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Abstract— Distributed computing has become one of the most
important frameworks in dealing with large computation tasks.
In this paper, we propose a systematic construction of coded
computing schemes for MapReduce-type distributed systems. The
construction builds upon placement delivery arrays (PDA), origi-
nally proposed by Yan et al. for coded caching schemes. The main
contributions of our work are three-fold. First, we identify a class
of PDAs, called Comp-PDAs, and show how to obtain a coded
computing scheme from any Comp-PDA. We also characterize
the normalized number of stored files (storage load), computed
intermediate values (computation load), and communicated bits
(communication load), of the obtained schemes in terms of the
Comp-PDA parameters. Then, we show that the performance
achieved by Comp-PDAs describing Maddah-Ali and Niesen’s
coded caching schemes matches a new information-theoretic con-
verse, thus establishing the fundamental region of all achievable
performance triples. In particular, we characterize all the Comp-
PDAs achieving the pareto-optimal storage, computation, and
communication (SCC) loads of the fundamental region. Finally,
we investigate the file complexity of the proposed schemes, i.e.,
the smallest number of files required for implementation. In par-
ticular, we describe Comp-PDAs that achieve pareto-optimal SCC
triples with significantly lower file complexity than the originally
proposed Comp-PDAs.

Index Terms— Distributed computing, storage, communication,
MapReduce, placement delivery array.

I. INTRODUCTION

ASSIVELY large distributed systems have emerged
as one of the most important forms to run big data
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Fig. 1. A computing task with N = 6 files and K = 3 output functions
(original image from [4]). The small and big red circles, green squares, and
blue triangles denote IVAs and results belonging to different output functions.

and machine learning algorithms, so that data-parallel com-
putations can be executed across clusters of many individ-
ual computing nodes. In particular, distributed programs like
MapReduce [2] and Dryad [3] have become popular and can
handle computing tasks involving data sizes as large as tens of
terabytes. As illustrated in Fig. 1 and detailed in the following,
computations in these systems are typically decomposed into
“map” functions and “reduce” functions.

Consider the task of computing K output functions at K
nodes and that each output function is of the form

on(wi, - .. hi(fr(wr), ..., fen(wn)), (1)
k=1, .. K.

,U}N) -

Here, each output function ¢ depends on all N data blocks
wi, ..., wy, but can be decomposed into:

o N map functions fi1,. ..
one block; and

e a reduce function hy that combines the outcomes of the
N map functions.

, fx,n, each only depending on

Computation of such functions can be performed in a
distributed way following three phases: In the first phase, the
map phase, each node k = 1,..., K locally stores a subset
of the input data My C {wi,...,wxn}, and calculates all
intermediate values (IVAs) that depend on the stored data:

Ch 2 {fyn(wy) :qe{l,.... K}, n€ M}

In the subsequent shuffle phase, the nodes exchange the IVAs
computed during the map phase, so that each node k is aware
of all the IVAs fj 1(w1),..., fe,n(wn) required to calculate
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its own output function ¢y. In the final reduce phase, each
node k combines the IVAs with the reduce function h; as
indicated in (1).

Recently, Li et al. [5] proposed a so-called coded dis-
tributed computing (CDC) that stores files multiple times
across different nodes in the map phase so as to create mul-
ticast opportunities for the shuffle phase. This approach can
significantly reduce the communication load over traditional
uncoded schemes, and was proved in [5] to have the smallest
communication load among all coded computing schemes with
the same total storage requirements. It is worth mentioning
that Li et al. in [5] used the term computation-communication
tradeoff, because they assumed that each node calculates all
the IVAs that can be obtained from the data stored at that
node, irrespective of whether these IVAs are used in the sequel
or not. In this sense, the total number of calculated IVAs is
actually a measure of the total storage load consumed across
the nodes. This is why we would rather refer to it as the
storage-communication tradeoff.

In this paper, we investigate a more general setup, where
each node is allowed to choose for each IVA that it can
calculate from its locally stored data, whether or not to
perform this calculation. The number of IVAs effectively
calculated at all the nodes, normalized by the total number
of IVAs, is then used to measure the real computation load.
Thus, we extend the storage-communication tradeoff in [5]
to a storage-computation-communication tradeoff. Notice that
other interesting extensions have recently been proposed. For
example, [7]-[16] included straggler nodes but restricted to
map functions that are matrix-vector or matrix-matrix mul-
tiplications; straggler nodes with general linear map func-
tions were considered in [17]; [18] studied optimal allocation
of computation resources; [19]-[22] investigated distributed
computing in wireless networks; [23]-[25] investigated the
iterative procedures of data computing and shuffling; [26]
studied the case when each node has been randomly allocated
files; [27] investigated the case with random connectivity
between nodes; [28]-[31] designed codes for computing gra-
dient distributedly, which is particularly useful in machine
learning.

One of our main contributions is a framework to con-
struct a coded computing scheme from a given placement
delivery array (PDA) [33], and to characterize the storage,
computation, and communication (SCC) loads of the resulting
scheme in terms of the PDA parameters. In this paper we
focus on a class of PDAs that we call PDAs for distributed
computing, for short Comp-PDA. Notice that PDAs were
introduced in [33] to describe placement and delivery phases
in a shared-link caching network. The connections between
this caching network and the proposed distributed computing
systems have been noticed and exploited in various previ-
ous works [5], [36]-[38]. In particular, PDAs were used to
characterize the storage and communication loads in [39],
[40]. Here, we make the connection precise in the case of
Comp-PDA based schemes, by exactly characterizing the SCC
loads of these schemes for distributed computing. Notice that
in contrast to shared-link caching systems, for the proposed
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distributed computing system, Comp-PDA based schemes turn
out to be optimal. It means that they can attain all achievable
SCC loads, and in particular the pareto-optimal SCC surface.
Such optimality is proved in this paper by means of an
information-theoretic converse that is not restricted to Comp-
PDA based schemes. Moreover, in a follow-up work [41],
we show that Comp-PDAs allow us to design coded computing
schemes for systems with straggling nodes.

Our results show that the (3-dimensional) pareto-optimal
tradeoff surface can be obtained by sequentially pasting K —2
triangles next to each other. The corner points of these triangles
are achieved by Comp-PDAs that also describe Maddah-Ali
and Niesen’s coded caching scheme [32]' and the corre-
sponding coded computing schemes coincide with the scheme
proposed by Ezzeldin et al. [6] and with Li er al.’s CDC
scheme if the unused IVAs are removed. These schemes all
require a minimum number of N > (Ig() files, where g is
an integer between 1 and K and depends on the corner point
under consideration. In this paper, we show that no Comp-PDA
based scheme can achieve the corner points with a smaller
number of files for ¢ > 2. However, pareto-optimal SCC
points that are close to the corner points can be achieved
with a significantly smaller number of files. We prove this
through new explicit Comp-PDA constructions, which include
the PDAs proposed in [33, Construction A] as a special case.

Finally, we present necessary and sufficient conditions for
a Comp-PDA scheme to achieve pareto-optimal SCC loads.
Our results implies in particular that most of the Comp-PDA
schemes based on existing PDA constructions [33], [34],
and [35] have pareto-optimal SCC loads.

Paper Organization: Section II presents the system model.
Section III introduces Comp-PDAs and explains at hand of
an example how to obtain a distributed coded computing
scheme from a Comp-PDA. The main results are summarized
in Section IV. Proofs of the main results are provided in
Section V-VII, where the more technical details are deferred
to the appendices. Finally, Section VIII concludes the paper.

Notations: Let NT be the set of positive integers, and Fy
be the binary field. For m,n € N*, denote the n-dimensional
vector space over Fo by FZ, and the integer set {1,...,n}
by [n]. If m < n, we use [m : n]| to denote the set
{m,m+1,...,n}. We also use interval notations, e.g., [a, b] £
{r :a <2 <b}and [a,b) & {z : a < z < b} for
real numbers a,b such that a < b. The notation (a)* is
used to denote the number max{a,0}. The bitwise exclusive
OR (XOR) operation is denoted by ¢. To denote scalar or
vector quantities, we use the standard font, e.g., a or A, for
arrays we use upper case bold font, e.g., A, for sets we use
upper case calligraphic font, e.g., A.

