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Polar Codes’ Simplicity, Random
Codes’ Durability

Hsin-Po Wang and Iwan M. Duursma

Abstract— Over any discrete memoryless channel, we offer
error correction codes such that: for one, their block error
probabilities and code rates scale like random codes’; and for two,
their encoding and decoding complexities scale like polar codes’.
Quantitatively, for any constants π, ρ > 0 such that π+2ρ < 1,
we construct a sequence of block codes with block length N
approaching infinity, block error probability exp(−Nπ), code
rate N−ρ less than the Shannon capacity, and encoding and
decoding complexity O(N log N) per code block. The core theme
is to incorporate polar coding (which limits the complexity to
polar’s realm) with large, random, dynamic kernels (which boosts
the performance to random’s realm). The putative codes are
optimal in the following manner: Should π + 2ρ > 1, no such
codes exist over generic channels regardless of complexity.

Index Terms— Capacity-achieving codes, low-complexity codes,
polar codes, random codes.

I. INTRODUCTION

R ICHARD W. HAMMING is one of the first few people
who had the idea that by grouping information in blocks

with redundancies, a calculating machine can correct errors by
its own and proceed to the next command instead of halting.
Their solution, now called Hamming codes, is found in [1].
Claude E. Shannon, a colleague of Hamming at Bell Labs, the-
orized the communication channels and showed that a channel
associates to a number called capacity, which represents the
ultimate limit of the efficiency of communications over that
channel.

To brief the rest of the history, we follow the analogy [21]
used. Shannon’s eternal result, the noisy-channel coding theo-
rem [2], is considered the analog of the law of large numbers
(LLN). The theorem implies that there exists a sequence of
longer and longer block codes whose block error probabilities
approach 0 and code rates approach the capacity, which is
analogous to that the empirical average of random variables is
close to the mean with high probability. Robert G. Gallager,
Shannon, Robert M. Fano, and followers extended the LLN
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TABLE I

AN ANALOGY BETWEEN PROBABILITY THEORY AND CODING THEORY

result by looking at how the block error probability Pe scales
when the code rate R is fixed. They showed that the error
probability Pe scales like exp(−Er(R)N). Here N is the
block length, and Er(R) is a constant depending on R. This
paradigm is considered the analog of the large deviations
principle (LDP). See [3]–[11]. Meanwhile, a series of works
fix the error probability Pe and looked at how the code rate R
scales [12]–[18]. They showed that the code rate R scales like
I−Q−1(Pe)

�
V/N for I the capacity, Q−1 the inverse of the

standard Q-function, and V an intrinsic parameter of the chan-
nel. The parameter V is called the dispersion or varentropy by
different authors. It is the “variance” of the channel while I is
the “mean” of the channel. This turns out to be more than an
analog—the random variable log(W (Y | X)/Wout(Y )) called
information density or information spectrum has mean I and
variance V . This paradigm is considered the analog of the cen-
tral limit theorem (CLT). Later, Altuğ–Wagner, Polyanskiy–
Verdú, and followers considered the joint behavior when both
Pe and R vary [19]–[23]. They showed that the quantity
N(I−R)2/|logPe| converges to 2V , twice the very dispersion
appearing in the CLT paradigm. This paradigm is considered
the analog of the moderate deviations principle (MDP).

On a parallel track, the engineering aspects of the com-
munication theory thrive. Codes with excellent practicality
are proposed. To name a few, Reed–Muller (1954), convolu-
tional (1955), Bose–Chaudhuri–Hocquenghem (1959), Reed–
Solomon (1960), trellis modulation (1970s), turbo (1990s),
low-density parity-check (1963 and 1996), repeat-accumulate
(1998), fountain (1998), and polar (2009).

Among the long list of inventions, only trellis modulation,
low-density parity-check, and polar achieve the LLN paradigm
over nontrivial channels—they are capacity-achieving. Among
these three, polar stands out as the only code that achieves
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the CLT paradigm (optimally), the only code that achieves the
LDP paradigm (optimally), and the only code that achieves the
MDP paradigm (suboptimally). If only polar code achieves
the optimal MDP paradigm. We brief the history of polar
codes below. Unless stated otherwise, I means the symmetric
capacity in the next three paragraphs.

Erdal Arıkan’s original works on channel polariza-
tion [24], [25] established the foundation of polar codes,
placing polar codes in the LLN paradigm on day one.
Arıkan and Telatar [26] characterized the LDP behavior of
polar codes, showing that Pe scales like exp(−√N) when an
R < I is fixed. Later, Korada–Şaşoğlu–Urbanke [27] gener-
alized polar codes from Arıkan’s kernel [110

1] to any invertible
�-by-� matrix G, granted that � � 2 and G is not column-
equivalent to a lower triangular matrix. And then they showed
that the LDP behavior is Pe ≈ exp(−NEc(G)) where Ec(G)
is a constant depending on the kernel matrix G. The notation
Ec(G) is meant to resemble Gallager’s error exponent Er(R)
but the former is inserted at exp(−N this) place while the latter
is inserted at exp(−thisN) place. The LDP behavior of polar
codes is then refined in [28]. Therein, Pe is approximated by
exp(−�E) where E = Ec(G)n−

�
Vc(G)nQ−1(R/I)+o(

√
n)

is a more accurate exponent, � is the matrix dimension, n
is the depth of the code, and Vc(G) is another constant
depending on G. The notation Vc(G) is meant to resemble
the channel dispersion V . Appearing to be a CLT behavior,
this result lies in the corner of the LDP paradigm that touches
the MDP paradigm. Finally, Mori–Tanaka [29] generalized
everything above to channels of prime power input size. Over
arbitrary input alphabets, [30], [31] showed the equivalence
of [25], [26]. Over binary but asymmetric channels, [32],
[33] showed the counterpart of [25], [26] with I being the
Shannon capacity. No further result on the LDP side, e.g. over
non-binary asymmetric channels, is known. The present work
fills the gap.

The CLT behavior of polar codes turns out to be difficult
to characterize. It was Korada–Montanari–Telatar–Urbanke
[34] who came up with the idea that approximating an
eigenfunction tightly bounds the eigenvalue �−ρ. Here ρ >
0 is a number such that R scales like I − N−ρ with a
fixed Pe. They had 0.2669 � ρ � 0.2841 over binary
erasure channels (BECs). The upper bound was brought down
to 3.553ρ � 1 over binary-input discrete-output memory-
less channels (BDMCs) [35]. Hassini–Alishahi–Urbanke [36]
moved down the upper bound to 3.627ρ � 1 over BECs and
3.579ρ � 1 over BDMCs. They also proved an lower bound
1 � 6ρ over BDMCs. The latter is suboptimal and [37], [38]
improved the bound to 1 � 5.702ρ and to 1 � 4.714ρ.
Additive white Gaussian noise channles (AWGNCs) have
continuous output alphabet, but [39] show that they have
1 � 4.714ρ too. Over BECs particularly, [40], [41] examined a
series of larger kernels; the current record is a 64-by-64 kernel
believed to have 1 � 2.9ρ. Near the end of the road to 2ρ < 1,
[42] showed that by allowing q →∞, Reed–Solomon kernels
achieve 2ρ < 1 over q-ary channels. This does not really prove
that polar codes achieve 2ρ < 1 over any specific channel, but
gave hopes. Fazeli et al. [43]–[45], eventually, showed that

Fig. 1. Recent works on polar coding arranged on a ρ-π plot. Note that results
utilizing different kernels over various channels are mixed. The higher ρ, π,
the better performance. The curve part of [50] is ρ = 1 − h2(π).

large random kernels achieve 2ρ < 1 over BECs, breaking the
barrier. Guruswami et al. [46], [47] extended their result to
all BDMCs utilizing the dynamic kernel technique. Over the
remaining channels, the present work fills the gap.

Between LDP and CLT is polar codes’ MDP behavior.
Guruswami and Xia [48], [49] showed that there exists
ρ > 0 such that Pe scales like exp(−N0.49) while R
scales like I − N−ρ over BDMCs. This raised a ques-
tion about what are the possible pairs (π, ρ) such that
(Pe, R) scales like (exp(−Nπ), I−N−ρ). Mondelli–Hassani–
Urbanke [38] answered this, partially, in the same paper
they bounded ρ. They showed that under a certain curve
connecting (0, 1/5.714) and (1/2, 0) all (π, ρ) are achievable
over BDMCs (see Fig. 1). For BECs the upper left corner
is (0, 1/4.627). A straightforward generalization to AWGNCs
was also given in [39]. We in [50] improved their result,
suggesting that via a combinatorial trick the upper left corner
of the curve is (0, ρ) for any ρ that is valid in the CLT regime.
The same trick also implicated that over BECs all (π, ρ) such
that π+2ρ < 1 are achievable, which is mainly owing to [43]’s
result that 2ρ < 1 over BECs is achievable. Meanwhile,
[51], [52] made the first step to investigate the general kernel
matrices over general prime-ary channels. They showed that
it is possible to achieve ρ > 0 with Pe ≈ N−Ω(1). This is,
strictly speaking, “only” a CLT behavior as the desired error
probability in the MDP world is exp(−Nπ). Later, Błasiok
et al. [53], [54] were able to show that for all π < Ec(G)
there exists ρ > 0 such that (π, ρ) is achievable. This makes it
a direct generalization of [48] to all polarizing kernel matrices
G over all prime-ary channels. The preprint [47] contains a
section that pushes the conference abstract [46] to positive
π while maintaining ρ ≈ 1/2. Over the remaining channels,
the present work fills the gap.

