheme [32]1 and the corre- 126

sponding coded computing schemes coincide with the scheme 127

proposed by Ezzeldin et al. [6] and with Li et al.’s CDC 128

scheme if the unused IVAs are removed. These schemes all 129

require a minimum number of N ≥
(
K
g

)
files, where g is 130

an integer between 1 and K and depends on the corner point 131

under consideration. In this paper, we show that no Comp-PDA 132

based scheme can achieve the corner points with a smaller 133

number of files for g ≥ 2. However, pareto-optimal SCC 134

points that are close to the corner points can be achieved 135

with a significantly smaller number of files. We prove this 136

through new explicit Comp-PDA constructions, which include 137

the PDAs proposed in [33, Construction A] as a special case. 138

Finally, we present necessary and sufficient conditions for 139

a Comp-PDA scheme to achieve pareto-optimal SCC loads. 140

Our results implies in particular that most of the Comp-PDA 141

schemes based on existing PDA constructions [33], [34], 142

and [35] have pareto-optimal SCC loads. 143

Paper Organization: Section II presents the system model. 144

Section III introduces Comp-PDAs and explains at hand of 145

an example how to obtain a distributed coded computing 146

scheme from a Comp-PDA. The main results are summarized 147

in Section IV. Proofs of the main results are provided in 148

Section V–VII, where the more technical details are deferred 149

to the appendices. Finally, Section VIII concludes the paper. 150

Notations: Let N
+ be the set of positive integers, and F2 151

be the binary field. For m,n ∈ N
+, denote the n-dimensional 152

vector space over F2 by F
n
2 , and the integer set {1, . . . , n} 153

by [n]. If m < n, we use [m : n] to denote the set 154

{m,m+1, . . . , n}. We also use interval notations, e.g., [a, b] � 155

{x : a ≤ x ≤ b} and [a, b) � {x : a ≤ x < b} for 156

real numbers a, b such that a < b. The notation (a)+ is 157

used to denote the number max{a, 0}. The bitwise exclusive 158

OR (XOR) operation is denoted by ⊕. To denote scalar or 159

vector quantities, we use the standard font, e.g., a or A, for 160

arrays we use upper case bold font, e.g., A, for sets we use 161

upper case calligraphic font, e.g., A. 162

A line segment with end points A1, A2 or a line through the 163

points A1, A2 is denoted by A1A2. A triangle with vertices 164

A1, A2, A3 is denoted by �A1A2A3. A trapezoid with the 165

four edges A1A2, A2A3, A3A4, and A4A1, where A1A2 is 166

parallel to A3A4, is denoted by �A1A2A3A4. Let F be a set 167

1The connection between these PDAs and the coded caching scheme in [32]
was formalized in [33]. As explained previously, Comp-PDAs are also PDAs.

5498 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

of facets, if the facets in F form a continuous surface, then168

we refer to this surface simply as F .169

II. SYSTEM MODEL170

Consider a system consisting of K distributed computing171

nodes {1, . . . ,K} and N files,172

W = {w1, . . . , wN}, wn ∈ F
W
2 , ∀ n ∈ [N],173

each of size W bits, where K,N,W ∈ N. The goal of node174

k, k ∈ [K], is to compute an output function2
175

φk : F
NW
2 → F

U
2 ,176

which maps all the files to a bit stream177

uk = φk(w1, . . . , wN) ∈ F
U
2178

of length U , for a given U ∈ N.179

Following the conventions in [5], we assume that each180

output function φk decomposes as:181

φk(w1, . . . , wN) = hk(fk,1(w1), . . . , fk,N (wN)),182

where:183

• Each “map” function fk,n is of the form184

fk,n : F
W
2 → F

V
2 ,185

and maps the file wn into the IVA186

vk,n � fk,n(wn) ∈ F
V
2 ,187

for a given V ∈ N.188

• The “reduce” function hk is of the form189

hk : F
NV
2 → F

U
2 ,190

and maps the IVAs191

Vk � {vk,n : n ∈ [N]} (2)192

into the output stream193

uk = hk(vk,1, . . . , vk,N).194

Notice that such a decomposition always exists. For example,195

let the map functions be identity functions and the reduce196

functions be the output functions, i.e., gk,n(wn) = wn, and197

hk = φk, ∀ n ∈ [N], k ∈ [K].198

The described structure of the output functions φ1, . . . , φK ,199

allows the nodes to perform their computation in the following200

three-phase procedure.201

A. Map Phase202

Each node k ∈ [K] chooses to store a subset of files203

Mk ⊆ W . For each file wn ∈ Mk, node k computes a subset204

of IVAs205

Ck,n = {vq,n : q ∈ Zk,n}, (3)206

where Zk,n ⊆ [K]. Denote the set of IVAs computed at node207

k by Ck, i.e.,208

Ck �
⋃

n:wn∈Mk

Ck,n. (4)209

2See Remark 3 for a relaxed assumption.

