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Shrinkage Priors for Nonparametric Bayesian
Prediction of Nonhomogeneous Poisson Processes

Fumiyasu Komaki , Member, IEEE

Abstract— We consider nonparametric Bayesian estimation
and prediction for nonhomogeneous Poisson process models with
unknown intensity functions. We propose a class of improper
priors for intensity functions. Nonparametric Bayesian inference
with kernel mixture based on the class improper priors is
shown to be useful, although improper priors have not been
widely used for nonparametric Bayes problems. Several theorems
corresponding to those for finite-dimensional independent Poisson
models hold for nonhomogeneous Poisson process models with
infinite-dimensional parameter spaces. Bayesian estimation and
prediction based on the improper priors are shown to be
admissible under the Kullback–Leibler loss. Numerical methods
for Bayesian inference based on the priors are investigated.

Index Terms— Admissibility, Dirichlet process, gamma process,
kernel mixture, predictive density.

I. PREDICTION BASED ON MODELS WITH FINITE

DIMENSIONAL PARAMETER

STATISTICAL modeling and data analysis based on non-
homogeneous Poisson point processes have various appli-

cations (e.g. [31], [33]). We consider nonparametric Bayesian
inference with kernel mixture for nonhomogeneous Poisson
processes from the viewpoint of predictive density theory. In
the present paper, it is shown that Bayesian procedures based
on a class of improper priors provide reasonable estimation
and prediction. Several theorems concerning admissibility cor-
responding to those for finite-dimensional independent Poisson
models are shown to hold for the nonhomogeneous Poisson
process model.

In this section, we summarize the basic framework of
predictive density theory mainly studied for finite-dimensional
models. Suppose that we have an observation x from a
probability density p(x | θ) that belongs to a parametric model
{p(x | θ) | θ ∈ Θ ∈ �

d}. The objective is to predict an
unobserved random variable y distributed according to p(y | θ)
using a predictive density q(y; x).
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We adopt the Kullback–Leibler loss

D{p(y | θ), q(y; x)} =
�

p(y | θ) log
p(y | θ)
q(y; x)

dy.

from the true density p(y | θ) to a predictive density
q(y; x). A predictive density q(y; x) is said to dominate
another predictive density q�(y; x) if the risk of q(y; x) is
not greater than that of q�(y; x) for all θ and the strict
inequality holds for at least one point θ in the parameter
space. A predictive density q(y; x) is said to be admissible
if there does not exist a predictive density dominating q(y; x).
See [5] and [28] for basic frameworks of statistical decision
theory concerning admissibility and its relationship with Bayes
theory.

Many studies recommend Bayesian predictive densities

pπ(y | x) =
�

p(y | θ)p(x | θ)π(θ)dθ�
p(x | θ)π(θ)dθ

based on a prior π(θ) rather than plug-in densities p(y | �θ(x))
(e.g. [1], [11], [19]), where �θ is an estimated value of θ. This
is because there exist Bayesian predictive densities dominating
plugin densities in many examples.

It is important to construct prior distributions for Bayesian
inference when we do not have specific prior information about
unknown parameters. Such a prior is called a noninformative
prior or an objective prior. The Jeffreys prior is a theoretically
important objective prior. Let θ = (θ1, . . . , θd) be an unknown
parameter of a finite dimensional parametric statistical model
and I(θ) be the corresponding Fisher information matrix.
Then, the Jeffreys prior is defined by

πJ(θ)dθ1 · · · dθd = |I(θ)|1/2dθ1 · · · dθd,

where |I(θ)| is the determinant of I(θ). Noninformative priors
such as the Jeffreys prior often becomes improper, i.e. the
total mass of the prior is infinite. The Bayes theorem cannot
be directly applied to improper priors because they are not
probability distributions, whose total masses are 1. However,
formal application of the Bayes theorem to improper priors
sometimes gives useful prediction and estimation. Statistical
decision theory concerning admissibility provides a basis of
such generalized Bayesian procedure based on improper priors
(e.g. [5]).

Bayesian predictive densities based on shrinkage priors
often dominate the Bayesian predictive densities based on the
Jeffreys prior when the dimension of the parameter space is
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large. Shrinkage priors assign more weight to parameter values
close to a subset in the parameter space than the Jeffreys
prior. In particular, Bayesian prediction based on shrinkage
priors for finite-dimensional models such as the multivariate
Normal model and the multidimensional independent Poisson
model have been investigated. See [10] for recent develop-
ments of parameter estimation theory based on shrinkage
priors.

First, consider the d-dimensional Normal model. Suppose
that xi (i = 1, . . . , d) are independently distributed according
to N(μi, σ

2) and that yi (i = 1, . . . , d) are independently
distributed according to N(μi, τ

2), where N(μi, σ
2) is the

Normal distribution with mean μi and variance σ2. Here,
μ := (μ1, . . . , μd) is the unknown parameter and σ and
τ are known positive constants. We consider prediction of
y = (y1, y2, . . . , yd) using x = (x1, x2, . . . , xd) under
the Kullback–Leibler loss. The Bayesian predictive density
pS(y | x) based on the prior πS(μ) = �μ�−(d−2) =
(
�

i μi
2)−(d−2)/2 introduced by [32] dominates the Bayesian

predictive density pJ(y | x) based on the Jeffreys prior
πJ(μ) = 1 ( [20]). This corresponds to the widely known
result that the generalized Bayes estimator based on Stein’s
prior πS(μ) dominates the best invariant estimator �μ = x when
d ≥ 3. See [12] for sufficient conditions for general priors
other than the Stein prior and [7] for admissible predictive
densities for Normal models. The asymptotics of minimax risk
of predictive density estimation for non-parametric regression
is studied by [34].

Next, consider the d-dimensional Poisson model, which
is closely related to the nonhomogeneous Poisson process
models considered herein. Intuitively speaking, nonhomoge-
neous Poisson process models are infinite-dimensional Poisson
models. Suppose that xi (i = 1, . . . , d) are independently
distributed according to Po(sλi) and that yi (i = 1, . . . , d) are
independently distributed according to Po(tλi), where Po(sλi)
is the Poisson distribution with mean sλi, λ := (λ1, . . . , λd)
is the unknown parameter, and s and t are known positive
constants. We consider prediction of y = (y1, y2, . . . , yd)
using x = (x1, x2, . . . , xd) under the Kullback–Leibler loss.

A natural class of priors including the Jeffreys
prior πJ(λ)dλ1 · · · dλd = λ

− 1
2

1 · · ·λ− 1
2

d dλ1 · · · dλd is
πα(λ)dλ1 · · · dλd := λα1−1

1 · · ·λαd−1
d dλ1 · · · dλd, where

αi > 0 (i = 1, . . . , d). A class of improper prior densities

πα,γ(λ)dλ1dλ2 · · · dλd

=
λα1−1

1 λα2−1
2 · · ·λαd−1

d

(λ1 + λ2 + · · · + λd)γ
dλ1dλ2 · · · dλd (1)

with
�

i αi − γ > 0 and αi > 0 (i = 1, 2, . . . , d) is
investigated and Theorems 1 and 2 below are obtained ( [21]).

Theorem 1 ([21]): When
�

i αi − γ > 1 and αi >
0 (i = 1, 2, . . . , d), the Bayesian predictive density pα,γ(y |
x) based on πα,γ(λ) is dominated by the Bayesian predictive
density pα̃,γ̃(y | x) based on πα̃,γ̃(λ), where γ̃ :=

�
i αi−1

and α̃ = (α̃1, α̃2, . . . , α̃d) := (α1, α2, . . . , αd).
Theorem 2 ([21]): For every d ≥ 1, the Bayesian predictive

densities based on the priors in the class {πα,γ(λ) : 0 <

�d
i=1 αi−γ ≤ 1, αi > 0 (i = 1, 2, . . . , d)} defined by (1) are

admissible under the Kullback–Leibler loss.
In particular, when d ≥ 3, the Bayesian predictive den-

sity pπS(y | x) based on the shrinkage prior πS(λ) :=
πα=( 1

2 ,..., 1
2 ), γ=d

2−1(λ) dominates the Bayesian predictive
density pπJ(y | x) based on the Jeffreys prior and is
admissible under the Kullback–Leibler loss. Parameter esti-
mation can be regarded as infinitesimal prediction under
the Kullback–Leibler loss in the multivariate Poisson model
( [22]). Intuitively, infinitesimal prediction means prediction
for infinitely near future.

