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Minimax Converse for Identification via Channels
Shun Watanabe , Senior Member, IEEE

Abstract— A minimax converse for the identification via
channels is derived. By this converse, a general formula for
the identification capacity, which coincides with the transmission
capacity, is proved without the assumption of the strong converse
property. Furthermore, the optimal second-order coding rate
of the identification via channels is characterized when the
type I error probability is non-vanishing and the type II error
probability is vanishing. Our converse is built upon the so-called
partial channel resolvability approach; however, the minimax
argument enables us to circumvent a flaw reported in the
literature.

Index Terms— Channel resolvability, general formula identifi-
cation code, information spectrum, minimax, second-order rate.

I. INTRODUCTION

THE identification is one of typical functions such that ran-
domization significantly reduces the amount of commu-

nication necessary to compute those functions; e.g., see [26].
Inspired by the work by Ja’Ja’ [25], Ahlswede and Dueck stud-
ied the problem of identification via noisy channels in [4], [5];
they have shown that, with randomization, messages of doubly
exponential size of the block-length can be identified, and
the optimal coefficient is given by Shannon’s transmission
capacity. Since then, the problem of identification in the
context of information theory has been studied extensively in
the literature [7], [12], [13], [18]–[20], [29], [35], [36], [45],
[11], [27], [33], [34]; see [2] and [3] for a thorough review.

In many cases, the difficulties of identification problems
arise in proving converse coding theorems. Initially, the
so-called soft converse was proved in [5]; the converse coding
theorem was only proved under the assumption that the
identification error probabilities converge to zero exponen-
tially fast in the block-length. Later, Han and Verdú proved
the strong converse coding theorem of the identification via
channels in [18]; see also [1] for an alternative proof. The
crucial step of the proof in [18] is that we replace general
stochastic encoders with stochastic encoders having specific
forms, termed “M -types.” In [19], Han and Verdú further
studied this step as a separate problem, which they termed the
channel resolvability, by introducing the information spectrum
approach.

The information spectrum approach provides effective
tools to investigate coding problems for general non-ergodic
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sources/channels; see [17] for a thorough treatment. For the
channel resolvability, the optimal rate is upper bounded by
the spectral sup-mutual information rate maximized over input
processes. On the other hand, the identification capacity of
general channels can be lower bounded by the spectral inf-
mutual information rate maximized over input processes.
When those upper bound and lower bound coincide, which is
termed the strong converse property, it was shown in [19] that
the identification capacity and the optimal rate of the channel
resolvability coincide with the transmission capacity of the
same channels. Later, it was proved in [20] that, without the
assumption of the strong converse property, the optimal rate
of the channel resolvability is characterized by the spectral
sup-mutual information rate maximized over input processes.

In an attempt to determine the identification capacity with-
out the assumption of the strong converse property, Steinberg
introduced the partial channel resolvability [35]. In the partial
channel resolvability, we consider a truncated channel so that
the tail probability of information spectrum is not accumulated
twice in the argument of relating the channel resolvability to
the identification code. It should be noted that, in the modern
terminology, considering the partial response is essentially
equivalent to the technique termed “smoothing” [32]. For
instance, the channel resolvability for smoothed channels has
been effectively used to derive second-order bounds on coding
problems with side-information [44].

Using the partial channel resolvability, it was claimed in
[35] that the identification capacity of general channels coin-
cides with the transmission capacity of the same channels.
However, there is a flaw in the proof of [35, Lemma 2],
which has been reported in [20, Remark 2]. Thus, without the
assumption of the strong converse property, the identification
capacity of general channels has been an open problem so far.
The main purpose of this paper is to provide a remedy to the
result claimed in [35]. In fact, our converse is built upon the
partial channel resolvability; however, in order to circumvent
the aforementioned flaw, we leverage the minimax argument
described below.

In the past few decades, the argument based on the
hypothesis testing has been successfully used to derive
a converse bound on transmission codes of general
channels [28], [24], [31], which is termed the meta converse.1

Particularly, a useful feature of the meta converse bound is
that we can choose an auxiliary output distribution; thus, the
expression of the converse bound involves the minimum over
the output distribution and the maximum over the input dis-
tribution. For the asymptotic analysis of discrete memoryless
channels, the Shannon capacity is recovered from the minimax

1For a detailed historical perspective on the meta converse, see [22].
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expression by the Topsoe identity [41]. In fact, the flexibility
of choosing the output distribution has been effectively used
to derive finer asymptotic results: the second-order coding rate
[21], [31] and the third-order coding rate [40]; see also [38].
Also, Polyanskiy proved that the order of minimax in the meta
converse bound can be interchanged under certain regularity
conditions [30].

In this paper, we derive a minimax converse bound for
the identification via channels. To that end, we utilize a
modified version [23] of the so-called soft covering lemma
reported in [16], [20], [29]; the modified bound on the channel
resolvability involves an auxiliary output distribution. The
main contribution of this paper is to apply the flexibility of
choosing the auxiliary output distribution to the argument
connecting the channel resolvability and the identification
code.2 The key difference between our argument and the
argument in [35, Lemma 2] is as follows: in our argument,
we consider a truncated channel induced from a fixed auxiliary
output distribution; on the other hand, truncated channels are
constructed from output distributions that depend on input
distributions in [35, Lemma 2]. In the former case, we can
bound the number of messages of an identification code by the
number of M -types without causing any trouble; this enables
us to circumvent the flaw reported in [20, Remark 2]. See
Remark 2 of Section IV for more detail.

