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Strong Secrecy of Arbitrarily Varying Wiretap
Channel With Constraints

Yiqi Chen , Dan He, Chenhao Ying , and Yuan Luo , Member, IEEE

Abstract— The strong secrecy transmission problem of the
arbitrarily varying wiretap channel (AVWC) with input and
state constraints is investigated in this paper. First, a stochastic-
encoder code lower bound of the strong secrecy capacity is
established by applying the type argument and Csiszár’s almost
independent coloring lemma. Then, a superposition stochastic-
encoder code lower bound of the secrecy capacity is pro-
vided. The superposition stochastic-encoder code lower bound
can be larger than the ordinary stochastic-encoder code lower
bound. Random code lower and upper bounds of the secrecy
capacity of the AVWC with constraints are further provided.
Based on these results, we further consider a special case
of the model, namely severely less noisy AVWC, and give
the stochastic-encoder code and random code capacities. It is
proved that the stochastic-encoder code capacity of the AVWC
with constraints is either equal to or strictly smaller than the
corresponding random code capacity, which is consistent with
the property of the ordinary AVC. Finally, some numerical
examples are presented to better illustrate our capacity results.
Compared to the soft covering lemma that requires the codewords
to be generated i.i.d., our method has more relaxed requirements
regarding codebooks. It is proved that the good codebooks for
secure transmission can be generated by choosing codewords ran-
domly from a given type set, which is critical when considering
the AVWC with constraints.

Index Terms— Arbitrarily varying wiretap channel, stochastic-
encoder code, state constraint, strong secrecy.

I. INTRODUCTION

THE arbitrarily varying channel (AVC) is one of the most
challenging communication models. One difficult prob-

lem regarding the capacity of the AVC is that it will be affected
by different coding schemes and different criteria of decoding
error probabilities. Blackwell et al. investigated the capacity
of the AVC given common randomness [1]. To remove the
common randomness, Ahlswede proposed the Elimination
Technique in his celebrated paper [2] and provided the average
error capacities of the AVC with different coding schemes
(deterministic code, stochastic-encoder code, random code)
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and maximal error capacity of the random code. However, [2]
did not fully characterize the average error deterministic code
capacity of the AVC since Ahlswede did not give a sufficient
and necessary condition for the average error deterministic
code capacity to be positive.

The AVC is a discrete memoryless channel with channel
states. The state of the channel is selected randomly and the
probability mass function of the channel states is unknown.
AVC with non-causal state sequence was investigated in [3].
Recently, the arbitrarily varying broadcast/degraded broadcast
channels with causal side information at the encoder were
investigated in [4] and [5], respectively. Inner and outer bounds
for both random code and deterministic code capacities were
established. In [6], the AVC with colored Gaussian noise
was studied and the deterministic code and random code
capacities were provided. An alternative interpretation of the
AVC is a communication model with a jammer who controls
the channel states and wants to disrupt the communication.
For real communication models, it is reasonable to impose
constraints on the sender and the jammer. In [7], [8], Csiszár
and Narayan presented the random code capacity and the
deterministic code capacity of the AVC with input and state
constraints, respectively. For an ordinary AVC free of con-
straints, the deterministic code capacity is either zero or equal
to the corresponding random code capacity, which is called
Ahlswede’s dichotomy [2]. Csiszár and Narayan established a
sufficient and necessary condition for the deterministic code
capacity of the AVC to be positive, namely that the AVC is
non-symmetrizable. However, as shown in [8], the state con-
straint affects the behavior of the deterministic code capacity
of the AVC. Specifically, the deterministic code capacity of the
AVC with constraints can be positive even if the channel is
symmetrizable. The AVC with constraints and side information
at the encoder was studied in [9] and the bounds on the
random code capacity and deterministic code capacity were
established.

The arbitrarily varying wiretap channel (AVWC) considers
the secrecy transmission problem over the AVC. The wiretap
channel was first introduced by Wyner [10] and then extended
in [11]. A random code lower bound of the secrecy capacity of
the AVWC with respect to weak secrecy was provided in [12].
Reference [12] also provided the random code secrecy capacity
of the strongly degraded AVWC with a best eavesdropper.
In [13], Bjelaković et al. studied a special class of the
AVWC, where the channel has a ‘best eavesdropper’, and
a random code lower bound of the capacity of the AVWC
with respect to strong secrecy was established. Goldfeld et al.
considered the AVWC with type constraint, where only the
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state sequences in a set of type sets will occur [14]. The
authors of [14] developed a stronger version of Wyner’s soft
covering lemma [15] and then provided the random code lower
and upper bounds of the AVWC with type constraint states
with respect to semantic secrecy. Wiese et al. established the
multi-letter random code secrecy capacity of the AVWC with
respect to strong secrecy [16]. In [17], Janda et al. provided the
random code secrecy capacity of the strongly degraded AVWC
with non-causal side information at the jammer and a best
eavesdropper. They further provided the multi-letter random
code secrecy capacity for the case that the strong degradedness
does not hold. In [18], Nötzel et al. first discussed the relation-
ship between the stochastic-encoder code secrecy capacity of
the AVWC and the corresponding random code. It is proved
that the stochastic-encoder code capacity of the AVWC free of
constraints equals to its corresponding random code capacity
if the main channel is non-symmetrizable.

This paper considers the strong secrecy capacity of the
AVWC with general input constraint and state constraint. Two
stochastic-encoder code lower bounds of the secrecy capacity
without common randomness are provided. The achievability
proof of the first bound is based on the coding scheme used
in [8]. The strong secrecy is proved with the help of Csiszár’s
almost independent coloring lemma [19] since the codebooks
are not generated i.i.d.. The achievability proof of the second
lower bound applies a superposition stochastic coding scheme,
which is also used in [20] but for an arbitrarily varying
broadcast channel with degraded message sets. A numerical
example shows that the superposition coding scheme achieves
a higher secrecy achievable rate in some cases. We further give
random code lower and upper bounds of the secrecy capacity
of the AVWC with input and state constraints by applying the
superposition random coding scheme. Finally, based on these
results, a special case of the AVWC model, namely severely
less noisy AVWC, is considered and the stochastic-encoder
code and random code secrecy capacities with constraints are
presented. We find that the stochastic-encoder code secrecy
capacity of the AVWC with constraints can be strictly smaller
than the corresponding random code secrecy capacity, which
is consistent with the property of the ordinary AVC. The
highlight of our paper is as follows.

1) Two stochastic-encoder code lower bounds and two
random code lower bounds of the secrecy capacity of
the AVWC with constraints using different realization
methods are provided.

2) We introduce superposition coding into both
stochastic-encoder coding scheme and random coding
scheme. A numerical example is used to discuss the gain
of using superposition coding.

3) We prove that the stochastic-encoder code secrecy capac-
ity of the AVWC with constraints can be strictly smaller
than the corresponding random code secrecy capacity,
which is consistent with the property of the ordinary AVC
with constraints.

Based on the above paragraph, the remainder of this
paper is organized as follows. Section II introduces the
AVWC model considered in this paper and some basic
notations and definitions. In Section III, Proposition 1 and

Theorem 5 propose the stochastic-encoder code lower bound
and superposition stochastic-encoder code lower bound of the
secrecy capacity of the AVWC with constraints, respectively;
Theorem 6 and Proposition 3 provide the random code lower
and upper bounds of the secrecy capacity and Theorem 7
provides the capacity results of the severely less noisy AVWC
with constraints. The proof of Proposition 1 and Theorem 5
are provided in Sections IV and V, respectively. Proposition 3
and Theorems 6, 7 are proved in the appendix. In Section VI,
three numerical examples are provided to better illustrate our
capacity results. Section VII concludes this paper.

The common part of this paper and our conference
paper [21] only includes part of the result in Proposition 1.

II. MODELS

Throughout this paper, random variables and sample values
are denoted by capital letters and lowercase letters, respec-
tively. Alphabets and sets are denoted by calligraphic letters.
P(X ) denotes the set of probability distributions on a finite
alphabet X . Capital and lowercase letters in boldface represent
random sequences and sample sequences with length n, e.g.
x = (x1, x2, . . . , xn).

In [8], the deterministic code capacities of the AVC with
or without state constraint were derived by using codewords
selected from a fixed type [19]. The type PX of a sequence x
is defined as

PX(x) =
N(x|x)

n
for all x ∈ X , (1)

where N(x|x) is the number of the occurrences of symbol x
in the sequence x. The set of sequences of type PX in Xn is
denoted by T nPX

. More definitions and properties are provided
in [19].

A. Channel Description

Definition 1 (Definition of the AVWC): Let X be the finite
input alphabet, S be the finite state alphabet and Y,Z be finite
output alphabets. An AVWC is a set of channels (W , E) where
W = {Ws : s ∈ S} and E = {Es : s ∈ S} satisfying

Wn
s (y|x) =

∏n

i=1
Wsi(yi|xi) =

∏n

i=1
W (yi|xi, si),

Ens (z|x) =
∏n

i=1
Esi(zi|xi) =

∏n

i=1
E(zi|xi, si).

Here Ws is the main channel and Es is the wiretap channel.
In this paper we only consider the discrete memoryless

channel. To characterize the capacity results of the AVWC
with constraints, we also need to consider the convex hull W
of a given AVC W . For a given state distribution q ∈ P(S), the
channel Wq is defined as Wq(y|x) �

∑
s∈S q(s)W (y|x, s) for

any x ∈ X , y ∈ Y , and then the convex hull of the given AVC
W is defined as W = {Wq : q ∈ P(S)}. One can regard W as
an AVC with state space P(S). It follows that W ⊂ W since
q can be a one-point distribution, i.e. q(s) = 1 for s ∈ S and
q(s′) = 0 for any s′ �= s. Let Yq be the output of the channel
Wq and Ys be the output of the channel Ws.

One interpretation of the AVC model is a communication
system in the presence of a jammer who controls the channel
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state and wants to disrupt the communication. For a real
communication system, it is reasonable to use functions ψ
and l to impose constraints on the sequence of channel input
and sequence of channel states, respectively.

Definition 2 (Constraints on the AVWC): Let ψ : X →
[0,+∞) and l : S → [0,+∞) be given constraint functions
on the input alphabet X and the state alphabet S, respectively.
For given input sequence x and state sequence s, define

ψn(x) =
1
n

∑n

i=1
ψ(xi), ln(s) =

1
n

∑n

i=1
l(si). (2)

Furthermore, we assume minx∈X ψ(x) = mins∈S l(s) = 0.
Let Sn(Λ) be the set of state sequences satisfying ln(s) ≤
Λ for some Λ > 0. An AVWC with state constraint Λ is
an AVWC that only s ∈ Sn(Λ) will occur. For the input
constraint, given message set M and encoder f : M → Xn,
the encoder should satisfy ψn(f(m)) ≤ Υ for some Υ > 0
and any m ∈ M.

Remark 1: Note that for given sequence x with
type PX , the input cost function can be written as
ψn(x) = 1

n

∑n
i=1 ψ(xi) =

∑
x∈X PX(x)ψ(x). For a set

of input sequences with same type PX , define ψ(PX) �∑
x∈X PX(x)ψ(x).
The following definitions describe the stochastic and ran-

dom coding schemes and the corresponding error criteria
considered in this paper.

Definition 3 (Stochastic-Encoder Code (SC) Over the
AVWC): A stochastic-encoder code over the AVWC is a tuple
(f, φ) with a message set M = [1 : 2nR]. The tuple (f, φ)
consists of a stochastic encoder f : M → Xn such that
for each message m ∈ M, X(m) is a sequence distributed
according to f(·|m) and a deterministic decoder φ : Yn → M.
The average error probability under state sequence s of the
code (f, φ) is defined as

λ̄SC(W , f, φ, s) =
1

|M|
∑
m∈M

λSCm (W , f, φ, s),

where

λSCm (W , f, φ, s)=
∑

x∈Xn
f(x|m) · (1−Wn(φ−1(m)|x, s)).

Definition 4 (Random Code (RC) Over the AVWC): A ran-
dom code over the AVWC is a triple (F,Φ,Γ) with message
set M. Here (F,Φ) is a random encoder/decoder pair distrib-
uted on a set of stochastic-encoder codes (fγ , φγ)γ∈I with
index set I and distribution μ; Γ is the common randomness
random variable on I satisfying Pr{Γ = γ} = μ(γ) for
γ ∈ I. The average error probability under state sequence
s of the code (F,Φ,Γ) is defined as

λ̄RC(W , F,Φ, s) =
∑
γ∈I

μ(γ)λ̄SC(W , fγ , φγ , s).

The difference between the stochastic-encoder code and
random code is the existence of the common randomness in
random code. For the stochastic-encoder code, there is only
local randomness at the sender side. For the random code,
there is an additional common randomness between the sender
and the receiver. Each time, to send a message, the common
randomness uniformly selects a stochastic-encoder code at

random and reveals it to the sender and the receiver. Using the
coding schemes defined above, we move on to the definitions
of the secrecy achievable rate and the strong secrecy capacity
of the AVWC with constraints.

Definition 5 (Achievable Rate and Capacity of the AVWC):
A non-negative real number R is said to be secrecy achievable
rate by stochastic-encoder code with input constraint Υ and
state constraint Λ if for any τ, ε > 0 and sufficiently large n,
there exists a stochastic-encoder code (f, φ) such that

1
n

log |M| ≥ R− τ,

max
s∈Sn(Λ)

λ̄SC(W , f, φ, s) ≤ ε,

max
s∈Sn(Λ)

I(M ; Zs) < ε,

where I(M ; Zs) is the information leakage under state
sequence s. The stochastic-encoder code secrecy capacity
of the AVWC with constraints is the supremum of the
stochastic-encoder code secrecy achievable rate. Similarly,
a real number R is said to be secrecy achievable rate by
random code with input constraint Υ and state constraint Λ if
for any τ, ε > 0 and sufficiently large n, there exists a random
code (F,Φ,Γ) such that

1
n

log |M| ≥ R− τ,

max
s∈Sn(Λ)

λ̄RC(W , F,Φ, s) ≤ ε,

max
s∈Sn(Λ)

I(M ; Zs|Γ) < ε,

where I(M ; Zs|Γ) is the information leakage under state
sequence s with respect to random code. The random code
secrecy capacity of the AVWC with constraints is the supre-
mum of the random code secrecy achievable rate.

B. Symmetrizability

For an ordinary AVC, a celebrated result called Ahlswede’s
Dichotomy, shown by Ahlswede in his paper [2] asserts that
the deterministic code capacity and stochastic-encoder code
capacity of an ordinary AVC are either equal to its random
code capacity or else are zero. A necessary and sufficient
condition for the positivity of the capacity of the AVC is
presented in [8], [22]. The following definition describes the
‘symmetrizable AVC’, which leads to the zero capacity of an
AVC free of constraints.

Definition 6 (Symmetrizable AVC): An AVC is
symmetrizable-X if for some channel T : X → S,∑

s∈S
W (y|x, s)T (s|x′) =

∑
s∈S

W (y|x′, s)T (s|x)

for every x, x′, y. (3)

The symmetrizable-X AVC is described as a poor channel
[8], [9] since the decoder couldn’t distinguish between two
possible codewords. See the following example in [8].

Example 1: Let X = Y = S = {0, 1}. The arbitrarily
varying channel is specified by

Y = X + S mod 2.
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It can be proved that the channel satisfies the symmetrizable-X
condition in Definition 6 if and only if T : X → S is a
symmetric channel, i.e.

T =
[
1 − e e
e 1 − e

]
for 0 ≤ e ≤ 1.