A line segment with end points A;, A5 or a line through the
points Ay, A, is denoted by A; As. A triangle with vertices
Aq, Ay, As is denoted by AA; A As. A trapezoid with the
four edges A;As, AsAs, AsAy, and AgA;, where A1 A, is
parallel to A3Ay, is denoted by HA; As A3 Ay4. Let F be a set

IThe connection between these PDAs and the coded caching scheme in [32]
was formalized in [33]. As explained previously, Comp-PDAs are also PDAs.
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of facets, if the facets in F form a continuous surface, then
we refer to this surface simply as F.

II. SYSTEM MODEL

Consider a system consisting of K distributed computing
nodes {1,..., K} and N files,

W ={wy,...,wx}, w, €EFY,  Vnecl[N],
each of size W bits, where K, N,W € N. The goal of node
k, k € [K], is to compute an output function’
or: FYW — FY
which maps all the files to a bit stream

U = ¢k(w1,...,wN) S Fg

of length U, for a given U € N.
Following the conventions in [5], we assume that each
output function ¢ decomposes as:

Or(wi, ..., wn) = hi(fre(wi),. ..

where:

s fe.n(wn)),

o Each “map” function fy, ,, is of the form
fun  Fy —F5,
and maps the file w,, into the IVA
Uk = fen(wn) € FY,

for a given V' € N.
o The “reduce” function hy is of the form

hip : Fy'V —FY,
and maps the IVAs
Vi & {Ukn i n € [N]} )
into the output stream

wp = h (g1, Uk N)-

Notice that such a decomposition always exists. For example,
let the map functions be identity functions and the reduce
functions be the output functions, i.e., gin(w,) = wy, and
hi = ¢k, ¥V n € [N], k€ [K].

The described structure of the output functions ¢, ..., ¢k,
allows the nodes to perform their computation in the following
three-phase procedure.

A. Map Phase
Each node k € [K] chooses to store a subset of files
M, € W. For each file w,, € My, node k computes a subset
of IVAs
Ck,n = {Uq,n ‘g€ Zk,n}a (3)
where Zj,,, C [K]. Denote the set of IVAs computed at node
k by Cy, i.e.,

Cr 2

U Cen )

n:w, EMy,

2See Remark 3 for a relaxed assumption.
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B. Shuffle Phase

The K nodes exchange some of their computed IVAs.
In particular, node k creates a signal

Xk = ¢r (Cr)
of some length [}, € N, using a function
o Ty - FY

It then multicasts this signal to all the other nodes, which
receive it error-free.

C. Reduce Phase

Using the shuffled signals X7,..., Xk and the IVAs Cy, it
computed locally in the map phase, node k£ now computes
the IVAs

U N) = (X1,

for some function

(vk,la" ';XK;Ck)v

Yo TR x F2 x . Fx x FISY S pyv,
Finally, it computes

up = hp(Vp,1,- - VK N)-

To measure the storage, computation, and communication
costs of the described procedure, we introduce the following
definitions.

Definition 1 (Storage Load): Storage load r is defined as
the total number of files stored across the K nodes normalized
by the total number of files V:

A EkK:1 |Mk|
- N )

Definition 2 (Computation Load): Computation load c is
defined as the total number of map functions computed across
the K nodes, normalized by the total number of map func-
tions NK:

r

Zszl Cr| (6)

NK

Definition 3 (Communication Load): Communication load
L is defined as the total number of the bits sent by the K
nodes during the shuffle phase normalized by the total length
of all intermediate values NKV:

_ Z§=1 Ik
L= NKV ~ M

Remark 1: These measures were first defined in [6], where
the storage load was called “load redundancy”, and the compu-
tation load therein was the total number of computed IVAs (not
normalized by N K'). We use the term “storage load” because
it actually captures the memory size constraint. We used the
normalized version for computation load to keep symmetric
definitions with storage load and communication load.

A
CcC =

Note that the nontrivial regime of the parameters is:
1<c<r<K,
r
0<L<1-——.
-~ K

(8a)
(8b)
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A scheme that sends all IVAs in an uncoded manner requires
ot _ i (N MDY r
a communication load of L = =="t0p0p—— =1 — &
and computation load ¢ = 1 because each IVA needs to be
transmitted only once. In this sense the presented bounds in (8)
are non-trivial. We proceed to justify them. Firstly, we argue
that the regime of interest for L is [0, 1 —r/K]. By definition,
L > 0. Moreover, each node k can trivially compute | M
of its desired IVAs locally and thus only needs to receive
N — |My| IVAs from other nodes. Secondly, we argue that
we can restrict attention to values of ¢ and r satisfying (8a).
Since each IVA needs to be computed at least once somewhere,
we have ¢ > 1. Moreover, the definition of Cj in (4) implies
that |Cx| < |Mg|K, and thus by (5) and (6) that ¢ < 7.
Finally, the regime r > K is not interesting, because in this
case each node stores all the files, My = {1,..., N}, and
can thus locally compute all the IVAs required to compute its
output function. In this case, ¢ > 1 and L > 0 can be arbitrary.
Definition 4 (Fundamental SCC Region): An SCC-triple
(r,c,L) as in (8) is called feasible, if for any ¢ > 0
and sufficiently large N, W,V there exist map, shuffle, and
reduce procedures with storage load, computation load, and
communication load less than r +¢, ¢+ ¢, and L + €. The set
of all feasible SCC triples R is called the fundamental SCC
region:

R = {(r,c,L): (r,c, L) is feasible} .

Definition 5 (Optimal Tradeoff Surface): A SCC triple
(r,c, L) is called pareto-optimal if it is feasible and if no
feasible SCC triple (r’,c,L’) exists so that v’ < r,¢ < ¢
and L’ < L with one or more of the inequalities being strict.
Define the optimal tradeoff surface as

O = {(r,c,L): (r,c, L) is pareto-optimal}.

Remark 2: The pareto-optimal surface (see [44]) deter-
mines, e.g., the minimum required communication load for
given storage and computation loads. (Or the minimum storage
load for given communication and computation loads, or the
minimum computation load for given storage and communi-
cation loads.) Moreover, it contains the minimizer (r, ¢, L) to
any weighted sum «-r+3-c+~- L for given «, 3, . As such,
using appropriate weights «, (3,~, it can be used to minimize
the total expected running time of the Map-Reduce system.

In order to achieve a certain SCC triple with a given scheme,
it is implicitly assumed that the number of files is larger than
some value. We refer to this value as the file complexity.

Definition 6 (File Complexity): The smallest number of files
N required to implement a given scheme is called the file
complexity of this scheme.

Our schemes also require that the size of the files W and
intermediate values V' be sufficiently large. We will simply
assume that this requirement is satisfied.

Remark 3: All our conclusions in this paper remain valid
in an extended setup with @) output functions as in [5], where
K|Q and each node is supposed to compute % functions.
In fact, in this setup, the K in definitions (6) and (7) will

be replaced by (). Achievability proofs can be shown by
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executing % times the coded computing schemes as explained
in Section V. The converse can be derived by adjusting the
definitions in (2), (3), and (34) following the same steps in
Section VI-A.

III. PLACEMENT DELIVERY ARRAYS FOR DISTRIBUTED
COMPUTING (CoMP-PDA)

In the following, we recall the definition of a PDA, define
Comp-PDAs, and two subclasses thereof.

Definition 7 (PDA): For positive integers K, F,’T" and a
nonnegative integer S, an F'x K array A = [a; 1], j € [F], k €
[K], composed of T' specific symbols “+” and some ordinary
symbols 1,...,.5, each occurring at least once, is called a
(K,F,T,S) PDA, if, for any two distinct entries a;j and
aj 1, we have a; , = aj 1 = s, for some ordinary symbol s
only if

a) j# 7, k#Kk,ie., they lie in distinct rows and distinct

columns; and

b) aj i = aj ) = *, i.e., the corresponding 2 x 2 sub-array

formed by rows 7,7’ and columns &, k' must be of the
following form

el

A PDA with all “x” entries is called trivial. Notice that in this
case S=0and KF=T1T.