By using the minimax converse bound, we derive the
identification capacity of general channels; it turns out that the
identification capacity coincides with the transmission capacity
without the assumption of the strong converse property. In
the derivation of this result, we invoke the aforementioned
result in [30] to interchange the order of the minimum over
the output distribution and the maximum over the input
distribution. Furthermore, we also derive the optimal second-
order coding rate of the identification via channels when the
type I error probability is non-vanishing and the type II error
probability is vanishing.

It should be noted that the coincidence of the transmission
capacity and the identification capacity is not that obvious
statement. Typically, we prove the achievability of the identifi-
cation capacity by using the fact that the identification capac-
ity is lower bounded by the so-called common randomness
capacity. However, the common randomness capacity and the
identification capacity need not coincide in general; for more
detail, see [2].

As an additional remark, we note that the general channel in
the sense of [17] does not cover some classes of channels, such
as the compound channel and the arbitrary varying channel.
For the identification problem via those classes of channels,
see [8]–[10] and references therein.

Although we connect the identification problem to the
hypothesis testing as a converse proof technique, see also [6]
for an alternative connection between the identification prob-
lem and the hypothesis testing.

Notation: Throughout the paper, random variables
(eg. X) and their realizations (eg. x) are denoted by capital

2Recently, the flexibility of choosing the auxiliary output distribution was
used in a different manner to derive the identification capacity of the covert
communication [46].

and lower case letters, respectively. All random variables
take values in some finite alphabets which are denoted by
the respective calligraphic letters (eg. X ). The probability
distribution of random variable X is denoted by PX . Similarly,
Xn = (X1, . . . , Xn) and xn = (x1, . . . , xn) denote, respec-
tively, a random vector and its realization in the nth Cartesian
product Xn. For a finite set S, the cardinality of S is denoted
by |S|. For a subset T ⊆ S, the complement S\T is denoted
by T c. The set of all distributions on X is denoted by P(X ).
The indicator function is denoted by 1[·]. Information theoretic
quantities are denoted in the same manner as [14], [15], [17].
All information quantities and rates are evaluated with respect
to the natural logarithm. For given sub-distributions P and Q
that are not necessarily normalized, the variational distance is
denoted by d(P, Q) := 1

2

∑
x |P (x) − Q(x)|.

II. PROBLEM FORMULATION OF IDENTIFICATION VIA

CHANNELS

In this section, we describe the problem formulation of the
identification via channels, and review basic results. We start
with the problem formulation for the single-shot regime. Given
a channel W from X to Y , the sender tries to transmit one
of N messages; then the receiver shall identify if message
i ∈ {1, . . . , N} was transmitted or not. The encoder is given
by stochastic mappings P1, . . . , PN ∈ P(X ), and the decoder
is given by acceptance regions D1, . . . ,DN ⊂ Y for each
message. Note that, unlike the standard transmission code,
the acceptance regions of an identification code need not be
disjoint. In other words, if the receiver is intended to identify
message i, there is no need to distinguish messages other
than i.

For a given identification code {(Pi,Di)}N
i=1, the first type

error probability is given by

PI := max
1≤i≤N

PiW (Dc
i ),

and the second type error probability is given by

PII := max
1≤i�=j≤N

PiW (Dj),

where

PiW (y) =
∑
x∈X

Pi(x)W (y|x)

is the output distribution of the channel W corresponding
to the input distribution Pi. For given error probabili-
ties 0 ≤ ε, δ < 1 with ε + δ < 1, an identification code
{(Pi,Di)}N

i=1 is called (N, ε, δ)-ID code for channel W if
PI ≤ ε and PII ≤ δ are satisfied. Then, the optimal code size
of identification via channel W is defined by

N�(ε, δ|W ) := sup
{
N : (N, ε, δ)-ID code for W exists

}
.

When we consider the block coding over n uses Wn of a
channel, it is known that the optimal code size N�(ε, δ|Wn)
grows doubly exponentially in the block length n. For a
discrete memoryless channel, it has been known that the
identification capacity

CID(ε, δ|W ) := lim inf
n→∞

1
n

log log N�(ε, δ|Wn)
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coincide with the transmission capacity [5], [18], i.e.,

CID(ε, δ|W ) = C(W ) := max
PX

I(X ∧ Y )

as long as ε + δ < 1, where I(X ∧ Y ) is the mutual infor-
mation between (X, Y ) distributed according to PXY (x, y) =
PX(x)W (y|x). It should be noted that the identification capac-
ity is infinite when ε + δ ≥ 1 [18].

III. HYPOTHESIS TESTING

In this section, we summarize known facts on the hypothesis
testing and the meta converse that are needed in the rest of
the paper. Consider a binary hypothesis testing with a null
hypothesis Z ∼ PZ and an alternative hypothesis Z ∼ QZ ,
where PZ and QZ are distribution on the same alphabet Z .
Upon observing Z = z, we shall decide whether the value
was generated by the distribution PZ or the distribution QZ .
Most general test can be described by a channel T from Z to
{0, 1}, where 0 indicates the null hypothesis and 1 indicates
the alternative hypothesis. When z ∈ Z is observed, the test
T chooses the null hypothesis with probability T (0|z) and the
alternative hypothesis with probability T (1|z) = 1 − T (0|z).
Then, the type I error probability of the test is defined
by

PI[T ] :=
∑

z

PZ(z)T (1|z),

and the type II error probability of the test is defined by

PII[T ] :=
∑

z

QZ(z)T (0|z).

