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Abstract— This paper proposes Bayes-optimal convolutional
approximate message-passing (CAMP) for signal recovery in
compressed sensing. CAMP uses the same low-complexity
matched filter (MF) for interference suppression as approximate
message-passing (AMP). To improve the convergence property of
AMP for ill-conditioned sensing matrices, the so-called Onsager
correction term in AMP is replaced by a convolution of all
preceding messages. The tap coefficients in the convolution are
determined so as to realize asymptotic Gaussianity of estimation
errors via state evolution (SE) under the assumption of orthog-
onally invariant sensing matrices. An SE equation is derived
to optimize the sequence of denoisers in CAMP. The optimized
CAMP is proved to be Bayes-optimal for all orthogonally
invariant sensing matrices if the SE equation converges to a
fixed-point and if the fixed-point is unique. For sensing matrices
with low-to-moderate condition numbers, CAMP can achieve the
same performance as high-complexity orthogonal/vector AMP
that requires the linear minimum mean-square error (LMMSE)
filter instead of the MF.

Index Terms— Compressed sensing, approximate
message-passing (AMP), orthogonal/vector AMP, convolutional
AMP, large system limit, state evolution.

I. INTRODUCTION

A. Compressed Sensing

COMPRESSED sensing (CS) [1], [2] is a powerful tech-
nique for recovering sparse signals from compressed

measurements. Under the assumption of linear measurements,
CS is formulated as estimation of a sparse signal vector
x ∈ R

N from a compressed measurement vector y ∈ R
M

(M ≤ N) and a sensing matrix A ∈ R
M×N , given by

y = Ax+w, (1)

where w ∈ R
M is an unknown additive noise vector.

For simplicity in information-theoretic discussion [3], sup-
pose that the signal vector x has independent and identically
distributed (i.i.d.) elements. Sparsity of signals is measured
with the Rényi information dimension [4] of each signal
element. When each signal takes non-zero real values with
probability ρ ∈ [0, 1], the information dimension is equal to ρ.

Manuscript received March 27, 2020; revised April 1, 2021; accepted
April 28, 2021. Date of publication May 4, 2021; date of current version
June 16, 2021. This work was supported in part by the Grant-in-Aid for
Scientific Research (B) (JSPS KAKENHI), Japan, under Grant 18H01441 and
Grant 21H01326. This article was presented in part at the 2019 IEEE Inter-
national Symposium on Information Theory. This article is to be presented at
the 2021 IEEE International Symposium on Information Theory.

The author is with the Department of Electrical and Electronic Information
Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
(e-mail: takeuchi@ee.tut.ac.jp).

Communicated by R. Venkataramanan, Associate Editor for Machine
Learning.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2021.3077471.

Digital Object Identifier 10.1109/TIT.2021.3077471

In the noiseless case w = 0, Wu and Verdú [3] proved that, if
and only if the compression rate δ = M/N is equal to or larger
than the information dimension, there are some sensing matrix
A and method for signal recovery such that the signal vector
x can be recovered with negligibly small error probability
in the large system limit, where M and N tend to infinity
with the compression rate δ kept constant. Thus, an important
issue in CS is a construction of practical sensing matrices and
a low-complexity algorithm for signal recovery achieving the
information-theoretic compression limit.

Important examples of sensing matrices are zero-mean i.i.d.
sensing matrices [5] and random sensing matrices with orthog-
onal rows [6]. The information-theoretic compression limit of
zero-mean i.i.d. sensing matrices was analyzed with the non-
rigorous replica method [7], [8]—a tool developed in statistical
mechanics [9], [10]. The compression limit is characterized via
a potential function called free energy. The results themselves
were rigorously justified in [11]–[14] while the justification
of the replica method is still open. It is a simple exercise to
prove that the compression limit for zero-mean i.i.d. sensing
matrices is equal to the Rényi information dimension in the
noiseless case, by using a relationship between the information
dimension and mutual information [15, Theorem 6].

Random sensing matrices with orthogonal rows can be con-
structed efficiently in terms of both time and space complexity
while zero-mean i.i.d. sensing matrices require O(MN) time
and memory for matrix-vector multiplication. When the fast
Fourier transform or fast Walsh-Hadamard transform is used,
the matrix-vector multiplication needs O(N logN) time and
O(N) memory. Thus, random sensing matrices with orthogo-
nal rows are preferable from a practical point of view.

The class of orthogonally invariant matrices includes
zero-mean i.i.d. Gaussian matrices and Haar orthogonal matri-
ces [16], [17], of which the latter is regarded as an idealized
model of random matrices with orthogonal rows. The class
allows us to analyze the information-theoretic compression
limit in signal recovery. The replica method [18], [19] was
used to analyze the compression limit for orthogonally invari-
ant sensing matrices. The replica results themselves were jus-
tified in [20]. In particular, Haar orthogonal matrices achieve
the Welch lower bound [21] and were proved to be optimal for
Gaussian [22] and general [23] signals. In the noiseless case,
of course, Haar orthogonal sensing matrices achieve the com-
pression rate that is equal to the Rényi information dimension.

In practical systems, the measurement vector is subject not
only to additive noise but also to multiplicative noise. A typ-
ical example is fading in wireless communication systems
[24], [25]. The effective sensing matrix containing fading
influence may be ill-conditioned even if a Haar orthogonal
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sensing matrix is used. Such effective sensing matrices can be
modeled as orthogonally invariant matrices. Thus, an ultimate
algorithm for signal recovery is required to be low complex-
ity and Bayes-optimal for all orthogonally invariant sensing
matrices.

B. Message-Passing

A promising solution to signal recovery is message-passing
(MP). Approximate message-passing (AMP) [26] is a
low-complexity and powerful algorithm for signal recov-
ery from zero-mean i.i.d. sub-Gaussian measurements.
Bayes-optimal AMP is regarded as an exact large-system
approximation of loopy belief propagation (BP) [27]. The
main feature of AMP is the so-called Onsager correction to
realize asymptotic Gaussianity of the estimation errors before
denoising. The Onsager correction originates from that in the
Thouless-Anderson-Palmer (TAP) equation [28] for a solvable
spin glass model with i.i.d. interaction between all spins [29].
The Onsager correction cancels intractable dependencies of
the current estimation error on past estimation errors due to
i.i.d. dense sensing matrices.

The convergence property of AMP was analyzed rigorously
via state evolution (SE) [30], [31], inspired by Bolthausen’s
conditioning technique [32]. SE is a dense counterpart of
density evolution [33] in sparse systems. SE tracks a few
state variables to describe rigorous dynamics of MP in the
large system limit. SE analysis in [30], [31] implies that AMP
is Bayes-optimal for zero-mean i.i.d. sub-Gaussian sensing
matrices when the compression rate δ is larger than a certain
value called BP threshold [34]. Spatial coupling [34]–[37] is
needed to realize the optimality of AMP for any compression
rate. However, this paper does not consider spatial coupling
since spatial coupling is a universal technique [34] to improve
the performance of MP.

A disadvantage of AMP is that AMP fails to con-
verge when the sensing matrix is non-zero mean [38] or
ill-conditioned [39]. To solve this issue, orthogonal AMP
(OAMP) [40] and vector AMP [41], [42] were proposed. The
two MP algorithms are equivalent to each other. Bayes-optimal
OAMP/VAMP can be regarded as an exact large-system
approximation of expectation propagation (EP) [43]–[46].
Rigorous SE analysis [41], [42], [45], [46] proved that
OAMP/VAMP is Bayes-optimal for orthogonally invariant
sensing matrices when the compression rate is larger than
BP threshold. While non-zero mean matrices are outside the
class of orthogonally invariant matrices, numerical simulations
in [42] indicated that OAMP/VAMP can treat the non-zero
mean case.

A prototype of OAMP/VAMP was originally proposed
by Opper and Winther [47, Appendix D]. Historically,
they [48] generalized the Onsager correction in the TAP
equation [28] from zero-mean i.i.d. spin interaction to orthog-
onally invariant interaction. Their method was formulated
as the expectation-consistency (EC) approximation [47]. The
EC approximation itself does not produce MP algorithms
but a potential function of which a local minimum should
be solved with some MP algorithm. OAMP/VAMP can be

derived from an EP-type iteration–called a single loop algo-
rithm [47]—to solve a local minimum of the EC potential.
See [49, Appendix A] for the derivation of OAMP/VAMP via
the EC approximation.

The main weakness of OAMP/VAMP is a per-iteration
requirement of the linear minimum mean-square
error (LMMSE) filter, of which the time complexity
is O(M3 + M2N) per iteration. The singular-value
decomposition (SVD) of the sensing matrix allows us to
circumvent the use of the LMMSE filter [42]. However,
the complexity of the SVD itself is high in general. The
performance of OAMP/VAMP degrades significantly when
the LMMSE filter is replaced by the low-complexity matched
filter (MF) [40] used in AMP. Thus, OAMP/VAMP can be
applied only to limited problems in which the SVD of the
sensing matrix is computed efficiently.

In summary, it is still open to construct a low-complexity
and Bayes-optimal MP algorithm for all orthogonally invariant
sensing matrices. The purpose of this paper is to tackle the
design issue of such ultimate MP algorithms.

C. Methodology

The main idea of this paper is to extend the class of MP
algorithms. Conventional MP algorithms use update rules that
depend only on messages in the latest iteration. Long-memory
MP algorithms considered in this paper are allowed to depend
on messages in all preceding iterations.

This class of long-memory MP algorithms was motivated
by SE analysis of AMP for orthogonally invariant sensing
matrices [50]. When the asymptotic singular-value distribution
of the sensing matrix is equal to that of zero-mean i.i.d.
Gaussian matrices, the error model of AMP was proved to
be an instance of a general error model [50], in which each
error depends on errors in all preceding iterations. This result
implies that the Onsager correction in AMP uses messages in
all preceding iterations to realize the asymptotic Gaussianity
of the current estimation error while the representation itself
of the correction term looks as if only messages in the latest
iteration are utilized. Inspired by this observation, we consider
long-memory MP algorithms as a starting point.

The idea of long-memory MP was originally proposed in
Opper, Çakmak, and Winther’s paper [51] to solve the TAP
equations for spin glass models with orthogonally invariant
interaction. Their methodology was based on non-rigorous
dynamical functional theory. After the initial submission of
this paper, their results were rigorously justified via SE in [52].

The proposed design of long-memory MP consists of
three steps: A first step is an establishment of rigorous SE
for analyzing the dynamics of long-memory MP algorithms
for orthogonally invariant sensing matrices. This step has
been already established in [50] by generalizing conventional
SE analysis [42], [46] to the long-memory case. The SE
analysis provides a sufficient condition for a long-memory
MP algorithm to have Gaussian-distributed estimation errors
in the large system limit. The main advantage in the SE
analysis is to provide a systematic design of long-memory
MP that satisfies the asymptotic Gaussianity in estimation
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errors while the class of long-memory MP is slightly smaller
than in [51], [52].

A second step is to modify the Onsager correction in AMP
so as to satisfy the sufficient condition for the asymptotic
Gaussianity. A solvable class of long-memory MP was pro-
posed in [53], where the Onsager correction was defined as
a convolution of messages in all preceding iterations. The tap
coefficients in the convolution were determined so as to satisfy
the sufficient condition. Thus, long-memory MP proposed
in [53] was called convolutional AMP (CAMP) and is the
main object of this paper.

This paper generalizes CAMP in [53], motivated by an
implementation of OAMP/VAMP based on conjugate gra-
dient (CG) [54]. OAMP/VAMP applies the LMMSE filter
to a message z ∈ R

M after interference subtraction. The
LMMSE filter is decomposed into a noise-whitening filter
and MF. In principle, CG approximates the output of the
noise-whitening filter with a vector in the Krylov subspace
spanned by {z,AATz, (AAT)2z, . . .} i.e. a finite weighted
sum of {(AAT)jz}. On the other hand, messages in the
original CAMP [53] are in the 0th Krylov subspace {αz :
α ∈ R} since only the MF is used. To fill this gap, we gener-
alize a convolution of all preceding messages in the original
CAMP [53] to that of affine transforms of the preceding
messages.

The last step is to optimize the sequence of denoisers
in CAMP [55]. The optimization requires information on
the distribution of the estimation errors before denoising in
each iteration. Since the estimation errors are asymptoti-
cally Gaussian-distributed, we need to track the dynamics
of the variance of the estimation errors. To analyze this
dynamics, we utilize the SE analysis established in the first
step.

D. Contributions

The contributions of this paper are sixfold: A first con-
tribution (Theorem 1 in Section II) is to propose a general
error model for long-memory MP and prove the asymptotic
Gaussianity of estimation errors in the general error model via
rigorous SE under the assumption of orthogonally invariant
sensing matrices. The general error model contains both error
models of AMP and OAMP/VAMP.

A second contribution (Section III-A) is the addition of a
convolution proportional to AAT to the Onsager correction
in [53], according to the above-mentioned argument on the
Krylov subspace. This addition improves the convergence
property of CAMP.

A third contribution (Theorem 2 in Section III-C) is to
design tap coefficients in the convolution so as to guarantee
the asymptotic Gaussianity of estimation errors for all orthog-
onally invariant sensing matrices. Part of the tap coefficients
are used to realize the asymptotic Gaussianity. The remain-
ing coefficients can be utilized to improve the convergence
property of CAMP.

A fourth contribution (Theorem 3 in Section III-C) is to
present the designed tap coefficients in closed-form. This
closed-form representation circumvents numerical instability

in solving the tap coefficients numerically. The third and fourth
contributions are based on the same proof strategy as in [53].

A fifth contribution (Theorems 4 and 5 in Section III-D)
is to optimize the sequence of denoisers in CAMP. An SE
equation is derived to describe the dynamics of the variance
of the estimation errors before denoising in CAMP. The SE
equation is a two-dimensional nonlinear difference equation.
By analyzing the fixed-point of the SE equation, we prove
that optimized CAMP is Bayes-optimal for all orthogonally
invariant sensing matrices if the SE equation converges to a
fixed-point and if the fixed-point is unique.

The last contribution (Section IV) is numerical evaluation
of CAMP. The remaining parameters in the Bayes-optimal
CAMP are optimized numerically to improve the convergence
property. Numerical simulations show that the CAMP can
converge for sensing matrices with larger condition numbers
than the original CAMP [53] when the design parameters
are optimized. The CAMP can achieve the same performance
as OAMP/VAMP for sensing matrices with low-to-moderate
condition numbers while it is inferior to OAMP/VAMP for
high condition numbers.

E. Organization

The remainder of this paper is organized as follows: After
summarizing the notation used in this paper, we present a
unified SE framework for analyzing long-memory MP under
the assumption of orthogonally invariant sensing matrices
in Section II. This section corresponds to the first step for
proposing Bayes-optimal CAMP.

In Section III, we propose CAMP with design parameters.
This section corresponds to the remaining two steps for
establishing Bayes-optimal CAMP. The proposed CAMP is
more general than in [53]. We utilize the SE framework
established in Section II to determine the tap coefficients in
CAMP that guarantee the asymptotic Gaussianity of estimation
errors. To design the remaining design parameters, we derive
an SE equation to optimize the performance of signal recovery.

Section IV presents numerical results. The remaining design
parameters in CAMP are optimized via numerical simulations.
The optimized CAMP is compared to conventional AMP and
OAMP/VAMP via the SE equation and numerical simulations.
Section V concludes this paper. The details for the proofs of
the main theorems are presented in appendices.

F. Notation

For a matrix M , the transpose of M is denoted by MT.
The notation Tr(A) represents the trace of a square matrix A.
For a symmetric matrix A, the minimum eigenvalue of A is
written as λmin(A). The notation OM×N denotes the space
of all possible M ×N matrices with orthonormal columns for
M ≥ N and orthonormal rows for M < N . In particular,
ON×N reduces to the space ON of all possible N × N
orthogonal matrices.

For a vector v, the notation diag(v) denotes the diago-
nal matrix of which the nth diagonal element is equal to
vn = [v]n. The norm �v� =

√
vTv represents the Euclidean

norm. For a matrix M i with an index i, the tth column of M i
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is denoted by mi,t. Furthermore, we write the nth element of
mi,t as mi,t,n.