B. Shuffle Phase 210

The K nodes exchange some of their computed IVAs. 211

In particular, node k creates a signal 212

Xk = ϕk (Ck) 213

of some length lk ∈ N, using a function 214

ϕk : F
|Ck|V
2 → F

lk
2 . 215

It then multicasts this signal to all the other nodes, which 216

receive it error-free. 217

C. Reduce Phase 218

Using the shuffled signals X1, . . . , XK and the IVAs Ck it 219

computed locally in the map phase, node k now computes 220

the IVAs 221

(vk,1, . . . , vk,N) = ψk (X1, . . . , XK , Ck) , 222

for some function 223

ψk : F
l1
2 × F

l2
2 × . . .FlK

2 × F
|Ck|V
2 → F

NV
2 . 224

Finally, it computes 225

uk = hk(vk,1, . . . , vk,N). 226

To measure the storage, computation, and communication 227

costs of the described procedure, we introduce the following 228

definitions. 229

Definition 1 (Storage Load): Storage load r is defined as 230

the total number of files stored across the K nodes normalized 231

by the total number of files N : 232

r �
∑K

k=1 |Mk|
N

. (5) 233

Definition 2 (Computation Load): Computation load c is 234

defined as the total number of map functions computed across 235

the K nodes, normalized by the total number of map func- 236

tions NK: 237

c �
∑K

k=1 |Ck|
NK

. (6) 238

Definition 3 (Communication Load): Communication load 239

L is defined as the total number of the bits sent by the K 240

nodes during the shuffle phase normalized by the total length 241

of all intermediate values NKV : 242

L =
∑K

k=1 lk
NKV

. (7) 243

Remark 1: These measures were first defined in [6], where 244

the storage load was called “load redundancy”, and the compu- 245

tation load therein was the total number of computed IVAs (not 246

normalized by NK). We use the term “storage load” because 247

it actually captures the memory size constraint. We used the 248

normalized version for computation load to keep symmetric 249

definitions with storage load and communication load. 250

Note that the nontrivial regime of the parameters is: 251

1 ≤ c ≤ r ≤ K, (8a) 252

0 ≤ L ≤ 1 − r

K
. (8b) 253

YAN et al.: STORAGE-COMPUTATION-COMMUNICATION TRADEOFF IN DISTRIBUTED COMPUTING 5499

A scheme that sends all IVAs in an uncoded manner requires254

a communication load of L =
�K

k=1(N−|Mk|)V
NKV = 1 − r

K255

and computation load c = 1 because each IVA needs to be256

transmitted only once. In this sense the presented bounds in (8)257

are non-trivial. We proceed to justify them. Firstly, we argue258

that the regime of interest for L is [0, 1− r/K]. By definition,259

L ≥ 0. Moreover, each node k can trivially compute |Mk|260

of its desired IVAs locally and thus only needs to receive261

N − |Mk| IVAs from other nodes. Secondly, we argue that262

we can restrict attention to values of c and r satisfying (8a).263

Since each IVA needs to be computed at least once somewhere,264

we have c ≥ 1. Moreover, the definition of Ck in (4) implies265

that |Ck| ≤ |Mk|K , and thus by (5) and (6) that c ≤ r.266

Finally, the regime r > K is not interesting, because in this267

case each node stores all the files, Mk = {1, . . . , N}, and268

can thus locally compute all the IVAs required to compute its269

output function. In this case, c ≥ 1 and L ≥ 0 can be arbitrary.270

Definition 4 (Fundamental SCC Region): An SCC-triple271

(r, c, L) as in (8) is called feasible, if for any � > 0272

and sufficiently large N,W, V , there exist map, shuffle, and273

reduce procedures with storage load, computation load, and274

communication load less than r+ �, c+ �, and L+ �. The set275

of all feasible SCC triples R is called the fundamental SCC276

region:277

R � {(r, c, L) : (r, c, L) is feasible} .278

Definition 5 (Optimal Tradeoff Surface): A SCC triple279

(r, c, L) is called pareto-optimal if it is feasible and if no280

feasible SCC triple (r�, c�, L�) exists so that r� ≤ r, c� ≤ c281

and L� ≤ L with one or more of the inequalities being strict.282

Define the optimal tradeoff surface as283

O � {(r, c, L) : (r, c, L) is pareto-optimal}.284

Remark 2: The pareto-optimal surface (see [44]) deter-285

mines, e.g., the minimum required communication load for286

given storage and computation loads. (Or the minimum storage287

load for given communication and computation loads, or the288

minimum computation load for given storage and communi-289

cation loads.) Moreover, it contains the minimizer (r, c, L) to290

any weighted sum α ·r+β ·c+γ ·L for given α, β, γ. As such,291

using appropriate weights α, β, γ, it can be used to minimize292

the total expected running time of the Map-Reduce system.293

In order to achieve a certain SCC triple with a given scheme,294

it is implicitly assumed that the number of files is larger than295

some value. We refer to this value as the file complexity.296

Definition 6 (File Complexity): The smallest number of files297

N required to implement a given scheme is called the file298

complexity of this scheme.299

Our schemes also require that the size of the files W and300

intermediate values V be sufficiently large. We will simply301

assume that this requirement is satisfied.302

Remark 3: All our conclusions in this paper remain valid303

in an extended setup with Q output functions as in [5], where304

K|Q and each node is supposed to compute Q
K functions.305

In fact, in this setup, the K in definitions (6) and (7) will306

be replaced by Q. Achievability proofs can be shown by307

executing Q
K times the coded computing schemes as explained 308

in Section V. The converse can be derived by adjusting the 309

definitions in (2), (3), and (34) following the same steps in 310

Section VI-A. 311

III. PLACEMENT DELIVERY ARRAYS FOR DISTRIBUTED 312

COMPUTING (COMP-PDA) 313

In the following, we recall the definition of a PDA, define 314

Comp-PDAs, and two subclasses thereof. 315

Definition 7 (PDA): For positive integers K,F, T and a 316

nonnegative integer S, an F×K array A = [aj,k], j ∈ [F], k ∈ 317

[K], composed of T specific symbols “∗” and some ordinary 318

symbols 1, . . . , S, each occurring at least once, is called a 319

(K,F, T, S) PDA, if, for any two distinct entries aj,k and 320

aj′,k′ , we have aj,k = aj′,k′ = s, for some ordinary symbol s 321

only if 322

a) j �= j�, k �= k�, i.e., they lie in distinct rows and distinct 323

columns; and 324

b) aj,k′ = aj′,k = ∗, i.e., the corresponding 2×2 sub-array 325

formed by rows j, j� and columns k, k� must be of the 326

following form 327[
s ∗
∗ s

]
or

[
∗ s
s ∗

]
. 328

A PDA with all “∗” entries is called trivial. Notice that in this 329

case S = 0 and KF = T . 330

The above PDA definition is more general than the original 331

version in [33] in the sense that different columns can have 332

different numbers of “∗” symbols. In the original definition 333

[33], each column had to contain the same number of “∗” 334

symbols and this number was one of the four parameters of 335

the PDA. In this new definition, a PDA is parametrized by 336

T , the total number of “∗” symbols in all the columns. The 337

motivation for this change is as follows. PDAs were originally 338

proposed for the shared-link coded computing scheme where 339

all users have same cache memory size. In such a setup, the 340

number of “∗” symbols in a column was proportional to the 341

cache memory size at the corresponding user. By the equal 342

memory-size assumption, each column thus had to contain the 343

same number of “∗” symbols. As we will see, for distributed 344

computing, the number of “∗” symbols in a column is propor- 345

tional to the number of files stored at the corresponding node. 346

Moreover, different nodes can have different memory sizes 347

and we are only interested in the total memory size across 348

all users. As a consequence, different columns of the PDA 349

can have different numbers of “∗” symbols and the PDA is 350

parametrized by the total number of “∗” symbols across all 351

columns. Another generalization in the PDA definition is that 352

we allow for arrays with only “∗” symbols but no ordinary 353

symbols. 354

In this work, we are interested in PDAs with at least one 355

“∗” symbol in each row. 356

Definition 8 (PDA for Distributed Computing (Com- 357

p-PDA)): A Comp-PDA is a PDA with at least one “∗” in 358

each row. 359

In particular a trivial PDA is a Comp-PDA. A non-trieval 360

Comp-PDA is presented in the following example. 361

5500 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

Example 1: The following A is a (5, 4, 10, 4) Comp-PDA,362

A =

⎡⎢⎢⎣
∗ 2 ∗ 3 ∗
1 ∗ ∗ 4 2
∗ 4 1 ∗ 3
3 ∗ 2 ∗ ∗

⎤⎥⎥⎦ (9)363

As we will see, the performance of our Comp-PDA based364

schemes does not depend on the number of ordinary symbols365

S, but only on the relative frequencies with which they appear366

in the Comp-PDA.367

Definition 9 (Symbol Frequencies): For a given nontrivial368

(K,F, T, S) Comp-PDA, let St denote the number of ordinary369

symbols that occur exactly t times, for t ∈ [K]. The symbol370

frequencies θ1, θ2, . . . , θK of the Comp-PDA are then defined371

as372

θt � Stt

KF − T
, t ∈ [K].373

They indicate the fractions of ordinary entries of the Comp-374

PDA that occur exactly 1, 2, . . . ,K times, respectively. For375

completeness, we also define θt � 0 for t > K .376

The following two classes of Comp-PDAs will be of par-377

ticular interest.378

Definition 10 (Almost-Regular Comp-PDAs & regular Com-379

p-PDAs): For g ∈ [K], a (K,F, T, S) Comp-PDA is called380

almost g-regular if each ordinary symbol appears either g or381

g + 1 times with θg+1 < 1. If each ordinary symbol appears382

exactly g times, the Comp-PDA is called g-regular.383

Therefore, a g-regular Comp-PDA is also an almost384

g-regular Comp-PDA. An almost K-regular Comp-PDA is385

also a K-regular Comp-PDA. Notice that a (K,F, T, S)386

Comp-PDA can be almost g-regular only if387

g =
⌊
KF − T

S

⌋
,388

and it can be g-regular only if389

g =
KF − T

S
.390

Example 2: In the (5, 4, 10, 4) Comp-PDA A in Example 1,391

there are KF − T = 10 ordinary entries in total, and S1 =392

S4 = S5 = 0 (i.e., no ordinary symbol has occurences 1,393

4, or 5) wheras S2 = S3 = 2 (i.e., two ordinary symbols394

1, 4 occurr twice, and the other two ordinary symbols 2, 3395

occurr three times. The PDA A is thus an almost 2-regular396

Comp-PDA with frequencies θ1 = θ4 = θ5 = 0, θ2 = 2
5397

and θ3 = 3
5 .398

IV. MAIN RESULTS399

A. Coded Computing Schemes From Comp-PDAs400

In Section V, we will describe how to obtain a coded401

computing scheme from a Comp-PDA. For brevity, we say402

that a Comp-PDA A achieves an SCC triple (r, c, L) with403

file complexity γ if the coded computing scheme obtained by404

applying the procedure in Section V to A has file complexity405

γ and achieves the SCC triple (r, c, L). For convenience,406

we define {θ�t} as follows. 407

θ�t =

⎧⎪⎨⎪⎩
0, t = 1
θ1 + θ2, t = 2
θt, t > 2.

(10) 408

Theorem 1: A (K,F, T, S) Comp-PDA A with symbol 409

frequencies {θt}K
t=1 achieves the SCC triple 410

(r, c, L) =

(
T

F
,

T

KF
+
(

1 − T

KF

)
·

K∑
t=2

θ�t(t− 1), 411

(
1 − T

KF

)
·

K∑
t=2

θ�t
t− 1

)
412

with file complexity F . 413

We notice that the file complexity of a Comp-PDA is 414

simply the number of rows F . It was observed in [36], [37] 415

that large file complexity may cause large executation times 416

and even dominate over the reductions achieved by coded 417

computing [5]. This observation motivated the search for low 418

file complexity coded computing schemes such as [36]–[38]. 419

Theorem 1 indicates that, low file complexity coded computing 420

schemes can be obtained via PDAs with a small number 421

of rows F . We therefore will call the parameter F of a 422

Comp-PDA its file complexity. 423

The theorem simplifies for almost-regular and regular 424

Comp-PDAs. 425

Corollary 1: An almost g-regular (K,F, T, S) Comp-PDA 426

achieves the SCC triple 427

(r, c, L) =
(
T

F
,

T

KF
+
(

1 − T

KF

)
· (g − 1 + θ�g+1), 428(

1 − T

KF

)
·
(g − θ�g+1 − 1)+ + 1
g · ((g − 2)+ + 1)

)
. (11) 429

In particular, a g-regular (K,F, T, S) Comp-PDA achieves the 430

SCC triple 431

(r, c, L) =
(
T

F
,

T

KF
+
(

1 − T

KF

)
· ((g − 2)+ + 1), 432

1
(g − 2)+ + 1

·
(

1 − T

KF

))
. (12) 433

Proof: Notice that for almost g-regular Comp-PDAs, θ�g = 434

0 and θ�g+1 = 1 when g = 1; θ�g = 1 and θ�g+1 = 0 when 435

g = K; and θ�g + θ�g+1 = 1 when 1 < g < K . As such, 436

the equality (11) follows from Theorem 1 straightforwardly. 437

Further, for g-regular Comp-PDAs, we have θ�g+1 = 1 when 438

g = 1; and θ�g+1 = 0 when g ≥ 2. Equality (12) follows 439

readily from (11). � 440

Corollary 1 is of particular interest since there are several 441

explicit regular PDA constructions for coded caching in the 442

literature [33]–[35]. See for example the Comp-PDA in the 443

following Definition 11. 444

B. Achieving the Fundamental SCC Region 445

The following Comp-PDAs achieve points on the optimal 446

tradeoff surface O. They are obtained from the coded caching 447

scheme proposed by Maddah-Ali and Niesen [32]. 448

YAN et al.: STORAGE-COMPUTATION-COMMUNICATION TRADEOFF IN DISTRIBUTED COMPUTING 5501

Definition 11 (Maddah-Ali Niesen PDA (MAN-PDA)): Fix449

any integer i ∈ [K], and let {Tj}
(K

i)
j=1 denote all subsets of [K]450

of size i. Also, choose an arbitrary bijective function κ from451

the collection of all subsets of [K] with cardinality i + 1 to452

the set
[(

K
i+1

)]
. Then, define the PDA Pi = [pj,k] as453

pj,k �
{

∗, if k ∈ Tj

κ({k} ∪ Tj), if k /∈ Tj
.454

We observe that for any i ∈ [K − 1], the PDA Pi is an455

(i+1)-regular
(
K,

(
K
i

)
,K

(
K−1
i−1

)
,
(

K
i+1

))
Comp-PDA. For i =456

K , the PDA Pi consists only of “∗”-entries and is thus a457

trivial PDA.458

Example 3: Let K = 5, in which case P2 is given by459

{1, 2}
{1, 3}
{1, 4}
{1, 5}
{2, 3}
{2, 4}
{2, 5}
{3, 4}
{3, 5}
{4, 5}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ 1 2 3
∗ 1 ∗ 4 5
∗ 2 4 ∗ 6
∗ 3 5 6 ∗
1 ∗ ∗ 7 8
2 ∗ 7 ∗ 9
3 ∗ 8 9 ∗
4 7 ∗ ∗ 10
5 8 ∗ 10 ∗
6 9 10 ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,460