For a given 0 ≤ ε < 1, denote by βε(PZ , QZ) the optimal
type II error probability under the condition that the type I
error probability is less than ε, i.e.,

βε(PZ , QZ) := inf
T :

PI[T ]≤ε

PII[T ].

In fact, since βε(PZ , QZ) can be described as a linear
programming when Z is finite, the infimum can be attained.

For a threshold parameter γ ∈ R, the test given by

T (0|z) = 1
[

log
PZ(z)
QZ(z)

> γ

]
is termed the likelihood ratio test, also known as the Neyman-
Pearson test. For given 0 ≤ ε < 1, let

Dε
s(PZ‖QZ) := sup

{
γ ∈ R : Pr

(
log

PZ(Z)
QZ(Z)

≤ γ

)
≤ ε

}
,

(1)

where the probability is with respect to Z ∼ PZ . Note that
the quantity is the supremum of thresholds such that the type I
error probability of the likelihood ratio test is less than ε, and it
is referred to as ε-information spectrum divergence [39]. This
quantity and the optimal type II error probability defined above
have the following relationship (eg. see [38, Lemma 2.4]);
it can be understood as a variant of the Neyman-Pearson
lemma claiming that the likelihood ratio test is essentially
optimal.

Lemma 1: For a given 0 ≤ ε < 1, it holds that

Dε
s(PZ‖QZ) ≤ − log βε(PZ , QZ)

≤ Dε+ζ
s (PZ‖QZ) + log(1/ζ)

for any 0 < ζ < 1 − ε.
This lemma enables us to use the two quantities almost

interchangeably.
As we have mentioned in Section I, in the past few decades,

the hypothesis testing has become a useful tool to derive a
converse bound on transmission codes over a channel W from
X to Y . For such an application, we consider the hypothesis
testing between the null hypothesis

P × W (x, y) := P (x)W (y|x)

and the alternative hypothesis

P × Q(x, y) := P (x)Q(y),

where P ∈ P(X ) and Q ∈ P(Y) are given input/output
distributions. More specifically, the optimal coding rate of
transmission codes is bounded in terms of

inf
P∈P(X )

sup
Q∈P(Y)

βε(P × W, P × Q). (2)

It can be easily verified from the definition that
βε(P × W, P × Q) is concave with respect to the output
distribution Q ∈ P(Y). On the other hand, it was proved
in [30] that βε(P × W, P × Q) is convex with respect to the
input distribution P ∈ P(X ). Thus, βε(P × W, P × Q) is
a convex-concave function on P(X ) × P(Y), and regularity
conditions on the saddle-point property were discussed in
[30]; particularly, since P(X ) and P(Y) are compact for
finite alphabets X and Y , the following saddle-point property
follows from the classic min-max theorem.

Lemma 2 ([30]): For a given 0 ≤ ε < 1, the optimal value
in (2) is attainable and

min
P∈P(X )

max
Q∈P(Y)

βε(P × W, P × Q)

= max
Q∈P(Y)

min
P∈P(X )

βε(P × W, P × Q).

When we evaluate asymptotic behavior of coding rates for a
DMC, it is more convenient to use the ε-information spectrum
divergence. Particularly, we will use the following symbol-
wise relaxation (eg. see [40]):

Dε
s(P × W‖P × Q) ≤ max

x∈X
Dε

s(W (·|x)‖Q) (3)

for any Q ∈ P(Y).

IV. MAIN RESULT: MINIMAX CONVERSE FOR

IDENTIFICATION VIA CHANNELS

In this section, we present our main result, i.e., the minimax
converse bound on the identification via channels. To that end,
we first explain the problem of channel resolvability.

For an integer M , a distribution P ∈ P(X ) is said to be
an M -type if P (x) is an integer multiple of 1/M for every
x ∈ X . Then, (N, ε, δ)-ID code {(Pi,Di)}N

i=1 is said to be
M -canonical if Pi is an M -type for every 1 ≤ i ≤ N . For
M -canonical (N, ε, δ)-ID code with ε+δ < 1, it is not difficult
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to see that all Pis are distinct; in fact, if there exist i and j
such that Pi = Pj , then

1 − ε ≤ PiW (Di) = PjW (Di) ≤ δ,

which contradict ε + δ < 1. Since the number of M -types on
X is at most |X |M , we must have N ≤ |X |M for M -canonical
ID code.

In [19], among other motivations, the channel resolvability
was introduced as a tool handle general ID codes by relating
their analysis to that of M -canonical codes. In the channel
resolvability problem, we shall approximate the output distrib-
ution PW of an arbitrarily given input distribution P ∈ P(X )
by the output distribution P̃W of an M -type P̃ so that

d(P̃W, PW ) ≤ ζ

is satisfied for a prescribed approximation error ζ. If such an
approximation is realized, then we can replace each Pi with an
M -type P̃i, and use the above mentioned counting argument
for M -canonical codes.

In an attempt to derive a tighter converse bound than
that in [19], the partial channel resolvability was introduced
in [35]. For a given subset S ⊂ X × Y , let us introduce the
truncated channel

WS(y|x) := W (y|x)1[(x, y) ∈ S]

and the truncated output distribution

PWS(y) :=
∑
x∈X

P (x)W (y|x)1[(x, y) ∈ S].

