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Structural and Statistical Analysis of
Multidimensional Linear Approximations
of Random Functions and Permutations

Tomer Ashur , Mohsin Khan , and Kaisa Nyberg

Abstract— The goal of this paper is to investigate linear
approximations of random functions and permutations. Our
motivation is twofold. First, before the distinguishability of a
practical cipher from an ideal one can be analysed, the cryptana-
lyst must have an accurate understanding of the statistical behav-
iour of the ideal cipher. Secondly, this issue has been neglected
both in old and in more recent studies, particularly when multiple
linear approximations are being used simultaneously. Traditional
models have been based on the average behaviour and simplified
using other assumptions such as independence of the linear
approximations. Multidimensional cryptanalysis was introduced
to avoid making artificial assumptions about statistical indepen-
dence of linear approximations. On the other hand, it has the
drawback of including many trivial approximations that do not
contribute to the attack but just cause a waste of time and
memory. We show for the first time in this paper that the trivial
approximations reduce the degree of freedom of the related χ2

distribution. Previously, the affine linear cryptanalysis was pro-
posed to allow removing trivial approximations and, at the same
time, admitting a solid statistical model. In this paper, we identify
another type of multidimensional linear approximation, called
Davies-Meyer approximation, which has similar advantages, and
present full statistical models for both the affine and the Davies-
Meyer type of multidimensional linear approximations. The new
models given in this paper are realistic, accurate and easy to use.
They are backed up by standard statistical tools such as Pearson’s
χ2 test and finite population correction and demonstrated to
work accurately using practical examples.

Index Terms— Cryptography, block ciphers, linear cryptanaly-
sis, random Boolean functions, statistical distributions.

I. INTRODUCTION

A. Modelling Linear Key-Recovery Attacks

L INEAR cryptanalysis is a statistical method used for
distinguishing a block cipher from a random permutation

and can be extended to key-recovery attacks of practical block
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ciphers. It makes use of the nonrandom behaviour of certain
linear approximations of the cipher. Linear approximations
are single-bit values obtained by exclusive-or summation of
certain input bits and output bits over some rounds of the
block cipher.

In the setting of linear key-recovery attacks, the traditional
heuristic assumption is that a keyed iterated block cipher
becomes a pseudorandom function or permutation if some
of its rounds are replaced by encryption using a wrong
key. On the other hand, if the key is correct, then the data
is computed from the cipher. Distinguishing between these
two cases using statistical tests requires statistical models
of the test statistic. For a recent overview of the existing
models, we refer to [1]. Such statistical models are always
based on trade-offs between accuracy and feasibility. The
traditional approach has been to state some unproven assump-
tions, called as wrong-key hypothesis and right-key hypothesis,
which are desired to capture the statistical behaviour, but
still simple enough to allow feasible computation of the
model.

In all existing studies, the wrong-key hypothesis in linear
cryptanalysis, as well as in other statistical attacks, is based on
a statistical model of the family of random permutations, when
the target cipher is a block cipher, or a model of the family of
random functions in some other cases such as stream ciphers.
Then the main effort in the cryptanalytic attack is focused
on identifying and demonstrating evidence of nonrandom
behaviour in the target cipher. In linear cryptanalysis, the
problem is to find bit combinations that are either strongly
biased, or equal to zero for all keys. The known search
algorithms for finding suitable biased linear approximations
are based on Matsui’s seminal work [2], where biased linear
approximations were found by identifying one or more strong
linear approximation trails that the linear approximations is
composed of. The right-key hypothesis is then derived from a
statistical model that captures the probability distributions and
their parameters of the linear approximations in the case of the
cipher.

The success probability and the data complexity of the
attack are then estimated based on statistical distinguishing
between the probability distributions in the right-key case
and the wrong-key case. Since the wrong-key case is typi-
cally modelled using linear approximations of randomly and
uniformly selected permutations, it is clear that a proper
understanding of the random behaviour has an essential role
in statistical cryptanalysis.
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Along the history of the linear cryptanalysis, the wrong-key
hypothesis has taken different forms, and the main contribu-
tions are rather scattered in the literature. The first goal of
this paper is to give a concise presentation of the behaviour of
random functions and permutations under linear cryptanalysis.
Our second goal is to present a new and more realistic model
of the wrong-key hypothesis for the multidimensional linear
cryptanalysis. The statistical behaviour of a multidimensional
linear approximation appears to depend significantly on its
structure.

B. Existing Wrong-Key Models in Linear Cryptanalysis

The understanding about the statistical behaviour of linear
approximations of random functions and permutations has
developed a lot during the times. In early works, correlations of
linear approximations of random permutations were estimated
to be negligible and equal to their expected value, zero. While
it was understood already in 1994 by O’Connor [3] that the
correlations of linear approximations vary within the random
permutations, it was not until in 2006 this fact was examined
in more detail by Daemen and Rijmen [4]. They considered
the probability distribution of correlations of linear approxi-
mations both for random functions and random permutations
and showed that both distributions behave similarly and can
be approximated using normal distributions with the same
parameters with the only distinction that the interval of the
discrete distribution of correlations can have only even values
for permutations.

These advanced models of linear approximations of random
functions and permutations led to the observation that if a
linear approximation of a cipher has correlation equal to zero
for all keys, then it is not random and can be distinguished
from random [5]. Conversely, this means that under the tra-
ditional hypothesis, according to which correlations of linear
approximations of random permutations are equal to zero, even
a truly randomly selected permutation will be falsely identified
as nonrandom, because the correlations of their linear approx-
imations are usually nonzero. This example illustrates how
important it is to state the wrong-key assumption accurately.

The wrong-key model of [4] was extended by Bogdanov
and Tischhauser [6] by integrating data sampling into it. While
being an important opening to key-dependent models, it had
two main drawbacks. First, the right-key model was still
based on the assumption that the correlation of the linear
approximation is equally large (in absolute value) for all
keys. Secondly, the plaintexts were assumed to be drawn with
replacement. While giving realistic estimates for small sample
sizes, this approach lead to significant deviations from the true
behaviour when the sample size approaches the full codebook.
These two drawbacks of that model were highlighted by the
counterintuitive phenomenon that the success probability is
not always an increasing function of the data-complexity. The
underlying problems were corrected by a new model given
in [7] for a single linear approximation based on a single
dominant trail. A more detailed study of the conditions for this
counterintuitive phenomenon of nonmonotonicity was given
in [8].

With the goal of making the linear distinguishers more
powerful, several authors have proposed to use multiple lin-
ear approximations simultaneously. In the early models, the
wrong-key hypothesis was always based on the assumption
that in the wrong-key case, the expected correlations, that is,
the correlations of linear approximations computed for the full
codebook of the cipher behave as on average, that is, are
equal to zero [9], see also [10]. Recently, key-dependency
has been integrated to the models both in the wrong key
and right key cases [7], [11], [12] by adopting a simplifying
assumption that the correlations of any set of multiple linear
approximations are independent when considered over the
set of all permutations. In a subsequent version [1] of [11],
this assumption was stated only for correlations of linearly
independent linear approximations of random permutations.
Whether this means a true theoretical improvement is not
known.

In general, not much is known about the statistical inde-
pendence of correlations considered as random variables over
the key space. Only correlations of components of balanced
functions are known to be independent trivially as they are
always constants, that is, equal to zero. A multidimensional
linear approximation of a permutation is not in general a bal-
anced function. Hence the correlations of its components may
not be equal to zero and may have statistical dependencies.

The assumption about independence of correlations was
needed to derive statistical distributions for the sum of the
squared correlations of the linear approximations. More specif-
ically, the independence assumption has been used for express-
ing the variance of the sum of squared correlations as the sum
of the variances of the squared correlations of the individual
linear approximations. In this paper, it will be shown that,
for certain sets of linear approximations, this result can be
achieved without the independence assumption.

C. Our Contributions

We start by deriving exact formulas for the mean and
variance of the capacity of multinomially distributed variables
and make the observation that the variance of the capacity is
additive, that is, it can be expressed as the sum of the variances
of the capacities of the individual variables in the case when
the expected distribution is uniform. This corresponds to the
case of the expected value distribution of a random function.

We continue by revisiting the distributions of correlations of
single linear approximations of random functions and random
permutations. Adding to the results of [4] we observe that
a linear approximation of a random function is a random
Boolean function, while this is not the case if the random
functions are restricted to permutations. We give the discrete
probability distribution of the correlation of a linear approxi-
mation of a random permutation in terms of a hypergeometric
distribution.

While multidimensional linear approximations of some
functions can be modelled using the multinomial distribution,
this is never the case for a multidimensional linear approx-
imation of permutations. Even in case of a single variable,
the hypergeometric distribution must be used instead of the
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binomial distribution. We leave it an open question whether
the multivariate hypergeometric distribution might give a
feasible approach in this case, and instead, use continuous
approximations of the probability distributions to model the
statistical behaviour of the capacity of a multidimensional
linear approximation of a random permutation. This leads us
to the study of the χ2 distribution.

In many practical applications of multidimensional linear
cryptanalysis, the linear space of linear approximations con-
tains many trivial approximations that have correlation zero for
any permutation. Their impact has been ignored in previous
works and the degree of freedom of the χ2 distribution is
taken equal to 2t − 1 where t is the dimension of the
multidimensional linear approximation, see e.g. [7]. We prove
that in the presence of trivial approximations, the degree of
freedom is strictly less than 2t − 1. Moreover, we conjec-
ture the correct value of the degree of freedom and present
experimental evidence to support this conjecture. We also
identify a new type of multidimensional linear approximation,
which we call the Davies-Meyer approximation, and which
is characterised by the property of not containing any trivial
linear approximations.

Having found a realistic solution to the problem of how
to model wrong-key behaviour for multidimensional linear
cryptanalysis, we apply the same approach for the recently
presented variant of linear cryptanalysis, named as affine
multidimensional cryptanalysis [13]. Preliminary versions of
these results appeared in [14].

Affine subsets of linear approximations naturally arise in
many ciphers. As an example we analyse SIMON32/64, which
is a Feistel cipher that employs bitwise AND operation as the
only nonlinear component of the round function. In this case,
the affine spaces originate from the linear spaces comprising
the four linear approximations of the AND operation that have
non-zero correlations. Using our χ2 model of affine linear
approximations of randomly selected permutations, we exper-
imentally identify nonrandom behaviour of 2-dimensional
affine sets of linear approximations over 13-18 rounds and a
6-dimensional affine set over 18 rounds of SIMON32/64. These
experiments used full codebook of data and 213 randomly
selected keys. We also performed similar experiments with
less than the full codebook of data.