The above PDA definition is more general than the original
version in [33] in the sense that different columns can have
different numbers of “x” symbols. In the original definition
[33], each column had to contain the same number of “x”
symbols and this number was one of the four parameters of
the PDA. In this new definition, a PDA is parametrized by
T, the total number of “x” symbols in all the columns. The
motivation for this change is as follows. PDAs were originally
proposed for the shared-link coded computing scheme where
all users have same cache memory size. In such a setup, the
number of “*” symbols in a column was proportional to the
cache memory size at the corresponding user. By the equal
memory-size assumption, each column thus had to contain the
same number of “x” symbols. As we will see, for distributed
computing, the number of “x” symbols in a column is propor-
tional to the number of files stored at the corresponding node.
Moreover, different nodes can have different memory sizes
and we are only interested in the fofal memory size across
all users. As a consequence, different columns of the PDA
can have different numbers of “x” symbols and the PDA is
parametrized by the fofal number of “x” symbols across all
columns. Another generalization in the PDA definition is that
we allow for arrays with only “x” symbols but no ordinary
symbols.

In this work, we are interested in PDAs with at least one
“x” symbol in each row.

Definition 8 (PDA for Distributed Computing (Com-
p-PDA)): A Comp-PDA is a PDA with at least one “*” in
each row.

In particular a trivial PDA is a Comp-PDA. A non-trieval
Comp-PDA is presented in the following example.
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Example 1: The following A is a (5,4, 10,4) Comp-PDA,

©)

W ¥ = %
L N N
N = % ¥
* ¥ B~ W
* W N ¥

As we will see, the performance of our Comp-PDA based
schemes does not depend on the number of ordinary symbols
S, but only on the relative frequencies with which they appear
in the Comp-PDA.

Definition 9 (Symbol Frequencies): For a given nontrivial
(K, F,T,S) Comp-PDA, let S; denote the number of ordinary
symbols that occur exactly ¢ times, for ¢ € [K]. The symbol
frequencies 01,05, . ..,0k of the Comp-PDA are then defined
as

A Sit

-
T KE T

t € [K].

They indicate the fractions of ordinary entries of the Comp-
PDA that occur exactly 1,2,..., K times, respectively. For
completeness, we also define 6, 20 fort> K.

The following two classes of Comp-PDAs will be of par-
ticular interest.

Definition 10 (Almost-Regular Comp-PDAs & regular Com-
p-PDAs): For g € [K], a (K, F,T,S) Comp-PDA is called
almost g-regular if each ordinary symbol appears either g or
g+ 1 times with 6,41 < 1. If each ordinary symbol appears
exactly g times, the Comp-PDA is called g-regular.

Therefore, a g-regular Comp-PDA is also an almost
g-regular Comp-PDA. An almost K-regular Comp-PDA is
also a K-regular Comp-PDA. Notice that a (K, F,T,S)
Comp-PDA can be almost g-regular only if

|KF-T
g - S )

and it can be g-regular only if
_KF-T
9=—g5

Example 2: In the (5,4, 10,4) Comp-PDA A in Example 1,
there are K F' — T = 10 ordinary entries in total, and S; =
Sy = S5 = 0 (i.e., no ordinary symbol has occurences 1,
4, or 5) wheras Sy = S3 = 2 (i.e., two ordinary symbols
1, 4 occurr twice, and the other two ordinary symbols 2,3
occurr three times. The PDA A is thus an almost 2-regular
Comp-PDA with frequencies 6§, = 0, = 65 = 0, 05 = %
and 63 = %

IV. MAIN RESULTS

A. Coded Computing Schemes From Comp-PDAs

In Section V, we will describe how to obtain a coded
computing scheme from a Comp-PDA. For brevity, we say
that a Comp-PDA A achieves an SCC triple (r,c,L) with
file complexity y if the coded computing scheme obtained by
applying the procedure in Section V to A has file complexity
~ and achieves the SCC triple (r,¢,L). For convenience,
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we define {0;} as follows.

0, t=1
922 01 +0, t=2 (10)
0;, t> 2.

Theorem 1: A (K,F,T,S) Comp-PDA A with symbol
frequencies {6;}X ; achieves the SCC triple

K
T T T )
(T7C;L) = (F7 KF+ (1—KF> .;:20]‘/(2‘:_1)7

(1_?%0'§§t%1>

t=2

with file complexity F'.

We notice that the file complexity of a Comp-PDA is
simply the number of rows F. It was observed in [36], [37]
that large file complexity may cause large executation times
and even dominate over the reductions achieved by coded
computing [5]. This observation motivated the search for low
file complexity coded computing schemes such as [36]-[38].
Theorem 1 indicates that, low file complexity coded computing
schemes can be obtained via PDAs with a small number
of rows F. We therefore will call the parameter F' of a
Comp-PDA its file complexity.

The theorem simplifies for almost-regular and regular
Comp-PDAs.

Corollary 1: An almost g-regular (K, F, T, S) Comp-PDA
achieves the SCC triple

T T T ,

o) = (5 zpt (1 7F) 01w,
BEANELARSATY

<1 KF) s -2+ ) Y

In particular, a g-regular (K, F, T, S) Comp-PDA achieves the
SCC triple

(r,e,L) = <% %+<1—%>'((g—2)++1),

m'(”%»

Proof: Notice that for almost g-regular Comp-PDAs, 9; =
0and 0, ; = 1 when g = 1; 0, = 1 and 6, ,; = 0 when
g = K; and 9;+9’g+1 = 1 when 1 < g < K. As such,
the equality (11) follows from Theorem 1 straightforwardly.
Further, for g-regular Comp-PDAs, we have 9; 11 = 1 when
g = 1;and 0, ; = 0 when g > 2. Equality (12) follows
readily from (11). |

Corollary 1 is of particular interest since there are several
explicit regular PDA constructions for coded caching in the
literature [33]-[35]. See for example the Comp-PDA in the
following Definition 11.

12)

B. Achieving the Fundamental SCC Region

The following Comp-PDAs achieve points on the optimal
tradeoff surface O. They are obtained from the coded caching
scheme proposed by Maddah-Ali and Niesen [32].
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Definition 11 (Maddah-Ali Nieb;fn PDA (MAN-PDA)): Fix

any integer ¢ € [K], and let {7;}; ] denote all subsets of [K]
of size 7. Also, choose an arbitrary bijective function « from
the collection of all subsets of [K] with cardinality ¢ + 1 to
the set [(,%',)]. Then, define the PDA P; = [p; ] as

o o if k €7,
Pik =\ w({k}UT)), ifk¢ T

We observe that for any i € [K — 1], the PDA P; is an

. K K-1 K .
(i+1)-regular (K, (i),K( i1 ), (i+1)) Comp-PDA. For i =
K, the PDA P; consists only of “x’-entries and is thus a
trivial PDA.

Example 3: Let K = 5, in which case P» is given by

(1,2} [+ % 1 2 3
{1,3} x 1 x 4 5
{1,4} x 2 4 % 6
{1,5} * 3 5 6
{2,3} 1« %= 7 8
{2,4} 2« 7 x 9|’
{250 |3 % 8 9 «
{3,4) |4 7 x % 10
{3,5} 5 8 * 10 =
{45} [ 6 9 10 * = |

where we label the rows by the subsets of size 2 as indicated
by Definition 11.

We can evaluate Corollary 1
Pi,...,Pk.

Corollary 2: For any i € [K], the Comp-PDA P, achieves
the SCC triple

for the Comp-PDAs

P; £ (erCPmLPi)

(R -4 o

As the following Theorem 2 shows, the points {P;} lie
on the optimal tradeoff surface O. Let us also define the
projection of point P; to the surface » = ¢ in the SCC space

as Q;:
Qi = (z i %(1—%)) i € [K].

Theorem 2: Let F be the surface formed by the following
triangles and trapezoids

F £ {APlPQQQ} @] {ApiflpiPKi 1=2,...,K — 1}
U{EPiQiQ'H-lP'H-l: 1= 2, ey K — 1}

(14)

where P; and Q; are defined in (13) and (14), respectively.
Then, the optimal tradeoff surface O and the fundamental SCC
region R are given by
O == {AP,L,LP,LPK 2'22,...,K—1},
R = {(r,e,L): (r,c,L) is on or above the surface F
and satisfies (8)} .
Furthermore, a Comp-PDA achieves the optimal surface O

if and only if it satisfies one of the following three conditions:
it is almost g-regular, for any g € [K]; it is trivial (i.e., consists
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only of “x” symbols); or each ordinary symbol occurs at most
three times.

