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Cutoff for Exact Recovery of Gaussian
Mixture Models

Xiaohui Chen and Yun Yang

Abstract— We determine the information-theoretic cutoff value
on separation of cluster centers for exact recovery of cluster labels
in a K-component Gaussian mixture model with equal cluster
sizes. Moreover, we show that a semidefinite programming (SDP)
relaxation of the K-means clustering method achieves such sharp
threshold for exact recovery without assuming the symmetry of
cluster centers.

Index Terms— K-means, Gaussian mixture models, semidefinite
relaxation, exact recovery, sharp threshold, optimality.

I. INTRODUCTION

LET X1, . . . ,Xn be a sequence of independent random
vectors in R

p sampled from a K-component Gaussian
mixture model with K � n. Specifically, we assume that
there exists a partition G∗

1, . . . , G
∗
K of the index set [n] :=

{1, . . . , n} such that if i ∈ G∗
k, then

Xi = μk + εi, εi
i.i.d.∼ N(0, σ2Ip), (1)

where μ1, . . . ,μK ∈ R
p are the unknown cluster centers

and σ2 > 0 is the common noise variance. For simplicity,
we assume that σ2 is known. Our main focus of this paper is
to investigate the problem of optimal exact recovery for the
true partition (or clustering) structure G∗

1, . . . , G
∗
K .

For each partition G1, . . . , GK of [n], let H = (hik) ∈
{0, 1}n×K be the binary assignment matrix of the observation
Xi to the cluster k, i.e.,

hik =
�

1, if i ∈ Gk,
0, otherwise,

for i ∈ [n], k ∈ [K].

Since each row of H contains exactly one nonzero entry, there
is one-to-one mapping (up to assignment labeling) between
the partition and the assignment matrix. Thus recovery of
the true clustering structure is equivalently to recovery of the
associated assignment matrix.

Given the data matrix Xp×n = (X1, . . . ,Xn), the optimal
estimator that maximizes the probability of recovering the
clustering labels correctly is the maximum a posteriori (MAP)
estimator. If the label assignment is uniformly random, then
the MAP estimator is equivalent to the maximum likelihood
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estimator (MLE), where the log-likelihood function is given
by

�(H, μ1, . . . , μK)=−np

2
log(2πσ2)− 1

2σ2

n�
i=1

K�
k=1

hik�Xi−μk�2
2.

Then the MLE corresponds to the solution of

min
H,µ1,...,µK

n�
i=1

K�
k=1

hik�Xi − μk�2
2 (2)

subject to the constraint that H is an assignment matrix.
Since we focus on the recovery of the true clustering

structure G∗
1, . . . , G

∗
K , we may first profile the “nuisance

parameters" μ1, . . . ,μK , whose MLEs are given by

μ̂k =
�n
i=1 hikXi�n
i=1 hik

=
1

|Gk|
�
i∈Gk

Xi,

where |Gk| =
�n

i=1 hik denotes the cardinality of the k-th
cluster. Substituting μ̂k into (2), we see that the MLE for H
(and thus for G1, . . . , GK) is the solution of the constrained
combinatorial optimization problem:

max
G1,...,GK

K�
k=1

1
|Gk|

�
i,j∈Gk

�Xi,Xj� subject to
K�
k=1

Gk = [n],

(3)

where � denotes the disjoint union.
It is now clear that, under the Gaussian mixture model,

the MLE in (3) is equivalent to the classical K-means clus-
tering method [1], which minimizes the total intra-cluster
squared Euclidean distances. Since the K-means clustering
problem is known to be worst-case NP-hard [2], [3], one
can expect that a polynomial-time algorithm for computing
the MLE of the clustering structure with exact solutions
only exists in certain cases. Because of this computational
barrier of the original K-means problem, various computa-
tionally tractable approximation algorithms are proposed in
literature.

A widely used algorithm for solving the K-means is
Lloyd’s algorithm [4], which is an iterative algorithm that
sequentially refines the partition structure to ensure that
the K-means objective function is monotonically decreas-
ing. Lloyd’s algorithm has a similar nature as the classical
expectation-maximization (EM) algorithm [5] in that, while
the EM implicitly performs soft clustering at every E-step,
Lloyd’s algorithm does hard clustering at each iteration via
the Voronoi diagram.
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Given a suitable initialization (such as the spectral clustering
method [6]), it is shown in [7] that the clustering error
for Lloyd’s algorithm converges to zero exponentially fast,
provided that

Δ2 := min
1�k �=l�K

�μk − μl�2
2 � Cσ2Kn

n

�
1 ∨ Kp

n

�
, (4)

where n = mink∈[K] |G∗
k| is the minimal cluster size and a∨

b = max(a, b).
Separation lower bound in (4) is not sharp (in the

high-dimensional setting when p 	 n). In the simplest
symmetric two-component Gaussian mixture model:

Xi = μηi + εi,

where ηi = 1, i ∈ G∗
1 and ηi = −1, i ∈ G∗

2, [8] proposes a
simple iterative thresholding algorithm that achieves the sharp
threshold on �μ�2

2 for exact recovery with high probability,
which is given by

σ2

�
1 +

	
1 +

2p
n logn



logn. (5)

It should be noted that the algorithm in [8] critically depends
on the symmetry of the Gaussian centers (i.e., μ and −μ)
and it is structurally difficult to extend such algorithm with
maintained statistical optimality to a general K-component
Gaussian mixture model without assuming the centers are
equally spaced.

Another active line of research focuses on various convex
relaxed versions of the K-means problem that is solvable in
polynomial-time [9]–[15]. The best known rate of convergence
achieved by the semidefinite programming (SDP) relaxed
K-means for the Gaussian mixture model (1) is given by [14].
Specifically, it is shown therein that misclassification errors of
the SDP originally proposed in [9] for relaxing the K-means
has the exponential rate of convergence exp(−C · SNR2),
where the signal-to-noise ratio is defined as

SNR2 =
Δ2

σ2
∧ nΔ4

pσ4
� c

n

n
(6)

and a ∧ b = min(a, b). In particular, the exponential rate
implies that exact recovery is achieved by the SDP relaxed
K-means with high probability in the equal cluster size case
n = n/K if minimal separation of cluster centers satisfies the
lower bound

Δ2 � Cσ2

�
1 ∨

�
Kp

n logn


logn. (7)

Now comparing (7) with the optimal exact results (5) in the
special symmetric two-component Gaussian mixture model,
it is natural to ask the following question:

does the SDP relaxed K-means clustering method
achieve a sharp threshold for exact recovery of the
general K-component Gaussian mixture model?

To the best knowledge of ours, this is an open question in
literature. In this paper, we provide an affirmative answer to
this question: we show that there is an SDP relaxation of the
K-means clustering method (given in (11) below) achieving

the exact recovery with high probability if Δ2 � (1 + α)Δ
2
,

where

Δ
2

= 4σ2

�
1 +

�
1 +

Kp

n logn


logn. (8)

In addition, if Δ2 � (1 − α)Δ
2
, then the probability of exact

recovery for any estimator vanishes to zero under the equal
cluster size scenario. Thus Δ

2
yields the information-theoretic

cutoff value on the minimal separation of cluster centers for
exact recovery of the K-component Gaussian mixture model,
and the SDP relaxation for the K-means is minimax-optimal
in the sense that sharp phase transition of the probability
of wrong recovery from zero to one occurs at the critical
threshold given by the Δ

2
.

A. Related Work
There is a vast literature studying the clustering problem on

the Gaussian mixture model, or more generally finite mixture
models. Regarding clustering labels as missing data, parameter
estimation is often carried out by the EM algorithm [5], [16].
The EM algorithm has been extensively studied in the statistics
and machine learning literature [17]–[25]. Optimal rate of
convergence for estimating the mixing distribution in finite
mixture models is derived in [17]. Consistency of the K-means
estimation of the clustering centers is studied in [1], [26],
without concerning the computational complexity. Computa-
tionally efficient algorithms for solving the K-means include
Lloyd’s algorithm [4], [7] and convex relaxations [9]–[15],
[27]. Other popular clustering methods include the spectral
clustering [28]–[35] and variants of the K-means [36]–[40].
Analysis under the mixture models has also been done under
other clustering models such as the stochastic ball models [12],
[27], [38].

Parallel to the (mixture) model-based clustering framework,
there are many similar methods and algorithms proposed for
community detection in network data based on the stochastic
block model (SBM) [41], [42]. Successful algorithms for com-
munity detection, partial and exact recovery under the SBM
have been extensively studied in literature – these include spec-
tral algorithms [43]–[45], SDP relaxations [46]–[52], among
others [53], [54].

B. Notation
Let 1n be the n × 1 vector of all ones. For two matrices

A and B of the same size, let �A,B� = tr(ATB) be the
usual inner product. Throughout the rest of the paper, we fix
the notation nk = |G∗

k|, m = min1�k �=l�K
�

2nknl

nk+nl

�
, and

n = mink∈[K] nk as the minimal cluster size.

II. MAIN RESULT

In this section, we state our main result on the
information-theoretic cutoff value of the exact recovery of the
Gaussian mixture model in (1).