D. Outline

The standard definitions of linear cryptanalysis are recalled
and the mean and variance of capacity are computed for a
general multinomial distribution in Section II, where we also
recall the related discrete probability distributions and their
continuous approximations. In Section III, the distributions
of correlations of single linear approximations are revisited.
The new contributions of the structure and probability distribu-
tions of multidimensional linear approximations are presented
in Section IV and applied to affine sets of approximations
in Section V. Then we enhance these statistical models by
integrating random sampling without replacement to them
in Section VI. To perform randomness analysis of linear
approximations of SIMON32/64, we define the randomness

test in Section VII and present the results in Section VIII.
The conclusions are drawn in Section IX.

II. CAPACITY OF VECTORIAL BOOLEAN FUNCTIONS

A. Correlation and Capacity

Let F be a function from S to F
t
2, where S is a finite set

and F
t
2 is a vector space over F2 of dimension t. We focus on

two ways of defining F . First, we can just give the (indexed)
set of the values F (x), x ∈ S. The second way of defining F
is to give t Boolean functions f1, . . . , ft, that is, t coordinate
functions of F , and their values fi(x), x ∈ S, i = 1, . . . , t.
Given β = (β1, . . . , βt) ∈ F

t
2, we denote by β · F the linear

combination of the coordinate functions of F = (f1, . . . , ft)
determined by β, that is,

β · F = β1f1 + . . . + βtft,

and say that the Boolean function β ·F is a component of F .
Functions are in general imbalanced, that is, all values in

the image space are not taken equally often. Related to the
two ways of defining F , we have two ways of measuring
the imbalance of F . First, we can consider the uniformity of
its value distribution. Given η ∈ F

t
2 let us denote by pη its

probability, that is,

pη = |S|−1|{x ∈ S |F (x) = η }|.
Then the imbalance of this distribution is measured using

the capacity

Cap(F ) = 2t
�
η∈F

t
2

(pη − 2−t)2. (1)

Secondly, we can consider the imbalance of its components
using correlations. Let f be a Boolean function from S to F2.
Then its correlation cor(f) is given by

cor(f)= |S|−1(|{x ∈ S|f(x)=0}|−|{x ∈ S|f(x)=1}|). (2)

It is well-known, see e.g. [15], [16], that these two
approaches to measuring imbalance are related due to the
following equality,

pη = 2−t
�
β∈F

t
2

(−1)β·ηcor(β · F ), for all η ∈ F
t
2, (3)

or equivalently, by the Walsh-Hadamard transform,

cor(β · F ) =
�
η∈F

t
2

(−1)β·ηpη, for all β ∈ F
t
2. (4)

Then we can express Cap(F ) also as

Cap(F ) =
�

β∈F
t
2,β �=0

cor(β · F )2. (5)

In particular, a random function F : S → F
t
2 can be gen-

erated either by selecting its t coordinate functions randomly
and independently, or by picking its values F (x) randomly and
independently from F

t
2. The value distribution of a random

function F follows a multinomial distribution. By (5) the
expected value of the capacity of the value distribution of
a random function is the sum of the expected values of the
squared correlations taken over the non-trivial components
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of F . We are also interested to determine the variance of the
capacity for random functions. The problem is not trivial, since
we can neither assume all nonzero components of F to be
independent, nor to have independent correlations. Neverthe-
less, in the next subsection we give a result, see Corollary 1,
which shows that, based solely on the properties of the
multinomial distribution of the values of a random function F ,
the variance of its capacity is obtained as the sum of the
equal variances of the squared correlations of its nonzero
components.

B. Capacity Related to Multinomial Distributed Variables

In the preceding section, the notion of capacity was defined
as a measure of the uniformity of the value distribution of the
function. More generally, we can define capacity for any finite
set of non-negative values. Let z1, . . . , zk be non-negative real
numbers and denote by m their sum. Then we define their
capacity as

k

m2

k�
η=1

�
zη − m

k

�2

. (6)

This quantity is related to the Euclidean distance of the
probability distribution from the uniform distribution and also
called as the squared Euclidean imbalance. By substituting
zη = |{ x ∈ S |F (x) = η }| and k = 2t to (6), we have m =
|S| and we get the capacity of F as defined by (1). Next we
determine the mean and variance of the capacity for stochastic
variables that follow a general multinomial distribution.

Let z1, . . . , zk be the outcomes of a set of k, k ≥ 2,
stochastic variables that follow a multinomial distribution with
probabilities p1, . . . , pk and let us denote the number of trials
by m. Then z1+· · ·+zk = m. Let us denote by C the capacity
of z1, . . . , zk as given by (6). Then C is also an outcome of a
stochastic variable. The proof of the following result is given
in Appendix A.

Theorem 1: Let C be the capacity of multinomially dis-
tributed variables and let the parameters of the multinomial
distribution be p1, . . . , pk and m. Then

Exp(C) =
k − 1

m
+

(m − 1)k
m

k�
η=1

(pη − 1
k

)2

Var(C) =
(m − 1)k2

m3

�
(4m − 8)P3−(4m−6)P 2

2 +2P2

�
,

where

P2 =
k�

η=1

p2
η and P3 =

k�
η=1

p3
η.

Note that in the expression of the expected capacity we have

k

k�
η=1

�
pη − 1

k

�2

= kP2 − 1,

which is the capacity of the values p1, . . . , pk.
If pη = 1

k , for all η = 1, . . . , k, then P2 = 1/k and P 2
2 =

P3 = 1/k2, and the mean and variance of the capacity of
multinomially distributed variables are given by the following
corollary.

Corollary 1: Let C be the capacity of a multinomially
distributed variable with distribution parameters pη = 1

k , for
all η = 1, . . . , k, and m. Then

Exp(C) =
k − 1

m

Var(C) =
2(k − 1)(m − 1)

m3
.

C. Standard Probability Distributions

The normal distribution is denoted by N (μ, σ2), where μ
is the mean and σ2 is the variance. In case μ = 0 and σ2 = 1
this distribution is called the standard normal distribution.

The binomial distribution is the multinomial distribution
with k = 2 and is denoted by B(m, p), where p = p1 and
1 − p = p2. The mean and variance of this distribution are
mp and mp(1 − p), respectively. The binomial distribution
corresponds to random sampling with replacement from a set
S of size M = |S|, where we have two types of elements,
denoted by 0 and 1. If the sampling is without replacement
then the number of outcomes of type 0 in m experiments
follows the hypergeometric distribution HG(M, K, m), where
K is the number of elements of type 0 in the entire S. The
mean and variance of the hypergeometric distribution are

m
K

M
=mp and m

K

M

M − K

M

M − m

M − 1
= mp(1−p)

M − m

M − 1
,

respectively, where we denoted by p the probability of out-
comes of type 0 in the entire set S, that is, p = K

M . The
variances of the binomial and hypergeometric distributions
differ by a factor, whose close estimate

B =
M − m

M
, (7)

is called the finite population correction coefficient [17]. For
sufficiently large S, both distributions can be approximated by
the normal distribution N (μ, σ2), where μ is the mean and σ2

is the variance, as follows:

B(m, p) ≈ N (mp, mp(1 − p)) (8)

HG(M, K, m) ≈ N (mp, mp(1 − p)B). (9)

The general (noncentral) chi-squared distribution with �
degrees of freedom and noncentrality parameter δ is denoted
by χ2

�(δ). It is defined as the probability distribution of the sum
of squares of � independent random variables that follow the
normal distribution N (μi, 1). Then δ =

	�
i=1 μi. The mean

of the χ2
� (δ) distribution is �+ δ and its variance is 2(�+2δ).

If δ = 0 then the distribution is called central and is denoted
by χ2

� .
Another setting that gives rise to a chi-square distribution

is the one of the multinomial distribution. Using the same
notation as in Subsection II-B we set

T =
k�

η=1

�
zη − m

k

�2
m
k

. (10)

Then T is the test statistic of the well-known Pearson’s chi-
squared test and it is known to follow the χ2

k−1(δ) distribution,
where

δ =
k�

η=1

�
mpη − m

k

�2
m
k

, (11)
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see, e.g., [18]. Note that in this setting the number of degrees
of freedom is the number of variables that are free to vary, that
is k−1, the size of the domain of the multinomial distribution
minus one, due to the constraint z1 + . . . + zk = m. If there
are other constraints, then the number of degrees of freedom
may be further reduced. For example, s additional linearly
independent linear constrains on the values zη will further
reduce the number of degrees of freedom to k − 1 − s.

By the expression (6) of C we have T = mC. Hence
the χ2 distribution of T can be used to give a continuous
approximation of the discrete probability distribution of C. For
example, we can compare the mean and variance of C given
by Corollary 1 in the case where pη = 1/k for all η = 1, . . . , k
with the ones obtained from the χ2 distribution of T . We can
see that the means are identical, while the variances differ by
a negligble term 2(k − 1)/m3.

The multinomial distribution and the related Pearson’s χ2

distribution apply to the case when the values zη are obtained
by drawing samples of m elements from S with replace-
ment. If sampling is without replacement then the multivari-
ate hypergeometric distribution shall be used instead of the
multinomial distribution. Then the statistic T given in (10)
must be multiplied by the inverse of the finite population
correction coeffifient to get a χ2-distributed variable [17].
We state this result for further reference as follows.

Lemma 1: Let T be given by (10) where the values of vari-
ables zeta, η = 1, . . . , k are obtained by sampling m elements
from S without replacement and the initial probabilities pη are
as defined in the setting of the multinomial distribution. Then
the variable

B−1T,

where B is given by (7), approximately follows χ2
k−1(δ)

distribution, where δ is given by (11).

III. PROBABILITY DISTRIBUTION OF A SINGLE LINEAR

APPROXIMATION OF A RANDOM FUNCTION

AND PERMUTATION

We denote by F
n
2 the linear space over the field F2 = {0, 1}

with addition denoted by ‘+’ and inner product denoted by ‘·’.
Let f be a Boolean function from F

n
2 to F2. Given an element

a ∈ F
n
2 the Boolean function defined as

x �→ f(x) + a · x
is called a linear approximation of f . We first derive the
distributions of linear approximations of random Boolean
functions and random balanced Boolean functions. They are
essentially the same as those given by Daemen and Rijmen
in [4]. In this section, we will complete their work by giving
the exact distributions in both cases.

A. Zeroes of Linear Approximations

Let f be a Boolean function from F
n
2 to F2. We say that x ∈

F
n
2 is a zero of f if f(x) = 0. To determine the correlation of

a linear approximation of f , let us first determine the number
of its zeroes.

Lemma 2: Let a ∈ F
n
2 , a �= 0, and f be a Boolean function

from F
n
2 to F2. Let N0 be the number of the zeroes of f .