The following works, though not counting as predecessors
of ours, have impact on us through their insights on the essence
of the channel polarization: [55]–[70].

I resumes to be the Shannon capacity. Readers are now
prepared to be presented the main theorem.

Theorem 1 (Main Theorem—Polar Codes’ Simplicity, Ran-
dom Codes’ Durability): Let W be any discrete memoryless
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channel. Fix a prime ς � 2. Fix constants π, ρ > 0 such
that π + 2ρ < 1. There exists a sequence of block codes
with encoding and decoding algorithms such that: (cs) the
codes accept uniform ς-ary messages; (cn) the block length
N approaches infinity; (cp) the block error probability falls
below exp(−Nπ); (cr) the code rate exceeds I − N−ρ; and
(cc) the encoding and decoding complexity is O(N log N) per
code block.

The proof of the main theorem spans over Sections II
to VIII, lemmas continuing in Appendices A to C. The entry
points are Sections II-A for (cs), II-B for (cn), III-B for (cc),
IV-B for (cp), and VI-C for (cr). For the special case that
W is a BDMC with uniform input, Appendix D lists some
simplifications of the general treatments. The main theorem is
optimal in the following manner.

Proposition 2 (Optimality): Fix constants π, ρ > 0 such that
π + 2ρ > 1. Assume V > 0. Conditions (cn), (cp), and (cr)
cannot hold simultaneously.

Proof: If so, N(I − R)2/|log Pe| � NN−2ρ/Nπ =
N1−2ρ−π → 0 as N →∞. This contradicts the known result
lim infN→∞ N(I −R)2/|logPe| � 2V > 0 [21, Theorem 2],
[20, Theorem 6]. Remark: For V = 0 channels, the correct
threshold seems to be π + ρ = 1 [71, Inequality (3.354)], [21,
Remark 1].

Bibliographic remarks: The two citations [21] and [20] point
to the same result. The former uses a Gallager flavor technique
that is similar to what will be seen in Section VIII-C. The latter
uses the information spectrum mentioned in the introduction.
This technique was developed by Hayashi but is not the same
as what will appear in Section VIII-D.

For the rest of the section, we outline the ideas to prove
Theorem 1. The proof is a straightforward remix of polar
coding techniques and random coding techniques if it were
not for a few hurdles.

Hurdle of input alphabet size: The majority of the polar cod-
ing theory assumes that the input alphabet of the underlying
channel is binary, of prime size, or, less likely, of prime power
size. But the main theorem aims for arbitrary finite alphabets.
Finite alphabets do possess polarization behavior but the speed
of polarization has room for improvement [31, Theorem 3.5].
We will overcome this by adding “dummy symbols” into the
input alphabet to make it a prime power.

Hurdle of asymmetric channel: Although asymmetric chan-
nels do polarize, the input distributions do not automatically
become the uniform distribution. Pre-composing a source
coding machinery helps shape the desired distribution and
has been proposed before [30, Section III.D]. On the other
hand, Honda and Yamanoto [33] showed that one polar code
can do both source coding and noisy-channel coding at once.
We borrow their idea.

Hurdle of kernel selection: Judging and identifying the
best-behaved kernel gets harder as we need finer descriptions
of the performance of the code. The good result for the BEC
case depends heavily on the erasure nature of the channels
(that they are totally ordered by their capacities). Other general
results are not strong enough to meet our goal. To overcome,
we borrow a technique called dynamic kernels from [72].
The idea is to prepare more than one polarizing kernel and

apply a proper one on a channel-by-channel basis. This makes
a paradigm shift from one kernel fits all channels to every
channel deserves a tailor-made kernel. We will, once per
channel, apply the random coding theory to show the existence
of a proper kernel.

Hurdle of output alphabet size: Even with the great freedom
to choose one kernel for each and every channel, there lies
the difficulty that some performance bounds are proven with
one fixed channel in mind to favor the big-O notations. Those
bounds are prone to depend on the size of the output alphabet,
which grows to infinity as the channel transformations take
place. Meanwhile, some universal bounds are proven that
depend only on the size of the input alphabet, which is
invariant under channel transformations. We will borrow a
bound derived in [73], [74].

A. Organization

Section II reviews channels and entropy notations;
Section II-A explains how to overcome the hurdle of arbitrary
input alphabet size. Section III reviews the channel trans-
formations; Section III-A designs the decoder; Section III-B
analyzes its complexity; Section III-C designs the encoder,
overcoming the hurdle of asymmetric channel. Section IV
reviews the channel parameters such as the Bhattacharyya
parameter; Section IV-B shows how to control the block
error probability. Section V reviews the channel processes;
Section V-A argues that the global MDP behaviors of H(Wn)
and H(Vn) imply the main theorem. The main theorem is
thus reduced to the behavior of certain channel processes.
Section VI proves that the global MDP behavior we want
holds granted that the local LDP and CLT behaviors hold,
effectively boiling the main theorem down to the local behav-
iors. Section VI-B introduces the random kernel trick and
Section VI-C introduces the dynamic kernel trick to overcome
the hurdle of kernel selection. Section VII confirms the local
LDP behavior. The proof distills properties of the weight
distributions of random codes. Sections VII-A and VII-B prove
the two fundamental theorems of polar coding. Section VIII
confirms the local CLT behavior. Contributions from Gallager
and Hayashi are utilized. Section VIII-B invokes Chang–
Sahai’s universal bound, overcoming the hurdle of output
alphabet size.

B. Three Families of Randomnesses

The randomnesses from the sender’s message, the channel,
and the randomized rounding constitute the first family.
Typeset in Roman font are random variables (U, X, Y, . . . ),
probability measures (P, Q, W ), entropies (H, I), and other
parameters (Pe, Z, T, S . . . ) in this family. The randomness
from the channel process, one main technique in the polar
coding literature, is the second family. Typeset in sans serif
font are stochastic processes (Kn, Wn, Hn, Zn, . . . ), probabil-
ity measure (P), and expectation (E) in this family. The ran-
domness from random kernel ensembles, the main technique
in the random coding literature, is the third family. Type-
set in blackboard bold font are random variables (G, X, K),
probability measure (P, with exceptions), expectation (E),
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and Kullback–Leibler divergence (D, with exceptions) in this
family.

II. CHANNEL AND ENTROPY PRELIMINARIES

A discrete memoryless channel is a finite-state Markov
chain

W : X → Y.

Here X is a finite set of input alphabet; Y is a finite set of
output alphabet; and W is an array of transition probabilities
W (y | x) ∈ [0, 1] for all x ∈ X and y ∈ Y . The numbers
satisfy

�
y∈Y W (y | x) = 1 for all x ∈ X , which represents

the fact that each x must be transitioned to some unique y.
When X and Y are clear from the context, we call W a chan-
nel. Although the input distribution is not part of the channel
data, we write Win(x) to denote the input distribution. When
Win(x) is understood from the context, we write W (x, y) to
denote the joint distribution W (y | x)Win(x), write Wout(y)
to denote the output distribution, and write W (x | y) to
denote the a posteriori probability W (x, y)/Wout(y). (Thus
the interpretation of W (• | •) depends on the arguments
and the context.) A tuple of inputs (xi, xi+1, . . . , xj) is
abbreviated as xj

i . Same for yj
i for tuple of outputs, and for

uj
i for general variables. We assume memoryless channels,

and write W �(y�
1 | x�

1) to denote the product measure��
i=1 W (yi | xi) for consecutive usages. We write W �

in(x�
1),

W �
out(y

�
1), W �(x�

1, y
�
1), and W �(x�

1 | y�
1) to denote the input,

output, joint, and a posteriori probabilities.
Let X and Y be two r.v.s (random variables). Let H(X),

H(X | Y ), and I(X ; Y ) be the standard entropy, conditional
entropy, and mutual information. The base of the logarithm
will be assigned later (in Section IV). When X is the input fed
into some channel W : X → Y and Y is the corresponding
output, we say H(W ) and I(W ) to mean H(X | Y ) and
I(X ; Y ). When the distribution of X (the input distribution)
is chosen to maximize I(W ), it is called a capacity-achieving
input distribution and I(W ) is called the (Shannon) capacity
of the channel W : X → Y . Unless stated otherwise, the input
distributions will be capacity-achieving.