Theorem II.1 (Separation Upper Bound for Exact Recovery
via SDP Relaxation): If there exist constants δ > 0 and
β ∈ (0, 1) such that

logn � (1 − β)2

β2

C1n

m
, δ � β2

(1 − β)2
C2

K
, m� 4(1 + δ)2

δ2
,
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and

Δ2 � 4σ2(1+2δ)
(1−β)2

�
1+

�
1+

(1−β)2

(1+δ)
p

m logn
+C3Rn


logn

with

Rn =
(1 − β)2

(1 + δ) logn

�√
p logn
n

+
logn
n



,

then the SDP in (11) achieves exact recovery with probability
at least 1−C4K

2 n−δ, where Ci, i = 1, 2, 3, 4, are universal
constants.

The following corollary is a direct consequence (and a
special case) of Theorem II.1 when the cluster sizes are equal.

Corollary II.2: Let α > 0, Δ2 = min1�k �=l�K �μk−μl�2
2,

and Δ
2

be defined in (8). Suppose that the cluster sizes are
equal and K � C1 log(n)/ log log(n) for some small constant
C1 > 0 depending only on α. If Δ2 � (1 + α)Δ

2
, then the

SDP in (11) achieves exact recovery with probability at least
1−C2(logn)−c3 , where C2, c3 are constants depending only
on α.

To derive a lower bound, we focus on the equal size case
where clusters {G∗

k}Kk=1 have roughly the same sizes. More
precisely, recall that our unknown parameters are the cluster
indicating variables H = {hik : i ∈ [n], k ∈ [K]}, and
{nk : k ∈ [K]} are the unknown cluster sizes. Let δn =
C
�
K log(n)/n for some sufficiently large constant C > 0.

Here, we consider nk ∈ [(1 − δn)n/K, (1 + δn)n/K] for
k ∈ [K] that allows a small fluctuation on the community
size in establishing the lower bound. Particularly, we define
the (localized) parameter space as

Θ
�
n,K,Δ

�
=
��{hik}, {μk}� : hik ∈ {0, 1}, μk ∈ R

p,

K�
k=1

hik = 1, nk :=
n�
i=1

hik ∈
�
(1 − δn)

n

K
, (1 + δn)

n

K

�
,

�μk − μl� � Δ, ∀i ∈ [n] and ∀(k, l) ∈ [K]2, k = l
�
.

Theorem II.3 (Separation Lower Bound for Exact Recovery:
Equal Cluster Size Case): Let α ∈ (0, 1). If Δ2 � (1−α)Δ

2

and K � logn, then we have

inf
{ĥik}

sup
(H,μ)∈Θ(n,K,Δ)

P(H,μ)

�
ĥik = hik, i ∈ [n], k ∈ [K]

�
� 1 − cKn−1,

where c > 0 is a constant depending only on α and the
infimum is over all possible estimators {ĥik} for {hik}.

Corollary II.2 and Theorem II.3 together imply that in the
equal cluster size case when n1 = n2 = · · · = nK = n

K ,
the SDP relaxation (11) for the K-means is minimax-optimal
in the sense that sharp phase transition of the probability
of wrong recovery from zero to one occurs at the critical
threshold given by the Δ

2
in (8).

III. SEMIDEFINITE PROGRAMMING RELAXATION:
PRIMAL AND DUAL

In this section, we describe the SDP relaxation of the
K-means that achieves the cutoff value of the exact recovery
and outline the strategy of showing that the SDP solution

uniquely recovers the true clustering structure by a dual cer-
tificate argument via the primal-dual construction. We remark
that similar primal-dual analyses are done in [11], [55].

Let A = XTX be the affinity matrix and B =
diag(|G1|−1, . . . , |GK |−1). Then we can reparametrize (3) as

max
H

�A,HBHT � subject to H ∈ {0, 1}n×K, H1K = 1n,

(9)

which is a mixed integer program with a nonlinear objective
function [9], [56]. If the cluster centers μ1, . . . ,μK are
properly separated, then the affinity matrix A from the data has
an approximate block diagonal structure (up to a permutation
of the data index).

Changing variable Z = HBHT , we observe that the n×n
symmetric matrix Z satisfies the following properties:
(P1) positive semidefinite (psd) constraint: Z � 0;
(P2) non-negative (entrywise) constraint: Z � 0, i.e., Zij � 0

for all i, j ∈ [n];
(P3) unit row-sum constraint: Z1n = 1n;
(P4) trace constraint: tr(Z) = K .

Since Z is symmetric, properties (P2) and (P3) automatically
ensure that Z is a stochastic matrix Z1n = ZT1n = 1n.
Given any clustering structure G1, . . . , GK , we may consider
the associated cluster membership matrix:

Zij =
�

1/|Gk| if i, j ∈ Gk
0 otherwise

. (10)

Thus to recover the true clustering structure G∗
1, . . . , G

∗
K ,

it suffices to compare the estimated membership matrix and
the true one Z∗.

After the change-of-variables, the objective function in (9)
becomes linear in Z . Then we use the solution Ẑ of the
following (convex) SDP to estimate Z∗:

Ẑ = argmaxZ∈CK
�A,Z�, (11)

where

CK =
�

Z ∈ R
n×n

���Z�0, ZT =Z, tr(Z)=K, Z1n =1n, Z �0
�

.

Note that the above SDP is first proposed in [9] and
later studied in [14], [39], [40]. For spherical Gaussians (i.e.,
the noise covariance matrix is proportional to the identity
matrix), since the SDP relaxation (11) does not require the
knowledge of the noise variance σ2 and the partition informa-
tion other than the number of clusters K , it in fact can handle
the more general case of unequal cluster sizes.

Remark III.1 (Adaptation to the Number of Clusters K):
The SDP in (11) can be made adaptive to the unknown number
of cluster K . When the number of clusters K is unknown,
the constraint tr(Z) = K in the SDP (11) can be lifted to a
penalization term in its objective function, i.e., we solve

Z̃λ :=arg max{�A, Z�−λtr(Z) : Z�0, ZT =Z,Z1n =1n, Z �0},
(12)

where λ � 0 is a regularization parameter. This is the
regularized K-means proposed by [13], [15] and analyzed
by [40] in the manifold clustering setting. Using the same
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existing argument for proving the separation upper bound in
Section IV, we see that with the λ choice being

σ2(
√
n+

√
p+

�
2 logn )2

+ Cβ−1σ2 (n+K log n+ (1 − β)Kδ
�
pm logn)

� λ � pσ2 +
β

4
mΔ2, (13)

then under the same conditions in Theorem 2.1, Z̃λ = Z∗

achieves exact recovery with probability at least 1−CK2n−δ.
Note that a larger signal-to-noise ratio Δ2/σ2 permits a wider
allowable range for λ to achieve exact recovery, and our
conditions in Theorem II.1 ensures the existence of at least
one such λ. The idea for Z̃λ to achieve the sharp threshold
(i.e., the separation upper bound) is that the SDP giving Ẑ
in (11) and its regularized version in (12) have the same
Lagrangian form and the dual problem. Thus we need only
to extract the regime of the regularization parameter λ in (13)
that ensures a successful dual certificate construction as char-
acterized in Ẑ (Section IV). In particular, the dual certificate
constructed for Ẑ is a convenient choice of λ� that falls into the
region (13) with high probability. In addition, [40] provides
a practical method for adaptively tuning this regularization
parameter λ. �

Note that Z∗ is a rank-K block diagonal matrix, and for any
Z ∈ CK , due to the psd constraint, tr(Z) equals to the nuclear
norm �Z�∗. Then the SDP in (11) can be effectively viewed
as a low-rank matrix denoising procedure for the data affinity
matrix A by finding its optimal matching from all feasible
“rank-K” stochastic matrices proxied by the trace constraint.

On the other hand, the SDP solutions are not integral in
general. If this is the scenario, then the standard relaxing-
and-rounding paradigm [57] can be used to round the SDP
solution back to a point in the feasible set of the original
discrete optimization problem (3). In our case, we can apply
the K-means clustering to the top K-eigenvectors of Ẑ as a
rounding procedure to extract the estimated partition structure
Ĝ1, . . . , ĜK .

However, it is observed that the rounding step is not always
necessary and solution to the clustering problem (3) can be
directly recovered from solving the relaxed SDP problems
when the separation of cluster centers is large, which is
sometimes referred to the exact recovery or hidden integrality
phenomenon [12], [27]. This motivates the question we asked
earlier in Section I that when and to what extend the SDP
relaxation can in fact produce the exact recovery. The rest of
the paper is devoted to characterize the precise cutoff value on
the separation of cluster centers that yields the exact recovery.

A. Dual Problem
To analyze the exact recovery property of Ẑ, we first derive

the dual problem for the (primal) SDP problem in (11). Let

L(Z,Q, λ,α, B)
= tr(AZ) + tr(QZ) + λ(K − tr(Z))

+ αT

�
1n − Z + ZT

2
1n



+ tr(BZ)

= (λK+αT 1n)+tr

��
A+Q−λIdn + B − 1

2
(1nαT +α1T

n )

�
Z

�

be the Lagrangian function, where Qn×n � 0, αn×1 =
(α1, . . . , αn)T , Bn×n � 0, and λ ∈ R are the Lagrangian
multipliers. Consider the max-min problem:

max
Z∈Rn×n

min
Q�0,λ∈R,α∈Rn,B�0

L(Z,Q, λ, α,B),

where the maximum over Z is unconstrained. If Z is not
primal feasible for the SDP problem (11), then

min
Q�0,λ∈R,α∈Rn,B�0

L(Z,Q, λ, α,B) = −∞.