Then the number of zeroes of the linear approximation g(x) =
f(x) + a · x is equal to

|{x ∈ F
n
2 | f(x) = 0, a · x = 0}|

+|{x ∈ F
n
2 | f(x) = 1, a · x = 1}|

= 2n−1 − N0 + 2υ,

where we denoted

υ = |{x ∈ F
n
2 | f(x) = 0, a · x = 0}| (12)

Proof: Since the nonzero linear function x �→ a · x is
balanced, we have

|{x ∈ F
n
2 | f(x) = 1, a · x = 1}| = 2n−1 − (N0 − υ).

Adding υ to both sides of this equation gives what is
claimed.

The following lemma gives the distribution of υ.
Lemma 3: Let Boolean function f over F

n
2 be chosen ran-

domly and equiprobably from the set of all Boolean functions
with a fixed number N0 of zeroes. Let a ∈ F

n
2 be nonzero

and fixed. Then υ defined by (12) follows the hypergeometric
distribution HG(2n, 2n−1, N0).

Proof: Given a fixed balanced linear function a · x, the
N0 zeroes of f are chosen by choosing υ zeroes among the
2n−1 zeroes of a ·x and N0−υ zeroes among the 2n−1 inputs
x such that a · x = 1.

B. Random Boolean Function

The number of zeroes of a Boolean function selected ran-
domly and equiprobably from the set of all Boolean functions
of n variables follows the binomial distribution B(2n, 1

2 ).
Theorem 2: Let f be selected randomly and equiprobably

from the set of all Boolean functions of n variables. Then
for any fixed a ∈ F

n
2 the number of zeroes of the linear

approximation a · x + f(x) follows a binomial distribution
B(2n, 1

2 ).
Proof: For any fixed Boolean function g, the mapping,

which maps a Boolean function f to the function f + g, is a
bijection in the set of all Boolean functions of n variables.
Then if f is chosen uniformly at random from this set then
so is f + g. In particular, the distribution of the number of
zeroes of f + g follows the same distribution as the number
of zeroes of f .

For an alternative proof that computes the distribution of
the zeroes of the linear approximation based on Lemma 3,
see Appendix B.

Now we apply Corollary 1 for k = 2 to get the following
result.

Corollary 2: Let a ∈ F
n
2 be fixed. The distribution of a

correlation c of a linear approximation a·x+f(x) of a Boolean
function f that is drawn randomly and equiprobably from the
set of all Boolean functions of n variables has the following
parameters:

Exp(c) = 0
Var(c) = Exp(c2) = 2−n

Var(c2) = 21−2n − 21−3n.

Proof: When k = 2 we have C = c2 by (5) and we
can apply Corollary 1 with m = 2n to get Exp(c2) = 2−n
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and Var(c2) = 2(2n − 1)2−3n. Further, by Theorem 2 we
have that Exp(2nc) = 0. Hence Exp(c) = 0 and Var(c) =
Exp(c2) − Exp(c)2 = 2−n.

C. Balanced Random Boolean Function

A Boolean function over F
n
2 is said to be balanced if its

number of zeroes is equal to 2n−1. It is well known that
a vectorial Boolean function is a permutation if and only if
all its components, that is, nonzero linear combinations of its
coordinate functions are balanced.

From Lemma 2 and Lemma 3 we get the following result.
Theorem 3: Let f be selected randomly and equiprobably

from the set of all balanced Boolean functions of n variables.
Then for any fixed a ∈ F

n
2 , a �= 0, the number of zeroes of

the linear approximation f(x) + a · x is an even integer 2υ
where υ ∼ HG(2n, 2n−1, 2n−1).

Corollary 3: The distribution of a correlation c = cor(g)
of a linear approximation g(x) = a · x + f(x) of a balanced
Boolean function f drawn randomly and equiprobably from
the set of all balanced Boolean functions of n variables has
the following parameters:

Exp(c) = 0 and Var(c) = Exp(c2) =
1

2n − 1
.

Proof: We have c = 22−nυ − 1, where

Exp(υ) = 2n−2 and Var(υ) =
(2n−2)2

2n − 1
.

D. Random Vectorial Boolean Function and Permutation

In the context of linear cryptanalysis, a linear approximation
of a vectorial Boolean function F : F

n
2 → F

s
2 is identified with

a Boolean function defined as

x �→ a · x + b · F (x), x ∈ F
n
2 ,

where a ∈ F
n
2 and b ∈ F

s
2, b �= 0.

Since a single component b·F (x), b �= 0, of a random vecto-
rial Boolean function is a random Boolean function, it follows
that the number of zeroes of a linear approximation of a
random vectorial Boolean function is binomially distributed
as given by Theorem 2.

For permutations, the nonzero component functions b ·F (x)
are balanced Boolean functions. Therefore, the distribution of
the zeroes of a single linear approximation of a permutation
drawn uniformly at random among all permutations is given
by Theorem 3.

IV. MULTIDIMENSIONAL LINEAR APPROXIMATIONS

OF PERMUTATIONS

A. Multidimensional Linear Approximation as a Vectorial
Boolean Function

Let F : F
n
2 → F

s
2 be a vectorial Boolean function.

A multidimensional linear approximation Λ is a vectorial
Boolean function such that the components of Λ form a linear
subspace of the linear space

{ g : F
n
2 → F2 | g(x) = a · x + b · F (x) }

of all linear approximations of F . Let us denote this subspace
by L and its dimension by t. Let us fix a basis λ1, . . . , λt

of L, and give notations of the basic elements as

λi(x) = ai · x + bi · F (x), for i = 1, . . . , t. (13)

Then Λ : F
n
2 → F

t
2 is given by λ1, . . . , λt as its coordinate

functions. Given β = (β1, . . . , βt) ∈ F
t
2 the component β · Λ

of Λ has a unique representation as a linear approximation of
F of the form a · x + b · F (x) as follows:

β · Λ(x) = β1λ1(x) + . . . + βtλt(x)

=



t�

i=1

βiai

�
· x +



t�

i=1

βibi

�
· F (x). (14)

In the rest of this paper we identify a linear approximation
g(x) = a ·x+ b ·F (x) with the pair (a, b) ∈ F

n
2 ×F

s
2, and call

it the mask pair of g. Here the element a ∈ F
n
2 is called

the input mask and the element b ∈ F
s
2 the output mask.

We also denote cor(g) by cor(a, b). Also the linear subspace L
spanned by λ1, . . . , λt of the space of all linear approximations
is identified with a linear subspace of F

n
2 ×F

s
2 spanned by the

mask pairs (a1, b1), . . . , (at, bt) given by (13). We will use L
also to denote this subspace and call it the mask space of Λ.

By (1), (5), and (14) the capacity of Λ is then given as

Cap(Λ) =
�

(a,b)∈L,(a,b) �=(0,0)

cor(a, b)2

=
�

β∈F
t
2,β �=0

cor(β · Λ)2

= 2t
�
η∈F

t
2

(pη − 2−t)2, (15)

One known consequence of this result is that the value
distribution of a multidimensional linear approximation is
uniform if and only if the correlations of all its non-zero linear
approximations are equal to zero.

B. Structure of Multidimensional Linear Approximation of
Permutation

In this section we determine the structural properties of
a multidimensional approximation of a permutation F . For
example, F is an encryption function of a block cipher,
or some rounds of a block cipher with a fixed key, or F is
just any bijective function of bit strings.

A multidimensional linear approximation Λ of a permuta-
tion F may contain nonzero linear approximations with mask
pairs of the form (a, 0) or (0, b). Such linear approximations
are called trivial, because they have fixed correlations equal
to zero for any permutation F . Next we examine their effect
on the distribution of the capacity Cap(Λ). Let us denote by
U the linear subspace of the multidimensional approximation
consisting of the approximations of the form (a, 0) and let
u be its dimension. Similarly, we denote by V the subspace
of the masks of the form (0, b) and by v its dimension.
Then U ∩ V = {(0, 0)}. Often such spaces span the whole
multidimensional approximation, that is, all masks are of the
form (a, b), where (a, 0) ∈ U and (0, b) ∈ V . Then the
multidimensional approximation is said to have independent
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input and output masks [19]. But in general, there may exist a
linear subspace W of L such that, if (a, b) ∈ W and (a, b) �=
(0, 0), then a �= 0 and b �= 0. Then U∩W = V ∩W = {(0, 0)}
and the mask space L of the multidimensional approximation
Λ can be written as a direct sum

L = U ⊕ V ⊕ W. (16)

Mask pairs of the type comprising W do not have inde-
pendent input and output masks. We will show later in Sub-
section IV-D that they are actually connected by a one-to-one
correspondece.

Let us denote by Λ1, Λ2 and Λ3 the multidimensional linear
approximations determined by the mask sets U , V and W ,
respectively. Then the values of Λ1 are u-bit vectors, the values
of Λ2 are v-bit vectors, and the values of Λ3 are (t−u−v)-bit
vectors, and Λ = (Λ1, Λ2, Λ3). Since all linear approximations
in U and V are balanced, the value distributions of Λ1 and
Λ2 are uniform. Considering this property for Λ1 we get 2u

constraints for the value distribution of Λ as follows�
ζ,ν

Pr(Λ(x) = (ξ, ζ, ν)) = Pr(Λ1(x) = ξ) = 2−u,

for all u-bit vectors ξ. From these constraints 2u − 1 are
independent, since�

ξ

Pr(Λ1(x) = ξ) = 1.

Similarly, by the uniformity of the value distribution of
Λ2, we get the following constraints from which 2v − 1 are
independent because�

ξ,ν

Pr(Λ(x) = (ξ, ζ, ν)) = Pr(Λ2(x) = ζ) = 2−v,

for all v-bit vectors ζ.
We conclude that the number of degrees of freedom of the

probability distribution of the values of a multidimensional
linear approximation Λ of a permutation, as considered above,
is bounded from above by

2t − 1 − (2u − 1) − (2v − 1) = 2t − 2u − 2v + 1.

Let us now consider Λ and the probabilities pη of its t-bit
values η = (ξ, ζ, ν) as stochastic variables over the space of
all equiprobable permutations. We apply Pearson’s χ2 test and
compute the test variable as

T (Λ) = 2n
�

η

(pη − 2−t)2

2−t
= 2nCap(Λ). (17)

Then T (Λ) follows the χ2 distribution. By Corollary 3, for
linear approximations of randomly and equiprobably drawn
permutations, the expected value of correlations cor(a, b), with
(a, b) �= 0, is equal to zero, also of those correlations where
a �= 0 and b �= 0. On the other hand, cor(a, b) = 1 for
a = b = 0. Hence by (3), the expected value of each pη

is equal to 2−t. Thus we have proved the following result.
Theorem 4: Let the multidimensional linear approximation

have dimension t and the linear subspaces of trivial masks
of the form (a, 0) and (0, b) have dimensions u and v,

Fig. 1. Mean and variance of capacity of multidimensional linear approxi-
mation of dimension 7. Output masks spanned by bit: 9.

respectively. Then for a permutation chosen randomly and
equiprobably from the set of all permutations from F

n
2 to

F
n
2 the capacity of this multidimensional linear approximation

follows, when multiplied by the factor 2n, the central χ2

distribution with at most 2t −2u −2v +1 degrees of freedom.
Motivated by this result, we conjecture that the value

distribution of a multidimensional linear approximation of a
randomly and equiprobably chosen permutation with mask
subspaces U and V of dimensions u and v, respectively, has
the maximum degree of freedom, that is, 2t − 2u − 2v + 1.