A. Reduce Input Size to Prime Power

Immediately after we declared what channels are concerned
(those with finite input and output alphabets), we show that it
suffices to consider input alphabets of prime power size.

Let W : X → Y be a channel. Let the input alphabet X
be of size s. Let q be any prime power greater than or equal
to s. Degrade the channel W as follows: Let symbols in X be
ξ1, ξ2, . . . , ξs. Let ξs+1, ξs+2, . . . , ξq be q − s extra symbols.
Let X � be X ∪ {ξs+1, ξs+2, . . . , ξq}; this is the extended
alphabet. Define a dummy channel � : X � → X by letting
�(ξmin(i,s) | ξi) be 1 for all i = 1, 2, . . . , , q. That is, all extra
symbols collapse to ξs while the old symbols remain. The
composition of the two channels

W ◦ � : X � �−→ X W−→ Y
forms a degraded channel with prime power input size.
By the data processing inequality, the Shannon capacity of

the degraded channel W ◦ � is no greater than W ’s Shannon
capacity. Meanwhile, it is clear that the degraded channel
W ◦ � achieves W ’s capacity by the same input distribution,
ignoring extra symbols. In other words, I(W ◦ �) = I(W ).
This constitutes the input size reduction.

Hereafter, we assume the size of the input alphabet X is q,
where q is a prime power. If the sender wants to send uniform
binary messages, let q be a power of 2. If the sender wants to
send uniform ternary messages, let q be a power of 3. In case
the sender wishes to send uniform quaternary messages but
does not want to split an information bit over two channel
symbols, let q be a power of 4. Bonus: should the sender
want to send uniform senary messages, choose q2 a power of
2 and q3 a power of 3 such that q2q3 is a power of 6; then
alternate (aka time-share) between q = q2 and q = q3. That is,
the sender breaks every senary bit into a binary component and
a ternary component, sends the binary component through the
q = q2 code blocks, and send the ternary component through
the q = q3 code blocks. For other message alphabets, apply
the fundamental theorem of arithmetic.

Fix a q. Let Fq be the finite field of order q (with the addition
and multiplication structure). Identifying X with Fq , we will
use them interchangeably. We say W : X → Y is a q-ary
channel or, more concisely, W is a q-ary channel, depending
on whether or not we need to refer to the variables X and Y .
It is worth keeping in mind that for inequalities in this work,
q = 2 is the most difficult case and q � 2 will be used silently.

We clarified (cs), there are (cn), (cc), (cp), and (cr) to go.

B. On the Message Alphabet and the Block Length

The fact that we have some freedom to choose q blurs the
meaning of the block length N since, say, a q2-bit bears twice
as much message as a q-bit does. Notwithstanding, we would
like to remind readers that multiplication and division of
N by any constant do not alter the semantics of the main
theorem. This is because O(N log N) can absorb any constant;
exp(−Nπ) and N−ρ can, too, by fluctuating π and ρ a bit.

A more series aftereffect is caused by mixing code blocks
with distinct q. When the sender attempts to send uniform
30-ary messages, they choose q2, q3, q5 � s and switch among
the three block codes. The q = q2 blocks have their own block
length N2 just like the other blocks have N3 or N5 as block
lengths. The de facto block length N , the minimal number of
the channel usages before the receiver can decode everything
sent so far, is thus three times the least common multiple of
N2, N3, and N5. We claim without a proof (but it will be
clear once we prove the rest of the main theorem) that it is
possible to make N2 = N3 = N5 and consequently N = 3N2.
Again, increasing N by three-fold does not make any semantic
difference. For numbers with more prime factors, a similar
reasoning applies.

We recommend readers not to worry about the message
alphabet as there exists a powerful solution—to pre-compose
another code that re-encodes an arbitrary finite message distri-
bution (not necessarily uniform) to a uniform prime-ary input
distribution. The existence of such codes, by duality, is tightly
bonded to the existence of error correction codes that carry
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uniform prime-ary messages over channels of arbitrary arity.
(Cf. the philosophy of [58], [59].) The latter is exactly what
the main theorem concerns.

We clarified (cs) and (cn) in this section; there are (cc), (cp),
and (cr) to go. We continue proving the main theorem in the
next section.

III. CHANNEL TRANSFORMATION

Let � � 2 be an integer. This will be the dimension of
the kernel matrices. But for now, let us introduce a flexible
framework. Fix a q-ary channel W : X → Y . Let U1, U2, . . . ,
U� be r.v.s taking values in X . For 1 � i � j � �, let U j

i be
the joint r.v. UiUi+1 · · ·Uj . Let gW : X � → X � be a bijective
map; that is, H(U �

1 | gW (U �
1)) = 0. We now feed � i.i.d.

(independent and identically distributed) copies of the channel
W with X�

1 := gW (U �
1). Let Y �

1 ∈ Y� be the corresponding
output. The chain rule of conditional entropy reads

H(U �
1 | Y �

1 ) = H(U� | U �−1
1 Y �

1 ) + H(U�−1 | U �−2
1 Y �

1 )

+ · · ·+ H(U2 | U1Y
�
1 ) + H(U1 | Y �

1 ). (1)

Interpretation: to estimate U �
1 given Y �

1 , we first estimate U1

given Y �
1 ; and then use the estimate Û1 to further estimate

U2; afterward, we estimate U3 given Û1, Û2, and Y �
1 ; and so

on. To achieve W ’s capacity, gW (U �
1) must follow a certain

capacity-achieving distribution. Since gW is bijective, this
induces a distribution of U �

1 . (Remark: we imply nothing about
whether U1, U2, . . . , U� are i.i.d or not.) Fix this distribution,
then

I(U �
1 ; Y �

1 ) = I(U� ; Y �
1 | U �−1

1 ) + I(U�−1 ; Y �
1 | U �−2

1 )

+ · · ·+ I(U2 ; Y �
1 | U1) + I(U1 ; Y �

1 ).

These two chain rules motivate the channel transformation:
Let [�] be the set of integers {1, 2, . . . , �}. For each i ∈ [�], let
W (i) : X → X i−1×Y� be a channel where W (i)(ui−1

1 y�
1 | ui)

is the probability that U i−1
1 Y �

1 = ui−1
1 y�

1 conditioned on Ui =
ui. A more lengthy but exact form reads

W (i)(ui−1
1 y�

1 | ui) :=

�
u�

i+1
W �(gW (u�

1), y�
1)�

ui−1
1 u�

i+1
W �

in(gW (u�
1))

.

Its input distribution W
(i)
in (ui) is determined by that of Ui. It

may sound weird that W (i) will tell the receiver the input of
W (1), W (2), . . . , W (i−1) for free. But in reality, W (i) acts as
an interactive device where the receiver (not the sender) needs
to input what U i−1

1 is and the device will output something
that looks like U i−1

1 Y �
1 ; only when the receiver inputs the

correct U i−1
1 does the device return the correct U i−1

1 Y �
1 . Under

this interpretation, the de facto capability of W (i) is thus
I(Ui ; Y �

1 | U i−1
1 ) instead of I(Ui ; U i−1

1 Y �
1 ), which justifies

the chain rule of the mutual information. To avoid confusion,
we prefer H(W (i)) over I(W (i)) in calculations.

What makes the idea of channel transformation powerful is
that the transformations apply recursively. The precise formu-
lation is as below: Fix any i ∈ [�]. Let (X(i))1, (X(i))2, . . . ,
(X(i))� ∈ X be � i.i.d. copies of the capacity-achieving input
of W (i); let (Y (i))1, (Y (i))2, . . . , (Y (i))� ∈ X i−1×Y� be the
corresponding outputs. Let gW (i)

: X � → X � be a bijection.