The Kronecker delta is denoted by δτ,t while the Dirac
delta function is represented as δ(·). We write the Gaussian
distribution with mean μ and covariance Σ as N (μ,Σ). The
notations

a.s.→ and
a.s.= denote almost sure convergence and

equivalence, respectively.
We use the notational convention

∑t2
t=t1

· · · = 0 and∏t2
t=t1

· · · = 1 for t1 > t2. For any multivariate function
φ : R

t → R, the notation ∂t′φ for t� = 0, . . . , t − 1 denotes
the partial derivative of φ with respect to the t�th variable xt′ ,

∂t′φ =
∂φ

∂xt′
(x0, . . . , xt−1). (2)

For any vector v ∈ R
N , the notation �v	 = N−1

∑N
n=1 vn

represents the arithmetic mean of the elements. For any
scalar function f :∈ R → R, the notation f(v) means
the element-wise application of f to a vector v, i.e.
[f(v)]n = f(vn).

For a sequence {pt}∞t=0, we define the Z-transform of {pt}
as

P (z) =
∞∑

t=0

ptz
−t. (3)

For two sequences {pt, qt}∞t=0, we define the convolution
operator ∗ as

pt+i ∗ qt+j =
t∑

τ=0

pτ+iqt−τ+j, (4)

with pt = 0 and qt = 0 for t < 0. For finite-length sequences
{pt}T

t=0 of length T+1, we transform them into infinite-length
sequences by adding pt = 0 and qt = 0 for all t > T .

For two arrays {at′,t, bt′,t : t�, t = 0, . . . ,∞}, we write the
two-dimensional convolution as

at′+i,t+j ∗ bt′+k,t+l =
t′∑

τ ′=0

t∑
τ=0

aτ ′+i,τ+jbt′−τ ′+k,t−τ+l, (5)

where at′,t = 0 and bt′,t = 0 are defined for t� < 0 or t < 0.
Whether a convolution is one-dimensional can be distin-

guished as follows: A convolution is one-dimensional, such
as at+i ∗ bt+j , when both operands contain only one identical
subscript. On the other hand, a convolution is two-dimensional,
such as (at′at+i) ∗ bt′+j,t, when both operands include two
identical subscripts.

II. UNIFIED FRAMEWORK

A. Definitions and Assumptions

We define the statistical properties of the random variables
in the measurement model (1). The performance of MP is
commonly measured in terms of the mean-square error (MSE).
Nonetheless, we follow [30] to consider a general performance
measure in terms of separable and pseudo-Lipschitz functions
while we assume the separability and Lipschitz-continuity for
denoisers.

Definition 1: A vector-valued function f =
(f1, . . . , fN)T : R

N×t → R
N is said to be separable if

[f(x1, . . . ,xt)]n = fn(x1,n, . . . , xt,n) holds for all xi ∈ R
N .

Definition 2: A function f : R
t → R is said to be pseudo-

Lipschitz of order k [30] if there are some Lipschitz constant
L > 0 and some order k ∈ N such that for all x ∈ R

t and
y ∈ R

t

|f(x) − f(y)| ≤ L(1 + �x�k−1 + �y�k−1)�x− y�. (6)

By definition, any pseudo-Lipschitz function of order
k = 1 is Lipschitz-continuous. A vector-valued function
f = (f1, . . . , fN )T is pseudo-Lipschitz if all element func-
tions {fn} are pseudo-Lipschitz.

Definition 3: A separable pseudo-Lipschitz function f :
R

N×t → R
N is said to be proper if the Lipschitz constant

Ln > 0 of the nth function fn satisfies

lim sup
N→∞

1
N

N∑
n=1

Lj
n <∞ (7)

for any j ∈ N.
A proper pseudo-Lipschitz function allows us apply a proof

strategy for pseudo-Lipschitz functions with n-independent
Lipschitz constant Ln = L to the n-dependent case straight-
forwardly. The space of all possible separable and proper
pseudo-Lipschitz functions of order k is denoted by PL(k).
We have the inclusion relation PL(k) ⊂ PL(k�) for all k < k�

since �x�k ≤ �x�k′
holds for �x� 
 1.

We assume statistical properties of the signal vector asso-
ciated with separable and proper pseudo-Lipschitz functions
of order k ≥ 2. Note that the integer k in the following
assumptions is an identical parameter that is equal to the order
of separable and proper pseudo-Lipschitz functions used in SE
to measure the performance of MP. If the MSE is considered,
the integer k is set to 2.

Assumption 1: The signal vector x satisfies the following
strong law of large numbers:

�f (x)	 − E [�f (x)	] a.s.→ 0 (8)

as N → ∞ for any separable and proper pseudo-Lipschitz
function f : R

N → R
N of order k ≥ 2. Furthermore, x has

zero-mean and bounded (2k − 2 + �)th moments for some
� > 0.

Assumption 1 follows from the classical strong law of large
numbers when x has i.i.d. elements.

Definition 4: An orthogonal matrix V ∈ ON is said to
be Haar-distributed [16] if V is orthogonally invariant, i.e.
V ∼ ΤVΨ for all orthogonal matrices Τ,Ψ ∈ ON indepen-
dent of V .

Assumption 2: The sensing matrix A is right-orthogonally
invariant, i.e. A ∼ AΨ for any orthogonal matrix Ψ ∈ ON

independent of A. More precisely, the orthogonal matrix
V ∈ ON in the SVD A = UΣV T is Haar-distributed and
independent of UΣ. Furthermore, the empirical eigenvalue
distribution of ATA converges almost surely to a compactly
supported deterministic distribution with unit first moment in
the large system limit.

The assumption of unit first moment implies the almost sure
convergence N−1Tr(ATA) a.s.→ 1 in the large system limit.
Assumption 2 holds when A has zero-mean i.i.d. Gaussian
elements with variance M−1. As shown in SE, the asymptotic
Gaussianity of estimation errors in MP depends heavily on the
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Haar assumption of V . Intuitively, the orthogonal transform
V a of a vector a ∈ R

N is distributed as N−1/2�a�z in which
z ∼ N (0, IN ) is a standard Gaussian vector and independent
of �a�. When the amplitude N−1/2�a� tends to a constant as
N → ∞, the vector V a looks like a Gaussian vector. This is
a rough intuition on the asymptotic Gaussianity of estimation
errors.

Assumption 3: The noise vector w is orthogonally
invariant, i.e. w ∼ Τw for any orthogonal matrix Τ ∈ OM

independent of w. Furthermore, w has zero-mean,
limM→∞M−1�w�2 a.s.= σ2 > 0, and bounded (2k − 2 + �)th
moments for some � > 0.

Assumption 3 holds when w ∼ N (0, σ2IM ) is an additive
white Gaussian noise (AWGN) vector. It holds for UTw
when the sensing matrix A is left-orthogonally invariant, i.e.
A ∼ ΤA for any orthogonal matrix Τ ∈ OM independent
of A.

B. General Error Model

We propose a unified framework of SE for analyzing
MP algorithms that have asymptotically Gaussian-distributed
estimation errors for orthogonally invariant sensing matrices.
Instead of starting with concrete MP algorithms, we consider
a general class of error models. The proposed class does
not necessarily contain the error models of all possible long-
memory MP algorithms. However, it is a natural class of error
models that allows us to prove the asymptotic Gaussianity of
estimation errors for orthogonally invariant sensing matrices
via a generalization of conventional SE [46].

Let ht ∈ R
N and qt+1 ∈ R

N denote error vectors in
iteration t before and after denoising, respectively. We assume
that the error vectors are recursively given by

bt = V Tq̃t, q̃t = qt −
t−1∑
t′=0

�∂t′ψt−1	ht′ , (9)

mt = φt(Bt+1, w̃;λ), (10)

ht = V m̃t, m̃t = mt −
t∑

t′=0

�∂t′φt	bt′ , (11)

qt+1 = ψt(Ht+1,x), (12)

with q0 = −x. In (9), the orthogonal matrix V ∈ ON

consists of the right-singular vectors in the SVDA = UΣV T,
with U ∈ OM . In (10) and (12), we have defined Bt+1 =
(b0, . . . , bt) and Ht+1 = (h0, . . . ,ht). Furthermore, λ ∈ R

N

is the vector of eigenvalues of ATA. The vector w̃ ∈ R
N is

given by

w̃ =
[
UTw

0

]
, (13)

where w is the additive noise vector in (1).
The vector-valued functions φt : R

N×(t+3) → R
N and

ψt : R
N×(t+2) → R

N are assumed to be separable, nonlinear,
and proper Lipschitz-continuous.

Assumption 4: The functions φt and ψt are separable. The
nonlinearities φt �= ∑t

t′=0Dt′bt′ and ψt �= ∑t
t′=0 D̃t′ht′

hold for all diagonal matrices {Dt′ , D̃t′}. The function φt is
Lipschitz-continuous with respect to the first t+2 variables and

proper while ψt is proper Lipschitz-continuous with respect
to all variables.

It might be possible to relax Assumption 4 to the
non-separable case [56]–[58]. For simplicity, however, this
paper postulates separable denoisers. The nonlinearity is
a technical condition for circumventing the zero norm
N−1�q̃t�2 = 0 or N−1�m̃t�2 = 0, which implies error-free
estimation N−1�bt�2 = 0 or N−1�ht�2 = 0.

By definition, the nth function φt,n has a λn-dependent
Lipschitz constant Ln = Ln(λn). Thus, the proper assumption
for φt may be regarded as a condition on the asymptotic
eigenvalue distribution of ATA, as well as a condition on the
denoiser φt. For example, φt is proper when the asymptotic
eigenvalue distribution has a compact support and when the
Lipschitz constant Ln(λn) itself is a pseudo-Lipschitz function
of λn.

The main feature of the general error model is in the
definitions of q̃t and m̃t. The second terms on the right-hand
sides (RHSs) of (9) and (11) are correction terms to realize
the asymptotic Gaussianity of {bt} and {ht}. The correction
terms are a modification of conventional correction that allows
us to prove the asymptotic Gaussianity via a natural general-
ization [59] of Stein’s lemma used in conventional SE [46].
See Lemma 2 in Appendix A for the details.

The following examples imply that the general error
model (9)–(12) contains those of OAMP/VAMP and AMP.

Example 1: Consider OAMP/VAMP [40], [42] with a
sequence of scalar denoisers ft : R → R:

xA→B,t = xB→A,t + γtA
TW−1

t (y −AxB→A,t), (14)

vA→B,t = γt − vB→A,t, (15)

W t = σ2IM + vB→A,tAA
T, (16)

γ−1
t =

1
N

Tr
(
W−1

t AAT
)
, (17)

xB→A,t+1 = vB→A,t+1

(
ft(xA→B,t)
δtvA→B,t

− xA→B,t

vA→B,t

)
, (18)

1
vB→A,t+1

=
1

δtvA→B,t
− 1
vA→B,t

, (19)

with δt = �f �
t(x

t
A→B)	.

It is an exercise to prove that the error model of the
OAMP/VAMP is an instance of the general error model with

[φt(bt, w̃;λ)]n = bt,n − γtλnbt,n − γt

√
λnw̃n

σ2 + vB→A,tλn
, (20)

ψt(ht,x) =
ft(x+ ht) − x

1 − δt
, (21)

by using the fact that δt converges almost surely to a constant
in the large system limit [42], [46]. The two separable func-
tions ψt and φt for the OAMP/VAMP depend only on the
vectors bt and ht in the latest iteration.

Example 2: Consider AMP [26] with a sequence of scalar
denoisers ft : R → R:

xt+1 = ft(xt +ATzt), (22)

zt = y −Axt +
δt−1

δ
zt−1. (23)

Suppose that the empirical eigenvalue distribution of ATA
is equal to that for zero-mean i.i.d. Gaussian matrix A in the
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large system limit. Then, the error model of the AMP was
proved in [50] to be an instance of the general error model
with

φt = (IN − Λ)bt − δt−1

δ
bt−1 + diag({

√
λn})w̃

+δt−1

{(
1 +

1
δ

)
IN − Λ

}
φt−1 −

δt−1δt−2

δ
φt−2,

(24)

ψt(ht,x) = ft(x+ ht) − x, (25)

with Λ = diag(λ) and δt = �f �
t(x + ht)	. Note that φt is a

function of Bt+1 while ψt is a function of ht.

C. State Evolution

A rigorous SE result for the general error model (9)–(12)
is presented in the large system limit.

Theorem 1: Suppose that Assumptions 1–4 hold. Then,
the following properties hold for all t = 0, . . . and t� = 0, . . . , t
in the large system limit:

1) The inner productsN−1m̃T
t m̃t′ and N−1q̃T

t q̃t′ converge
almost surely to some constants πt,t′ ∈ R and κt,t′ ∈ R,
respectively.

2) Suppose that ψ̃t(Ht+1,x) : R
N×(t+2) → R

N is
a separable and proper pseudo-Lipschitz function of
order k, that φ̃t(Bt+1, w̃;λ) : R

N×(t+3) → R
N is

separable, pseudo-Lipschitz of order k with respect to
the first t + 2 variables, and proper, and that Zt+1 =
(z0, . . . , zt) ∈ R

N×(t+1) denotes a zero-mean Gaussian
random matrix with covariance E[zτz

T
τ ′ ] = πτ,τ ′IN for

all τ, τ � = 0, . . . , t, while a zero-mean Gaussian random
matrix Z̃t+1 = (z̃0, . . . , z̃t) ∈ R

N×(t+1) has covariance
E[z̃τ z̃

T
τ ′ ] = κτ,τ ′IN . Then,

�ψ̃t(Ht+1,x)	 − E

[
�ψ̃t(Zt+1,x)	

]
a.s.→ 0, (26)

�φ̃t(Bt+1, w̃;λ)	 − E

[
�φ̃t(Z̃t+1, w̃;λ)	

]
a.s.→ 0. (27)

In evaluating the expectation in (27), UTw in (13) fol-
lows the zero-mean Gaussian distribution with covariance
σ2IM . In particular, for k = 1

�∂t′ψ̃t(Ht+1,x)	−E

[
�∂t′ψ̃t(Zt+1,x)	

]
a.s.→ 0,

(28)

�∂t′φ̃t(Bt+1, w̃;λ)	−E

[
�∂t′φ̃t(Z̃t+1, w̃;λ)	

]
a.s.→ 0.

(29)

3) Suppose that ψ̃t(Ht+1,x) : R
N×(t+2) → R

N is
separable and proper Lipschitz-continuous, and that
φ̃t(Bt+1, w̃;λ) : R

N×(t+3) → R
N is separable,

Lipschitz-continuous with respect to the first t + 2 vari-
ables, and proper. Then,

1
N
hT

t′

(
ψ̃t −

t∑
τ=0

〈
∂τ ψ̃t

〉
hτ

)
a.s.→ 0, (30)

1
N
bTt′

(
φ̃t −

t∑
τ=0

〈
∂τ φ̃t

〉
bτ

)
a.s.→ 0. (31)

Proof: See Appendix A.

Properties (26) and (27) are used to evaluate the perfor-
mance of MP by specifying the functions ψ̃t and φ̃t according
to a performance measure. An important observation is the
asymptotic Gaussianity of Ht+1 and Bt+1. In evaluating
the performance of MP, we can replace them with tractable
Gaussian random matrices Zt+1 and Z̃t+1.

The asymptotic Gaussianity originates from the definitions
of q̃t and m̃t in (9) and (11). Properties (30) and (31)
imply the asymptotic orthogonality N−1hT

t′ q̃t+1
a.s.→ 0 and

N−1bTt′m̃t
a.s.→ 0. This orthogonality is used to prove that the

distributions of Ht+1 and Bt+1 are asymptotically Gaussian.
Properties (30) and (31) can be regarded as computation

formulas to evaluate N−1hT
t′ψ̃t and N−1bTt′φ̃t. They can be

computed via linear combinations of {N−1hT
t′hτ}t

τ=0 and
{N−1bTt′bτ}t

τ=0. In particular, (9), (11), and Property 1) in
Theorem 1 imply N−1hT

t′hτ
a.s.→ πt′,τ and N−1bTt′bτ

a.s.→ κt′,τ .
Furthermore, the coefficients in the linear combinations can be
computed with (28) and (29). From these observations, the SE
equations of the general error model are given as dynamical
systems with respect to {πt,t′ , κt,t′} in general.