For such a channel, the jammer selects a state sequence
by T n(s|x2) =

∏n
i=1 T (si|x2i) with codeword x2 when

codeword x1 is used by the sender. Due to the property of
symmetrizable-X , the average channel satisfies

Wn
T (·|x2)

(y|x1)

=
n∏
i=1

WT (·|x2i)(yi|x1i)

=
n∏
i=1

∑
s

W (yi|x1i, s)T (s|x2i)

=
n∏
i=1

∑
s

W (yi|x2i, s)T (s|x1i) = Wn
T (·|x1)

(y|x2)

for any y ∈ Yn. In this case, the receiver cannot distinguish
between codewords x1 and x2 from the average channel. For
a deterministic decoder φ, let disjoint sets D1 and D2 be the
decoding sets of codewords x1 and x2, respectively. Suppose
Wn
T (·|x2)

(D1|x1) = 1−ε for some 0 < ε < 1/2. By the above
equalities, we have Wn

T (·|x2)
(D1|x1) = Wn

T (·|x1)
(D1|x2) =

1 − ε and hence Wn
T (·|x1)(D2|x2) < ε < 1/2.

Note that the random code capacity of the example is
also 0. Here, we only use this example to demonstrate the
ambiguousness caused by the symmetrizability, which also
holds for other symmetrizable AVCs. Coding schemes without
common randomness cannot achieve reliable communication
over an AVWC free of constraints with a symmetrizable main
channel, and hence the corresponding stochastic-encoder code
capacity is 0. However, as mentioned in [8], the capacity of
the AVC with state constraint Λ may be positive even if it
is symmetrizable. For a given AVC with state constraint and
input distribution PX , the positivity of the channel capacity
depends on whether Λ is larger or smaller than

Λ0(PX) = min
T∈T

∑
x∈X

∑
s∈S

PX(x)T (s|x)l(s), (4)

where T is the set of channels T : X → S satisfying
formula (3). Furthermore, we follow the setting in [8] that
Λ0(PX) = ∞ if T = ∅. In fact Λ0(PX) is the minimal cost,
given input distribution PX , for the jammer to symmetrize
an AVC. Thus, if the minimal cost is less than the state
constraint Λ, the jammer can always choose some T : X → S
that symmetrizes the channel, leading to zero capacity.

In [11], the prefixed channel argument suggests that a virtual
pre-channel can improve the secrecy capacity of the wiretap
channel in some cases. Accordingly, the definition of the
symmetrizable AVC is extended as follows.

Definition 7 (Symmetrizable AVC in the Presence of the
Prefixed Channel): An AVC with prefixed channel PX|U is
symmetrizable-U if for some channels T : X → S and

T ′(s|u) =
∑

x∈X PX|U (x|u)T (s|x),∑
s∈S

W (y|u, s)T ′(s|u′) =
∑
s∈S

W (y|u′, s)T ′(s|u)

for every u, u′ ∈ U , y ∈ Y , (5)

where W (y|u, s) =
∑

x∈X W (y|x, s)PX|U (x|u).
The set of channels T satisfying Definition 7 is different

from the set of channels T satisfying Definition 6 once the
prefixed channel PX|U is specified, and we will discuss their
difference later in Remark 2. For simplicity, denote the set of
channels satisfying the symmetrizable-U condition by T ′. The
corresponding minimal cost for the jammer is defined by

Λ1(PUX) = min
T ′∈T ′

∑
u∈U

∑
s∈S

PU (u)T ′(s|u)l(s), (6)

where T ′ is the set of channels T ′ satisfying formula (5).
Similarly, Λ1(PUX) = ∞ if T ′ = ∅. For the AVWC with
input constraint, it follows that

ψn(x) =
1
n

n∑
i=1

ψ(xi) =
∑
x∈X

ψ(x)PX(x)

=
∑
x∈X

ψ(x)
∑
u∈U

PUX(u, x) � ψ(PUX). (7)

Similar to the original channel [8, Lemma 1], the error
probability of the AVC with a prefixed channel is nontrivial
if Λ1(PUX ) < Λ. This can be easily extended by Defini-
tion 7 and the proof of Lemma 1 in [8]. Let Λ∗

1(U,X) =
supPUX

Λ1(PUX). If Λ∗
1(U,X) > Λ, there always exists at

least one joint type PUX satisfying Λ1(PUX ) > Λ, then we
can construct a code that is achievable over the AVWC with
state constraint.

Remark 2 (Relation Between Λ1(PUX) and Λ0(PX)): In
this remark we talk about the relation between

Λ0(PX) = min
T∈T

∑
x∈X

∑
s∈S

PX(x)T (s|x)l(s) (8)

and

Λ1(PUX) = min
T ′∈T ′

∑
u∈U

∑
s∈S

PU (u)T ′(s|u)l(s). (9)

Note that the prefixed channel PX|U is selected by the
sender and fixed during the transmission. Hence, the channel
T ′(s|u) =

∑
x∈X PX|U (x|u)T (s|x). Then formula (9) can be

written as

Λ1(PUX) = min
T∈T1

∑
u∈U

∑
x∈X

∑
s∈S

PU (u)PX|U (x|u)T (s|x)l(s),

(10)

where T1 is the set of channels T satisfying the
symmetrizable-U condition. Furthermore, for convenience,
we write the set of channels T in formula (8) by T0. In [18],
the authors considered the stochastic-encoder code capacity of
a non-symmetrizable AVWC. One interesting result, as stated
in Example 1 in [18], is that the non-symmetrizable AVWC
may be symmetrizable after adding a prefixed channel. Hence,
there may exist a channel T such that T /∈ T0 but T ∈
T1. On the other hand, it can be proved that an AVWC
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is always symmetrizable-U if it is symmetrizable-X . As a
result, we have T0 ⊆ T1. For given distributions PUX
and PX such that PX(x) =

∑
u PUX(u, x), it follows that

Λ1(PUX) ≤ Λ0(PX). In the case of the AVWC with state
constraint, the capacity can still be positive even if the AVWC
is symmetrizable after adding a prefixed channel as long as
Λ∗

1(U,X) > Λ is satisfied. Note that the input distribution in
the presence of a prefixed channel is limited to Λ1(PUX ) ≥ Λ
when the non-symmetrizable AVWC is symmetrizable after
adding the prefixed channel. However, by setting U = X , one
can guarantee that the prefixed channel will never reduce the
achievable rate.

Next we consider the symmetrizability of the AVWC
regarding the superposition coding scheme. Superposition cod-
ing [23] is a layered coding approach that for joint distribution
PV X = PV PX|V , there exists a ‘cloud center’ codebook CC =
{v(i)}NC

i=1 generated by distribution PV for some NC > 0, and
the codewords in C(i) = {x(i, j)}Nj=1, N > 0, are generated
by distribution PX|V for each ‘cloud center’ v(i) ∈ CC . The
AVWC can be interpreted as an arbitrarily varying broadcast
channel (AVBC) if we regard the eavesdropper as another
receiver. Hence, the argument about the symmetrizability of
the AVBC is also applicable to the AVWC. Accordingly,
the definitions of symmetrizable channels and the minimum
average cost of the jammer are extended as follows.

Definition 8 (Definition 9 in [20]): An AVC W is
symmetrizable-X|V if there exists some channels T̃ : V×X →
S satisfying∑

s∈S
W (y|x, s)T̃ (s|v, x′) =

∑
s∈S

W (y|x′, s)T̃ (s|v, x) (11)

for all v, x, x′, s, y with joint distribution PV X satisfying
PV X(v, x) = PV (v)PX|V (x|v) and minv,x PV X(v, x) > 0.
The set of channels T̃ that X|V-symmetrizes W is denoted
by T̃ .

The corresponding minimal average cost of the jammer for
given distribution PVX is

Λ̃0(PV X) � min
�T∈�T

∑
v∈V

∑
x∈X

∑
s∈S

PV X(v, x)T̃ (s|v, x)l(s). (12)

Similarly, define

Λ̃∗
0(V,X) � max

PV X

Λ̃0(PV X).

When considering the arbitrarily varying wiretap channel,
define the minimal average cost of the jammer in the presence
of a prefixed channel as

Λ̃1(PV UX) � min
�T∈�T

∑
v∈V

∑
u∈U

∑
s∈S

∑
x∈X

PV U (v, u)T̃ (s|v, x)PX|U (x|u)l(s),

where PV UX(v, u, x) = PV U (v, u)PX|U (x|u), and
Λ̃1(PV UX) = ∞ if T̃ = ∅. We further define

Λ̃∗
1(V, U,X) � max

PV UX

Λ̃1(PV UX).

The definitions of the communication model and the coding
schemes used in this paper have now been introduced. In the
next section, we present some existing work about AVWC
without constraints.

C. Related Work

In the following paragraphs, we review some existing results
on the arbitrarily varying wiretap channel.

1) Random Code Results: [12] defined a special case of
the AVWC such that

• The main channel and the wiretap channel have separate
state spaces Sy and Sz corresponding to the main channel
and the wiretap channel, respectively;

• The eavesdropper has a best channel Eq∗ such that X →
Zq∗ → Zsz for any sz ∈ Sz;

• The AVWC is strongly degraded such that X → Yq →
Zq′ holds for any q ∈ P(Sy) and q′ ∈ P(Sz).

Based on the above conditions, [12] established the
single-letter random code secrecy capacity of the AVWC
with respect to weak secrecy, i.e. the information leakage
maxs∈Sn

1
nI(M ; Zs|Γ) < ε for every ε > 0 and sufficiently

large n.
Theorem 1 ([12]): The random code secrecy capacity of

the strongly degraded AVWC with independent states is

CRC = max
PX∈P(S)

[
min

q∈P(Sy)
I(X ;Yq) − max

q′∈P(Sz)
I(X ;Zq′)

]
,

provided the AVWC has a best channel for the eavesdropper.
In [13], the authors considered a special case of the AVWC

assuming the existence of a best channel to the eavesdropper
and established the following lower bound of the random code
secrecy capacity with respect to strong secrecy.

Theorem 2 ([13]): For the AVWC with a best eavesdropper,
the random code (RC) secrecy capacity is lower bounded by

CRC ≥ max
PX∈P(X )

[
min
q∈P(S)

I(X ;Yq) − max
q∈P(S)

I(X ;Zq)
]

with joint distributions PX(x)q(s)W (y|x, s) and
PX(x)q(s)E(z|x, s) for x ∈ X , y ∈ Y, z ∈ Z, s ∈ S.

The above results both have strong assumptions on the
structure of the AVWC. In [14], the authors considered a
general AVWC model with state types constraints without any
assumptions on the structure of the channel and established the
following random code lower bound of the secrecy capacity
with respect to semantic secrecy.

Theorem 3 ([14]): For any convex and closed Q ⊆ P(S),
the random code semantic secrecy capacity of the AVWC with
Q-constraint is lower bounded as

CRC ≥ max
PUX

[
min
q1∈Q

I(U ;Yq) − max
q2∈Q

I(U ;Z|S)
]

where the mutual information terms are calculated with respect
to joint distributions PUX · qj ·WY |XS · EZ|XS for j = 1, 2,
and |U| ≤ |X |.

The result in Theorem 3 was established with respect to
semantic secrecy, which doesn’t make any assumptions about
the message distribution. Therefore, it is severer than strong
secrecy requirement. The authors of [14] further provided
a random code upper bound of the general AVWC with
Q-constraint. Comparing to the results in [14], our works
focus on both stochastic-encoder and random code bounds of
the general AVWC with additional input and state constraints
imposed on the sender and jammer, respectively.
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2) Stochastic-Encoder Code Results: In [18], the authors
discussed the relationship between the random code
secrecy capacity and the stochastic-encoder code secrecy
capacity without any constraints. They characterized the
stochastic-encoder code capacity of the AVWC without con-
straints as follows.

Theorem 4 ([18]): If the random code (RC) secrecy capacity
of the AVWC CRC > 0, the stochastic code secrecy capacity
is given by

CSC = CRC

if and only if the main channel is non-symmetrizable-X . If the
main channel is symmetrizable-X , CSC = 0.

The result in 4 is consistent with the AVC dichotomy shown
by Ahlswede in [2]. In this paper, we further investigate the
capacity of symmetrizable AVWC with constraints and prove
that the stochastic-encoder secrecy capacity of the AVWC with
constraints can be positive but strictly smaller than the random
code secrecy capacity.

3) Summary: Although a multi-letter characterization of the
random code secrecy capacity of the AVWC with respect to
strong secrecy was established in [16], the single-letter form
of the secrecy capacity is still an open problem. In this paper,
we focus on the strong secrecy communication problem over
the general AVWC with input and state constraints without
any ohter assumptions.

III. MAIN RESULTS

This section provides the main capacity results of this
paper. The first stochastic achievable rate result is given
in Proposition 1 based on the coding scheme in [8].
In Theorem 5, an achievable rate established by superposition
stochastic coding scheme is provided. We further discuss the
similarities and differences between the superposition sto-
chastic coding scheme and random coding scheme. A Lower
bound of the random code secrecy capacity of the AVWC
with constraints is established in Theorem 6 by applying
superposition random coding scheme, and the upper bound
is provided in Proposition 3. Finally, we consider a special
case of the AVWC, namely severely less noisy AVWC with
constraints, and provide the corresponding stochastic-encoder
code and random code capacities in Theorem 7.

For notation convenience, we use the subscript q to represent
the distribution of the random variable S contained in the
mutual information term. For example, for random variables
X,S, Y such that Pr{X = x, S = s, Y = y} = PX(x) ·q(s) ·
W (y|x, s), the mutual information of X and Y conditioning
on S is written as Iq(X ;Y |S) =

∑
s∈S q(s)I(X ;Y |S = s).

Now the first main result of this paper can be given.

A. Stochastic-Encoder Code Bounds

Proposition 1 (Lower Bound of the Stochastic-Encoder
Code Secrecy Capacity of the AVWC With Constraints): If
Λ∗

1(U,X) > Λ, the stochastic-encoder code (SC) secrecy
capacity CSC of the AVWC with state constraint Λ and input

constraint Υ is lower bounded by

CSC ≥ max
PUX∈PΥ,Λ(U ,X )

[ min
q∈PΛ(S)

I(U ;Yq) − max
q′∈PΛ(S)

Iq′ (U ;Z|S)]

(13)

under joint distribution PUX×WYq|X and PUX×q′×EZ|XS ,
where the state distribution set PΛ(S) = {q ∈ P(S) :
E[l(S)] =

∑
s∈S q(s)l(s) ≤ Λ}, the input distribution

set PΥ,Λ(U ,X ) = {PUX ∈ P(U × X ) : ψ(PUX) ≤
Υ,Λ1(PUX) ≥ Λ}, and Iq′ (U ;Z|S) =

∑
s q

′(s)I(U ;Zs),
ψ(PUX) =

∑
u∈U

∑
x∈X PU (u)PX|U (x|u)ψ(x).

The proof is provided in Section IV and also our conference
paper [21]. Similar to the original AVWC, we first set U = X
in formula (13) and prove the achievability. Then Proposition 1
is proved by applying the standard prefixed channel argument.
When maxs l(s) ≤ Λ,maxx ψ(x) ≤ Υ, the constraints are
inactive and the result reduces to the lower bound of the
capacity of the non-symmetrizable AVWC free of constraints
considering the definition that Λ1(PUX) = ∞.

In [14], the authors considered the AVWC with type con-
straint states. Note that Proposition 1 in this paper and the
result in [14] do not cover each other since the achievable
rate result in [14] is with respect to semantic secrecy with
common randomness.

We further give a proposition about a lower bound of the
random code secrecy capacity of the AVWC with input and
state constraints.