For example, consider tr(Z) = K and choose λ = − c
K−tr(Z)

with an arbitrarily large c > 0. On the other hand, if Z is
feasible for (11), then

tr(AZ) � min
Q�0,λ∈R,α∈Rn,B�0

L(Z,Q, λ, α,B),

where the equality is attained if for example Q = B = 0.
Then,

max
Z∈CK

tr(AZ)� max
Z∈Rn×n

min
Q�0,λ∈R,α∈Rn,B�0

L(Z,Q, λ, α,B)

� min
Q�0,λ∈R,α∈Rn,B�0

max
Z∈Rn×n

L(Z,Q, λ, α,B).

Similarly, if A+Q− λIdn +B − 1
2 (1nαT + α1Tn ) = 0, then

max
Z∈Rn×n

tr
��
A+Q−λIdn+B − 1

2
(1nαT+α1Tn )

�
Z

�
=∞,

which is avoided by the minimization over the Lagrangian
multipliers. Thus with Q = λIdn+ 1

2 (1nαT +α1Tn )−B−A,
we have

max
Z∈CK

tr(AZ) � min
λ∈R,α∈Rn,B∈Rn×n

�
λK + αT1n : B � 0,

λIdn+
1
2
(1nαT+α1Tn ) −B −A � 0

�
,

which is the weak duality between the primal SDP prob-
lem (11) and its dual problem:

minλ∈R,α∈Rn,B∈Rn×n {λK + αT1n}
subject to B � 0,

λIdn +
1
2
(1nαT + α1Tn ) −B −A � 0. (14)

Moreover, the duality gap is given by

λK + αT1n − tr(AZ)

=λ tr(Z) + αT
Z + ZT

2
1n − tr(AZ)

= tr
��
λIdn +

1
2
(1nαT + α1Tn ) −A−B

�
Z

�
+ tr(BZ)

� tr(BZ) � 0. (15)

B. Optimality Conditions: Primal-Dual Construction
Let 1G∗

k
be the n× 1 vector such that it is equal to 1nk

on
G∗
k and zero otherwise. To show that

Z∗ =

⎡⎢⎢⎢⎣
1
n1
Jn1 0 · · · 0
0 1

n2
Jn2 · · · 0

...
. . . · · · ...

0 · · · 0 1
nK
JnK

⎤⎥⎥⎥⎦ =
K�
k=1

1
nk

1G∗
k
1TG∗

k

(16)
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is the solution of the primal SDP problem (11), we need the
duality gap (15) is zero at Z = Z∗. To this end, we need to
construct a dual certificate (λ,α, B) such that:
(C1) B � 0;
(C2) Wn := λIdn + 1

2 (1nαT + α1Tn ) −A−B � 0;
(C3) tr(WnZ

∗) = 0;
(C4) tr(BZ∗) = 0.

Note that (C1) and (C2) are dual feasibility constraints, while
(C3) and (C4) are the optimality conditions (i.e., complemen-
tary slackness) corresponding to the zero duality gap in (15).
In particular, (C4) implies that BG∗

k
G∗

k
= 0 for all k ∈ [K].

To ensure that Z∗ is the unique solution of the SDP
problem (11), we observe that Z∗ is the only feasible matrix
to the SDP (11) satisfying the block diagonal structure⎡⎢⎢⎢⎣

Z(1) 0 · · · 0
0 Z(2) · · · 0
...

. . . · · · ...
0 · · · 0 Z(K)

⎤⎥⎥⎥⎦ ,
i.e., ZG∗

k
G∗

l
= 0 for all distinct pair (k, l) ∈ [K]2. Indeed,

since each block Z(k) satisfies Z(k)1nk
= 1nk

and is psd,
(1, nk−1/21nk

) is one eigenvalue-eigenvector pair of Z(k) and
the trace of Z(k) is at least 1. On the other hand, due to the
trace constraint

�K
k=1 tr(Z(k)) = tr(Z) = k, we then must

have tr(Z(k)) = 1. In addition, 1 is its only nonzero eigenvalue
with eigenvector nk−1/21nk

. Consequently, Z(k) must take the
form of n−1

k Jnk
.

Given the above block diagonal structure and tr(BZ∗) = 0,
we conclude that Z∗ is the unique solution to the SDP (11) if
(C5) BG∗

kG
∗
l
> 0 for all distinct pair (k, l) ∈ [K]2,

in addition to the optimality conditions (C1)-(C4).

IV. PROOF OF THEOREM II.1
In this section, we show that a dual certificate described

in Section III-B can be successfully constructed with high
probability, thus proving Theorem II.1. First, observe that
Wn � 0 and tr(WnZ

∗) = 0 imply that

Wn1G∗
k

= 0 for all k ∈ [K]. (17)

The last display together with BG∗
k
G∗

k
= 0 imply that for each

distinct pair (k, l) ∈ [K]2,

λ1nk
+

1
2
1nk

(
�
i∈G∗

k

αi) +
1
2
αG∗

k
nk = AG∗

kG
∗
k
1nk

,

(18)
1
2
1nl

(
�
i∈G∗

k

αi) +
1
2
αG∗

l
nk −AG∗

lG
∗
k
1nk

= BG∗
l G

∗
k
1nk

,

(19)

where αT = (αT
G∗

1
, . . . ,αT

G∗
K

). From (18), we get�
i∈G∗

k

αi =
1
nk

1Tnk
AG∗

k
G∗

k
1nk

− λ.

Substituting the last equation back into (18), we get

αG∗
k

=
2
nk
AG∗

kG
∗
k
1nk

− λ

nk
1nk

− 1
n2
k

1nk
(1Tnk

AG∗
kG

∗
k
1nk

).

(20)

Next we construct a solution of B for (19). For k = l, we have

BG∗
l

G∗
k
1nk=−nl + nk

2nl
λ1nl +

1

2nk
(1T

nk
AG∗

k
G∗

k
1nk )1nl

+
nk

nl
AG∗

l
G∗

l
1nl −

nk

2n2
l

(1T
nl

AG∗
l

G∗
l
1nl )1nl−AG∗

l
G∗

k
1nk.

In particular, for j ∈ G∗
l ,

[BG∗
lG

∗
k
1nk

]j

= − nl + nk
2nl

λ+
1

2nk

�
s,t∈G∗

k

XT
s Xt +

nk
nl

�
t∈G∗

l

XT
j Xt

− nk
2n2

l

�
s,t∈G∗

l

XT
s Xt −

�
t∈G∗

k

XT
j Xt

= − nl + nk
2nl

λ+
nk
2

(X
T

kXk − X
T

l Xl) + nkXT
j (Xl − Xk)

= − nl + nk
2nl

λ+
nk
2

(�Xk − Xj�2
2 − �Xl − Xj�2

2), (21)

where Xk = n−1
k

�
i∈G∗

k
Xi is the empirical mean of data

points in the k-th cluster. Without loss of generality, we may
take a symmetric B (i.e., BT = B) and then construct B
as block-wise rank-one matrix satisfying the above row sum
constraint (21):

B�G∗
l G

∗
k

=
BG∗

l
G∗

k
1G∗

k
1TG∗

l
BG∗

l
G∗

k

1TG∗
l
BG∗

l G
∗
k
1G∗

k

(22)

for each distinct pair (k, l) ∈ [K]2 and B�G∗
kG

∗
k

= 0. For
notational simplicity, let us denote the column sums and row
sums of matrix BG∗

k
G∗

l
in (22) by c(k,l) =

�
c
(k,l)
j : j ∈ G∗

l

�
and r(k,l) =

�
r
(k,l)
i : i ∈ G∗

k

�
, respectively. In addition,

by letting t(k,l) =
�

j∈G∗
l
c
(k,l)
j =

�
i∈G∗

k
r
(k,l)
i be the total

sum, then the construction in (22) becomes [BG∗
l
G∗

k
]ij =

r
(k,l)
i c

(k,l)
j /t(k,l). For convenience, we also define r

(k,k)
i =

c
(k,k)
j = t(k,k) = 0 for all i, j ∈ G∗

k, so that BG∗
kG

∗
k

= 0 for
all k ∈ [K] (define 0/0 = 0).

Recall that to ensure uniqueness, we need to choose λ such
that B�G∗

kG
∗
l
> 0 for all distinct pair (k, l) ∈ [K]2, which is,

in view of (21), guaranteed whenever

λ< min
1�k �=l�K

�
nlnk
nl+nk

min
j∈G∗

l

(�Xk − Xj�2
2 − �Xl − Xj�2

2)
�
.

(23)

On the other hand, we require that λ is not too small since
Wn = λIdn + 1

2 (1nαT + α1Tn )−A−B � 0. To identify the
right λ, we will employ the following lemma that provides
some high probability lower bounds that will be useful for
bounding from below the column sums {c(k,l)j : j ∈ G∗

l } and

row sums {r(k,l)i : i ∈ G∗
k} under proper separation conditions

on the Gaussian centers. Recall that

Δ = min
1�k �=l�K

�μk − μl� and m = min
1�k �=l�K

� 2nknl
nk + nl

�
.