Define a tuple of r.v.s (U (i))�
1 := (gW (i)

)−1((X(i))�
1); that is

to say, gW (i)
((U (i))�

1) = (X(i))�
1. For each j ∈ [�], we define a

depth-2 channel (W (i))(j) : X → X j−1×(X i−1×Y�)� where
(W (i))(j)((u(i))i−1

1 (y(i))�
1 | (u(i))j) is the probability that

(U (i))j−1
1 (Y (i))�

1 = (u(i))j−1
1 (y(i))�

1 conditioned on (U (i))j =
(u(i))j . To sum up, we can define (W (i))(1), (W (i))(2), . . . ,
(W (i))(�) out of W (i) for any i ∈ [�] in the same way we
define W (1), W (2), . . . , W (�) out of W . For i, j ∈ [�], each
(W (i))(j) is again a channel, so the transformations apply to
generate depth-3 channels. In the setup of the classical polar
coding, a fixed bijection g is used to define W (i), (W (i))(j),
((W (i))(j))(k), et seq. To reach the optimal MDP paradigm,
we allow gW to depend on the channel W . That is to say, we
need � (presumably distinct) bijections gW (i)

: X � → X � for
every i ∈ [�] when we want to define (W (i))(j) out of W (i).
Similarly, we need yet another �2 bijections g(W (i))(j) : X � →
X � for every i, j ∈ [�] in defining depth-3 channels. And the
recursion goes on ad infinitum.

Prudent readers are invited to check [30, the paragraph
before Section III], [46], [50], [72], [75], [76] for a list of
inhomogeneous configurations of kernels. See [30], [31], [77]
for how nonlinear bijections are similar to (or different from)
linear bijections.

A. Design of the Decoder

To implement channel transformations, we define a DU
(decoding unit) to be an automata as follows: It is a box with �
pins on the left and � pins on the right. Each pin is connected
to another DU, a CH, an FH, or an IH (to be defined later).
Each pin may take input or produce output but not at the
same moment. A DU works as follows: Let W : X → Y be
the channel it is to transform. (Step 0) For all i ∈ [�], the i-th
pin on the left takes the input yi. The input is passed in the
form of the a posteriori distribution (W (xi | yi) : xi ∈ X ).
This is what Arıkan calls α-representation [78, Section II.A].
(Step 1-a) It computes the a posteriori distribution of U1

given y�
1; that is, (W (1)(u1 | y�

1) : u1 ∈ X ). And then it
outputs this tuple of probabilities to the first pin on the right.
(Step 1-b) At a later moment, it will receive an estimate û1

of U1 from the first pin on the right. Note that û1 is a hard
symbol in X , not a soft tuple of probabilities. (Step 2-a) It
computes the a posteriori distribution of U2 given û1y

�
1; that

is to say, it pretends that U1 happens to be û1 and computes
(W (2)(u2 | û1y

�
1) : u2 ∈ X ) accordingly. And then it outputs

this tuple of probabilities to the second pin on the right.
(Step 2-b) At a later moment, it will receive an estimate û2

of U2 from the second pin on the right. (Step i-a) In general,
it computes W (i)(ui | ûi−1

1 y�
1) for all ui ∈ X and then output

the tuple to the i-th pin on the right. (Step i-b) After a while,
it will receive ûi. (Step �+1) Once it receives û� from the last
pin on the right, it computes ŷ�

1 := gW (û�
1), and then output

ŷi to the i-th pin on the left for all i ∈ [�]. See Figs. 2 to 4
for illustrations.

The general rule to arrange the DUs is as follows: For a
depth-n construction, put DUs in an �n−1-by-n array. Each
DU is indexed by (k1, k2, . . . , kn−1; m) where k1, k2, . . . ,
kn−1 ∈ [�] and m ∈ [n]. For all m ∈ [n − 1] and all
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Fig. 2. A DU with � = 3 and its I/Os.

Fig. 3. 6 DUs (with � = 3 and n = 2) are chained together to implement
(W (1))(1), . . . , (W (3))(3) . Boxes marked “W ” are channels. Boxes next to
channels are CHs; the labels are their indices. Boxes at the rightmost column
are either FHs or IHs; the labels are their indices. Note that DUs in the first
column use the same gW . DUs in the second column use gW (1)

, gW (2)
,

and gW (3)
, respectively.

k1, k2, . . . , kn ∈ [�], connect the km-th pin on the right of
the (k1, . . . , km−1, km+1, . . . , kn; m)-th DU to the km+1-th
pin on the left of the (k1, . . . , km, km+2, . . . , kn; m + 1)-th
DU. Here, the (k1, k2, . . . , kn−1; m)-th DU is to transform the
channel (· · · (W (k1)) · · · )(km) into (· · · (W (k1)) · · · )(km+1).
The k1-th pin on the left of the (k2, . . . , kn; 1)-th DU connects
to a CH (channel helper) indexed by (k1, k2, . . . , kn). Each
CH then connects to the output of a copy of the channel
W . The kn-th pin on the right of the (k1, . . . , kn−1; n)-th
DU connects to either an FH (frozen bit helper) or an IH
(information bit helper); in either case, the connected helper
is indexed by (k1, k2, . . . , kn). Let I ⊂ [�]n be the set of
indices (k1, k2, . . . , kn) such that the kn-th pin on the right of
the (k1, . . . , kn−1; n)-th DU connects to an IH. Then [�]n \ I
is the set of indices where the pin connects to an FH.

On the left-hand side of the DU array, the task of the
(k1, k2, . . . , kn)-th CH is to receive the output Y(k1,k2,...,kn) ∈
Y from the channel and then forward the a posteriori distrib-
ution tuple (W (x(k1,k2,...,kn) | Y(k1,k2,...,kn)) : x(k1,k2,...,kn) ∈
X ) to the DU array. On the right-hand side, FHs correspond
to what Arıkan called frozen bits—bits that do not carry
information and the receiver knows their values as part of the
communication protocol. The task of the (k1, k2, . . . , kn)-th
FH is to receive the a posteriori distribution of the (k1, k2,
. . . , kn)-th frozen bit and then return the correct symbol

Fig. 4. 12 DUs (with � = 2 and n = 3) are chained together to implement
((W (1))(1))(1), . . . , ((W (2))(2))(2) . DUs in the first column use gW ; DUs
in the second column use gW (1)

and gW (2)
; DUs in the third column use

g(W (1))(1) , g(W (1))(2) , g(W (2))(1) , and g(W (2))(2) .

U(k1,k2,...,kn) ∈ X back to the DU array. IHs correspond to
information bits that carry the sender’s messages. The task
of the (k1, k2, . . . , kn)-th IH is to receive the a posteriori
distribution of the (k1, k2, . . . , kn)-th information bit and then
return the most probable symbol Û(k1,k2,...,kn) ∈ X back to
the DU array. When all IHs are activated once, a code block
completes. The most probable symbols they returned to the
DU array form the decoded message ÛI , meaning the tuple
(Û(k1,k2,...,kn) : (k1, k2, . . . , kn) ∈ I).

What we just established is the successive cancellation
decoder of polar codes that could be found in most works
that implement polar codes. For instance, [25, Section VIII],
[55, Section 3.2], [33, Section III], and [76, Section VI.B]. See
especially [46, Section 9] for an almost identical construction
albeit they had q = 2 in mind. We replicate the whole story to
demonstrate that each DU may use a unique bijection “g”
without changing the overall structure too much. Whether
or not this construction can transmit information reliably is
discussed in Section IV-B. There, we will also clarify how to
arrange FHs and IHs. The complexity can be estimated prior
to further specification.

B. Complexity of the Decoder

There are various models that measure the complexity of a
structure. The polar coding community uses a variant of the
time complexity where the arithmetic of real numbers costs
O(1) and passing probabilities between DUs costs O(1). The
complexity of the DU array is thus the number of the DUs
multiplied by the complexity of a single DU. The number of
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DUs is �n−1n. The complexity of a DU depends on how a
DU computes the a posteriori probabilities W (j)(ui | ui−1

1 y�
1)

out of W (xi | yi). The naïve approach is to exhaust every
single possible input u�

1 ∈ X � and calculate the a posteriori
probabilities via Bayesian formulas. This costs O(�10q�+10)
(here 10 is an overestimate). Hence the overall complexity
is O(�n−1n�10q�+10). In our setup, however, q is fixed, �
will be chosen upon knowing π, ρ, and n goes to infinity
afterwards. So we advertise that the complexity is O(�nn),
or O(N log N). Here N := �n is the block length, equal
to the number of copies of the channel W attached to the
DU array. The complexities of the CHs, FHs, and IHs can
be computed similarly. They are all bounded by O(�n+10q10).
Thus the decoder as a whole costs O(N log N).

We claim that the encoder has the same complexity, namely
O(N log N), although we have not defined the encoder yet.
The encoder is essentially a special decoder and is the subject
of the next subsection.