Proposition 2 (Lower Bound of the Random Code Secrecy
Capacity of the AVWC With Constraints): The random
code (RC) secrecy capacity CRC of the AVWC with input
constraint Υ and state constraint Λ is lower bounded by

CRC ≥ max
PUX :

ψ(PUX )≤Υ

[ min
q∈PΛ(S)

I(U ;Yq) − max
q′∈PΛ(S)

Iq′ (U ;Z|S)]

under joint distribution PUX×WYq|X and PUX×q′×EZ|XS ,
where PΛ(S) = {q ∈ P(S) : E[l(S)] =

∑
s∈S q(s)l(s) ≤

Λ}, ψ(PUX) =
∑

u∈U
∑

x∈X PU (u)PX|U (x|u)ψ(x).
The proof is provided in Appendix A. The random code

capacity of the arbitrarily varying multiple access channel
with input and state constraints was investigated in [24]. The
result in Proposition 2 follows directly when applying the
technique used in the forward proof in [24] and Lemma 5
in Section IV. The main difference in the lower bounds
between Proposition 1 and Proposition 2 is the range of input
distribution. There is an additional constraint on the input
distribution in Proposition 1, i.e. Λ1(PUX) ≥ Λ. Hence,
if the input distribution that maximizes the random code lower
bound in Proposition 2 violates the condition that Λ1(PUX) ≥
Λ, the stochastic-encoder code lower bound of the AVWC
with constraints can be strictly smaller than the corresponding
random code lower bound.

B. Superposition Stochastic-Encoder Code Bounds

In [25], superposition coding scheme was applied to the
wiretap channel with input constraint. It is proved that an
additional auxiliary random variable is necessary to achieve
the secrecy capacity of the wiretap channel in some cases. Here
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we apply the superposition coding scheme to the AVWC with
constraints and derive a lower bound of the secrecy capacity
with respect to strong secrecy.

Theorem 5: For an AVWC with input constraint Υ and state
constraint Λ, if Λ̃∗

1(V, U,X) > Λ, the stochastic-encoder code
secrecy capacity CSC is lower bounded by

CSC ≥ max
PV UX∈PΥ,Λ(V,U ,X )

[ min
q∈PΛ(S)

I(U ;Yq|V )

− max
q′∈PΛ(S)

Iq′ (U ;Z|S, V )],

where PΥ,Λ(V ,U ,X ) = {PV UX ∈ P(V × U × X ) :
ψ(PV UX) ≤ Υ, Λ̃1(PV UX) ≥ Λ}, ψ(PV UX) =∑

v∈V,u∈U,
x∈X

PV (v) PU|V (u|v)PX|U (x|u)ψ(x), and PΛ(S) =
{q ∈ P(S) : E[l(S)] =

∑
s∈S q(s)l(s) ≤ Λ}.

The proof is given in Section V. The achievability of
Theorem 5 is similar to that in [20] for the arbitrarily
varying broadcast channel (AVBC) with degraded message
set. The main difference is that there is no requirement
on the correctness of the second receiver (the eavesdropper
in this paper). The ‘cloud center’ codewords are i.i.d. and
uniformly selected from a fixed type set. For each ‘cloud
center’ codeword, the codewords for the private message
are then selected from the corresponding conditional type
set. Similar to the coding scheme discussed previously, the
superposition stochastic-encoder code capacity of the AVWC
with constraints can be positive even if the main channel is
symmetrizable.

The advantage of applying superposition coding to the
wiretap channel was investigated in [25]. In [25], it was
proved that the superposition coding scheme can improve
the capacity of ordinary wiretap channels in the presence
of the input constraint. The argument also holds for the
arbitrarily varying wiretap channel with input constraint and
state constraint. In Section VI, we give an example that is an
arbitrarily varying channel version of the example investigated
in [25], which shows that the superposition coding scheme
can also improve the achievable rate of the AVWC with input
constraint and state constraint.

The superposition coding scheme is somewhat similar to
the random coding scheme. In the random coding scheme,
the common randomness uniformly selects a code at ran-
dom from a set of codes before each message is sent. This
additional common randomness helps the participants in the
communication system in the presence of the jammer. In [2],
Ahlswede proposed the Elimination Technique to construct
deterministic code from a given random code over the AVC
free of constraints with the precondition that the deterministic
code capacity of the AVC is positive. Specifically, this random
code reduction technique shows that a polynomial number of
codes, e.g. n2, is sufficient for a random code over the AVC
to transmit messages reliably. Based on this the sender selects
a deterministic code with message set [1 : n2] as the n0 length
prefixed code with n0/n vanishing as n → ∞. The new
deterministic code is the juxtaposition of the prefixed code
and the original random code. However, this technique does
not work for the AVC with state constraint. An alternative
coding scheme is the superposition coding scheme considered

in this paper. As mentioned before, the ‘cloud center’ of
the superposition coding is some meaningless codewords,
each corresponding to a stochastic-encoder codebook. The
selection of ‘cloud center’ codewords introduces the addi-
tional randomness in the transmission. Instead of encoding the
randomness into the prefixed code, the superposition coding
scheme encodes the additional randomness and the messages
together into codewords with length n. The proof shows that
the coding scheme satisfies both reliability and the strong
secrecy requirements. The example in Section VI shows that
the coding scheme achieves higher achievable rate in some
cases.

Theorem 6: The random code secrecy capacity of the
AVWC with input constraint Υ and state constraint Λ is lower
bounded by

CRC ≥ max
PV UX∈PΥ(V,U ,X )

[ min
q∈PΛ(S)

I(U ;Yq|V )

− max
q′∈PΛ(S)

Iq′ (U ;Z|V, S)],

with distribution PV UX(v, u, x) = PV (v)PU|V (u|v)PX|U
(x|u) for any V ∈ V , u ∈ U and x ∈ X , where
PΛ(S) = {q ∈ P(S) : E[l(S)] =

∑
s∈S q(s)l(s) ≤ Λ},

PΥ(V ,U ,X ) = {PV UX : ψ(PV UX) ≤ Υ}, ψ(PV UX) =∑
v,u,x PV (v)PU|V (u|v)PX|U (x|u)ψ(x).
The proof is given in Appendix D-A. The random coding

scheme based on joint typicality decoding was applied to the
arbitrarily varying channel in [24], [26]. The main difference
between the coding schemes in [26] and [24] is that in [26], the
letters of each codeword are independent while the codewords
in [24] are randomly selected from some fixed type sets due to
the input constraint. Here we adopt the random coding scheme
in [24], which is also used in the proof of Proposition 2.

Proposition 3: The random code secrecy capacity of the
AVWC with input constraint Υ and state constraint Λ is upper
bounded by

CRC ≤ min
q,q′∈PΛ(S)

max
PV UX∈PΥ(V,U ,X )

[I(U ;Yq|V ) − Iq′ (U ;Z|V, S)],

with input distribution PV UX(v, u, x) = PV (v)PU|V (u|v)
PX|U (x|u) for any V ∈ V , u ∈ U and x ∈ X , where
PΛ(S) = {q ∈ P(S) : E[l(S)] =

∑
s∈S q(s)l(s) ≤ Λ},

PΥ(V ,U ,X ) = {PV UX : ψ(PV UX) ≤ Υ}, ψ(PV UX) =∑
v,u,x PV (v)PU|V (u|v)PX|U (x|u)ψ(x).
The proof is provided in Appendix D-B. As explained

in [14], the auxiliary random variable V allows the sender
to choose a random mixture of the input distribution since
there may not exist a state that is bad for the whole mixture.
In the next subsection, we prove that the superposition coding
is not necessary in some special cases.

C. Special Case: Severely Less Noisy AVWC With
Constraints

For ordinary discrete memoryless channels, a DMC W :
X → Y is said to be less noisy than another DMC E : X → Z
if I(U ;Y ) ≥ I(U ;Z) for any input distribution PUX , where
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the joint distribution of (U,X, Y, Z) satisfies Pr{U = u,X =
x, Y = y, Z = z} = Pr{U = u,X = x}W (y|x)E(z|x).

For the arbitrarily varying channel, an AVC W : X×S → Y
is said to be severely less noisy [27] than E : X × S → Z
if I(U ;Yq) ≥ I(U ;Zs) for any q ∈ P(S) and any s ∈ S.
An AVWC is severely less noisy if the main channel is
severely less noisy than the wiretap channel. Then we have
the following capacity results.

Theorem 7: The stochastic-encoder code secrecy capacity
of a severely less noisy AVWC with input constraint Υ and
state constraint Λ is

CSC= max
PV X∈

PΥ,Λ(V,X )

[ min
q∈PΛ(S)

I(X ;Yq|V )− max
q′∈PΛ(S)

Iq′(X ;Z|V, S)].

The corresponding random code secrecy capacity is

CRC = max
PX∈PΥ(X )

[ min
q∈PΛ(S)

I(X ;Yq) − max
q′∈PΛ(S)

Iq′ (X ;Z|S)].

If the main channel W : X × S → Y is non-symmetrizable-
X , the auxiliary random variable V is not necessary and the
stochastic-encoder code secrecy capacity CSC = CRC .

The proof is provided in Appendix E. In [25], it is proved
that the prefixed channel and the superposition coding scheme
are not necessary when the main channel is less noisy
than the wiretap channel. However, when considering the
stochastic-encoder code capacity of the AVWC with con-
straints, only the prefixed channel is unnecessary, while the
auxiliary random variable V is strictly required to achieve
the secrecy capacity in the presence of input and state con-
straints if the main channel is symmetrizable. In Section VI-B,
a numerical example proves that the stochastic-encoder code
secrecy capacity of the AVWC with constraints can be strictly
smaller than the corresponding random code secrecy capacity.

IV. PROOF OF PROPOSITION 1

A. Secure Partition Lemma

This subsection presents the secure partition lemma of the
AVWC with state constraint. In our previous works [27], [28],
Csiszár’s almost independent coloring lemma and its extended
version were adopted to deal with the strong secrecy prob-
lem of the arbitrarily varying wiretap channel and arbitrarily
varying multiple access wiretap channel, respectively. In this
subsection, we prove that Csiszár’s lemma can be used to
deal with the strong secrecy problem of the AVWC with
constraints.

Define a set of general random variables {Ys}s∈S depending
on s ∈ S such that

Pr{Ys = y} = PYs(y). (14)

We write the δ-conditional typical set [19] conditioning on a
state sequence s as T nPY ,δ

(s), and call it typical sequences
under the state sequence s.

Note that the subscript PY in T nPY ,δ
(s) is a dummy dis-

tribution representing the set of distributions {PYs}s∈S . Note
that although the typical set is defined under state sequences,
the random variable is not necessarily related to the state.
For example, in this paper, all the codewords are uniformly
selected at random from a type set T nPX

. Hence, the input

random variable X is independent of all the channel states.
However, as implied by Lemma 2 in this subsection, the
generated codewords are still typical under state sequence with
high probability.

Lemma 1 (Asymptotic Equipartition USS): Given x ∈
T nPX ,δ

(s), for any y ∈ T nW,δ′ [x, s], it follows that

2−n(Hq(Y |X,S)+ε) ≤Wn
s (y|x) ≤ 2−n(Hq(Y |X,S)−ε), (15)

where q is the type of sequence s, Hq(Y |X,S) =∑
s∈S q(s)H(Ys|X), ε is a positive real number related to

δ and δ′ such that ε→ 0 as δ → 0 and δ′ → 0.
The proof is similar to Theorem 1.2 in [29]. By the defini-

tion of Hq(Y |X,S), we further define the mutual information
Iq(X ;Y |S) =

∑
s q(s)I(X ;Ys). Note that the generation of

the codewords in this paper and that in [27], [28] is different.
In our previous work, all the codewords are i.i.d. generated
according to a fixed distribution PX on X , and in this section,
all the codewords are i.i.d. and uniformly selected from a fixed
type set T nPX

. However, the codewords are still typical under
state sequences with high probability, which is proved in the
following lemma.

Lemma 2: Let X be a random sequence uniformly distrib-
uted on type set T nPX

. For any given state sequence s ∈ Sn
and δ > 0, we have

Pr{X ∈ T nPX ,δ(s)} > 1 − 2−nν (16)

for some ν > 0 and sufficiently large n.
The proof is provided in Appendix B.
Our secure partition lemma is based on Csiszár’s almost

independent coloring lemma.
Lemma 3 (Lemma 17.3 in [19]): Let P be a distribution

on a finite set V and F be a subset of V such that F = {v ∈
V : P (v) ≤ 1/d}. For some positive number ε, if P (F) ≥
1− ε, then a randomly selected mapping G : V → {1, . . . , k}
satisfies

k∑
m=1

∣∣∣∣P (G−1(m)) − 1
k

∣∣∣∣ ≤ 3ε (17)

with probability at least 1 − 2ke−ε
2(1−ε)d/2k(1+ε).

Moreover, if each P in a family P satisfies the hypothesis,
then the probability that formula (17) holds for all P ∈ P is
at least 1 − 2k|P|e−ε2(1−ε)d/2k(1+ε).

Thus, the desired mapping exists if k log k < ε2(1−ε)d log e
2(1+ε) log 2|P| .

This realization of G is denoted by g.
Remark 3: When applying this lemma to the AVWC,

the finite set V represents the codebook C and {1, . . . , k}
represents the message set M. The family of distributions
P is the set of distributions over the codebook C given all
of the sequence pairs (z, s). The partition on the codebook
C arises from the mapping G : C → {1, . . . , k} constructed
in Lemma 3 by considering the disjoint sets G−1(m),m ∈
{1, . . . , k}. Each set G−1(m) ⊆ C is a sub-codebook cor-
responding to a message m ∈ {1, . . . , k}. To communicate
using the partitioned codebook, in order to transmit message
m, the sender uniformly selects a codeword at random from
the sub-codebook G−1(m). The partitions on the codebook C
are called ‘secure partitions’ if the communication using the
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partitioned codebooks under any s ∈ Sn achieves arbitrarily
small information leakage I(M ; Zs).

The secure partition is constructed on ‘good’ codebooks,
which is defined in the following definition.

Definition 9 (Definition of ‘Good’ Codebook): Let C be a
codebook containing Ñ = 2n�R codewords with type PX for
some R̃ > 0. For δ > 0 and ν > 0, the codebook C is called
a ‘good’ codebook if

|T n(C, s)| > (1 − 2 · 2−nν)2n �R for all s ∈ Sn, (18)

where T n(C, s) = C ∩ T nPX ,δ
(s) is the set of codewords that

is typical under state sequence s in codebook C.
The following lemma proves that the codebooks generated

by random selection from a fixed type set is ‘good’ with high
probability.

Lemma 4 (The Existence of ‘Good’ Codebook): Let C =
{X(1), . . . ,X(Ñ)} be a codebook containing Ñ = 2n�R

codewords for some R̃ > 0, each uniformly distributed on
a fixed type set T nPX

. Then the probability of codebook C
being ‘good’ is bounded by

Pr{C is ‘good’} > 1 − ζ, (19)

where ζ is a double exponentially small number and ζ → 0 as
n→ ∞.

With the help of Lemma 2 and the Chernoff bound, the
proof of the above lemma is almost the same as that in [27]
[28, Appendix C]. The following lemma proves the existence
of the secure partitions on ‘good’ codebooks used for the
AVWC with constraints.