Note that Δ is the minimum separation between the cluster
centers and m quantifies the “minimum" cluster size in the
pairwise sense.
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Lemma IV.1 (Separation Bound on the Gaussian Centers):
Let δ > 0 and 1 > β > 0. If there exists a sufficiently large
universal constant c1 > 0 such that

Δ2 � 4σ2(1+2δ)
(1−β)2

�
1+

�
1+

(1−β)2

(1+δ)
p

m logn
+c1Rn


log n

(24)

with

Rn =
(1 − β)2

(1 + δ) log n

��
p log(nK)

n
+

log(nK)
n


,

then as long as m � 4(1 + δ−1)2,

P

�
�Xi − Xl�2 − �Xi − Xk�2

� nk + nl
nknl

σ2p+ β �μk − μl�2 − rkl,

for all distinct pairs (k, l) ∈ [K]2 and i ∈ G∗
k

�
�K2

nδ
+

8
n
,

where

rkl =2σ

�
2 log(nK)

nl
�μk − μl�

+ 2σ2nk + nl
nknl

�
2p log(nK) +

4σ2

nk
log(nK).

If the conditions of Lemma IV.1 holds, then according to
this lemma we may choose

λ� = pσ2 +
β

4
mΔ2, (25)

so that it holds with probability at least 1 − 2n−δ − 10n−1

that for all k, l ∈ [K], k = l, i ∈ G∗
k, j ∈ G∗

l ,

r
(k,l)
i � β

2
nl �μk − μl�2,

c
(k,l)
j � β

2
nk �μk − μl�2,

t(k,l) � β

2
nknl �μk − μl�2,

(26)

as long as m � 4(1+ δ−1)2. This implies B�G∗
kG

∗
l
> 0 for any

distinct pair (k, l) ∈ [K]2. We fix such a choice for λ in the
rest of the proof.

Denote ΓK = span{1G∗
k

: k ∈ [K]}⊥ be the orthogonal
complement of the linear subspace of R

n spanned by the
vectors 1G∗

1
, . . . ,1G∗

K
. In view of (17), we see that {1G∗

k
:

k ∈ [K]} are eigenvectors of Wn associated to the zero
eigenvalues. Thus to ensure Wn � 0, we only need to check
that: for any v = (v1, . . . , vn)T ∈ ΓK such that �v�2 = 1,

vTWnv � 0.

Our next task is to derive a high probability lower bound for
the quadratic form vTWnv. Plugging the definition of Wn,
we write

vTWnv =λ�v�2 +
1
2
(vT1nαTv + vTα1Tv)

−
K�

k,l=1

�
i∈G∗

k

�
j∈G∗

l

XT
i Xjvivj − vTB�v.

Since vT1G∗
k

= 0 or
�

i∈G∗
k
vi = 0 for all k ∈ [K] and

v ∈ ΓK , we get

vTWnv = λ�v�2 − S(v) − T (v),

where S(v) := ��K
k=1

�
i∈G∗

k
Xivi�2

2 and T (v) = vTB�v.
Recall the clustering model (1): Xi = μk + εi for i ∈ G∗

k,
we have�

i∈G∗
k

Xivi = μk
�
i∈G∗

k

vi +
�
i∈G∗

k

εivi =
�
i∈G∗

k

εivi.

so that

S(v) =
n�
i=1

n�
j=1

εiε
T
j vivj

is a quadratic form in v. Therefore, for each v ∈ ΓK satisfying
�v� = 1, S(v) can be bounded by the largest singular value
of the Gram matrix Gn =

�
εiε

T
j : i, j ∈ [n]

�
, so that S(v) =

vT ETEv � �ETE�op = �E�2
op, where matrix

E = (ε1, ε2, . . . , εn) ∈ R
p×n

has i.i.d. N(0, σ2) entries. Applying Lemma VIII.2, we can
reach

P

	
max

v∈ΓK , ‖v‖=1
S(v) � σ2(

√
n +

√
p +

√
2t )2



� e−t, ∀t > 0.

Now we analyze the last term T (v).
Lemma IV.2 (Bound on T (v)): Assume the separation

condition (24) in Lemma IV.1 and consider the choice of λ
as (25). We have for any δ > 0,

P

�
|T (v)| � Cβ−1σ2

�
n+K log n+(1−β)Kδ


mp log n

� �v�2,

∀v ∈ ΓK

���� {ε̄k : k ∈ [K]}
�

�4K2n−δ +10n−1.

By combining previous bounds on |S(v)| and |T (v)| together,
we obtain

P

�
�v, Wnv� � λ− σ2(

√
n+

√
p+

�
2 logn )2

− Cβ−1σ2
�
n+K logn+(1 − β)Kδ

�
mp logn

�
,

∀v ∈ ΓK , �v� = 1



� (5K2 + 1)n−δ.

Combining this with our constructions (25) for λ�, (20) for
α� and (22) for B� and all previous analysis, we obtain that
(λ�,α�, B�) will be a dual certificate that satisfies (1)–(5) with
probability at least 1 − (5K2 + 1)n−δ if

σ2(
√
n+

√
p+

�
2 logn )2

+ Cβ−1σ2 (n+K logn+ (1 − β)Kδ
�
pm logn)

� pσ2+

β

4
m

4σ2(1 + 2δ)
(1 − β)2

�
1+

�
1+

(1 − β)2

(1 + δ)
p

m logn
+c1Rn

�
logn.

(27)

which is true if for some universal constants C, c > 0,

logn � (1 − β)2

β2

Cn

m
, and δ � β2

(1 − β)2
c

K
.
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V. PROOF OF THEOREM II.3

The first step is to reduce the worst-case misclassification
risk to the average-case risk by putting a prior πH over
H = {hik} with (hi1, . . . , hiK) being i.i.d. following the
multinomial distribution with one trial and probability vector
(n/K, . . . , n/K). By the classical Chernoff bound we have

PπH

�
nk :=

n�
i=1

hik ∈
�
(1 − δn)

n

K
, (1 + δn)

n

K

�
, k ∈ [K]

�
� 1 − n−1, (28)

by choosing the constant C in δn large enough. As a conse-
quence, we have (29), shown at the bottom of the next page.
Conditioning on the event that n1 + n2 points belong to the
first two clusters, the problem of correctly classifying all n
samples into K clusters is always not easier than correctly
classifying the n1+n2 points into the first and second clusters,
that is,

P(H,μ)

�
ĥik = hik, i ∈ [n], k ∈ [K]

�
�P(H,μ)

�
ĥik = hik, i ∈ G1 ∪G2, k ∈ [2]

�
,

where recall that Gk = {i ∈ [n] : hik = 1} denote the k-th
cluster. Now we apply the following minimax lower bound
Lemma V.1 proved in Section V-A below for two clusters G1

and G2 conditioning on their total sizes n1+n2, we have (30),
shown at the bottom of the next page, for some c > 0, where
π̃12 denote the conditional prior distribution of {ĥik, i ∈ G1∪
G2, k = 1, 2} given the total sample size n1 +n2 of G1 ∪G2,
which is uniform over {1, 2}n1+n2 . Here we have used the
high probability bound (28) so that with probability at least
1 − n−1, the separation Δ satisfies

Δ2 �4(1−α/2)σ2

�
1+

�
1+

2p
(n1+n2) log(n1 + n2)


logn.

Note that the proof of Lemma V.1 also reduces the worst-case
bound to the average-case bound, where the prior on the cluster
label is uniform as the conditional distribution π̃12 given the
total size n1 + n2. Putting all pieces together and using K �
logn give a proof of the claimed result.

A. Lower Bound for K = 2

Now we prove an information-theoretic limit for exact
recovery of clusters labels in a symmetric two-component
Gaussian mixture model,

Xi = ηiμ + σεi, εi
i.i.d.∼ N(0, Ip), i = 1, . . . , n, (31)

where μ and −μ are unknown centers of the two symmetric
Gaussian components, and ηi ∈ {−1, 1} is the label for the
ith observation indicating which component it comes from.

Lemma V.1 (Separation Lower Bound for Exact Recov-
ery: K = 2): Let α ∈ (0, 1). Consider the symmetric
two-component Gaussian mixture model in (31) with an
independent Rademacher prior distribution on ηi. If Δ2 �
(1 − α)Δ

2
, then

inf
η̂

sup
�μ��Δ/2

P(η̂ = η) � 1 − cn−1, (32)

where c > 0 is a constant depending only on α
and the infimum is over all possible estimators η̂ for
η = {ηi}ni=1 ∈ {±1}n.

Remark V.2: Our Lemma V.1 is stronger than the exact
recovery notation in [8] and the probability of wrong recovery
lower bound in (32) does not follows from the lower bound
therein for the expected Hamming distance loss in the sym-
metric two-component Gaussian mixture model. Moreover,
complementing the upper bound in Corollary II.2, the lower
bound is sharply optimal in the sense that the probability of
wrong recovery is arbitrarily close to one (rather than just
bounded away from zero) if the separation signal size Δ2 is
below the cutoff value Δ

2
. �

Proof of Lemma V.1: To prove the lower bound, we
follow the same setup as in the lower bound proof in [8]
by placing a N(0, κ2

nIp) prior on μ and an independent
Rademacher prior on η. Note that algorithm that maximizing
the probability of reconstructing labels correctly is the max-
imum a posterior (MAP) estimator  η = argmaxη p(η |X).
Since the prior label assignment is uniform, MAP is in par-
ticular equivalent to maximum (integrated) likelihood estima-
tor (MLE) after integrating out μ, i.e.,  η = argmaxη L(η |X)
where L(η |X) = p(X | η) is viewed as a function of η.
Specifically, the maximum (integrated) likelihood function can
be computed as follows

L(η |X)

=
!