We do not derive SE equations with respect to {πt,t′ , κt,t′}
in a general form. Instead, we derive SE equations after
specifying MP. The usefulness of Theorem 1 is clarified in
deriving SE equations.

III. SIGNAL RECOVERY

A. Convolutional Approximate Message-Passing

Let xt ∈ R
N denote an estimator of the signal vector x in

iteration t. CAMP computes the estimator xt recursively as

xt+1 = ft(xt +ATzt), (32)

zt = y −Axt +
t−1∑
τ=0

δ(t−1)
τ (θt−τAA

T − gt−τIM )zτ ,

(33)

with the initial condition x0 = 0, where δ(t−1)
τ =

∏(t−1)
t′=τ δt′

is the product of {δt′} given by

δt =
〈
f �

t(xt +ATzt)
〉
. (34)

In (32) and (33), A and y are the sensing matrix and
the measurement vector in (1), respectively. The functions
{ft : R → R} are a sequence of Lipschitz-continuous
denoisers. The tap coefficients {gτ ∈ R} and {θτ ∈ R} in
the convolution are design parameters. The parameters {θτ}
are optimized to improve the performance of the CAMP
while {gτ} are determined so as to realize the asymptotic
Gaussianity of the estimation errors via Theorem 1.

To impose the initial condition x0 = 0, it is convenient to
introduce the notational convention f−1(·) = 0, which is used
throughout this paper.

The CAMP is a generalization of AMP [26] and reduces
to AMP when g1 = −δ−1, gτ = 0 for τ > 1, and
θτ = 0 hold. Also, as a generalization of CAMP in [53],
the affine transform (θt−τAA

T−gt−τIM )zτ has been applied
before the convolution. Nonetheless, the proposed MP is called
CAMP simply. In particular, the MP algorithm reduces to the
original CAMP [53] when θτ = 0 is assumed.
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Remark 1: The design parameters {θτ} are not required
and can be set to zero for sensing matrices with identical
non-zero singular values since AAT reduces to the identity
matrix with the exception of a constant factor. Thus, non-zero
parameters {θτ} should be introduced only for the case of
non-identical singular values.

B. Error Model

To design the parameters gτ and θτ via Theo-
rem 1, we derive an error model of the CAMP. Let
ht = xt + ATzt − x and qt+1 = xt+1 − x denote the
error vectors before and after denoising ft, respectively. Then,
we have

qt+1 = ft(x+ ht) − x ≡ ιt(ht,x), (35)

q̃t+1 = qt+1 − δtht. (36)

Using the notational convention f−1(·) = 0, we obtain the
initial condition q0 = −x imposed in the general error model.

We define mt = V Tht and bt = V Tq̃t to formulate
the error model of the CAMP in a form corresponding to
the general error model (9)–(12). Substituting the definition
ht = xt +ATzt − x into mt = V Tht yields

mt = V Tqt + ΣTUTzt, (37)

where we have used the definition qt = xt −x and the SVD
A = UΣV T. We utilize the definitions (36), bt = V Tq̃t,
and mt = V Tht to obtain

V Tqt = bt + δt−1mt−1. (38)

Combining these two equations yields

ΣTUTzt = mt − bt − δt−1mt−1. (39)

To obtain a closed-form equation with respect to mt, we
left-multiply (33) by ΣTUT and use (1) to have

ΣTUTzt = −ΛV Tqt + ΣTUTw

+
t−1∑
τ=0

δ(t−1)
τ (θt−τΛ − gt−τIM )ΣTUTzτ , (40)

with Λ = ΣTΣ. Substituting (38) and (39) into this expres-
sion, we arrive at

mt = (IN − Λ) (bt + δt−1mt−1) + ΣTUTw

+
t−1∑
τ=0

δ
(t−1)
τ (θt−τΛ− gt−τIM )

·(mτ − bτ − δτ−1mτ−1), (41)

where any vector with a negative index is set to zero. This
expression implies that φt for the CAMP depends on all
messages Bt+1.

We note that Assumption 4 holds under Assump-
tion 2 since the denoiser ft has been assumed to be
Lipschitz-continuous.

C. Asymptotic Gaussianity

We compare the obtained error model with the general error
model (9)–(12). The only difference is in (11): The correction
m̃t ofmt is used to define ht in the general error model while

no correction is performed in the error model of the CAMP.
Thus, the general error model contains the error model of the
CAMP when �∂t′mt	 = 0 holds for all t� = 0, . . . , t. In the
CAMP, the parameters {gτ} are determined so as to guarantee
�∂t′mt	 = 0 in the large system limit.

Let μj denote the jth moment of the asymptotic eigenvalue
distribution of ATA, given by

μj = lim
M=δN→∞

1
N

Tr(Λj). (42)

Assumption 2 implies μ1 = 1. We define a coupled dynamical
system {g(j)

τ } determined via the tap coefficients {gτ} and
{θτ} as

g
(j)
0 = μj+1 − μj , (43)

g
(j)
1 = g

(j)
0 − g

(j+1)
0 − g1(g

(j)
0 + μj)

+ θ1(g
(j+1)
0 + μj+1), (44)

g(j)
τ = g

(j)
τ−1 − g

(j+1)
τ−1 − gτμj + θτμj+1

+
τ−1∑
τ ′=0

(θτ−τ ′g
(j+1)
τ ′ − gτ−τ ′g

(j)
τ ′ )

−
τ−1∑
τ ′=1

(θτ−τ ′g
(j+1)
τ ′−1 − gτ−τ ′g

(j)
τ ′−1) (45)

for τ > 1.
Theorem 2: Suppose that Assumptions 1–3 hold, that the

denoiser ft is Lipschitz-continuous, and that the tap coeffi-
cients {gτ} and {θτ} in the CAMP satisfy

g1 = θ1(g
(1)
0 + 1) − g

(1)
0 , (46)

gτ = θτ − g
(1)
τ−1 +

τ−1∑
τ ′=0

θτ−τ ′g
(1)
τ ′ −

τ−1∑
τ ′=1

θτ−τ ′g
(1)
τ ′−1, (47)

where {g(1)
τ } is governed by the dynamical system (43)–(45).

Then, �∂t′mt	 → 0 holds in the large system limit, i.e. the
error model of the CAMP is included into the general error
model.

Proof: Let

g
(j)
t′,t = − lim

M=δN→∞
〈
Λj∂t′mt

〉
. (48)

It is sufficient to prove g(j)
t′,t

a.s.= δ
(t−1)
t′ g

(j)
t−t′+o(1) and g(0)

τ = 0
under the notational convention δ(t)t′ = 1 for t� > t. The latter
property g(0)

τ = 0 follows from (43) for τ = 0, (44) and (46)
for τ = 1, and from (45) and (47). See Appendix B for the
proof of the former property.

Throughout this paper, we assume that the tap coefficients
{gτ} and {θτ} satisfy (46) and (47). Thus, Theorem 1 implies
that the asymptotic Gaussianity is guaranteed for the CAMP.
In principle, it is possible to compute the tap coefficients by
solving the coupled dynamical system (43)–(47) numerically
for a given moment sequence {μj}. However, numerical eval-
uation indicated that the dynamical system is unstable against
numerical errors when the moment sequence {μj} is a diverg-
ing sequence. Thus, we need a closed-form solution to the tap
coefficients.

To present the closed-form solution, we define the
η-transform of the asymptotic eigenvalue distribution of
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ATA [17] as

η(x) = lim
M=δN→∞

1
N

Tr
{(
IN + xATA

)−1
}
. (49)

By definition, we have the power-series expansion

η(x) = lim
M=δN→∞

1
N

N∑
n=1

1
1 + xλn

=
∞∑

j=0

μj(−x)j (50)

for |x| < 1/max{λn}. Let G(z) denote the generating
function of the tap coefficients {gτ} given by

G(z) =
∞∑

τ=0

gτz
−τ , g0 = 1. (51)

Similarly, we write the generating function of {θτ} with
θ0 = 1 as Θ(z).

Theorem 3: Suppose that the tap coefficients {gτ} and {θτ}
satisfy (46) and (47). Then, the generating functions G(z) and
Θ(z) of {gτ} and {θτ} satisfy

η

(
1 − (1 − z−1)Θ(z)

(1 − z−1)G(z)

)
= (1 − z−1)Θ(z), (52)

where η denotes the η-transform of the asymptotic eigenvalue
distribution of ATA.

Proof: See Appendix C.
Suppose that the η-transform is given. Since the η-transform

has the inverse function, from Theorem 3 we have
(1 − z−1)G(z) = [1 − (1 − z−1)Θ(z)]/η−1((1 − z−1)Θ(z))
for a fixed generating function Θ(z). Each tap coefficient gτ

can be computed by evaluating the coefficient of the τ th-order
term in G(z).

Corollary 1: Suppose that the sensing matrix A has inde-
pendent Gaussian elements with mean

√
γ/M and variance

(1 − γ)/M for any γ ∈ [0, 1). Then, the tap coefficient gt is
given by

gt =
(

1 − 1
δ

)
θt +

1
δ

t∑
τ=0

(θτ − θτ−1)θt−τ (53)

for fixed tap coefficients {θt}.
Proof: We shall evaluate the generating function G(z).

The R-transform R(x) [17, Section 2.4.2] of the asymptotic
eigenvalue distribution of ATA is given by

R(x) =
δ

δ − x
. (54)

Using Theorem 3 and the relationship between the R-transform
and the η-transform [17, Eq. (2.74)]

η(x) =
1

1 + xR(−xη(x)) , (55)

we obtain

G(z) =
[
1 − 1

δ
+

(1 − z−1)
δ

Θ(z)
]

Θ(z), (56)

which implies the time-domain expression (53).
In particular, we consider the original CAMP θτ = 0 for

τ > 0. In this case, we have g1 = −δ−1 and gτ = 0.
As remarked in [53], the original CAMP reduces to the AMP
for the i.i.d. Gaussian sensing matrix.

Corollary 2: Suppose that the sensing matrix A has
M identical non-zero singular values for M ≤ N , i.e.

AAT = δ−1IM . Then, the tap coefficient gt in the original
CAMP θt = 0 for t > 0 is given by gτ = 1 − δ−1 for all
τ ≥ 1.

Proof: We evaluate the generating function G(z). By
definition, the η-transform is given by

η(x) =
1
N

(
M

1 + xδ−1
+N −M

)
= 1 − δ +

δ2

δ + x
. (57)

Using Theorem 3 and Θ(z) = 1 yields

G(z) =
1 − δ−1z−1

1 − z−1
= 1 +

∞∑
j=1

(
1 − 1

δ

)
z−j, (58)

which implies gτ = 1 − δ−1 for all τ ≥ 1.
Corollary 3: Suppose that the sensing matrix A has

non-zero singular values σ0 ≥ · · · ≥ σM−1 > 0 satisfy-
ing condition number κ = σ0/σM−1 > 1, σm/σm−1 =
κ−1/(M−1), and σ2

0 = N(1−κ−2/(M−1))/(1−κ−2M/(M−1)).
Assume θt = 0 for all t > t1 for some t1 ∈ N. Let α(j)

0 = 1
and

α
(j)
t =

{
Ct/j

(t/j)! θ̄
t/j
j if t is divisible by j,

0 otherwise
(59)

for t ∈ N and j ∈ {1, . . . , t1}, with θ̄t = θt−1 − θt and
C = 2δ−1 lnκ. Define p0 = q̄0 = 1 and

pt = − β
(t1)
t

κ2 − 1
, (60)

q̄t =
1
θ̄1

(
β

(t1)
t+1

C
−

t1∑
τ=1

θ̄τ+1q̄t−τ

)
(61)

for t > 0, with β(t1)
t = α

(1)
t ∗ α(2)

t ∗ · · · ∗ α(t1)
t . Then, the tap

coefficient gt is recursively given by

gt = pt −
t∑

τ=1

qτgt−τ , (62)

with

qt = q̄t − q̄t−1. (63)

Proof: We first evaluate the inverse of the η-transform.
By definition, σ2

m = κ−2m/(M−1)σ2
0 holds. Thus, we have

μj =
1
N

M−1∑
m=0

σ2j
m = σ2j

0

1 − κ−2jM/(M−1)

N(1 − κ−2j/(M−1))

→
(

C

1 − κ−2

)j 1 − κ−2j

Cj
(64)

in the large system limit, where we have used the convergence
N(1 − κ−a/(M−1)) → δ−1a lnκ for any a ∈ R. We note the
series-expansion ln(1+x) =

∑∞
j=1(−1)j−1j−1xj for |x| < 1

to obtain

η(x)=1+
∞∑

j=1

(−x)jμj =1− 1
C

ln
(
κ2 − 1 + κ2Cx

κ2 − 1 + Cx

)
, (65)

which implies the inverse function

η−1(x) =
(κ2 − 1){eC(1−x) − 1}
C{κ2 − eC(1−x)} . (66)
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We next evaluate the generating function G(z). Using
Theorem 3 yields G(z) = P (z)/Q(z), with

P (z) =
κ2 − eCΘ̄(z)

κ2 − 1
, (67)

Q(z) = (1 − z−1)Q̄(z), Q̄(z) =
eCΘ̄(z) − 1
CΘ̄(z)

, (68)

Θ̄(z) =
∞∑

t=1

θ̄tz
−t. (69)

Finally, we derive a time-domain expression of G(z). It
is an exercise to confirm that the series-expansions of P (z)
and Q̄(z) have the coefficients pt and q̄t for the tth-order
terms, respectively. Then, the Z-transform of (62) is equal to
P (z)/Q(z).

The sequences {pτ} and {qτ} in Corollary 3 define the
generating functions P (z) and Q(z) with p0 = q0 = 1, respec-
tively, which satisfy G(z) = P (z)/Q(z). Thus, we derive
an SE equation in time domain in terms of {pτ , qτ}, rather
than {gτ}.

D. SE Equation

We design the tap coefficients {θτ} so as to minimize the
MSE N−1�xt −x�2 for the CAMP estimator xt in the large
system limit. For that purpose, we derive an SE equation that
describes the dynamics of the MSE. For simplicity, we assume
i.i.d. signals.

The CAMP has no closed-form SE equation with respect
to the MSEs N−1�xt − x�2 in general. Instead, it has a
closed-form SE equation with respect to the correlations

dt′+1,t+1 = E [{ft′(x1 + zt′) − x1}{ft(x1 + zt) − x1}] ,
(70)

where {zt} denote zero-mean Gaussian random variables with
covariance at′,t = E[zt′zt]. In particular, dt+1,t+1 corresponds
to the MSE of the CAMP estimator in iteration t.

As an asymptotic alternative to δt, we use the following
quantity:

δ̄t = E [f �
t(x1 + zt)] , (71)

which is a function of at,t. The notation δ̄(t)t′ is defined in the
same manner as in δ(t)t′ .

Theorem 4: Assume that Assumptions 1–3 hold, that the
denoiser ft is Lipschitz-continuous, and that the signal vector
x has i.i.d. elements. Suppose that the generating functions G
and Θ for the tap coefficients {gτ} and {θτ}—given in (51)—
satisfy the condition (52) in Theorem 3.

• Define generating functionsA(y, z), D(y, z), and Σ(y, z)
as

A(y, z) =
∞∑

t′,t=0

at′,t

δ̄
(t′−1)
0 δ̄

(t−1)
0

y−t′z−t, (72)

D(y, z) =
∞∑

t′,t=0

dt′,t

δ̄
(t′−1)
0 δ̄

(t−1)
0

y−t′z−t, (73)

Σ(y, z) =
∞∑

t′,t=0

σ2

δ̄
(t′−1)
0 δ̄

(t−1)
0

y−t′z−t. (74)

Then, the correlation N−1(xt′ −x)T(xt −x) converges
almost surely to dt′,t in the large system limit, which sat-
isfies the following SE equation in terms of the generating
functions:

FG,Θ(y, z)A(y, z) = {G(z)ΔΘ − Θ(z)ΔG}D(y, z)
+ (ΔΘ1 − ΔΘ)Σ(y, z), (75)

with

FG,Θ(y, z) = (y−1 + z−1 − 1)[G(z)ΔΘ − Θ(z)ΔG]
+ΔG1 − ΔG, (76)

where the notations S1(z) = z−1S(z) and
ΔS = [S(y) − S(z)]/(y−1 − z−1) have been used
for any generating function S(z).