In the present paper, we generalize the results for
finite-dimensional independent Poisson models to the results
for nonhomogeneous Poisson models. The remainder of the
present paper paper is organized as follows. In Section 2,
a class of improper shrinkage priors for nonparametric
Bayesian inference with kernel mixtures for nonhomogeneous
Poisson models is introduced. Several theorems concerning
admissibility of Bayesian predictive densities and Bayes esti-
mators for nonhomogeneous Poisson models corresponding to
those for finite-dimensional models are proved. In Section 3,
numerical methods to evaluate Bayesian predictive densities
and Bayes estimators are investigated. Finally, conclusions are
presented in Section 4.

II. NONPARAMETRIC BAYESIAN INFERENCE FOR

NONHOMOGENEOUS POISSON PROCESSES

We consider nonhomogeneous Poisson processes on a
region U in the Euclidean space �

d. The results in the
following can be generalized to those for nonhomogeneous
Poisson processes on general spaces such as a Polish space.

Basic properties of nonparametric inference of nonhomoge-
neous Poisson processes using gamma process priors are given
by [24] and [26]. Corresponding results for probability density
estimation are given by [25]. Various estimation methods
of intensity functions of nonhomogeneous Poisson process
models have been studied (e.g. [4], [18]).

Conventional statistical decision theory mainly deals with
problems with finite dimensional parameters. In the present
paper, we show that the framework of statistical decision
theory is effectively applied to prediction and estimation for
nonhomogeneous Poisson process models with infinite dimen-
sional parameter spaces. The results suggest that decision
theoretic approach is also useful for other infinite dimensional
problems.

A. Bayes Estimators and Bayesian Predictive Densities

Let λ(u) be a positive function of u ∈ U satisfying�
U λ(u)du < ∞. We observe x = (N, x1, x2, . . . , xN )

distributed according to the nonhomogeneous Poisson process
P��(sλ) with intensity function sλ (s > 0). Here, N is the
number of the observed points and x1, . . . , xN are observed
points in U . We introduce a known constant s > 0 for later
use. Let X(B) := #{xi | xi ∈ B (1 ≤ i ≤ N)} and
λ(B) :=

�
B λ(u)du for B ⊂ U . If X(Bi) (i = 1, . . . , k) are

independently distributed according to the Poisson distribution
with mean sλ(Bi) for an arbitrary partition (B1, . . . , Bk) of
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U , x is said to be distributed according to the nonhomo-
geneous Poisson distribution with intensity function sλ. The
function λ is the unknown parameter.

The likelihood for the nonhomogeneous Poisson process
model is given by� N�

i=1

sλ(xi)
�

exp
�
−s

�
λ(x)dx

�

=
	 N�

i=1

λ(xi)


(sw)N exp

�−sw
�

(2)

∝
� N�

i=1

λ(xi)
�

(sw)N

N !
exp
�−sw

�
=: pλ(x), (3)

where w = |λ| :=
�

U λ(u)du and λ := λ/w (see e.g. [8]
p. 22). We identify λ with (w, λ). The probability density
(3) of the observed points (x1, . . . , xN ) multiplied by N !
coincides with (2). These two representations do not make
essential differences in the following discussions. We mainly
use (3) in the following.

Let y = (M, y1, y2, . . . , yM ) be a sample independent of
x from the nonhomogeneous Poisson process P��(tλ), where
t > 0 is a known constant. We investigate estimation of λ
and prediction of y using x. In Subsection II-D, estimation is
formulated as a limit of prediction.

First, we consider estimation of λ. From (3), the
Kullback–Leibler divergence from the probability density
pλ(y) corresponding to the intensity tλ to another probability
density pλ′(y) corresponding to the intensity tλ� is

D(pλ(y), pλ′(y))

= Eλ log

� M�
i=1

λ(yi)
�

(tw)M

M !
exp
�−tw

�
� M�

i=1

λ�(yi)
�

(tw�)M

M !
exp
�−tw��

= Eλ



tw�−tw + M log

w

w� +
M�
i=1

log
λ(yi)
λ�(yi)

�

= tw

�
w�

w
− 1 − log

w�

w
+
�

λ(y) log
λ(y)
λ�(y)

dy

�
(4)

= t

� �
λ�(y) − λ(y) + λ(y) log

λ(y)
λ�(y)

�
dy. (5)

Suppose that a prior density π(dλ) is adopted and observa-
tion x is given. Let pπ(dλ | x) be the posterior distribution.
If the posterior mean of λ has a density λπ,x(u) with respect
to the Lebesgue measure on U , the posterior mean of the
Kullback–Leibler loss of an intensity estimator �λ is�

D(pλ(y), pλ′(y)) pπ(dλ | x)

= t

�� ��λ(y) − λ(y) + λ(y) log
λ(y)�λ(y)

�
dy pπ(dλ | x)

= t

�� ���λ(y) − λπ,x(y) + λπ,x(y) log
λπ,x(y)�λ(y)

�

+
�

λπ,x(y) − λ(y) + λ(y) log
λ(y)

λπ,x(y)

��
× pπ(dλ | x)dy

and is minimized when �λ = λπ,x. Here, we assume that the
integral exists. Thus, the Bayes estimator of λ is the posterior
mean λπ,x given observation x.

If the posterior is decomposed as pπ(dw dλ | x) = pπ(dw |
x)pπ(dλ | x), then the Bayes estimators of w, λ, and λ based
on the prior π are given by

wπ,x =
�

w pπ(dw | x), λπ,x =
�

λ pπ(dλ | x),

and

λπ,x = wπ,xλπ,x,

respectively.
Next, we consider predictive densities of y. The

Kullback–Leibler divergence from the probability density
pλ(y) corresponding to the intensity tλ to another probability
density q(y) = q(M, y1, . . . , yM ) = q(M)q(y1, . . . , yM | M)
is

D(pλ(y), q(y)) = Eλ



log

pPo
tw(M)

�M
i=1 λ(yi)

q(M, y1, . . . , yM )

�
, (6)

where pPo
tw(M) := {(tw)M/M !} exp(−tw) denotes the Pois-

son probability density with mean tw.
Since the posterior mean of the Kullback–Leibler divergence

is�
D(pλ(y), q(y; x))pπ(dλ | x)

=
�� ∞�

M=0

�
· · ·
�

pPo
tw(M)

�M�
i=1

λ(yi)
�

× log
pPo

tw(M)
�M

i=1 λ(yi)
q(M, y1, . . . , yM )

dy1 · · · dyMpπ(dw dλ | x), (7)

the Bayesian predictive density minimizing (7) is

pπ(M, y1, . . . , yM | x)

=
��

pPo
tw(M)

� M�
i=1

λ(yi)
�

pπ(dw dλ | x).