Rp

n"
i=1

p(Xi |μ, ηi) p(μ) dμ

∝
!

Rp

exp
�
− 1

2σ2

n�
i=1

�Xi − ηiμ�2 − 1
2κ2

n

�μ�2
�

dμ

∝ exp
�1

2

� n
σ2

+
1
κ2
n

�−1### 1
σ2

n�
i=1

ηiXi

###2�
.

We can see from the last expression that the MLE
fails if there exists some i ∈ [n] such that

##ηiXi +�n
j �=i ηjXj

##2
<

## − ηiXi +
�n
j �=i ηjXj

##2
, or equivalently,$

ηiXi,
�n

j �=i ηjXj

%
< 0. Therefore,

inf
�η
P(&η = η) = P( η = η)

� P
�
∃i ∈ [n], such that

$
ηiXi,

n�
j �=i

ηjXj

%
< 0

�
. (33)

Without loss of generality, we assume σ = 1. Let
εn = n−1

�n
i=1 εi be the sample average of the noise.

Since (η1ε1, . . . , ηnεn) has the same joint distribution as
(ε1, . . . , εn), we can write

1
n− 1

$
ηiXi,

n�
j �=i

ηjXj

%
=
$
μ + ηiεi, μ+

1
n− 1

�
j �=i

ηiεi
%

d=
'
μ + εi, μ +

n

n− 1
ε̄n − 1

n− 1
εi

(
=
'
εi − εn, μ +

n

n− 1
εn

(
+ �μ�2) *+ ,

=:Ri,1

+
n

n− 1
�εn�2 − 1

n− 1
�εi�2) *+ ,

=:Ri,2
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+
2n− 1
n− 1

�μ, εn� − 1
n− 1

�μ, εi�) *+ ,
=:Ri,3

.

Bound Ri,3. Let βn > 0 and

B1 =
�√

n|�μ, εn�| �
√
n− 1βn�μ�2,

max
i∈[n]

|�μ, εi�| �
√
n− 1βn�μ�2

�
,

 B1 =
�√

n|�μ, εn�| �
√
n− 1βn�μ�,

max
i∈[n]

|�μ, εi�| �
√
n− 1βn�μ��.

By the standard tail inequality of the Gaussian
random variable and union bound, we have
P(Bc1) � min{1, n exp(−cnβ2

n�μ�2)} and P(  Bc1) �
min{1, n exp(−cnβ2

n)} for some universal constant c > 0.
In addition, we have maxi∈[n] |Ri,3| � 3βn�μ�2 on the event
B1 and maxi∈[n] |Ri,3| � 3βn�μ� on the event  B1.

Bound Ri,2. By tail inequalities of the chi-square random
variable in Lemma VIII.1, we have for any t > 0 and i ∈ [n],

P(
--�εi�2 − p

-- � 2
√
pt+ 2t) � 2e−t,

P(
--n�ε�2 − p

-- � 2
√
pt+ 2t) � 2e−t.

Thus we have P(Bc2) � 4n−1, where

B2 =
�--n�εn�2 − p

-- � 2
�
p logn+ 2 logn,

max
i∈[n]

--�εi�2 − p
-- � 2

�
2p logn+ 4 logn

�
.

On the event B2, we have maxi∈[n] |Ri,2| � 6(
√
p logn +

logn)/(n− 1).

Analyze Ri,1. From elementary calculations, we have that the

conditional joint distribution of Ui : =
'
εi−εn, μ+ n

n−1εn

(
,

i = 1, . . . , n, given εn is⎛⎜⎜⎜⎝
U1

U2

...
Un

⎞⎟⎟⎟⎠
---------
εn ∼

N

�
����

�
���

0
0
...
0

�
���,
���μ+

nεn

n−1

���2

�
����

1 − n−1 −n−1 · · · −n−1

−n−1 1 − n−1 · · · −n−1

...
...

. . .
...

−n−1 −n−1 · · · 1 − n−1

�
����

�
���� .

Conditioning on εn, let {Zi}ni=1 be i.i.d. N
�
0, (1−n−1)

##μ+
n
n−1εn

##2�
random variables. Since E(U2

i | εn) = E(Z2
i | εn)

and E((Ui − Uj)2 | εn) � E((Zi − Zj)2 | εn) for i, j ∈ [n],
by Slepian’s inequality (cf. Theorem 7.2.9 in [58]) we have

P
�

max
i∈[n]

Ui > t
--- εn� �P

�
max
i∈[n]

Zi > t
--- εn�

=1 −
�
1 − P

�
Z1 > t

-- εn��n, t ∈ R.

Combining the previous three terms with (33), we obtain (34),
shown at the bottom of the next page. For γn > 0, we define

B3 =
�--�μ�2 − Δ2/4

-- � Δ2γn/4
�
.

With the prior distribution μ ∼ N(0, 4−1κ2
nIp) where κ2

n =
Δ2

4p(1−νn) and νn =
4

nΔ2

4p log2 n
, it follows from the proof

of Theorem 5 in [8] (cf. equation (28)) that P(Bc3) �
2 exp(−pγ2

n/32), provided 4νn � γn � 1. Moreover, using
the lower tail bound of the chi-square random variable in
Lemma VIII.1, we have P(Bc4) � exp(−pθ2n/4), where

B4 =
��εn�2 � p

n
(1 − θn)

�
.

To analyze the right-hand side of (34), we first consider the
higher dimensional case where p � log2 n. In such regime,
we divide further into three cases depending on the separation
signal size as following.

Medium signal size case: 2 log3/2 n√
n

< Δ < 2
4

p logn
n . Since

−(U1, . . . , Un) has the same joint distribution of (U1, . . . , Un)
given εn, we can bound on B1 ∩ B2,

P
�
− Ui�(1+3βn)�μ�2+

6(
√
p logn+logn)
n− 1

, ∀i ∈ [n]
�

=P
�

max
i∈[n]

Ui � (1 + 3βn)�μ�2 +
6(
√
p logn+ logn)
n− 1

�
�E

�
1−P

�
Z1>(1+3βn)�μ�2+

6(
√
p logn+logn)
n−1

| εn

��n
.

Let Z ∼ N(0, 1) be the standard Gaussian random variable.
Thus, on the event

54
i=1 Bi, we have

P
�
Z1 > (1 + 3βn)�μ�2 +

6(
√
p logn+ logn)
n− 1

| εn

�
=P

⎛⎜⎝Z> (1+3βn)�μ�2+ 6(
√
p logn+logn)
n−14

1 − 1
n

4
�μ�2 + n2

(n−1)2 �εn�2 + 2n
n−1 �μ, εn�

| εn

⎞⎟⎠
�P

⎛⎝Z >
(1 + 3βn)(1 + γn)Δ2 + 24(

√
p logn+logn)
n−14

4(1 − 1
n − 2βn)(1 − γn)Δ2 + 16p

n−1 (1 − θn)

⎞⎠
=Φc(Vn),

inf
{ĥik}

sup
(H,μ)∈Θ(n,K,Δ)

P(H,μ)

�
ĥik = hik, i ∈ [n], k ∈ [K]

�
� inf

{ĥik}
sup

�μ
k
−μ

l
��Δ,∀(k,l)∈[K]2,k �=l

EπH P(H,μ)

�
ĥik = hik, i ∈ [n], k ∈ [K]

�− n−1.
(29)

inf
{ĥik,i∈G1∪G2,k=1,2}

sup
�μ1−μ2��Δ

Eπ̃12P(H,μ)

�
ĥik = hik, i ∈ G1 ∪G2, k ∈ [2]

�
� 1 − cK/n. (30)
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where

Vn =
(1 + 3βn)(1 + γn)Δ2 + 24(

√
p logn+logn)
n−14

4(1 − 1
n − 2βn)(1 − γn)Δ2 + 16p

n−1 (1 − θn)
.

and Φc(t) = P(Z � t). Combining all pieces together,
we obtain that

P( η = η) � 1 − [1 − (1 − rn)Φc(Vn)]n − rn (35)

provided 4νn � γn � 1, where

rn =min{1, n exp(−cnβ2
n(1 − γ2

n)Δ
2)} + 4n−1

+ 2 exp(−pγ2
n/32) + exp(−pθ2n/4).

Note that Δ < 2
4

p logn
n , implying ν2

n � 1
logn . We choose

β2
n =

1
logn

, γ2
n =

16
logn

, θ2n =
1

logn
.

Since p � log2 n and Δ > 2 log3/2 n√
n

, we have

P( η = η) � 1 − [1 − (1 − cn−1)Φc(Vn)]n − cn−1.