Remark 4: A close inspection of the proof of Theorem 2
reveals that for ¢ € {3,..., K — 1}, a Comp-PDA achieves a
point on the triangle AP;_1 P; P if and only if it is almost
i-regular. It achieves a point on the triangle APy P, Py if and
only if all the ordinary symbols occur either 1,2, or 3 times.
This implies in particular that for any ¢ € {2,..., K — 2}
a Comp-PDA achieves a point on the line segment P; Py if
and only if it is (¢ + 1)-regular. As a consequence, the corner
points Py, ..., Px are achieved by a uniform file allocation
(i.e., each node stores the same number of files).

Note that setting » = ¢, we recover exactly the case inves-
tigated in [5] where the fundamental storage-communication
tradeoff is characterized by

v )

for integer r, and for general 7 in the interval [1, K]

N N 1 1 1 1

L) = iEI[nI?z{I] {_z’(z'—i- 1)r+ it i+1 E} - 13

An example of the fundamental SCC region for K = 10
is given in Fig. 2, where we can identify the surface F that
is formed by the triangles APy PoQ2 and {AP;_1 P; Pk } and
the trapezoids {8P;Q;Qi+1Pi+1}. In particular, the boundary
of the optimal tradeoff surface O is formed by the line
segment P} Px and the sequence of line segments PP,
P2P3, ey PK,1PK1

1) The computation load on the line segment P Px is ¢ =
1 for any given storage load r, which by (8) is minimal
and thus is referred to as the optimal computation curve
(OCP). It implies that during the map phase each IVA
is calculated at a single node.

2) The points on the line segments PP,
m, ..., Pk_1Prg have minimum communication
load L for any given storage load r among all pareto-
optimal points, thus we refer to it as the optimal
communication curve (OCM).

Note that the projections of OCP and OCM curves on the
surface r = ¢ correspond to the curves of the uncoded scheme
and the CDC scheme in [5]. In this sense, our optimal tradeoff
surface O is a natural extension of the tradeoff established
in [5] with the additional dimension given by the computation
load. From the SCC region, we can obtain straightforwardly
the optimal tradeoff between computation and storage for a
given communication load (Fig. 3(a)), as well as the tradeoff
between computation and communication for a given storage
load (Fig. 3(b)).

It is worth mentioning that our computation load that counts
the exact number of IVAs that are necessary for the reduce
phase may not reflect the actual computation load in practical
systems. In some practical systems, the actual computation
time might not decrease even with a reduced number of
IVAs. Nevertheless, such a measure provides an performance
indication that can be very different from the storage load.
Specifically, we can observe that at high storage load, the
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Optimal Storage-Computation-Communication Tradeoff Surface, K = 10

1 :
——0CP

— 0.8 |——O0CM
< -8 -Projection of OCPonr=c | .-
< -a-Projection of OCM on r = ¢ |
g 0.6~ ... Plane r = ¢
EG .
‘g 04+
=
g
£0.24
o
@)

0\

6
Storage load (r) 8

Computation load (c)

Fig. 2. The fundamental SCC region R for a system with K = 10 nodes. The figure illustrates the delimiting surface F formed by the triangles AP; PaQ2
and {AP;_1P; P} and the trapezoids {HP;Q;Q;i+1Pi+1}. The three points D2, D3, D4 can be achieved by the new PDA design.

Storage-Computation Tradeoff, L = 0.12
T T

\——— OCP point

OCM point c=r=arg{r: L*(r) = L} i

4. L L L b Bkl el pooooo- Bé»

1 1.5 2 25 3 3.5 4 45 5
Computation load (c)

(@

Computation-Communication Tradeoff, K = 10,7 = 4.5
T

-OCP point

c=r,L=L"r) |
OCM point
0.15F X 3 \;
0'11 1?5 é 2T5 é 3f5 A‘t 45
Computation load (¢)
(b)
Fig. 3. Two-dimensional tradeoff curves for K = 10: (a) Computation-

storage tradeoff with fixed communication load L = 0.12; (b) Computation-
communication tradeoff with fixed storage load r = 4.5.

computation load can be actually close to the lower bound 1,
i.e., almost no extra computation is needed.

Remark 5: The idea of measuring the effectively computed
IVAs is from [6]. In that paper, the authors also show
the achievability of the corner points P;, P, ..., Px. The
distributed computing scheme proposed in [5] coincides with
the schemes obtained for Comp-PDAs P;,Ps,...Px. Our

new contributions are an information-theoretic converse that
allows to characterize the entire fundamental SCC region and
necessary and sufficient conditions for any Comp-PDA to
achieve the optimal surface of the fundamental SCC region.

C. Reducing the File Complexity to Attain the Optimal
Tradeoff Surface

Recall that for any ¢ € [K], the Comp-PDA P, in
Definition 11 achieves point P; on the optimal tradeoff sur-
face O. The Comp-PDA P; is of file complexity

K
FP7 ('),
1

and the following theorem indicates that this is the minimum
file complexity that can achieve P; when ¢ > 2.

Theorem 3: Any Comp-PDA that achieves the corner point
P, for i € [2: K], is of file complexity at least (If)

A required file size of (%) can be prohibitively large and
may prevent practical implementation of the Comp-PDA based
schemes achieving the corner point P;. However, as the fol-
lowing theorem shows, one can achieve points on the triangle
AP;_1 P;Px close to the corner point P; with significantly
fewer files. (Notice that the simple approach of time- and
memory- sharing the schemes achieving the points P;_;, P;
and Px would require even more files.)

Theorem 4: For any positive integers K and ¢ such
that ¢ < % and m 2 (%] — 1, there exists a
(K, g Kqm (¢ — 1)qm) Comp-PDA achieving the triple

Dq = (qu’ch’LDq)

(B () ).

(bt (-2) o

(1>
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with file complexity
FDq £ qm.

Moreover, the SCC triple D, lies on the optimal tradeoff
triangle AP,,_1P,, Pk, and is close to P,, in the following
sense:

-1< rp,—rp, <0, (17a)
12 1
-——< c¢p,—cp, <1-—-, (17b)
q K q
q(g—1) q
————=< Lp,—Lp, <. (170)
K(K —q) K(K —q)

Furthermore, its file complexity satisfies

\/ﬂ q q m(qg—1)
m(q —1) (q - 1) '

>
FDq — e2
For example, for K = 50 and ¢ = 9, we have m = 5.
According to the above theorem, Dy is close to P5 but with
file complexity Fp, = ¢™ ~ 6 x 10" instead of Fp, =
(ﬁ) ~ 10'°. In Fig. 2, we depict the new points Dy, D3, Dy
for K = 10 nodes.

V. CoDED COMPUTING SCHEMES FROM CoMP-PDAS
(PROOF OF THEOREM 1)
The proof of Theorem 1 has three parts.

A. Obtaining a Coded Computing Scheme
From a Comp-PDA

In this section, we explain how to obtain a coded computing
scheme from any (K, F,T,S) Comp-PDA.

Fix a (K, F,T,S) Comp-PDA A = [a; ;]. Partition the N
files into F' batches W, ..., W, each containing
n%
files and so that Wy, ..., Wp form a partition for W. It is
implicitly assumed here that 7 is an integer number.

Let 7 be the set of ordinary symbols that occur only once.
Then the symbols in Z can be partitioned into K subsets
T1,Zs,..., Tk as follows. For each s € Z, let (i,7) be the
unique tuple in [F'] x [K] such that a; ; = s. By Definition 8,
there exists at least one k € [K]\{j} such that a;, = =*.
Arbitrarily choose such a k and assign s into Zj.

Let U; ; denote the set of IVAs for the output function ¢;
that can be computed from the files in W, i.e.,

ui’j £ {vj,n LWy, € Wi},

=)=

(18)

and let A; denote the set of ordinary symbols in column k
having occurrence at least two:

k= {s€[S]:aix=s for some i€ [F|I\Z, k € [K].
(19)

1) Map Phase: Each node k stores
U Wia

i€[F]:

a; =%

(20)

2)

and computes the IVAs

c=cMuc?, 1)
where
) = U Ui (22)
1€[F):
Qg =%
a? = U U Ua, (23)

s€T UAR  (1,d)E[F]x ([KI\{k}):

ap,d=s

Notice that node & can compute the IVAs in C,(:) from
the files in My, because of (18), (20), and (22). To show
that it can also compute the IVAs in C,(f) from M,
we show that if for some s € Zj, UA;, there exist (I, d) €
[F] x ([K]\{k}) so that a; 4 = s, then

app = *. (24)

From this follows that W; C M. To prove (24), we dis-
tinguish the cases s € Zj and s € Aj. In the former
case, the proof follows simply by the construction of
the set Zj, which implies that if a; 4 = s and s € Ty,
then a; ;, = *. In the latter case, the proof holds because
by the definition of the set Ay, if a; 4 = s and s € Ay,
then there exists an index i € [F] so that a; , = s. But
by the PDA property C3, a;q = a; = s and d # k
imply that [ # ¢ and a; ;, = a;q = *.