Note that PWS is a sub-distribution, i.e., it may not add up
to 1, and it is referred to as the partial response of the input
distribution P . It can be immediately verified that

d(PWS , PW ) =
P × W (Sc)

2
. (4)

In the partial channel resolvability problem, we shall
approximate the partial response PWS of an arbitrarily given
input distribution P ∈ P(X ) by the partial response P̃WS of
an M -type P̃ so that

d(P̃WS , PWS) ≤ ζ

is satisfied for a prescribed approximation error ζ.
A standard approach of constructing the (partial) chan-

nel resolvability code is to randomly generate M symbols
x1, . . . , xM according to distribution P . The performance
analysis of such a random code construction is referred to as
the soft covering lemma [16]. The following lemma is a variant
of the soft covering lemma, and it can be derived in almost the
same manner as [16], [20], [29] with a simple modification.
Even though the modified version is available in the literature
[23], [46], we provide a proof here for completeness.

Lemma 3: For arbitrarily given Q ∈ P(Y) and γ ∈ R, let

S = S(Q, γ) :=
{

(x, y) ∈ X × Y : log
W (y|x)
Q(y)

≤ γ

}
. (5)

Then, for a given input distribution P ∈ P(X ), there exists
an M -type P̃ such that

d(P̃WS , PWS) ≤ 1
2

√
eγ

M
(6)

Proof: Let C = {X1, . . . , XM} be a codebook such that
each Xi is randomly generated with distribution P . Then, we
define M -type P̃ = P̃C by

P̃ (x) =
1
M

M∑
i=1

1[Xi = x].

We shall evaluate the approximation error averaged over the
random generation of the codebook C. By Jensen’s inequality
and the convexity of t → t2, we have

EC
[
d(P̃WS , PWS)

]2 ≤ EC
[
d(P̃WS , PWS)2

]
. (7)

Then, we have

4E
[
d(P̃WS , PWS)2

]
= EC

[( ∑
y

∣∣P̃WS(y) − PWS(y)
∣∣)2]

= EC

[( ∑
y

√
Q(y)

√
Q(y)

∣∣∣∣ P̃WS(y) − PWS(y)
Q(y)

∣∣∣∣
)2]

≤ EC

[∑
y

Q(y)
∣∣∣∣ P̃WS(y) − PWS(y)

Q(y)

∣∣∣∣
2]

, (8)

where the summation y is taken over supp(Q),3 and the
last inequality follows from the Cauchy-Schwarz inequality.
Denoting Y ∼ Q, we can rewrite the above formula as

EC

[ ∑
y

Q(y)
∣∣∣∣ P̃WS(y) − PWS(y)

Q(y)

∣∣∣∣
2]

= EY EC

[(
P̃WS(Y )

Q(Y )
− PWS(Y )

Q(Y )

)2]

= EY EC

[( M∑
i=1

1
M

WS(Y |Xi)
Q(Y )

− PWS(Y )
Q(Y )

)2]

= EY EC

[
1

M2

M∑
i=1

(
WS(Y |Xi)

Q(Y )

)2

+
M∑

i,j=1:
i�=j

1
M2

WS(Y |Xi)
Q(Y )

WS(Y |Xj)
Q(Y )

−
M∑
i=1

2
M

WS(Y |Xi)
Q(Y )

PWS(Y )
Q(Y )

+
(

PWS(Y )
Q(Y )

)2]
. (9)

Furthermore, by noting that, for i �= j,

EC

[
WS(Y |Xi)

Q(Y )

]
=

PWS(Y )
Q(Y )

3Note that P̃WS(y) = PWS(y) = 0 whenever Q(y) = 0 from the
definition of S .
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and

EC

[
WS(Y |Xi)

Q(Y )
WS(Y |Xj)

Q(Y )

]

= EXi

[
WS(Y |Xi)

Q(Y )

]
EXj

[
WS(Y |Xj)

Q(Y )

]

=
(

PWS(Y )
Q(Y )

)2

,

we can rewrite (9) as

1
M

EY EX

[(
WS(Y |X)

Q(Y )

)2

−
(

PWS(Y )
Q(Y )

)2]

≤ 1
M

EY EX

[(
WS(Y |X)

Q(Y )

)2]

=
1
M

∑
x,y

P (x)
W (y|x)2

Q(y)
1[(x, y) ∈ S]

≤ 1
M

∑
x,y

P (x)W (y|x)eγ1[(x, y) ∈ S]

≤ eγ

M
, (10)

where X ∼ P . By combining (7), (8), (9), and (10), we have

EC
[
d(P̃WS , PWS)

]
≤ 1

2

√
eγ

M
,

which implies the existence of an M -type P̃ satisfying (6).
The difference between Lemma 3 and the standard soft

covering lemmas is that we can arbitrarily choose an auxiliary
output distribution Q ∈ P(Y) instead of the output distribution
PW that corresponds to the input distribution P . A similar
usage of the auxiliary distribution has been known in the
context of a related problem, the privacy amplification [32].

The main innovation of this paper is that we use the
above mentioned flexibility of choosing the auxiliary output
distribution to derive a novel converse bound on the ID code.