By using the fact that log Φc(t) ∼ −t2/2 as t → ∞, we can
conclude that as long as Vn �

�
2(1 − δ) logn for any δ ∈

(0, 1), then for n � 2c, we have

P( η = η) �1 −
�
1 − 1 − cn−1

n1−δ
�n

− cn−1

�1 − e−n
δ/2 − cn−1 � 1 − c�n−1,

where c� is a constant depending on δ. The condition Vn ��
2(1 − δ) logn is implied by Δ2 � (1 − α)Δ

2
for some

δ := δ(α) and by inverting the function x �→ x/
�

4x+ 16p/n
for x > 0.
Low signal size case: Δ � 2 log3/2 n√

n
. The argument is similar

to the medium signal size case, so we only sketch the proof.
On the event  B1

5B2

5B3

5B4, we have

P
�

max
i∈[n]

Ui � �μ�2 + 3βn�μ� +
6(
√
p logn+ logn)
n− 1

�
�E

�
1−P

�
Z1>�μ�2+3βn�μ�+

6(
√
p logn+logn)
n− 1

|εn
��n

and

P
	
Z1 > �μ�2 + 3βn�μ� +

6(
√

p log n + log n)

n − 1
| εn




�P

�
��Z >

�μ�2 + 3βn�μ� + 6(
√

p log n+log n)
n−1�

1 − 1
n

�
�μ�2 + n2

(n−1)2
�εn�2 − 2βn�μ�

| εn

�
��

�P

�
�Z >

(1+γn)Δ2+6βn

√
1 + γnΔ + 24(

√
p log n+log n)

n−1�
4(1− 1

n
)(1−γn)Δ2+ 16p

n−1
(1−θn)−16βn

√
1−γnΔ

�
�

=Φc(Vn),

where

Vn =
(1 + γn)Δ2 + 6βn

√
1 + γnΔ + 24(

√
p log n+log n)

n−1�
4(1 − 1

n
)(1 − γn)Δ2 + 16p

n−1
(1 − θn) − 16βn

√
1 − γnΔ

.

Combining all pieces together, we obtain that

P( η = η) � 1 − [1 − (1 − rn)Φc(Vn)]n − rn,

provided 4νn � γn � 1, where

rn = min{1, n exp(−cnβ2
n)} + 4n−1 + 2 exp(−pγ2

n/32)
+ exp(−pθ2n/4).

Now we choose

β2
n =

log2 n

n
, γ2

n =
16

logn
, θ2n =

1
logn

.

If 2 log2 n
n < Δ � 2 log3/2 n√

n
, then βnΔ � p/n (recall p �

log2 n) and there exists a sequence ξn → 0 as n → ∞ such
that

Vn � (1 + ξn)(Δ/2 + 3βn + ξn) = o(1),

which implies that P( η = η) � 1 − cn−1. If Δ � 2 log2 n
n ,

then

Vn � (1 + ξn)
3Δβn

2
�
p/n

= o(1)

and P( η = η) � 1 − cn−1.

High signal size case: 2
4

p logn
n � Δ �

√
1 − α Δ. Note

that in this regime, we have p/n = o(Δ2) and p = O(n).
Then the sharp threshold Δ

2
= 8(1 + o(1)) log n, which is

asymptotically independent of p. Thus we place an (essentially
one-dimensional) point mass prior on μ at (Δ/2, 0, . . . , 0)T ∈
R
p. A similar calculation yields

L(η |X) ∝ exp
� 1
σ2

'
μ,

n�
i=1

ηiXi

(�
, and

P( η = η) � P
�∃i ∈ [n], such that

$
μ, ηiXi

%
< 0

�
.

Since
��μ, ηiXi�

�n
i=1

are i.i.d. random variables with

P
��μ, ηiXi

%
� 0

�
=P

��μ�2 + �μ, ηiεi� � 0
�

=P(Z � −�μ�) = 1 − Φc(Δ/2),

we have

P( η = η) �1 − �
1 − Φc(Δ/2)

�n
�1 −

�
1 − 1

n1−δ
�n

� 1 − e−n
δ � 1 − cn−1,

when Δ2 � 4 (2−δ) logn � (1−α)Δ
2

for some δ depending
only on α. Here the constant c depending only on δ (and thus
only on α).

P(η̃ = η) � 1 − P
�
Ri,1 +Ri,2 +Ri,3 � 0, ∀i ∈ [n]

�
= 1 − P

�
− Ui � �μ�2 +Ri,2 +Ri,3, ∀i ∈ [n]

�
�
6

1 − P(−Ui � (1 + 3βn)�μ�2 + 6(
√
p logn+logn)
n−1 , ∀i ∈ [n]) on B1 ∩ B2

1 − P(−Ui � �μ�2 + 3βn�μ� + 6(
√
p log n+logn)
n−1 , ∀i ∈ [n]) on  B1 ∩ B2

. (34)
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Finally, we deal with the lower dimensional case where
p < log2 n. In such regime, we also have Δ

2
= 8(1 +

o(1)) log n. Following the same argument as in the high signal
size case under p � log2 n, we conclude that P( η = η) �
1 − cn−1. �

VI. DISCUSSIONS

In this paper, we characterized the information-theoretic
sharp threshold for exact recovery of Gaussian mixture mod-
els. There are still some interesting open questions, which we
list below.

General noise covariance matrix. The SDP relaxation
in (11) does not require to know the noise variance σ2

only in the spherical Gaussian case, i.e., the noise εi has
i.i.d. N(0, σ2Ip) distribution. Consider the general covariance
matrix case εi ∼ N(0,Σ) when Σ is not necessarily spherical.
If Σ is known, then we can first apply the transform Σ−1/2Xi

to make the noise spherical and the sharp threshold in (8)
holds and reads in terms of the minimal Mahalanobis distance

 Δ2 = min
1�j<k�K

d2
Σ(μj , μk) = 4

�
1 +

�
1 +

Kp

n logn


logn,

where d2
Σ(μj , μk) = (μj − μk)TΣ−1(μj − μk). If Σ is

unknown, [59] showed that in the K = 2 case the mis-
classification probability of the Bayes classifier decays expo-
nentially fast in the Mahalanobis distance d2

Σ(μ1, μ2) =
(μ1 − μ2)TΣ−1(μ1 − μ2) rather than Δ2

σ2 = Δ2

�Σ�op
. Thus we

conjecture that:
there is a sharp threshold for exact recovery under
the general unknown covariance matrix given by  Δ2

above.

Average-case algorithmic hardness in multiple clusters.
Both our upper and lower bounds for exact recovery in
Corollary II.2 and Theorem II.3 require the number of clusters
K = O(log n). We argue that this condition is likely to be
necessary for achieving the sharp threshold of exact recov-
ery. Consider the balanced spherical Gaussian mixture model
with common noise variance and multiple communities for
K � 3. It is shown in [60] that: (i) detection and partial (i.e.,
correlated) recovery are information-theoretically possible if

ρ > 2
4

pK logK
n + 2 logK; (ii) detection and partial recovery

are impossible if ρ <
4

2p(K−1) log(K−1)
n , where ρ is the

squared signal-to-noise ratio in the Gaussian mixture model
(an equivalent quantity of Δ2/σ2 in our notation). In contrast,
it is also known from [60], [61] that spectral methods have
correlated recovery with the true community labels if and only
if ρ >

�
p
n (K − 1). The phase transition of spectral methods

is a direct consequence of the BBP phase transition in the
random matrix theory [62], [63]. Thus for fixed K , there is no
gap (modulo constants) between computation and information
theoretic thresholds. In addition, a sufficient condition for
partial recovery of the same SDP as in our paper is given
by Δ2

σ2 � (1 +
�
p/n)K in [14]. Based on evidence from

statistical physics, it is conjectured by [64] (and remains as
an open problem) that the computational threshold coincides

with the spectral methods for partial recovery for large K , thus
suggesting there is a computationally hard regime where no
polynomial time algorithm can attain the information-theoretic
threshold when K → ∞.

Now turning into exact recovery. Recall that our result
shows that the information-theoretical threshold is

Δ
2

σ2
= 4

�
logn+

	
log2 n+

Kp logn
n


,

which is achieved by an SDP when K � log(n)/ log log(n).
Thus, in such growth region of K , there is no computational
hardness for exact recovery, which is a similar scenario in the
partial recovery case when K = O(1). Note that the threshold
Δ

2
/σ2 is larger (modulo constants) than the partial recovery

sufficient condition for the spectral methods and the SDP,
which in turn is strictly larger than its necessary condition
(i.e., information-theoretic threshold) as K → ∞. Hence,
we propose the following conjecture:

for K 	 logn, there is no polynomial time algo-
rithm can achieve the average-case exact recovery
information-theoretic threshold.

If this conjecture is true, then our current regime
K � log(n)/ log log(n) where the SDP achieves the
information-theoretic limit is sharp, i.e., K � log(n) would
be an algorithmic hardness for exact recovery. The conjecture
also implies that transition of hardness of clustering Gaussian
mixture models for partial recovery and exact recovery is from
O(1) and O(log n), respectively.

Unbalanced communities. Corollary II.2 and Theorem II.3
together imply that in the equal cluster size case when n1 =
n2 = · · · = nK = n

K , the SDP relaxation (11) for the
K-means is minimax-optimal in the sense that sharp phase
transition of the probability of wrong recovery from zero to
one occurs at the critical threshold given by the Δ

2
in (8).

It remains an interesting open question whether the separation
gap Δ is sharp when cluster sizes are unbalanced.

VII. PROOF OF KEY LEMMAS

A. Proof of Lemma IV.1
Without loss of generality, we may assume σ = 1. Denote

θ = μk − μl and define the event A =
5
k,l,iA(i)

kl , where

A(i)
kl =

�
�Xi − Xl�2 − �Xi − Xk�2

� nk + nl
nknl

p+ β �θ�2 − rkl

�
,

with the index (k, l, i) ranging over all distinct pairs (k, l) ∈
[K]2 and all i ∈ G∗

k and

rkl=2

�
2 log(nK)

nl
�θ�+2

nk+nl
nknl

�
2p log(nK)+

4
nk

log(nK).