Shuffle Phase: Node k € [K] then computes X* from
Cy, for each s € 7, U Ay, as defined in the following. For

s € Iy, then there exists unique (4, j) € [F] x [K]\{k}
such that a; ; = s, then
XF2y, ;. (25)

For each s € Ay, C [S]\Z, and X is defined as follows.
Firstly, for each s € [S]\Z, or equivalently, g; > 2, let
(41,41)s - - -, (ig,, Jg.) indicate all the occurrences of the
ordinary symbol s:

@iy 1 = Qig,jo = -0 = Qig 5, = 5.

For each a € [g,], partition the IVAs Uf;, ;. into gs — 1

subblocks, and label them with the other g; — 1 column
indices, i.e.,

Us,go = {U 5, b€ [g:\a}}, Vaelg).

Intuitively, node j, needs U;, ;,, which is partitioned
into subblocks in (26). The subblock L{j” will be
retrieved from the signal sent by node jb “for each
b € [gs]\{a}. Thus, each node j, needs to send all
subblocks with superscript j;. Specifically, node j;, will
XOR all subblocks {U;" ; :a € [g5]\{b}}. In particular,

for s € Ay, the signal X is formed accordingly by node

(26)

k,ie., let s = a; ;, and

k & k
xksa b ur;.
(1) ELF]((KI\ (kD)

i, j =8

27)
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Then node k£ multicasts the signal
X ={Xl:seT, UALL.
3) Reduce Phase: Node k has to compute all IVAs in
U Ui
1E€[F]

In the map phase, node k has already computed all IVAs
in C,E,l). It thus remains to compute all IVAs in

U ix.

1€[F):

a; ki
Fix an arbitrary i € [F] such that a; j, # *. Set s = a; .
If s € Ay, each subset UZJ 10 (26) can be restored by
node k from the signal X g sent by node j (see (27)):

U,
(LA)E[FIx ((KI\{j}):

ai,a=s

X] = (28)

In fact, for each L{lj;d in (28),if d =k, thena; g = a; 1 =
s implies [ = i by the PDA property a); if d # k,
then a;q = a;p = s € Aj. This indicates that, the
IVAs in UZ 4 have been computed by node k according
to (23) and (26). Therefore, L{f  can be decoded from
(28). If s ¢ Ay, then s € Z by (19). There exists thus
an index j € [K]\{k} such that s € Z; and therefore,
by (25), the subset U; ;. can be recovered from the signal
X7 sent by node j.

Example 4: To have an idea of how to use Comp-PDAs
to construct coded computing schemes, let us consider
a toy example with the following 3-regular (3,3,6,1)
Comp-PDA A.

A= 29)

= % %
* % =
* = %

We can derive a coded computing scheme for the com-
putation task in Fig. 1 with K = 3 nodes. The scheme
is depicted in Fig. 4. The top-most line in each of the
three boxes indicates the files stored at the node. Below
this line, is a rectangle indicating the map functions. The
computed IVAs are depicted below the rectangle, where red
circles indicate IVAs {v11,...,v16}, green squares IVAs
{v2,1,...,v2,6}, and blue triangles IVAs {v3 1, ...,v36}. The
dashed circles/squares/triangles stand for the IVAs that are not
computed from the stored files. The last line of each box
indicates the IVAs that the node needs to learn during the
shuffle phase.
The N = 6 files are first partitioned into F' = 3 batches

Wy = {w1,ws}, Wy = {ws,ws}, and W5 = {ws, wg},

which are associated to the rows 1, 2, and 3, respectively. The
three nodes 1, 2, and 3 are associated with the columns 1,
2, and 3, respectively. The “x”-symbols in the Comp-PDA
describe the storage operations. Each node stores all the files
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Fig. 4. A coded computing scheme from A in (29) (original image from [4]).

of the batches that have a “x”-symbol in the corresponding
column. For example, node 1, which is associated with the
first column of the Comp-PDA, stores the files in batches W,
and W, because they are associated with the first two rows.
Node 2, which is associated with the second column, stores the
files in batches W5 and Ws; and node 3, which is associated
with the third column, stores the files in batches W, and Wj.

The ordinary symbols in the Comp-PDA describe the shuf-
fling operations. And indirectly also some of the computations
of IVAs during the map phase. Each ordinary symbol entry in
the array denotes the IVAs computed from the files in the
batch corresponding to its row index for the output function
computed by the node corresponding to its column index.
In fact, during the map phase, each node first computes all
its desired IVAs which it can obtain from its locally stored
batches. Specifically, node 1 first computes the circle IVAs
of files 1,2,3,4 pertaining to batches W, and W,; node 2
first computes the square IVAs of files 3,4, 5,6 pertaining to
batches W, and Ws; and node 3 first computes the triangle
IVAs of files 1,2, 5, 6 pertaining to batches W, and Ws. Then,
it computes all the IVAs indicated by the ordinary symbol
entries except for the ones in its own column. Specifically,
node 1 computes the square IVAs 1,2 and the triangle IVAs
3,4, node 2 computes the triangle IVAs 3,4 and the circle
IVAs 5,6, and node 3 computes the square IVAs 1,2 and the
circle IVAs 5, 6.

The signals are formed as follows. Notice that node 1 needs
the circle IVAs 5,6, and they are expected to be retrieved
from node 2 and 3 respectively. Similarly, node 2 (node 3
resp.) needs the square IVAs 1,2 (triangles 3,4 resp.) and
hence they are expected to be retrieved from node 1 and 3
(node 1 and 2) respectively. Thus, each node sends the XOR
of the IVAs it should provide to other nodes as illustrated in
Fig. 4. Moreover, given the signals they sent and the IVAs
they computed locally, node 1 can recover all the circle IVAs,
node 2 can recover all square IVAs, and node 3 can recover
all triangle IVAs.

Each node k then terminates the reduce phase by applying
the reduce function hy, to all its recovered IVAs.

B. Performance Analysis

We analyze the performance of the scheme proposed in the
preceding subsection.
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1)

2)

3)

Storage Load: Since the Comp-PDA A has T entries
that are “x” symbols and each “x«” symbol indicates that
a batch of n = % files is stored at a given node, see

(20), the storage load of the proposed scheme is:
K
21 M| _ T-n — z
N N F

Computation Load: Since C\") N C” = 0, we have
(Gl = 1071+ 1671 By (22) and (23),
K

1

T =

k=1
K K
2
SeP = STkl on+ D (g -1)
k=1 k=1 seAyg
= |7l 'n+ Y gslge— D,
se[SI\T

where recall that g5 stands for the number s symbols
in A. The computation load of the proposed scheme is
then

o~ ZicalC
NK
B T'77+|I|'77+ES€[S]\193(93_1)'77
] 7| . ( )
T z gs(gs — 1
= %rtwrt 2 gkr o
se[SI\T

Recall also that Sy, t € [K], stands for the number of
ordinary symbols that occur ¢ times in A and that 6,
stands for the fraction of ordinary symbols that occur ¢
times, i.€.,

_ Sit

- KF-T'
Then by (30), the computation load of the proposed
scheme is

0+ vt e [K].

KF ' KF ' & KF
_ T, S, KF-T
- KF "KF-T KF
K
St KF-T
-1
+;KF—T KF (t-1)
T K
= — +(1-—=— -1
KF+( KF) (91+;9t(t )>
K
_ - —_— . /
B KF+( KF) get(t b,

where 6} was defined in (10).