Conjecture 1: For a permutation from F
n
2 to F

n
2 drawn

uniformly at random, the capacity of a multidimensional linear
approximation with dimension t and the linear subspaces
of trivial masks with dimensions u and v follows, when
multiplied by 2n, the χ2 distribution with 2t − 2u − 2v + 1
degrees of freedom.

C. Experiments

We performed experiments to check the validity of Con-
jecture 1 in different dimensions. In our simulations of
a random permutation, we used the iterated block cipher
SMALLPRESENT-[4] with a varying number of rounds. This
cipher has 31 rounds in total and the block size is 16 bits [20].
The state bits at input and output to each round are numbered
from 0 to 15 from right to left.

For each fixed number of rounds of SMALLPRESENT-[4]
varying from 0 to 31, the distribution of the capacity of the
multidimensional linear approximation is computed over 214

keys. Then the mean and the variance of the capacity is
computed. The multidimensional linear approximation is of
the form U ⊕ V where both U and V have nonzero bits in
positions 5, 6, 9, 10, 11, 13, 14, 15. Six typical examples are
depicted in Figures 1 – 6. In all six examples U is spanned
by bits in positions 9, 10, 11, 13, 14, 15, and has dimension
equal to 6, while the dimension of V varies from 1 to 6.

In each figure, the negatives of the base 2 exponents, that
is − log2, of the mean and variance of the capacity are
plotted as the number of rounds increases, and compared
with the hypothetical value given by Conjecture 1 which is
depicted using a horizontal line. We see that the results of the
experiments support Conjecture 1 perfectly.

We also computed a number of experimental probability
distributions of capacities for a random permutation
instantiated by 20 rounds of SMALLPRESENT-[4]. One typical
example of such probability distribution is plotted in Figure 7
for a multidimensional linear approximation with mask space
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Fig. 2. Mean and variance of capacity of multidimensional linear approxi-
mation of dimension 8. Output masks spanned by bits: 9, 10.

Fig. 3. Mean and variance of capacity of multidimensional linear approxi-
mation of dimension 9. Output masks spanned by bits: 9, 10, 11.

Fig. 4. Mean and variance of capacity of multidimensional linear approxi-
mation of dimension 10. Output masks spanned by bits: 9, 10, 11, 13.

Fig. 5. Mean and variance of capacity of multidimensional linear approxi-
mation of dimension 11. Output masks spanned by bits: 9, 10, 11, 13, 14.

Fig. 6. Mean and variance of capacity of multidimensional linear approxi-
mation of dimension 12. Output masks spanned by bits: 9, 10, 11, 13, 14, 15.

U⊕V where U and V are of dimension 4 and spanned by bits
in positions 5, 6, 9, and 10. The resulting plot is compared
with the χ2 distribution with 28 − 24 − 24 + 1 = 225 degrees

of freedom plotted as a solid curve given by
Conjecture 1.

D. Special Case u = v = 0

Let us start by defining a special type of multidimensional
linear approximation, which we call a Davies-Meyer approx-
imation for reasons to be explained in this subsection.

Definition 1: A multidimensional linear approximation Λ
is called a Davies-Meyer approximation if given any linearly
independent set of mask pairs (ai, bi), i = 1, . . . , t, in the
mask space L of Λ, the input masks ai, i = 1, . . . , t, are
linearly independent and the output masks bi, i = 1, . . . , t,
are linearly independent.

An equivalent formulation of this definition can be given as
follows.

Theorem 5: A multidimensional linear approximation of a
permutation is a Davies-Meyer approximation if and only if it
does not contain any nonzero trivial approximations.

Proof: By definition, a Davies-Meyer approximation does
not contain any nonzero approximation that has either input
or output mask equal to zero, since a zero element cannot be
included in a set of linearly independent elements. It remains
to show that if the mask space L of a multidimensional linear
approximation Λ does not contain any trivial approximations,
then Λ must be a Davies-Meyer approximation.

Let us suppose the contrary, that is, L does not contain triv-
ial approximations, but is not a Davies-Meyer approximation.
Then L has a basis (ai, bi), i = 1, . . . , t, where either ai,
i = 1, . . . , t, are linearly dependent or bi, i = 1, . . . , t, are
linearly dependent. Without loss of generality, we assume that
the masks bi, i = 1, . . . , t, are linearly dependent. Then there
is a non-empty subset of masks bij , j = 1, . . . , k, such that

k�
j=1

bij = 0.

Since (ai, bi), i = 1, . . . , t, is the basis of L, the linear
approximations (ai, bi), i = 1, . . . , t, are linearly independent,
and therefore it must be the case that

k�
j=1

(aij , bij ) = (
k�

j=1

aij ,

k�
j=1

bij ) = (
k�

j=1

aij , 0) �= (0, 0).

This can happen only if

k�
j=1

aij �= 0.

Then L contains a nonzero mask pair of the form (a, 0),
which contradicts the assumption.

By this theorem, the multidimensional approximation Λ3

determined by the mask set W in the presentation (16) of
L as L = U ⊕ V ⊕ W is a Davies-Meyer approximation.
Moreover, the theorem can be restated by saying that Λ is a
Davies-Meyer approximation if and only if U = V = {(0, 0)}.

Given a Davies-Meyer approximation, we can define a linear
bijection D from the linear space span(a1, . . . , at), spanned
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Fig. 7. Experimental probability distribution of capacity C multiplied by 216 of a multidimensional linear approximation of dimension 8.

by the input masks, to the linear space span(b1, . . . , bt),
spanned by the output masks of mask pairs in L, by setting

D(ai) = bi, , i = 1, . . . , t.

By definition, t ≤ n. Then we extend D to a bijective linear
mapping from F

n
2 to F

n
2 and denote it by D̄. Then a linear

approximation (a, b) ∈ L can be expressed as

a · x + b · F (x) = a · x + a · (D̄� ◦ F )(x)
= a · (x + (D̄� ◦ F )(x)), (18)

where D̄� is the transpose of D̄. If F is chosen randomly and
equiprobably from the set of all permutations, then the same
holds for the permutation P = D̄� ◦ F . We observe that the
function of the form

x �→ x + P (x)

is the Davies-Meyer construction [21], which is known to
give a pseudorandom function (more accurately, a family of
pseudorandom functions) from F

n
2 to F

n
2 if P is a truly ran-

dom permutation, that is, chosen randomly and equiprobably
among all permutations F

n
2 to F

n
2 [22]. By (18) the linear

approximations in L form a linear subspace of the components
of a Davies-Meyer function, and hence the Davies-Meyer
approximation Λ of F is a pseudorandom function from F

n
2

to F
t
2 if F is a truly random permutation.

In Subsection VII-A we define a test for distinguishing a
permutation (cipher) from a truly random permutation. In the
theory of cryptography, analogous tests are also used to dis-
tinguish a function from a truly random function. Specifically,
a pseudorandom function is defined by the property that there
is no efficient test that can be used to distinguish between a
pseudorandom function and a truly random function with a
larger than a negligble distinguishing advantage [23].

This means that any probability distribution computed from
the values of a Davies-Meyer approximation Λ over a truly
random permutation F can be replaced by the corresponding
distribution computed for a truly random function. Recalling
that the multinomial distribution of the capacity of a truly
random function from F

n
2 to F

t
2 can be approximated by the

χ2
t distribution, see Section II-C, we can state the following

result.
Theorem 6: Conjecture 1 holds for the Davies-Meyer

approximation.
This property will be used later in the statistical analysis of

a Davies-Meyer approximation, see Theorem 11.
To illustrate a probability distribution of a Davies-Meyer

approximation we depict the distribution of capacity over
214 random keys in Figure 8. The capacity is computed
for the 6-dimensional linear approximation over 20 rounds
of SMALLPRESENT-[4] spanned by mask pairs (e9, e9),
(e10, e10), (e11, e11), (e13, e13), (e14, e14), and (e15, e15),
where we denoted by ej the bit vector with a single 1-bit
in position j. The solid curve depicts the χ2

63 distribution.

E. Multidimensional Linear Approximation of Serpent

The block cipher Serpent [10] was one of the first ciphers
analysed using the multidimensional linear cryptanalysis. The
multidimensional approximation Λ for Serpent was built by
taking the linear space spanned by a linearly independent set of
m strong base approximations of the form (a1, b), . . . , (am, b)
all with the same output mask b. Then L is of the form
U ⊕ V , where u = m and v = 1. Moreover, the Davies-
Meyer part W was non-existent. It means that all the linear
combinations of the base approximations involving an even
number of base approximations had output mask equal to zero,
and hence, correlation zero. In the cryptanalysis, all 2m+1−1
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Fig. 8. Probability distribution of 216C for capacity C of a 6-dimensional linear approximation with no mask pairs of the form (a, 0) or (0, b), a �= 0,
b �= 0.

non-zero approximations were involved including those 2m−1
of the form (a, 0) with correlation zero. It was mentioned that
such approximations can be ignored in the computation of
the empirical correlation. Nevertheless, they cannot be ignored
when the degree of freedom of the sampled χ2 statistic is
determined as will be explained in Subsection VI-C.

Recently it was proposed by Nyberg to remove the sub-
space of trivial linear approximations and consider only the
remaining set that forms an affine subspace [13]. Let us apply
this idea to the multidimensional approximation of Serpent
discussed above. Take the m−1 dimensional subspace spanned
by masks (a2 ⊕ a1, 0), . . . , (am ⊕ a1, 0) and denote it by H .
Then the affine subspace (a1, b) + H is only a half of the
size of the original linear space and still contains all m strong
base approximations. Moreover, for each key, the capacity of
the affine set of approximations is exactly the same as the
capacity of the original set, while the degrees of freedom of
the χ2 statistic is reduced by one half.

To conclude this section let us mention that the structure
of multidimensional linear approximations must be taken in
consideration also for non-bijective functions. Then only the
mask pairs of the form (a, 0) are trivial with mean and variance
of the correlation equal to zero. For example, if in the above
example the block cipher Serpent is replaced by some non-
bijective function but the same set of linear approximations
are used, then removing the trivial approximations leads to
the same affine set of approximations.