If the posterior is decomposed as pπ(dw dλ | x) = pπ(dw |
x)pπ(dλ | x), then the Bayesian predictive density based on
the prior π is given by

pπ(M, y1, . . . , yM | x) = pπ(M | x)pπ(y1, . . . , yM | M, x),
(8)

where

pπ(M | x) =
�

pPo
tw(M)pπ(dw | x)

and

pπ(y1, . . . , yM | M, x) =
� �M�

i=1

λ(yi)
�

pπ(dλ | x).
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B. Kernel Mixture Models

We need to adopt a prior for λ in order to use
Bayesian methods. First, we consider the gamma process
prior G���(α, β), where α(u) is a positive density function
of u and β is a positive scalar that does not depend
on u. Then, for an arbitrary partition (B1, . . . , Bk) of U ,
μi := μ(Bi) (i = 1, . . . , k) are independently distributed
according to the gamma distributions Ga(αi, β) with densities
{1/Γ (αi)}(μαi−1

i /βαi) exp(−μi/β), where αi := α(Bi) =�
Bi

α(u)du. The mixture of the nonhomogeneous Poisson
process P��(tλ) with respect to the prior G���(α, β) for λ is
the negative binomial process N��B���(α, tβ/(1 + tβ)). For
N��B���(α, tβ/(1+tβ)) and an arbitrary partition (B1, . . . , Bk)
of U , the numbers Ni of points in Bi (i = 1, . . . , k) are
independently distributed according to the negative binomial
distribution with density

�
Ni+αi−1

αi

�{tβ/(1 + tβ)}Ni{1/(1 +
tβ)}αi . The posterior with respect to the prior G���(α, β) and
observation x is G���(α+

�
i δxi , 1/(s+1/β)) (see [26]). Then,

the posterior means of w, λ, and λ are

wα,β,x =
β

1 + sβ
(|α| + N), λα,β,x =

α +
�

i δxi

|α| + N
,

and

λα,β,x =
β

1 + sβ
(α +

�
i

δxi),

respectively, where δxi denotes the Dirac measure at xi. Thus,
the Bayesian predictive density based on the gamma process
prior G���(α, β) and observation x is

N��B���

�
α +

�
i

δxi ,
(s + 1/β)−1t

1 + (s + 1/β)−1t

�
= N��B���

�
α +

�
i

δxi ,
tβ

1 + (s + t)β

�
.

Although the gamma process prior is a conjugate prior for
the nonhomogeneous Poisson model, it is not natural to use
this prior directly for λ because the measure α+

�
i δxi is not

absolutely continuous with respect to the intensity measure λ.
In fact, the Kullback–Leibler loss of the posterior mean λα,β,x

with respect to observation x and the gamma prior G���(α, β)
is

D(tλ, tλα,β,x)

= tw

�
wα,β

w
− 1 − log

wα,β

w
+
�

λ(y) log
λ(y)

λα,β,x(y)
dy

�
= tw

�
wα,β

w
− 1 − log

wα,β

w
+
�

λ(y) log
λ(y)
α(y)

dy

+ log
�

1 +
N

|α|
��

,

where |α| :=
�

U α(u)du and α := α/|α|. The amount
of information concerning λ included in x increases as s
increases. However, when s goes to infinity and t is fixed,
N and the divergence D(tλ, tλα,β) diverges to infinity. Here,
wα,β converges to w with probability 1. However, λα,β,x does
not converge to λ in the Kullback–Leibler sense, although
λα,β,x weakly converges to λ.

In order to overcome the difficulty caused by the fact that
α+
�

i δi is not absolutely continuous with respect to λ, kernel
mixture models are widely used. A nonnegative function k :
U × U → �≥0 satisfying

�
k(y, u)dy = 1 is called a kernel

function. Suppose that an intensity function λ is represented
by

λ(y) = k(y, μ) :=
�

k(y, u)μ(du),

where μ(du) is a finite measure on U . Then,

w = |λ| :=
�

λ(y)dy =
��

k(y, u)μ(du)dy

=
�

μ(dy) = |μ|.

We identify μ with (w, μ), where μ := μ/|μ|. Then, we have

λ(y) =
λ(y)
|λ| = k(y, μ) =

�
k(y, u)μ(du).

We hereinafter consider kernel mixture models because
these models are reasonable under the Kullback–Leibler loss.
The results in the following can be generalized to the setting
in which the kernel function has an unknown parameter by
introducing a prior for the unknown parameter.

Example: The Gaussian kernel

k(y, u) =
1√

2πσ2
exp
�
− 1

2σ2
(y − u)2

�
(y, u ∈ �)

is frequently used in applications. For simplicity, we assume
that σ > 0 is known.

Assume a gamma process prior G���(α, β) for μ. Then,
μ := μ/w is distributed according to the Dirichlet process
D���(α) (see e.g. [13] p. 96). For every partition (B1, . . . , Bk)
of U , (μ(B1), . . . , μ(Bk)) is distributed according to the k-
dimensional Dirichlet distribution Di(α(B1), . . . , α(Bk)). The
weight parameter w is distributed according to the gamma
distribution Ga(|α|, β) independently of μ. Thus, the simulta-
neous distribution of w and μ is given by

pD���

α (dμ) pGa
|α|,β(w) dw, (9)

where pD���

α (dμ) denotes the Dirichlet process measure and
pGa
|α|,β(w) = {1/Γ (|α|)}(w|α|−1/β|α|) exp(−w/β) is the

gamma probability density.

C. Improper Priors

It is difficult to determine the scale parameter β from the
viewpoint of objective Bayes. Let c be an arbitrary positive
constant for time scale change. Then, P��(sλ) = P��(s̃λ̃),
where s̃ := cs and �λ := λ/c. Inference for λ is equivalent to
inference for �λ because the time scale change does not affect
the essence of the problem. Thus, the objective prior should
be (relatively) invariant with respect to the time scale change.
However, the gamma process prior G���(α, β) is not relatively
invariant if β is finite. One method by which to construct an
invariant posterior is to adopt the improper prior

πα(μ)dμ = pD���

α (dμ) pGa
|α|,∞(w) dw, (10)
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which could be intuitively denoted by μα−1dμ, that is obtained
by taking the limit β → ∞. The posterior based on the prior
πα is invariant with respect to the time scale change. The
prior (10) is a natural generalization of the improper prior�d

i=1(μ
αi−1
i dμi) discussed by [21] for the finite-dimensional

independent Poisson model.
Here, we consider a generalization of the gamma process

prior (9). Let

πα,β,γ(dμ) := pD���

α (dμ) pGa
|α|−γ,β(w) dw, (11)

where γ < |α|. We consider

πα,γ(dμ) := πα,β=∞,γ(dμ) = pD���

α (dμ) pGa
|α|−γ,∞(w) dw,

(12)

which is a generalization of (10), by taking the limit β → ∞.
We denote the distributions of λ(u) =

�
k(u, v)μ(dv) cor-

responding to (11) and (12) by πα,β,γ(dλ) and πα,γ(dλ),
respectively, by abuse of notation without confusion.

We investigate Bayesian inference based on the prior πα,β,γ .
From (3) and (11), the posterior distribution of μ with respect
to prior πα,β,γ and observed data x is proportional to� N�

i=1

k(xi, μ)
�

pD���

α (dμ)
(sw)N

N !
exp
�−sw

�
pGa
|α|−γ,β(w) dw

∝
� N�

i=1

k(xi, μ)
�

pD���

α (dμ)pGa
|α|−γ+N,β/(sβ+1)(w) dw.

(13)

Thus, the posterior and the Bayesian predictive density for the
kernel mixture models have more complex forms than those
for the simple Gamma–Poisson processes.

The posterior mean of λ given x is

λα,x(y) =
λα,β,γ,x(y)
|λα,β,γ,x| =

�
k(y, μ)

	�N
i=1 k(xi, μ)



pD���

α (dμ)� 	�N
i=1 k(xi, μ)



pD���

α (dμ)
,

(14)

not depending on β, γ, or s. For precise treatment of quantities
related to posterior distributions based on disintegration, see
e.g. [17].

The posterior means of w and λ are

w|α|−γ,β,N = |λα,β,γ,x| =
1

s + 1/β
(|α| − γ + N) (15)

and

λα,β,γ,x = w|α|−γ,β,Nλα,x =
1

s + 1/β
(|α| − γ + N)λα,x,

(16)

respectively. Since the posterior density of w depends on α
and γ only through |α| − γ and on x = (N, x1, . . . , xN )
only through N , we denote the posterior mean of w by
w|α|−γ,β,N := |λα,β,γ,x|.