Communication Load: Each set of IVAs U; ; consists of
XV =V bits. For each k € [K], node k sends a signal
Xf for each s € 7 U Ay. For each s € 7y, by (25),
X f consists of nV bits. For each s € Ay, consider now
a pair (¢,j) where the entry a; ; is an ordinary symbol
and occurs g times in the Comp-PDA A, where g, > 2
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by definition of Aj. Then, each subblock Z/{i’fj consists
of g:’—‘_/l bits, and by (27) the signal X* also consists
of gZ—Yl bits. The total length of the signal X}, is thus
e =Tkl -1V + e, g’Z'—Yl, and the communication
load of the proposed scheme:

L — Zf:llk
A NKV
K
1 n-V
= _Z |Ik|'77'V+Z
NKV k=1 k€A 9s =1
_ L 7+ Y 9s
KF gs — 1
s€[SI\T
K
1 Syt
- ®F Sl+fz=;t—1>

l
e
|
3
,.q'ﬂ
~—
—
=
_|_
(]~
BE
—
~

C. File Complexity of the Proposed Schemes

To implement the scheme in Subsection V-A, the files are
partitioned into F' batches so that each batch contains 1 =
% > 0 files. It is assumed that 7 is a positive integer. The
smallest number of files N where this assumption can be met

is F'. Therefore, the file complexity of the scheme is F'.

VI. ACHIEVING THE FUNDAMENTAL SCC REGION
(PROOF OF THEOREM 2)

In Corollary 2, we have shown that the SCC triple P;
(¢ € [K]) is achievable. Therefore, any point on the triangle
AP,_1P,Pg (i € [2 : K — 1]) can also be achieved by
memory- and time- sharing between the points P;_;, P; and
Pr. This proves the achievability of the surface O. In the
following, we only need to prove the converse and identify
the Comp-PDAs that achieve the optimal tradeoff surface.

A. Converse

Fix a map-shuffle-reduce procedure, and let M =
{IMRHE |, C = {Cp}E_, be their file and IVA allocation.
Let further (r,c¢, L) denote the corresponding storage load,
computation load, and communication load, then

e M
ro= N , (€28
S 1G]
© T T NK (32)
Sy H(Xy)
> =R - 77
L =z NKV (33)
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For any k € [K] and nonempty S C [K]|\{k}, define

Bis = {Urn : Ukn is exclusively computed by
the nodes in S}, (34a)
By = {Vk,n : Vg n is computed by node k}. (34b)

Let by.s be the cardinality of the set By.,s and Ek be the
cardinality of Bjy. Notice that, the subsets {Bks : S C
[K)\{k},S # 0} and By form a partition of the IVAs Vi,

thus
)

SCIK].S#0

by + br.s = N. (35)

For each j € [K — 1], the set of IVAs not computed locally
but exclusively computed by j other nodes are

B = J By.s.
ke[K] SC[K]\{k},|S|=j
Then the cardinality of set B; is given by

£ >

ke[K] SC[K],|S|=j

brs, Vjel[K—1]. (36)

We need the following two lemmas.
Lemma 1: The sum of entropies of the signals have the
following bound:

K K—
D H(Xy) >V Z 7]
k=1 Jj=1

Proof: By the lower bound of data exchange problem [43,
Theorem 1], the sum of the entropies is lower bounded by

> H(Xy)

k=1

> V- Z Z bk,5'|—é|
K

kel ]SC[K \{k},S#0

1
E E br g —
PSS

ke[K] j=1 SC[K\{k},|S|=j

K1
=V —- Z Z br,s
=17 kelK) SCIKNRYIS1=)
K—1
@y 5
=
where (a) follows from (36). [ |

Remark 6: Lemma 1 is proved by following the steps in
the proof of [5, Lemma 1] but here we replace the set of IVAs
that can be computed at a given node k£ by the set of IVAs
that are effectively computed at this node. The proof steps
remain valid, and the so obtained converse is also tight in our
more general setup. After the initial submission of this article,
a reviewer pointed out that the computational constraint “each
node computes all IVAs it can compute” does not affect the
lower bound. An observation subsequently also made in [42].
For conciseness and completeness, here we proved Lemma 1
based on the lower bound in [43, Theorem 1].
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Lemma 2: The parameters by,...,bx_1 defined in (36)

satisfy
K—1
b > N(K—r), (37)
j=1
K—1
Z j—1)b; < (¢—1)NK. (38)
7j=1

Proof: Summing over k € [K] in (35), together with (36),

K N K-1
> b+ Y bj=NK.
k=1 j=1

l\N/Ioreover, sinc~e each node k must store file w,, when vy, €
By, we have b, < |My/|, and by (31),

K ~ K
Zbk < Z'Mkl =rN.
k=1 k=1

Also, for k € [K] and j € [K —1], IVAs B), must be computed
at node k, and IVAs B; must be computed at j nodes. Thus
by (32),

(39)

(40)

K
< Y [Ck| =cNK.

k=1

(41)

K N K—1
D b+ Y b
k=1 j=1

Combining (39) with (40) and (41) yields (37) and (38),

respectively. |
Now, let us define, for each ¢ € [K],
AT Ty .

2l (1o —) , 42

“-r T ( K" (42)

and let for a fixed i € {2,...,
R* be such that

K — 1}, the parameters \;, u; €

& + Wilz=c; 4 m (1 N %)2
= iil(l_%)’ )
XN + il p=c ﬁ (1 B %)2
1
- -(1-1). (44)

Notice that by (42),
relationships hold:

(43), and (44), the following three

1
AN = _i(i—1)<07 (45)
2 r 1
ni = E(l—g)+m>0, (46)
2 r
N+ = Z(l_E)>O' (47)

Moreover, by its convexity over « € [1,+0c0), the function
W (1- %)2 — (A\iz+ ;) must be nonnegative outside of
the interval formed by the two zeros, i.e.,
1 2
(- s
x—r/K ( K) =" s

Vel c¢1]Ule,00). (48)
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Therefore,

1 72
(1= LY s e VielK -1
cj—r/K( K) = A jel ]

Back to the converse, from (33), the communication load L
is lower bounded as

(49)

K
L > Zk:lH(Xk)
- NKV
@ =1
> _J .
S
K—1
(b) 1 1 r\2
e b -
N(K —7) ; / c]—r/K< K)
(©) 1 "
> b )\ic’+,u'z
N(K—T) = ]( J )
1 P r r
= b (N ((1-—= — )+
v o (0 )+ ) o)
K—1
1 T
= n(1- = ib;
N(K —1) (( K) jzljﬂ
K—1
,
+()\1E+Mz‘) s b]>
— Ai K_l(_l)b+ )\1+/'[/’L K_lbl
NK TN =)
@ N Ai i
> . — _
2 NE (¢ 1)NK+N(K—7“) N(K —r)
= Nc+
(e) 1 2 21 —1
2 - S 50
(i-1)° Ki Ti-1) (50)

where (a) follows from Lemma 1; (b) follows from (42);
(c) follows from (49); (d) follows from (37), (38) and (45),
(47); and (e) follows from (45), (46). Since the SCC triples
P;_1, P;, and Pk defined in (13) satisfy inequality (50) with
equality, the above inequalities indicate that all feasible triples
(r,c, L) must lie above the plane containing AP, P; Pk.
Furthermore, the converse in [5] (cf. (15)) implies that, for
any ¢, we have

Lo L 111
=i+l i i+l K
Therefore, all feasible triples (r,¢,L) must lie above
the plane containing P;, P», Q2 and the planes containing
P, Pii1,Qiv1,Qy, fori=2,... K —1, respectively. In con-
clusion, all feasible (7, c, L) must lie above the surface F.

ie[K—1].

B. Comp-PDAs Achieving the Optimal SCC Tradeoff Surface

Fix a Comp-PDA A, and let ra, ca, L a denote respectively
the storage, computation, and communication loads of the
associated coded computing scheme. Obviously, A achieves
the point Py if, and only if, it is trivial. In the following,
we assume that A is a non-trivial Comp-PDA, in which case
ra < K.
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As before, let 6; denote the fraction of ordinary symbols
that occur exactly ¢ times, for each ¢t € [K| and define 6] as
in (10). Then for each ¢ € [2 : K], define

(t) A T T
2 - 41— =)(t-1 1
1 T
LW & = (1o 1
A t—l( KF) (51b)
and notice that by Theorem 1:
T
ra = I (52a)
K
ca = Y 0y (52b)
t=2
K
La = Y 60,L%. (52¢)
t=2
Fix i € [2: K — 1] and define
N 1
P = T ) 53
b i(i—1) (532)
L2 T 1
RN I _ 53b
i z( xF) i (53b)
Now, recall that (ra,ca,La) lies on the triangle
A P;_1P; Py if, and only if,
1 2 21—1
La=————ca— —ra+——. 54
AT DA TR AT ) >4

In the following, we show that (54) holds if, and only if,
0,=0,Vtel[2: K\{i,i+1}. (55)
With the definition of 6} in (10), this proves that a Comp-PDA
achieves a point on the triangle AP;_1 P; Py if, and only if,
the following condition holds:
e if 7+ = 2, then each ordinary symbol of the Comp-PDA

occurs at most 3 times;
o ifi € [3: K—1], then the Comp-PDA is almost ¢-regular.