Theorem 1: For arbitrarily given Q ∈ P(Y) and γ ∈ R,
let S = S(Q, γ) be defined as in (5). Then, for an arbitrary
integer M , any (N, ε, δ)-ID code with N > |X |M must satisfy

ε + δ ≥ inf
P∈P(X )

P × W (S) −
√

eγ

M
. (11)

Proof: For an arbitrarily given (N, ε, δ)-ID code
{(Pi,Di)}N

i=1, we have

d(PiW, PjW ) ≥ PiW (Di) − PjW (Di)
≥ 1 − ε − δ (12)

for every i �= j. By applying Lemma 3 for each Pi, we can
find M -type P̃i such that

d(P̃iW
S , PiW

S) ≤ 1
2

√
eγ

M
. (13)

Since the number of distinct M -types is upper bonded
by |X |M and since N > |X |M by assumption, there must

exist a pair i and j such that P̃i = P̃j . For such a pair, by
applying the triangular inequality twice, we have

d(PiW, PjW )

≤ d(PiW, P̃iW
S) + d(P̃iW

S , P̃jW
S) + d(P̃jW

S , PjW )

= d(PiW, P̃iW
S) + d(P̃jW

S , PjW )

≤ d(PiW, PiW
S) + d(PiW

S , P̃iW
S)

+ d(P̃jW
S , PjW

S) + d(PjW
S , PjW )

≤ Pi × W (Sc) + Pj × W (Sc)
2

+

√
eγ

M

≤ sup
P∈P(X )

P × W (Sc) +

√
eγ

M
, (14)

where the second last inequality follows from (13) and (4).
Then, (14) together with (12) imply (11).

Remark 1: Without using the partial channel resolvability,
it can be proved that any (N, ε, δ)-ID code with N > |X |M
must satisfy4

ε + δ ≥ inf
P∈P(X )

[
1 − 2P × W (T c

P )
]
−

√
eγ

M
, (15)

where

TP = T (P, γ) :=
{

(x, y) ∈ X × Y : log
W (y|x)
PW (y)

≤ γ

}
.

(16)

The factor 2 of the first term in (15) has prevented us
from deriving a general formula of the ID-capacity without
the strong converse property.

Remark 2: The proof of Theorem 1 is inspired in part from
the argument in [35, Lemma 2], which has a flaw reported
in [20, Remark 2]. A crucial difference between our argument
and that in [35, Lemma 2] is that the set S for a fixed Q is used
to construct the truncated channel WS in our argument, while
the set TPi defined by (16) is used to construct the truncated
channel W TPi for each i in [35, Lemma 2]. In the former case,
P̃i = P̃j implies P̃iW

S = P̃jW
S , and the size N of the ID

code is bounded by the number |X |M of M -types eventually.5

On the other hand, in the latter case, we cannot conclude that
P̃1, . . . , P̃N are all distinct since P̃i = P̃j does not necessarily
imply P̃iW

TPi = P̃jW
TPj ; thus, the size N of the ID code

cannot be bounded by the number of M -types. Instead, it was
attempted in [35, Lemma 2] to bound N by the number of
some alternative measures induced by M -types, which has a
flaw [20, Remark 2].

Corollary 1: For 0 ≤ ε, δ < 1 with ε + δ < 1 and arbitrary
0 < η < 1 − ε − δ, we have

log log N�(ε, δ|W )

≤ inf
Q∈P(Y)

sup
P∈P(X )

Dε+δ+η
s (P × W‖P × Q)

+ log log |X | + 2 log(1/η) + 2. (17)

4For instance, see Eq. (17) and Lemma 3 of [20].
5More precisely, we have used the contraposition of this claim.
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Proof: For arbitrary (N, ε, δ)-ID code, set6

M =
⌊

log(N − 1)
log |X |

⌋

≥ log(N − 1)
e log |X |

≥ log N

e2 log |X |
so that N > |X |M , and set

γ = 2 log η + log log N − log log |X | − 2 (18)

so that √
eγ

M
=

√
η2

M

log N

e2 log |X |
≤ η.

Then, since N > |X |M , we can apply Theorem 1 and obtain

inf
P∈P(X )

P × W (S) ≤ ε + δ + η, (19)

where S = S(Q, γ) is defined as in (5) for arbitrarily
fixed Q ∈ P(Y). In fact, since the lefthand side of (19)
is linear with respect to P and P(X ) is a compact set, the
infimum in (19) can be attained for some P ∈ P(X ). Since
Dε+δ+η

s (P × W‖P × Q) is defined as the supremum of
threshold γ̃ satisfying P ×W (S(Q, γ̃)) ≤ ε + δ + η (cf. (1)),
the bound (19) implies that Dε+δ+η

s (P ×W‖P ×Q) ≥ γ for
some P ∈ P(X ), which together with (18) imply

log log N ≤ sup
P∈P(X )

Dε+δ+η
s (P × W‖P × Q)

+ log log |X | + 2 log(1/η) + 2.

Since this bound holds for arbitrary (N, ε, δ)-ID code and
Q ∈ P(Y), we have the claim of the corollary.

From Lemma 1 and Lemma 2, Corollary 1 implies the
following corollary.

Corollary 2: For 0 ≤ ε, δ < 1 with ε + δ < 1 and arbitrary
0 < η < 1 − ε − δ, we have

log log N�(ε, δ|W )
≤ min

Q∈P(Y)
max

P∈P(X )
− log βε+δ+η(P × W, P × Q)

+ log log |X | + 2 log(1/η) + 2 (20)

= max
P∈P(X )

min
Q∈P(Y)

− log βε+δ+η(P × W, P × Q)

+ log log |X | + 2 log(1/η) + 2. (21)

Up to some residual terms, the upper bounds on the doubly
exponential rate of the optimal ID code in Corollary 1 and
Corollary 2 have the same form as the upper bounds on the rate
of the optimal transmission code reported in the literature [31].
In the next section, we will discuss asymptotic behaviors of
those bounds.