From (13), the Bayesian predictive density is given by

pNB
t/(t+s+1/β),|α|−γ+N(M)pα(y1, . . . , yM | M, x),

where

pα(y1, . . . , yM | M, x)

=

� 	�M
j=1 k(yj , μ)


	�N
i=1 k(xi, μ)



pD���

α (dμ)� 	�N
i=1 k(xi, μ)



pD���

α (dμ)
. (17)

and

pNB
t/(s+t+1/β),|α|−γ+N(M)

=
Γ (M + N + |α| − γ)
M !Γ (N + |α| − γ)

×
�

t

t + s + 1/β

�M �
s + 1/β

t + s + 1/β

�|α|−γ+N

.

Here, pNB
t/(s+t+1/β),|α|−γ+N(M) is the negative binomial dis-

tribution with success probability t/(t+ s+1/β) and number
of failures |α| − γ + N . We can evaluate the posterior mean
(16) of λ and the predictive density (17) using Markov chain
Monte Carlo (MCMC) methods as discussed in Section III.

By taking the limit β → ∞, we obtain the Bayes estimate
and the Bayesian predictive density based on the improper
prior πα,γ . From (13), the posterior with respect to the
improper prior πα,γ and observation x is proportional to

� N�
i=1

k(xi, μ)
�

pD���

α (dμ)
(sw)N

N !
exp
�−sw

�
pGa
|α|−γ,∞(w) dw

∝
� N�

i=1

k(xi, μ)
�

pD���

α (dμ)pGa
|α|−γ+N,1/s(w) dw.

The posterior means of λ, w and λ with the improper prior
πα,γ are

λα,x(y) =

�
k(y, μ)

	�N
i=1 k(xi, μ)



pD���

α (dμ)� 	�N
i=1 k(xi, μ)



pD���

α (dμ)
, (18)

w|α|−γ,N = |λα,γ,x| =
1
s
(|α| − γ + N), (19)

and

λα,γ,x = w|α|−γ,Nλα,x =
1
s
(|α| − γ + N)λα,x, (20)

respectively.
The Bayesian predictive density with the improper prior

πα,γ is given by

pNB
t/(t+s),|α|−γ+N(M)pα(y1, . . . , yM | M, x),

where

pNB
t/(t+s),|α|−γ+N(M)

=
Γ (M + N + |α| − γ)
M !Γ (N + |α| − γ)

�
t

t + s

�M �
s

t + s

�|α|−γ+N

.
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D. Estimation as Infinitesimal Prediction

For the finite-dimensional independent Poisson model,
Bayesian parameter estimation under the Kullback–Leibler
loss is formulated as infinitesimal Bayesian prediction
([22], [23]). We derive the corresponding results for nonhomo-
geneous Poisson processes. Using this formulation, an integral
representation of the Kullback–Leibler risk of a predictive
density is obtained. This representation provides a unified
framework for prediction and estimation and is a basis for
later discussions. Intuitively, for the nonhomogeneous Poisson
model, estimation is infinitesimal prediction and prediction is
cumulative estimation.

Let z = (N + M, x1, . . . , xN , y1, . . . , yM ). Then, the den-
sity of z is

pλ(z) =
�N+M�

i=1

λ(zi)
�{(s + t)w}N+M

(N + M)!
exp
	−(s + t)w



.

(21)

Since the conditional density

pλ(x | z) =
pλ(x, z)
pλ(z)

=
pλ(x)pλ(y)

pλ(z)

=
�

N + M

N

��
s

s + t

�N�
t

s + t

�M

(22)

does not depend on λ, z is a sufficient statistic when x and
y are observed. We denote pλ(x | z) by p(x | z). Let
pπ(x, z) :=

�
pλ(x, z)π(dλ) and pπ(z) :=

�
pλ(z)π(dλ),

where π(dλ) is a prior. Then, we have

pπ(y | x) = pπ(z | x) =
p(x | z)pπ(z)

pπ(x)
. (23)

We consider a nonhomogeneous Poisson process zτ =
(Nτ , z1, . . . , zNτ ) distributed according to P��(τλ) on U with
time τ ≥ 0. When we need to explicitly specify time τ ,
zi is denoted by zτ,i. For a, b > 0, the difference between
za+b = (Na+b, z1, . . . , zNa+b

) and za = (Na, z1, . . . , zNa) is
defined by za+b−za := (Na+b−Na, zNa+1, . . . , zNa+b

). For
all a, b > 0, za and za+b − za are independently distributed
according to P��(aλ) and P��(bλ), respectively. This spatial
point process zτ on U is called a pure immigration process.
Then, the simultaneous distribution of x and y is identical to
that of zs and zs+t − zs. The probability density of zτ is
denoted by pλ,τ (zτ ). From (23), the Kullback–Leibler risk is
represented by

Eλ

�
log

pλ(y | x)
pπ(y | x)

�
= Eλ

�
log

pλ,s+t(zs+t)
pπ,s+t(zs+t)

�
− Eλ

�
log

pλ,s(zs)
pπ,s(zs)

�
=
� s+t

s

∂

∂τ
Eλ

�
log

pλ,τ (zτ )
pπ,τ (zτ )

�
dτ, (24)

where pπ,τ (zτ ) =
�

pλ,τ (zτ )π(dλ). Here, we assume that
the expectation Eλ [log{pλ,τ (zτ )/pπ,τ (zτ )}] exists and is
differentiable with respect to τ ∈ [s, s + t].

In order to evaluate the integrand of (24), we prepare
Lemma 2, which is a generalization of Lemma 1 below, which
is essentially used in [23].

Lemma 1: Suppose that Nτ (τ ≥ 0) is distributed accord-
ing to a Poisson distribution with mean τw, where w is
a fixed positive real number. Let h be a function from
the nonnegative integers to the real numbers. Assume that�∞

n=0 |h(n)|(θn/n!) exp(−θ) < ∞ for all θ > 0. Then,

d
dτ

E
�
h(Nτ )

�
= E

��Nτ

τ
− w

�
h(Nτ )

�
= w E

�
h(Nτ + 1) − h(Nτ )

�
.

The proof is straightforward.
Lemma 2: Suppose that zτ = (Nτ , z1, . . . , zNτ ) is dis-

tributed according to the nonhomogeneous Poisson process
P��(τλ) (τ ≥ 0).

Let hn (n = 0, 1, 2, . . .) be functions from Un × �≥0

to �, where U0 := ∅ and h0 is a constant. Every function
hn(z1, . . . , zn, τ) is symmetric with respect to z1, . . . , zn

and is differentiable with respect to τ ≥ 0 for every fixed
z1, . . . , zn. Let h be a function from (∪∞

n=0U
n) × �≥0 to �

defined by h(z, τ) = h(n, z1, . . . , zn, τ) := hn(z1, . . . , zn, τ),
where z = (n, z1, . . . , zn). Assume that f(r, s) := E[h(zr, s)]
exists and is differentiable with respect to (r, s) ∈ �

2
>0 in a

neighborhood of every r = s > 0 and that ∂
∂sE[h(zr, s)] =

E[ ∂
∂sh(zr, s)].
Then,

d
dτ

E
�
h(zτ , τ)

�
=
�

U

λ(y)E
�
h(zτ + δy) − h(zτ )

�
dy

+ E
�
∂h

∂r
(zτ , r)

����
r=τ

�
, (25)

where zτ + δy := (Nτ + 1, z1, . . . , zNτ , y).
The proof is given in Appendix A.
Now, we have an integral representation of the risk of a

Bayesian predictive density.
Theorem 3: Suppose that zτ = (Nτ , z1, . . . , zNτ ) is dis-

tributed according to the nonhomogeneous Poisson process
P��(τλ) (τ ≥ 0).