where we label the rows by the subsets of size 2 as indicated461

by Definition 11.462

We can evaluate Corollary 1 for the Comp-PDAs463

P1, . . . ,PK .464

Corollary 2: For any i ∈ [K], the Comp-PDA Pi achieves465

the SCC triple466

Pi � (rPi , cPi , LPi)467

=
(
i, i

(
1 − i− 1

K

)
,

1
i

(
1 − i

K

))
. (13)468

As the following Theorem 2 shows, the points {Pi} lie469

on the optimal tradeoff surface O. Let us also define the470

projection of point Pi to the surface r = c in the SCC space471

as Qi:472

Qi �
(
i, i,

1
i

(
1 − i

K

))
, i ∈ [K]. (14)473

Theorem 2: Let F be the surface formed by the following474

triangles and trapezoids475

F � {�P1P2Q2} ∪ {�Pi−1PiPK : i = 2, . . . ,K − 1}476

∪{�PiQiQi+1Pi+1 : i = 2, . . . ,K − 1}.477

where Pi and Qi are defined in (13) and (14), respectively.478

Then, the optimal tradeoff surface O and the fundamental SCC479

region R are given by480

O = {�Pi−1PiPK : i = 2, . . . ,K − 1} ,481

R = { (r, c, L) : (r, c, L) is on or above the surface F482

and satisfies (8)} .483

Furthermore, a Comp-PDA achieves the optimal surface O484

if and only if it satisfies one of the following three conditions:485

it is almost g-regular, for any g ∈ [K]; it is trivial (i.e., consists486

only of “∗” symbols); or each ordinary symbol occurs at most 487

three times. 488

Remark 4: A close inspection of the proof of Theorem 2 489

reveals that for i ∈ {3, . . . ,K − 1}, a Comp-PDA achieves a 490

point on the triangle �Pi−1PiPK if and only if it is almost 491

i-regular. It achieves a point on the triangle �P1P2PK if and 492

only if all the ordinary symbols occur either 1, 2, or 3 times. 493

This implies in particular that for any i ∈ {2, . . . ,K − 2} 494

a Comp-PDA achieves a point on the line segment PiPK if 495

and only if it is (i+ 1)-regular. As a consequence, the corner 496

points P1, . . . , PK are achieved by a uniform file allocation 497

(i.e., each node stores the same number of files). 498

Note that setting r = c, we recover exactly the case inves- 499

tigated in [5] where the fundamental storage-communication 500

tradeoff is characterized by 501

L∗(r) � 1
r

(
1 − r

K

)
, 502

for integer r, and for general r in the interval [1,K] 503

L∗(r) � max
i∈[K−1]

{
− 1
i(i+ 1)

r +
1
i

+
1

i+ 1
− 1
K

}
. (15) 504

An example of the fundamental SCC region for K = 10 505

is given in Fig. 2, where we can identify the surface F that 506

is formed by the triangles �P1P2Q2 and {�Pi−1PiPK} and 507

the trapezoids {�PiQiQi+1Pi+1}. In particular, the boundary 508

of the optimal tradeoff surface O is formed by the line 509

segment P1PK and the sequence of line segments P1P2, 510

P2P3, . . . , PK−1PK : 511

1) The computation load on the line segment P1PK is c = 512

1 for any given storage load r, which by (8) is minimal 513

and thus is referred to as the optimal computation curve 514

(OCP). It implies that during the map phase each IVA 515

is calculated at a single node. 516

2) The points on the line segments P1P2, 517

P2P3, . . . , PK−1PK have minimum communication 518

load L for any given storage load r among all pareto- 519

optimal points, thus we refer to it as the optimal 520

communication curve (OCM). 521

Note that the projections of OCP and OCM curves on the 522

surface r = c correspond to the curves of the uncoded scheme 523

and the CDC scheme in [5]. In this sense, our optimal tradeoff 524

surface O is a natural extension of the tradeoff established 525

in [5] with the additional dimension given by the computation 526

load. From the SCC region, we can obtain straightforwardly 527

the optimal tradeoff between computation and storage for a 528

given communication load (Fig. 3(a)), as well as the tradeoff 529

between computation and communication for a given storage 530

load (Fig. 3(b)). 531

It is worth mentioning that our computation load that counts 532

the exact number of IVAs that are necessary for the reduce 533

phase may not reflect the actual computation load in practical 534

systems. In some practical systems, the actual computation 535

time might not decrease even with a reduced number of 536

IVAs. Nevertheless, such a measure provides an performance 537

indication that can be very different from the storage load. 538

Specifically, we can observe that at high storage load, the 539

5502 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

Fig. 2. The fundamental SCC region R for a system with K = 10 nodes. The figure illustrates the delimiting surface F formed by the triangles �P1P2Q2

and {�Pi−1PiPK} and the trapezoids {�PiQiQi+1Pi+1}. The three points D2, D3, D4 can be achieved by the new PDA design.

Fig. 3. Two-dimensional tradeoff curves for K = 10: (a) Computation-
storage tradeoff with fixed communication load L = 0.12; (b) Computation-
communication tradeoff with fixed storage load r = 4.5.

computation load can be actually close to the lower bound 1,540

i.e., almost no extra computation is needed.541

Remark 5: The idea of measuring the effectively computed542

IVAs is from [6]. In that paper, the authors also show543

the achievability of the corner points P1, P2, . . . , PK . The544

distributed computing scheme proposed in [5] coincides with545

the schemes obtained for Comp-PDAs P1,P2, . . .PK . Our546

new contributions are an information-theoretic converse that 547

allows to characterize the entire fundamental SCC region and 548

necessary and sufficient conditions for any Comp-PDA to 549

achieve the optimal surface of the fundamental SCC region. 550

C. Reducing the File Complexity to Attain the Optimal 551

Tradeoff Surface 552

Recall that for any i ∈ [K], the Comp-PDA Pi in 553

Definition 11 achieves point Pi on the optimal tradeoff sur- 554

face O. The Comp-PDA Pi is of file complexity 555

FPi �
(
K

i

)
, 556

and the following theorem indicates that this is the minimum 557

file complexity that can achieve Pi when i ≥ 2. 558

Theorem 3: Any Comp-PDA that achieves the corner point 559

Pi, for i ∈ [2 : K], is of file complexity at least
(
K
i

)
. 560

A required file size of
(
K
i

)
can be prohibitively large and 561

may prevent practical implementation of the Comp-PDA based 562

schemes achieving the corner point Pi. However, as the fol- 563

lowing theorem shows, one can achieve points on the triangle 564

ΔPi−1PiPK close to the corner point Pi with significantly 565

fewer files. (Notice that the simple approach of time- and 566

memory- sharing the schemes achieving the points Pi−1, Pi, 567

and PK would require even more files.) 568

Theorem 4: For any positive integers K and q such 569

that q < K
2 , and m �
K

q � − 1, there exists a 570(
K, qm,Kqm−1, (q − 1)qm

)
Comp-PDA achieving the triple 571

Dq =
(
rDq , cDq , LDq

)
572

�
(
K

q
,

1
q

+m

(
1 − 1

q

)(
2 − (m+ 1)q

K

)
, 573(

1
m

+
(m+ 1)q −K

K(m− 1)

)
·
(

1 − 1
q

))
, (16) 574

YAN et al.: STORAGE-COMPUTATION-COMMUNICATION TRADEOFF IN DISTRIBUTED COMPUTING 5503

with file complexity575

FDq � qm.576

Moreover, the SCC triple Dq lies on the optimal tradeoff577

triangle �Pm−1PmPK , and is close to Pm in the following578

sense:579

−1 ≤ rPm − rDq ≤ 0, (17a)580

1
q
− 2
K

≤ cPm − cDq ≤ 1 − 1
q
, (17b)581

− q(q − 1)
K(K − q)

≤ LPm − LDq ≤ q

K(K − q)
. (17c)582

Furthermore, its file complexity satisfies583

FPm

FDq

≥
√

2π
e2

√
q

m(q − 1)

(
q

q − 1

)m(q−1)

.584

For example, for K = 50 and q = 9, we have m = 5.585

According to the above theorem, D9 is close to P5 but with586

file complexity FDq = qm ≈ 6 × 104 instead of FPm =587 (
K
m

)
≈ 1010. In Fig. 2, we depict the new points D2, D3, D4588

for K = 10 nodes.589

V. CODED COMPUTING SCHEMES FROM COMP-PDAS590

(PROOF OF THEOREM 1)591

The proof of Theorem 1 has three parts.592

A. Obtaining a Coded Computing Scheme593

From a Comp-PDA594

In this section, we explain how to obtain a coded computing595

scheme from any (K,F, T, S) Comp-PDA.596

Fix a (K,F, T, S) Comp-PDA A = [ai,j]. Partition the N597

files into F batches W1, . . . ,WF , each containing598

η � N

F
599

files and so that W1, . . . ,WF form a partition for W . It is600

implicitly assumed here that η is an integer number.601

Let I be the set of ordinary symbols that occur only once.602

Then the symbols in I can be partitioned into K subsets603

I1, I2, . . . , IK as follows. For each s ∈ I, let (i, j) be the604

unique tuple in [F]× [K] such that ai,j = s. By Definition 8,605

there exists at least one k ∈ [K]\{j} such that ai,k = ∗.606

Arbitrarily choose such a k and assign s into Ik.607

Let Ui,j denote the set of IVAs for the output function φj608

that can be computed from the files in Wi, i.e.,609

Ui,j � {vj,n : wn ∈ Wi}, (18)610

and let Ak denote the set of ordinary symbols in column k611

having occurrence at least two:612

Ak � {s ∈ [S] : ai,k = s for some i ∈ [F]}\I, k ∈ [K].613

(19)614

1) Map Phase: Each node k stores615

Mk =
⋃

i∈[F] :

ai,k=∗

Wi, (20)616

and computes the IVAs 617

Ck = C(1)
k ∪ C(2)

k , (21) 618

where 619

C(1)
k =

⋃
i∈[F] :

ai,k=∗

Ui,k, (22) 620

C(2)
k =

⋃
s∈Ik∪Ak

⋃
(l,d)∈[F]×([K]\{k}) :

al,d=s

Ul,d, (23) 621

Notice that node k can compute the IVAs in C(1)
k from 622

the files in Mk, because of (18), (20), and (22). To show 623

that it can also compute the IVAs in C(2)
k from Mk, 624

we show that if for some s ∈ Ik∪Ak there exist (l, d) ∈ 625

[F] × ([K]\{k}) so that al,d = s, then 626

al,k = ∗. (24) 627

From this follows that Wl ⊆ Mk. To prove (24), we dis- 628

tinguish the cases s ∈ Ik and s ∈ Ak . In the former 629

case, the proof follows simply by the construction of 630

the set Ik, which implies that if al,d = s and s ∈ Ik, 631

then al,k = ∗. In the latter case, the proof holds because 632

by the definition of the set Ak, if al,d = s and s ∈ Ak, 633

then there exists an index i ∈ [F] so that ai,k = s. But 634

by the PDA property C3, al,d = ai,k = s and d �= k 635

imply that l �= i and al,k = ai,d = ∗. 636

2) Shuffle Phase: Node k ∈ [K] then computes Xk
s from 637

Ck for each s ∈ Ik∪Ak as defined in the following. For 638

s ∈ Ik, then there exists unique (i, j) ∈ [F] × [K]\{k} 639

such that ai,j = s, then 640

Xk
s � Ui,j . (25) 641

For each s ∈ Ak ⊆ [S]\I, and Xk
s is defined as follows. 642

Firstly, for each s ∈ [S]\I, or equivalently, gs ≥ 2, let 643

(i1, j1), . . . , (igs , jgs) indicate all the occurrences of the 644

ordinary symbol s: 645

ai1,j1 = ai2,j2 = . . . = aigs ,jgs
= s. 646

For each a ∈ [gs], partition the IVAs Uia,ja into gs − 1 647

subblocks, and label them with the other gs − 1 column 648

indices, i.e., 649

Uia,ja =
{
Ujb

ia,ja
: b ∈ [gs]\{a}

}
, ∀ a ∈ [gs]. (26) 650

Intuitively, node ja needs Uia,ja , which is partitioned 651

into subblocks in (26). The subblock Ujb

ia,ja
will be 652

retrieved from the signal sent by node jb for each 653

b ∈ [gs]\{a}. Thus, each node jb needs to send all 654

subblocks with superscript jb. Specifically, node jb will 655

XOR all subblocks {Ujb

ia,ja
: a ∈ [gs]\{b}}. In particular, 656

for s ∈ Ak, the signal Xk
s is formed accordingly by node 657

k, i.e., let s = ai,j , and 658

Xk
s �

⊕
(i,j)∈[F]×([K]\{k}) :

ai,j=s

Uk
i,j . (27) 659

5504 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

Then node k multicasts the signal660

Xk =
{
Xk

s : s ∈ Ik ∪ Ak

}
.661

3) Reduce Phase: Node k has to compute all IVAs in662 ⋃
i∈[F]