6Since Dε+δ+η
s (P × W‖P × Q) + log(1/η) ≥ − log βε+δ(P × W,

P × Q) ≥ 0 by Lemma 1, (17) trivially holds if N ≤ |X |. Thus, we only
consider the case with N > |X |, which implies M ≥ 1. Also, (17) trivially
holds if N is too small, say log N < 2. Thus, we only consider the case with
log N ≥ 2; in this case, note that log(N − 1) ≥ log(N/2) = log N − 1 ≥
(log N)/2.

V. CAPACITY FOR GENERAL CHANNELS

In this section, we derive the identification capacity of
general channels. Let W = {Wn}∞n=1 be a sequence of
general channels from Xn to Yn, where X and Y are finite
alphabets; the channel W may not be stationary nor ergodic.
For each integer n, an (Nn, εn, δn)-ID code for channel Wn

is defined exactly in the same manner as in Section II. We
are interested in characterizing the doubly exponential optimal
growth rate of the message size Nn.

Definition 1: For given 0 ≤ ε, δ < 1, a rate R is said to be
(ε, δ)-achievable ID rate for general channel W if there exists
a sequence of (Nn, εn, δn)-ID codes satisfying

lim sup
n→∞

εn ≤ ε, (22)

lim sup
n→∞

δn ≤ δ, (23)

and

lim inf
n→∞

1
n

log log Nn ≥ R. (24)

Then, the supremum of (ε, δ)-achievable ID rates for W is
termed the (ε, δ)-ID capacity, and is denoted by CID(ε, δ|W ).
Particularly, for (ε, δ) = (0, 0), it is termed the ID capacity
and denoted by CID(W ).

For a sequence X = {Xn}∞n=1 of input processes, denote
by Y = {Y n}∞n=1 the corresponding output processes via
W = {Wn}∞n=1, i.e., PY n = PXnWn for each n. Then, for
0 ≤ ε < 1, let

Iε(X ∧ Y )

:= sup
{

a : lim sup
n→∞

Pr
(

1
n

log
Wn(Y n|Xn)

PY n(Y n)
≤ a

)
≤ ε

}
.

(25)

be the ε-spectral inf-mutual information rate. Particularly,
when ε = 0, we just denote I(X ∧ Y ).

In [20], the following lower bound on the (ε, δ)-ID capacity
was derived.

Proposition 1: For 0 ≤ ε, δ < 1 and a sequence W =
{Wn}∞n=1 of general channels, we have

CID(ε, δ|W ) ≥ sup
X

Iε(X ∧ Y ), (26)

where the supremum is taken over all sequences of input
processes X .

Note that the right-side of (26) does not depend on δ.
Before [20], it had been known that CID(ε, ε|W ) can be lower
bounded by the right-side of (26); see [17].

On the other hand, from Corollary 2, we can derive the
following upper bound on the (ε, δ)-ID capacity.

Theorem 2: For 0 ≤ ε, δ < 1 with ε+δ < 1 and a sequence
W = {Wn}∞n=1 of general channels, we have

CID(ε, δ|W ) ≤ sup
X

Iε+δ(X ∧ Y ).

Proof: Suppose that R is (ε, δ)-achievable ID rate,
i.e., there exists a sequence of (Nn, εn, δn)-ID codes
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satisfying (22), (23), and (24). By Corollary 2, we have

1
n

log log Nn ≤

max
PXn

min
QY n

− 1
n

log βεn+δn+ηn(PXn×Wn, PXn × QY n)+Δn

(27)

for ηn = 1/n,7 where8

Δn =
1
n

(
log n + log log |X | + 2 log(1/ηn) + 2

)
.

Let X̂ = {X̂n} be a sequence of input processes that attain
the maximum in (27) for each n, and let Ŷ = {Ŷ n} be the
corresponding output process. Then, we have

1
n

log log Nn

≤ − 1
n

log βεn+δn+ηn(PX̂n × Wn, PX̂n × PŶ n) + Δn.

(28)

Furthermore, by applying the righthand inequality of
Lemma 1, we have

1
n

log log Nn

≤ − 1
n

log Dεn+δn+2ηn
s (PX̂n × Wn‖PX̂n × PŶ n)

+ Δn +
1
n

log(1/ηn) (29)

for sufficiently large n.
For arbitrary τ > 0, let ξ = Iε+δ(X̂ ∧ Ŷ ) + τ . Then, from

the definition in (25), there exists ν > 0 such that

Pr
(

1
n

log
Wn(Ŷ n|X̂n)

PŶ n(Ŷ n)
≤ ξ

)
≥ ε + δ + ν

for infinitely many n. Then, for those n’s, since
lim supn→∞ εn + δn + 2ηn ≤ ε + δ from the assumption that
(Nn, εn, δn)-ID codes satisfy (22) and (23), we have

Dεn+δn+2ηn
s (PX̂n × Wn‖PX̂n × PŶ n) ≤ ξ (30)

provided that n is sufficiently large. Thus, by
combining (28), (29) and (30), we have

R ≤ lim inf
n→∞

1
n

log log Nn

≤ ξ

≤ sup
X

Iε+δ(X ∧ Y ) + τ.