Assume that

f(r, s) := E
�
log

ps,λ(zr)
ps,π(zr)

�
exists and is differentiable with respect to (r, s) ∈ �

2
>0 in a

neighborhood of every r = s > 0 and that

∂

∂s
E
�
log

ps,λ(zr)
ps,π(zr)

�
= E

�
∂

∂s
log

ps,λ(zr)
ps,π(zr)

�
.

Then,

Eλ

�
log

pλ(y | x)
pπ(y | x)

�
=
� s+t

s

Eλ

�
wπ,zτ ,τ − w−w log

wπ,zτ ,τ

w

+ w

�
U

λ(y) log
λ(y)

λπ,zτ ,τ (y)
dy

�
dτ
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=
� s+t

s

Eλ

��
U

�
λπ,zτ ,τ (y) − λ(y)

+ λ(y) log
λ(y)

λπ,zτ ,τ (y)

�
dy

�
dτ. (26)

The proof is given in Appendix A.
Since the integrand (26) multiplied by t coincides with the

Kullback–Leibler loss (5) for the intensity estimator λπ,z,τ ,
Bayes estimation under the Kullback–Leibler loss for the non-
homogeneous Poisson model can be regarded as infinitesimal
Bayesian prediction as in the finite-dimensional independent
Poisson model.

When the prior is decomposable as π(dλ) = π(dw)π(dλ),
the assumption in Theorem 3 and Theorem 4 in the next
subsection can be easily verified in many problems. If π(dλ) =
π(dw)π(dλ), then

f(r, s) = Eλ



log

�Nr

i=1 λ(zr,i) exp(−sw)� �Nr

j=1 λ�(zr,j) exp(−sw�)π(dλ�)

�

= Eλ



log

�Nr

i=1 wNr exp(−sw)� �Nr

j=1 w�Nr exp(−sw�)π(dw�)

�

+ Eλ



log

�Nr

i=1 λ(zr,i)� �Nr

j=1 λ�(zr,j)π(dλ�)

�
. (27)

The first term in (27) can be explicitly evaluated for our
priors. The second term in (27) is represented by

h(r) := Eλ



log
� �n

j=1 λ(zj)� �n
k=1 λμ(zk)π(dμ)

��

= exp(−rw)
∞�

n=0

(rw)n

n!
c(n), (28)

where

c(n) :=
�

· · ·
� � n�

i=1

λ(zi)
�

log
� �n

j=1 λ(zj)� �n
k=1 λμ(zk)π(dμ)

�
dz1 · · ·dzn.

Here, c(n) is the cumulative Kullback–Leibler risk when we
predict z1, . . . , zn independently distributed according to a
probability density λ using the simultaneous Bayesian pre-
dictive density

� �Nr

j=1 λ�(zr,j)π(dλ�).
Therefore, in order to verify the assumption in Theo-

rem 3, it is sufficient to show that (28) converges for every
0 ≤ r < ∞.

In many problems, we can verify that (28) converges for
every 0 ≤ r < ∞ using the inequality

0 ≤ c(n) ≤ n

�
sup
μ∈B

D(λ, λμ) +
�

B

π(dμ)
�

, (29)

where B is an arbitrary measurable set in the space of intensity
functions. The inequality (29) is used to define the index of
resolvability by [3] (see also [2]). Thus, a sufficient condition
is that there exists B such that supμ∈B D(λ, λμ) < ∞ and
π(B) > 0. For example, the nonhomogeneous Poisson model
with the gamma prior and without a kernel discussed in
Subsection II-B does not satisfy this condition.

If the power series of r in (28) converges for all 0 ≤ r < ∞,
we have

d
dr

h(r) = −w exp(−rw)
∞�

n=0

(rw)n

n!
c(n)

+ exp(−rw)
∞�

n=1

w(rw)n−1

(n − 1)!
c(n)

= w exp(−rw)
∞�

n=0

(rw)n−1

n!
{c(n + 1) − c(n)} (30)

= wEλ

��
λ(y) log

λ(y)
λπ,zr (y)

dy

�
,

because

c(n + 1) − c(n)

=
�

λ(y)
�

· · ·
� � n�

i=1

λ(zi)
�

× log

�
λ(y)

�n
i=1 λ(zi)�

λμ(y)
�n

i=1 λμ(zi)π(dμ)

 
dz1 · · · dzndy

−
�

· · ·
� � n�

i=1

λ(zi)
�

× log

� �n
i=1 λ(zi)�n

i=1

�
λμ(zi)π(dμ)

 
dz1 · · ·dzn

=
�

· · ·
� � n�

i=1

λ(zi)
��

λ(y) log
λ(y)

λπ,zn(y)
dydz1 · · · dzn,

(31)

where

λπ,zn(y) =
� �n

i=1 λμ(zi)λμ(y) π(dμ)� �n
j=1 λμ(zj)π(dμ)

.

Thus, the difference (31) between c(n+1) and c(n) is the indi-
vidual Kullback–Leibler risk of the Bayesian predictive den-
sity for predicting zn+1 using z1, . . . , zn, where z1, . . . , zn+1

are independently distributed according to probability density
λ. The power series of r in (28) converges for 0 ≤ r < ∞ if
and only if the power series in (30) converges for 0 ≤ r < ∞.

E. Shrinkage Priors Dominating the Prior πα and Their
Admissibility

We propose shrinkage priors dominating πα(dμ) = μα−1dμ
when |α| > 1. We prove admissibility of Bayes estimators and
Bayesian predictive densities based on the shrinkage priors.

Although few studies on admissibility concerning
infinite-dimensional models have been carried out, we
show that Blyth’s method with a convex loss is useful for our
infinite-dimensional problem because the method works even
when the support of the prior is a small subset of the whole
parameter space. The key idea is to decompose the problem
into two sub-problems: a one-dimensional problem with an
improper prior, and an infinite-dimensional problem with a
proper prior.
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Theorem 4: Suppose that zτ = (Nτ , z1, . . . , zNτ ) is dis-
tributed according to the nonhomogeneous Poisson process
P��(τλ) (τ ≥ 0).

Assume that

f(r, s) := E
�
log

ps,λ(zr)
ps,π(zr)

�
exists and is differentiable with respect to (r, s) ∈ �

2
>0 in a

neighborhood of every r = s > 0 and that

∂

∂s
E
�
log

ps,λ(zr)
ps,π(zr)

�
= E

�
∂

∂s
log

ps,λ(zr)
ps,π(zr)

�
.

1) When |α| − γ > 1, the Bayesian predictive density
pα,γ(y | x) based on πα,γ(dμ) is dominated by the
Bayesian predictive density pα,γ̃(y | x) based on
πα,γ̃(dμ), where γ̃ := |α| − 1.

2) When |α| − γ > 1, the generalized Bayes estimator of
λ based on πα,γ(dμ) is dominated by the generalized
Bayes estimator of λ based on πα,γ̃(dμ), where γ̃ :=
|α| − 1.

The proof is given in Appendix A.
In particular, if |α| > 1, the Bayesian predictive density

based on πα(dμ) = πα,γ=0(dμ) = μα−1dμ is dominated by
the Bayesian predictive density based on πα,γ̃=|α|−1(dμ).

Lemma 3: Let X be a Poisson random variable with mean
θ ≥ 0, and let c be an arbitrary positive constant. Then,

θ Eθ

�
log(X + 1 + c) − log(X + 1)

�
≤ c−c exp(−θ) < c.

The proof of Lemma 3, which is used in [21], is given in
Appendix A for self-containedness.

Next, we prove admissibility of Bayes estimators and
Bayesian predictive densities based on our shrinkage priors.

Suppose that the parameter space Ι is a set of finite
measures that are mutually absolutely continuous with respect
to the Lebesgue measure on U ⊂ �

d. We assume that if
λ = (w, λ) ∈ Ι, then (w�, λ) ∈ Ι for all w� > 0. Thus,
Ι = �

+×Ι, where �+ is the set of positive real numbers and
Ι is a set of probability densities that are mutually absolutely
continuous with respect to the Lebesgue measure.