This concludes the proof of Theorem 2 and also proves
Remark 4.
Next, we write

K
Ze;ﬁ?
t=2
K 2
(a) ’ 1 T
= e
>0 (- %F)

)~ T/(KF)

2yt (3 +0)

Lpn =

= [ica +vi

(d) 1 n 2 1 T n 1

T T KF) " ii—1)

(e) 1 21—1

S A At 56
DA TR AT (%)

where (a) holds by simple algebraic manipulations on (51);
(b) is proved below; (c) holds by (52) and because Efiz 0, =
Zthl 0: = 1; (d) holds by (53); and (e) holds by (52a).
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To see why step (b) holds, define the two functions over
the interval (755, +00),

fi e Bic+y,

2
1 T
: _—— (1 -—= .
ot e TR < KF>
Notice that f5 is strictly convex and it intersects f; at the
points (cx),LX) ) and (cXH),LXH)). Therefore,

1 T 2>B' .
c—T/(KF) KF) =T
Vce [1,02)} U [CX+1),OO) ,

with equality if and only if ¢ € {CX) ) CX—H)

- T 2>5,C<t>+7,
KE = MiCA i

Vite2: K]

} . In particular,

1
)~ T/(KF)

with equality if and only if ¢ € {i,i+ 1}.

Combining this with (56), we conclude that (54) holds if
and only if 0, = 0 for all t € [2 : K]\{i,7 + 1}, i.e., (55)
holds.

VII. REDUCING THE FILE COMPLEXITY (PROOF OF
THEOREMS 3 AND 4)

A. Lowest File Complexity of P; (Proof of Theorem 3)

For i = K, the conclusion F > (g) =1 is trivial.

We thus assume in the following that ¢ € [2 : K — 1].
Fix such an ¢ and choose a (K, F,T,S) Comp-PDA A that
achieves the point P;. Notice that by Remark 4, A needs to
be (i + 1)-regular. In the following, we show that A needs to
have exactly ¢ “x” symbols in each row. By Lemma 3 at the
end of this subsection, this will conclude the proof.

Notice first that if an ordinary symbol occurs ¢ + 1 times,

then each row where it occurs must contain at least 7 “x
entries. (Namely in the columns where this symbol occurs in

the other rows.) Thus, if ¢; denotes the number of “x” entries
in the j-th row of A, then
t; >, VjelF], (57)
and by summing over j € [F]:
F
> t; > iF. (58)
j=1

However, since by Theorem 1 and Corollary 2 for the point

P; the storage load is 7p, = % =1:
F

> t;=T=iF,
j=1

and thus both the inequalities (57) and (58) must hold with
equality. Therefore, each row of A has exactly ¢ “x” entries
and the following lemma (which rephrases [33, Lemma 2])

concludes the proof.
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Lemma 3 (From [33]): Consider a g-regular (K, F,T,S)
Comp-PDA with exactly g — 1 “x” entries in each row where

g > 2. Then F > (glfl).

B. New Comp-PDAs With Reduced File Complexity
(Proof of Theorem 4)

First, the case for ¢ = 1 is trivial, since D, = Pg =
(K, 1,0). In this case, the Comp-PDA is the trivial (K, 1, K, 0)
PDA with only “x” entries.

In the following, we consider an arbitrary integer ¢ such
that

K

1<g< —
=q )

5]

We construct an almost L%J -regular (K, F, T, S) Comp-PDA
with

and set

F=q" (59)

that achieves a point on the triangle AP, _1 Py, Px.

To present the new construction, we first introduce some
notations. For a given j € [¢"], let (Jm—1,Gm—2,---,J0) €
Zy" be the unique tuple that satisfies:

F= 1= Jma1q™  + Gm2g™ 2+ .+ o

For convenience, we will write

j = (]'m—lvjm—Qa .. ;jO)q-

Similarly,

(Sm; Sm—1y---
that satisfies:

for a given s € [(¢ — 1)¢"], let
,80) € Zg-1 x Zj be the unique tuple

m m—1 m—2
s—1=5nq" + sm-19 + Sm—2q + ...+ S0,
For convenience of notation, we will write

. ,So)q_l.

Sz(smvsmflv" q

For a given k € [K], let (k1,ko) be the unique pair that
satisfies
k—1=kiq+ ko
for some k1 € [0: m] and ko € [0 : ¢ — 1]. We will write
k= (kr, ko).

Construction 1: Consider a fixed positive integers K and let
q,m, F be given as in (59). Construct the array Aé( = [a,.x]
as follows

o If K < qgm:

a5k =
. if jr, = ko
(Jiky ©q ko g 1, Jm—1, Jm—2,
o) i gk, # ko
(60)

e ajk1+17k0ajk1*1a' c
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TABLE I
THE CONSTRUCTION OF ARRAY Aj
Grioe\(ke ko) | (0,03 (013 (LOF (L1 (2,003
(0,0)2 * (0,0,1)3 * (0,1,0)3 *
(0,1)9 (0,0,0)3 * * (0,1,1)3  (0,0,1)3
(1’0)2 * (07 L )% (07070)% * (07170)%
(1,1)9 (0,1,0)3 * (0,0,1)3 * *
e and if k > gm: — i_i_(m—l)q—i—Zq—K.q—l
mq K K(m-—1) q
@ik = 1 (K-29)(¢g=1) ¢
o1 . — - % (64)
* if >0, Ji=ko mq K(m—1)q K

(/fo ©q Zf’iﬁljz Oq L L
.\m+ . m—1 .
aJO)q ) if 21;0 J 7é kO
(61)

jm—lajm—27 ce

where “O,” denotes minus modulo ¢, and the sum operation
“>"” is in modulo q.

Table 1 depicts A3. It coincides with the Comp-PDA A in
(9), but uses a different notation for the ordinary symbols.

In the following lemma, we prove that all arrays from
Construction 1 are indeed PDA.

Lemma 4: For any given positive integers K and ¢ such
that 2 < ¢q < % the array Ag is an almost g-regular
(K, g Kqm (¢ — 1)qm) Comp-PDA for g £ [%J and
m 2 [%] -1

Proof: See Appendix B. |

For ¢|K the Comp-PDA Aé( specializes to the PDA pro-
posed in [33, Theorem 4].

We now prove that the proposed Comp-PDA Af satis-
fies the properties claimed in the theorem. Lemma 4 and
Theorem 1 readily yield (16). Next, we prove (17), i.e., that
D, is close to the SCC triple

() & - 3)

Combining this with (16), yields

Py =

TP, —TD, =M — —, (62)
q
Ccp,, — €D,
m—1 1 1 (m+1)g
- - )= —m(1-=)(2-
m< K) q m( q)( K )
S R !
- K" k)"
Ja-t o, (K-de-1)
K Kq
q—2 5 ¢ —Kq+2K 1
= 1= - 63
% + Kq 7 (63)
Lp. —Lp

Therefore, from % —1<m< % and the above evaluations,
1) (17a) follows immediately from (62);
2) (63) is quadratic in m and increases with m over
the interval [% -1, %};
3) since Lp, — LDq, given by (64), decreases with m,
we obtain (17¢).

Finally, we compare the file complexities of D, and P,,:

. - (9

¢ ()
_ (mg)!
m!(m(q —1))!
Q V2r (mq)™1\/mq

& (mymm(m{q — 1)@

- I m(qq— 1) <<q —qfw—l)m

62
/—2 m(qg—1)
= d 1 < 1 ) Fp )
q—1 !

e \\m(g—1)

m(q—1)

where (a) follows since K > mgq, (b) by applying Stirling’s
. . 1 1

approximation /27 n"T2e~" < n! < e n"t2¢7" to both the

numerator and the denominator.