Next we study the distribution of the capacity for an
affine set of linear approximations of a random permutation.
Further in Subsection VI-D, we will recall the sampled χ2

statistic from [13] with the following essential improvements:
randomisation over the key and sampling without replacement.
The compound probability distribution is then given by the

integration of the probability distribution of the capacity into
the probability distribution of the sampled χ2 statistic.

V. CAPACITY OF AN AFFINE SET OF APPROXIMATIONS

A. Constructing Affine Set of Approximations

The approach for constructing an affine set of linear approx-
imations which does not contain trivial approximations but has
a statistical model without artificial independence assumptions,
was proposed by Nyberg [13]. Such a set can be constructed,
for example, by taking an affine subspace of input masks and
an affine subspace of output masks to get a set of the form

A = (a0 + U �) × (b0 + V �) = (a0, b0) + (U � × V �),

where the dimensions of U � and V � are positive, a0 /∈ U � and
b0 /∈ V �. We denote

U = {(a, 0) | a ∈ U �} and V = {(0, b) | b ∈ V �}. (19)

Then the smallest linear space that contains A is

U ⊕ V ⊕ {(0, 0), (a0, b0)} = (U ⊕ V ) ∪ A,

that is, the space W in the expression (16) has dimension one.
But using the multidimensional linear approximation defined
by this set of masks instead of using only the set A would
add all trivial linear approximations from U and V to this set
and reduce the strength of the attack. To avoid wasting attack
resources, such as memory and time, we want to exclude the
linear approximations with masks in U ⊕ V .

More generally, let us consider such a statistic T (A) for
any affine set of the form A = (a0, b0) + H where H is
a linear subspace of masks and (a0, b0) /∈ H . Moreover,
we assume that A does not contain trivial masks. Let Λ
be the multidimensional linear approximation defined by the
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linear space of masks L = {(0, 0), (a0, b0)} ⊕ H . Let Λ�

the multidimensional linear approximation defined by H and
Λ� = U⊕V ⊕W be its presentation in the form (16). We define
the affine test statistic as follows

T (A) = 2n
�

(a,b)∈A

cor(a, b)2 = T (Λ) − T (Λ�). (20)

We denote the dimension of Λ by t. Hence we can express
Λ as Λ = (f0, Λ�), where f0 is the Boolean function f0(x) =
a0 · x + b0 · E(x). Then the values of Λ are given as (ν, η),
where ν is a bit and η is a (t − 1)-bit vector.

Since the correlations of the linear approximations are not
independent, we cannot examine the distribution of T (A)
directly from its expression as a sum of squared correlations.
We can, however, do this if instead we express T (A) in terms
of value distribution p(ν,η) of Λ as given by the following
lemma.

Lemma 4: In the setting defined above, we have

T (A) = 2n2t−1
�

η∈F
t−1
2

(p(1,η) − p(0,η))2. (21)

Proof: By applying (17) to T (Λ�) we obtain

2n2t−1
�

η

(p(1,η) − p(0,η))2 + T (Λ�)

= 2n2t−1
�

η

�
p(1,η) − 2−t) − (p(0,η) − 2−t)

�2
+2n2t−1

�
η

�
p(1,η) + p(0,η) − 2−(t−1)

�2

= 2n2t−1
�

η

�
p(1,η) − 2−t) − (p(0,η) − 2−t)

�2
+2n2t−1

�
η

�
p(1,η) − 2−t) + (p(0,η) − 2−t)

�2
= 2n2t

�
η∈F

t−1
2 ,δ∈F2

�
p(δ,η) − 2−t

�2
.

By replacing the summation index (δ, η) ∈ F2 × F
t−1
2 by

η ∈ F
t
2 we get the expression of T (Λ) given by (17). Then

the claim follows from (20).

B. Distribution of the Statistic T (A) for a Random
Permutation

To compute T (A) according to (21) for a permutation, all
n-bit inputs x are distributed to 2t−1 categories according to
the value η of Λ�(x). Further, within each category the inputs
x are divided into two subsets according to their value f0(x).
The resulting value in category η is the difference of the sizes
of its two subsets.

Since the expected probability distribution of the values
(ν, η) of Λ over all permutations is uniform, the expected value
of the differences p(1,η) − p(0,η) is zero. Hence we propose to
use Pearson’s χ2 test for the values obtained in this way in
2t−1 categories. The related χ2 test statistic is T (A).

To determine the number of degrees of freedom of T (A),
we observe that, taken together, the 2t−1 variables p(1,η) +
p(0,η) and the 2t−1 variables p(1,η) − p(0,η), where η is a

t − 1-bit vector, uniquely determine the value distribution of
Λ with probabilities pν,η , where ν is a bit and η is a t − 1-
bit vector, which by Conjecture 1 has 2t − 2u − 2v + 1 free
variables. Since the masks in U ⊕ V (if any) belong also
to the multidimensional linear approximation Λ�, the value
distribution of Λ� has 2t−1 − 2u − 2v + 1 free variables, also
by Conjecture 1. Since T (A)+T (Λ�) = T (Λ), it follows that
T (A) must have at least 2t−1 degrees of freedom. On the other
hand, by its expression (21) T (A) has at most 2t−1 degrees
of freedom, and hence exactly 2t−1 degrees of freedom.

We conclude that under Theorem 4 and Conjecture 1
for random permutations, T (A) is χ2 distributed with 2t−1

degrees of freedom and summarise the result as follows.
Theorem 7: Let A = (a0, b0) + H be an affine subspace

of linear approximations of a random permutation such that it
does not contain any trivial linear approximations and assume
that the multidimensional linear approximations defined by the
linear spaces H and L = {(0, 0), (a0, b0)} ⊕ H satisfy Con-
jecture 1. Then the statistic

T (A) = 2nCap(A) = 2n
�

(a,b)∈A

cor(a, b)2

follows χ2 distribution with |A| degrees of freedom.

VI. DATA SAMPLING FOR APPROXIMATIONS

OF RANDOM PERMUTATIONS

A linear attack can be seen as composed of two parts,
first, finding an approximation with good correlation and
secondly, detecting this correlation in a collection of input-
output pairs. When viewed this way, linear cryptanalysis is
mainly a parameter estimation problem and the influence of
data sampling is only on the second part. The distribution of
the correlation over the keys is determined by the structure of
the block cipher. Undersampling introduces an error to this
parameter estimation problem. The empirical correlation is
therefore a random variable in the key and the choice of the
sample of plaintexts.

In Sections IV and V we presented the probability distri-
butions of correlations and capacities computed over the full
input domain of random functions and permutations. The goal
of this section is to integrate a random variate data sample of
fixed size into these probability distributions.

A. Sampling With or Without Replacement for a Random
Permutation

In many studies on linear cryptanalysis, known plaintext-
ciphertext pairs are assumed to be drawn randomly and inde-
pendently, which implies sampling with replacement. It has
been argued that sampling without replacement implies chosen
plaintext and contradicts the essence of linear cryptanalysis of
being a “known plaintext attack”.

On the other hand, it has been acknowledged that duplicated
plaintext-ciphertext pairs do not give new information, for
which reason experimental cryptanalysis of practical ciphers
typically use non-repeating plaintexts. For example, in the
first experimental cryptanalysis on the DES cipher, Matsui
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generated the plaintexts as distinct powers of a primitive
element in a 64-bit field [2].

Considering practical applications, the raw data obtained
from the cipher is rarely non-repeating and may have too many
duplicates for being random looking. Therefore, it requires
preparations before it can be used for statistical analysis. Given
two models, one requiring data input that looks like a randomly
generated sample with replacement and another one without
duplicates, the latter is arguably more practical to achieve.
It takes O(N) memory and time to clear a raw sample of N
plaintexts from duplicates and also gives a unique value for
the size of the clean sample.

Today, linear cryptanalysis is most commonly used for
estimating how many rounds of an iterative block cipher
it takes until any reasonable linear attack requires the full
codebook of known plaintext-ciphertext pairs. Achieving the
whole codebook using sampling with replacement introduces
unnecessary uncertainty to the model that can be avoided
if sampling is without replacement. Based on the reasons
given above, we will consider only sampling without replace-
ment in this paper. In particular, for the experiments given
in Section VIII that deal with sample sizes equal or close
to full codebook, analysis with distinct plaintexts gives more
accurate results.

Whether sampling is with or without replacement has also
implications to the statistical models of wrong-key behaviour.
The classical wrong-key assumptions commonly use the idea
that if the key is wrong then the values of a bitwise linear
approximation follow the binomial distribution with proba-
bility 1/2. This leads to a normal distribution N (0, 1/N)
of the empirical correlation, where N is the size of the
sample drawn with replacement. As long as the cipher has a
linear approximation such that its correlation has only a small
number of values as the key varies, or the average correlation
over the keys is different from zero, then this wrong-key
model is reasonable. But the modern block ciphers have been
designed not to have such linear approximations. In particular,
the correlations typically vary a lot with the key and have
average value equal to zero leading to the same distribution
N (0, 1/N) of the empirical correlation in the right-case and
the wrong-key case. It follows that the early models of linear
cryptanalysis, e.g. [24], [25], hardly apply to modern block
ciphers.

The more advanced models of linear correlations of block
ciphers consider randomisation over the key and the data
sample. Bogdanov and Tischauser were the first to present
a wrong-key model of the empirical correlation and gave
the distribution N (0, 1/N + 2−n), where n is the block
size and N is the size of the sample assuming sampling
with replacement [4]. Later Blondeau and Nyberg showed
that if sampling is without replacement, then the wrong-key
distribution is N (0, 1/N). While this distribution is the same
as in the classical case without key randomisation, the setting
is different and the corresponding right-key model allows
building a distinguisher [7].

In this section, we present probability distributions of
the capacity considered over a random permutation and
random sampling without replacement for a single linear

approximation, a multidimensional linear approximation
including Davies-Meyer approximation as a special case, and
an affine set of approximations. In all cases, we first derive
the distribution for an arbitrary fixed permutation by randomi-
sation over the data sample only. Then by using the results
from Sections IV and V we present the compound probability
distributions of the capacity over a random permutation and a
random sample.

B. Sampling Without Replacement for a Single Linear
Approximation

Given a mask pair (a, b), where b �= 0, and a data sample S
of input-output pairs (x, F (x)) of size N drawn for a random
function F : F

n
2 → F

s
2, let us denote by �w(a, b) the number of

inputs x, for which (x, F (x) ∈ S and the linear approximation
a ·x+b ·F (x) takes the value zero. Let w(a, b) be the number
of zeroes of a · x + b · F (x) over all inputs x ∈ F

n
2 . Then�w(a, b) ∼ HG(2n, w(a, b), N).