Note that the support of a prior for the kernel mixture model
only covers a small subset of the whole parameter space Ι
if Ι is a large set as in ordinary settings for nonparametric
inference.

Let A be the space of all finite measures on U such that
the measure is mutually absolutely continuous with respect
to the Lebesgue measure. For estimation of λ, we choose
an intensity estimate from A . Let P be the space of all
probability measures on ∪∞

m=0U
m such that the marginal

probability P (m) of P ∈ P is positive (i.e. not equal to 0) for
every nonnegative integer m and the conditional probability
P (· | m) on Um has density with respect to the Lebesgue
measure on Um ⊂ �

m for every m. For prediction problem,
we choose a probability density from P .

We assume that
�

k(y, u)μ(du) ∈ Ι with probability 1 if
μ is distributed according to D���(α). This condition is natu-
rally satisfied in ordinary settings for nonparametric intensity
estimation.

Theorem 5:

1) The Bayesian predictive density based on
πα,γ(dμ) := pD���

α (dμ) pGa
|α|−γ,∞(w)dw is admissible

under the Kullback–Leibler loss if |α| − 1 ≤ γ < |α|.
2) The generalized Bayes estimator λα,γ,x based on

πα,γ(dμ) := pD���

α (dμ) pGa
|α|−γ,∞(w)dw is admissible

under the Kullback–Leibler loss if |α| − 1 ≤ γ < |α|.
The proof is given in Appendix A.
In particular, if |α| > 1, then the Bayesian predictive density

based on πα,γ=|α|−1 dominating that based on πα = πα,γ=0

is admissible.

III. NUMERICAL EVALUATION OF PREDICTIVE DENSITIES

AND ESTIMATORS

In this section, we explore numerical methods by which to
evaluate Bayesian predictive densities and Bayes estimates.

In the posterior (13) with respect to the prior
πα,β,γ(dμ) := pD���

α (dμ) pGa
|α|−γ,β(w)dw, w and μ are

independently distributed. The posterior distribution of w is
pGa
|α|−γ+N,β/(sβ+1)(w) dw. The posterior distribution of μ is

proportional to a Dirichlet process mixture

� � N�
l=1

�
k(xl, ul)μ(dul)

�
pD���

α (dμ)

=
�

· · ·
� � N�

l=1

k(xl, ul)
�

pCR
α (du1, . . . , duN ), (32)

where

pCR
α (du1, . . . , duN) =

� � N�
l=1

μ(dul)
�
pD���

α (dμ)

is the distribution of the Chinese restaurant process with mea-
sure α (e.g. [27] p. 193). If random variables u1, u2, . . . , uN

are distributed according to a Chinese restaurant process
PCR

α (du1, . . . , duN ), then they are sequentially distributed
according to

PCR
α (du1) =

1
|α|α(du1)

and

PCR
α (duk+1 | u1, . . . , uk)

=
1

|α| + k

�
α(duk+1) +

k�
i=1

δui(duk+1)
�

(k = 1, 2, . . . , N − 1), see e.g. [27].
We can numerically evaluate quantities concerning the

posterior density of λ such as the Bayes estimate of λ
and Bayesian predictive density of y given x using MCMC
based on the representation (32). Various MCMC methods for
density estimation (e.g. [27]) based on nonparametric Bayes
with Dirichlet priors can be applied to our problem.
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Fig. 1. Bayesian estimates of λ based on non-shrinkage prior πα=1,β=∞,γ=0 and shrinkage prior πα=1,β=∞,γ=|α|−1. The (sorted) observed points
indicated by the vertical ticks at the bottom are located at 0.29, 1.55, 2.06, 2.85, 2.87, 3.60, 5.55, 5.61, 5.65, and 6.01.

From (18), the posterior mean λ with respect to πα,β,γ and
observation x is

λα,x =
�

k(y, μ){�N
l=1 k(xl, μ)}pD���

α (dμ)� {�N
l=1 k(xl, μ)}pD���

α (dμ)

=
��

· · ·
�

k(y, uN+1){
N�

l=1

k(xl, ul)}

× pCR
α (du1, . . . , duN , duN+1)

�
!��

· · ·
�
{

N�
l=1

k(xl, ul)}pCR
α (du1, . . . , duN )

�
=
��

· · ·
�

k(y, uN+1)pCR
α (duN+1 | u1, . . . , uN )

× {
N�

l=1

k(xl, ul)}pCR
α (du1, . . . , duN )

�
!��

· · ·
�
{

N�
l=1

k(xl, ul)}pCR
α (du1, . . . , duN )

�
, (33)

which does not depend on β or γ. Thus, the posterior mean
of λ with respect to the prior πα,β,γ is λα,x, which does not
depend on β or γ.

We can obtain the Bayes estimates of λ based on πα,β,γ

and πα,γ := πα,β=∞,γ using (15), (16), (19), (20), and (33).
Example: We consider intensity functions on a unit circle

[0, 2π) for simplicity. Let the true intensity function be

λ(u) = sin(u) + 2.

We obtain Bayes estimates of λ based on priors
πα=1,β=∞,γ=0 and πα=1,β=∞,γ=|α|−1. Then, |α| :=� 2π

0
α(u)du = 2π > 1. We adopt the von Mises kernel

kκ(x; μ) =
exp{κ cos(x − μ)}

2πI0(κ)

with κ = 5. The observation time length s is set to be 1.

In Figure 1, Bayesian estimates of λ based on
non-shrinkage prior πα=1,β=∞,γ=0 and shrinkage
prior πα=1,β=∞,γ=|α|−1 with respect to observation
(0.29, 1.55, 2.06, 2.85, 2.87, 3.60, 5.55, 5.61, 5.65, 6.01) are
shown. The Bayesian estimates based on the non-shrinkage
prior and the shrinkage prior are λα=1,γ=0,x = (N +2π)λα,x,
and λα=1,γ=|α|−1,x = (N + 1)λα,x, respectively, where λα,x

is numerically evaluated by MCMC.
From Theorem 4, the estimator based on the shrinkage prior

dominates that based on the non-shrinkage prior. Specifically,
the Kullback–Leibler risk of the estimator based on the
shrinkage prior is smaller than that of the estimator based
on the non-shrinkage prior for all λ. This example illustrates
how shrinkage priors improve Bayes estimators based on
non-shrinkage priors.

IV. DISCUSSION AND CONCLUSION

A class of improper shrinkage priors for nonparametric
Bayesian inference of the nonhomogeneous Poisson processes
with kernel mixture is investigated. The Bayesian predic-
tive densities and the Bayes estimators based on the priors
are admissible under the Kullback–Leibler loss. The class
of improper priors could be useful as objective priors for
nonhomogeneous Poisson models.

The information theoretic properties of the Kullback–
Leibler loss play essential roles in our theory. Our results
can be easily generalized to various methods for intensity
estimation including models based on kernels with parameters.

Although few studies on admissibility of Bayesian
prediction and inference based on improper priors for
infinite-dimensional models have been carried out, our
approach could be useful for various infinite-dimensional
problems.

One important direction of future research is the general-
ization of the present results for nonhomogeneous Poisson
process models to those for other stochastic process models
such as nonhomogeneous negative binomial process models.
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For finite dimensional models, [15], [16] extended the theory
for finite dimensional Poisson models to finite dimensional
negative binomial models and negative multinomial models.
These generalizations require techniques not used in the theory
for the Poisson models.

Hazard rate models closely related to nonhomogeneous
Poisson models are widely used in applications and kernel
mixtures with general random measures have been investigated
([9], [17]). The use of various random measures other than
the gamma random measure has been studied. The relation
between theories on hazard rate models with general random
measures and the present study is also an important topic for
future study.