VIII. CONCLUSION

We presented a framework for designing schemes from
Comp-PDAs (placement delivery arrays for coded comput-
ing) for map-reduce like distributed computing systems, and
expressed the storage, computation, communication (SCC)
loads of the schemes in terms of the Comp-PDA parameters.
The pareto optimal SCC tradeoff surface and the set of
Comp-PDAs achieving these surface points were completely
characterized. Moreover, we showed that while the corner
points of the pareto optimal SCC surface can only be achieved
with a large number of files, other points on this surface,
which lie close to the corner points, can be achieved with
a significantly smaller number of files.
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APPENDIX A
THE PROPERTIES OF THE SURFACES F AND O

A. Proof of Properties of Surface F

That F is connected and continuous, follows simply because
it can be obtained by successively pasting a triangle or a
trapezoid to the boundary of the previously obtained region.

We turn to prove that for each pair (r,c) satisfying (8a),
there exists exactly one point (7, ¢, L) € F. That there exists
at leaset one such point follows by the continuity of F and
because the triangle obtained by projecting the line segments
P1Q2, Q2Q3, Q3Q4, QuQs, ..., Qx1QK, QxPr, Pk Py
onto the (r,c)-plane, contains all extreme points (r,c) that
satisfy (8a). On the other hand, for each (r, ¢) there is not more
than one point (r,¢, L) € F, because none of the triangles
and trapezoids that build F is vertical and the projections of
any two facets in F onto the (7, ¢)-plane have nonoverlapping
interiors.

B. Proof of Optimal Tradeoff Surface in Theorem 2

We now prove that O is the optimal tradeoff surface of the
region R. Obviously, all pareto-optimal points must lie on the
surface F. Since the triangle AP; P> and the trapezoids
BP,Qi;Qi+1Piy1 (i € [2 : K — 1]) are parallel to e3, all
points in the interior of these facets cannot be pareto-optimal.
In the following, we prove that, all the points on the triangles
AP;_1P;Pg (i € [2: K — 1]) must be pareto-optimal.

For any (r,c) satisfying (8a), let L*(r,c) be the function
such that (r,c¢, L*(r,¢)) € F. Then by (50), it has strictly
positive directional derivative in any direction (r < 0,¢ < 0)
in the interior of the projection of AP;_1P; Pk on the (r,c)
plane.

Fix now a triple (r,c,L*(r,c)) € O. We show that
it is pareto-optimal. To this end, consider any other triple
(r',d, L") € R that satisfies

r<r, d<ec L <L*rc). (65)
We show by contradiction that all three inequalities must hold
with equality. We distinguish between triples (r’,¢’, L’) for

which

(', L*(r', ")) € O, (66)
and triples where this is not the case.
1) Assume that (66) holds. If ' = r and ¢ = ¢, then

obviously, L' > L*(r, ¢), thus all equalities in (65) hold.
If ¥ <7 orc <e then

L*(r',¢') > L*(r,c), (67)

simply because the directional derivative along (r’ —
r,¢ — ¢) is strictly positive by (50). Since (', ¢/, L’) €
R, we have L' > L*(',c') and thus by (67), L' >
L*(r,c), which contradicts (65).

2) Assume now that (66) is violated. Then,
(r',d, L*(r',¢')) must lie on at least one of the
K — 1 facets
APlPQQQ or H PiQiQiJrlPiJrl, 1= 2, .. .,K —1.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 8, AUGUST 2022

As they are all parallel to ey, there exists ¢/ < ¢ <
¢ such that, (v, ¢, L*(+',¢")) € O and L*(r', ") =
L*(r', ). Therefore,

/ * / / * / 1 ((l) *
L'>L(r",)=L"(r",c") > L*(r,¢), (68)
where (a) follows by proof step 1). But (68) contradicts
with (65).

From the above analysis, we conclude that, any point on O
is pareto-optimal.

APPENDIX B
PROOF OF LEMMA 4

It is easy to verify that AX is a ¢™ x K array for any
allowed choice of K and ¢. Each column contains exactly
g™~ ! “¥” symbols and each ordinary symbol takes value in
[(¢ — 1)g™]. Thus,

Farx = q™
Tax i ¢
SA{; = (¢—1)q™.

We now prove that Af is indeed a PDA, i.e., we show
that properties a) and b) in Definition 7 hold. By (60) and
(61), the entry of AKX in row j = (jm—1,Jm—2,---,J0)q €
[¢™] and column k = (ki,ko);"*" € [K] equals s =
(SmySm—1,---,50)3"" € [(g — 1)¢™] if, and only if, the
following two conditions hold:

1) when 0 < k1 < m,

j = (Sm—h ey Ski41,
Sk @q Sm @q 158k’1—17"-580)qa (69)
ko= (ki sk )0t (70)
2) when k1 = m,
Jj = (Sm—la Sm—25-- -, SO)q; (71)
m
Eo= (kY sieg1) (72)

=0

where in this section “@®,” denotes addition modulo g.

Assume now two pairs (j, k), (', k") € [F] x [K] so that
the corresponding entries of Af are both equal to the same
ordinary symbol s:

aj,k = aj/,k/ = S.

Let & = (ki,ko) and k' = (K}, k(). Notice now that by
(69)—(72), if k1 = k| then also ko = k{, k =k, and j = j'.
We therefore restrict to the case ki # kj. Assume without
loss of generality that 0 < k; < k] < m. In this case it can
be shown that j; and ji differ in their &} -th components,
thus establishing that j # j’. Distinguish the cases k7 < m or
ki = m (equivalently, &’ < gm or k' > gm).
1) Consider the case ki < m, and notice that 0 < s, <
g—2and s, &1 € {1,2,...,¢g—1}. Therefore, by (69):

jk’l = Sk a Skt Dg Sm Dq 1= jl/c’17 (73)
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and hence j’ # j. Notice also that (70) implies s, = k.
Since ji; = sg; by (73), we conclude jj; = kj, and thus
the entry a; j» = * by (60). Similar arguments where we
replace (7, k) with (j', k") yields that also a;/ j = *.

2) Consider now the case &} = m. By (69)—(72) and since
Sm @q 1 # 0

jllclzskl F Sk Bq Sm Dg 1 = Jky,

and thus j # j’. We now argue that a; s = *. To this
end, notice that since ki = m, (72) implies k =
St 81 ®g 1; since ki < m, (69) implies Zﬁgljl =

" 81 ©g 1. Therefore, we conclude 7" ji = k)
and thus a; - = * by (61). The proof that also entry
ajr ) = *, is similar to the case when k7 < m and
omitted.

The above analysis indicates that the properties a) and b)
in Definition 7 hold in all cases and Af must be a PDA.
Moreover, by (60) and (61), it is obvious that Af is a
Comp-PDA.

It remains to prove that AX is g-regular for g = L%J
In fact, for a given s = ($y, Sm—1,...,50)1"" € [(g—1)g™],
if it occurs in the row j = (jim—1,---,J0)q € [¢"] and column
k= (kl,lfo);”‘|r1 € [K], then

1) If k&, €{0,1,...,m — 1}, (4, k) can be uniquely deter-

mined by (69) and (70). Therefore, each s € [(¢—1)q¢™]
occurs exactly m times in the first gm columns of Af ;

2) If k1 = m, by (71) and (72), and the fact 0 < kg < K —

gm, (j,k) can be uniquely determined if, and only if,

0<> sl <K —qm.

(74)

1=0
It is easy to enumerate that the number of
(Smy>Sm—1,---,50) € Zg1 x Zy* satisfying (74)

is (K —qm)(q — 1)g™ .

From the above analysis, we conclude that, there are (K —
qm)(q — 1)g™ ! of the (¢ — 1)¢™ ordinary symbols having
occurrence m + 1. There are K¢™ — Kq™ ! ordinary entries,
thus the fraction of entries having occurrence m + 1 is

(K —qm)(g—1)g""

9m+1 = qu _ qu,1
_ml(m +1)g - K)
N K

< 1.

If ¢ does not divide K then 6,,11 < 1 and A(If is an almost-
regular Comp-PDA with g = m = [5] -1 = | £} if

q
q divides K, 6,,41 = 1, then all ordinary symbols have
occurrence m + 1, thus, Aff is a regular Comp-PDA with
g=m+1=T[5]=[%5] Therefore, Af is an almost-
regular Comp-PDA with g = \_%J
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