• Suppose that G(z) is represented as G(z) = P (z)/Q(z)
for the generating functions P (z) and Q(z) of some
sequences {pτ} and {qτ} with p0 = 1 and q0 = 1. Let
rt = qt ∗ θt. Then, the SE equation (75) reduces to

t′∑
τ ′=0

t∑
τ=0

δ̄
(t′−1)
t′−τ ′ δ̄

(t−1)
t−τ

{
Dτ ′,τat′−τ ′,t−τ

− (pτ ∗ rτ ′+τ+1 − rτ ∗ pτ ′+τ+1)dt′−τ ′,t−τ

− σ2 [(qτ ′qτ ) ∗ (θτ ′+τ − θτ ′+τ+1)]
}

= 0, (77)

where all variables with negative indices are set to zero,
with

Dτ ′,τ =(pτ ′+τ −pτ ′+τ+1) ∗ qτ +(pτ −pτ−1) ∗ qτ ′+τ+1

+ (pτ−1 − pτ ) ∗ rτ ′+τ+1+(rτ −rτ−1) ∗ pτ ′+τ+1

+ pτ ∗ (rτ ′+τ −δτ ′,0rτ )−rτ ∗ (pτ ′+τ −δτ ′,0pτ ).
(78)

In solving the SE equation (77), we impose the initial
condition d0,0 = 1 and boundary conditions d0,τ+1 =
dτ+1,0 = −E[x1{fτ(x1 + zτ ) − x1}] for any τ .

Proof: See Appendix D.
The SE equation (77) in time domain is useful for numerical

evaluation of {at′,t} while the generating-function representa-
tion (75) is used in fixed-point analysis. To apply Corollary 3,
we have represented the generating function G(z) as
G(z) = P (z)/Q(z). If G(z) is given directly, the functions
P (z) = G(z) and Q(z) = 1 can be used. In this case, we have
pτ = gτ , qτ = δτ,0, and rτ = θτ .

Note that dt′+1,t+1 given in (70) is a function of
{at′,t, at′,t′ , at,t}, so that the SE equation (77) in time domain
is a nonlinear difference equation with respect to {at′,t} for
given tap coefficients {gτ} and {θτ}. Theorem 4 allows us
to compute the MSEs at,t and dt+1,t+1 before and after
denoising.

The SE equation (77) in time domain can be solved recur-
sively by extracting the term D0,0at′,t for τ � = τ = 0 in the
sum and moving the other terms to the RHS. More precisely,
we can solve the SE equation (77) as follows:

1) Let t = 0 and solve a0,0 with the SE equation (77) and
the initial condition d0,0 = 1.

2) Suppose that {aτ ′,τ , dτ ′,τ} have been obtained for all
τ �, τ = 0, . . . , t. Use the boundary condition d0,t+1 in
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Theorem 4 and compute dτ,t+1 with the definition (70)
for all τ = 1, . . . , t + 1 while the symmetry dt+1,τ =
dτ,t+1 is used in the lower triangular elements.

3) Compute aτ,t+1 with the SE equation (77) in the order
τ = 0, . . . , t+ 1 while the symmetry at+1,τ = aτ,t+1 is
used in the upper triangular elements.

4) If some termination conditions are satisfied, output
{aτ ′,τ , dτ ′,τ}. Otherwise, update t := t+ 1 and go back
to Step 2).

We can define the Bayes-optimal denoiser ft via the MSE
dt+1,t+1 in the large system limit. A denoiser ft is said to be
Bayes-optimal if ft = E[x1|x1 + zt] is the posterior mean of
x1 given an AWGN observation x1 + zt with zt ∼ N (0, at,t).
We write the Bayes-optimal denoiser as ft(·) = fopt(·; at,t).

The boundary condition d0,τ+1 in Theorem 4 has a simple
representation for the Bayes-optimal denoiser fopt. Since the
posterior mean estimator fopt(x1 + zτ ; aτ,τ) is uncorrelated
with the estimation error fopt(x1 + zτ ; aτ,τ) − x1, we obtain

d0,τ+1 = E[{fopt(x1+zτ ; aτ,τ )−x1−fopt(x1+zτ ; aτ,τ )}
·{fopt(x1 + zτ ; aτ,τ ) − x1}]

= E[{fopt(x1 + zτ ; aτ,τ ) − x1}2] = dτ+1,τ+1.

(79)

Theorem 5: Consider the Bayes-optimal denoiser under the
same assumptions as in Theorem 4. Suppose that the SE
equation (77) in time domain converges to a fixed-point
{as, ds}, i.e. limt′,t→∞ at′,t = as and limt′,t→∞ dt′,t = ds.
If Θ(δ−1

s ) = 1 and 1 + (δs − 1)dΘ(δ−1
s )/(dz−1) �= 0 hold

for δs = ds/as, then the fixed-point {as, ds} of the SE
equation (77) satisfies

as =
σ2

R(−ds/σ2)
, ds =E

[{fopt(x1 + zs; as) − x1}2
]
,

(80)

with zs ∼ N (0, as), where R(x) denotes the R-transform of
the asymptotic eigenvalue distribution of ATA.

Proof: See Appendix E.
The fixed-point equations given in (80) coincide with those

for describing the asymptotic performance of the posterior
mean estimator of the signal vector x [18]–[20]. This coin-
cidence implies that the CAMP with Bayes-optimal denoisers
is Bayes-optimal if the SE equation (77) converges toward a
fixed-point and if the fixed-point is unique. Thus, we refer
to CAMP with Bayes-optimal denoisers as Bayes-optimal
CAMP.

E. Implementation

We summarize the implementation of the Bayes-optimal
CAMP. We need to specify the sequence of denoisers {ft} and
the tap coefficients {gτ , θτ} in (32) and (33). For simplicity,
assume θτ = 0 for all τ > 2. To impose the condition
Θ(as/ds) = 1 in Theorem 5, we use θ0 = 1, θ1 = −θds/as,
and θ2 = θ ∈ R, in which as and ds are a solution to the
fixed-point equations (80). In particular, the CAMP reduces
to the original one in [53] for θ = 0.

For a given parameter θ, the tap coefficients {gτ} are
determined via Theorem 3. More precisely, we use the

TABLE I

COMPLEXITY IN M ≤ N AND THE NUMBER OF ITERATIONS t

coefficients {pτ , qτ} in the rational generating function
G(z) = P (z)/Q(z). See Corollaries 1–3 for examples of the
coefficients.

For given parameters {θ, pτ , qτ}, we can solve the SE
equation (77) numerically. The obtained parameter at,t is used
to determine the Bayes-optimal denoiser ft(·) = fopt(·; at,t).

Damping [39] is a well-known technique to improve the
convergence property in finite-sized systems. In damped
CAMP, the update rule (32) is replaced by

xt+1 = ζft(xt +ATzt) + (1 − ζ)xt, (81)

with damping factor ζ ∈ [0, 1]. In solving the SE equation (77),
the associated parameters dt′+1,t+1 and δ̄t in (70) and (71) are
damped as follows:

dt′+1,t+1 =ζE [{ft′(x1 + zt′) − x1}{ft(x1 + zt) − x1}]
+ (1 − ζ)dt′,t, (82)

δ̄t = ζE [f �
t(x1 + zt)] + (1 − ζ)δ̄t−1. (83)

In particular, no damping is applied for ζ = 1.
Table I lists time and space complexity of the CAMP, AMP,

and OAMP/VAMP. Let t denote the number of iterations.
We assume that the scalar parameters in the CAMP can be
computed in O(t4) time. In particular, computation of {at,t}
via the SE equation (77) is dominant.

To compute the update rule (33) in the CAMP efficiently,
the vectors zt ∈ R

M and AATzt ∈ R
M are computed and

stored in iteration t. We need O(MN) space complexity to
store the sensing matrix A, which is dominant for the case
t � N . Furthermore, the time complexity is dominated by
matrix-vector multiplications.

In the OAMP/VAMP, the SVD of A requires dominant
complexity unless the sensing matrix has a special struc-
ture that enables efficient SVD computation. As a result,
the OAMP/VAMP has higher complexity than the AMP and
CAMP while the CAMP has comparable complexity to the
AMP for t� N .

IV. NUMERICAL RESULTS

A. Simulation Conditions

The Bayes-optimal CAMP—called CAMP simply—is com-
pared to the AMP and OAMP/VAMP. In all numerical results,
105 independent trials were simulated. We assumed the
AWGN noise w ∼ N (0, σ2IM ) and i.i.d. Bernoulli-Gaussian
signals with signal density ρ ∈ [0, 1] in the measurement
model (1). The probability density function (pdf) of xn is given
by

p(xn) = (1 − ρ)δ(xn) +
ρ√
2π/ρ

e−
x2

n
2/ρ . (84)
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Since xn has zero mean and unit variance, the signal-to-noise
ratio (SNR) is equal to 1/σ2. See Appendix F for evaluation
of the correlation dt′+1,t+1 given in (70).

Corollary 3 was used to simulate ill-conditioned sensing
matrices A. The non-zero singular values {σm} of A are
uniquely determined via the condition number κ. To reduce the
complexity of the OAMP/VAMP, we assumed the SVD struc-
ture A = diag{σ0, . . . , σM−1,0}V T. Note that the CAMP
does not require this SVD structure. The CAMP only needs
the right-orthogonal invariance ofA. For a further reduction in
the complexity, we used the Hadamard matrix V T ∈ ON with
the rows permuted uniformly and randomly. This matrix A is
a practical alternative of right-orthogonally invariant matrices.

We simulated damped AMP [39] with the same Bayes-
optimal denoiser ft(·) = fopt(·; vt) as in the CAMP. The
variance parameter vt was computed via the SE equation

vt = σ2 +
1
δ
MMSE(vt−1), MMSE(v−1) = 1, (85)

with

MMSE(v) = E
[{fopt(x1 +

√
vz; v) − x1}2

]
, (86)

where z ∼ N (0, 1) denotes the standard Gaussian ran-
dom variable independent of x1. The SE equation (85) was
derived in [30] under the assumption of zero-mean i.i.d.
Gaussian sensing matrix with compression rate δ = M/N .
Furthermore, δt in (23) was replaced by the asymptotic value
δ̄t = MMSE(vt)/vt [46, Lemma 2]. To improve the conver-
gence property of the AMP, we replaced the update rule (22)
with the damped rule

xt+1 = ζft(xt +ATzt) + (1 − ζ)xt. (87)

Note that SE cannot describe the exact dynamics of AMP
when damping is employed.

For the OAMP/VAMP [40], [42], we used the Bayes-
optimal denoiser ft(·) = fopt(·; v̄A→B,t) computed via the
SE equations [46]

v̄A→B,t = γ̄t − v̄B→A,t, v̄B→A,0 = 1, (88)
1

v̄B→A,t+1
=

1
MMSE(v̄A→B,t)

− 1
v̄A→B,t

, (89)

with

γ̄−1
t = lim

M=δN→∞
1
N

M−1∑
m=0

σ2
m

σ2 + v̄B→A,tσ2
m

. (90)

To improve the convergence property, we applied the damping
technique: The messages xB→A,t+1 and vB→A,t+1 in (18)
were replaced by the damped messages ζxB→A,t+1 + (1 −
ζ)xB→A,t and ζv̄B→A,t+1 +(1−ζ)v̄B→A,t, respectively. Note
that damped EP cannot be described via SE.

B. Ill-Conditioned Sensing Matrices

We first consider the parameter θ in the CAMP defined in
Section III-E. From Theorem 5, we know that the CAMP is
Bayes-optimal for any θ if it converges. Thus, the parameter
θ only affects the convergence property of the CAMP.

Figure 1 shows the MSEs of the CAMP for a sensing matrix
with condition number κ = 5 defined in Corollary 3. As a
baseline, we plotted the asymptotic MSE of the Bayes-optimal

Fig. 1. MSE versus the number of iterations t for the CAMP. M = 212,
N = 213, ρ = 0.1, κ = 5, and 1/σ2 = 30 dB.

Fig. 2. MSE versus the number of iterations t for the CAMP with θ = 0.
M = 211, N = 212, ρ = 0.1, κ = 1, 1/σ2 = 30 dB, and ζ = 1.

signal recovery [18]–[20]. The CAMP with θ = 2 and ζ = 0.9
converges to the Bayes-optimal performance more slowly than
that with θ = 0 and ζ = 0.85. This observation does not
necessarily imply that θ = 0 is the best option. When the
damping factor ζ = 0.9 is used, the CAMP converges for
θ = 2 in the finite-sized system while it diverges for θ = 0.
Thus, we conclude that using non-zero θ �= 0 improves the
stability of the CAMP in finite-sized systems.

The CAMP is compared to the AMP and OAMP/VAMP for
sensing matrices with unit condition number, i.e. orthogonal
rows. As noted in Remark 1, without loss of generality, we can
use θ = 0 for this case. In this case, the OAMP/VAMP
has comparable complexity to the AMP since the SVD of
the sensing matrix is not required. Figure 2 shows that the
OAMP/VAMP is the best in terms of the convergence speed
among the three MP algorithms.

We next consider a sensing matrix with condition num-
ber κ = 10. As shown in Fig. 3, the AMP can-
not approach the Bayes-optimal performance. The CAMP
converges to the Bayes-optimal performance more slowly
than the OAMP/VAMP while the CAMP does not require
high-complexity SVD of the sensing matrix. Especially in
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Fig. 3. MSE versus the number of iterations t for the CAMP. M = 213 ,
N = 214, ρ = 0.1, κ = 10, and 1/σ2 = 30 dB.

Fig. 4. MSE versus the condition number κ for the CAMP. M = 512,
N = 1024, ρ = 0.1, 1/σ2 = 30 dB, and 150 iterations.

TABLE II

PARAMETERS USED IN FIG. 4

large systems, thus, the CAMP should need lower com-
plexity to achieve the Bayes-optimal performance than the
OAMP/VAMP.

We investigate the influence of the condition number κ
shown in Fig. 4. In evaluating the SE of the CAMP as a base-
line, the parameter θ was optimized for each condition number
while no damping was employed. In particular, the parameter
θ was set to −0.7 for κ ≥ 17. Otherwise, θ = 0 was used.
See Table II for the parameters used in the three algorithms,

Fig. 5. Correlation dt′,t versus t′ = 0, . . . , t for the CAMP. δ = 0.5,
ρ = 0.1, 1/σ2 = 30 dB, θ = 0, and ζ = 1.

which were numerically optimized for each condition number.
More precisely, the parameters were selected so as to achieve
the fastest convergence among all possible parameters that
approach the best MSE in the last iteration.

The AMP has poor performance with the exception of small
condition numbers. The CAMP achieves the Bayes-optimal
performance for low-to-moderate condition numbers. How-
ever, it is inferior to the high-complexity OAMP/VAMP for
large condition numbers. These observations are consistent
with the SE results of the CAMP. The SE prediction of the
MSE changes rapidly from the Bayes-optimal performance to
a large value around a condition number κ ≈ 18 while the
OAMP/VAMP still achieves the Bayes-optimal performance
for κ > 18. This is because the CAMP fails to converge for
κ > 18. As a result, we cannot use Theorem 5 to claim the
Bayes-optimality of the CAMP. Thus, we conclude that the
CAMP is Bayes-optimal in a strictly smaller class of sensing
matrices than the OAMP/VAMP.

Finally, we investigate the convergence properties of the
CAMP for high condition numbers. Figure 5 shows the corre-
lation dt′,t in the CAMP for t� = 0, . . . , t. For the condition
number κ = 16, the correlation dt′,t converges toward the
Bayes-optimal MSE for all t� as t increases. This provides
numerical evidence for the assumption in Theorem 5: the
convergence of the CAMP toward a fixed-point.

The results for κ = 17 imply that the CAMP fails to
converge. A soliton-like quasi-steady wave propagates as t
grows, while the CAMP does not diverge. As implied from
Fig. 4, using non-zero θ �= 0 allows us to avoid the occurrence
of such a wave for κ = 17. However, such waves occur for
any θ when the condition number is larger than κ ≈ 18.