Ui,k.663

In the map phase, node k has already computed all IVAs664

in C(1)
k . It thus remains to compute all IVAs in665 ⋃

i∈[F] :

ai,k �=∗

Ui,k.666

Fix an arbitrary i ∈ [F] such that ai,k �= ∗. Set s = ai,k.667

If s ∈ Ak, each subset Uj
i,k in (26) can be restored by668

node k from the signal Xj
s sent by node j (see (27)):669

Xj
s =

⊕
(l,d)∈[F]×([K]\{j}) :

al,d=s

Uj
l,d. (28)670

In fact, for each Uj
l,d in (28), if d = k, then al,d = ai,k =671

s implies l = i by the PDA property a); if d �= k,672

then al,d = ai,k = s ∈ Ak. This indicates that, the673

IVAs in Uj
l,d have been computed by node k according674

to (23) and (26). Therefore, Uj
i,k can be decoded from675

(28). If s /∈ Ak, then s ∈ I by (19). There exists thus676

an index j ∈ [K]\{k} such that s ∈ Ij and therefore,677

by (25), the subset Ui,k can be recovered from the signal678

Xj
s sent by node j.679

Example 4: To have an idea of how to use Comp-PDAs680

to construct coded computing schemes, let us consider681

a toy example with the following 3-regular (3, 3, 6, 1)682

Comp-PDA A.683

A =

⎡⎣ ∗ 1 ∗
∗ ∗ 1
1 ∗ ∗

⎤⎦ (29)684

We can derive a coded computing scheme for the com-685

putation task in Fig. 1 with K = 3 nodes. The scheme686

is depicted in Fig. 4. The top-most line in each of the687

three boxes indicates the files stored at the node. Below688

this line, is a rectangle indicating the map functions. The689

computed IVAs are depicted below the rectangle, where red690

circles indicate IVAs {v1,1, . . . , v1,6}, green squares IVAs691

{v2,1, . . . , v2,6}, and blue triangles IVAs {v3,1, . . . , v3,6}. The692

dashed circles/squares/triangles stand for the IVAs that are not693

computed from the stored files. The last line of each box694

indicates the IVAs that the node needs to learn during the695

shuffle phase.696

The N = 6 files are first partitioned into F = 3 batches697

W1 = {w1, w2}, W2 = {w3, w4}, and W3 = {w5, w6},698

which are associated to the rows 1, 2, and 3, respectively. The699

three nodes 1, 2, and 3 are associated with the columns 1,700

2, and 3, respectively. The “∗”-symbols in the Comp-PDA701

describe the storage operations. Each node stores all the files702

Fig. 4. A coded computing scheme from A in (29) (original image from [4]).

of the batches that have a “∗”-symbol in the corresponding 703

column. For example, node 1, which is associated with the 704

first column of the Comp-PDA, stores the files in batches W1 705

and W2, because they are associated with the first two rows. 706

Node 2, which is associated with the second column, stores the 707

files in batches W2 and W3; and node 3, which is associated 708

with the third column, stores the files in batches W1 and W3. 709

The ordinary symbols in the Comp-PDA describe the shuf- 710

fling operations. And indirectly also some of the computations 711

of IVAs during the map phase. Each ordinary symbol entry in 712

the array denotes the IVAs computed from the files in the 713

batch corresponding to its row index for the output function 714

computed by the node corresponding to its column index. 715

In fact, during the map phase, each node first computes all 716

its desired IVAs which it can obtain from its locally stored 717

batches. Specifically, node 1 first computes the circle IVAs 718

of files 1, 2, 3, 4 pertaining to batches W1 and W2; node 2 719

first computes the square IVAs of files 3, 4, 5, 6 pertaining to 720

batches W2 and W3; and node 3 first computes the triangle 721

IVAs of files 1, 2, 5, 6 pertaining to batches W1 and W3. Then, 722

it computes all the IVAs indicated by the ordinary symbol 723

entries except for the ones in its own column. Specifically, 724

node 1 computes the square IVAs 1, 2 and the triangle IVAs 725

3, 4, node 2 computes the triangle IVAs 3, 4 and the circle 726

IVAs 5, 6, and node 3 computes the square IVAs 1, 2 and the 727

circle IVAs 5, 6. 728

The signals are formed as follows. Notice that node 1 needs 729

the circle IVAs 5, 6, and they are expected to be retrieved 730

from node 2 and 3 respectively. Similarly, node 2 (node 3 731

resp.) needs the square IVAs 1, 2 (triangles 3, 4 resp.) and 732

hence they are expected to be retrieved from node 1 and 3 733

(node 1 and 2) respectively. Thus, each node sends the XOR 734

of the IVAs it should provide to other nodes as illustrated in 735

Fig. 4. Moreover, given the signals they sent and the IVAs 736

they computed locally, node 1 can recover all the circle IVAs, 737

node 2 can recover all square IVAs, and node 3 can recover 738

all triangle IVAs. 739

Each node k then terminates the reduce phase by applying 740

the reduce function hk to all its recovered IVAs. 741

B. Performance Analysis 742

We analyze the performance of the scheme proposed in the 743

preceding subsection. 744

YAN et al.: STORAGE-COMPUTATION-COMMUNICATION TRADEOFF IN DISTRIBUTED COMPUTING 5505

1) Storage Load: Since the Comp-PDA A has T entries745

that are “∗” symbols and each “∗” symbol indicates that746

a batch of η = N
F files is stored at a given node, see747

(20), the storage load of the proposed scheme is:748

r =
∑K

k=1 |Mk|
N

=
T · η
N

=
T

F
.749

2) Computation Load: Since C(1)
k ∩ C(2)

k = ∅, we have750

|Ck| = |C(1)
k | + |C(2)

k |. By (22) and (23),751

K∑
k=1

|C(1)
k | = T · η,752

K∑
k=1

|C(2)
k | =

K∑
k=1

[
|Ik| · η +

∑
s∈Ak

(gs − 1) · η
]

753

= |I| · η +
∑

s∈[S]\I
gs(gs − 1)η,754

where recall that gs stands for the number s symbols755

in A. The computation load of the proposed scheme is756

then757

c =
∑K

k=1 |Ck|
NK

758

=
T · η + |I| · η +

∑
s∈[S]\I gs(gs − 1) · η
NK

759

=
T

KF
+

|I|
KF

+
∑

s∈[S]\I

gs(gs − 1)
KF

. (30)760

Recall also that St, t ∈ [K], stands for the number of761

ordinary symbols that occur t times in A and that θt762

stands for the fraction of ordinary symbols that occur t763

times, i.e.,764

θt =
Stt

KF − T
, ∀ t ∈ [K].765

Then by (30), the computation load of the proposed766

scheme is767

c =
T

KF
+

S1

KF
+

K∑
t=2

Stt(t− 1)
KF

768

=
T

KF
+

S1

KF − T
· KF − T

KF
769

+
K∑

t=2

Stt

KF − T
· KF − T

KF
· (t− 1)770

=
T

KF
+
(

1 − T

KF

)
·
(
θ1 +

K∑
t=2

θt(t− 1)