For a truly random F , we know by Theorem 2 that

w = w(a, b) ∼ B(2n, 1/2).

Then the distribution of �w(a, b) taken over a truly random
function and a random data sample S of size N has the
following probability distribution

Pr( �w(a, b) = k) =
2n�

w=0

�
1
2

�2n �
2n

w

��w
k

��
2n−w
N−k

��
2n

N

�
= (

1
2
)N

�
N

k

�
.

Hence �w(a, b) ∼ B(N, 1/2).
Let us denote by cor(a, b) the sampled correlation, that is,

cor(a, b) =
1
N

(2 �w(a, b) − N).

By normal approximation (8), we obtain the following
result.

Theorem 8: Let cor(a, b), where b �= 0, be the sampled
correlation of the linear approximation (a, b) of a function
from F

n
2 to F

s
2. Then the probability distribution of cor(a, b)

taken over a truly random function and a random data sample
of size N of distinct plaintexts, where N ≤ 2n, can be
approximated by the normal distribution N (0, 1/N).

To prove the corresponding result for a random permutation
we use the normal approximation from the beginning.

Theorem 9: Let cor(a, b), where b �= 0, be the sampled
correlation of a linear approximation of a permutation from F

n
2

to F
n
2 . Then the probability distribution of cor(a, b) considered

over a truly random permutation and a random data sample
of size N of distinct plaintexts, where N ≤ 2n, can be
approximated by the normal distribution N (0, 1/N).

Proof: Given a linear approximation (a, b), b �= 0,
and a data sample S of size N drawn for a permutation
E : F

n
2 → F

n
2 , the sampled correlation is cor(a, b) =

1
N (2 �w(a, b)−N) where �w(a, b) ∼ HG(2n, w(a, b), N). Then
by normal approximation (8),

cor(a, b) ∼ N
�

cor(a, b),
B

N
(1 − cor(a, b)2)

�
,
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where cor(a, b) = 2−n(2w(a, b)−2n) and B = (2n − N) /2n.
By Theorem 3, Corollary 3, and using the normal approxi-
mation of the hypergeometric distribution (8), we have

cor(a, b) ∼ N (0, 2−n).

Then the distribution of cor(a, b) taken over a random
permutation and a random sample of size N is approximately
normal with mean Exp (cor(a, b)) = 0 and variance equal to

Var(cor(a, b))+Exp(Var(cor(a, b)))=2−n+
B

N
−B

N
2−n≈ 1

N
.

We get another view of this result by observing that a linear
approximation of a random permutation F can be expressed as
a linear approximation of a pseudorandom function as follows

a · x + b · F (x) = (a + b) · x + b · (x + F (x)),

see Subsection IV-D, and then applying Theorem 8.

C. Sampling Without Replacement for a Multidimensional
Linear Approximation

Let us now recall the sampled test statistic of a multidimen-
sional linear approximation Λ. It is obtained by taking (17)
and replacing 2n by N and correlations cor (a, b) by sampled
correlations cor (a, b) as follows

TN(Λ) = N
�

(a,b)∈L,(a,b) �=0

cor (a, b)2 . (22)

Let us first derive the probability distribution of TN (Λ) for
an arbitrary fixed key and randomly chosen sample of dis-
tinct plaintexts. The corresponding probability distribution for
TN(Λ) is given by the following result originally stated in [7].
The proof given in [7] assumed independent hypergeometric
distributions. In [1] the validity of this result was questioned
due to the artificial assumption of independence. Therefore
another proof will be given here by applying the standard
statistical argument of finite population correction to the χ2

distributed variable as given by Lemma 1. In our context, 2n

is the size of the population and N is the size of the random
sample of distinct elements from that population.

Theorem 10: Let Λ be a multidimensional linear approx-
imation of dimension t applied to a permutation from F

n
2

to F
n
2 . Let TN(Λ) be the statistic defined by (22) com-

puted over a random sample of size N of distinct plain-
texts. Then B−1TN(Λ) follows non-central χ2 distribution
with 2t − 1 degrees of freedom and non-centrality parameter
B−1NCap(Λ), where B is as defined by (7).

Proof: We denote by �pη the sampled probabilities of the
distribution of the t-bit values η ∈ Λ computed for a sample
of size N of inputs x. We apply (15) to this distribution to
write TN(Λ) as follows

TN(Λ) = N2t
�

η

(�pη − 2−t)2 =
�

η

(N �pη − N2−t)2

N2−t
. (23)

Then TN (Λ) is Pearson’s χ2-test statistic with 2t−1 degrees
of freedom. Since the sample is without replacement we
apply Lemma 1 and get that B−1TN(Λ) is non-centrally χ2

distributed and has expected value equal to 2t − 1 + δ, where
δ is the non-centrality parameter. Then the expected value
of TN (Λ) is equal to B(2t − 1) + Bδ. To determine δ we
compute the expected value of TN(Λ) directly. Expanding the
expression (23) we get

TN (Λ) =
�

η

(N �pη − Npη)2

N2−t
(24)

+ N2t
�

η

(pη − 2−t)2 (25)

+ N2t+1
�

η

pη(�pη − pη), (26)

where pη is the probability of the t-bit value η in the image
space of Λ. Note that in the expansion (24-26) the term
N2t+1

	
η(�pη − pη) was omitted because it is equal to

zero. Now expression (24) is Pearson’s χ2-test statistic with
2t−1 degrees of freedom by using the standard approximation
Npη ≈ N2−t in the denominator. Moreover it is central, since
for each η the expected value of �pη is equal to pη. Since the
sampling is without replacement, we get that the expected
value of (24) is equal to B(2t − 1). The expression (25)
is constant and equal to NCap(Λ), and the expected value
of (26) is equal to zero. Solving δ from the equation

B(2t − 1) + Bδ = B(2t − 1) + NCap(Λ)

gives the non-centrality parameter as claimed.
As the sample size N grows, and gets equal to 2n, the

sampled statistic TN (Λ) gets equal to the statistic T (Λ).
In general, the χ2-variables computed for the entire input space
may not have the same number of degrees of freedom as we
saw in Subsection IV-B, which complicates the analysis of the
compound distribution of the statistic TN (Λ) considered over
a random permutation and a random sample of size N . In the
case, where Λ does not contain any trivial approximations,
that is, Λ is a Davies-Meyer approximation, the distribution
of T (Λ) also has t − 1 degrees of freedom. Moreover,
by Theorem 6 the distribution given by Conjecture 1 holds
and we get the following result. The proof is similar to the
proof of Theorem 13 in the next subsection and is omitted
here.

Theorem 11: Let Λ be a Davies-Meyer approximation
applied to a random permutation from F

n
2 to F

n
2 . Let TN (Λ)

be the statistic defined by (22) computed for a sample of size
N of distinct plaintexts and considered as a random variable
over a truly random permutation and a random sample of
size N . Then the mean of TN(Λ) is |Λ| − 1 and the variance
is 2 (|Λ| − 1).

D. Sampling Without Replacement for an Affine
Approximation

Given an affine subspace A of linear approximations defined
by two multidimensional linear approximations Λ and Λ� of
dimensions t and t − 1 respectively, we define the sampled
test statistic TN(A) analogously to (20) as follows

TN(A) = N
�

(a,b)∈A

cor (a, b)2 = TN (Λ) − TN(Λ�). (27)
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By repeating the derivations of Section V, but now for the
sampled statistic TN (A) and using Theorem 10 we get the
following result.

Theorem 12: Let A be an affine set of linear approxima-
tions applied to a permutation from F

n
2 to F

n
2 and assume

it does not contain trivial approximations. Let TN(A) be the
statistic defined by (27) computed for a random sample of size
N of distinct plaintexts. Then B−1TN(A) follows the non-
central χ2 distribution with |A| degrees of freedom and non-
centrality parameter B−1NCap(A), where B is as defined
by (7).

The noncentrality parameter B−1NCap(A) of the distribu-
tion of TN(A) depends on the permutation. If the permutation
is truly random, the distribution of T (A) = 2nCap(A) is given
by Theorem 7 under the assumption that Conjecture 1 holds.
We get the following result.

Theorem 13: Let A be an affine set of linear approxima-
tions applied to a permutation from F

n
2 to F

n
2 and let us

assume that A does not contain trivial approximations and
Conjecture 1 holds. Let TN (A) be the statistic defined by (27)
computed for a sample of size N of distinct plaintexts and
considered as a random variable over a random permutation
and a random sample of size N . Then the mean of TN (A) is
|A| and the variance is 2|A|.

Proof: Let us denote |A| by �. Using the non-central
χ2 distribution of B−1TN (A) for a fixed permutation with
capacity Cap(A) given by Theorem 12, we get that the mean
of TN (A) is equal to

B� + NCap(A) = B� + N2−nT (A). (28)

By taking the mean over random permutations, we get the
mean � as claimed.

Similarly, by Theorem 12, we get that the variance of
TN(A) is equal to

B2
�
2� + 4B−1NCap(A)

�
. (29)

Then the total variance over random permutation is com-
puted as the sum of the mean of (29) and the variance of (28)
to get

B2
�
2� + 4B−1N2−n�

�
+
�
N2−n

�2 · 2�

= 2B2� + 4B(1 − B)� + 2(1 − B)2� = 2�.

Based on these considerations one can argue that, when
considered as a random variable over a random permutation
and a random sample of N distinct plaintexts, the test statistic
TN(A) follows the χ2

|A| distribution.
We have seen that constructions of multidimensional and

affine linear approximations that do not contain any trivial
approximations have a simple and clear theory for random per-
mutations. Also for those approximations that contain trivial
approximations it is quite straightforward to derive the mean
and the variance of the sampled statistic. For permutations
originating from ciphers the theory is not that clear. The least
one can say is that linear approximations of block ciphers have
the same trivial linear approximations as a random permuta-
tion. The problem of trivial approximations was observed also
in [10] where it was recommended to exclude them in the

computation of the empirical correlation. While this helps in
speeding up the cryptanalysis, the problem of accuracy still
remains. In the case of [10] the trivial linear approximations
could have been easily excluded by considering the related
affine set as discussed in Subsection IV-E.

VII. EVALUATING NONRANDOMNESS

OF LINEAR APPROXIMATIONS

In this section, we apply the statistical models of linear
approximations of a random permutation and present a test to
evaluate non-randomness of linear approximations of a block
cipher based on the observed capacities in large experiments.

A. Randomness Test

We consider the set of permutations from F
n
2 to F

n
2 and a

permutation drawn from this set. The null hypothesis of the
test is defined as follows.

Hypothesis 1 (Null Hypothesis): The permutation is a truly
random permutation, that is, it has been drawn uniformly at
random from the set of all permutations.