Intuitively, the occurrence of soliton-like waves can be
understood as follows: The SE equation (77) in time
domain becomes unstable for high condition numbers, so that
at′,t increases as t grows. However, larger at′,t results
in a geometrically smaller forgetting factor δ̄(t−1)

t−τ in (77),
which suppresses the divergence of at′,t. As a result,
a soliton-like quasi-steady wave occurs for high condition
numbers.
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V. CONCLUSION

The Bayes-optimal CAMP solves the disadvantages of
AMP and OAMP/VAMP, and realizes their advantages for
orthogonally invariant sensing matrices with low-to-moderate
condition numbers: The Bayes-optimal CAMP is an efficient
MP algorithm that has comparable complexity to AMP. Fur-
thermore, the CAMP has been proved to be Bayes-optimal
for all orthogonally invariant sensing matrices if it converges.
High-complexity OAMP/VAMP is Bayes-optimal for this class
of sensing matrices while AMP is not. The CAMP converges
for sensing matrices with low-to-moderate condition numbers
while it fails to converge for high condition numbers.

A disadvantage of CAMP is that it needs all moments of the
asymptotic singular-value distribution of the sensing matrix.
In general, computation of the moments requires high com-
plexity unless their closed-form is available. To circumvent
this issue, deep unfolding [60], [61] might be utilized to learn
the tap coefficients in the Onsager correction without using
the asymptotic singular-value distribution.

The CAMP has a room for improvement especially in
finite-sized and ill-conditioned sensing matrices. One option
is a replacement of scalar parameters determined via the
SE equation with empirical estimators that depend on the
measurements, as considered in AMP and OAMP/VAMP.

Another option is a damping technique that keeps the
asymptotic Gaussianity of estimation errors. This paper used a
heuristic damping technique to improve the convergence prop-
erty of the CAMP. However, the heuristic damping breaks the
asymptotic Gaussianity. Damped CAMP should be designed
via Theorem 1 to guarantee the asymptotic Gaussianity. A
recent paper [62] proposed long-memory damping in the MF-
based interference cancellation to improve the convergence
property of long-memory MP. A possible direction for future
work is to design CAMP with long-memory damping.

APPENDIX A
PROOF OF THEOREM 1

A. Formulation

We use Bolthausen’s conditioning technique [32] to prove
Theorem 1. In the technique, the random variables are
classified into three groups: V , F = {λ, w̃,x}, and
Et,t′ = {Bt′ ,M̃ t′ ,Ht, Q̃t+1} with Q̃t+1 = (q̃0, . . . , q̃t) and
M̃ t = (m̃0, . . . , m̃t−1). The random variables in F are fixed
throughout the proof of Theorem 1 while V is averaged out.

The set Et,t contains all messages just before updating
bt = V Tq̃t while Et,t+1 includes all messages just before
updating ht = V m̃t. The main part in the conditioning
technique is evaluation of the conditional distribution of bt

given Et,t and F via that of V .
Theorem 1 is proved by induction. More precisely, we prove

a theorem obtained by adding several technical results to
Theorem 1. Before presenting the theorem, we first define
several notations.

The notation o(1) denotes a finite-dimensional vector with
vanishing norm. For a tall matrix M ∈ R

N×t with rank r ≤ t,
the SVD of M is denoted by M = ΤMΣMΨT

M , with
ΤM = (Τ�

M ,Τ⊥
M ). The matrix Τ�

M ∈ ON×r consists of

all left-singular vectors corresponding to r non-zero singular
values while Τ⊥

M ∈ ON×(N−r) is composed of left-singular
vectors corresponding to N − r zero singular values. The
matrix P �

M = M(MTM )−1MT is the projection to the
space spanned by the columns of M while P⊥

M = I − P �
M

is the projection to the orthogonal complement. Note that
P

�
M = Τ�

M (Τ�
M )T and P⊥

M = Τ⊥
M (Τ⊥

M )T hold.
In the following theorem, we call the system with respect to

{Bt,M̃ t} module A while we refer to that for {Ht, Q̃t+1}
as module B.

Theorem 6: Suppose that Assumptions 1–4 hold. Then,
the following properties in module A hold for all τ = 0, 1, . . .
in the large system limit.

(A1) Let βτ = (Q̃
T

τ Q̃τ )−1Q̃
T

τ q̃τ , q̃⊥τ = P⊥
Q̃τ
q̃τ , and

ω̃τ = Ṽ
T
(Τ⊥

(Q̃τ ,Hτ )
)Tq̃τ , (91)

where Ṽ ∈ ON−2τ is a Haar orthogonal matrix and
independent of F and Eτ,τ . Then, for τ > 0

bτ ∼ Bτβτ +M̃τo(1)+Bτo(1)+Τ⊥
(Bτ ,M̃τ )

ω̃τ (92)

conditioned on F and Eτ,τ in the large system limit,
with

lim
M=δN→∞

1
N

{
�ω̃τ�2 − �q̃⊥τ �2

}
a.s.= 0. (93)

(A2) Suppose that φ̃τ (Bτ+1, w̃,λ) : R
N×(τ+3) → R

N

is separable, pseudo-Lipschitz of order k with respect
to the first τ + 2 variables, and proper. If N−1q̃T

t q̃t′

converges almost surely to some constant κt,t′ ∈ R in
the large system limit for all t, t� = 0, . . . , τ , then

�φ̃τ (Bτ+1, w̃;λ)	−E

[
�φ̃τ (Z̃τ+1, w̃,λ)	

]
a.s.→ 0. (94)

In (94), Z̃τ+1 = (z̃0, . . . , z̃τ ) ∈ R
N×(τ+1) denotes

a zero-mean Gaussian random matrix with covariance
E[z̃tz̃

T
t′ ] = κt,t′IN for all t, t� = 0, . . . , τ . In evaluating

the expectation in (94), UTw in (13) follows the
zero-mean Gaussian distribution with covariance σ2IM .
In particular, for k = 1 we have

�∂τ ′φ̃τ (Bτ+1, w̃;λ)	−E

[
�∂τ ′φ̃τ (Z̃τ+1, w̃;λ)	

]
a.s.→ 0

(95)

for all τ � = 0, . . . , τ .
(A3) Suppose that φ̃τ (Bτ+1, w̃;λ) : R

N×(τ+3) → R
N is

separable, Lipschitz-continuous with respect to the first
τ + 2 variables, and proper. Then,

1
N
bTτ ′

(
φ̃τ −

τ∑
t′=0

〈
∂t′φ̃τ

〉
bt′

)
a.s.→ 0 (96)

for all τ � = 0, . . . , τ .
(A4) The inner product N−1m̃T

τ ′m̃τ converges almost surely
to some constant πτ ′,τ ∈ R for all τ � = 0, . . . , τ .

(A5) For some � > 0 and C > 0,

lim
M=δN→∞

E
[|m̃τ,n|2k−2+�

]
<∞, (97)

lim inf
M=δN→∞

λmin

(
1
N
M̃

T

τ+1M̃ τ+1

)
a.s.
> C. (98)
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The following properties in module B hold for all
τ = 0, 1, . . . in the large system limit.

(B1) Let ατ = (M̃
T

τ M̃τ )−1M̃
T

τ m̃τ , m̃⊥
0 = m̃0, m̃⊥

τ =
P⊥

M̃τ
m̃τ , and

ωτ =

{
Ṽ (Τ⊥

b0
)Tm̃0 for τ = 0,

Ṽ (Τ⊥
(M̃τ ,Bτ+1)

)Tm̃τ for τ > 0,
(99)

where Ṽ ∈ ON−(2τ+1) is a Haar orthogonal matrix and
independent of F and Eτ,τ+1. Then, we have

h0 ∼ o(1)q̃0 + Τ⊥
q̃0
ωτ , (100)

conditioned on F and E0,1 = {b0, m̃0, q̃0} in the large
system limit. For τ > 0

hτ ∼Hτατ +Q̃τ+1o(1)+Hτo(1)+Τ⊥
(Hτ ,Q̃τ+1)

ωτ ,

(101)

conditioned on F and Eτ,τ+1 in the large system limit,
with

lim
M=δN→∞

1
N

{
�ωτ�2 − �m̃⊥

τ �2
}

a.s.= 0. (102)

(B2) Suppose that ψ̃τ (Hτ+1,x) : R
N×(τ+2) → R

N is
a separable and proper pseudo-Lipschitz function of
order k. If N−1m̃T

t m̃t′ converges almost surely to
some constant πt,t′ ∈ R in the large system limit for all
t, t� = 0, . . . , τ , then

�ψ̃τ (Hτ+1,x)	 − E

[
�ψ̃τ (Zτ+1,x)	

]
a.s.→ 0, (103)

where Zτ+1 = (z0, . . . , zτ ) ∈ R
N×(τ+1) denotes

a zero-mean Gaussian random matrix with covariance
E[ztz

T
t′ ] = πt,t′IN for all t, t� = 0, . . . , τ . In particular,

for k = 1 we have

�∂τ ′ψ̃τ (Hτ+1,x)	 − E

[
�∂τ ′ψ̃τ (Zτ+1,x)	

]
a.s.→ 0

(104)

for all τ � = 0, . . . , τ .
(B3) Suppose that ψ̃τ (Hτ+1,x) : R

N×(τ+2) → R
N is

a separable and proper Lipschitz-continuous function.
Then,

1
N
hT

τ ′

(
ψ̃τ −

τ∑
t′=0

〈
∂t′ψ̃τ

〉
ht′

)
a.s.→ 0 (105)

for all τ � = 0, . . . , τ .
(B4) The inner productN−1q̃T

τ ′ q̃τ+1 converges almost surely
to some constant πτ ′,τ+1 ∈ R for all τ � = 0, . . . , τ + 1.

(B5) For some � > 0 and C > 0,

lim
M=δN→∞

E
[|q̃τ+1,n|2+�

]
<∞, (106)

lim inf
M=δN→∞

λmin

(
1
N
Q̃

T

τ+2Q̃τ+2

)
a.s.
> C. (107)

We summarize useful lemmas used in the proof of Theo-
rem 6 by induction.

Lemma 1 ( [42], [46]): Suppose that X ∈ R
N×t has full

rank for 0 < t < N , and consider the noiseless and
compressed observation Y ∈ R

N×t of V given by

Y = V X. (108)

Then, the conditional distribution of the Haar orthogonal
matrix V given X and Y satisfies

V |X,Y ∼ Y (Y TY )−1XT + Τ⊥
Y Ṽ (Τ⊥

X)T, (109)

where Ṽ ∈ ON−t is a Haar orthogonal matrix independent of
X and Y .

The following lemma is a generalization of Stein’s lemma.
The lemma is proved under a different assumption from
in [59].

Lemma 2: Let z = (z1, . . . , zt)T ∼ N (0,Σ) for any
positive definite covariance matrix Σ. If f : R

t → R is
Lipschitz-continuous, then we have

E[z1f(z)] =
t∑

t′=1

E[z1zt′ ]E[∂t′f(z)]. (110)

Proof: We first confirm that both sides of (110) are
bounded. For the left-hand side (LHS), we find f(z) =
O(�z�) as �z� → ∞ since f is Lipschitz-continuous. Thus,
E[z1f(z)] is bounded for z ∼ N (0,Σ).

For the RHS, we use the Lipschitz-continuity of f to
find that there is some Lipschitz-constant L > 0 such
that ∣∣∣∣f(z + Δet′) − f(z)

Δ

∣∣∣∣ ≤ L (111)

holds for any Δ �= 0, where et′ ∈ R
t is the t�th col-

umn of It. This implies that each partial derivative ∂t′f is
bounded almost everywhere since the partial derivatives of
any Lipschitz-continuous function exist almost everywhere.
Thus, E[∂t′f(z)] is bounded. These observations indicate the
boundedness of both sides in (110).

For the eigen-decomposition Σ = ΤΛΤT, we use the
change of variables z̃ = ΤTz to obtain

E[z1f(z)]=
t∑

τ=1

[Τ]1,τE[z̃τf(Τz̃)]=
t∑

τ=1

[Τ]1,τE[z̃τg(z̃τ )],

(112)

with g(z̃τ ) = E[f(Τz̃)|z̃τ ].
We prove that g is Lipschitz-continuous. Let z̃x denote

the vector obtained by replacing z̃τ in z̃ with x.
Since z̃ ∼ N (0,Λ) has independent elements, we have

|g(x) − g(y)| ≤E [|f(Τz̃x) − f(Τz̃y)|]
≤LE [�Τ(z̃x − z̃y)�]
=LE [�z̃x − z̃y�] = L|x− y|, (113)

where the second inequality follows from the
Lipschitz-continuity of f with a Lipschitz-constant L > 0.
Thus, g(z̃τ ) is Lipschitz-continuous, so that g(z̃τ ) is
differentiable almost everywhere.

Since z̃ ∼ N (0,Λ) holds, Stein’s lemma [63] yields

E[z1f(z)] =
t∑

τ=1

[Τ]1,τE[z̃2
τ ]E [g�(z̃τ )]

=
t∑

τ=1

[Τ]1,τ [Λ]τ,τE

[
t∑

t′=1

[Τ]t′,τ∂t′f(z)

]
. (114)
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Using the identity
t∑

τ=1

[Τ]1,τ [Λ]τ,τ [Τ]t′,τ = [ΤΛΤT]1,t′ = E[z1zt′ ], (115)

we arrive at Lemma 2.
Lemma 3 ( [46]): For t ∈ N, suppose that f : R

N×(t+1) →
R

N is separable and pseudo-Lipschitz of order k. Let Ln > 0
denote a Lipschitz constant of the nth element [f ]n. The
sequence of Lipschitz constants is assumed to satisfy

lim sup
N→∞

1
N

N∑
n=1

L2
n <∞. (116)

Let � = (�1, . . . , �N )T ∈ R
N denote a vector that satisfies

lim
N→∞

1
N

N∑
n=1

Ln�
2
n

a.s.= 0, (117)

lim sup
N→∞

1
N

N∑
n=1

Ln�
2k−2
n

a.s.
< ∞. (118)

Suppose that At+1 = (a0, . . . ,at) ∈ R
N×(t+1) satisfies

lim sup
N→∞

1
N

N∑
n=1

Li
na

2k−2
t′,n

a.s.
< ∞ for i = 1, 2. (119)

For t� > 0, let E = (eT
1 , . . . , e

T
N )T ∈ R

N×t′ denote a matrix
that satisfies

lim sup
N→∞

1
N

N∑
n=1

Ln�en�max{2,2k−2} a.s.
< ∞, (120)

lim inf
N→∞

λmin

(
1
N
EHE

)
a.s.
> C (121)

for some constant C > 0. Suppose that ω ∈ R
N−t′ is an

orthogonally invariant random vector conditioned on �, At+1,
and E. For some v > 0, postulate the following:

lim
N→∞

1
N

�ω�2 a.s.= v > 0. (122)

Let z ∼ N (0, vIN ) denote a standard Gaussian random
vector independent of the other random variables. Then,

lim
N→∞

〈
f(At,at+�+Τ⊥

Eω)−Ez[f (At,at+z)]
〉

a.s.= 0.

(123)

B. Module a for τ = 0

Proof of Property (A2) for τ = 0: The latter property (95)
follows from the former property (94) and a technical result
proved in [30, Lemma 5]. Thus, we only prove the former
property for τ = 0.

Property (94) follows from Lemma 3 for f (w̃, b̃0) =
φ̃0(b̃0, w̃;λ) with a0 = w̃, a1 + � = 0, Τ⊥

E = IN , and
ω = b̃0. We confirm all conditions in Lemma 3. Applying
Hölder’s inequality for any � > 0, we have

1
N

N∑
n=1

Li
nw̃

2k−2
n ≤

(
1
N

N∑
n=1

Lip
n

)1/p(
1
N

N∑
n=1

w̃2k−2+�
n

)1/q

(124)

for i = 1, 2, with q = 1 + �/(2k − 2) and p−1 = 1 − q−1,
which is bounded because of Assumption 3. Furthermore,
the definition b0 = −V Tx implies the orthogonal invariance
and N−1�b0�2 a.s.→ 1. Thus, all conditions in Lemma 3 hold.
Using Lemma 3, we obtain

�φ̃0(b̃0, w̃;λ)	 − Ez̃0

[
�φ̃0(z̃0, w̃;λ)	

]
a.s.→ 0, (125)

with z̃0 ∼ N (0, IN ).
We repeat the use of Lemma 3 for f (z̃0, w̃) =

φ̃0(z̃0, w̃;λ) with a0 = z̃0 and ω = w̃. Using Lemma 3
from Assumption 3 and applying Assumption 2, we obtain

�φ̃0(z̃0, w̃;λ)	 − E

[
�φ̃0(z̃0, w̃;λ)	

]
a.s.→ 0. (126)

In evaluating the expectation over w̃, the first M elements
UTw in (13) follow N (0, σ2IM ). Combining these results,
we arrive at (94) for τ = 0.