C. Design of the Encoder

The encoder will be an exact copy of the decoder except
that CHs and IHs will behave differently. In greater detail: Let
there be an �n−1-by-n array of DUs indexed and connected in
the same way described in Section III-A. Each DU executes
the exact same task described in Section III-A. The left pins
of the DUs in the first column each connect to a CH. The
right pins of the DUs in the last column each connect to
the same type of device (an IH or an FH) as its twin-DU
in the decoder does. Here, as part of the encoder, a CH will
output the capacity-achieving input distribution (Win(x) for all
x ∈ X ) into the DU array. For each (k1, k2, . . . , kn) ∈ I, the
(k1, k2, . . . , kn)-th IH will receive a recommended distribution
of the (k1, k2, . . . , kn)-th information bit and then return the
message symbol U(k1,k2,...,kn) ∈ X the sender wants to send
back to the DU array. For each (k1, k2, . . . , kn) ∈ [�]n \ I,
the (k1, k2, . . . , kn)-th FH will receive a recommended dis-
tribution of the (k1, k2, . . . , kn)-th frozen bit and then return
a r.v. U(k1,k2,...,kn) ∈ X that follows that distribution back
to the DU array. This r.v. is simulated by a pseudo random
number generator shared between the encoder and the decoder.
The twin-FH in the decoder, regardless what distribution it
receives, will return the exact same symbol U(k1,k2,...,kn) back
to the DU array. This step is called randomized rounding
and is found in [55, Section 3.3], [57, Section III], [79,
Section II], and [33, Section III.A]. After all IHs return the
sender’s messages and all FHs returns randomly rounded bits
to the DU array, the CHs will each get a codeword symbol
X(k1,k2,...,kn) ∈ X from the DU array. And then each CH will
forward that symbol to an i.i.d. copy of the channel W .

This design is a copy of [33]’s encoder explained in our
terminology. It is clear that the encoding complexity will be
O(N log N), too. Alongside the decoder, the encoder creates
its own channel transformations. Let W : X → Y be a
q-ary channel and X be a capacity-achieving input. Define a
flattening channel W� : X → {η} that erases all information.
Then the encoder is effectively synthesizing depth-1 channels
W

(i)
� : X → X i−1 × {η}� for each i ∈ [�], depth-2 channels

(W (i)
� )(j) : X → X j−1 × (X i−1 × {η}�)� for each j ∈ [�],

depth-3 channels ((W (i)
� )(j))(k) : X → X k−1 × (X j−1 ×

(X i−1 × {η}�)�)� for each k ∈ [�], et seq. utilizing the
same input distributions and series of bijections. For instance,
W

(i)
� (ui−1

1 y�
1 | ui) is the probability that U i−1

1 = ui−1
1

conditioned on Ui = ui, or equally��
u�

i+1

W �
in(gW (u�

1))
�
÷

� �
ui−1
1 u�

i+1

W �
in(gW (u�

1))
�
.

Moreover, H(W�) = H(X) and H(W (i)
� ) = H(Ui | U i−1

1 ).
No “Y ” plays any role here since they are constant. The fact
that a channel as boring as W� is helpful to our main theorem
will be covered later, in Section IV-B.

We clarified (cs), (cn), and (cc) up to this section; there are
(cp) and (cr) to go.

IV. CHANNEL PARAMETERS

Let W : X → Y be a q-ary channel. Let X be a
capacity-achieving input and Y be the corresponding output.
Besides H and I , there are several channel parameters that
capture the qualities of channels. Here is a list of parameters
extracted from the work [29] of Mori and Tanaka.

Both H(X | Y ) and H(W ) are the base-q conditional
entropy, the base chosen such that 0 � H(X | Y ) �
H(X) � 1. Both I(X | Y ) and I(W ) are the base-q mutual
information, and hence 0 � I(X | Y ) � H(X) � 1.

Pe(X | Y ) is the error probability of the optimal decoder,
the maximum a posteriori (MAP) decoder. The MAP
decoder looks at an output y ∈ Y and chooses a sym-
bol x̂ ∈ X that maximizes W (x̂ | y). When the output
is Y = y, the probability that the MAP decoder does
not choose X as x̂ is 1 − maxx∈X W (x | y). Therefore,
Pe(X | Y ) =

�
y∈Y Wout(y)(1 − maxx∈X W (x | y)).

Within a channel-centric narrative, we also write Pe(W ) for
Pe(X | Y ).

Z(X | Y ) is the rescaled sum of Bhattacharyya coefficients
of the transition distribution W (y | x) for the uniform input.
For non-uniform inputs, a modification is made to generalize
the definition and the properties that used to hold. Intuitively
speaking, a MAP decoder seeing y is “confident” if W (x | y)
is small for all but one x, or equivalently, if the product
W (x, y)W (x�, y) is small for all distinct x, x� ∈ X . The
Bhattacharyya parameter measures the “confidence” by

Z(X | Y ) :=
1

q − 1

�
x,x�∈Fq

x �=x�

�
y∈Y

�
W (x, y)W (x�, y).

In addition, define

Zmad(X | Y ) := max
0�=d∈Fq

�
x∈Fq

�
y∈Y

�
W (x, y)W (x + d, y).

We also write Z(W ) and Zmad(W ) for these quantities.
Remarks: The rescaling is such that 0 � Z � Zmad �
(q−1)Z � q−1. Our definition of Zmad is different from the
Zmax in [29], but rather a mixture of Zmax and Zd therein.
That said, the definitions of other parameters—H , I , Pe, Z , T ,
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S, and Smax—match [29]’s. Cf. [31, Section 3.C] has defined
Zmad for prime input size.

T (X | Y ) is the weighted average of the total variation
distances from the a posteriori distributions (W (x | y) : x ∈
X ) to the uniform noise (1/q, 1/q, . . . , 1/q). More formally,
it is defined to be

�
y∈Y Wout(y)

�
x∈X |W (x | y)−1/q|. We

also write T (W ) for this quantity.
S(X | Y ) is the weighted average of the L1-norms of the

Fourier coefficients of the a posteriori distributions. The formal
definition is as follows: Let tr : Fq → Fp be the field trace,
where Fq = X and Fp is the prime subfield. Let χ : Fq → C

be an additive character defined as χ(x) := exp(2πi tr(x)/p),
where 2πi is temporarily the period of exp. Define the Fourier
coefficient

M(w | y) :=
�
z∈Fq

W (z | y)χ(wz).

Define the S-parameters

S(X | Y ) :=
1

q − 1

�
0�=w∈Fq

�
y∈Y

Wout(y) ·
���M(w | y)

���,
Smax(X | Y ) := max

0�=w∈Fq

�
y∈Y

Wout(y) ·
���M(w | y)

���.
We also write S(W ) and Smax(W ) for these quantities.
Remarks: The rescaling is such that 0 � S � Smax �
(q−1)S � q−1. An interpretation is as follows: Fix a y. When
W (x | y) is roughly equal to 1/q for all x ∈ Fq , the Fourier
coefficient M(w | y) =

�
z∈Fq

W (z | y)χ(wz) should be
roughly

�
z∈Fq

χ(wz)/q = 0. The S-parameter measures how
far those coefficients are from zero.

A. Relations Among Channel Parameters

The following is a series of lemmas we extract from existing
works. They characterize the relations among H , I , Pe, Z , T ,
and S.

Lemma 3 [29, Lemma 22 with k = 1]: For any q-ary
channel W ,

q − 1
q2

��
1 + (q − 1)Z(W )−

�
1− Z(W )

�2

� Pe(W ) � q − 1
2

Z(W ).

Lemma 4 [29, Lemma 23 with k = q − 1]: For any q-ary
channel W ,

q − 1
q
− Pe(W ) � T (W )

2

� q − 1
q
− 1

q

�
(q − 1)qPe(W )− (q − 1)(q − 2)

�
.

Lemma 5 [29, Lemma 26 with k = q − 1]: For any q-ary
channel W ,

1− q

q − 1
Pe(W ) � S(W )

� (q − 1)q
�q − 1

q
− Pe(W )

��
1− q

q − 1
q − 2
q − 1

.

Lemma 6 [80, Theorem 1]: For any q-ary channel W ,

h2(Pe(W )) + Pe(W ) log2(q − 1) � H(W ) log2 q

�
	

2Pe(W ),
(q − 1)q log2

q
q−1 (Pe(W )− q−2

q−1 ) + log2(q − 1).

Here, h2 is the binary entropy function; h2(1/2) = 1. The
upper bound is Fano’s inequality. The first lower bound fits
when H(W ) and Pe(W ) are small; the second lower bound
fits when H(W ) and Pe(W ) are close to 1.

The above lemmas inspire the following characterization:
Let A and B be two channel parameters, we say A, B are
bi-Hölder at (a, b) if there exist c, d > 0 such that |A(W ) −
a| < c|B(W ) − b|d and |B(W ) − b| < c|A(W ) − a|d for all
q-ary channels W . The notion of bi-Hölder is an equivalence
relation. In particular, if A, B are bi-Hölder at (a, b) and B, C
are bi-Hölder at (b, c), then A, C are bi-Hölder at (a, c). In this
case, it makes sense to say A, B, C are bi-Hölder at (a, b, c).
This notion generalizes to tuples of more parameters. Now we
can summarize Lemmas 3 to 6 in a more concise statement.