)
771

=
T

KF
+
(

1 − T

KF

)
·

K∑
t=2

θ�t(t− 1),772

where θ�t was defined in (10).773

3) Communication Load: Each set of IVAs Ui,j consists of774

N
F V = ηV bits. For each k ∈ [K], node k sends a signal775

Xk
s for each s ∈ Ik ∪ Ak. For each s ∈ Ik, by (25),776

Xk
s consists of ηV bits. For each s ∈ Ak, consider now777

a pair (i, j) where the entry ai,j is an ordinary symbol778

and occurs gs times in the Comp-PDA A, where gs ≥ 2779

by definition of Ak. Then, each subblock Uk
i,j consists 780

of ηV
gs−1 bits, and by (27) the signal Xk

s also consists 781

of ηV
gs−1 bits. The total length of the signal Xk is thus 782

lk = |Ik| · η ·V +
∑

s∈Ak

η·V
gs−1 , and the communication 783

load of the proposed scheme: 784

LA =
∑K

k=1 lk
NKV

785

=
1

NKV
·

K∑
k=1

[
|Ik| · η · V +

∑
k∈Ak

η · V
gs − 1

]
786

=
1
KF

·

⎡⎣|I| + ∑
s∈[S]\I

gs

gs − 1

⎤⎦ 787

=
1
KF

·
(
S1 +

K∑
t=2

Stt

t− 1

)
788

=
KF − T

KF
·
(

S1

KF − T
+

K∑
t=2

Stt

KF−T · 1
t−1

)
789

=
(

1 − T

KF

)
·
(
θ1 +

K∑
t=2

θt

t− 1

)
790

=
(

1 − T

KF

)
·

K∑
t=2

θ�t
t− 1

. 791

C. File Complexity of the Proposed Schemes 792

To implement the scheme in Subsection V-A, the files are 793

partitioned into F batches so that each batch contains η = 794

N
F > 0 files. It is assumed that η is a positive integer. The 795

smallest number of files N where this assumption can be met 796

is F . Therefore, the file complexity of the scheme is F . 797

VI. ACHIEVING THE FUNDAMENTAL SCC REGION 798

(PROOF OF THEOREM 2) 799

In Corollary 2, we have shown that the SCC triple Pi 800

(i ∈ [K]) is achievable. Therefore, any point on the triangle 801

�Pi−1PiPK (i ∈ [2 : K − 1]) can also be achieved by 802

memory- and time- sharing between the points Pi−1, Pi and 803

PK . This proves the achievability of the surface O. In the 804

following, we only need to prove the converse and identify 805

the Comp-PDAs that achieve the optimal tradeoff surface. 806

A. Converse 807

Fix a map-shuffle-reduce procedure, and let M = 808

{Mk}K
k=1, C = {Ck}K

k=1 be their file and IVA allocation. 809

Let further (r, c, L) denote the corresponding storage load, 810

computation load, and communication load, then 811

r =
∑K

k=1 |Mk|
N

, (31) 812

c =
∑K

k=1 |Ck|
NK

, (32) 813

L ≥
∑K

k=1H(Xk)
NKV

. (33) 814

5506 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

For any k ∈ [K] and nonempty S ⊆ [K]\{k}, define815

Bk,S := {vk,n : vk,n is exclusively computed by816

the nodes in S}, (34a)817

B̃k := {vk,n : vk,n is computed by node k} . (34b)818

Let bk,S be the cardinality of the set Bk,S and b̃k be the819

cardinality of B̃k. Notice that, the subsets {Bk,S : S ⊆820

[K]\{k},S �= ∅} and B̃k form a partition of the IVAs Vk,821

thus822

b̃k +
∑

S⊆[K],S�=∅
bk,S = N. (35)823

For each j ∈ [K − 1], the set of IVAs not computed locally824

but exclusively computed by j other nodes are825

Bj =
⋃

k∈[K]

⋃
S⊆[K]\{k},|S|=j

Bk,S .826

Then the cardinality of set Bj is given by827

bj �
∑

k∈[K]

∑
S⊆[K],|S|=j

bk,S , ∀ j ∈ [K − 1]. (36)828

We need the following two lemmas.829

Lemma 1: The sum of entropies of the signals have the830

following bound:831

K∑
k=1

H(Xk) ≥ V ·
K−1∑
j=1

bj
j
.832

Proof: By the lower bound of data exchange problem [43,833

Theorem 1], the sum of the entropies is lower bounded by834

K∑
k=1

H(Xk)835

≥ V ·
∑

k∈[K]

∑
S⊆[K]\{k},S�=∅

bk,S · 1
|S|836

= V ·
∑

k∈[K]

K−1∑
j=1

∑
S⊆[K]\{k},|S|=j

bk,S · 1
|S|837

= V ·
K−1∑
j=1

1
j
·
∑

k∈[K]

∑
S⊆[K]\{k},|S|=j

bk,S838

(a)
= V ·

K−1∑
j=1

bj
j
,839

where (a) follows from (36). �840

Remark 6: Lemma 1 is proved by following the steps in841

the proof of [5, Lemma 1] but here we replace the set of IVAs842

that can be computed at a given node k by the set of IVAs843

that are effectively computed at this node. The proof steps844

remain valid, and the so obtained converse is also tight in our845

more general setup. After the initial submission of this article,846

a reviewer pointed out that the computational constraint “each847

node computes all IVAs it can compute” does not affect the848

lower bound. An observation subsequently also made in [42].849

For conciseness and completeness, here we proved Lemma 1850

based on the lower bound in [43, Theorem 1].851

Lemma 2: The parameters b1, . . . , bK−1 defined in (36) 852

satisfy 853

K−1∑
j=1

bj ≥ N(K − r), (37) 854

K−1∑
j=1

(j − 1)bj ≤ (c− 1)NK. (38) 855

Proof: Summing over k ∈ [K] in (35), together with (36), 856

K∑
k=1

b̃k +
K−1∑
j=1

bj = NK. (39) 857

Moreover, since each node k must store file wn when vk,n ∈ 858

B̃k, we have b̃k ≤ |Mk|, and by (31), 859

K∑
k=1

b̃k ≤
K∑

k=1

|Mk| = rN. (40) 860

Also, for k ∈ [K] and j ∈ [K−1], IVAs B̃k must be computed 861

at node k, and IVAs Bj must be computed at j nodes. Thus 862

by (32), 863

K∑
k=1

b̃k +
K−1∑
j=1

jbj ≤
K∑

k=1

|Ck| = cNK. (41) 864

Combining (39) with (40) and (41) yields (37) and (38), 865

respectively. � 866

Now, let us define, for each i ∈ [K], 867

ci � r

K
+
(
1 − r

K

)
i, (42) 868

and let for a fixed i ∈ {2, . . . ,K−1}, the parameters λi, μi ∈ 869

R
+ be such that 870

λix+ μi|x=ci−1 =
1

ci−1 − r/K

(
1 − r

K

)2

871

=
1

i− 1

(
1 − r

K

)
, (43) 872

λix+ μi|x=ci =
1

ci − r/K

(
1 − r

K

)2

873

=
1
i

(
1 − r

K

)
. (44) 874

Notice that by (42), (43), and (44), the following three 875

relationships hold: 876

λi = − 1
i(i− 1)

< 0, (45) 877

μi =
2
i

(
1 − r

K

)
+

1
i(i− 1)

> 0, (46) 878

λi + μi =
2
i

(
1 − r

K

)
> 0. (47) 879

Moreover, by its convexity over x ∈ [1,+∞), the function 880

1
x−r/K

(
1 − r

K

)2− (λix+μi) must be nonnegative outside of 881

the interval formed by the two zeros, i.e., 882

1
x− r/K

(
1 − r

K

)2

≥ λix+ μi, 883

∀x ∈ [1, ci−1] ∪ [ci,∞). (48) 884

YAN et al.: STORAGE-COMPUTATION-COMMUNICATION TRADEOFF IN DISTRIBUTED COMPUTING 5507

Therefore,885

1
cj − r/K

(
1 − r

K

)2

≥ λicj + μi, ∀j ∈ [K − 1]. (49)886

Back to the converse, from (33), the communication load L887

is lower bounded as888

L ≥
∑K

k=1H(Xk)
NKV

889

(a)

≥
K−1∑
j=1

bj
NK

· 1
j

890

(b)
=

1
N(K − r)

·
K−1∑
j=1

bj ·
1

cj − r/K

(
1 − r

K

)2

891

(c)

≥ 1
N(K − r)

K−1∑
j=1

bj (λicj + μi)892

=
1

N(K − r)

K−1∑
j=1

bj

(
λi

((
1 − r

K

)
j +

r

K

)
+ μi

)
893

=
1

N(K − r)
·
(
λi

(
1 − r

K

)
·

K−1∑
j=1

jbj894

+
(
λi
r

K
+ μi

)
·

K−1∑
j=1

bj

)
895

=
λi

NK
·

K−1∑
j=1

(j − 1)bj +
λi + μi

N(K − r)
·

K−1∑
j=1

bj896

(d)

≥ λi

NK
· (c− 1)NK +

λi + μi

N(K − r)
·N(K − r)897

= λic+ μi898

(e)
= − 1

i(i− 1)
c− 2

Ki
r +

2i− 1
i(i− 1)

, (50)899

where (a) follows from Lemma 1; (b) follows from (42);900

(c) follows from (49); (d) follows from (37), (38) and (45),901

(47); and (e) follows from (45), (46). Since the SCC triples902

Pi−1, Pi, and PK defined in (13) satisfy inequality (50) with903

equality, the above inequalities indicate that all feasible triples904

(r, c, L) must lie above the plane containing �Pi−1PiPK .905

Furthermore, the converse in [5] (cf. (15)) implies that, for906

any c, we have907

L ≥ − 1
i(i+ 1)

r +
1
i

+
1

i+ 1
− 1
K
, i ∈ [K − 1].908

Therefore, all feasible triples (r, c, L) must lie above909

the plane containing P1, P2, Q2 and the planes containing910

Pi, Pi+1, Qi+1, Qi, for i = 2, . . . ,K−1, respectively. In con-911

clusion, all feasible (r, c, L) must lie above the surface F .912

B. Comp-PDAs Achieving the Optimal SCC Tradeoff Surface913

Fix a Comp-PDA A, and let rA, cA, LA denote respectively914

the storage, computation, and communication loads of the915

associated coded computing scheme. Obviously, A achieves916

the point PK if, and only if, it is trivial. In the following,917

we assume that A is a non-trivial Comp-PDA, in which case918

rA < K .919

As before, let θt denote the fraction of ordinary symbols 920

that occur exactly t times, for each t ∈ [K] and define θ�t as 921

in (10). Then for each t ∈ [2 : K], define 922

c
(t)
A � T

KF
+
(

1 − T

KF

)
(t− 1) (51a) 923

L
(t)
A � 1

t− 1

(
1 − T

KF

)
(51b) 924

and notice that by Theorem 1: 925

rA =
T

F
(52a) 926

cA =
K∑

t=2

θ�tc
(t)
A (52b) 927

LA =
K∑

t=2

θ�tL
(t)
A . (52c) 928

Fix i ∈ [2 : K − 1] and define 929

βi � − 1
i(i− 1)

, (53a) 930

γi � 2
i

(
1 − T

KF

)
+

1
i(i− 1)

. (53b) 931

Now, recall that (rA, cA, LA) lies on the triangle 932

�Pi−1PiPK if, and only if, 933

LA = − 1
i(i− 1)

cA − 2
Ki

rA +
2i− 1
i(i− 1)

. (54) 934

In the following, we show that (54) holds if, and only if, 935

θ�t = 0, ∀ t ∈ [2 : K]\{i, i+ 1}. (55) 936

With the definition of θ�t in (10), this proves that a Comp-PDA 937

achieves a point on the triangle �Pi−1PiPK if, and only if, 938

the following condition holds: 939

• if i = 2, then each ordinary symbol of the Comp-PDA 940

occurs at most 3 times; 941

• if i ∈ [3 : K−1], then the Comp-PDA is almost i-regular. 942

This concludes the proof of Theorem 2 and also proves 943

Remark 4. 944

Next, we write 945

LA =
K∑

t=2

θ�tL
(t)
A 946

(a)
=

K∑
t=2

θ�t ·
1

c
(t)
A − T/(KF)

(
1 − T

KF

)2

947

(b)

≥
K∑

t=2

θ�t ·
(
βic

(t)
A + γi

)
948

(c)
= βicA + γi 949

(d)
= − 1

i(i− 1)
cA +

2
i

(
1 − T

KF

)
+

1
i(i− 1)