Recall that Xi = μk + εi for each i ∈ G∗
k and k ∈ [K].

We can write

�Xi − Xl�2 − �Xi − Xk�2 = �θ + εi − εl�2 − �εi − εk�2

= �θ − εl + εk,θ − εl + 2εi − εk�
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= �θ�2 + �εl�2 +
1
nk

�
2 − 1

nk



�εi�2

−
�
nk − 1
nk


2

�εk\{i}�2 − 2�θ, εl�

+ 2

7
θ − εl +

�
nk − 1
nk


2

εk\{i}, εi

8
,

where εk\{i} = (nk−1)−1
�
j∈G∗

k\{i} εj . Set ζn = 2 log(nK)
and define

B(i)
kl =

�
�εl�2 � n−1

l (p− 2
�
pζn), �εi�2 � p− 2

�
pζn,

�εk\{i}�2 � (nk − 1)−1(p+ 2
�
pζn + 2ζn),

�θ, εl� �
4

2n−1
l ζn�θ�,

�εl − (1−n−1
k )2εk\{i}�2 �(n−1

l +n−1
k )(p+2

�
pζn + 2ζn),

(36)

�θ, (1 − n−1
k )2εk\{i} − εl� �

4
2(n−1

l + n−1
k )ζn�θ�

�
.

(37)

Note that εi, εl, and εk\{i} are mutually independent. Thus
conditional on εl and εk\{i}, we have

�θ − εl + (1 − n−1
k )2εk\{i}, −εi�

∼ N
�
0,
###θ − εl + (1 − n−1

k )2εk\{i}
###2�

.

Then, on the event where (36) and (37) hold, we can bound
U∗ in (38), shown at the bottom of the next page, where Φc(t)
denotes the tail probability P(Z � t) for a standard normal
random variable Z . Note that n−1

l +n−1
k � 2m−1. Under the

separation condition (24) on the Gaussian centers, we have
�θ�2 � 8 logn and

2
4

2(n−1
l + n−1

k )ζn�θ� � 2√
m
�θ�2.

Thus, on events (36) and (37), we have

U∗ �

Φc

⎛⎝ (1 − β)�θ�2

2
4

(1+ 2√
m

)�θ�2+(n−1
l + n−1

k )(p+ 2
√
pζn + 2ζn)

⎞⎠.
Now under the separation condition (24) and noting that (1 +
δ)(1 + 2√

m
) � 1 + 2δ, we see that

(1 − β)2

8(1 + δ) log n
�θ�4 −

�
1 +

2√
m



�θ�2 − r1 � 0,

where

r1 = p(n−1
l + n−1

k ) + 2(
�
pζn + ζn)(n−1

l + n−1
k ).

Hence we get

U∗ � Φc(
�

2(1 + δ) logn) � n−(1+δ),

where the second inequality follows from the standard
Gaussian tail bound Φc(x) � e−x

2/2 for x � 0. In addition,
applying the probability tail bounds for χ2 distributions in

Lemma VIII.1, we have P(B(i)
kl

c
) � 6/(n2K2). Now putting

pieces together, we have

P(Ac) �
�

1�k �=l�K

�
i∈G∗

k

P(A(i)
kl

c ∩ B(i)
kl ) + P(B(i)

kl

c
)

�
�

1�k �=l�K

�
i∈G∗

k

E [U∗1((36), (37) hold)] +
6
n

� K2

nδ
+

8
n
.

B. Proof of Lemma IV.2
Without loss of generality, we may assume σ = 1. Recall

that the column sums and row sums of matrix BG∗
k
G∗

l
are

denoted by c(k,l) =
�
c
(k,l)
j : j ∈ G∗

l

�
and r(k,l) =

�
r
(k,l)
i :

i ∈ G∗
k

�
, respectively. In addition, t(k,l) =

�
j∈G∗

l
c
(k,l)
j =�

i∈G∗
k
r
(k,l)
i is the total sum, and the construction of B�

in (22) can be written as [B�G∗
lG

∗
k
]ij = r

(k,l)
i c

(k,l)
j /t(k,l), for

any distinct pair (k, l) ∈ [K]2. Under this notation, for each
v ∈ ΓK , we may write

T (v) =
K�
k=1

�
l �=k

�
i∈G∗

k

�
j∈G∗

l

r
(k,l)
i c

(k,l)
j

t(k,l)
vi vj

=
K�
k=1

�
l �=k

�
1

t(k,l)

� �
i∈G∗

k

vi r
(k,l)
i

�� �
j∈G∗

l

vj c
(k,l)
j

��
.

Using once again the property
�

i∈G∗
k
vi = 0 for all k ∈ [K],

we can simplify�
j∈G∗

l

vj c
(k,l)
j

=
�
j∈G∗

l

vj

�
− nl + nk

2nl
λ

+
nk
2

(�Xk�2 − �Xl�2) + nk�Xj ,Xl − Xk�
�

=nk�Xl − Xk,
�
j∈G∗

l

vjXj�

=nk�Xl − Xk,
�
j∈G∗

l

vjεj�

=nk�μl − μk + εl − εk,
�
j∈G∗

l

vj εj�.

Similarly,
�

i∈G∗
k
vi r

(k,l)
i = nl�μk − μl + εk −

εl,
�

i∈G∗
k
vi εi�. Then�

i∈G∗
k

�
j∈G∗

l

vivj r
(k,l)
i c

(k,l)
j = −nknl(T1,kl + T2,kl + T3,kl),

and

T (v) = −
K�
k=1

�
l �=k

�
nknl
t(k,l)

(T1,kl + T2,kl + T3,kl)
�
, (39)

where

T1,kl(v) =
� �
i∈G∗

k

vi�μk − μl, εi�
�
·
� �
j∈G∗

l

vj�μk − μl, εj�
�
,

T2,kl(v) =
� �
i∈G∗

k

vi�εk − εl, εi�
�
·
� �
j∈G∗

l

vj�εk − εl, εj�
�
,
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T3,kl(v) =
� �
i∈G∗

k

vi�μk − μl, εi�
�
·
� �
j∈G∗

l

vj�εk − εl, εj�
�

+
� �
i∈G∗

k

vi�εk−εl, εi�
�
·
� �
j∈G∗

l

vj�μk − μl, εj�
�
.

To bound these three terms, we will use the following lemma,
whose proof is deferred to the end of this section.

Lemma VII.1 (Uniform High Probability Bounds for Ran-
dom Fluctuation Terms): For any δ > 0, it holds with
probability at least 1 − 4K2n−δ that for any v ∈ ΓK and
any distinct pair (k, l) ∈ [K]2,---- �
i∈G∗

k

vi�μk − μl, εi�
----

� �μk−μl�
�
nk+

�
2nk logn+2 logn

�1/2� �
i∈G∗

k

v2
i

�1/2
,

(40)---- �
i∈G∗

k

vi �εi�2

---- � Cp1/2[n1/2
k + log2(n) ]

� �
i∈G∗

k

v2
i

�1/2

,

(41)�
i∈G∗

k

vi�εl, εi� � C

�
(p+ logn)nk

nl

� �
i∈G∗

k

v2
i

�1/2

, (42)---- �
i∈G∗

k

vi

'nk−1
nk

εk\{i}, εi
(----�Cp1/2(δ logn)1/2

��
i∈G∗

k

v2
i

�1/2
,

(43)

for some universal constant C > 0.

Bound T1,kl: By applying the Cauchy-Schwarz inequality and
inequality (40), we can bound

|T1,kl(v)| =
--- �
i∈G∗

k

vi�μk − μl, εi�
�
j∈G∗

l

vj�μk − μl, εj�
---

��μk − μl�2
� �
i∈G∗

k

v2
i

�1/2 � �
j∈G∗

l

v2
j

�1/2

·�nk+�
2nklogn+2 logn

�1/2�
nl+

�
2nl logn+2 logn

�1/2
.

Throughout the proof, we can always work under the event

{t(k,l) �βnknl�μk−μl�2/2 for all distinct pairs (k, l)∈ [K]2

and i ∈ G∗
k}, (44)

which according to the choice of λ� in (25) after Lemma IV.1,
holds with probability at least 1−K2n−δ− 8n−1. Under this

event, we get a uniform bound for first sum of T1,kl’s in the
decomposition (39) of T (v) for all v ∈ ΓK :------

K�
k,l=1

nknk
t(k,l)

T1,kl(v)

------
� 2
β

� K�
k=1

� �
i∈G∗

k

v2
i

�1/2�
nk +

�
2nk log n+ 2 logn

�1/2�

·
� K�
l=1

� �
j∈G∗

l

v2
j

�1/2�
nl +

�
2nl logn+ 2 logn

�1/2�
(a)

� 2
β

� K�
k=1

�
i∈G∗

k

v2
i


1/2

·
� K�
k=1

�
nk+

�
2nk logn+2 logn

�
1/2

·
� K�
l=1

�
j∈G∗

l

v2
j


1/2

·
� K�
l=1

�
nl+

�
2nl logn+2 logn

�
1/2

.

� 2
β

�
n+

�
2nK logn+ 2K logn

� �v�2,

where step (a) is due to the Cauchy-Schwarz inequality, and
the last step uses the identity

�K
k=1 nk = n and inequality�K

k=1

√
nk �

4
K
�K

k=1 nk.