Lemma 7 (Implicit Bi-Hölder Tolls): Channel parameters
H, Pe, Z, Zmad are bi-Hölder at (0, 0, 0, 0). Channel parame-
ters H, Pe, T, S, Smax are bi-Hölder at (1, 1− 1/q, 0, 0, 0).

Proof: Z, Zmad are bi-Hölder at (0, 0) since Z � Zmad �
(q− 1)Z . Lemma 3 implies that Pe, Z are bi-Hölder at (0, 0).
Lemma 6 (with the first lower bound) implies that Pe, H are
bi-Hölder at (0, 0). Now apply the transitivity to conclude
the first statement. For the second statement, S, Smax are bi-
Hölder at (0, 0) since S � Smax � (q−1)S. Lemma 5 implies
that Pe, S are bi-Hölder at (1−1/q, 0). Lemma 4 implies that
Pe, T are bi-Hölder at (1−1/q, 0). Lemma 6 (with the second
lower bound) implies that Pe, H are bi-Hölder at (1−1/q, 1).
Now apply the transitivity to conclude.

See [29, Corollary 28] for what inspired us. They use
notation A

e∼ B to mean A, B are bi-Hölder at (0, 0) and at
(1, 1). See also [81] for the relation between Z and symmetric
capacity over BDMCs. For some very technical details on
the way toward the main theorem, we need explicit Hölder
relations among H , Zmad, and Smax. We claim them here.
The proof is nothing but looking closer into Lemmas 3, 5,
and 6. A written-out proof is in Appendix A.

Lemma 8 (Explicit Hölder Tolls): log is natural. For all
q-ary channels W , the following hold:

Zmad(W ) � q
�

H(W ) log4 q, (2)

H(W ) �
�

e(q − 1)Zmad(W )/2, (3)

Smax(W ) � (q − 1)q
�

(1−H(W )) log(q)/2, (4)

1−H(W ) � (q − 1)Smax(W )/ log q. (5)

B. Control of the Block Error Probability

Let W be the channel we want to communicate over; and
let X be any input. In the classical theory of polar coding,
the second last step of the construction of the block code
is to determine a subset I ⊂ [�]n of indices that points to
the depth-n channels that transmit information bits. When
decoding this code, a block error happens if the successive
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cancellation decoder fails to decode any information bit. Let
E(k1,k2,...,kn) be the event that the first error occurs when
the decoder is solving for the input to (· · · (W (k1)) · · · )(kn),
i.e., when Û(k1,k2,...,kn) �= U(k1,k2,...,kn) and the equality
holds for lexicographically earlier indices. Then the event’s
probability measure P (E(k1,k2,...,kn)) is no more than the
bit error probability Pe



(· · · (W (k1)) · · · )(kn)

�
. By the union

bound, the block error probability of the decoder is bounded
from above by a sum

P{ÛI �= UI} �
�

(k1,k2,...,kn)∈I
Pe

�
(· · · (W (k1)) · · · )(kn)

�
.

Here UI is the tuple (U(k1,k2,...,kn) : (k1, k2, . . . , kn) ∈ I).
With this observation, we define I to be the set of indices

(k1, k2, . . . , kn) ∈ [�]n such that H


(· · · (W (k1)) · · · )(kn)

�
<

θn for some clever choice of the threshold θn > 0. This
immediately implies Pe



(· · · (W (k1)) · · · )(kn)

�
< cθd

n for
some c, d > 0 by Lemma 7. Let θn be exp(−�πnn). The
sum of Pe is less than �ncθd

n < exp(−�πn) for sufficiently
large n, which is the block error probability we claimed.
Remark: Arıkan used a different criterion Z < θn. It still
implies Pe < cθd

n and that the sum of Pe is less than
�ncθd

n < exp(�πn) for large n. The benefit of controlling Pe

using other parameters is that some parameters are easier to
control (because Theorems 9 and 10 exist).

For the main theorem where the channel W is asymmetric,
we want to control both the decoder block error and the
encoder block error. Here, the encoder block error is not the
encoder’s failure to encode a message, but rather its failure
to generate the capacity-achieving input distribution of W .
To penalize, imagine that we employ an oracle that claims an
encoder block error whenever the generated codeword should
have been another word to fit the ideal distribution. That way,
the actual block error probability will not exceed the sum
of the encoder and decoder block error probabilities. More
rigorously, let P be the probability measure assuming the ideal
distribution of UI and Q be the probability measure assuming
the actual UI generated by the encoder. Then the overall block
error probability can be bounded by

Q{ÛI �= UI} � P{ÛI �= UI}+ �P −Q�.
P{ÛI �= UI} as the decoder block error probability is
bounded before. The encoder block error probability is repre-
sented by �P −Q�, the total variation distance from P to Q.
There is a telescoping argument similar to how we control
the decoder error—classifying events by the first input bit
where the oracle disagrees with the encoder [55, Lemma 3.5],
[57, Lemma 4], [79, Lemma 2], [33, Lemma 1]. It yields that
the encoder block error probability is bounded from above by
the sum

�P −Q� �
�

(k1,k2,...,kn)∈I
T
�
(· · · (W (k1)

� ) · · · )(kn)
�
.

In controlling the encoder bit error probability, we strengthen
the policy of collecting indices (k1, k2, . . . , kn) ∈ [�]n for I
by asking for H



(· · · (W (k1)

� ) · · · )(kn)
�

> 1 − θn. The latter

criterion immediately implies T


(· · · (W (k1)

� ) · · · )(kn)
�

< cθd
n

by Lemma 7. As a consequence, the overall block error
probability is controlled by Q{ÛI �= UI} � P{ÛI �= UI} +
�P −Q� < 2�ncθd

n < exp(−�πn) for n large.
The preceding argument is a paraphrase of the proof of

[33, Theorem 13]; Inequalities (59) and (57) therein are the
key ideas. So far the block length, the complexity, and the
error aspects of the main theorem are covered, it remains
to control the code rate |I|/�n. In other words, we are to
compute the cardinality of I given that I ⊂ [�]n is the
set of indices such that H



(· · · (W (k1)) · · · )(kn)

�
< θn and

1 − H


(· · · (W (k1)

� ) · · · )(kn)
�

< θn, where θn :=
exp(−�πnn).

C. Before and After Channel Transformations

Alongside the relations among different parameters applied
to the same channel, there are also relations between the
same parameter applied to the original and the transformed
channels. That

��
i=1 H(W (i)) = �H(W ) is one. There are

two more that are pivotal in the theory of polar coding but
require more prerequisites. Assume that gW : X � → X � is a
linear isomorphism given by the multiplication of an invertible
matrix G from the right—gW (u�

1) := u�
1G. The following

framework extends to nonlinear bijections but we do not need
that much. (There is also the paradigm that random linear
codes perform better than random codebooks for that a bad
linear code tends to hoard a lot of light codewords at once,
effectively removing them from the ensemble pool. So there is
a good reason to stick to the linear case.) Let 0i−1

1 1iu
�
i+1 ∈ F�

q

be a tuple of i− 1 many 0 followed by a 1 and �− i arbitrary
symbols. A coset code is a subset of codewords of the form
{0i−1

1 1iu
�
i+1G : u�

i+1 ∈ F�−i
q } ⊂ F�

q. The coset codes have
weight distributions just like every other code does. Let wt(x�

1)
be the Hamming weight of x�

1. The weight enumerator of the
i-th coset code is defined to be a one-variable polynomial over
the integers

f
(i)
GZ(z) :=

�
u�

i+1

zwt(0i−1
1 1iu

�
i+1G) ∈ Z[z].

We can now state the second relation. This is considered the
main cause of why polar coding ever exists/works.

Theorem 9 (Fundamental Theorem of Polar Coding—
Z-end, FTPCZ): [25, Proposition 5], [27, Lemma 10],
[31, Lemma 3.5], [43, Section 4.1], [29, Lemma 33]

Zmad(W (i)) � f
(i)
GZ(Zmad(W )).

The proof is postponed until Section VII-A. The fundamen-
tal theorems come as a pair. Let ui−1

1 1i0�
i+1 ∈ F�

q be a tuple
of i− 1 arbitrary symbols followed by a 1 and �− i many 0.
Let G−� be the inverse transpose of G. The weight enumerator
of the i-th dual coset code is defined to be this one-variable
polynomial over the integers

f
(i)
GS(s) :=

�
ui−1
1

swt(ui−1
1 1i0

�
i+1G−�) ∈ Z[s].