Nonhomogeneous Poisson process models have a variety
of applications. For example, they have recently been used in
neural information processing ( [29], [30]). The development
of data analyzing methods for such applications based on the
theory presented here is also a future challenge. In applications
such as survival analysis, weighted gamma processes are often
used as priors. By extending the theorems in [23] to those for
infinite-dimensional models, we could generalize our results
to improve the limits of weighted gamma process priors.

Furthermore, estimation and prediction with infinite dimen-
sional statistical models based on Brownian motions could be
studied in line with the approach adopted in the present paper.

APPENDIX A
PROOFS OF THEOREMS AND LEMMAS

Proof of Lemma 2: Since

f(r, s) := E
�
h(zr, s)

�
=

∞�
n=0

�
(rw)n

n!
exp(−rw)

×
�

· · ·
� � n�

i=1

λ(zi)
�
hn(z1, . . . , zn, s)dz1 · · ·dzn

�
and ∂

∂sE[h(zr, s)] = E[ ∂
∂sh(zr, s)], we have

d
dτ

E
�
h(zτ , τ)

�
=

d
dτ

f(τ, τ)

=
∂

∂r
f(r, τ)

����
r=τ

+
∂

∂s
f(τ, s)

����
s=τ

= w

∞�
n=1

�
(τw)n−1

(n − 1)!
exp(−τw)

×
�

· · ·
� � n�

i=1

λ(zi)
�
hn(z1, . . . , zn, τ)dz1 · · · dzn

�

− w

∞�
n=0

�
(τw)n

n!
exp(−τw)

×
�

· · ·
� � n�

i=1

λ(zi)
�
hn(z1, . . . , zn, τ)dz1 · · · dzn

�
+

∂

∂r
E
�
h(zτ , r)

�����
r=τ

=
�

U

λ(y)Eλ

�
h(zτ + δy, τ) − h(zτ , τ)

�
dy

+ E
�
∂h

∂r
(zτ , r)

����
r=τ

�
.

Proof of Theorem 3: Let

h(zr, s) := log
ps,λ(zr)
ps,π(zr)

= log

�Nr�
i=1

sλ(zr,i)
�

1
Nr!

exp(−sw)

� �Nr�
i=1

sλ�(zr,i)
� 1

Nr!
exp(−sw�)π(dλ�)

= − log
� �Nr�

i=1

λ�(zr,i)
λ(zr,i)

�
exp(−sw�)π(dλ�)−sw.

From Lemma 2, the integrand of (24) is represented by

d
dτ

Eλ

�
log

pτ,λ(zτ )
pτ,π(zτ )

�
=

d
dτ

Eλ

�
h(zτ , τ)

�
= − d

dτ
Eλ



log
� �Nτ�

i=1

λ�(zτ,i)
λ(zτ,i)

�
exp(−τw�)π(dλ�)

�
−w

= −
�

U

λ(y) Eλ



log
� �Nτ�

i=1

λ�(zτ,i)
λ(zτ,i)

�λ�(y)
λ(y)

exp(−τw�)π(dλ�)

− log
� �Nτ�

i=1

λ�(zτ,i)
λ(zτ,i)

�
exp(−τw�)π(dλ�)

�
dy

− Eλ

⎡⎢⎢⎢⎣
−
�

w�	Nτ�
i=1

λ�(zτ,i)



exp(−τw�)π(dλ�)� 	Nτ�
i=1

λ�(zτ,i)



exp(−τw�)π(dλ�)

⎤⎥⎥⎥⎦−w

= −
�

U

λ(y) log
λπ,zτ ,τ (y)

λ(y)
dy + wπ,zτ ,τ − w

= wπ,zτ ,τ − w−w log
wπ,zτ ,τ

w

+ w

�
U

λ(y) log
λ(y)

λπ,zτ ,τ (y)
dy. (34)

From (24) and (34), we have the desired result.
Proof of Theorem 4: We prove the first part (1) for

Bayesian predictive densities. The second part (2) for Bayes
estimators can be proved in a similar manner.

Since (18), the posterior mean of λ based on πα,γ coincides
with that based on πα,�γ . Therefore, from Theorem 3, we have

Eλ

�
D(p(y | λ), pα,γ(y | x))

�
−Eλ

�
D(p(y | λ), pα,γ̃(y | x))

�
=
� t

s

w Eλ

�wα,γ,τ

w
− 1 − log

wα,γ,τ

w

�
dτ

−
� t

s

w Eλ

�wα,γ̃,τ

w
− 1 − log

wα,γ̃,τ

w

�
dτ, (35)

where wα,γ,τ := wα,γ,z(τ),τ . From (19), the posterior means
of w with respect to priors πα = πα,γ=0 and πα,�γ=|α|−1

are wα,τ = (Nτ + |α|)/τ and wα,γ̃=|α|−1,τ = (Nτ + 1)/τ ,
respectively, when we observe Nτ .
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Thus, the integrand of (35) with γ = 0 and γ̃ = |α| − 1 is

wEλ

�
wα,τ

w
− 1 − log

wα,τ

w

�
−wEλ

�
wα,γ̃=|α|−1,τ

w
− 1 − log

wα,γ̃=|α|−1,τ

w

�
=

|α|
τ
−w Eλ

�
log

Nτ + |α|
τ

�
− 1

τ
+ w Eλ

�
log

Nτ + 1
τ

�
=

1
τ

�
|α| − 1 − τw Eλ

�
log(Nτ + |α|)

�
+ τw Eλ

�
log(Nτ + 1)

��
. (36)

From Lemma 3 below, (36) is positive.
Proof of Lemma 3:

c −
∞�

n=0

exp(−θ)
θn+1

n!

�
log(n + 1 + c) − log(n + 1)

�
≥ c −

∞�
n=0

exp(−θ)
θn+1

n!
c

n + 1

= c exp(−θ)
�

exp θ −
∞�

n=0

θn+1

(n + 1)!

�
=c exp(−θ) > 0.

Proof of Theorem 5: We prove the first part (1) for
Bayesian predictive densities using Blyth’s method with a
convex loss. Blyth’s method is widely used to prove admissi-
bility usually for problems with a finite-dimensional parameter
space. The method with a convex loss also works for our
infinite-dimensional problem. The second part (2) for Bayes
estimators can be proved in a similar manner.

By the assumption, the distributions pλ(x) (λ ∈ Ι) are
absolutely continuous with respect to each other. The action
space P is convex because aq(y) + (1 − a)q�(y) ∈ P if
both q(y) and q�(y) belong to P and 0 ≤ a ≤ 1. The
Kullback–Leibler loss

L(λ, q) := Eλ

�
log

pλ(M, y1, . . . , yM )
q(M, y1, . . . , yM )

�
is a strictly convex function from q ∈ P to [0,∞] for every
fixed λ.

We use a monotonically increasing sequence of proper
priors defined by π

[l]
α,γ(dμ) = πα,γ(dμ)1

2h2
l (w) (l =

1, 2, . . .), where πα,γ(dμ) = pD���

α (dμ) pGa
|α|−γ,∞(w)dw =

pD���

α (dμ)w|α|−γ−1dw and

hl(w) =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 ≤ w ≤ 1

1 − log w

log l
if 1 < w ≤ l

0 if l < w.

Function sequences of this kind were introduced by [6]
and are used to prove admissibility of linear estimators
( [14]) and admissibility of predictive densities ( [21]) for
finite-dimensional independent Poisson models. Then, π

[l]
α,γ 


πα,γ for all l = 1, 2, . . .. Let C := {(w, λ) | 0 < w < 1, λ ∈
Ι}. Then, π(C) > 0 and dπ[l]/dπ = 1/2 if μ ∈ C.

In order to prove admissibility of pα,γ(y | x) based on πα,γ

with 0 < |α| − γ ≤ 1, it suffices to show

lim
l→∞

�
π[l]

α,γ(dλ)
�
Eλ

�
D(pλ(y), pα,γ(y | x))

�
− Eλ

�
D(pλ(y), p[l]

α,γ(y | x))
��

= 0, (37)

where p[l] is the Bayesian predictive density based on π
[l]
α,γ .