Bound T2,kl: Due to the symmetry, we only need to analyze
the first sum in T2,kl, which can be further decomposed as�

i∈G∗
k

vi�εk − εl, εi�

=
�
i∈G∗

k

vi

' 1
nk

εi +
nk − 1
nk

εk\{i} − εl, εi

(
=

�
i∈G∗

k

vi
nk

�εj�2−
�
i∈G∗

k

vi�εl, εi�+
�
i∈G∗

k

vi

'nk−1
nk

εk\{i}, εi
(

=:G1(v) +G2(v) +G3(v),

where the three terms G1(v), G2(v) and G3(v) are respec-
tively bounded by using inequalities (41), (42) and (43) in
Lemma VII.1. Therefore, we can reach�
i∈G∗

k

vi�εk − εl, εi�

�C
� �
i∈G∗

k

v2
i

�1/2

·
�	

p

nk
+

log2(n)
√
p

nk
+

�
(p+logn) lognk

nl
+
�
δp logn




U∗ := P
�
2�θ − εl + (1 − n−1

k )2εk\{i}, −εi� � (1 − β)�θ�2
--- εl, εk\{i}�

= Φc

⎛⎝ (1 − β)�θ�2

2
4
�θ�2 + 2�θ, (1 − n−1

k )2εk\{i} − εl� + �εl − (1 − n−1
k )2εk\{i}�2

⎞⎠

� Φc

⎛⎜⎜⎝ (1 − β)�θ�2

2

	
�θ�2 + 2

4
2(n−1

l + n−1
k )ζn�θ� + (n−1

l + n−1
k )(p+ 2

√
pζn + 2ζn)

⎞⎟⎟⎠ . (38)
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�C�
� �
i∈G∗

k

v2
i

�1/2
��

δp logn+ log2(n)
	
p

n



.

This implies the following bound on T2,kl due to the
symmetry,

|T2,kl(v)| �C��
�
δp logn+

p log4(n)
n



·
� �
i∈G∗

k

v2
i

�1/2� �
j∈G∗

l

v2
j

�1/2

.

Then we may obtain by using the lower bound condition in
Lemma IV.1 as �μk−μl�2 � C1(1−β)−1

�
(1 + δ) p logn/m

that under the event (44),------
K�

k,l=1

nknk
t(k,l)

T2,kl(v)

------
� C2(1 − β)

β

�
δ
�
mp logn+

�
mp log7 n

n

�
·
� K�
k=1

� �
i∈G∗

k

v2
i

�1/2

� K�

l=1

� �
j∈G∗

l

v2
j

�1/2



� C2(1 − β)K
β

�
δ
�
mp logn+

�
mp log7 n

n

�
�v�2,

where the last step is due to the Cauchy-Schwarz inequality.

Bound T3,kl: Note that term |T3,kl(v)| satisfies

|T3,kl(v)|

� 1
2

� �
i∈G∗

k

vi�μk − μl, εi�
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2

.

Therefore, |T3,kl(v)| can be bounded by the sum of the upper
bounds for |T1,kl(v)| and |T2,kl(v)|.

Putting all pieces together, we can finally reach
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C. Proof of Lemma VII.1

We can apply the Cauchy-Schwarz inequality to obtain

�μk − μl�−1

---- �
i∈G∗

k

vi�μk − μl, εi�
----

�
� �
i∈G∗
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v2
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, εi

(2�1/2

.

Since ' μk − μl
�μk − μl�

, εi

(
i.i.d.∼ N(0, 1), i = 1, . . . , n,

we obtain by Lemma VIII.1 and a union bound argument that
with probability at least 1 −K2n−1,�

i∈G∗
k

' μk − μl
�μk − μl�

, εi

(2

� nk +
�

2nk logn+ 2 logn

for all k, l ∈ [K]. A combination of the preceding two displays
yields the first claimed inequality (40).

Since
�

i∈G∗
k
vi = 0 for any v ∈ ΓK , we can also

write the left hand side of inequality (41) as G1(vk) =�
i∈G∗

k
vi(�εi�2 − p), which can be viewed as a centered

empirical process indexed by vk ∈ R
nk , the restriction v�G∗

k

of v ∈ ΓK ontoG∗
k . We may assume without loss of generality

that vk ∈ Vk := {v�G∗
k

: v ∈ ΓK , �vk� = 1}. By
Theorem 4 in [65], there exists a universal constant C such
that for any t > 0,

P
�
�G1�Vk
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By the maximal inequality in Lemma 2.2.2 in [66] and
Lemma VIII.3, we have

�M1�ψ1 � C log(nk) max
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k
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By the Cauchy-Schwarz inequality, we have for all v ∈ Vk,--- �
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Then Jensen’s inequality implies that
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= (2nkp)1/2.

Thus with probability at least 1 − 4n−1, we have
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� Cp1/2[n1/2

k + log2(n)], (45)

which entails the second claimed inequality (41).
Next we prove the third claimed inequality. Note that

conditional on εl, G2(vk) := �εl,
�
i∈G∗

k
viεi� ∼

N(0, �εl�2
�
i∈G∗

k
v2
i ) is a centered Gaussian process indexed

by vk ∈ Vk. By the Borell-Sudakov-Tsirel’son inequality
(cf. Theorem 2.5.8 in [67]), we have
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ley’s entropy integral bound (cf. Corollary 2.2.8 in [66]) yields
that
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| εl] � C�εl�n1/2

k ,
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where we have used the fact that the ε-covering entropy of the
unit sphere in R

nk is at most Cnk log(1/ε) for any ε ∈ (0, 1).
Combining the last two displays with the inequality

P(�εl�2 � n−1
l (p+ 2

�
p logn+ 2 logn)) � n−1,

and a union bound argument, we get with probability at least
1 −K2n−1,
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nl
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implying the third inequality (42).
Now we prove the last inequality. Note that�
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is a degenerate U -process of order two. To simplify the
notation, we may assume G∗

k = {1, . . . , nk} in the rest of
this proof. Applying Lemma VIII.4 with

A={A ⊗ Idp |A={aij}i,j∈[nk], aij=(vi+vj)/2, vk ∈ Vk},
we get
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sup
A

�(A ⊗ Idp)ε� � sup
A

�A ⊗ Idp�op�ε� � n
1/2
l �ε�.

Then Jensen’s inequality yields that
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], we note that
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From Jensen’s inequality and the independence between εj
and

�
i�=j,i∈[nk] εj , we have
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Thus we see that with probability at least 1 − 2n−δ,

�U1�Vk
� Cnkp

1/2(δ logn)1/2, (47)

which implies the last claimed inequality (43).

VIII. SUPPORTING LEMMAS

Lemma VIII.1 (Tail Bound for χ2 Distributions): If Z ∼
N(0, Idp), then for all t > 0,

P(�Z�2 � p+ 2
√
pt+ 2t) � e−t,

P(�Z�2 � p− 2
√
pt) � e−t.

Proof of Lemma VIII.1: See Lemma 1 in [68]. �
Lemma VIII.2 (Deviation of Gaussian Random Matrices):

If E ∈ R
p×n has i.i.d. N(0, σ2) entries, then

P
��E�op � σ(

√
n+

√
p+

√
2t )

�
� e−t, ∀t > 0.

Proof of Lemma VIII.2: See Corollary 5.35 in [69]. �
Lemma VIII.3: Let ε1, ε2 be i.i.d. N(0, Idp). Then there

exists a universal constant C such that

��ε1�2 − p�ψ1 + ��ε1, ε2��ψ1 � Cp1/2.

Proof of Lemma VIII.3: Note that �ε1, ε2� =�p
j=1 ε1jε2j , and each additive component ε1jε2j is

sub-exponential with �ε1jε2j�ψ1 � �ε1j�ψ2�ε2j�ψ2 = 1
(cf. Lemma 2.7.7 in [58]). By Bernstein’s inequality
(cf. Theorem 2.8.2 in [58]), there exists a universal constant
C1 such that for any t > 0,

P(|�ε1, ε2�| � t) � 2 exp[−C1 min(t2/p, t)].

Let C be a large positive real number. By integration-by-parts
and change-of-variables, we have
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�2e
p

4C1C2

	
πp

C1C2
+

2
C1C − 2

e−(C1C−2) p
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Thus if we take C = Kp1/2 for some large enough universal
constant K > 0, then

E
�
exp

� |�ε1, ε2�|
C

��
� 2,

which implies that ��ε1, ε2��ψ1 � Kp1/2. The ζ1 norm bound
for �ε1�2 − p follows from similar lines. �

Lemma VIII.4 (Uniform Hanson-Wright Inequality for
Gaussian Quadratic Forms): Let ε ∼ N(0, Idp) and A be a
bounded class of p×p matrices. Consider the random variable

Z = sup
A∈A

(εTAε − E[εTAε]).

Then there exists a universal constant C such that for any
t > 0,

P(|Z−E[Z]| � t)�2 exp
�
−Cmin

� t2

�ε�2
A
,

t

supA∈A �A�op

��
,

where �ε�A = E[supA∈A �(A+AT )ε�].
Proof of Lemma VIII.4: Note that the standard Gaussian

random vector ε satisfies the concentration inequality

P(|ϕ(ε) − E[ϕ(ε)]| � t) � 2 exp(−t2/2)
for any t > 0 and every 1-Lipschitz function ϕ : R

p → R

such that E[|ϕ(ε)|] < ∞ (cf. Theorem 2.5.7 in [67]). Then
the lemma follows from Theorem 2.10 in [70]. �
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