The alternative hypothesis is then defined as follows.
Hypothesis 2 (Alternative Hypothesis): The permutation is

not a truly random permutation.
The test is performed by computing the test statistic T

for the given permutation. For example, T = TN (A) defined
by (27). Given a threshold τ , the null hypothesis is accepted
if T ≤ τ and the alternative hypothesis is accepted if T > τ .

To determine the threshold, we first set the significance
level α and then use the probability distribution of T over
a randomly and uniformly selected permutation to determine
the threshold τα in such a way that

Pr(Alternative Hypothesis is accepted|Permutation is truly

random) = α.

The following probability

Pr(Alternative Hypothesis is accepted|Permutation is not

truly random)

is called the success probability. It depends on τα and we
denote it by PS(α).

The performance of the test for a given significance level
α can then be quantified using the distinguishing advantage
defined as the absolute value of the difference

PS(α) − α.

The distinguishing advantage is a value between 0 and 1.
While for practical attacks this value is usually closer to 1,
non-negligible deviation from 0 can be considered to reflect
nonrandomness of the permutation.

When used for key recovery it is assumed that, if the test
statistic is computed from data obtained from the cipher using
a wrong key, then the Null Hypothesis holds. Based on this
assumption, the significance level α can be interpreted as
the fraction of wrong keys falsely accepted as potential right
keys. If the total number of key candidates to be tested is
2k then the number of key candidates accepted by the test as
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correct is α2k = 2k−d, where d = − log(α). This is akin to
saying that the number of correct key bits recovered using the
distinguisher is d. The levels α = 0.25, 0.125, 0.0625 used in
this paper correspond to d = 2, 3, 4, respectively.

B. How to Determine the Success Probability

At each significance level, the success probability depends
on the probability distribution of the test statistic considered
over the cipher keys and over the data obtained from the cipher.
Previously, there have been attempts to estimate the distribu-
tion of the capacity of a multidimensional linear approximation
of a block cipher [1], [12]. The former paper determines
the mean and the variance of the probability distribution
which is then assumed to be normal, while the latter paper
computes an approximation of the probability density function
in simulations.

In this paper, we take a different approach. We use rough
estimates of the correlations only to support the search for
strong linear approximations, but do not use these esti-
mates to model the cipher. For certain selected values of α,
we determine the success probabilities PS(α) and distinguish-
ing advantages experimentally and see how many rounds the
distinguishers can cover before the distinguishing advantage
becomes negligible, that is, α ≈ PS(α).

VIII. NONRANDOMNESS OF AFFINE

DISTINGUISHERS OF SIMON

A. Description of SIMON

SIMON is a family of lightweight block ciphers designed
by the US National Security Agency (NSA) and published in
2013 [26]. The SIMON2n/mn family of lightweight block
ciphers has 10 members differing in their block and key
sizes. All members of the family have a Feistel structure
with round function R employing a non-linear function f .
In each round i, R receives two n-bit input words Xi

and Yi, and outputs two n-bit words Xi+1 and Yi+1. The
round function uses three operations in F

n
2 : bitwise addition

(exclusive-or; XOR), bitwise multiplication (AND), and a left
circular shift by j positions, which we denote by ‘⊕’, ‘&’,
and ‘≪ j’, respectively. Note that the meaning of ‘⊕’ within
this section differs from the one used elsewhere in this paper,
see Section IV. The internal non-linear function f is defined
as:

f (Xi) = [(Xi ≪ 1)& (Xi ≪ 8)] ⊕ (Xi ≪ 2) .

The output of the round function R on an input block Xi||Yi

is:

Ri (Xi, Yi) = (Yi ⊕ f (Xi) ⊕ ki, Xi) ,

where i is the round number and ki is the round key. The entire
cipher is a composition of round functions Rr−1 ◦Rr−2 ◦ . . .◦
R0 (X0, Y0). The structure of the round function of SIMON is
depicted in Figure 9.

Fig. 9. One round of SIMON.

B. Building Linear Approximations of SIMON32/64

We start by determining the linear approximations over one
round of SIMON. Referring to Figure 9 let us denote by a the
mask on the left input data half Xi and by b the mask on the
right input data half Yi. To have nonzero correlation, we then
must have b as the mask on the left output data half Xi+1.

The bitwise AND-function maps two bits x and y to the
single bit x&y. All four linear combinations of the bits x
and y have nonzero correlation with x&y, all with the same
absolute value 2−1. Hence the 2-bit to 1-bit AND-function is a
bent function and its four linear approximations with nonzero
output mask form an affine set with capacity equal to 1.

To capture the linear approximations of the bitwise
AND-function over one round, let us assume now that b is a
vector with a single 1-bit. If b has a single 1-bit, only a single
AND operation is activated. The four linear approximations of
the AND function induce four masks on the right half Yi+1

which form the two-dimensional affine space

a ⊕ b≫2 ⊕ span {b≫1, b≫8} , (30)

where we denoted by b≫j the right circular shift by j posi-
tions of the bit string b. Since any Feistel cipher (without the
final swap) is its own inverse, the same reasoning works also
backwards. Given a mask b||c on the output data Xi+1||Yi+1,
where b is assumed to have a single 1-bit, then the input masks
on the data Xi||Yi that may give nonzero correlations are of
the form a||b, where a is one of the four vectors of the two-
dimensional affine set

c ⊕ b≫2 ⊕ span {b≫1, b≫8} . (31)

Each non-zero bit of the mask b as described above, poten-
tially induces a two-dimensional affine subspace of masks.
Later in this section we will see an example of a mask b
that has two non-zero bits which together generate a four-
dimensional affine space of masks each relating to a linear
approximation over one round with a correlation that has
absolute value 2−2.

Since it becomes soon impractical to iterate this method
over more rounds by keeping track of all linear approxima-
tions, we focus on the so-called core approximations which
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are linear approximations that use at each round only one
linear approximation with input mask a||b and output mask
b||(a ⊕ b≫2). This was also the approach used in [27] to
build the core approximation trails for SIMON. Then the trail
correlations are computed based on how many times the linear
approximation x&y = 0 was used.

For a linear approximation of an n-bit block cipher to be
useful in cryptanalysis, its average squared correlation should
differ from 2−n, that is, the corresponding value for a random
permutation. The trail correlations are commonly used to give
lower bounds to the average squared correlation. Only if such
a lower bound is larger than 2−n it is useful for distinguishing
from the random case.

The absolute values of the trail correlations for SIMON32/64
used in [27] were far less than 2−16. Nevertheless, referring to
the method by Biryukov et al. of multiple linear cryptanaly-
sis [25], it was argued that by collecting sufficiently many
of such linear approximations that have squared correlations
with known lower bounds, however small they are, one can
accumulate the lower bound of the sum of the average squared
correlations of the multiple linear approximations to exceed
2−32 to get data complexity less than 232. The problem is
that these early methods of linear cryptanalysis make the
assumption that for each linear approximation to be used, the
cryptanalyst has obtained a good estimate of the absolute value
of the correlation, and this value is the same for all keys. This
assumption is not satisfied by modern block ciphers such as
SIMON whose linear approximations have a large number of
trails and correlations that vary a lot with the key.

In this paper, we revisit the constructions of sets of lin-
ear approximations of SIMON32/64 from [27], and compute
estimates of the correlations experimentally over large sets
of keys. As observed, a core trail can be extended at the
beginning and at the end by using all four approximations
to build multiple linear approximations, which give naturally
rise to affine sets of linear approximations.

Using the statistical distribution given in Theorem 13 of the
capacity of an affine set of linear approximations for a random
permutation and the randomness test presented in Section VII
we evaluate the deviation of the behaviour of the block cipher
from random behaviour by extensive experiments.

C. Full Codebook Randomness Evaluation of SIMON32/64

In this section we build examples of affine sets of linear
approximations which cover up to 18 rounds of SIMON32/64
and experimentally evaluate their distinguishing advantages.
We begin by describing the core approximation trail we
will use for these examples and experimentally evaluate its
nonrandomness starting from 13 rounds. The core trail is built
starting with the input mask 4000x||0001x to round 1 and by
following its propagation through the rounds as described in
Subsection VIII-B. Note that output mask from round i is the
input mask to round i + 1.

By counting the total number of non-zero bits in the right
halves of the output masks from all rounds of the trail, we can
evaluate the trail correlation. We see that after 10 rounds
the absolute value of the trail correlation drops below 2−16.

TABLE I

CORE TRAIL FOR SIMON32/64

TABLE II

EXPERIMENTAL SUCCESS PROBABILITIES AND AVERAGE SQUARED

CORRELATIONS OF SINGLE LINEAR APPROXIMATIONS DERIVED
FROM THE CORE TRAIL WITH INPUT MASK 4000x||0001x .

EXPERIMENTS USED 213 KEYS

Nevertheless, the true correlation will stay above this value for
at least 16 rounds as we will see next in Table II, which gives
the results of the experimental evaluation of the core linear
approximation over 13-18 rounds.

The next step is to use an affine subspace of linear
approximations. We take the output mask 0001x||0000x

from round 1 of the core trail and determine all four
input masks to round 1 that have non-zero correlation.
According to (31) they are 4000x||0001x, C000x||0001x,
4100x||0001x, and C100x||0001x. This is a two-dimensional
affine space

4000x||0001x ⊕ span { 8000x||0000x, 0100x||0000x } .

With these input masks and a single output mask as given
for the core trail we have an affine set of input-output mask
pairs of dimension 2. In Table III we give the experimental
results of these affine linear approximations over 13-18 rounds
using the test described in Section VII. The expected capacity
in the random case is 230. Compared to the corresponding
results for the single approximations given in Table II, there
is a significant improvement in success probabilities, in all
significance levels, up to 17 rounds, after which point also the
capacity becomes very close to the random.

In an attempt to analyse nonrandomness of 18 rounds
of SIMON32/64 we use another trail constructed from the
core trail. We add one more round to the core trail in the
beginning and take all four masks. To apply (31) we take
b||c = 4000x||0001x, to get the four input masks a||b, where

a ∈ 1001x ⊕ span{0040x, 2000x}.
To obtain the output masks, we start with the output mask

a||b = 0040x||0110x from round 16, and observe that b has
two active bits. Then by (30) the output masks are of the
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TABLE III

EXPERIMENTAL SUCCESS PROBABILITIES AND AVERAGE
CAPACITIES FOR A 2-DIMENSIONAL AFFINE SUBSPACE

A OF LINEAR APPROXIMATIONS WITH FOUR INPUT

MASKS: 4000x||0001x, C000x||0001x, 4100x||0001x,
C100x||0001x AND ONE OUTPUT MASK.