Lemma 5 (Secure Partition Lemma): Let τ, ε be two positive
real numbers that can be arbitrarily small. Let E = {Es : s ∈
S} be an AVC with input alphabet X , state alphabet S and
output alphabet Z and M be the message set. Furthermore, let
C = {x(i) : 1 ≤ i ≤ Ñ} be a ‘good’ codebook for Ñ = 2n�R

and R̃ > 0. Suppose Zs is the channel output with input
sequence X uniformly distributed on the codebook C under
state sequence s. For real number N ′ = 2nR

′
satisfying

R′ > max
q∈PΛ(S)

Iq(X ;Z|S)

and R = R̃ − R′, where PX,S,Z(x, s, z) =
PX(x)q(s)E(z|x, s), there exists a secure partition g on
codebook C which divides the codebook into N = 2n(R−τ)

sub-codebooks {C(m)}m∈{1,...,N}. Each sub-codebook
corresponds to a message m. In the communication using
the partitioned codebook, the sender uniformly selects a
codeword X at random from sub-codebook C(M) to transmit
message M . Consequently,

I(M ; Zs) < ε, s ∈ Sn(Λ)

for some ε→ 0 as n→ ∞, where n is the length of sequences
depending on τ and ε, M is the index of the sub-codebook
C(M) containing the codeword X .

Remark 4: For the AVWC free of constraints, one can
enlarge Iq(X ;Z|S) =

∑
s∈S q(s)I(X ;Zs) to maxs I(X ;Zs).

In this case, q is a one point distribution satisfying q(s∗) =
1 for s∗ = arg maxs∈S I(X ;Ys) and q(s) = 0 otherwise, and

the corresponding state sequence s is the symbol s∗ repeated
n times. However, this does not work in the presence of the
state constraint since such a state sequence violates the state
constraint if l(s∗) > Λ.

Proof of Lemma 5: Let (X,Zs) be a pair of random
sequences as in Lemma 5 and s ∈ Sn(Λ). By Lemma 2.12
in [19], the definition of ‘good’ codebook and Hoeffding’s
inequality, it follows that

Pr{(X,Zs) ∈ T nPXZ ,2δ(s)} ≥ 1 − 2−nν (20)

for some δ > 0, where ν → 0 as δ → 0 and n→ ∞. For any
s ∈ Sn(Λ), we construct a high probability subset B(s) ⊆ Zn

with the help of the following two auxiliary sets.

B0(s) =
{
z ∈ T nPZ ,δ′(s) : Ψ(z, s) < 2−

nν
2

}
(21)

and

B1(s) =

{
z : Pr{Zs = z} < 2−n

ν
2

n∏
i=1

PZsi
(zi)

}
, (22)

where Ψ(z, s) = Pr{X /∈ T nPX|Z ,2δ[z, s]|Zs = z}, δ′ > 0
depends on δ, and the subscript PZ in (21) is a dummy
distribution such that for any s ∈ S,

PZs(z) =
∑
x

PX(x)E(z|x, s).

Now by formula (20), we have

1 − 2−nν

≤
∑

z∈B0(s)

Pr{Zs = z}Pr{X ∈ T nPX|Z ,2δ[z, s]|Zs = z}

+
∑

z∈Tn
PZ ,δ′ (s)\B0(s)

Pr{Zs = z}

× Pr {X ∈ T nPX|Z ,2δ[z, s]|Zs = z}
(a)
< Pr{Zs ∈ B0(s)} + (1 − Pr{Zs ∈ B0(s)})(1 − 2−

nν
2 ),

where (a) follows by the definition of B0(s) and Ψ(z, s) in
(21). Hence,

Pr{Zs ∈ B0(s)} > 1 − 2−
nν
2 . (23)

For B1(s), it follows that

Pr{Z ∈ B1(s)} =
∑

z∈B1(s)

Pr{Zs = z}

<
∑

z∈B1(s)

2−n
ν
2

n∏
i=1

PZsi
(zi) ≤ 2−n

ν
2 .

(24)

Setting B(s) = B0(s)\B1(s) yields

Pr{Zs ∈ B(s)} > 1 − 2 · 2−nν
2 . (25)

Then we set parameters for Lemma 3 as follows:

ε = 2−
nν
2 , d = 2n(R− τ

2 ),

k = 2n(R−τ),

P = {PnX} ∪ {PnX|z,s : s ∈ Sn(Λ), z ∈ B(s)}, (26)
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where PnX and PnX|z,s are distributions on codebook C.
The verification of the parameters is given in Appendix C.
Note that when applying Lemma 3 to our model, the finite
set V is the codebook C and the integer set [1, . . . , k] is
the message set M. Now let g : C → M be a realiza-
tion of the random mapping G satisfying formula (17) in
Lemma 3, by the definition of P in (26) and formula (17),
we have∑k

m=1

∣∣∣∣Pr{Mg(X) = m} − 1
k

∣∣∣∣ < 3ε, (27)∑k1

m=1

∣∣∣∣Pr{Mg(X) = m|Zs = z} − 1
k

∣∣∣∣ < 3ε, (28)

where Mg(X)=g(X). The term Mg(X) is a random variable
distributed on the message set, and its distribution is defined
by the mapping g. By formula (27), Mg is almost uniformly
distributed on the message set. Applying the uniform continu-
ity of entropy (Lemma 2.7 in [19]) to (28) yields

|H(Mg(X)|Zs = z) −H(M)| ≤ −3ε log
3ε
k
.

Combining the above inequality and formula (25) gives

H(Mg(X)|Zs) ≥ (1 − 2ε)(log k + 3ε log
3ε
k

)

and

I(Mg(X); Zs) ≤ 5ε log k − 3ε log 3ε (29)

for all s ∈ Sn(Λ). Note that the partition g is not necessarily
equally divided. To construct an equal partition, the following
lemma is needed.

Lemma 6 (Lemma 4 in [30]): For any given codebook C,
if the function g : C → [1 : k] satisfies (27), there exists a
partition {Cm}km=1on C such that

1) |Cm| = 2n �R

k for all m ∈ [1 : k],
2) H(M |Mg(X)) < 4

√
ε log k,

where M is the index of the sub-codebook containing X .
Considering the above Lemma 6 and (29), the information

leakage is upper bounded by

I(M ; Zs) ≤ I(M,Mg(X); Zs)
≤ I(Mg(X); Zs) + I(M ; Zs|Mg(X))
≤ 5ε log k − 3ε log 3ε+ 4

√
ε log k ≤ ε

for all s ∈ S(Λ). Since ε = 2−n
ν
2 , the information leakage ε

can be arbitrarily small as n→ ∞.

B. Coding Scheme

To prove our first main result, we use a coding scheme
similar to that in [8], except that it is a stochastic-encoder
code version. The details of the stochastic coding scheme are
presented as follows.

1) Codebook Generation: Let M be the message set. For
a fixed type PX on X with minx PX(x) > 0 and ψ(PX) ≤
Υ,Λ0(PX) ≥ Λ + α, α > 0, uniformly and i.i.d. select Ñ
codewords from type set T nPX

. The set of codewords is denoted
by codebook C = {x(i) : 1 ≤ i ≤ Ñ}. Then the codebook
is divided into N = 2n(R−τ) sub-codebooks for τ > 0,

each with N ′ = 2nR
′

codewords, where R′ = R̃ − R. The
mth sub-codebook is denoted by C(m) and the lth codeword
in sub-codebook C(m) is denoted by x(m, l).

2) Encoding: To transmit message m, the encoder uni-
formly selects a codeword x(m, l) at random from sub-
codebook C(m).

3) Decoding: Let (X,S, Y ) be dummy random variables
distributed according to PXSY , which is the joint type of
(x(m, l), s,y). Let D(·||·) be the KL divergence. The received
sequence y belongs to the decoding set Dm,l if and only if

1) the joint type PXSY satisfies D(PXSY ||PX×
PS ×W ) ≤ η,

2) for each x(m′, l′) with (m′, l′) �= (m, l) such that
D(PX′S′Y ||PX′ × PS′ × W ) ≤ η for some s′ ∈ Sn
satisfying ln(s′) ≤ Λ, we have I(X,Y ;X ′|S) ≤ η.
Here X,X ′, S, S′, Y are dummy random variables dis-
tributed according to PXX′SY , which is the joint type of
(x(m, l),x(m′, l′), s, s′,y).

Remark 5: Note that the decoding rule in the above coding
scheme is the same as that in [8]. This is because we
adopt a strict decoding rule for the stochastic-encoder code.
The decoder is required to decode the pair (m, l), not just the
message m. Thus, the decoding procedure is the same as the
deterministic code version in [8].

Now by the analysis used in [8], the legitimate receiver can
decode the message correctly if

min
q∈PΛ(S)

I(X ;Yq) − τ ≤ R̃ ≤ min
q∈PΛ(S)

I(X ;Yq) −
2
3
τ (30)

for some τ > 0 that can be arbitrarily small with codeword
type satisfying Λ0(PX) ≥ Λ + α, α > 0. Note that any
codebook with codeword type Λ0(PX) < Λ cannot be used
in reliable communication. By Lemma 4, a codebook that
is generated as in the above stochastic coding scheme is a
‘good codebook’ with probability of at least 1 − ζ, where ζ
is a double exponentially small number. Hence, we assume
our deterministic codebook is a ‘good codebook’. Lemma 5
implies that the transmission achieves strong secrecy if R′ >
maxq∈PΛ(S) Iq(X ;Z|S) and the reliable and secure commu-
nication can be achieved if

min
q∈PΛ(S)

I(X ;Yq) − max
q′∈PΛ(S)

Iq′ (X ;Z|S)− 2τ

≤ 1
n

log |M| = R

≤ min
q∈PΛ(S)

I(X ;Yq) − max
q′∈PΛ(S)

Iq′ (X ;Z|S)− 5
3
τ.

By the continuity of mutual information and a similar argu-
ment as that in the proof of Theorem 3 in [8], the case that
α = 0 can be asymptotically achieved.

C. Prefixed Channel

The prefixed channel PX|U is a discrete memoryless chan-
nel (DMC) prefixed to the AVWC (W , E), which is selected
by the sender and will not be affected by the jammer. The
concatenated channel is controlled by the sender and the
jammer separately and the jammer can ‘see’ the prefixed
channel selection of the sender. Hence, the prefixed channel
can be interpreted as a fixed state DMC with channel state sp.
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The state space of the concatenated channel is S∗ = sp × S.
Since the state sp is fixed by the sender, we assume that
l(sp × s) = l(s) for any s∗ = (sp × s) ∈ S∗.

The main channel with a prefixed channel is defined by

W (y|u, s∗) =
∑
x

W (y|x, s∗)PX|U (x|u)

=
∑
x

W (y|x, s)PX|U (x|u)

for any (u, x, s∗, y) ∈ U × X × S∗ × Y and the average
channel is

Wq∗(y|u) =
∑
s

W (y|u, s∗)q∗(s∗)

for q∗ ∈ P(S∗). For such a concatenated channel, by previous
subsections, it follows that all numbers R satisfying

R ≤ min
q∗∈PΛ(S∗)

I(U ;Yq∗) − max
q∗′∈PΛ(S∗)

Iq∗′ (U ;Z|S∗)

is achievable. Note that the distribution q∗ ∈ P(S∗) is in fact
q ∈ P(S) since sp is fixed. As a result, for given distribution
q∗ ∈ P(S∗), the average channel is in fact specified by

Wq∗(y|u) =
∑
s∗∈S∗

W (y|u, s∗)q∗(s∗)

=
∑
s∈S

∑
x

W (y|x, s)PX|U (x|u)q(s)

=
∑
x

PX|U (x|u)
∑
s∈S

W (y|x, s)q(s)

=
∑
x

PX|U (x|u)Wq(y|x) = Wq(y|u).

For state constraint, it follows that E[l(S∗)] =∑
s∗∈S∗ l(s∗)q∗(s∗) =

∑
s∈S l(s)q(s) = E[l(S)] and

the minimum or maximum taken over PΛ(S∗) is in fact
taken over PΛ(S).

For input distribution, as we discussed in Remark 2, the
AVWC may be symmetrizable-U after adding a prefixed
channel even if the original channel is non-symmetrizable,
which leads to Λ1(PUX) ≤ Λ0(PX) for joint distribution PUX
and PX such that PX(x) =

∑
u PUX(u, x). Maximizing over

input distributions satisfying Λ1(PUX) ≥ Λ and ψ(PUX) ≤
Υ, the proof is completed.

V. PROOF OF THEOREM 5

This section proves the lower bound of the secrecy
capacity of the AVWC with constraints using superposition
stochastic-encoder code in Theorem 5. The secure partition
lemma is given in Subsection V-A and the achievability is
proved in Subsection V-B.

A. Secure Partition Lemma for Superposition Stochastic
Coding Scheme

To prove the secure partition lemma for the superposition
coding scheme, we first extend the definition of ‘good code-
books’ as follows.

Definition 10 (‘Good Codebooks’ for Superposition Cod-
ing): Let NC = 2nRC and Ñ = 2n�R be positive integers

with RC > 0 and R̃ > 0. For superposition coding scheme,
let CC = {v(i), 1 ≤ i ≤ NC} be the cloud center ‘good’
codebook satisfying Definition 9 with size |CC | = NC . Let
{C(i), 1 ≤ i ≤ NC} be a set of codebooks with each element
C(i) corresponding to a sequence v(i) and |C(i)| = Ñ . The
superposition codebooks (CC , {C(i), 1 ≤ i ≤ NC}) are ‘good
superposition codebooks’ if for δ > 0 and ν > 0,

|T n(C(i),v(i), s)| > (1 − 2 · 2−nν)2n�R

for all s ∈ Sn(Λ) and v(i) ∈ (CC ∩ T nPV ,δ(s)),

where T n(C(i),v(i), s) = {x(i, j) ∈ C(i) : (v(i),x(i, j)) ∈
T nPV X ,2δ

(s)}, where PV X(v, x) = PV (v)PX|V (x|v) for v ∈
V , x ∈ X . Then codebooks {C(i)}NC

i=1 are said to be ‘good’
codebooks w.r.t. CC .

Remark 6: Since a randomly selected sequence from a
type set is typical under a given state sequence s with high
probability, which is proved in Lemma 2, it is sufficient to
generate 2nη codewords for CC with some η > 0.

Lemma 7: Let CC = {V (1), . . . ,V (NC)} be a random
codebook containing NC codewords, each uniformly distrib-
uted on a type set T nPV

. Let C(i) = {X(i, j), 1 ≤ j ≤
Ñ}, 1 ≤ i ≤ NC such that

Pr{X(i, j)=x|V (i)=v}=1/|T nPX|V [v]| for x ∈ T nPX|V [v]

and Pr{X(i, j) = x|V (i) = v} = 0 otherwise. The proba-
bility that (CC , {C(i), 1 ≤ i ≤ NC}) are ‘good superposition
codebooks’ is bounded by

Pr{(CC , {C(i), 1 ≤ i ≤ NC}) are ‘good

superposition codebooks’} > 1 − ζ,

where ζ is a double exponentially small number and ζ → 0 as
n→ ∞.