950

(e)
= − 1

i(i− 1)
cA − 2

Ki
rA +

2i− 1
i(i− 1)

, (56) 951

where (a) holds by simple algebraic manipulations on (51); 952

(b) is proved below; (c) holds by (52) and because
∑K

t=2 θ
�
t = 953∑K

t=1 θt = 1; (d) holds by (53); and (e) holds by (52a). 954

5508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

To see why step (b) holds, define the two functions over955

the interval
(

T
KF ,+∞

)
,956

f1 : c �→ βic+ γi,957

f2 : c �→ 1
c− T/(KF)

(
1 − T

KF

)2

.958

Notice that f2 is strictly convex and it intersects f1 at the959

points
(
c
(i)
A , L

(i)
A

)
and

(
c
(i+1)
A , L

(i+1)
A

)
. Therefore,960

1
c− T/(KF)

(
1 − T

KF

)2

≥ βic+ γi,961

∀ c ∈
[
1, c(i)A

]
∪
[
c
(i+1)
A ,∞

)
,962

with equality if and only if c ∈
{
c
(i)
A , c

(i+1)
A

}
. In particular,963

1

c
(t)
A − T/(KF)

(
1 − T

KF

)2

≥ βic
(t)
A + γi,964

∀ t ∈ [2 : K],965

with equality if and only if t ∈ {i, i+ 1}.966

Combining this with (56), we conclude that (54) holds if967

and only if θ�t = 0 for all t ∈ [2 : K]\{i, i + 1}, i.e., (55)968

holds.969

VII. REDUCING THE FILE COMPLEXITY (PROOF OF970

THEOREMS 3 AND 4)971

A. Lowest File Complexity of Pi (Proof of Theorem 3)972

For i = K , the conclusion F ≥
(
K
K

)
= 1 is trivial.973

We thus assume in the following that i ∈ [2 : K − 1].974

Fix such an i and choose a (K,F, T, S) Comp-PDA A that975

achieves the point Pi. Notice that by Remark 4, A needs to976

be (i+ 1)-regular. In the following, we show that A needs to977

have exactly i “∗” symbols in each row. By Lemma 3 at the978

end of this subsection, this will conclude the proof.979

Notice first that if an ordinary symbol occurs i + 1 times,980

then each row where it occurs must contain at least i “∗”981

entries. (Namely in the columns where this symbol occurs in982

the other rows.) Thus, if tj denotes the number of “∗” entries983

in the j-th row of A, then984

tj ≥ i, ∀ j ∈ [F], (57)985

and by summing over j ∈ [F]:986

F∑
j=1

tj ≥ iF. (58)987

However, since by Theorem 1 and Corollary 2 for the point988

Pi the storage load is rPi = T
F = i :989

F∑
j=1

tj = T = iF,990

and thus both the inequalities (57) and (58) must hold with991

equality. Therefore, each row of A has exactly i “∗” entries992

and the following lemma (which rephrases [33, Lemma 2])993

concludes the proof.994

Lemma 3 (From [33]): Consider a g-regular (K,F, T, S) 995

Comp-PDA with exactly g − 1 “∗” entries in each row where 996

g ≥ 2. Then F ≥
(

K
g−1

)
. 997

B. New Comp-PDAs With Reduced File Complexity 998

(Proof of Theorem 4) 999

First, the case for q = 1 is trivial, since Dq = PK = 1000

(K, 1, 0). In this case, the Comp-PDA is the trivial (K, 1,K, 0) 1001

PDA with only “∗” entries. 1002

In the following, we consider an arbitrary integer q such 1003

that 1004

1 ≤ q <
K

2
1005

and set 1006

m �
⌈
K

q

⌉
− 1. 1007

We construct an almost
⌊

K
q

⌋
-regular (K,F, T, S) Comp-PDA 1008

with 1009

F = qm (59) 1010

that achieves a point on the triangle �Pm−1PmPK . 1011

To present the new construction, we first introduce some 1012

notations. For a given j ∈ [qm], let (jm−1, jm−2, . . . , j0) ∈ 1013

Z
m
q be the unique tuple that satisfies: 1014

j − 1 = jm−1q
m−1 + jm−2q

m−2 + . . .+ j0. 1015

For convenience, we will write 1016

j = (jm−1, jm−2, . . . , j0)q. 1017

Similarly, for a given s ∈ [(q − 1)qm], let 1018

(sm, sm−1, . . . , s0) ∈ Zq−1 × Z
m
q be the unique tuple 1019

that satisfies: 1020

s− 1 = smq
m + sm−1q

m−1 + sm−2q
m−2 + . . .+ s0, 1021

For convenience of notation, we will write 1022

s = (sm, sm−1, . . . , s0)q−1
q . 1023

For a given k ∈ [K], let (k1, k0) be the unique pair that 1024

satisfies 1025

k − 1 = k1q + k0 1026

for some k1 ∈ [0 : m] and k0 ∈ [0 : q − 1]. We will write 1027

k = (k1, k0)m+1
q . 1028

Construction 1: Consider a fixed positive integersK and let 1029

q,m, F be given as in (59). Construct the array AK
q = [aj,k] 1030

as follows 1031

• If k ≤ qm: 1032

aj,k = 1033⎧⎪⎨⎪⎩
∗, if jk1 = k0(
jk1 �q k0 �q 1, jm−1, jm−2,

. . . , jk1+1, k0, jk1−1, . . . , j0
)q−1

q
, if jk1 �= k0

1034

(60) 1035

YAN et al.: STORAGE-COMPUTATION-COMMUNICATION TRADEOFF IN DISTRIBUTED COMPUTING 5509

TABLE I

THE CONSTRUCTION OF ARRAY A5
2

• and if k > qm:1036

aj,k =1037 ⎧⎪⎨⎪⎩
∗, if

∑m−1
l=0 jl = k0(

k0 �q

∑m−1
l=0 jl �q 1,

jm−1, jm−2, . . . , j0
)m+1

q
, if

∑m−1
l=0 jl �= k0

(61)

1038

where “�q” denotes minus modulo q, and the sum operation1039

“
∑

” is in modulo q.1040

Table I depicts A5
2. It coincides with the Comp-PDA A in1041

(9), but uses a different notation for the ordinary symbols.1042

In the following lemma, we prove that all arrays from1043

Construction 1 are indeed PDA.1044

Lemma 4: For any given positive integers K and q such1045

that 2 ≤ q < K
2 , the array AK

q is an almost g-regular1046 (
K, qm,Kqm−1, (q − 1)qm

)
Comp-PDA for g �

⌊
K
q

⌋
and1047

m �
K
q � − 1.1048

Proof: See Appendix B. �1049

For q|K the Comp-PDA AK
q specializes to the PDA pro-1050

posed in [33, Theorem 4].1051

We now prove that the proposed Comp-PDA AK
q satis-1052

fies the properties claimed in the theorem. Lemma 4 and1053

Theorem 1 readily yield (16). Next, we prove (17), i.e., that1054

Dq is close to the SCC triple1055

Pm =
(
m,m

(
1 − m− 1

K

)
,

1
m

(
1 − m

K

))
.1056

Combining this with (16), yields1057

rPm − rDq = m− K

q
, (62)1058

cPm − cDq1059

= m

(
1 − m− 1

K

)
− 1
q
−m

(
1 − 1

q

)(
2 − (m+ 1)q

K

)
1060

= − 1
K
m2 +

(
1 +

1
K

)
m− 1

q
1061

+
q − 1
K

m2 − (2K − q)(q − 1)
Kq

m1062

=
q − 2
K

m2 +
q2 −Kq + 2K

Kq
m− 1

q
, (63)1063

LPm − LDq1064

=
1
m

(
1 − m

K

)
−
(

1
m

+
(m+ 1)q −K

K(m− 1)

)
·
(

1 − 1
q

)
1065

=
1
m

− 1
K

− 1
m

(
1 − 1

q

)
− (m+ 1)q −K

K(m− 1)

(
1 − 1

q

)
1066

=
1
mq

− 1
K

− (m− 1)q + 2q −K

K(m− 1)
· q − 1

q
1067

=
1
mq

+
(K − 2q)(q − 1)
K(m− 1)q

− q

K
. (64) 1068

Therefore, from K
q − 1 ≤ m ≤ K

q and the above evaluations, 1069

1) (17a) follows immediately from (62); 1070

2) (63) is quadratic in m and increases with m over 1071

the interval
[

K
q − 1, K

q

]
; 1072

3) since LPm − LDq , given by (64), decreases with m, 1073

we obtain (17c). 1074

Finally, we compare the file complexities of Dq and Pm: 1075

FPm =
(
K

m

)
1076

(a)

≥
(
mq

m

)
1077

=
(mq)!

m! (m(q − 1))!
1078

(b)

≥
√

2π
e2

(mq)mq√mq
(m)m

√
m(m(q − 1))m(q−1)

√
m(q − 1)

1079

=
√

2π
e2

√
q

m(q − 1)
·
(

qq

(q − 1)q−1

)m

1080

=
√

2π
e2

√
q

m(q − 1)

(
q

q − 1

)m(q−1)