The proof of the sufficiency of (37) for admissibility is given
in Appendix B.

We set c = γ − |α| + 1 (0 ≤ c < 1), and gl(w) =
(1/2)h2

l (w). From Theorem 3 and (35), we have the expres-
sion�

π
[l]
α,β(dλ)

�
Eλ

�
D(p(y | λ), pα,β(y | x))

�
− Eλ

�
D(p(y | λ), p[l]

α,β(y | x))
��

=
� s+t

s


� ∞

0

gl(w)w−c

� ∞�
n=0

exp(−τw)
(τw)n

n!

×
�

n + 1 − c

τ
− �wl,τ (n)−w log

n + 1 − c

τ �wl,τ (n)

��
dw

�
dτ,

(38)

where

�wl,τ (n) =

�∞
0 w exp(−τw) (τw)n

n! w−cgl(w)dw�∞
0 exp(−τw) (τw)n

n! w−cgl(w)dw

=

�∞
0

exp(−τw)(τw)n+1−cgl(w)dw

τ
�∞
0

exp(−τw)(τw)n−cgl(w)dw

=
n + 1 − c

τ
+

�∞
0

exp(−τw)(τw)n+1−cg�l(w)dw

τ2
�∞
0

exp(−τw)(τw)n−cgl(w)dw
, (39)

because λα,γ = λ
[l]

α,γ and it does not depend on γ.
The integral (38) coincides with (22) in [21] and converges

to 0 as l goes to infinity as shown in the following.
We show that (38) converges to 0 in the same manner as

the evaluation of (22) in [21]. We include the proof here for
self-containedness.

We have� ∞

0

gl(w)w−c

� ∞�
z=0

exp(−τw)
(τw)z

z!

×
�

z + 1 − c

τ
− �wl,τ−w log

z + 1 − c

τ �wl,τ

� 
dw

≤
� ∞

0

gl(w)w−c


 ∞�
z=0

exp(−τw)
(τw)z

z!

×
�

z + 1 − c

τ
− �wl,τ + w

τ �wl,τ − (z + 1 − c)
z + 1 − c

��
dw

=
∞�

z=0



τc−1

z!

�� ∞

0

exp(−τw)gl(w)
(τw)z+1−c

z + 1 − c
dw

−
� ∞

0

exp(−τw)gl(w)(τw)z−cdw

�
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× {τ �wl,τ − (z + 1 − c)}
�

=
∞�

z=0

�
τc−2

z!

� ∞

0

exp(−τw)g�l(w)
(τw)z+1−c

z + 1 − c
dw

× {τ �wl,τ − (z + 1 − c)}
�
. (40)

Using (39) and the inequality (z +1)/(z+1− c) ≤ 1/(1− c),
where 0 ≤ c < 1, we have� ∞

0

gl(w)w−c

� ∞�
z=0

exp(−τw)
(τw)z

z!

×
�

z + 1 − c

τ
− �wl,τ−w log

z + 1 − c

τ �wl,τ

��
dw

≤ τc−3

1−c

∞�
z=0

1
(z+1)!

�� ∞

0

exp(−τw)(τw)z+1−cg�l(w)dw

�2

�
exp(−τw)(τw)z−cgl(w)dw

=
τc−3

1 − c


 ∞�
z=0

2
(z + 1)!

×

�� ∞

0

exp(−τw)(τw)z−c(τwh�
l(w))hl(w)dw

�2

�
exp(−τμ)(τw)z−ch2

l (w)dw

�

≤ τc−3

1 − c


 ∞�
z=0

2
(z + 1)!

×
�� ∞

0

exp(−τw)(τw)z−c(τwh�
l(w))2dw

�
×
�� ∞

0

exp(−τw)(τw)z−ch2
l (w)dw

�
!��

exp(−τw)(τw)z−ch2
l (w)dw

��

=
τc−3

1 − c

∞�
z=0

2
(z + 1)!

� ∞

0

exp(−τw)(τw)z+2−c(h�
l(w))2dw

=
2τc−3

1 − c

� ∞

0

{1 − exp(−τw)}(τw)1−c(h�
l(w))2dw

≤ 2
(1 − c)τ2

� ∞

0

w1−c(h�
l(w))2dw (41)

The derivative of hl(w) is

h�
l(w) =

⎧⎪⎪⎨⎪⎪⎩
0 if 0 < w < 1

− 1
w log l

if 1 < w < l

0 if l < w.

(42)

From (38), (41) and (42), we have�
π

[l]
α,β(dλ)Eλ

�
D(pλ(y), pα,β(y | x))

− D(pλ(y), p[l]
α,β(y | x))

�
≤
� s+t

s

�
2

(1 − c)τ2

� ∞

0

w1−c(h�
l(w))2dw

�
dτ

=
� s+t

s

�
2

(1 − c)τ2

� l

1

1
w1+c(log l)2

dw

�
dτ

≤
� s+t

s

2
(1 − c)τ2

1
log l

dτ =
2

(1 − c) log l

�
1
s
− 1

s + t

�
→ 0 as l → ∞.

APPENDIX B
SUFFICIENCY OF (37) FOR ADMISSIBILITY

We show that (37) is sufficient for admissibility. The proof
for our infinite-dimensional problem parallels the proof for
finite-dimensional problems with a convex loss (see [28]
Chapter 3).

We denote a map from x to a probability distribution of y
by q, and denote the probability density that is the image of x
under q by qx. The map q corresponds to a predictive density.

Let L(λ, qx) be a loss function, which is strictly convex
with respect to qx, and let R(λ, q) := Eλ[L(λ, qx)], where x
is distributed according to a probability density pλ. Assume
that a predictive density q satisfying

lim
l→∞

�
R(π[l], q) − R(π[l], q[l])

�
= 0, (43)

where q[l] is the Bayesian predictive density based on π[l]

and R(π[l], q[l]) :=
�

R(λ, q[l])π[l](dλ) is the Bayes risk of
q[l] with respect to the prior π[l], is inadmissible. Assume
that dπ[l]/dπ ≥ a > 0 if μ ∈ C for a subset C of the
parameter space. We assume that all probability measures in
{pλ : λ ∈ Ι} are mutually absolutely continuous with respect
to each other.

In our problem, (43) corresponds to (37), L is the
Kullback–Leibler loss, π[l] = π

[l]
α,γ , and dπ[l]/dπ = 1/2 if

μ ∈ C := {(w, λ) | 0 < w < 1, λ ∈ Ι}.
We prove admissibility of the predictive density q by contra-

diction. Since q is inadmissible, there exists another predictive
density q� such that, for all λ ∈ Ι, R(λ, q�) ≤ R(λ, q), and for
at least one parameter value λ0 ∈ Ι, R(λ0, q

�) < R(λ0, q).
Since L(λ, qx) is strictly convex with respect to qx for every λ,

L(λ, q��x) ≤ 1
2
	
L(λ, q�x) + L(λ, qx)



,

where q�� := (q + q�)/2, for every λ and x. For every x such
that qx �= q�x, we have

L(λ, q��x) <
1
2
	
L(λ, q�x) + L(λ, qx)



.

Here, Pλ0(q�x �= qx) > 0 because otherwise R(λ0, q
�) <

R(λ0, q) does not hold. Thus, Pλ(q�x �= qx) > 0 for every
λ because all probability measures pλ (λ ∈ Ι) are mutually
absolutely continuous with respect to each other. Thus, for
every λ, R(λ, q��) < R(λ, q). Therefore, for all l = 1, 2, 3, . . .,

R(π[l], q) − R(π[l], q[l]) ≥ R(π[l], q) − R(π[l], q��)

≥
�

C

{R(λ, q) − R(λ, q��)} π[l](dλ)

≥ a

�
C

{R(λ, q) − R(λ, q��)}π(dλ) > 0,

where the second inequality is because C is a subset of the
parameter space Ι. This contradicts (43).
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