Proof of (A3) for τ = 0: The LHS of (96) is a separable
and proper pseudo-Lipschitz function of order 2. We can use
(94) for τ = 0 to find that the LHS of (96) converges almost
surely to its expectation in which b0 and �∂0φ̃0	 are replaced
by z̃0 ∼ N (0, IN ) and the expected one, respectively. Thus,
it is sufficient to evaluate the expectation.

The function f(z̃0; w̃,λ) = φ̃0(z̃0, w̃;λ)−E[�∂0φ̃0	]z̃0 is
a separable Lipschitz-continuous function of z̃0. Thus, we can
use Lemma 2 to obtain

1
N

E

[
z̃T

0

(
φ̃0 − E

[〈
∂0φ̃0

〉]
z̃0

)]

=
1
N

N∑
n=1

E
[
z̃2
0,n

]
E

[
∂0φ̃0,n

]
− E

[〈
∂0φ̃0

〉]
= 0. (127)

Thus, (96) holds for τ = 0.
Proof of (A4) for τ = 0: From the definition (11) of m̃0

and (96), we find the orthogonality N−1bT0 m̃0
a.s.→ 0. Using

this orthogonality and (95) for τ = 0 yields
1
N

�m̃0�2 a.s.=
1
N
mT

0 m̃0 + o(1)

=
1
N
mT

0m0 − E [�∂0φ0	]
mT

0 b0
N

+ o(1). (128)

The first and second terms are separable and proper
pseudo-Lipschitz functions of order 2. From (94) for τ = 0,
they converge almost surely to their expected terms. Thus,
N−1�m̃0�2 converges almost surely to a constant.

Proof of Property (A5) for τ = 0: The latter property (98)
for τ = 0 follows from the nonlinearity of φ0 in Assumption 4.
Thus, we only prove the former property (97) for τ = 0.

The proper Lipschitz-continuity in Assumption 4 implies
the upper bound |m̃0,n| ≤ Cn(1 + |b0,n| + |w̃0,n|) for some
λn-dependent constant Cn. From Assumptions 1 and 3,
we find that b0 and w̃ have bounded (2k− 2 + �)th moments
for some � > 0. Thus, we obtain the former property (97) for
τ = 0.

C. Module B for τ = 0

Proof of Property (B1) for τ = 0: Lemma 1 for the
constraint V b0 = q̃0 implies

V ∼ q̃0b
T
0

�q̃0�2
+ Τ⊥

q̃0
Ṽ (Τ⊥

b0
)T (129)
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conditioned on F and E0,0, where Ṽ ∈ ON−1 is Haar orthog-
onal and independent of b0 and q̃0. Using the definition (11)
of h0 and the orthogonality N−1bT0 m̃0

a.s.→ 0 obtained from
Property (A3) for τ = 0, we obtain (100).

To complete the proof of Property (B1) for τ = 0, we prove
(102) for τ = 0. By definition,

1
N

�ω̃0�2 =
1
N
m̃T

0 P
⊥
b0
m̃0

a.s.=
1
N

�m̃0�2, (130)

where the last equality follows from the orthogonality
N−1bT0 m̃0

a.s.→ 0. Thus, (102) holds for τ = 0, because of
the notational convention m̃⊥

0 = m̃0.
Proof of Property (B2) for τ = 0: Since the latter prop-

erty (104) follows from the former property (103), we only
prove the former property for τ = 0. Using Property (B1) for
τ = 0 and Lemma 3 for f(x,h0) = ψ̃0(h0,x) with a0 = x,
a1 = 0, � = o(1)q̃0, E = q̃0, and ω = ω0, we obtain

�ψ̃0(h0,x)	 − Ez0

[
�ψ̃0(z0,x)	

]
a.s.→ 0, (131)

with z0 ∼ N (0, π0,0IN ). Applying Assumption 1 to the sec-
ond term, we arrive at (103) for τ = 0.

Proof of Properties (B3) and (B4) for τ = 0: Repeat the
proofs of Properties (A3) and (A4) for τ = 0.

Proof of Property (B5) for τ = 0: The former prop-
erty (106) for τ = 0 is obtained by repeating the proof
of (97) for τ = 0. See [46, p. 377] for the proof of the latter
property (107) for τ = 0.

D. Proof by Induction

Suppose that Theorem 6 is correct for all τ < t. In a proof
by induction we need to prove all properties in modules A
and B for τ = t. Since the properties for module B can be
proved by repeating the proofs for module A, we only prove
the properties for module A.

Proof of Property (A1) for τ = t: The matrix (Bt,M̃ t)
has full rank from the induction hypotheses (98) and (107)
for τ = t− 1, as well as the orthogonality N−1bTτ m̃τ ′

a.s.→ 0
for all τ, τ � < t. Using Lemma 1 for the constraint
(Q̃t,Ht) = V (Bt,M̃ t), we obtain

V = (Q̃t,Ht)

[
Q̃

T

t Q̃t Q̃
T

t Ht

HT
t Q̃t HT

t Ht

]−1 [
BT

t

M̃
T

t

]

+Τ⊥
(Q̃t,Ht)

Ṽ (Τ⊥
(Bt,M̃t)

)T (132)

conditioned on F and Et,t. Applying the orthogonality
N−1bTτ m̃τ ′

a.s.→ 0 and N−1hT
τ q̃τ ′

a.s.→ 0 obtained from the
induction hypotheses (A3) and (B3) for τ < t, as well as the
definition (9) of bt, we have

bt ∼ Bt(Q̃
T

t Q̃t)−1Q̃
T

t q̃t +Bto(1) + M̃ to(1)

+Τ⊥
(Bt,M̃t)

Ṽ
T
(Τ⊥

(Q̃t,Ht)
)Tq̃t (133)

conditioned on F and Et,t, which is equivalent to (92) for
τ = t.

To complete the proof of Property (A1) for τ = t, we shall
prove (93). By definition,

�ω̃t�2

N
=
q̃T

t P
⊥
(Q̃t,Ht)

q̃t

N

a.s.=
q̃T

t P
⊥
Q̃t
q̃t

N
+ o(1), (134)

where the last equality follows from the orthogonality
N−1hT

τ q̃τ ′
a.s.→ 0. Thus, (93) holds for τ = t.

Proof of Property (A2) for τ = t: Since the latter
property (95) follows from the former property (94), we only
prove the former property for τ = t.

We use Property (A1) for τ = t and Lemma 3 for the func-
tion f (w̃,Bt, bt) = φ̃t(Bt+1, w̃;λ) with At+1 = (w̃,Bt),
at+1 = Btβt, � = M̃ to(1) +Bto(1), E = (Bt,M̃ t), and
ω = ω̃. Then,

�φ̃t(Bt+1, w̃;λ)	−Ez̃t

[
�φ̃t(Bt,Btβt+z̃t, w̃,λ)	

]
a.s.→ 0,

(135)

where z̃t has independent zero-mean Gaussian elements with
variance μt

a.s.= N−1�q̃⊥t �2. Repeating this argument yields

�φ̃t(Bt+1, w̃;λ)	 − E

[
�φ̃t(Z̃t+1, w̃,λ)	

]
a.s.→ 0, (136)

where Z̃t+1 is a zero-mean Gaussian random matrix having
independent elements. In evaluating the expectation over w̃,
UTw in (13) follows the zero-mean Gaussian distribution with
covariance σ2IM .

To complete the proof of (94) for τ = t, we eval-
uate the covariance of Zt+1. By construction, we have
N−1

E[zT
τ zτ ′ ] = N−1bT

τ bτ ′
a.s.= κτ,τ ′ +o(1). Thus, the former

property (94) is correct for τ = t.
Proof of Property (A3) for τ = t: The LHS of (96) is a

separable and proper pseudo-Lipschitz function of order 2.
We can use (94) for τ = t to find that the LHS of (96)
converges almost surely to its expectation in which Bt+1

and �∂t′φ̃t	 are replaced by Z̃t+1 and the expected one,
respectively. Thus, it is sufficient to evaluate the expectation.

Since the function f (Z̃t+1; w̃,λ) = φ̃t(Z̃t+1, w̃;λ) −∑t
t′=0 E[�∂t′φ̃t	]z̃t′ is separable and Lipschitz-continuous

with respect to Z̃t+1, we can use Lemma 2 to obtain

1
N

E

[
z̃T

τ ′

(
φ̃t −

t∑
t′=0

E

[〈
∂t′φ̃t

〉]
z̃t′

)]

=
1
N

N∑
n=1

t∑
t′=0

E[z̃τ ′,nz̃t,n]E
[
∂t′ φ̃t,n

]

−
t∑

t′=0

E

[〈
∂t′φ̃t

〉]
E[z̃T

τ ′ z̃t′ ]
N

= 0. (137)

Thus, (96) holds for τ = t.
Proof of Properties (A4) and (A5) for τ = t: Repeat the

proofs of Properties (A4) and (A5) for τ = 0. In particular,
see [46, p. 378] for the proof of (98) for τ = t.

APPENDIX B
PROOF OF THEOREM 2

In evaluating the derivative in g(j)
t′,t, the parameter δt requires

a careful treatment since it depends on Bt+1 via ht. If the
general error model contained the error model of the CAMP,
we could use (28) in Theorem 1 to prove that δt converges
almost surely to a Bt+1-independent constant δ̄t in the large
system limit. To use Theorem 1, however, we have to prove
the inclusion of the CAMP error model into the general error



TAKEUCHI: BAYES-OPTIMAL CONVOLUTIONAL AMP 4421

model. To circumvent this dilemma, we prove g
(j)
t−τ,t

a.s.=
δ
(t−1)
t−τ g

(j)
τ + o(1) for all t and τ = 0, . . . , t by induction.

We consider the case τ = 0, in which the expression (41)
requires no special treatments in computing the derivative.
Differentiating (41) with respect to the tth variable yields

g
(j)
t,t = μj+1 − μj , (138)

where μj denotes the jth moment (42) of the asymptotic
eigenvalue distribution of ATA. Comparing (43) and (138),
we have g(j)

t,t = g
(j)
0 for all t.

Suppose that there is some t > 0 such that g(j)
t′−τ,t′

a.s.=

δ
(t′−1)
t′−τ g

(j)
τ + o(1) is correct for all t� < t and τ = 0, . . . , t�.

Then, (28) in Theorem 1 implies that δt′ converges almost
surely to a constant δ̄t′ for any t� < t. We need to prove
g
(j)
t−τ,t

a.s.= δ
(t−1)
t−τ g

(j)
τ + o(1) for all τ = 0, . . . , t.

We first consider the case τ = 1 since we have already
proved the case τ = 0. Differentiating (41) with respect to the
(t− 1)th variable yields

g
(j)
t−1,t = δ̄t−1(g

(j)
t−1,t−1−g(j+1)

t−1,t−1)−δ̄t−1g1(g
(j)
t−1,t−1+μj)

+δ̄t−1θ1(g
(j+1)
t−1,t−1 + μj+1). (139)

Using g
(j)
t,t = g

(j)
0 and (44), we arrive at

g
(j)
t−1,t

a.s.= δt−1g
(j)
1 + o(1).

We next consider the case τ > 1. Differentiating (41) with
respect to the (t− τ)th variable, we have

g
(j)
t−τ,t = δ̄t−1(g

(j)
t−τ,t−1 − g

(j+1)
t−τ,t−1)

+
t−1∑

τ ′=t−τ

δ̄
(t−1)
τ ′ (θt−τ ′g

(j+1)
t−τ,τ ′ − gt−τ ′g

(j)
t−τ,τ ′)

−
t−1∑

τ ′=t−τ+1

δ̄
(t−1)
τ ′−1 (θt−τ ′g

(j+1)
t−τ,τ ′−1 − gt−τ ′g

(j)
t−τ,τ ′−1)

+ δ̄
(t−1)
t−τ (θτμj+1 − gτμj). (140)

Using (45) and the induction hypothesis g
(j)
t′−τ,t′

a.s.=

δ
(t′−1)
t′−τ g

(j)
τ + o(1) for all t� < t and τ = 0, . . . , t�, we find

g
(j)
t−τ,t

a.s.= δ
(t−1)
t−τ g

(j)
τ + o(1).

APPENDIX C
PROOF OF THEOREM 3

Let G(x, z) denote the generating function of {g(j)
τ } given

by

G(x, z) =
∞∑

j=0

Gj(z)xj , (141)

with

Gj(z) =
∞∑

τ=0

g(j)
τ z−τ . (142)

It is possible to prove that G(x, z) is given by

G(x, z) =
{Θ(z)− xG(z)}η(−x) − Θ(z)

xG̃(z) + 1 − Θ̃(z)
, (143)

with G̃(z) = (1 − z−1)G(z) and Θ̃(z) = (1 − z−1)Θ(z).
Let −x∗ denote a pole of the generating function, i.e.

x∗ = [1 − Θ̃(z)]/G̃(z). Since the generating function is
analytical, the numerator of (143) at x = −x∗ must be zero.

{Θ(z) + x∗G(z)}η(x∗) − Θ(z) = 0, (144)

which is equivalent to (52).
To complete the proof of Theorem 3, we prove (143). The

proof is a simple exercise of the Z-transform. We first compute
Gj(z) given by

Gj(z) = g
(j)
0 + g

(j)
1 z−1 +

∞∑
τ=2

g(j)
τ z−τ . (145)

To evaluate the last term with (45), we note
∞∑

τ=2

g
(j)
τ−1z

−τ = z−1
∞∑

τ=1

g(j)
τ z−τ = z−1

{
Gj(z) − g

(j)
0

}
,

(146)
∞∑

τ=2

τ−1∑
τ ′=0

gτ−τ ′g
(j)
τ ′ z

−τ

= g
(j)
0

∞∑
τ=2

gτz
−τ +

∞∑
τ ′=1

∞∑
τ=τ ′+1

gτ−τ ′g
(j)
τ ′ z

−τ

= [G(z) − 1]Gj(z) − g1g
(j)
0 z−1, (147)

∞∑
τ=2

τ−1∑
τ ′=1

gτ−τ ′g
(j)
τ ′−1z

−τ

=
∞∑

τ ′=1

∞∑
τ=τ ′+1

gτ−τ ′g
(j)
τ ′−1z

−τ

= [G(z) − 1] z−1Gj(z). (148)

Combining (43), (44), (45), and these results, we arrive at

Gj(z) = [1 − G̃(z)]Gj(z) − [1 − Θ̃(z)]Gj+1(z)
−μjG(z) + μj+1Θ(z). (149)

We next evaluate G(x, z). Substituting (149) into the defi-
nition of G(x, z) yields

G(x, z) = [1 − G̃(z)]G(x, z) − [1 − Θ̃(z)]G(x,z)
x

−η(−x)G(z) + η(−x)−1
x Θ(z), (150)

where we have used the definition (50) and the identity
G0(z) = 0 obtained from Theorem 2. Solving this equation
with respect to G(x, z), we obtain (143).

APPENDIX D
PROOF OF THEOREM 4

A. SE Equations

The proof of Theorem 4 consists of four steps: A first step is
a derivation of the SE equations, which is a dynamical system
that describes the dynamics of five variables with three indices.
A second step is evaluation of the generating functions for the
five variables. The step is a simple exercise of the Z-transform.
In a third step, we evaluate the obtained generating functions at
poles to prove the SE equation (75) in terms of the generating
functions. The last step is a derivation of the SE equation (77)
in time domain via the inverse Z-transform.