FDq , 1081

where (a) follows since K ≥ mq, (b) by applying Stirling’s 1082

approximation
√

2π nn+ 1
2 e−n ≤ n! ≤ e nn+ 1

2 e−n to both the 1083

numerator and the denominator. 1084

VIII. CONCLUSION 1085

We presented a framework for designing schemes from 1086

Comp-PDAs (placement delivery arrays for coded comput- 1087

ing) for map-reduce like distributed computing systems, and 1088

expressed the storage, computation, communication (SCC) 1089

loads of the schemes in terms of the Comp-PDA parameters. 1090

The pareto optimal SCC tradeoff surface and the set of 1091

Comp-PDAs achieving these surface points were completely 1092

characterized. Moreover, we showed that while the corner 1093

points of the pareto optimal SCC surface can only be achieved 1094

with a large number of files, other points on this surface, 1095

which lie close to the corner points, can be achieved with 1096

a significantly smaller number of files. 1097

5510 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

APPENDIX A1098

THE PROPERTIES OF THE SURFACES F AND O1099

A. Proof of Properties of Surface F1100

That F is connected and continuous, follows simply because1101

it can be obtained by successively pasting a triangle or a1102

trapezoid to the boundary of the previously obtained region.1103

We turn to prove that for each pair (r, c) satisfying (8a),1104

there exists exactly one point (r, c, L) ∈ F . That there exists1105

at leaset one such point follows by the continuity of F and1106

because the triangle obtained by projecting the line segments1107

P1Q2, Q2Q3, Q3Q4, Q4Q5, …, QK−1QK , QKPK , PKP11108

onto the (r, c)-plane, contains all extreme points (r, c) that1109

satisfy (8a). On the other hand, for each (r, c) there is not more1110

than one point (r, c, L) ∈ F , because none of the triangles1111

and trapezoids that build F is vertical and the projections of1112

any two facets in F onto the (r, c)-plane have nonoverlapping1113

interiors.1114

B. Proof of Optimal Tradeoff Surface in Theorem 21115

We now prove that O is the optimal tradeoff surface of the1116

region R. Obviously, all pareto-optimal points must lie on the1117

surface F . Since the triangle �P1P2Q2 and the trapezoids1118

�PiQiQi+1Pi+1 (i ∈ [2 : K − 1]) are parallel to −→e2, all1119

points in the interior of these facets cannot be pareto-optimal.1120

In the following, we prove that, all the points on the triangles1121

�Pi−1PiPK (i ∈ [2 : K − 1]) must be pareto-optimal.1122

For any (r, c) satisfying (8a), let L∗(r, c) be the function1123

such that (r, c, L∗(r, c)) ∈ F . Then by (50), it has strictly1124

positive directional derivative in any direction (r ≤ 0, c ≤ 0)1125

in the interior of the projection of �Pi−1PiPK on the (r, c)1126

plane.1127

Fix now a triple (r, c, L∗(r, c)) ∈ O. We show that1128

it is pareto-optimal. To this end, consider any other triple1129

(r�, c�, L�) ∈ R that satisfies1130

r� ≤ r, c� ≤ c, L� ≤ L∗(r, c). (65)1131

We show by contradiction that all three inequalities must hold1132

with equality. We distinguish between triples (r�, c�, L�) for1133

which1134

(r�, c�, L∗(r�, c�)) ∈ O, (66)1135

and triples where this is not the case.1136

1) Assume that (66) holds. If r� = r and c� = c, then1137

obviously, L� ≥ L∗(r, c), thus all equalities in (65) hold.1138

If r� < r or c� < c, then1139

L∗(r�, c�) > L∗(r, c), (67)1140

simply because the directional derivative along (r� −1141

r, c� − c) is strictly positive by (50). Since (r�, c�, L�) ∈1142

R, we have L� ≥ L∗(r�, c�) and thus by (67), L� >1143

L∗(r, c), which contradicts (65).1144

2) Assume now that (66) is violated. Then,1145

(r�, c�, L∗(r�, c�)) must lie on at least one of the1146

K − 1 facets1147

�P1P2Q2 or � PiQiQi+1Pi+1, i = 2, . . . ,K − 1.1148

As they are all parallel to −→e2, there exists c�� < c� ≤ 1149

c such that, (r�, c��, L∗(r�, c��)) ∈ O and L∗(r�, c��) = 1150

L∗(r�, c�). Therefore, 1151

L� ≥ L∗(r�, c�) = L∗(r�, c��)
(a)
> L∗(r, c), (68) 1152

where (a) follows by proof step 1). But (68) contradicts 1153

with (65). 1154

From the above analysis, we conclude that, any point on O 1155

is pareto-optimal. 1156

APPENDIX B 1157

PROOF OF LEMMA 4 1158

It is easy to verify that AK
q is a qm × K array for any 1159

allowed choice of K and q. Each column contains exactly 1160

qm−1 “∗” symbols and each ordinary symbol takes value in 1161

[(q − 1)qm]. Thus, 1162

FAK
q

= qm
1163

TAK
q

= qm−1K 1164

SAK
q

= (q − 1)qm. 1165

We now prove that AK
q is indeed a PDA, i.e., we show 1166

that properties a) and b) in Definition 7 hold. By (60) and 1167

(61), the entry of AK
q in row j = (jm−1, jm−2, . . . , j0)q ∈ 1168

[qm] and column k = (k1, k0)m+1
q ∈ [K] equals s = 1169

(sm, sm−1, . . . , s0)q−1
q ∈ [(q − 1)qm] if, and only if, the 1170

following two conditions hold: 1171

1) when 0 ≤ k1 < m, 1172

j = (sm−1, . . . , sk1+1, 1173

sk1 ⊕q sm ⊕q 1, sk1−1, . . . , s0)q, (69) 1174

k = (k1, sk1)
m+1
q . (70) 1175

2) when k1 = m, 1176

j = (sm−1, sm−2, . . . , s0)q, (71) 1177

k =
(
k1,

m∑
l=0

sl ⊕q 1
)m+1

q
, (72) 1178

where in this section “⊕q” denotes addition modulo q. 1179

Assume now two pairs (j, k), (j�, k�) ∈ [F] × [K] so that 1180

the corresponding entries of AK
q are both equal to the same 1181

ordinary symbol s: 1182

aj,k = aj′,k′ = s. 1183

Let k = (k1, k0) and k� = (k�1, k
�
0). Notice now that by 1184

(69)–(72), if k1 = k�1 then also k0 = k�0, k = k�, and j = j�. 1185

We therefore restrict to the case k1 �= k�1. Assume without 1186

loss of generality that 0 ≤ k1 < k�1 ≤ m. In this case it can 1187

be shown that j1 and j�1 differ in their k�1 -th components, 1188

thus establishing that j �= j�. Distinguish the cases k�1 < m or 1189

k�1 = m (equivalently, k� ≤ qm or k� > qm). 1190

1) Consider the case k�1 < m, and notice that 0 ≤ sm ≤ 1191

q−2 and sm⊕q1 ∈ {1, 2, . . . , q−1}. Therefore, by (69): 1192

jk′
1

= sk′
1

�= sk′
1
⊕q sm ⊕q 1 = j�k′

1
, (73) 1193

YAN et al.: STORAGE-COMPUTATION-COMMUNICATION TRADEOFF IN DISTRIBUTED COMPUTING 5511

and hence j� �= j. Notice also that (70) implies sk′
1

= k�0.1194

Since jk′
1

= sk′
1

by (73), we conclude jk′
1

= k�0, and thus1195

the entry aj,k′ = ∗ by (60). Similar arguments where we1196

replace (j, k) with (j�, k�) yields that also aj′,k = ∗.1197

2) Consider now the case k�1 = m. By (69)–(72) and since1198

sm ⊕q 1 �= 0:1199

j�k1
= sk1 �= sk1 ⊕q sm ⊕q 1 = jk1 ,1200

and thus j �= j�. We now argue that aj,k′ = ∗. To this1201

end, notice that since k�1 = m, (72) implies k�0 =1202 ∑m
l=0 sl ⊕q 1; since k1 < m, (69) implies

∑m−1
l=0 jl =1203 ∑m

l=0 sl ⊕q 1. Therefore, we conclude
∑m−1

l=0 jl = k�01204

and thus aj,k′ = ∗ by (61). The proof that also entry1205

aj′,k = ∗, is similar to the case when k�1 < m and1206

omitted.1207

The above analysis indicates that the properties a) and b)1208

in Definition 7 hold in all cases and AK
q must be a PDA.1209

Moreover, by (60) and (61), it is obvious that AK
q is a1210

Comp-PDA.1211

It remains to prove that AK
q is g-regular for g =

⌊
K
q

⌋
.1212

In fact, for a given s = (sm, sm−1, . . . , s0)q−1
q ∈ [(q− 1)qm],1213

if it occurs in the row j = (jm−1, . . . , j0)q ∈ [qm] and column1214

k = (k1, k0)m+1
q ∈ [K], then1215

1) If k1 ∈ {0, 1, . . . ,m− 1}, (j, k) can be uniquely deter-1216

mined by (69) and (70). Therefore, each s ∈ [(q−1)qm]1217

occurs exactly m times in the first qm columns of AK
q ;1218

2) If k1 = m, by (71) and (72), and the fact 0 ≤ k0 < K−1219

qm, (j, k) can be uniquely determined if, and only if,1220

0 ≤
m∑

l=0

sl ⊕q 1 < K − qm. (74)1221

It is easy to enumerate that the number of1222

(sm, sm−1, . . . , s0) ∈ Zq−1 × Z
m
q satisfying (74)1223

is (K − qm)(q − 1)qm−1.1224

From the above analysis, we conclude that, there are (K −1225

qm)(q − 1)qm−1 of the (q − 1)qm ordinary symbols having1226

occurrence m+1. There are Kqm −Kqm−1 ordinary entries,1227

thus the fraction of entries having occurrence m+ 1 is1228

θm+1 =
(K − qm)(q − 1)qm−1

Kqm −Kqm−1
1229

= 1 − m((m+ 1)q −K)
K

1230

≤ 1.1231

If q does not divide K then θm+1 < 1 and AK
q is an almost-1232

regular Comp-PDA with g = m =
K
q � − 1 = �K

q �; if1233

q divides K , θm+1 = 1, then all ordinary symbols have1234

occurrence m + 1, thus, AK
q is a regular Comp-PDA with1235

g = m + 1 =
K
q � = �K

q �. Therefore, AK
q is an almost-1236

regular Comp-PDA with g = �K
q �.1237

REFERENCES1238

[1] Q. Yan, S. Yang, and M. Wigger, “Storage, computation, and communi-1239

cation: A fundamental tradeoff in distributed computing,” in Proc. IEEE1240

Inf. Theory Workshop (ITW), Guangzhou, China, Nov. 2018, pp. 1–5.1241

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on 1242

large clusters,” in Proc. 6th USENIX OSDI, Dec. 2004, pp. 1–13. 1243

[3] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: 1244

Distributed data-parallel programs from sequential building blocks,” in 1245

Proc. 2nd ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., Mar. 2007, 1246

pp. 59–72. 1247

[4] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Compressed coded 1248

distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, 1249

CO, USA, Jun. 2018, pp. 2032–2036. 1250

[5] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental 1251

tradeoff between computation and communication in distributed comput- 1252

ing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan. 2018. 1253

[6] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs dis- 1254

tributed computation: An alternative trade-off curve,” in Proc. IEEE Inf. 1255

Theory Workshop (ITW), Kaohsiung, Taiwan, Nov. 2017, pp. 279–283. 1256

[7] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, 1257

“Speeding up distributed machine learning using codes,” IEEE Trans. 1258

Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018. 1259

[8] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding 1260

framework for distributed computing with straggling servers,” in Proc. 1261

IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 1262

Dec. 2016, pp. 1–6. 1263

[9] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded 1264

computation over heterogeneous clusters,” in Proc. IEEE Int. Symp. Inf. 1265

Theory (ISIT), Aachen, Germany, Mar. 2017, pp. 2408–2412. 1266

[10] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: 1267

An optimal design for high-dimensional coded matrix multiplication,” 1268

in Proc. The 31st Annu. Conf. Neural Inf. Process. Syst. (NIPS), 1269

Long Beach, CA, USA, May 2017, pp. 1–11. 1270

[11] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation 1271

in distributed matrix multiplication: Fundamental limits and optimal 1272

coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, 1273

Jun. 2018, pp. 2022–2026. 1274

[12] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix 1275

multiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, 1276

Germany, Jun. 2017, pp. 2418–2422. 1277

[13] H. Park, K. Lee, J.-Y. Sohn, C. Suh, and J. Moon, “Hierarchical coding 1278

for distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), 1279

Vail, CO, USA, Jun. 2018, pp. 1630–1634. 1280

[14] F. Haddadpour and V. R. Cadambe, “Codes for distributed finite alphabet 1281