Proof: By Lemma 4, we have

Pr{CC is a ‘good codebook’} > 1 − ζ1

for some double exponentially small number ζ1 → 0 as
n → ∞. Now suppose CC is a ‘good’ codebook and
|CC ∩ T nPV ,δ

(s)| ≤ 2nRC . By Lemma 2 and the property
of the ‘good’ codebook, for any V (i) ∈ (CC ∩T nPV ,δ

(s)) and
X ∈ C(i), it follows that

Pr{(V (i),X) ∈ T nPV X ,2δ(s)} > 1 − 2−nν

for some ν > 0 tending to a constant related to δ as n→ ∞.
Applying the same technique used in Lemma 4, we have

Pr{|T n(C(i),V (i), s)| > (1 − 2 · 2−nν)2n �R} > 1 − ζ2

for some double exponentially small number ζ2 → 0 as n →
∞. Then the probability that (CC , {C(i), 1 ≤ i ≤ NC}) are
‘good superposition codebooks’ is bounded by

Pr{(CC , {C(i), 1≤ i ≤ NC})
are ‘good superposition codebooks’}

≥ (1−ζ1) · (1−ζ2)2
nRC

(a)
> (1−ζ1) · (1 − 2nRCζ2)

(b)
> 1 − ζ

for ζ depending on ζ1 and ζ2 and ζ → 0 as n → ∞, where
(a) follows by Bernoulli’s inequality and (b) follows from the
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fact that ζ1 and ζ2 are double exponentially small numbers.
The proof is completed.

The following lemma deals with the secure transmission
using the superposition stochastic coding scheme.

Lemma 8 (Secure Partition Lemma for Superposition Cod-
ing): Let τ, ε be positive real numbers and E = {Es : s ∈ S}
be an AVC with auxiliary alphabet V , input alphabet X , state
alphabet S and output alphabet Z such that

En(z|x, s) =
n∏
i=1

E(zi|xi, si) =
n∏
i=1

Esi(zi|xi),

where x ∈ Xn, s ∈ Sn, z ∈ Zn. Furthermore, let CC =
{v(i)}NC

i=1 be the ‘cloud center’ good codebook with code-
words uniformly selected from a type set T nPV

, where NC =
2nη and η > 0. For each ‘cloud center’ codeword v(i)
typical under given state sequence s ∈ Sn(Λ), let C(i) =
{x(i, j)} �N

j=1 be a ‘good’ codebook with each codeword
i.i.d. and uniformly selected from the conditional type set
T nPX|V [v(i)], where Ñ = 2n �R and R̃ > 0. Suppose Zs is the
channel output with input sequence X under state sequence s.
For real number N ′ = 2nR

′
satisfying

R′ > max
q∈PΛ(S)

Iq(X ;Z|S, V ),

and R = R̃ − R′, where PV XSZ(v, x, s, z) =
PV (v)PX|V (x|v)q(s)E(z|x, s), there exists a secure partition
gi on codebook C(i), which divides the codebook into N =
2n(R−τ) sub-codebooks {C(i,m)}Nm=1. To transmit message
M using the partitioned codebooks, the sender unformly
selects a ‘cloud center’ codeword index i at random and then
a codeword X from the sub-codebook C(i,M). Consequently,

I(M ; Zs) < ε

for any s ∈ Sn(Λ) and arbitrarily small ε > 0.
Proof: The proof is similar to that of Lemma 5, with only

minor modification of the parameters required. Specifically, for
given state sequence s and v(i) typical under s, the auxiliary
sets B0(s) and B1(s) are rewritten as

B0(s) =
{
(v(i), z) ∈ T nPV Z ,2δ(s) : Ψ(v(i), z, s) < 2−

nν
2

}
(31)

and

B1(s) = {(v(i), z) : Pr{Zs = z|V = v(i)}

< 2−n
ν
2

n∏
k=1

PZsk
|V (zk|vk)}, (32)

where Ψ(v(i), z, s) = Pr{X /∈ T nPX|V Z ,3δ
[v(i), z, s]|V =

v(i),Zs = z} and PV Z is a dummy distribution such that for
any s ∈ S, PV Zs(v, z) =

∑
x PV (v)PX|V (x|v)E(z|x, s).

The parameters in (26) are modified as

ε = 2−
nν
2 , d = 2n(R− τ

2 ),

k = 2n(R−τ),

P = {PnX|v(i)}∪
{PnX|v(i),z,s : v(i) ∈ (CC ∩ T nPV

(s)), z∈B(s), s ∈ Sn(Λ)},
(33)

where PnX|v(i) and PnX|v(i),z,s are distributions on codebook
C(i). The verification of the parameters is also provided in
Appendix C. The main difference between the parameters
here and those in Lemma 5 is that the distributions here
are conditioning on the ‘cloud center’ v(i), which means the
eavesdropper has the knowledge of v(i). This is reasonable
since we do not assume anything about the wiretap channel.
Now by the definition of P in (33) and formula (17), we have∑k

m=1

∣∣∣∣Pr{Mgi(X) = m|V = v(i)} − 1
k

∣∣∣∣ < 3ε, (34)∑k

m=1

∣∣∣∣Pr{Mgi(X) = m|Zs = z,V = v(i)} − 1
k

∣∣∣∣ < 3ε,

(35)

where Mgi(X)=gi(X). Applying the uniform continuity of
entropy (Lemma 2.7 in [19]) to (35) yields

|H(Mgi(X)|Zs = z,V = v(i)) −H(M)| ≤ −3ε log
3ε
k
.

Since CC is a ‘good’ codebook, combining the above inequal-
ity and formula (25) together with the fact that v(i) is typical
under s with high probability in Definition 9 gives

H(Mgi(X)|Zs) ≥ H(Mgi(X)|Zs,V )

≥ (1 − 2ε)(1 − 2ε1)(log k + 3ε log
3ε
k

)

(a)

≥ (1 − 4ε2)(log k + 3ε log
3ε
k

)

and

I(Mgi(X); Zs) ≤ (3ε+ 4ε2) log k − 3ε log 3ε (36)

for all s ∈ Sn(Λ), where (a) follows by setting ε2 =
max{ε, ε1}. Applying Lemma 6 again yields

I(M ; Zs) ≤ ε

for all s ∈ Sn(Λ) and arbitrarily small ε. The proof is
completed.

B. Coding Scheme

The following coding scheme is a stochastic superposition
coding scheme used over an AVWC with input constraint Υ
and state constraint Λ originated from Definition 11 in [20].
We first set U = X and then apply the prefixed channel
discussed in Section IV-C.

1) Codebook Generation: Let M be the message set. For
a fixed type PV on V with minv∈V PV (v) ≥ β > 0, i.i.d.
and unformly select NC = 2nRC codewords from the type
set T nPV

for some RC > 0. The set of codewords is denoted
by codebook CC = {v(i)}NC

i=1. For each sequence v(i), i.i.d.
and uniformly select Ñ = 2N �R codewords for R̃ > 0
from the set T nPX|V [v(i)] with minx,v PX|V (x|v) > 0 and
ψ(PV X) ≤ Υ,Λ0(PV X) ≥ Λ + α, α > 0. The set of
codewords is denoted by codebook C(i) = {x(i, j)} �N

j=1. Then
each codebook is divided into N = 2nR sub-codebooks by
a partition constructed in Lemma 8, each with N ′ = 2nR

′

codewords, where R > 0, R′ > 0, R′ = R̃−R. The mth sub-
codebook of C(i) is denoted by C(i,m) and the lth codeword
in sub-codebook C(i,m) is denoted by x(i,m, l).
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2) Encoding: To transmit message m, the encoder uni-
formly selects a common message codeword v(i) at random
and codeword x(i,m, l) from sub-codebook C(i,m).

3) Decoding: Let (V,X, S, Y ) be random variables distrib-
uted according to the joint type of (v(i),x(i,m, l), s,y). The
received sequence y belongs to the decoding set Di,m,l if and
only if

1) the joint type PV XSY satisfies D(PV XSY ||PV X ×PS ×
W ) ≤ η,

2) for each (v(i′),x(i′,m′, l′)) with (i′,m′, l′) �= (i,m, l)
such that D(PV ′X′S′Y ||PV ′X′ × PS′ × W ) ≤ η for
some s′ ∈ Sn satisfying ln(s) ≤ Λ, we have
I(V,X, Y ;V ′, X ′|S) ≤ η. Here, (V, V ′, X,X ′, S, S′, Y )
are dummy random variables distributed according to the
joint type of (v(i),v(i′),x(i,m, l),x(i′,m′, l′), s, s′,y).

3) for each (v(i),x(i,m′, l′)) with (m′, l′) �= (m, l)
such that D(PV X′S′Y ||PV X′ × PS′ × W ) ≤ η for
some s′ ∈ Sn satisfying ln(s′) ≤ Λ, we have
I(X,Y ;X ′|V, S) ≤ η. Here, (V,X,X ′, S, S′, Y ) are
dummy random variables distributed according to the joint
type of (v(i),x(i,m, l),x(i,m′, l′), s, s′,y).

Remark 7: The decoder in the above coding scheme is
almost the same as that in Definition 11 of [20], except
that our decoder is used for a stochastic encoder. Similar
to Section IV, by adopting a strict decoding rule, the proof
in [20, Appendix I] can be directly applied here. In [20], the
authors further define a common message decoder for the
second receiver, which is not needed in this paper since in
our model, the correctness of the eavesdropper’s decoding of
the common messages does not matter.

The coding scheme used in [20] is for an arbitrarily varying
broadcast channel with a degraded message set. The main
difference is that in our paper, the eavesdropper is not required
to decode the common message while the legitimate receiver
should decode the ‘private message’ correctly. In the single-
user AVWC, one can regard the coding scheme as a superpo-
sition coding scheme, with some meaningless ‘cloud center’
codewords.

By the standard technique used in [20] and Fourier-Motzkin
elimination, the legitimate receiver can decode the message
correctly with high probability if

min
q∈PΛ(S)

I(X ;Yq|V ) − τ ≤ R̃ ≤ min
q∈PΛ(S)

I(X ;Yq|V ) − 2
3
τ

for some τ > 0 that can be arbitrarily small. Combining the
constraint on R′ in Lemma 8 and the constraint on R̃, the
reliable and secure communication can be achieved if

min
q∈PΛ(S)

I(X ;Yq|V ) − max
q′∈PΛ(S)

Iq′(X ;Z|S, V ) − 2τ

≤ 1
n

log |M| = R

≤ min
q∈PΛ(S)

I(X ;Yq|V ) − max
q′∈PΛ(S)

Iq′(X ;Z|S, V ) − 5
3
τ.

Applying the prefixed channel argument and maximizing
the achievable rate over all input distributions satisfying the
constraints, the proof is completed.

VI. EXAMPLES

In this section, we give some numerical examples to better
illustrate our main results. In Subsection VI-A, we give
numerical results of the stochastic-encoder code achievable
rate and random code achievable rate of the AVWC with state
constraint. In Subsection VI-B, we consider a special case
of the AVWC, named severely less noisy AVWC, and use a
numerical example to show that the stochastic-encoder code
capacity can be strictly smaller than the random code capacity.
In Subsection VI-C, it is proved that the superposition coding
scheme used in this paper improves the secrecy achievable
rate compared to the coding scheme without ‘cloud center’ in
some cases.

A. Binary AVWC With State Constraint

Consider an AVWC whose main channel satisfies

Y = X +K · S, (37)

where X ∼ Bernoulli(p),K ∼ Bernoulli(θ), S ∼
Bernoulli(q). The wiretap channel is a degraded version of
the main channel. The transition probability from Y to Z
forms an erasure channel with erasure probability α. The
channel is subject to state constraint Λ and the state cost
function is Hamming weight, i.e.

l(s) =

{
1, s = 1,
0, s = 0.

The transmission rate R = max{α − h(θΛ), 0} can be
achieved by both random code and stochastic-encoder code
with state constraint Λ if 0 ≤ θΛ < 1−

√
1−α
2 and R = 0

otherwise.
The proof is given in Appendix F. In our previous work [28],

a random code inner bound of such a model without state
constraint is provided. The achievable rate in this example is
almost the same as our previous result [28, Proposition 2],
except that θ is replaced by θΛ since in this case, the range
of q is limited to 0 ≤ q ≤ Λ due to state constraint. Based on
this result, we have the following corollary.

Corollary 1: For an AVWC with state constraint Λ with
a symmetrizable main channel, the stochastic-encoder secrecy
capacity can still be positive.

In the next subsection, we use a numerical example to
prove that the stochastic-encoder code capacity of the AVWC
with constraints can be strictly smaller than the corresponding
random code capacity.

B. Capacity of Severely Less Noisy AVWC With Constraints

The capacity results in Theorem 7 imply the following prop-
erty of the arbitrarily varying wiretap channel with constraints,
which is similar to the AVC with constraints.

Proposition 4: The stochastic-encoder code capacity of the
AVWC with constraints can be positive but smaller than the
corresponding random code capacity if the main channel of
the AVWC is symmetrizable.

The proposition is proved by a numerical example, which
is given in the rest of this subsection. In fact, we compare the
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upper bound of the stochastic-encoder code capacity and the
lower bound of the random code capacity, instead of comput-
ing the exact values of the capacities. The proof is completed
by showing that the upper bound of the stochastic-encoder
code capacity is strictly smaller than the lower bound of the
random code capacity.

Example 2: Let X = S = Y = {0, 1},Z = {0, 1, e}.
The main channel W : X × S → Y is a two-state AVC
W = {W1,W2} and the wiretap channel is a stationary erasure
channel E : X → Z , where

W1 =
[
1 0
1
2

1
2

]
,W2 =

[
1
2

1
2

0 1

]
, E =

[
1 − e e
e 1 − e

]
and the cross probability e = 0.45. We further set Λ = 0.8 and
Υ > Λ. The constraint functions imposed on the input symbols
and channel states are ψ(x) = x and l(s) = s for x, s ∈ {0, 1}.
It follows that the main channel is severely less noisy than the
wiretap channel and the stochastic-encoder code capacity is
strictly smaller than the random code capacity.

Proof: Note that the average channel can be expressed as[
1 − q

2
q
2

1−q
2

1+q
2

]
,

where q = Pr{S = 1}. We first prove that for any q ∈
[0, 1], the average channel Wq is less noisy than the wiretap
channel E. This can be proved by an alternative definition of
less noisy [31, Theorem 2]: A channel W with output random
variable Y is less noisy than a channel E with output random
variable Z if I(X ;Y )− I(X ;Z) is a concave function of the
input distribution PX . Then we can verify by derivation that
for any q ∈ [0, 1], I(X ;Yq) − I(X ;Z) is a concave function
of the input distribution PX . Hence, W is severely less noisy
than E and the capacity results in Theorem 7 can be applied
to this example. Note that the wiretap channel is a stationary
channel, and the corresponding random code capacity is

max
PX∈PΥ(X )

[ min
q∈PΛ(S)

I(X ;Yq) − I(X ;Z)]. (38)

Applying the channel model to formula (38) yields

CRC = max
p≤Υ

[min
q≤Λ

h(
p+ q

2
) − (1 − p)h(

q

2
) − ph(

1 − q

2
)

−(h((1 − 2e)p+ e) − h(e))],

where h(·) is the entropy function and p = PX(1). Upon
choosing input distribution p = 1

2 , the above formula reaches
minimum at q = 1

2 . It follows that h(1
2 ) − h(1

4 ) − (h(0.5) −
h(0.45)) = 0.1815 is achievable and hence CRC ≥ 0.1815.

Now let’s move to the stochastic-encoder code capacity of
this example. By Definition 6, the main channel W will only
be symmetrized by identity matrix. Hence, Λ0(PX) = p.
By the definition of less noisy and the technique used in
Appendix E, it follows that

I(X ;Yq|V ) − Iq′ (X ;Z|V, S) ≤ I(X ;Yq) − Iq′ (X ;Z|S)

for any q, q′ ∈ P(S). Therefore, the stochastic-encoder code
capacity satisfies

max
PV X∈

PΥ,Λ(V,X )

min
q,q′∈PΛ(S)

[I(X ;Yq|V ) − Iq′ (X ;Z|V, S)]

≤ max
PX∈

PΥ,Λ(X )

min
q,q′∈PΛ(S)

[I(X ;Yq) − Iq′(X ;Z|S)]

≤ max
PX∈

PΥ,Λ(X )

min
q∈PΛ(S)

[I(X ;Yq)]. (39)

By derivation, the term I(p, q) � I(X ;Yq) = h(p+q2 ) −
(1 − p)h( q2 ) − ph(1−q

2 ) is concave in p and convex in q.
Additionally, it follows that p = 1/2 and q = 1/2 is the saddle
point of I(p, q). For Υ > Λ = 0.8 > 0.5, the right-hand side
of the formula (39) reaches its maximum at p = Λ. So we
have CSC ≤ I(Λ, 1/2) = 0.1228 < CRC . The proof is
completed.