EXPERIMENTS USED 213 KEYS

form b||c, where one value for c is a ⊕ b≫2 = 0004x. All
the 16 masks are obtained by adding this value to the masks
in the linear space spanned by the right circular shifts by 1 and
8 of the two single-bit components 0100x and 0010x of b. That
is,

c ∈ 0004x ⊕ span {0001x, 0008x, 0080x, 1000x} .

The resulting affine space of linear masks is of dimension 6.
Again, by running experiments with a randomly selected set
of 213 keys we get the average capapcity 2−25.99 which is
quite close to the expected capacity of 2−26 in the random
case. Nevertheless, when applying the randomness test, we get
success probabilities PS(0.25) = 0.260, PS(0.125) = 0.137
and PS(0.0625) = 0.072. Thus the 6-dimensional 18-round
distinguisher performs better than the 1-dimensional 18-round
distinguisher in Table II or the 2-dimensional 18-round distin-
guisher in Table III.

On the other hand, we can see that the 18-round affine set of
approximations does not preserve all the distinguishing power
of the 16-round core approximation, see Table II, even if it
was constructed by extending this 16-round approximation
by one round up and one round down by taking all masks
in the input and output that have non-zero correlations. For
example, PS(0.125) = 0.159 for the 16-round approximation,
while PS(0.125) = 0.137 for the extended 18-round affine
approximation.

D. Compliance With the Model of Multidimensional Linear
Cryptanalysis

We used this experimental setting also for verifying Conjec-
ture 1 and computed the capacity of the 6-dimensional linear
subspace of approximations related to the 6-dimensional affine
subspace of approximations of SIMON32/64 constructed in
the previous subsection. The dimensions of the spaces are
t = 6, u = 4 and v = 2. According to Conjecture 1 the
expected capacity in the random case is equal to 2−26.508.
When evaluating it for the cipher by computing the average
capacity over 213 keys we get 2−26.506, which is convincingly
close to the conjectured value.

E. Randomness Testing of SIMON Using Less Than Full
Codebook

The experiments used for this section are identical to those
of Subsection VIII-C in all but the data complexity. We use

TABLE IV

SUCCESS PROBABILITIES AND AVERAGE CAPACITIES FOR A
2-DIMENSIONAL AFFINE SUBSPACE USING A PARTIAL CODEBOOK

OF 230 DATA. INPUT MASKS: 4000x||0001x, C000x||0001x,
4100x||0001x, C100x||0001x . EXPERIMENTS

USED 213 KEYS

TABLE V

SUCCESS PROBABILITIES AND AVERAGE CAPACITIES FOR
A 2-DIMENSIONAL AFFINE SUBSPACE USING A PARTIAL CODEBOOK

OF 228 DATA. INPUT MASKS: 4000x||0001x, C000x||0001x,
4100x||0001x, C100x||0001x . EXPERIMENTS

USED 213 KEYS

exactly the same approximations as for Table III as well as the
same 213 keys. While Table III used the full codebook of 232

plaintext-ciphertext pairs for distinguishing, we use 230 pairs
for Table IV and 228 pairs for Table V. By Theorem 13 the
expected capacity in the random case is 2−28 for N = 230,
and 2−26 for N = 228.

The results of experiments given in Tables IV–V reveal
that distinguishing from random is still possible also with
less than the full codebook. Comparison with Table III
shows that, as expected, the success probability is lower in
rounds 13–16 and becomes closer to the random behaviour
already at 17 rounds when 230 pairs of data is used and even
earlier, at 16 rounds, when 228 is used. This is due to the
smaller sample which leads to a larger sample error and thus
to bigger variance for the test statistic.

IX. CONCLUSION

In this paper we presented a model which captures the
statistical behaviour of the capacity of multidimensional linear
approximations computed for a permutation and a sample of
plaintext, when the permutation and the sample of distinct
plaintext of fixed size are selected uniformly at random. The
additivity of the variances of squared correlations is achieved
without any assumptions of statistical independence based
only on standard statistical tools such as Pearson’s χ2 test
and the finite population correction coefficient.

We showed for the first time that the degree of freedom
of the related χ2 distribution over the distribution depends on
the structure of the multidimensional linear approximation and
that it can be significantly smaller than assumed in previous
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works due to the existence of trivial approximations. We iden-
tify two types of sets of multiple linear approximations, the
Davies-Meyer approximation and the affine approximation
which do not have trivial approximations. Such types of
approximations offer the most efficient χ2-based linear attacks
due to the optimal number of degrees of freedom. When
selecting sets of strong multiple linear approximations for
actual ciphers such structures are recommended for consid-
eration if possible. As the first example, we mentioned the
first multidimensional linear cryptanalysis on Serpent where
restricting to an affine set of approximations could potentially
improve the attack.

The second example consists of experimental evaluation of
certain affine multidimensional linear approximations on block
cipher SIMON32/64. Using our statistical model for random
permutations we present a simple test to evaluate randomness
experimentally. We were able to identify nonrandom behaviour
of round-reduced SIMON32/64 up to 18 rounds. It remains,
however, an open question whether such affine multidimen-
sional linear approximations on SIMON32/64 and its larger
versions can potentially lead to efficient key-recovery attacks.

The best linear key-recovery attack on SIMON32/64 is given
in [28]. It makes use of the 13-round linear hull identified
in [27] and adds 5 rounds before and after this distinguisher
to extend the attack over to 23 rounds. It starts from the
input to round 2 of the core trail, see Table I and ends after
round 14 thus covering 13 rounds of the cipher. It has been
chosen carefully in such a way that the input and output masks
of the linear hull have only one active bit each which allows
very efficient key guessing techniques.

The distinguishing advantage of the 13-round linear approx-
imation used in [28] corresponds to the one given in Table II,
that is, it can recover d = 4 bits of the secret key with experi-
mentally determined success probability PS(0.0625) = 0.330.
Our 2-dimensional affine distinguishers given in Table III
can improve the success probability to PS(0.0625) = 0.483
for 13 rounds, or alternatively, increase the number of rounds
to 15 with a slight decrease of the success probability to
PS(0.0625) = 0.254. Our distinguishers, however, have sev-
eral active bits in the input and output making efficient key
search a challenging task which is left for future work.

APPENDIX A
PROOF OF THEOREM 1

Lemma 5: In the setting of Theorem 1, let z1, . . . , zk be
k multinomially distributed variables. Then the variables and
some of their first powers and products, where η, ζ, ξ, ι ∈
{1, . . . , k}, have the following expected values.

Exp(zη) = mpη

Exp(zηzζ) = m(m − 1)pηpζ

Exp(z2
η) = mpη + m(m − 1)p2

η

Exp(z2
ηzζ) = m(m − 1)pηpζ +m(m − 1)(m − 2)p2

ηpζ

Exp(z3
η) = mpη + 3m(m − 1)p2

η

+ m(m − 1)(m − 2)p3
η

Exp(zηzζzξzι) = m(m − 1)(m − 2)(m − 3)pηpζpξpι

Exp(z2
ηzζzξ) = m(m − 1)(m − 2)pηpζpξ

+ m(m − 1)(m − 2)(m − 3)p2
ηpζpξ

Exp(z2
ηz2

ζ ) = m(m − 1)pηpζ

+ m(m − 1)(m − 2)(p2
ηpζ + pηp2

ζ)

+ m(m − 1)(m − 2)(m − 3)p2
ηp2

ζ

Exp(z3
ηzζ) = m(m − 1)pηpζ

+ 3m(m − 1)(m − 2)p2
ηpζ

+ m(m − 1)(m − 2)(m − 3)p3
ηpζ

Exp(z4
η) = mpη

+ 7m(m − 1)p2
η + 6m(m − 1)(m − 2)p3

η

+ m(m − 1)(m − 2)(m − 3)p4
η

The proof of this lemma consists of straightforward calcula-
tions of the expected values according to the probability mass
function of the multinomial distribution given by

ϕ(z1, . . . , zk) =
m!

z1! · · · zk!
pz1
1 · · · pzk

k .

Next we give the proof of Theorem 1.
Proof: Let us start by writing the capacity C in the form

C =
k

m2

k�
η=1

�
zη − m

k

�2

=
k

m2

k�
η=1

z2
η − 1.

To compute the variance of the capacity it suffices to do it
for the sum

	k
η=1 z2

η. We write

Var
�

η

z2
η = Exp


�
η

z2
η

�2

−



Exp
�

η

z2
η

�2

(32)

= Exp


�
η

z4
η

�
(33)

+ Exp

⎛⎝�
η

�
ζ �=η

z2
ηz2

ζ

⎞⎠ (34)

−



Exp
�

η

z2
η

�2

. (35)

By Lemma 5 (33) can be expressed as

m + 7m(m − 1)P2 + 6m(m − 1)(m − 2)P3

+m(m − 1)(m − 2)(m − 3)P4,

where we have denoted

P4 =
k�

η=1

p4
η.

Similarly, (34) can be expressed as

m(m − 1) + (2m − 5)m(m − 1)P2

+m(m − 1)(m − 2)(m − 3)P 2
2 − 2m(m − 1)(m − 2)P3

−m(m − 1)(m − 2)(m − 3)P4,

and (35) as

m2 + 2m2(m − 1)P2 + m2(m − 1)2P 2
2 .
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By combining these expressions and multiplying by k2/m4,
we get the claimed result for the variance of C. The derivation
of the mean is similar, but simpler.

APPENDIX B
PROOF OF THEOREM 2

Proof: The number of zeroes of f(x)+a·x can be written
as

|{x ∈ F
n
2 |f(x)=0, a·x=0}|+|{x ∈ F

n
2 |f(x) = 1, a·x = 1}|,

where by Lemma 3, the number υ = |{x ∈ F
n
2 | f(x) =

0, a · x = 0}| follows HG(2n, 2n−1, N0). As f varies over
all Boolean function, the number of zeroes N0 follows the
binomial distribution B(2n, 1

2 ). That is

Pr(N0 = w) =
�

1
2

�2n �
2n

w

�
.

Then

Pr(υ = k) =
�
w

Pr(N0 = w) Pr(υ = k |N0 = w),

where the bounds for w and k are as follows

k ≤ w ≤ 2n−1 + k and 0 ≤ k ≤ 2n−1.

We get

Pr(υ = k) =
�

1
2

�2n �
2n−1

k

� 2n−1+k�
w=k

�
2n−1

w − k

�

=
�

1
2

�2n−1 �
2n−1

k

�
,

that is, υ ∼ B(2n−1, 1
2 ). Similarly, it can be shown that

|{x ∈ F
n
2 | f(x) = 1, a · x = 1}| ∼ B(2n−1,

1
2
).

As the sum of two B(2n−1, 1
2 )-variables, the number of

zeroes of the function f(x) + a · x follows B(2n, 1
2 ).
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