We can now state the third relation, the dual of the second.
The proof is postponed until Section VII-B.
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Theorem 10 (Fundamental Theorem of Polar Coding—
S-End, FTPCS): [55, Lemma 5.7], [57, Theorem 19], [79,
Lemma 6], [29, Lemma 34], [46, Inequalities (74) and (75)]

Smax(W (i)) � f
(i)
GS(Smax(W )).

Remark: These two bounds are not tight—the equality does
not hold for BECs. In detail, Arıkan’s original bound reads
Zmad(W (1)) � 2Zmad(W ) − Zmad(W )2 while our bound
turns into Zmad(W (1)) � 2Zmad(W ), the subtraction term
missing. We are simply not able to prove a version that
degenerates to an equality over erasure channels, nor does
any prior work seem to. This causes a serious aftermath that
Zmad(Wn) (to be defined later) is no longer a supermartin-
gale. Nonetheless, this bound is strong enough to collaborate
with the random coding theory. See, for example, how we
compensate in Appendix C-A.

We clarified (cs), (cn), (cc), and (cp) up to this section; there
is (cr) to go.

V. CHANNEL PROCESSES

Let K1, K2, K3, . . . be i.i.d. uniform r.v.s on [�], where
[�] is the set of integers {1, 2, . . . , �}. Let W be the q-ary
channel we want to communicate over. Let W0 be W . For
each nonnegative integer n, let Wn+1 be (Wn)(Kn+1), which
means (· · · (W (K1)) · · · )(Kn+1) in full. Recall that at the end of
Section III-C we defined W�, W

(i)
� , (W (i)

� )(j), ((W (i)
� )(j))(k),

et seq. all with the same series of input distributions and
bijections. Let V0 be W�; let Vn+1 be (Vn)(Kn+1), which
means (· · · (W (K1)

� ) · · · )(Kn+1) in full. These r.v.s provide a
new family of randomness that does not appear in the encoding
and decoding algorithms, but they help us understand the
code rate |I|/�n in this manner: Counting how many indices
are in I is nothing more than measuring the probability
P{(K1, K2, . . . , Kn) ∈ I}. With the processes {Wn} and
{Vn} defined earlier, it is further equivalent to measuring the
probability P{H(Wn) < θnand 1 − H(Vn) < θn}, where
θn := exp(−�πnn). Moreover, it suffices to know how
{H(Wn)} and {H(Vn)} behave as stochastic processes taking
values in [0, 1] without comprehending Wn and Vn them-
selves. The general fact is that H(Wn) is either very small
(channel is reliable) or very close to 1 (channel is noisy).
Arıkan called this phenomenon channel polarization. The
following claim generalizes channel polarization and implies
the main theorem.

Claim 11: Fix any π, ρ > 0 such that π + 2ρ < 1. We will
choose an � and a series of bijections of F�

q—namely, gW ,

gW (i)
, g(W (i))(j) , g((W (i))(j))(k)

, et seq.—such that

P{H(Wn) < exp(−�πnn)} > 1−H(W )− �−ρn+o(n),

P{1−H(Wn) < exp(−�πnn)} > H(W )− �−ρn+o(n),

P{H(Vn) < exp(−�πnn)} > 1−H(W�)− �−ρn+o(n),

P{1−H(Vn) < exp(−�πnn)} > H(W�)− �−ρn+o(n).

Here, o(n) is the little-o function in n; it is such that o(n)/n→
0 as n→∞.

For polar codes over symmetric channels, the first
inequality in Claim 11 alone implies that the code rate is

Fig. 5. The trichotomy of the fates of synthetic channels. Label (A) marks the
corner of the free and reliable channels. Label I(W ) beneath (A) is the limit
of the probability measure P(An) = P{Wnis free and reliable} as n → ∞.
Labels (B) and (C) and the numbers beneath marks the corresponding fates
and probability measures.

1 − H(W ) − �−ρn+o(n) = I(W ) − N−ρ+o(1). The first
two inequalities imply the polarization behavior that channels
become either satisfactorily reliable (low H(Wn)) or desper-
ately noisy (high H(Wn)). For asymmetric channels, however,
we need to characterize H(Vn) alongside H(Wn). The last
two inequalities in Claim 11 show that the same series of
bijections polarize W� at the same time they polarize W .
While W� contains no randomness form the channel W , what
is polarized is that each input bit U(k1,k2,...,kn) either depends
heavily on lexicographically earlier input bits (low H(Vn))
or behaves like a free r.v. conditioned on earlier bits (high
H(Vn)). We then categorize the fate of indices in [�]n into
the following three types. (A) Free and reliable: These are
indices that will be in I; they point to channels that transmit
information bits. (B) Free but noisy: The sender can feed
these channels with information only to find that the decoder
will almost always make some mistakes. The sender should,
instead, pad with some pseudo random numbers shared with
the receiver. (C) Dependent and reliable. The inputs of these
channels depends on previous inputs. Their main purpose is to
shape the capacity-achieving input distribution. (D) Dependent
but noisy is not possible because H(Vn) � H(Wn). See
Fig. 5 for an illustration of the asymptotic behavior. This is
the key to [33, Theorem 1]. We reproduce their proof in the
next subsection.

A. Claim 11 Implies the Main Theorem

As mentioned, H(Vn) � H(Wn) so (D) dependent but
noisy is not possible. Let An be the intersection event of
free {1 − H(Vn) < exp(−�πnn)} and reliable {H(Wn) <
exp(−�πnn)}. Let Bn be the intersection event of free and
noisy {1−H(Wn) < exp(−�πnn)}. Let Cn be the intersection
event of dependent {H(Vn) < exp(−�πnn)} and reliable.
Since noisy implies free, P(Bn) > H(W )−�−ρn+o(n) follows
the second inequality in Claim 11. Also since dependent
implies reliable, P(Cn) > 1−H(W�)−�−ρn+o(n) follows the
third inequality in Claim 11. Note that An or Bn implies free
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but not “neither reliable nor noisy”; that is, (free∧ reliable)∨
(free ∧ noisy) → free ∧ ¬(¬reliable ∨ ¬noisy). We deduce
that P(An) + P(Bn) > H(W�) − �−ρn+o(n) − 2�−ρn+o(n).
Similarly, since An or Cn implies reliable but not “neither
free nor dependent,” we deduce that P(An) + P(Cn) >
1−H(W )− �−ρn+o(n)− 2�−ρn+o(n). In summary, we derive
that

P(An) � (P(An) + P(Bn)) + (P(An) + P(Cn))− 1

> (H(W�)− 3�−ρn+o(n)) + (1−H(W )− 3�−ρn+o(n))− 1

= H(X)−H(X | Y )− 6�−ρn+o(n) = I(W )− �−ρn+o(n)

Finally, recall that I collects free and reliable indices, so the
code rate is |I|/�n = P(An) > I(W )−�−ρn+o(n). We almost
finish the proof of the main theorem except that we claimed
I(W ) − N−ρ = I(W ) − �−ρn, without the little-o term. It
can be fixed by finding a slightly larger � > ρ such that π +
2� < 1 still holds, and then rerunning the whole argument
again with the new �. The conclusion becomes that the code
rate is at least I(W )− �−�n+o(n). Since −�n + o(n) < −ρn
for sufficiently large n, this completes the proof of the main
theorem. It remains to show that Claim 11 can be achieved.

VI. GLOBAL MDP BEHAVIOR

MODULO LOCAL BEHAVIORS

In this section, we put constraints on an abstract process
{Hn} and show that they imply inequalities of the form

P{Hn < threshold} > limit measure− decaying gap

as those in Claim 11. Let Fn be the sigma-algebra generated
by K1, K2, . . . , Kn for each n. Then F0 ⊂ F1 ⊂ F2 ⊂ · · ·
form a filtration of sigma-algebras. Let {Hn}, {Zn}, and
{Sn} be three stochastic processes adapted to {Fn} (meaning
that K1, K2, . . . , Kn determine Hn, Zn, Sn). The following
premises are elementary to verify when we reveal what those
processes are: (pb) 0 � Hn, Zn, Sn and Hn � 1; (pm) {Hn}
is a martingale, i.e., E [Hn+1 | Fn] = Hn; (pt) Hn � q3

√
Zn

and Zn � q3
√

Hn along with 1 − Hn � q3
√

Sn as well
as Sn � q3

√
1− Hn for all n. Furthermore, assume large

kernels: (pl) � � max(3q, e4, q5). Let α := log(log �)/ log � be
a small number shrinking as � increases. Define the potential
function hα : [0, 1] → [0, 1] to be hα(z) := min(z, 1 − z)α.
(Remark: h2 is not a special case of hα for α = 2; we expect
α� 1 in practice.)

Here are the sufficient criteria for the main theorem. Two
of them are difficult to verify; how to satisfy them is the main
challenge this paper tackles.