With the help of Theorem 7 and Example 2, Proposition 4
shows that the stochastic-encoder code capacity of the AVWC
with constraints can be strictly smaller than the corresponding
random code capacity, while still being positive even when
the main channel is symmetrizable, and this phenomenon is
consistent with the original arbitrarily varying channel [8].

C. Comparison of the Achievable Rate Under Different
Coding Schemes

In this section, we give an example that shows the advantage
of using superposition coding over the AVWC with con-
straints.

Example 3 (Arbitrarily Varying Version of Proposition 1
in [25]): Let X1 = X2 = S = Y = {0, 1}. The channel input
is X = (X1, X2) and U, V are the auxiliary random variables.
The main channel to the legitimate receiver and the wiretap
channel are expressed as

Y = X1X2 +N(1 −X2) + S,

Z = X2,

where N ∼ Bernoulli(1
2 ). The channel is under input

constraint Υ = 1/2 and state constraint Λ < 1/2. The
input cost and state cost functions are defined as ψ(x) =
ψ(x1, x2) = x2 and l(s) = s for x1, x2, s ∈ {0, 1}. For the
AVWC with constraints defined as above, we have

max
PV UX∈

PΥ,Λ(V,U ,X )

[ min
q∈PΛ(S)

I(U ;Yq|V ) − max
q∈PΛ(S)

Iq(U ;Z|S, V )]

≥ 1
2
(1 − h(Λ))

> max
PUX∈

PΥ,Λ(U ,X )

[ min
q∈PΛ(S)

I(U ;Yq) − max
q∈PΛ(S)

Iq(U ;Z|S)].

The analysis is similar to that in [25]. So we only give a
proof outline in Appendix G. The proposition shows that the
coding scheme used in Theorem 5 does improve the achievable
rate for the AVWC with input constraint and state constraint.
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VII. CONCLUSION

The strong secrecy problem of the AVWC with input and
state constraints is investigated in this paper. Two lower
bounds of the AVWC with constraints are established by
applying the ordinary stochastic-encoder code and superpo-
sition stochastic-encoder code without the general assump-
tion of the i.i.d. generated codebook. We further determine
the random code secrecy capacity of the AVWC with state
constraint.

For an ordinary AVC with constraints, the stochastic-
encoder code capacity can be positive but strictly smaller than
the corresponding random code capacity. In this paper, we find
the property still holds for the AVWC with input and state
constraints. To prove this, we determine the stochastic-encoder
code and random code capacity for a special case of the
AVWC, namely severely less noisy AVWC, and then use a
numerical example to show the property.

APPENDIX A
PROOF OF PROPOSITION 2

In this section, we prove the random code lower bound in
Proposition 2. We adopt the random coding scheme in [24]
with the help of the codeword properties (Lemma 3) in [8].

A. Error Analysis

1) Codebook Generation: Fix a type PX on X such that
E[X ] =

∑
x∈X PX(x)ψ(x) ≤ Υ, where ψ is the cost function

on X defined in Definition 2. Let C = {X(1), . . . ,X(Ñ)} be
a random codebook and {Cγ}γ∈I be the set of sample values
of the random codebook C with I being the index set of the
samples and μ being the distribution on I. It follows that

Pr{C = Cγ} = μ(γ) =
�N∏
i=1

1
|T nPX

| ,

where Ñ = 2n �R for some R̃ > 0.
2) Common Randomness: The common randomness ran-

domly selects an index by distribution μ on index set I.
The codebook Cγ is then revealed to the sender and the
receiver.

3) Encoding: The codebook Cγ is divided into N =
2n(R−τ) parts {Cγ(m)}Nm=1 for some R > 0 and τ > 0.
To transmit message m, the encoder uniformly selects a
codeword x(m, l) at random, which is the lth codeword in
the mth sub-codebook Cγ(m).

4) Decoding: For any s with type q and δ > 0, let
K(s) = {(x,y) : D(Px,y,s||PX × q × W ) ≤ δ} and
K = ∪s∈Sn(Λ)K(s), Km,l = {y : (x(m, l),y) ∈ K}. The
decoding set is defined as

Dm,l = Km,l ∩ (
⋃

(m′,l′) �=(m,l)

Km′,l′)c.

The decoder declares that message m̂ is sent if there is a
unique pair (m̂, l̂) for codebook Cγ selected by common
randomness such that y ∈ Dm̂,l̂.

Given the partitioned codebook Cγ = {Cγ(m)}Nm=1

and state sequence s, the decoding error probability is
bounded by

e(s) ≤Wn(Dc
m,l|x(m, l), s)

≤Wn(Kcm,l|x(m, l), s)

+
∑

(m′,l′) �=(m,l)

Wn(Km′,l′ |x(m, l), s). (40)

Let Km,l(s) = {y : (x(m, l),y) ∈ K(s)}. Applying the
standard type argument [19],

Wn(Kcm,l|x(m, l), s)
≤Wn(Kcm,l(s)|x(m, l), s)

=
∑

y:(x(m,l),y)∈Kc(s)

Wn(y|x(m, l), s)

(a)

≤ (n+ 1)|Y| exp(−n(D(PXY S ||PX × q ×W ) − I(X ;S)))
(b)

≤ exp(−n(δ/2 − I(X ;S))) (41)

for some δ > 0, where (X,Y, S) are random variables
distributed according to the joint type of (x(m, l),y, s) and
(a) follows by the type counting lemma in [19], (b) follows
by the definition of K(s). For each term in the sum in (40),
it can be written as

Wn(Km′,l′ |x(m, l), s) =
∑

y:(x(m′,l′),y)∈K
Wn(y|x(m, l), s).

(42)

Denote the first term in (40) by e1(x(m, l), s) and the term in
the summation in (40) by e2(x(m, l),x(m′, l′), s) for given
(m′, l′). Now considering the random codebook C, the term
e1(X(m, l), s) is bounded by

E[e1(X(m, l), s)]
≤ exp(−nδ/4) + Pr{X(m, l) ∈ {x : I(X ;S) > δ/4}}
(a)

≤ 2 exp(−nδ/12),

where (a) follows from the proof of Lemma 3 in [8]. For the
term e2(X(m, l),X(m′, l′), s), by independence we have

E[e2(X(m, l),X(m′, l′), s)|X(m, l) = x(m, l)]
= E[e2(x(m, l),X(m′, l′), s)|X(m, l) = x(m, l)]

=
∑

y

Wn(y|x(m, l), s)

⎛⎝ ∑
x:(x,y)∈K

Pr{X(m′, l′) = x}

⎞⎠
≤ 2−n(infq∈PΛ(S) I(X;Yq)−ε)

for some ε > 0. The average error probability of the random
code is bounded by

λ̄RC(W , F,Φ, s)≤2 · 2−nδ/2+Ñ · 2−n(infq∈PΛ(S) I(X;Yq)−ε).

Since Ñ = 2n�R, the error probability is exponentially small if

min
q∈PΛ(S)

I(X ;Yq) − τ ≤ R̃ ≤ min
q∈PΛ(S)

I(X ;Yq) −
2
3
τ

for some τ > 0 such that 2
3τ > ε.
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B. Information Leakage

As proved in Section IV, one can construct a secure
partition on a given good codebook Cγ if R′ >
maxq∈PΛ(S) Iq(X ;Z|S). Now let Zs

γ be the channel output
with state sequence s ∈ Sn(Λ) and codebook Cγ and Ig be
the set of indices such that for any γ ∈ Ig, Cγ is a good
codebook. The information leakage is bounded by

I(M,Zs|Γ)

=
∑
γ

I(M,Zγ
s |Γ = γ)μ(γ)

=
∑
γ∈Ig

I(M,Zγ
s |Γ = γ)μ(γ) +

∑
γ /∈Ig

I(M,Zγ
s |Γ = γ)μ(γ)

(a)

≤ ε′ + ζ · log |M | (b)
= ε,

where (a) follows by Lemma 5, (b) follows by Lemma 4
and the fact that ζ is a double exponentially small number.
Combining the above subsections implies that the reliable and
secure communication is achieved if

min
q∈PΛ(S)

I(X ;Yq) − max
q∈PΛ(S)

Iq(X ;Z|S)− 2τ ≤ 1
n

log |M|

≤ min
q∈PΛ(S)

I(X ;Yq) − max
q∈PΛ(S)

Iq(X ;Z|S) − 5
3
τ.

Maximizing over all possible input distribution and applying
the prefixed channel argument discussed in Section IV-C, the
proof is completed.

APPENDIX B
PROOF OF LEMMA 2

In this section, we prove that a sequence randomly selected
from a type set is typical under state sequences with high
probability. Let s be a given sequence. For any given
s ∈ S and random sequence X uniformly distributed over
T nPX

, define an indicator random variable as follows.

Vs,x =

{
1, |N(x, s|X , s) −N(s|s)PX(x)| > nδ,

0, otherwise.
(43)

Then we have

Pr{Vs,x = 1} = Pr{N(x, s|X , s) −N(s|s)PX(x) > nδ}
+Pr{N(x, s|X, s) −N(s|s)PX(x) < −nδ}.

(44)

By symmetry, it is sufficient to bound one of the above two
formulas in the right-hand side of formula (44). It follows that

Pr{N(x, s|X , s) −N(s|s)PX(x) > nδ}

=
N(s|s)∑

nx=N(s|s)(PX (x)+δ′)+1

Pr{N(x, s|X , s) = nx}

=
N(s|s)∑

nx=N(s|s)(PX (x)+δ′)+1

(
N(s|s)
nx

)( n−N(s|s)
nPX(x)−nx

)(
n

nPX (x)

) , (45)

where δ′ = nδ/N(s|s). Note that if PX(x) = 0 or PX(x) +
δ′ ≥ 1, the probability equals to 0 and there is nothing further

to prove. Hence, we only need to consider the symbol pair
(x, s) such that PX(x) + δ′ < 1. To bound the term

(
N(s|s)
nx

)
,

we need the following lemma.
Lemma 9: Let n be a positive real number and p ∈ [0, 1]

such that np is an integer.
(
n
np

)
is bounded by

(n+ 1)−22nH(p) ≤
(
n

np

)
≤ 2nH(p),

where H(p) = −p log p− (1 − p) log(1 − p).
Proof: Consider the set of all n-length binary sequences

with type p̂(1) = p and p̂(0) = 1 − p. The set of sequences
is denoted by T np̂ . For each sequence x ∈ T np̂ , it follows that
N(1|x) = np and N(0|x) = n(1 − p). Now by Lemma 2.3
in [19],

(n+ 1)−22nH(p) ≤
(
n

np

)
= |T np̂ | ≤ 2nH(p).

The proof is completed.
Set q = N(s|s)/n and λ = nx/n, where nx is introduced

as in formula (45). It follows that

δ<q<1 − δ, q PX(x)+δ < λ ≤ q, λ ≤ PX(x) ≤ 1 + λ− q.

(46)

By the above lemma, we bound the term(
N(s|s)
nx

)
≤ 2nqH( λ

q )

where the entropy function depends on p(1) = λ/q and p(0) =
1 − p(1). Similarly,(

n−N(s|s)
nPX(x) − nx

)
≤ 2n(1−q)H(

PX (x)−λ

1−q ),

where PX(x)−λ
1−q = (nPX(x) − nx)/(n−N(s|s)) and(

n

nPX(x)

)
≥ (n+ 1)−22nH(PX (x)).

It follows that for any given x ∈ X and s ∈ S,

Pr{N(x, s|X , s) −N(s|s)PX(x) > N(s|s)δ}

≤ N(s|s)(n+ 1)2
2nqH( λ

q )2n(1−q))H(
PX (x)−λ

1−q )

2nH(PX )

= N(s|s)(n+ 1)22−n(H(PX (x))−qH( λ
q )−(1−q)H(

PX (x)−λ

1−q )).

(47)

For given 1 > δ > 0, define f(x1, x2, x3) = H(x1) −
x2H(x3

x2
)−(1−x2)H(x1−x3

1−x2
) with δ ≤ x2 ≤ 1−δ, x1x2+δ ≤

x3 ≤ x2 and x3 ≤ x1 ≤ 1+x3−x2. Note that δ ≤ x2 ≤ 1−δ,
x1x2 + δ ≤ x3 ≤ x2 and x3 ≤ x1 ≤ 1 + x3 − x2 form
a bounded closed region R. By fact that P1 �= P2 implies
H(qP1 +(1− q)P2)− qH(P1)− (1− q)H(P2) > 0, and here
P1 − P2 = x3

x2
− x1−x3

1−x2
≥ δ

x2(1−x2)
≥ 4δ > 0, we have

ν � min
(x1,x2,x3)∈R

f(x1, x2, x3) = f(x∗1, x
∗
2, x

∗
3) > 0

independent of n, where (x∗1, x
∗
2, x

∗
3) =

argmin(x1,x2,x3)∈R f(x1, x2, x3). Now we return to



4716 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

formula (47). Let R∗ be the set of (PX(x), λ, q) satisfying
constraints in formula (46). It follows that R∗ ⊆ R, and then

ν∗ � inf
(PX (x),q,λ)∈R∗

f(PX(x), q, λ) ≥ ν > 0

and formula (47) is upper bounded by N(s|s)(n+1)22−nν <
2−nν

′
for ν′ > 0. The above argument and the symmetry in

formula (44) show that the probability that Vs,x = 1 for a give
x ∈ X and s ∈ S is bounded by Pr{Vs,x = 1} ≤ 2 · 2−nν′

.
Summing over all possible x and s, the probability that a
randomly selected sequence from a type set T nPX

is not typical
under the given state sequence s satisfies

Pr{X is not typical under s} ≤ |X ||S|2 · 2−nν′

for ν′ > 0 and sufficiently large n. The proof is completed.

APPENDIX C
PARAMETERS VERIFICATION

In this section, we verify the parameters in formulas (26)
and (33) that ensure the existence of the secure partitions in
Lemma 5 and Lemma 8.

A. Verification of Parameters (26)

In this subsection, we verify that the parameters in (26)
satisfy the conditions in Lemma 3 that ensure the existence of
the secure partition.

1) Verification of P (F) ≥ 1 − ε: For any x ∈ C ∩
T nPX|Z,2δ

[z, s], s ∈ Sn(Λ) and z ∈ B(s), the conditional
probability of codeword x satisfies

PnX|z,s(x)

= Pr{X = x|Zs = z}
(a)

≤ V ns (z|x)

2n�R2−n
ν
2

n∏
i=1

PZsi
(zi)

(b)

≤ 2−n(Hq(Z|X,S)−ε1)

2n �R2−n
ν
2 2−n(Hq(Z|S)+ε2)

= 2−n(�R−Iq(X;Z|S)−ε1−ε2− ν
2 ) (48)

≤ 2−n(�R−maxq∈PΛ(S) Iq(X;Z|S)−ε1−ε2− ν
2 )

(c)

≤ 2−n(R− τ
2 ) = d−1, (49)

where

• (a) follows from the fact that |C| = 2n �R and the property
of B1(s);

• (b) follows by Lemma 1;
• (c) follows by the fact that R̃ = R + R′ and R′ >

maxq∈PΛ(S) Iq(X ;Z|S).
Then we construct the subset F as F = C ∩T nPX|Z,2δ

[z, s] for
s ∈ Sn(Λ) and z ∈ B(s). The properties of B0 in formula
(23) imply that the condition P (F) ≥ 1− 2−nν/2 is satisfied.