Let a(j)
t′,t = N−1mT

t′Λ
jmt, b

(j)
t′,t = N−1bT

t′Λ
jmt, ct′,t =

N−1q̃T
t′ q̃t, dt′,t = N−1qT

t′qt, and e(j)t = N−1wTUΣΛjmt.
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Theorem 2 implies the asymptotic orthogonality between bt′

and mt. We use the definition (41) to obtain

a
(j)
t′,t

a.s.= b
(j)
t,t′ − b

(j+1)
t,t′ + δ̄t−1(a

(j)
t′,t−1 − a

(j+1)
t′,t−1) + e

(j)
t′

+
t−1∑
τ=0

δ̄(t−1)
τ θt−τ (a(j+1)

t′,τ − b
(j+1)
τ,t′ − δ̄τ−1a

(j+1)
t′,τ−1)

−
t−1∑
τ=0

δ̄(t−1)
τ gt−τ (a(j)

t′,τ − b
(j)
τ,t′ − δ̄τ−1a

(j)
t′,τ−1) + o(1),

(151)

where we have replaced δt with the asymptotic value δ̄t.
Applying (31) in Theorem 1 and (9) yields

b
(j)
t′,t

a.s.= (μj − μj+1)ct′,t + δ̄t−1(b
(j)
t′,t−1 − b

(j+1)
t′,t−1) + o(1)

+
t−1∑
τ=0

δ̄(t−1)
τ θt−τ (b(j+1)

t′,τ − μj+1ct′,τ − δ̄τ−1b
(j+1)
t′,τ−1)

−
t−1∑
τ=0

δ̄(t−1)
τ gt−τ (b(j)t′,τ − μjct′,τ − δ̄τ−1b

(j)
t′,τ−1). (152)

Using (30) in Theorem 1, (36), and (11), we have

ct′+1,t+1
a.s.=
qT

t′+1q̃t+1

N
+o(1) a.s.= dt′+1,t+1−δ̄tδ̄t′a(0)

t′,t+o(1).

(153)

Applying (26) in Theorem 1 yields

dt′+1,t+1
a.s.→ E [{ft′(x1+zt′)−x1}{ft(x1+zt)−x1}] , (154)

where {zt} are zero-mean Gaussian random variables with
covariance E[zt′zt] = a

(0)
t′,t. Finally, we use (31) in Theorem 1

to obtain

e
(j)
t

a.s.= δ̄t−1(e
(j)
t−1 − e

(j+1)
t−1 ) + σ2μj+1 + o(1)

+
t−1∑
τ=0

δ̄(t−1)
τ θt−τ (e(j+1)

τ − δ̄τ−1e
(j+1)
τ−1 )

−
t−1∑
τ=0

δ̄(t−1)
τ gt−τ (e(j)τ − δ̄τ−1e

(j)
τ−1). (155)

To transform the summations in these equations to convolu-
tion, we use the change of variables a(j)

t′,t = δ̄
(t′−1)
0 δ̄

(t−1)
0 ã

(j)
t′,t.

Similarly, we define b̃
(j)
t′,t, c̃t′,t, and d̃t′,t while we use

e
(j)
t′ = δ̄

(t′−1)
0 δ̄

(t−1)
0 ẽ

(j)
t′,t. Then, the SE equations (151)–(155)

reduce to

ã
(j)
t′,t

a.s.= b̃
(j)
t,t′ − b̃

(j+1)
t,t′ + ã

(j)
t′,t−1 − ã

(j+1)
t′,t−1 + ẽ

(j)
t′,t

+
t−1∑
τ=0

θt−τ (ã(j+1)
t′,τ − b̃

(j+1)
τ,t′ − ã

(j+1)
t′,τ−1)

−
t−1∑
τ=0

gt−τ (ã(j)
t′,τ − b̃

(j)
τ,t′ − ã

(j)
t′,τ−1) + o(1), (156)

b̃
(j)
t′,t

a.s.= (μj − μj+1)c̃t′,t + b̃
(j)
t′,t−1 − b̃

(j+1)
t′,t−1 + o(1)

+
t−1∑
τ=0

θt−τ (b̃(j+1)
t′,τ − μj+1c̃t′,τ − b̃

(j+1)
t′,τ−1)

−
t−1∑
τ=0

gt−τ (b̃(j)t′,τ − μj c̃t′,τ − b̃
(j)
t′,τ−1), (157)

c̃t′+1,t+1
a.s.= d̃t′+1,t+1 − ã

(0)
t′,t + o(1), (158)

ẽ
(j)
t′,t

a.s.= ẽ
(j)
t′−1,t − ẽ

(j+1)
t′−1,t + μj+1σ

2
t′,t + o(1)

+
t′−1∑
τ=0

θt′−τ (ẽ(j+1)
τ,t − ẽ

(j+1)
τ−1,t)

−
t′−1∑
τ=0

gt′−τ (ẽ(j)τ,t − ẽ
(j)
τ−1,t), (159)

with

σ2
t′,t =

σ2

δ̄
(t′−1)
0 δ̄

(t−1)
0

. (160)

In principle, it is possible to solve the coupled dynamical
system (154), (156)–(159) numerically. However, numerical
evaluation is a challenging task due to instability against
numerical errors.

B. Generating Functions

We solve the coupled dynamical system via the Z-transform.
Define the generating function of ã(j)

t′,t as

A(x, y, z) =
∞∑

j=0

xjAj(y, z), (161)

with
Aj(y, z) =

∞∑
t′,t=0

ã
(j)
t′,ty

−t′z−t. (162)

Similarly, we write the generating functions of {b̃(j)t′,t}, {c̃t′,t},

{d̃t′,t}, {ẽ(j)t′,t}, and {σ2
t′,t} as B(x, y, z), C(y, z), D(y, z),

E(x, y, z), and Σ(y, z), respectively.
To evaluate the generating function Aj(y, z), we utilize

∞∑
t′=0

y−t′
∞∑

t=1

z−t
t−1∑
τ=0

gt−τ ã
(j)
t′,τ−k

=
∞∑

t′=0

y−t′
∞∑

τ=0

∞∑
t=τ+1

z−tgt−τ ã
(j)
t′,τ−k

=z−k [G(z) − 1]Aj(y, z) (163)

for any integer k, where we have used the definition (51)
of G(z). From (156), we have

Aj(y, z)
a.s.= Bj(z, y) −Bj+1(z, y) +

Aj(y, z)
z

− Aj+1(y, z)
z

+ [Θ(z) − 1]
{
Aj+1(y, z) −Bj+1(z, y) − Aj+1(y, z)

z

}

− [G(z) − 1]
{
Aj(y, z) −Bj(z, y) − Aj(y, z)

z

}
+ Ej(y, z). (164)

Similarly, we can derive

Bj(y, z)
a.s.= (μj − μj+1)C(y, z) +

Bj(y, z)
z

− Bj+1(y, z)
z

+ [Θ(z) − 1]
{
Bj+1(y, z) − μj+1C(y, z) − Bj+1(y, z)

z

}

− [G(z) − 1]
{
Bj(y, z) − μjC(y, z) − Bj(y, z)

z

}
+ o(1),

(165)
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C(y, z) a.s.= D(y, z) − (yz)−1A0(y, z) + o(1), (166)

Ej(y, z)
a.s.=

Ej(y, z)
y

− Ej+1(y, z)
y

+ μj+1Σ(y, z) + o(1)

+ (1 − y−1)[Θ(y) − 1]Ej+1(y, z)

− (1 − y−1)[G(y) − 1]Ej(y, z). (167)

We next substitute (164) into (161) to obtain{
xG̃(z) + 1 − Θ̃(z)

}
A(x, y, z) a.s.= [1 − Θ̃(z)]A0(y, z)

+
{
xG̃(z) − Θ̃(z)

} B(x, z, y)
1 − z−1

+ xE(x, y, z) + o(1),

(168)

with G̃(z) = (1−z−1)G(z) and Θ̃(z) = (1−z−1)Θ(z), where
we have used the identity B0(y, z)

a.s.= o(1) obtained from
the asymptotic orthogonality between bt′ and mt. Similarly,
we use (50) and (165) to obtain

B(x, y, z) a.s.=
[xG̃(z)−Θ̃(z)]η(−x)+Θ̃(z)

xG̃(z)+1−Θ̃(z)
C(y, z)
1 − z−1

+o(1).

(169)

Furthermore, we have

E(x, y, z) a.s.= 1−Θ̃(y)

xG̃(y)+1−Θ̃(y)
E0(y, z)

+ η(−x)−1

xG̃(y)+1−Θ̃(y)
Σ(y, z) + o(1). (170)

C. Evaluation at Poles

The equations (166), (168), (169), and (170) provide all
information about the generating functions. However, we are
interested only in those at x = 0. To extract this information,
we focus on the poles of A(x, y, z) and E(x, y, z). Let −x∗
denote the pole of A(x, y, z) given by

x∗ =
1 − Θ̃(z)
G̃(z)

. (171)

Since A(x, y, z) is analytical, the RHS of (168) has to be zero
at x = −x∗.
B(−x∗, z, y)

1 − z−1

a.s.= [1−Θ̃(z)]A0(y, z)−x∗E(−x∗, y, z)+o(1).

(172)

Similarly, we use (170) and Theorem 3 to obtain

E0(y, z)
a.s.= Σ(y, z) + o(1). (173)

Thus, (170) reduces to

E(−x∗, y, z)
a.s.=

[Θ̃(z) − Θ̃(y)]G̃(z)Σ(y, z)
G̃(y)Θ̃(z) − Θ̃(y)G̃(z) + G̃(z) − G̃(y)

+ o(1). (174)

Evaluating B(x, z, y) given via (169) at x = −x∗ yields

B(−x∗, z, y)
1 − z−1

a.s.= Θ(y)G(z)−G(y)Θ(z)

G̃(y)Θ̃(z)−Θ̃(y)G̃(z)+G̃(z)−G̃(y)

·[1 − Θ̃(z)]C(y, z) + o(1), (175)

where we have used Θ̃(z) = (1 − z−1)Θ(z),
G̃(z) = (1−z−1)G(z), and the symmetry C(z, y) = C(y, z).

Substituting (166), (174), and (175) into (172), we obtain

FG,Θ(y, z)A0(y, z)
a.s.=

Θ(y)G(z) −G(y)Θ(z)
y−1 − z−1

D(y, z)

+
(1 − z−1)Θ(z) − (1 − y−1)Θ(y)

y−1 − z−1
Σ(y, z) + o(1),

(176)

with

FG,Θ(y, z) = (y−1+z−1−1)[Θ(y)G(z)−G(y)Θ(z)]
y−1−z−1

+ (1−z−1)G(z)−(1−y−1)G(y)
y−1−z−1 . (177)

We transform the SE equation (176) into another
generating-function representation that is suited for deriv-
ing time-domain representation. Let S denote the generating
function of some sequence {st}. We use the notations
S1(z) = z−1S(z), ΔS , and ΔS1 , given by

ΔS =
S(y) − S(z)
y−1 − z−1

, (178)

which is a function of y and z. The inverse Z-transform of
these generating functions can be evaluated straightforwardly,
as shown shortly. We use these notations to re-write the SE
equation (176) as

FG,Θ(y, z)A0(y, z)
a.s.= {G(z)ΔΘ − Θ(z)ΔG}D(y, z)
+ (ΔΘ1 − ΔΘ)Σ(y, z) + o(1),

(179)

with

FG,Θ(y, z) = (y−1 + z−1 − 1)[G(z)ΔΘ − Θ(z)ΔG]
+ΔG1 − ΔG, (180)

where G1(z) = z−1G(z) and Θ1(z) = z−1Θ(z) are defined
in the same manner as in S1(z). The SE equation (179) is
equivalent to the former statement in Theorem 4.

D. Time-Domain Representation

We transform the SE equation (179) into a time-domain
representation that is suitable for numerical evaluation. Sup-
pose that G(z) is represented as G(z) = P (z)/Q(z). Let R(z)
denote the generating function of {rt}, i.e. R(z) = Q(z)Θ(z).
We multiply both sides of the SE equation (179) by Q(y)Q(z)
to obtain

FP,Q,Θ(y, z)A0(y, z)
a.s.= {P (z)ΔR −R(z)ΔP }D(y, z)
+Q(y)Q(z) (ΔΘ1 − ΔΘ)Σ(y, z) + o(1), (181)

with

FP,Q,Θ(y, z) =[ΔP1 − ΔP ]Q(z) + (1 − z−1)P (z)ΔQ

+ (z−1 − 1)[P (z)ΔR −R(z)ΔP ]
+ y−1[P (z)ΔR −R(z)ΔP ]. (182)

It is possible to evaluate the inverse Z-transform of S1(z),
ΔS , ΔS1 , and z−1ΔS for any generating function S(z). By
definition, we have

S1(z) =
∞∑

t=0

stz
−(t+1) =

∞∑
t=0

st−1z
−t, (183)
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TABLE III

Z-TRANSFORM OF 2-DIMENSIONAL ARRAYS

where the convention s−1 = 0 has been used. Thus, S1(z) is
the generating function of the sequence {st−1}.

For ΔS , we obtain

ΔS =
∞∑

τ=1

sτ
y−τ − z−τ

y−1 − z−1
=

∞∑
τ=1

τ−1∑
τ ′=0

sτy
−τ ′

z−(τ−τ ′−1)

=
∞∑

τ ′=0

∞∑
τ=τ ′+1

sτy
−τ ′

z−(τ−τ ′−1) =
∞∑

τ ′=0

∞∑
τ=0

sτ ′+τ+1y
−τ ′

z−τ ,

(184)

which implies that ΔS is the generating function of the
two-dimensional array st′,t = st′+t+1.

We combine these results to evaluate the inverse
Z-transform of the remaining generating functions. For S1(z),
ΔS1 is the generating function of {st′+t}. Since y−1 is the
generating function of δt′,1δt,0 and since ΔS is the generating
function of st′,t = st′+t+1, y−1ΔS is the generating function
of the two-dimensional convolution:

(δt′,1δt,0) ∗ st′,t = st′−1,t = st′+t − δt′,0st, (185)

where the last expression is due to the convention s−1,t = 0.
See Table III for a summary of these results.

We evaluate the inverse Z-transform of (181). It is a simple
exercise to confirm that (181) is equal to the Z-transform of
the following difference equation:

Dt′,t ∗ ã(0)
t′,t

a.s.= (pt ∗ rt′+t+1 − rt ∗ pt′+t+1) ∗ d̃t′,t

+(qt′qt) ∗ (θt′+t − θt′+t+1) ∗ σ2
t′,t + o(1),

(186)

with

Dt′,t = (pt′+t − pt′+t+1) ∗ qt + (pt − pt−1) ∗ qt′+t+1

+ (pt−1 − pt) ∗ rt′+t+1 + (rt − rt−1) ∗ pt′+t+1

+ pt ∗ (rt′+t − δt′,0rt) − rt ∗ (pt′+t − δt′,0pt),
(187)

where all variables with negative indices are set to zero.
Multiplying (186) by δ̄

(t′−1)
0 δ̄

(t−1)
0 and using the definitions

ã
(0)
τ ′,τ = a

(0)
τ ′,τ/(δ̄

(τ ′−1)
0 δ̄

(τ−1)
0 ), d̃(0)

τ ′,τ = dτ ′,τ/(δ̄
(τ ′−1)
0 δ̄

(τ−1)
0 ),

and σ2
τ ′,τ = σ2/(δ̄(τ

′−1)
0 δ̄

(τ−1)
0 ), we arrive at the SE equa-

tion (77) in time domain, with the superscript in a(0)
τ ′,τ omitted.

Finally, we use the notational convention f−1(·) = 0
to obtain initial and boundary conditions. From the def-
inition (70) of dt′+1,t+1, we have the initial condition
d0,0 = E[x2

1] = 1. Similarly, we use (70) to obtain the
boundary condition d0,τ+1 = −E[x1{fτ(x1 + zτ ) − x1}].
The boundary condition dτ+1,0 = d0,τ+1 follows from the
symmetry.

APPENDIX E
PROOF OF THEOREM 5

Without the loss of generality, we assume pt = gt and
qt = δt,0. Then, the SE equation (77) in time domain reduces
to

t′∑
τ ′=0

t∑
τ=0

δ̄
(t′−1)
t′−τ ′ δ̄

(t−1)
t−τ

{
Dτ ′,τat′−τ ′,t−τ

−(gτ ∗ θτ ′+τ+1 − θτ ∗ gτ ′+τ+1)dt′−τ ′,t−τ

−σ2 (θτ ′+τ − θτ ′+τ+1)
}

= 0, (188)

with

Dτ ′,τ =gτ ′+τ − gτ ′+τ+1 + (gτ−1 − gτ ) ∗ θτ ′+τ+1

+ (θτ − θτ−1) ∗ gτ ′+τ+1 + gτ ∗ (θτ ′+τ − δτ ′,0θτ )
− θτ ∗ (gτ ′+τ − δτ ′,0gτ ). (189)

We evaluate a fixed-point of the reduced SE equa-
tion (188) for the Bayes-optimal denoiser fopt. Suppose that
limt′,t→∞ at′,t = as, limt′,t→∞ dt′,t = ds, and limt→∞ δ̄t =
δs hold. The main feature of the Bayes-optimal denoiser is the
identity δs = ds/as [46, Lemma 2]. We use this identity and
the assumptions in Theorem 5 to prove the fixed-point (80).