Since τ is arbitrary, any (ε, δ)-achievable ID rate R must
satisfy R ≤ supX Iε+δ(X ∧ Y ), which implies the claim of
the theorem.

When the requirement of the type-II error probability is
δ = 0, we can completely characterize the ID capacity from
Proposition 1 and Theorem 2 as follows.

7Since ε + δ < 1, we have ηn < 1 − εn − δn for sufficiently large n.
8We apply Corollary 2 to channel W n from product alphabet Xn; the extra

factor log n in Δn appears since log log |Xn| = log n + log log |X |.

Corollary 3: For 0 ≤ ε < 1 and a sequence W =
{Wn}∞n=1 of general channels, we have

CID(ε, 0|W ) = sup
X

Iε(X ∧ Y ).

Particularly, for ε = 0, we have

CID(W ) = sup
X

I(X ∧ Y ). (31)

Note that (31) coincides with the general formula of the
transmission capacity [42]. Thus, the ID capacity and the trans-
mission capacity coincide for general channels. Previously, the
coincidence of the ID capacity and the transmission capacity
was known only for channels satisfying the strong converse
property [17]; it should be emphasized that (31) holds without
the assumption of the strong converse property.

VI. SECOND-ORDER CODING RATE

In this section, we consider the second-order coding rate of
the identification via discrete memoryless channels (DMCs)
Wn. As we have mentioned at the end of Section II, the
optimal code size N�(ε, δ|Wn) behaves like

log log N�(ε, δ|Wn) = nC(W ) + o(n),

where C(W ) is the transmission capacity of channel W . In
this section, we are interested in characterizing LID(ε, δ|W )
in the expansion

log log N�(ε, δ|Wn) = nC(W ) +
√

nLID(ε, δ|W ) + o(
√

n)

for fixed 0 < ε < 1 and vanishing δ → 0.
Definition 2: For given 0 < ε, δ < 1 and DMC W , the

second-order ID rate L is defined to be (ε, δ)-achievable if
there exists a sequence of (Nn, εn, δn)-ID codes for Wn

satisfying

lim sup
n→∞

εn ≤ ε, (32)

lim sup
n→∞

δn ≤ δ, (33)

and

lim inf
n→∞

1√
n

(
log log Nn − nC(W )

)
≥ L. (34)

Then, the supremum of (ε, δ)-achievable second-order ID
rates is termed the second-order (ε, δ)-ID capacity, and is
denoted by LID(ε, δ|W ). Particularly,

LID(ε|W ) := lim
δ→0

LID(ε, δ|W )

is termed the second-order ε-ID capacity.
In order to characterize the second-order rate, we need to

introduce certain information quantities. Let

Π(W ) :=
{
PX ∈ P(X ) : I(X ∧ Y ) = C(W )

}
be the set of all capacity achieving input distributions. Even
though capacity achieving input distributions may not be
unique in general, it is known that the capacity achieving
output distribution P ∗

Y is unique.
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For a given output distribution QY , let

V (W‖QY |PX) :=∑
x

PX(x)
∑

y

W (y|x)
(

log
W (y|x)
QY (y)

− D(W (·|x)‖QY )
)2

be the conditional variance of the log-likelihood ratio between
W (·|x) and QY , where D(·‖·) is the KL-divergence. Then,
we define the minimum and the maximum of conditional
information variances as

Vmin(W ) := min
PX∈Π(W )

V (W‖P ∗
Y |PX),

Vmax(W ) = max
PX∈Π(W )

V (W‖P ∗
Y |PX).

Using these quantities, ε-dispersion of channel W is defined
as

Vε(W ) :=
{

Vmin(W ) if ε < 1
2

Vmax(W ) if ε ≥ 1
2

.

For a given input distribution PX and corresponding output
distribution PY = PXW , let

U(PX , W )

:=
∑
x,y

PX(x)W (y|x)
(

log
W (y|x)
PY (y)

− I(X ∧ Y )
)2

be the unconditional information variance. Then, we define
the minimum and the maximum of unconditional information
variances as

Umin(W ) := min
PX∈Π(W )

U(PX , W ),

Umax(W ) := max
PX∈Π(W )

U(PX , W ).

Even though the unconditional information variance
U(PX , W ) can be strictly larger than the conditional infor-
mation variance V (W‖PXW |PX) in general, for capacity
achieving input distributions, these quantities coincide. Thus,
the quantity

Uε(W ) :=
{

Umin(W ) if ε < 1
2

Umax(W ) if ε ≥ 1
2

.

coincides with the ε-dispersion Vε(W ) defined above [38].
Now, we are ready to present the characterization of the

second-order ε-ID capacity.
Theorem 3: For given DMC W and 0 < ε < 1, if

Vε(W ) > 0, then the second-order ε-ID capacity is given by

LID(ε|W ) =
√

Vε(W )Φ−1(ε), (35)

where Φ−1(·) is the inverse function of the cumulative distri-
bution function

Φ(a) =
∫ a

∞

1√
2π

e−
t2
2 dt

of the Gaussian distribution.
Note that the characterization of the second-order

ε-ID capacity in (35) coincides with the second-order
ε-transmission capacity [21], [31], [37].

A. Proof of Achievability

The achievability part of Theorem 3 is a straightforward
consequence of the achievability bound derived in [20].