For PnX , note that all the codewords are uniformly distrib-
uted on the codebook, and PnX(x) = 2−n�R < 2−n(R− τ

2 ).
Setting F = C, it follows that PnX(C) = 1.

2) Verification of k log k < ε2(1−ε)d log e
2(1+ε) log 2|P| : This condition

ensures that the probability that the mapping exists is positive.
To prove the desired result, we have

ε2(1 − ε)d log e
2(1 + ε) log 2|P|

=
1

2(1 + ε) log 2|P|2
n(R−ν− 1

2 τ+
log ((1−ε) log e)

n )

(a)

≥ 2n(R−ν− 1
2 τ+

log ((1−ε) log e)
n − log (2(1+ε)n log 2|S||Z|)

n )

(b)
> 2n(R− 3

4 τ)
(c)
> k log k,

where (a) follows because the size |P| ≤ (|S||Z|)n, (b) and
(c) are deduced by a sufficiently large n and a sufficiently
small ν. The verification is completed.

B. Verification of Parameters (33)

In this subsection, we verify the parameters in (33). Here
we only prove that the condition P (F) ≥ 1 − ε holds and
the verification of the other conditions are the same as that in
the above subsection. For any x ∈ C(i)∩T nX|V Z,3δ[v(i), z, s],
s ∈ Sn(Λ) and z ∈ B(s), the codeword x satisfies

PnX|v(i),z,s(x)

= Pr{X = x|V = v(i),Zs = z}

≤
PnZs|VX(z|v(i),x)

2n �R2−n
ν
2

n∏
i=1

PZsi
|V (zi|vi)

≤ 2−n(Hq(Z|V,X,S)−ε1)

2n �R2−n
ν
2 2−n(Hq(Z|V,S)+ε2)

= 2−n(�R−Iq(X;Z|V,S)−ε1−ε2− ν
2 )

≤ 2−n(�R−maxq∈PΛ(S) Iq(X;Z|V,S)−ε1−ε2− ν
2 )

≤ 2−n(R− τ
2 ).

Now we construct the subset F as F = C(i) ∩
T nPX|V Z,2δ

[v(i), z, s] for v(i) ∈ Vn, s ∈ Sn(Λ) and z ∈ B(s),
the verification is completed.

APPENDIX D
PROOF OF THEOREM 6 AND PROPOSITION 3

In this section, we prove the lower and upper bounds of
the random code secrecy capacity of the AVWC with input
constraint Υ and state constraint Λ.

A. Lower Bound

Similar to Proposition 1 and Proposition 2, we first set
U = X and prove the achievability and then apply the prefixed
channel as we discussed in Section IV.

1) Codebook Generation: Fix input type
PV X(v, x) = PV (v)PV |X(x|v) such that E[ψ(X)] =∑
x ψ(x)

∑
v PV X(v, x) ≤ Υ. The random codebook for

the common messages is denoted by CC = {V (i)}NC

i=1,
where NC = 2nη for some η > 0 that can be arbitrarily
small. For each i, the random codebook for the messages
from sender is denoted by C(i) = {X(i, j)} �Nj=1 where
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X(i, j) is the jth codeword in codebook C(i) such that
Pr{X(i, j) = x|V (i) = v} = 1/|T nPX|V [v]|, Ñ = 2n �R for

some R̃ > 0. Let {Cγ1C }γ1∈I1 and {Cγ1,γ2(i)}γ1∈I1,γ2∈I2 be
collections of all the possible sample codebooks of random
codebooks CC and C(i) with Ij being the index set of the
samples and μj being the distribution on Ij for j = 1, 2.
It follows that

Pr{CC = Cγ1C } = μ1(γ1) =
2nη∏
i=1

1
|T nPV

| ,

P r{C(i) = Cγ1,γ2(i)|CC = Cγ1C } = μ2(γ2)

=
2n �R∏
j=1

1
|T nPX|V [v(i)]| , 1 ≤ i ≤ NC .

2) Codebook Partition: For each codebook Cγ1,γ2(i)
that is ‘good’ w.r.t. Cγ1C and real number R′ >
maxq′∈PΛ(S) Iq′ (X ;Z|S, V ), the codebook Cγ1,γ2(i) is
divided into 2n(R−τ) sub-codebooks with τ > 0 by a parti-
tion satisfying Lemma 8. Codewords in each sub-codebook
are indexed by a set K = [1, . . . , 2nR

′
] such that

R′ = R̃ − R. Denote the sub-codebooks after partition by
{Cγ1,γ2(i,m)}|M|

m=1, where M is the message set.
3) Common Randomness and Encoding: The common ran-

domness randomly selects indices γ1 and γ2 from index sets
I1 and I2 by distributions μ1 and μ2, respectively. To transmit
a message m, the sender selects a codeword v(i) uniformly
at random from codebook Cγ1C and a codeword x(i,m, k)
from subcodebook Cγ1,γ2(i,m), which is the kth codeword
in the mth sub-codebook. The codebooks (Cγ1C , Cγ1,γ2(i)) are
revealed to the sender and receiver.

4) Decoding: For any s with type q and δ > 0, let
K(s) = {(v(i),x(i,m, k),y) : D(Pv(i)x(i,m,k)ys||PV X ×
q × W ) ≤ δ} and K = ∪s∈Sn(Λ)K(s),Ki,m,k = {y :
(v(i),x(i,m, k),y) ∈ K}. The decoding set is defined as

Di,m,k = Ki,m,k
⋂ ⎛⎝ ⋃

(i′,m′,k′) �=(i,m,k)

Ki′,m′,k′

⎞⎠c

.

The decoder declares that message m̂ is sent if there is a
unique pair (̂i, m̂, k̂) for codebook (Cγ1C , Cγ1,γ2(i)) selected
by common randomness such that y ∈ Dî,m̂,k̂.

a) Error analysis: The constraint imposed on the input
type implies that for each codeword x,

ψn(x) =
1
n

n∑
i=1

ψ(xi) =
∑
x

ψ(x)PX(x)

=
∑
x

ψ(x)
∑
v

PV X(v, x)

=
∑
v

PV (v)
∑
x

ψ(x)PX|V (x|v)

= E[ψ(X)] ≤ Υ.

The error analysis is similar to the proof of Proposition 2 in
Appendix A and is omitted here. Applying Fourier-Motzkin
elimination, it follows that the message can be decoded

correctly if

min
q∈PΛ(S)

I(X ;Yq|V ) − τ ≤ R̃ ≤ min
q∈PΛ(S)

I(X ;Yq|V ) − 2
3
τ.

for some τ > 0 that can be arbitrarily small.
b) Information leakage: By Lemma 8, if R′ >

maxq∈PΛ(S) Iq(X ;Z|V, S), for any given state sequence s and
codebook Cγ1,γ2(i) that is ‘good’ w.r.t. CC , there is a partition
gγ1,γ2i on codebook Cγ1,γ2(i) for 1 ≤ i ≤ NC such that the
information leakage is bounded by I(M ; Zγ1,γ2

s ) < ε, where
Zγ1,γ2

s is the channel output under state s with codebooks
(Cγ1C , Cγ1,γ2(i)) for some 1 ≤ i ≤ NC . Let γ � (γ1, γ2)
and Ig be the set of index pair γ = (γ1, γ2) such that
(Cγ1C , Cγ1,γ2(i)) are ‘good superposition codebooks’ for some
1 ≤ i ≤ NC . The random code information leakage is upper
bounded by

I(M ; Zs|Γ) =
∑
γ1,γ2

μ1(γ1)μ2(γ2)I(M ; Zγ1,γ2
s |Γ = γ)

(a)
< ε+

∑
(γ1,γ2)/∈Ig

μ1(γ1)μ2(γ2) log |M|
(b)
< ε′,

where (a) follows by Lemma 8 and I(M ; Zγ
s) ≤ log |M| for

any γ, (b) follows from the fact that (Cγ1C , Cγ1,γ2(i)) are ‘good
superposition codebooks’ with probability of at least 1 − ζ,
where ζ is a double exponentially small number. Hence, for
give distribution PV X defined in ‘Codebook generation’, the
reliable and secure communication is achieved if

min
q∈PΛ(S)

I(X ;Yq|V ) − max
q∈PΛ(S)

Iq(X ;Z|V, S)− 2τ

≤ 1
n

log |M|

≤ min
q∈PΛ(S)

I(X ;Yq|V ) − max
q∈PΛ(S)

Iq(X ;Z|V, S)− 5
3
τ.

Maximizing over all possible input distribution and
applying the standard prefixed channel argument dis-
cussed in Section IV-C, the proof of the achievability is
completed.

B. Upper Bound

To prove the converse part, we adopt the technique used
in [32]. The following three auxiliary lemmas play an impor-
tant role in the proof.

Lemma 10 (Lemma 4.5 in [32]): For every η > 0, there
exists a δ, 0 < δ < Λ, such that for all q ∈ PΛ(S), there
exists a q′ ∈ PΛ−δ(S) with d(q, q′) =

∑
s |q(s) − q′(s)| ≤ η.

Based on Lemma 10, one can further derive the following
lemma.

Lemma 11: For every ε1, ε2 > 0, there exists a 0 < δ < Λ
such that for any PX ,

min
q
I(X ;Yq) − max

q′
Iq′ (X ;Z|S)

< min
q′′

I(X ;Yq′′ ) − max
q′′′

Iq′′′ (X ;Z|S) + ε,

where ε = ε1 + ε2, q′′ and q′′′ run over PΛ(S) and q, q′ run
over PΛ−δ(S).
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Proof: The proof of Lemma 4.6 in [32] implies that for
given ε1 > 0 and q′′∗ ∈ PΛ(S) such that I(X ;Yq′′∗ ) =
infq′′ I(X ;Yq′′), one can always find a q ∈ PΛ−δ(S)
satisfying d(q, q′′∗ ) ≤ η and then I(X ;Yq) < I(X ;Yq′′) +
ε1. Similarly, let q′′′∗ ∈ PΛ(S) such that Iq′′′∗ (X ;Z|S) =
maxq′′′ Iq′′′ (X ;Z|S) and then there is a q′ ∈ PΛ−δ(S) such
that d(q′, q′′′∗ ) ≤ ε2

log |X | for ε2 > 0. It follows that

|Iq′′′∗ (X ;Z|S)− Iq′ (X ;Z|S)|
≤

∑
s

|q′′′∗ (s)Iq′′′∗ (X ;Zs) − q′(s)Iq′ (X ;Zs)|

≤ log |X |
∑
s

|q′′′∗ (s) − q′(s)| ≤ ε2.

Setting ε = ε1 + ε2, the proof is completed.
Now define the set of real numbers RΛ � {R : R ≤

minq,q′∈PΛ(S) maxP(X )[I(X ;Yq) − Iq′ (X ;Z|S)]}.
Lemma 12: For any 0 < Λ < lmax, it follows that⋂

0<δ<Λ

RΛ−δ = RΛ.

The proof of Lemma 12 is the same as Lemma 4.4 in [32].
Let RO

Λ be the set of real numbers satisfying

R ≤ min
q,q′∈PΛ(S)

max
PV UX∈PΥ(V,U ,X )

[I(U ;Yq|V )−Iq′ (U ;Z|V, S)].

By Lemma 12, it is sufficient to prove that the capacity falls
into RO

Λ−δ for any 0 < δ < Λ. Let (F,Φ,Γ) be a random
code over the AVWC with state constraint Λ. By Definition 5,
the corresponding average decoding error probability and
information leakage are bounded by

λ̄RC(W , F,Φ, s) < ε, I(M ; Zs|Γ) < ε (50)

for any s ∈ Sn(Λ) and ε > 0.
To prove the converse, consider a channel (W,E) with state

sequence satisfying Pr{S = s} = qn(s) =
∏n
i=1 q(si) and

state constraint E[l(Si)] =
∑

s q(s)l(s) ≤ Λ−δ for 1 ≤ i ≤ n
and some 0 < δ < Λ. It follows that the random code (F,Φ,Γ)
that achieves reliable and secure transmission can also be
used over the channel W . We first prove that the random
code (F,Φ,Γ) can also achieve reliable transmission over the
channelW . For any distribution qn, the average decoding error
probability is

E[λ̄RC(W,F,Φ,S)]

=
∑
sn

qn(s)λ̄RC(W,F,Φ, s)

≤
∑

sn∈Sn(Λ)

qn(s)λ̄RC(W,F,Φ, s) + Pr{S /∈ Sn(Λ)}

≤ ε+ Pr{ln(S) ≥ Λ}.
Applying Hoeffding’s inequality implies that

Pr{ln(S) ≥ Λ}

= Pr{ 1
n

n∑
i=1

l(Si) −
1
n

n∑
i=1

E[l(Si)] ≥ Λ − E[ln(S)]}

≤ Pr{ 1
n

n∑
i=1

l(Si) −
1
n

n∑
i=1

E[l(Si)] ≥ δ}

≤ e−2δ2n/l2max , (51)

and then the error probability E[λ̄RC(W,F,Φ,S)] ≤ ε +
e−2δ2n/l2max < ε1 for some ε1 > 0. Next we bound the average
information leakage of the transmission over the channel W
using the random code (F,Φ,Γ). Let S̃ = (S̃1, S̃2, . . . , S̃n)
be a random state sequence satisfying Pr{S̃ = s̃} =∏n
i=1 q

′(si). The average information leakage is bounded by

I(M ; Z|S̃,Γ) =
∑

�s∈S(Λ)

Pr{S̃ = s̃}I(M ; Z|S̃ = s̃,Γ)

+
∑

�s/∈S(Λ)

Pr{S̃= s̃}I(M ; Z|S̃ = s̃,Γ)

(a)

≤ ε+ log |M| · Pr{l(S̃) > Λ}
(b)

≤ ε+ log |M| · e−2nδ2/l2max ≤ ε2,

for some arbitrarily small ε2 > 0, where (a) follows by
formula (50), (b) follows by formula (51).