Taking the limits t�, t→ ∞ in (188) yields

as

∞∑
τ ′,τ=0

Dτ ′,τ (δ−1
s )−τ ′−τ

=ds

∞∑
τ ′,τ=0

(gτ ∗ θτ ′+τ+1 − θτ ∗ gτ ′+τ+1)(δ−1
s )−τ ′−τ

+ σ2
∞∑

τ ′,τ=0

(θτ ′+τ − θτ ′+τ+1)(δ−1
s )−τ ′−τ . (190)

We use the properties of the Z-transform in Table III and the
identity δs = ds/as to find

FG,Θ(y, z)
ds

δs
={G(z)ΔΘ−Θ(z)ΔG}ds+(ΔΘ1−ΔΘ)σ2

(191)

in the limit y, z → δ−1
s , where FG,Θ is given by (76).

Series-expanding ΔS with respect to z−1 at z = y up to
the first order yields

lim
y,z→ξ−1

s

ΔS =
dS

dz−1
(δ−1

s ). (192)

Similarly, we have

lim
y,z→ξ−1

s

ΔS1 = S(δ−1
s ) + δs

dS

dz−1
(δ−1

s ), (193)

Applying these results to (191) with (76) yields{
1 + (δs − 1)

dΘ
dz−1

(δ−1
s )
}{

G(δ−1
s )ds

δs
− σ2

}
= 0, (194)

where we have used the assumption Θ(δ−1
s ) = 1. Since

1+(δs−1)dΘ(δ−1
s )/(dz−1) �= 0 has been assumed, we arrive

at
G(δ−1

s )
δs

=
σ2

ds
. (195)

To prove the fixed-point (80), we use the relationship (55)
between the η-transform and the R-transform. Evaluating (55)
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at x = x∗ given in (171) and using Theorem 3, we obtain

G(z) = Θ(z)R
(
−1 − (1 − z−1)Θ(z)

G(z)
Θ(z)

)
. (196)

Letting z = δ−1
s and applying the assumption Θ(δ−1

s ) = 1
yields

G(δ−1
s ) = R

(
− δs

G(δ−1
s )

)
. (197)

Substituting (195) into this identity and using δs = ds/as,
we arrive at

as =
σ2

R(−ds/σ2)
. (198)

APPENDIX F
EVALUATION OF (70) FOR

BERNOULLI-GAUSSIAN SIGNALS

A. Summary

We evaluate the correlation (70) for the Bernoulli-Gaussian
signals. This appendix is organized as an independent section
of the other parts. Thus, we use different notations from the
other parts.

Let A ∈ {0, 1} denote a Bernoulli random variable taking
1 with probability ρ ∈ [0, 1]. Suppose that Z ∼ N (0, ρ−1)
is independent of A and a zero-mean Gaussian random
variable with variance ρ−1. We consider estimation of a
Bernoulli-Gaussian signal X = AZ on the basis of two
dependent noisy observations,

Yt′ = X +Wt′ , Yt = X +Wt, (199)

with (
Wt′

Wt

)
∼ N (0,Σ), Σ =

(
at′,t′ at′,t
at′,t at,t

)
, (200)

where Σ is positive definite. The goal of this appendix is to
evaluate the correlation dt′+1,t+1 of the estimation errors for
the Bayes-optimal denoiser fopt(Yt; at,t) = E[X |Yt],

dt′+1,t+1 =E[{fopt(Yt′ ; at′,t′)−X}{fopt(Yt; at,t)−X}].
(201)

Before presenting the derived expression of the correla-
tion (201), we first introduce several definitions. We write the
pdf of a zero-mean Gaussian random variable Y with variance
σ2 as pG(y;σ2), with

pG(y;σ2) =
1√

2πσ2
exp

(
− y2

2σ2

)
. (202)

The pdf of a Gaussian mixture is defined as

pGM(y; at,t) = ρpG(y; ρ−1+at,t)+(1−ρ)pG(y; at,t), (203)

which is used to represent the marginal pdf of Yt. As proved
in Appendix F-B, the probability of A = 1 given Yt is given
by Pr(A = 1|Yt = y) = π(y; at,t), with

π(y, at,t) =
ρpG(y; ρ−1 + at,t)

pGM(y; at,t)
. (204)

The Bayes-optimal denoiser fopt(Yt; at,t) is derived in the
same appendix:

fopt(y; at,t) =
y

1 + ρat,t
π(y, at,t), (205)

where the conditional probability π(y, at,t) is given by (204).
We write the MSE function MSE(at,t) as

MSE(at,t)

=
at,t

1 + ρat,t
+ E[{1 − π(Yt, at,t)}{fopt(Yt; at,t)}2]

+E

[
π(Yt, at,t)

{
Yt

1 + ρat,t
− fopt(Yt; at,t)

}2
]
, (206)

where the Bayes-optimal denoiser fopt is given in (205).
In (206), the expectation is over Yt ∼ pGM(y; at,t) given
in (203).

The joint pdf of {Yt′ , Yt} is represented as

p(Yt′ , Yt)=ρp(Yt′ , Yt|A = 1)+(1 − ρ)p(Yt′ , Yt|A = 0).
(207)

As proved in Appendix F-F, the conditional pdf p(Yt′ , Yt|A)
is given by

p(Yt′ , Yt|A = a) = pG(Yt′ ; ρ−1a+ at′,t′)

·pG

(
Yt − a+ρat′,t

a+ρat′,t′
Yt′ ;

a+ρat,t

ρ − (a+ρat′,t)
2

ρ(a+ρat′,t′ )

)
(208)

for a = 0, 1.
Proposition 1: • Let MSE(at,t) denote the MSE func-

tion (206). Then,

dt+1,t+1 = MSE(at,t). (209)

• For t� �= t, let

vt′,t =
at′,t′at,t − a2

t′,t

at′,t′ + at,t − 2at′,t
. (210)

Then, the correlation dt′+1,t+1 for t� �= t is given by

dt′+1,t+1 = E[fopt(Yt′ ; at′,t′)fopt(Yt; at,t)]

+ E

[
π(Yt′,t; vt′,t)

{(
Yt′,t

1 + ρvt′,t

)2

+
ρ−1vt′,t

ρ−1 + vt′,t

−Yt′,t[fopt(Yt′ ; at′,t′) + fopt(Yt; at,t)]
1 + ρvt′,t

}]
, (211)

with

Yt′,t =
(at,t − at′,t)Yt′ + (at′,t′ − at′,t)Yt

at′,t′ + at,t − 2at′,t
, (212)

where the expectation in (211) over {Yt′ , Yt} is evaluated
via the joint pdf (207).

Proof: See from Appendix F-B to Appendix F-F.
Proposition 1 implies that dt′+1,t+1 for t� �= t requires

numerical computation of the double integrals.

B. Bayes-Optimal Denoiser

We compute the Bayes-optimal denoiser
fopt(Yt; at,t) = E[X |Yt], given by

fopt(Yt; at,t) =E [E[AZ|Yt, A]|Yt]
=E[Z|Yt, A = 1]Pr(A = 1|Yt). (213)

Note that fopt is different from the true posterior mean
estimator (PME) E[X |Yt′ , Yt].

We first evaluate the former factor E[Z|Yt, A = 1]. Since
Yt = Z + Wt given A = 1 is the AWGN observation of
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Z ∼ N (0, ρ−1), we obtain the well-known LMMSE estimator

E[Z|Yt, A = 1] =
ρ−1Yt

ρ−1 + at,t
, (214)

which implies the Bayes-optimal denoiser (205).
We next prove that the latter factor Pr(A = 1|Yt) is equal

to π(Yt; at,t) given in (204). By definition,

Pr(A = 1|Yt) =
ρp(Yt|A = 1)

p(Yt)
. (215)

For the numerator, we have

p(Yt|A = 1) = EZ [p(Yt|A = 1, Z)]

=EZ [pG(Yt − Z; at,t)] = pG(Yt; ρ−1 + at,t), (216)

where the last equality follows from the fact that Z +Wt is a
zero-mean Gaussian random variable with variance ρ−1+at,t.

The denominator p(Yt) is computed in the same manner,

p(Yt) = ρp(Yt|A = 1) + (1 − ρ)p(Yt|A = 0)

=ρpG(Yt; ρ−1 + at,t) + (1 − ρ)pG(Yt; at,t), (217)

which is equal to pGM(Yt; at,t) given in (203). Combining
these results, we arrive at Pr(A = 1|Yt) = π(Yt; at,t) given
in (204).

C. MSE

To evaluate the MSE dt+1,t+1 = E[{X − fopt(Yt; at,t)}2],
we focus on the posterior variance E[{X−fopt(Yt; at,t)}2|Yt].
By definition,

E[{X − fopt(Yt; at,t)}2|Yt]
=Pr(A = 1|Yt)E[{Z − fopt(Yt; at,t)}2|Yt, A = 1]

+ {1 − Pr(A = 1|Yt)}{fopt(Yt; at,t)}2, (218)

with Pr(A = 1|Yt) = π(Yt, at,t) given in (204).
Let E[Z|Yt, A = 1] denote the PME of Z conditioned on

Yt and A = 1, given in (214). The conditional expectation in
the first term can be evaluated as follows:

E[{Z − fopt(Yt; at,t)}2|Yt, A = 1] = E[{Z − E[Z|Yt, A = 1]

+E[Z|Yt, A = 1] − fopt(Yt; at,t)}2
∣∣∣Yt, A = 1

]
=

ρ−1at,t

ρ−1 + at,t
+
{

Yt

1 + ρat,t
− fopt(Yt; at,t)

}2

. (219)

Combining these results and taking the expectation over
Yt ∼ p(Yt) = pGM(Yt; at,t) given in (203), we arrive at the
MSE (209).

D. Sufficient Statistic

As a preliminary step for computing the correlation (201)
for t� �= t, we derive a sufficient statistic of X based on the
two correlated observations {Yt′ , Yt}.

Let Σ−1/2 denote a square root of Σ−1, i.e. (Σ−1/2)2 =
Σ−1. Applying the noise whitening filter Σ−1/2 to the obser-
vation vector (Yt′ , Yt)T yields

Σ−1/2

(
Yt′

Yt

)
= Σ−1/212X + Σ−1/2

(
Wt′

Wt

)
, (220)

with 12 = (1, 1)T. Note that the effective noise vector—
the second term on the RHS—follows the standard Gaussian

distribution. It is well-known that the MF output is a
sufficient statistic of X when the effective noise vector
has zero-mean i.i.d. Gaussian elements. Applying the MF
(Σ−1/212)T/1T

2 Σ−112 to (220), we arrive at a sufficient
statistic Yt′,t, given by

Yt′,t =
1T

2 Σ−1

1T
2 Σ−112

(
Yt′

Yt

)
= X +Wt′,t, (221)

with

Wt′,t =
1T

2 Σ−1

1T
2 Σ−112

(
Wt′

Wt

)
. (222)

It is straightforward to confirm that the sufficient statistic (221)
reduces to (212). Furthermore, we find Wt′,t ∼ N (0, vt′,t),
with vt′,t = (1T

2 Σ−112)−1, which reduces to (210).

E. Correlation

To evaluate the correlation (201) for t� �= t, we first derive
a few quantities associated with the sufficient statistic (221).

The probability of A = 1 given Yt′ and Yt is equal to that
of A = 1 given the sufficient statistic (221). Thus, repeating
the derivation of Pr(A = 1|Yt) = π(Yt; at,t) given in (204),
we have

Pr(A = 1|Yt′ , Yt) = π(Yt′,t; vt′,t), (223)

where Yt′,t and vt′,t are given by (212) and (210). Simi-
larly, repeating the derivation of (214) implies that the PME
E[Z|Yt′ , Yt, A = 1] reduces to

E[Z|Yt′ , Yt, A = 1] =
Yt′,t

1 + ρvt′,t
. (224)

Furthermore, the true PME E[X |Yt′ , Yy] is given by

E[X |Yt′ , Yt] = fopt(Yt′,t; vt′,t). (225)

We next evaluate the posterior covariance

E[{fopt(Yt′ ; at′,t′) −X}{fopt(Yt; at,t) −X}|Yt′ , Yt]
=Pr(A = 0|Yt′ , Yt)fopt(Yt′ ; at′,t′)fopt(Yt; at,t)

+ Pr(A = 1|Yt′ , Yt)E[{fopt(Yt′ ; at′,t′) − Z}
· {fopt(Yt; at,t) − Z}|Yt′ , Yt, A = 1]. (226)

Substituting (223) into (226) and using fopt(Yτ ; aτ,τ) −
Z = {fopt(Yτ ; aτ,τ ) − E[Z|Yt′ , Yt, A = 1]} + {E[Z|Yt′ , Yt,
A = 1] − Z} with (224) for τ = t�, t, we have

E[{fopt(Yt′ ; at′,t′) −X}{fopt(Yt; at,t) −X}|Yt′ , Yt]
={1 − π(Yt′,t; vt′,t)}fopt(Yt′ ; at′,t′)fopt(Yt; at,t)

+ π(Yt′,t; vt′,t)
{[
fopt(Yt′ ; at′,t′) − Yt′,t

1 + ρvt′,t

]

·
[
fopt(Yt; at,t) − Yt′,t

1 + ρvt′,t

]
+

ρ−1vt′,t

ρ−1 + vt′,t

}
, (227)

where Yt′,t is computed with {Yt′ , Yt}, as given in (212).
Finally, we derive the correlation (201). Taking the expec-

tation of the posterior covariance (227) over Yt′ and Yt, we
arrive at (211).

F. Joint Pdf

To compute the expectation in (211), we need the condi-
tional pdf p(Yt′ , Yt|A) in the joint pdf (207) of {Yt′ , Yt}.
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We first evaluate the conditional distribution of Wt

given Wt′ . Let
Wt = αWt′ +

√
βW̃ , (228)

with some constants α ∈ R and β > 0, where W̃ is a standard
Gaussian random variable independent of Wt′ . Computing the
correlation E[Wt′Wt] and variance E[W 2

t ], we obtain

E[Wt′Wt] = αE[W 2
t′ ], (229)

E[W 2
t ] = α2

E[W 2
t′ ] + β. (230)

We use the definitions E[W 2
τ ] = aτ,τ for τ = t�, t

and E[Wt′Wt] = at′,t to have α = at′,t/at′,t′ and
β = at,t − a2

t′,t/at′,t′ . Thus, (228) implies

Wt conditioned on Wt′ ∼ N
(
at′,tWt′

at′,t′
, at,t −

a2
t′,t

at′,t′

)
.

(231)

We next evaluate the conditional pdf p(Yt′ , Yt|A) for A = 0.
Since Yτ = Wτ holds for A = 0, we have

p(Yt′ , Yt|A = 0) = p(Wt′ = Yt′ ,Wt = Yt)

=pG

(
Yt − at′,t

at′,t′
Yt′ ; at,t −

a2
t′,t

at′,t′

)
pG(Yt′ ; at′,t′). (232)

For A = 1, we use Yτ = Z + Wτ to find that {Yt′ , Yt}
given A = 1 are zero-mean Gaussian random variables with
covariance,

E[Y 2
τ |A = 1] = ρ−1 + aτ,τ for τ = t�, t, (233)

E[Yt′Yt|A = 1] = ρ−1 + at′,t. (234)

Repeating the derivation of (231), we obtain

p(Yt′ , Yt|A = 1) = pG(Yt′ ; ρ−1 + at′,t′)

· pG

(
Yt − ρ−1 + at′,t

ρ−1 + at′,t′
Yt′ ; ρ−1 + at,t − (ρ−1 + at′,t)2

ρ−1 + at′,t′

)
.

(235)

Combining these results, we arrive at the conditional pdf (208).
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