matrix-vector multiplication,” in Proc. IEEE Int. Symp. Inf. Theory 1282

(ISIT), Vail, CO, USA, Jun. 2018, pp. 1625–1629. 1283

[15] S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers 1284

in coded computation,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, 1285

USA, Jun. 2018, pp. 1988–1992. 1286

[16] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing 1287

massive-scale distributed matrix multiplication with d-dimensional prod- 1288

uct codes,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, 1289

Jun. 2018, pp. 1993–1997. 1290

[17] N. Ferdinand and S. C. Draper, “Hierarchical coded computation,” in 1291

Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018, 1292

pp. 1620–1624. 1293

[18] Q. Yu, S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “How to 1294

optimally allocate resources for coded distributed computing?” in Proc. 1295

IEEE Int. Conf. Commun. (ICC), Paris, France, May 2017, pp. 1–7. 1296

[19] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable 1297

framework for wireless distributed computing,” IEEE/ACM Trans. Netw., 1298

vol. 25, no. 5, pp. 2643–2653, Oct. 2017. 1299

[20] S. Li, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Edge-facilitated 1300

wireless distributed computing,” in Proc. IEEE Global Commun. Conf. 1301

(GLOBECOM), Washington, DC, USA, Dec. 2016, pp. 1–7. 1302

[21] F. Li, J. Chen, and Z. Wang, “Wireless map-reduce distributed comput- 1303

ing,” in Proc. IEEE Int. Symp. Inf. Theory, Vail, CO, USA, Jun. 2018, 1304

pp. 1286–1290. 1305

[22] E. Parrinello, E. Lampiris, and P. Elia, “Coded distributed comput- 1306

ing with node cooperation substantially increases speedup factors,” in 1307

Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018, 1308

pp. 1291–1295. 1309

[23] M. A. Attia and R. Tandon, “On the worst-case communication overhead 1310

for distributed data shuffling,” in Proc. 54th Annu. Allerton Conf. Com- 1311

mun., Control, Comput., Monticello, IL, USA, Sep. 2016, pp. 961–968. 1312

[24] M. A. Attia and R. Tandon, “Information theoretic limits of data 1313

shuffling for distributed learning,” in Proc. IEEE Global Commun. Conf. 1314

(GLOBECOM), Washington, DC, USA, Dec. 2016, pp. 1–6. 1315

5512 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

[25] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded data1316

shuffling,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO, USA,1317

Jun. 2018, pp. 716–720.1318

[26] L. Song, S. R. Srinivasavaradhan, and C. Fragouli, “The benefit of being1319

flexible in distributed computation,” in Proc. IEEE Inf. Theory Workshop1320

(ITW), Kaohsiung, Taiwan, Nov. 2017, pp. 289–293.1321

[27] S. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed computing1322

trade-offs with random connectivity,” in Proc. IEEE Int. Symp. Inf.1323

Theory (ISIT), Vail, CO, USA, Jun. 2018, pp. 1281–1285.1324

[28] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient1325

coding: Avoiding stragglers in synchronous gradient descent,” in Proc.1326

34th Int. Conf. Mach. Learn. (ICML), Aug. 2017, pp. 3368–3376.1327

[29] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding1328

from cyclic MDS codes and expander graphs,” IEEE Trans. Inf. Theory,1329

vol. 66, no. 12, pp. 7475–7489, Dec. 2020.1330

[30] Z. Charles and D. Papailiopoulos, “Gradient coding using the stochastic1331

block model,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO,1332

USA, Jun. 2018, pp. 1998–2002.1333

[31] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, “Improving distributed1334

gradient descent using Reed–Solomon codes,” in Proc. IEEE Int. Symp.1335

Inf. Theory (ISIT), Vail, CO, USA, Jun. 2018, pp. 2027–2031.1336

[32] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”1337

IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.1338

[33] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery1339

array design for centralized coded caching scheme,” IEEE Trans. Inf.1340

Theory, vol. 63, no. 9, pp. 5821–5833, Sep. 2017.1341

[34] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching1342

schemes: A hypergraph theoretical approach,” IEEE Trans. Inf. Theory,1343

vol. 64, no. 8, pp. 5755–5766, Aug. 2018.1344

[35] Q. Yan, X. Tang, Q. Chen, and M. Cheng, “Placement delivery array1345

design through strong edge coloring of bipartite graphs,” IEEE Commun.1346

Lett., vol. 22, no. 2, pp. 236–239, Feb. 2018.1347

[36] K. Konstantinidis and A. Ramamoorthy, “Leveraging coding techniques1348

for speeding up distributed computing,” in Proc. IEEE Global Commun.1349

Conf. (GLOBECOM), Abu Dhabi, United Arab Emirates, Dec. 2018,1350

pp. 1–6.1351

[37] K. Konstantinidis and A. Ramamoorthy, “Resolvable designs for speed-1352

ing up distributed computing,” IEEE/ACM Trans. Netw., vol. 28, no. 4,1353

pp. 1657–1670, Aug. 2020.1354

[38] N. Woolsey, R.-R. Chen, and M. Ji, “A new combinatorial design of1355

coded distributed computing,” in Proc. IEEE Int. Symp. Inf. Theory1356

(ISIT), Vail, CO, USA, Jun. 2018, pp. 726–730.1357

[39] Q. Yan, X. Tang, and Q. Chen, “Placement delivery array and its1358

applications,” in Proc. IEEE Inf. Theory Workshop (ITW), Guangzhou,1359

China, Nov. 2018, pp. 1–5.1360

[40] V. Ramkumar and P. V. Kumar, “Coded MapReduce schemes based on1361

placement delivery array,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),1362

Paris, France, Jul. 2019, pp. 3087–3091.1363

[41] Q. Yan, M. Wigger, S. Yang, and X. Tang, “A fundamental storage-1364

communication tradeoff for distriubted computing with straggling1365

nodes,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7311–7327,1366

Dec. 2020.1367

[42] Q. Yu, “Coded computing: A transformative framework for resilient,1368

secure, private, and communication efficient large scale distributed1369

computing,” Ph.D. dissertation, Dept. Elect. Comput. Eng., University1370

of Southern California, Los Angeles, CA, USA, Aug. 2020.1371

[43] P. Krishnan, L. Natarajan, and V. Lalitha, “An umbrella converse for1372

data exchange: Applied to caching, computing, shuffling & rebalancing,”1373

in Proc. IEEE Inf. Theory Workshop (ITW), Riva del Garda, Italy,1374

Apr. 2021, pp. 1–5.1375

[44] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:1376

Cambridge Univ. Press, 2004.1377

Qifa Yan (Member, IEEE) received the B.S. degree in mathematics and 1378

applied mathematics from Shanxi University, Taiyuan, China, in 2010, and 1379

the Ph.D. degree in communication and information system from the School 1380

of Information Science and Technology, Southwest Jiaotong University, 1381

Chengdu, China, in 2017. From November 2017 to October 2019, he was 1382

a Joint Post-Doctoral Researcher with Télécom Paris, Institut Politechnique 1383

de Paris, and the CentraleSupélec, Paris-Saclay University, France. From 1384

January 2020 to January 2021, he was a Post-Doctoral Research Fellow 1385

with the Department of Electrical and Computer Engineering, University of 1386

Illinois, Chicago, USA. He is currently an Assistant Professor with the School 1387

of Information Science and Technology, Southwest Jiaotong University. His 1388

research interests include caching networks, distributed computing, other fields 1389

related to wireless networks, information theory, and coding theory. 1390

Sheng Yang (Member, IEEE) received the B.E. degree in electrical engi- 1391

neering from Shanghai Jiao Tong University, Shanghai, China, in 2001, the 1392

diplôme d’ingénieur and the M.Sc. degree in electrical engineering from 1393

Telecom ParisTech, Paris, France, in 2004, and the Ph.D. degree from the 1394

Université de Pierre et Marie Curie (Paris VI) in 2007. From October 2007 to 1395

November 2008, he was with the Motorola Research Center, Gif-sur-Yvette, 1396

France, as a Senior Staff Research Engineer. Since December 2008, he has 1397

been with the CentraleSupélec, Paris-Saclay University, where he is currently a 1398

Full Professor. Since April 2015, he has been holding the Honorary Associate 1399

Professorship with the Department of Electrical and Electronic Engineering, 1400

The University of Hong Kong (HKU). He received the 2015 IEEE ComSoc 1401

Young Researcher Award for the Europe, Middle East, and Africa Region 1402

(EMEA). He was an Associate Editor of the IEEE TRANSACTIONS ON 1403

WIRELESS COMMUNICATIONS from 2015 to 2020. He is an Associate Editor 1404

of the IEEE TRANSACTIONS ON INFORMATION THEORY. 1405

Michèle Wigger (Senior Member, IEEE) received the M.Sc. degree (Hons.) 1406

in electrical engineering and the Ph.D. degree in electrical engineering 1407

from ETH Zurich in 2003 and 2008, respectively. In 2009, she was first a 1408

Post-Doctoral Fellow with the University of California, San Diego, USA, and 1409

then joined Telecom Paris, France, where she is currently a Full Professor. 1410

She has held a Visiting Professor appointments with the Technion-Israel 1411

Institute of Technology and ETH Zurich. Her research interests include 1412

multiterminal information theory, in particular in distributed source coding 1413

and in capacities of networks with states, feedback, and user cooperation or 1414

caching. She serves as an Associate Editor for Shannon Theory (2016–2019) 1415

and the IEEE TRANSACTIONS ON INFORMATION THEORY (since 2021) 1416

and as a Distinguished Lecturer of the IEEE Information Theory Society 1417

(2022–2023). Previously, she served as an Associate Editor for the IEEE 1418

COMMUNICATION LETTERS (2012–2015) and on the Board of Governors of 1419

the IEEE Information Theory Society (2017–2019). 1420

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