By the independence between the message M and the state
sequence S̃, we also have I(M ; Z|S̃,Γ) = I(M ; S̃,Z|Γ).
Setting Y q = (Yq,1, . . . , Yq,n), by Fano’s inequality, the
secrecy capacity can be upper bounded by

nR

= H(M)
≤ I(M ; Y q|Γ) + ε

≤ I(M ; Y q|Γ) − I(M ; Z|S̃,Γ) + ε2 + ε

(a)
=

n∑
i=1

[I(M ;Y iq , S̃
n
i+1, Z

n
i+1|Γ) − I(M ;Y i−1

q , S̃ni , Z
n
i |Γ)]

+ ε+ ε2

=
n∑
i=1

[I(M ;Yq,i|Y i−1
q , S̃ni+1, Z

n
i+1,Γ)

−I(M ; S̃i, Zi|Y i−1
q , S̃ni+1, Z

n
i+1,Γ)] + ε+ ε2

(b)
=

n∑
i=1

[I(M ;Yq,i|Ṽi) − I(M ; S̃i, Zi|Ṽi)] + ε+ ε2

(c)
=

n∑
i=1

[I(Ui;Yq,i|Ṽi) − I(Ui; S̃i, Zi|Ṽi)] + ε+ ε2, (52)

where (a) follows by [33, formulas (9) and (11)](also see
formula (134) in [14]), Y iq = (Yq,1, Yq,2, . . . , Yq,i), Zni+1 =
(Zi+1, Zi+2, . . . , Zn), (b) follows by setting Ṽi =
(Y i−1
q , S̃ni+1, Z

n
i+1,Γ), and (c) follows by setting

Ui = (M, Ṽi). For simplicity, we write S̃i by Si in the
rest of this subsection, and formula (52) can be written as

R ≤ 1
n

n∑
i=1

[I(Ui;Yq,i|Ṽi) − Iq′ (Ui;Si, Zi|Ṽi)] + ε+ ε2

(53)

=
1
n

n∑
i=1

[I(Ui;Yq,i|Ṽi, J = i)− Iq′ (Ui;Si, Zi|Ṽi, J = i)]

+ ε+ ε2

= [I(UJ ;Yq,J |ṼJ , J) − Iq′(UJ ;SJ , ZJ |ṼJ , J)] + ε+ ε2
(a)
= [I(U ;Yq|V ) − Iq′ (U ;S,Z|V )] + ε+ ε2, (54)
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where (a) follows by setting U = UJ , V = (ṼJ , J), S =
SJ , Yq = Yq,J , Z = ZJ . Here V −U − (X,S)− (Yq, Z) form
a Markov chain and the conditional probabilities satisfy

Pr{Yq = y|V = v, U = u,X = x}
= Pr{Yq,J = y|ṼJ = ṽ, J = j,M = m,XJ = x}
(a)
= Pr{Yq,j = y|Xj = x} = Wq(y|x)

and

Pr{Z = z|V = v, U = u,X = x, S = s}
= Pr{ZJ = z|ṼJ = ṽ, J = j,M = m,XJ = x, SJ = s}
(b)
= Pr{Zj = z|Xj = x, Sj = s} = E(z|x, s),

where (a) and (b) follow by the Markov chain. Finally,
maximizing formula (54) over all input distributions satisfying
the input constraint yields

R ≤ max
PV UX∈PΥ(V,U ,X )

[I(U ;Yq|V ) − Iq′ (U ;S,Z|V )] + ε′

= max
PV UX∈PΥ(V,U ,X )

[I(U ;Yq|V ) − Iq′ (U ;Z|V, S)] + ε′.

Since the distribution satisfying the state constraint can be
arbitrary, we finally have

R ≤ min
q,q′∈PΛ(S)

max
PV UX∈

PΥ(V,U ,X )

[I(U ;Yq|V ) − Iq′(U ;Z|V, S)] + ε′.

The proof of the upper bound is completed.

APPENDIX E
PROOF OF THEOREM 7

This section establishes the capacity results of the
severely less noisy AVWC with input constraint Υ and
state constraint Λ. Let (f, φ) be a stochastic-encoder code
satisfying

max
s∈Sn(Λ)

λSC(W , f, φ, s) < ε, max
s∈Sn(Λ)

I(M ;Zs) < ε.

The proof of achievability is straightforward by setting U = X
in Theorem 5. Thus, it is sufficient to prove the upper bound.

By formula (52), for any 0 < δ < Λ and state distribution
q, q′ ∈ PΛ−δ(S) as defined in Appendix D-B, we have

R ≤ 1
n

n∑
i=1

[I(Ui;Yq,i|Ṽi) − Iq′(Ui; S̃i, Zi|Ṽi)] + ε

(a)
= I(U ;Yq|ṼJ , J) − Iq′ (U ;Z|ṼJ , S, J) + ε (55)

= I(U,X ;Yq|ṼJ , J) − Iq′ (U,X ;Z|ṼJ , S, J)

− I(X ;Yq|U, ṼJ , J) + Iq′ (X ;Z|U, ṼJ , J, S) + ε

(b)

≤ I(U,X ;Yq|ṼJ , J) − Iq′ (U,X ;Z|ṼJ , S, J) + ε

= I(U,X, ṼJ ;Yq|J)−Iq′(U,X, ṼJ ;Z|S, J) − I(ṼJ ;Yq|J)

+ Iq′ (ṼJ ;Z|S, J) + ε

(c)

≤ I(U,X, ṼJ ;Yq|J) − Iq′ (U,X, ṼJ ;Z|S, J)
(d)
= I(X ;Yq|J) − Iq′(X ;Z|S, J) + ε,

where (a) follows by setting U = UJ , Yq =
Yq,J , Z = ZJ , S = S̃ = SJ , (b) and (c) follow
by the definition of severely less noisy channel and
Iq′(U,X ;Z|ṼJ , S, J) ≤ maxs∈S I(U,X ;Z|ṼJ , J, S =
s), Iq′(X ;Z|S, J) ≤ maxs∈S(X ;Z|J, S = s), (d) is due to
the Markov chain J − ṼJ − U − X − (Yq, Z). Since the
distribution of S can be arbitrary, it follows that

R ≤ min
q∈PΛ−δ(S)

I(X ;Yq|J) − max
q′∈PΛ−δ(S)

Iq′ (X ;Z|S, J) + ε.

(56)

For the input constraint, we assume that Λ̃0(PJX) < Λ− δ.
By the definition in formula (12), there exists a transition
matrix T̃ such that

Λ̃0(PJX) =
∑
j,x,s

PJX(j, x)T̃ (s|j, x)l(s)

(a)
=

1
n

n∑
j=1

PX|J(x|j)T̃ (s|j, x)l(s) < Λ − δ,

where (a) follows by the fact that J is a random variable uni-
formly distributed on [1 : n]. It follows that for a random state
sequence S = (S1, S2, . . . , Sn) with conditional distribution
Pr{S = s|X = x,J = j} =

∏n
i=1 T̃ (si|xi, ji),

E[ln(S)] =
1
n

n∑
i=1

E[l(Si)]

=
∑
s∈S

l(s)
1
n

n∑
j=1

∑
x

T̃ (s|x, j)PX|J (x|j)

=
∑
j,x,s

PJX(j, x)T̃ (s|j, x)l(s) = Λ̃0(PJX) < Λ − δ.

Now following the same argument in [8, Lemma 1], it can
be proved that Λ̃0(PJX) < Λ − δ leads to the average error
probability λ̄SC(W , f, φ, s) > 1

4 − δ′ for some δ′ > 0.
Generalizing random variable J and maximizing formula (56)
over all possible PJX , it follows that for any 0 < δ < Λ, the
secrecy achievable rate is upper bounded by

R≤ max
PJX∈

PΥ,Λ−δ(J ,X )

min
q∈PΛ−δ(S)

I(X ;Yq|J)

− max
q′∈PΛ−δ(S)

Iq′ (X ;Z|S, J)+ε. (57)

The proof is completed by applying Lemma 10, Lemma 11
in Appendix D-B and Lemma 4.4 in [32], which is similar
to the proof of Proposition 3. The proofs of the random
code capacity and the stochastic-encoder code capacity with
non-symmetrizable main channel follow similarly by setting
V = (ṼJ , J) in formula (55).

APPENDIX F
PROOF OF SECTION VI-A

A. Random Code Achievable Rate

The proof of the random code achievable rate is similar
to our proof of Proposition 2 in [28]. Setting U = X and
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applying Proposition 1 along with the property of the erasure
channel to the model, the objective function is

max
PX

[ min
q∈PΛ(S)

I(X ;Yq) − max
q′∈PΛ(S)

(1 − α)Iq′ (X ;Y |S)].

We first deal with the term Iq′ (X ;Y |S). For simplicity, set
q′(1) = q and q′(0) = 1 − q. Differentiating f(q) =
Iq′ (X ;Y |S) =

∑
s q

′(s)I(X ;Ys) = (1−q)h(p)+q(h(p∗θ)−
h(θ)) with respect to q yields f ′(q) = h(p ∗ θ)−h(θ)−h(p),
where h(p) = −p log p − (1 − p) log(1 − p) and p ∗ θ =
p(1 − θ) + (1 − p)θ. It is shown that f ′(q) ≤ 0 always holds
no matter what value θ takes, so the function f(q) decreases
monotonically with respect to q and reaches its maximum at
q = 0. By the definition of the cost function l(·), it follows
that ln(s) = q ≤ Λ, which means that q = 0 is available under
state constraint and maxq∈PΛ(S) Iq(X ;Y |S) = h(p).

To compute I(X ;Yq), set q(1) = q and rewrite it as
I(X ;Yq) = h(p ∗ θq)− h(θq). This is a convex function over
0 ≤ θq ≤ 1 and reaches its minimum 0 at θq = 1/2. When
θΛ ≥ 1

2 , there exists a q such that θq = 1/2, which leads to
R = 0, and there is nothing further to prove. When θΛ < 1

2 ,
the minimum is achieved by q = Λ. Hence, our objective
function is now

max
p

[h(p ∗ θΛ) − h(θΛ) − (1 − α)h(p)]. (58)

By differentiation, formula (58) is maximized at p = 1/2 when
0 ≤ θλ < 1−

√
1−α

2 and R = 0 otherwise. This completes the
proof of the random code achievable rate.

B. Stochastic-Encoder Code Achievable Rate

To prove the stochastic achievable rate, we need to addi-
tionally consider whether the channel is symmetrizable. Note
that Y,X,K, S are all binary random variables. Supposing
there is a transition matrix T : X → S satisfying for-
mula (3) and setting x = 0 and x′ = 1, it follows
that

W (y|0, 0)T (0|1) +W (y|0, 1)T (1|1)

= W (y|1, 0)T (0|0) +W (y|1, 1)T (1|0) (59)

for y = 0, 1. For simplicity, denote T (0|0) by α0 and T (0|1)
by α1. Substituting y = 0, 1 and α0, α1 into (59) yields α0 +
α1 = 2 − 1/θ. Thus, the transition matrix T satisfying (3)
exists, i.e. the channel is symmetrizable, if θ ≥ 1/2. In the
following paragraphs, we consider the achievable rate in two
cases, that is, whether the channel is symmetrizable.

Case 1: θ ≥ 1
2 .

In this case, the AVWC is symmetrizable. In addition, let
p � PX(1). Recall that the existence of the stochastic-encoder
code over the AVWC with state constraint depends on the
value of Λ∗

0(X) = maxPX Λ0(PX). It follows that

Λ∗
0(X) = max

PX

min
T

∑
x

∑
s

PX(x)T (s|x)l(s)

= max
PX

min
T

[PX(0)T (1|0) + PX(1)T (1|1)]

= max
p

min
α0,α1

[(1 − p)(1 − α0) + p(1 − α1)]

(a)
= max

p
min
α0

[(2p− 1)α0 +
p

θ
+ 1 − 2p],

where (a) follows by α0+α1 = 2−1/θ. Note that (2p−1)α0+
p/θ+1−2p is a linear function of α0 and the minimum must
be at α0 = 0 or α0 = 1, i.e. minα0(2p−1)α0+p/θ+1−2p =
min(p/θ+1−2p, p/θ). The maximum over p is achieved when
p/θ+1−2p = p/θ and Λ∗

0(X) = 1/2θ in this case. Thus, the
stochastic-encoder code over the AVWC with state constraint
can achieve a positive rate if 1/2θ > Λ, i.e. θΛ < 1/2. In
the rest of this case, we assume that θΛ < 1/2, otherwise
the stochastic-encoder code achievable rate is 0 and there is
nothing further to prove. It follows that Λ0(p) = min(p/θ +
1 − 2p, p/θ). In this case, our objective function is

max
p:Λ0(p)≥Λ

[h(p ∗ θΛ) − h(θΛ) − (1 − α)h(p)], (60)

which is almost the same as formula (58) except that the range
of p is limited to θΛ ≤ p ≤ (Λ − 1)θ/(1 − 2θ). However,
by the assumption that θΛ < 1/2, it follows that θΛ < 1/2 <
(Λ−1)θ/(1−2θ), which means that p = 1/2 is available and
the stochastic-encoder code achievable rate in this case is the
same as the random code achievable rate.

Case 2: θ < 1
2 .

In this case, the AVWC is non-symmetrizable, and
Λ0(p) = +∞ for any p. It is straightforward that the
stochastic-encoder code achievable rate is the same as the
random code achievable rate derived in this paper.

Combining Subsections A and B, we prove the random code
and stochastic-encoder code achievable rates, respectively.

APPENDIX G
PROOF OF EXAMPLE 3

The proof is similar to that of Proposition 1 in [25], and we
only give an outline here. To prove

max
PV UX∈

PΥ,Λ(V,U ,X )

[ min
q∈PΛ(S)

I(U ;Yq|V ) − max
q′∈PΛ(S)

I(U ;Z|S, V )]

≥ 1
2
(1 − h(Λ)), (61)

first note that the wiretap channel is a stationary channel,
and hence maxq∈PΛ(S) I(U ;Z|S, V )] = I(U ;Z|V ). The main
channel is symmetrized by the set of transition matrices
X1 ×X2 → S satisfying⎡⎢⎢⎢⎢⎣

1
2

1
2

1 − α α
1
2

1
2

α 1 − α

⎤⎥⎥⎥⎥⎦
for any 0 ≤ α ≤ 1. Setting V = X2, U = X = (X1, X2) and
X1 ∼ Bernoulli(1

2 ), X2 ∼ Bernoulli(1
2 ), by the definition

of the cost function l(s) = s, we have Λ̃0(PV UX) = 1
2 > Λ.

It follows that

min
q
I(U ;Yq|V )

= min
q
I(X1, X2;Yq|X2)

= min
q

[PX2 (0)H(N + S) + PX2 (1)H(X1 + S)
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−PX2(0)H(N + S) − PX2(1)H(S)]
(a)
= min

q
[PX2(1)(h(p1 ∗ q) − h(q))]

(b)
=

1
2
(1 − h(Λ)),

where h(p) = −p log p− (1 − p) log(1 − p), p ∗ q = (1 − p)∗
q+ p ∗ (1− q), (a) follows by setting PX1(1) = p1, q(1) = q,
(b) follows from the state constraint and the fact that h(p ∗
q) − h(q) is a convex function of q reaching minimum at
q = 1

2 . Combining the fact that I(U ;Z|V ) = 0, formula (61)
is proved.

To prove

1
2
(1−h(Λ))

> max
PUX∈

PΥ,Λ(U ,X )

[ min
q∈PΛ(S)

I(U ;Yq)− max
q′∈PΛ(S)

Iq′(U ;Z|S)],

(62)

note that maxq∈PΛ(S) I(U ;Z|S) = I(U ;Z). It follows that

min
q

[I(U ;Yq) − I(U ;Z)]

(a)
= min

q
[I(X1;Yq|X2) − I(X1;Yq|X2, U) − I(U ;Z|Yq)]

≤ min
q

[I(X1;Yq|X2)]

(b)

≤ 1
2
(1 − h(Λ)),

where the derivation of (a) is the same as that in [25], and the
equality in (b) holds when the marginal distributions of X1 and
X2 satisfy PX1 (1) = 1/2 and PX2(1) = 1/2, q(1) = Λ
and I(X1;Yq|X2, U) = I(U ;Z|Yq) = 0 for any q ∈ P(S).
Furthermore, note that Pr{Y = 1|X2 = 1} = Pr{X1 +
S = 1|X2} = 1/2 and Pr{Y = 1|X2 = 0} = Pr{N +
S = 1|X2 = 0} = 1/2 (N ∼ Bernoulli(1

2 )), then we still
have X2 ⊥⊥ Y . Then following the same argument as that in
[25, Proof of Proposition 1], the proof of the proposition is
completed.
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