Lemma 4 ([20, Theorem 1]): For given channel W and
input distribution PX , let PY be the corresponding output
distribution. Assume that real numbers a, a′, b, b′, τ, κ > 0
satisfy

κ log
(

1
τ
− 1

)
> log 2 + 1, 0 < τ < 1/3, 0 < κ < 1 (36)

and

1 >
1
a

+
1
a′ , c := 1 − 1

b
− 1

b′
> 0. (37)

Then, for any integer M > 0 and for any real number
K > 0, there exists an (N, ε, δ)-ID code such that

ε ≤ ab Pr
(

log
W (Y |X)
PY (Y )

≤ log K

)
,

δ ≤ κ + a′b′
1
K

⌈
M

c

⌉
,

N =
⌊

eτM

Me

⌋

provided that9

ab Pr
(

log
W (Y |X)
PY (Y )

≤ log K

)
+ a′b′

1
K

⌈
M

c

⌉
< 1,

where (X, Y ) ∼ PX × W .
Now, we go back to the proof of achievability. For a given

0 < ε < 1, fix a capacity achieving input distribution PX

that attains Uε(W ); then, let PY be the corresponding output
distribution of channel W . By setting a = b = 1 + 2

n , a′ =
b′ = (n + 2), τ = 1

n+2 , and κ = 1+log 2
log n , we can verify

that the conditions in (36) and (37) are satisfied for n ≥ 2.
For R > 0, we apply Lemma 4 by setting K = enR and
M = 
enR/(n + 2)4�; then, there exist a constant F > 0 and
a sequence of (Nn, εn, δn)-ID codes such that

1
n

log log Nn ≥ R − F

n
log n

and

εn ≤
(

1 +
2
n

)2

Pr
(

1
n

log
Wn(Y n|Xn)

Pn
Y (Y n)

≤ R

)
,

δn ≤ 1 + log 2
log n

+
2

n + 2

provided that(
1 +

2
n

)2

Pr
(

1
n

log
Wn(Y n|Xn)

Pn
Y (Y n)

≤ R

)
+

2
n + 2

< 1,

(38)

where (Xn, Y n) ∼ Pn
X × Wn. Here, set

R = C(W ) +

√
Uε(W )

n
Φ−1(ε).

9In [20, Eq. (3)], there is a typo that α (a in our notation) is missing.
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Then, by applying the central limit theorem, we have

lim
n→∞

Pr
(

1
n

log
Wn(Y n|Xn)

Pn
Y (Y n)

≤ R

)
= ε.

Thus, the condition in (38) is satisfied for sufficiently
large n, and there exists a sequence of (Nn, εn, δn)-ID codes
satisfying (32)-(34) for L =

√
Uε(W )Φ−1(ε) and an arbitrary

δ > 0. Thus, we have

LID(ε|W ) ≥
√

Uε(W )Φ−1(ε)

=
√

Vε(W )Φ−1(ε),

which completes the proof of the achievability part of
Theorem 3.

B. Proof of Converse

By Corollary 1 and the symbol-wise relaxation (3), we have

log log N�(ε, δ|Wn)

≤ inf
Qn∈P(Yn)

max
xn∈Xn

Dε+δ+η
s (Wn(·|xn)‖Qn)

+ log log |Xn| + 2 log(1/η) + 2. (39)

Since the terms other than the first one in (39) are o(
√

n),
the remaining task is to evaluate the first term of (39) for
an appropriate choice of the output distribution Qn. For the
purpose of deriving the second-order rate, it suffices to choose
a mixture of the capacity achieving output distribution and
output distributions induced from types on Xn [21]. Although
it is more than necessary to derive the second-order rate, we
refer to a stronger result that is derived by a more sophisticated
choice of the output distribution [40].

Lemma 5 ([40, Proposition 8]): Suppose that Vε+δ > 0.
For η = 1/

√
n, there exists a constant F such that

inf
Qn∈P(Yn)

max
xn∈Xn

Dε+δ+η
s (Wn(·|xn)‖Qn)

≤ nC(W ) +
√

nVε+δΦ−1(ε + δ) + F

for sufficiently large n.
By (39) and Lemma 5, we have

LID(ε, δ|W ) ≤
√

Vε+δΦ−1(ε + δ).

Finally, by taking the limit of δ → 0, we have the converse
part of Theorem 3.

VII. DISCUSSION

In this paper, we have derived a minimax converse bound
for the identification via channel. By using this converse
bound, we have derived the general formula for the identifica-
tion capacity without the assumption of the strong converse
property; the problem has been unsolved for a long time.
Our converse is built upon the partial channel resolvability
introduced in [35]. When we derive the converse bound for
the identification code using the channel resolvability, a crucial
observation is the counting argument in which the number of
messages of the identification code is bounded by the number
of M -types. Even though the partial channel resolvability
approach have had a potential to improve the bound based
on the channel resolvability, there was a difficulty that the

counting argument does not work for the partial channel
resolvability, at least without an additional trick; cf. Remark 2.
We have overcome this difficulty by utilizing the auxiliary
output distribution, an idea that has become popular in the
past decade. As a future direction, it is tempting to apply the
auxiliary output distribution approach to other identification
problems.

One of open problems of the identification code is to
determine the general (ε, δ)-ID capacity and the second-order
(ε, δ)-ID capacity for positive δ. At this point, it is not clear
whether we need to improve the achievability bound or the
converse bound; perhaps both of them. It is also interesting
to revisit the second-order capacity of channel resolvability,
which has been partially solved in [43].
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