Lemma 12 (Calculus Machinery for Global MDP): Assume
premises (pb), (pm), (pt), and (pl). Assume the local LDP
behavior:

Zn+1 � � exp(qZn�)(qZn)�K2
n+1/3�	,

Sn+1 � � exp(qSn�)(qSn)�(�+1−Kn+1)
2/3�	.

Assume the local CLT behavior:

E [hα(Hn+1) | Fn] < 4�−1/2+α.

Then, for any constants π, ρ > 0 such that

π + 2ρ � 1− 8α, (6)

the following holds:

P{Hn < exp(−�πnn)} > 1− H0 − �−ρn+o(n). (7)

We defer the proof until Appendix B. The term K 2
n+1/3�

in the lemma is to control the local LDP behavior of the
process {Hn}—the behavior of Hn+1 when Hn is close
to 0 and the behavior that is closely related to the LDP
behavior of polar codes. The term is chosen in a way such
that h2((k2/3�)/�) < k/� and such that

�
k(k2/3�)t is

easy to handle. In [43, Theorem 7], a similar criterion is
stated and is annotated as faster polarization at the tails.
In [53, Definition 2.4], a similar criterion is stated and is
annotated as strong suction at the low end. The eigenfunction
hα in the lemma is to control the local CLT behavior of the
process {Hn}—the behavior of Hn when it is away from 0
and the behavior that is closely related to the CLT behavior of
polar codes. In [43, Theorem 7], a similar criterion is annotated
as near optimal polarization in the middle with hFHMV(z) :=
(z(1− z))α for positive but small α at most log(log �)/ log �.
In [53, Definition 2.3], a similar criterion is annotated as
variance in the middle with hBGS(z) :=

�
min(z, 1− z). Note

how our choice of hα(z) := min(z, 1− z)α resembles theirs.
In both cases, the criteria are local because they refer to a small
slice of the process, focusing on how Hn+1 (or Zn+1) behaves
in terms of Hn (or Zn). This perspective frees [43], [53] from
considering the (global) process {Hn} as a whole and simpli-
fies the analysis. We specifically benefit from the fact that we
can choose the bijection g(···(W (k1))··· )(kn)

solely according to
the channels (· · · (W (k1)) · · · )(kn) and (· · · (W (k1)

� ) · · · )(kn)

instead of the complete channel family-tree. This is also the
approach taken in [46].

A. Lemma 12 Helps Achieve Claim 11

The formulation and the choice of the variables make it
clear how Lemma 12 will be applied to support Claim 11.
For instance, if we let {Hn}, {Zn} and {Sn} be {H(Wn)},
{Zmad(Wn)}, and {Smax(Wn)}, respectively, then Lemma 12
supports the first of the four inequalities in Claim 11. More-
over, if we let {Hn}, {Zn}, and {Sn} be {1 − H(Wn)},
{Smax(Wn)}, and {Zmad(Wn)}, then Lemma 12 supports
the second inequality of Claim 11. If {Hn}, {Zn}, and {Sn}
are let to be {H(Vn)}, {Zmad(Vn)}, and {Smax(Vn)}, that
supports the third inequality. If {Hn}, {Zn}, and {Sn} are
let to be {1 −H(Vn)}, {Smax(Vn)}, and {Zmad(Vn)}, that
supports the forth inequality. The premises (pb), (pm), (pt), and
(pl) listed above Lemma 12 are easy to verify; for instance,
Lemma 8 implies (pt) for all four cases. It remains to show
that for each of the four triples of processes, the local LDP
behavior and the local CLT behavior hold.

To do so, one advantage is that the two desired behaviors are
local. They only involve how Hn+1, Zn+1 and Sn+1 behave
conditioned on the history Fn. A potentially tedious aspect
is that for each candidate of the bijection g(···(W (k1))··· )(kn)

,
we have to verify the two behaviors four times, once for
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each of the four triples of channel parameters. Luckily, within
random coding theory, we are in the situation that to choose an
object that satisfies multiple criteria, it suffices to choose the
object from an ensemble and compute the probabilities that
each criterion fails; as long as the sum of failing probabilities
is small, most objects satisfy. Even more luckily, when we
choose a bijection g(···(W (k1))··· )(kn)

from some ensemble, we
only have to compute the probability that the local CLT or LDP
behavior fails for {Hn}, {Zn}, and {Sn} being {H(Wn)},
{Zmad(Wn)}, and {Smax(Wn)} but not the other three triples.
This is because other three triples are the special case and/or
the dual of this triple. Elaboration: Since Vn are q-ary channels
just like Wn are, inequalities hold true for arbitrary Wn should
hold true for any Vn. Also, since Zmad and Smax are in
duality, inequalities hold true for H, Zmad, Smax hold true
for 1 − H, Smax, Zmad. The duality is due to the duality
between FTPCZ and FTPCS, within the explicit Hölder tolls,
and within the ensemble of bijections we are to choose
g(···(W (k1))··· )(kn)

from.

B. Random Linear Isomorphisms as Bijections

Fix q and �. Let GL(�, q) be the group of �-by-� invertible
matrices over Fq together with the ordinary matrix multiplica-
tion. Select an element G ∈ GL(�, q) uniformly at random.
Let gW : F�

q → F�
q be the multiplication of G from the

right, namely gW (u�
1) := u�

1G. This map is bijective since
G is invertible. Let W be a q-ary channel. Recall that we
defined q-ary channels W (1), W (2), . . . , W (�) in Section III.
To emphasis that these imaginary channels depend heavily on
the randomness source G, we call them W

(1)
G

, W
(2)
G

, . . . , W
(�)
G

instead. The following two lemmas help verify the two criteria
in Lemma 12. Proofs are given in upcoming sections, VII
and VIII.

Lemma 13 (Local LDP Behavior): Fix an � � 30. Let
G vary; with probability less than 3q−

√
�/13, each of the

following fails for each i ∈ [�]:

Zmad(W (i)
G

) � � exp(qZmad(W )�)(qZmad(W ))�i
2/3�	, (8)

Smax(W
(i)
G

) � � exp(qSmax(W )�)(qSmax(W ))�(�+1−i)2/3�	.
(9)

Lemma 14 (Local CLT Behavior): Fix an � � 20. Recall
α := log(log �)/ log � and hα(z) := min(z, 1 − z)α. Let G

vary; with probability less than 2�− log(�)/20, this fails:

1
�

��
i=1

hα(H(W (i)
G

)) < 4�−1/2+α. (10)

C. Local Behaviors Imply Claim 11 (and Hence the
Main theorem)

We now are able to see how Lemmas 12 to 14 imply
that Claim 11 is achievable for the right choice of � and
bijections gW , gW (i)

, et seq.: For any given q-ary channel W ,
let � be max(3q, e4, q5). For any given π, ρ > 0 such that
π + 2ρ < 1, enlarge � such that Inequality (6) holds, given
α := log(log �)/ log �. Consider a random kernel G as a
candidate of the bijection gW . Increase � further so that the

failing probabilities—Lemma 13’s 3q−
√

�/13 and Lemma 14’s
2�− log(�)/20—amount to 1/3 or less. Recall the flattening
channel W�. The probability that any of the inequalities in
Lemmas 13 and 14 fails for W� is less than 1/3, too. Invoke
the union bound; 1/3 + 1/3 < 1. Hence there exists a solid
choice of gW as the multiplication of some proper instance of
G from the right.

With this gW determined, we define W (i) and W
(i)
� for

all i ∈ [�]. Consider first i = 1, anything that has been
done to W now applies to W (i). That is, let gW (i)

be the
multiplication of a random kernel G from the right. With W , i,
and W

(i)
G

replaced by W (i), j, and (W (i))(j)
G

, the probabilities
that inequalities in Lemmas 13 and 14 fail add up to 1/3
or less. So is the flattening () counterpart. Hence there is
a solid choice of gW (i)

. Repeat this for every other i = 2,

3, . . . , �. Once finished, proceed to choosing g(W (i))(j) for all
i, j ∈ [�]. And so on and so forth for cases beyond depth-2.
Notice that we always make a solid choice of a bijection before
we proceed to the next level of channels, hence the failing
probabilities of Lemmas 13 and 14 do not accumulate as the
depth increases.

By how we select bijections in the previous paragraph,
the criteria in Lemma 12 hold for ({Hn}, {Zn}, {Sn})
being the four triples listed below: ({H(Wn)}, {Zmad(Wn)},
{S(Wn)}) and ({1 − H(Wn)}, {Smax(Wn)}, {Zmad(Wn)})
as well as ({H(Vn)}, {Zmad(Vn)}, {Smax(Vn)}) in addi-
tion to ({1−H(Vn)}, {Smax(Vn)}, {Zmad(Vn)}). Hence the
process {Hn} satisfies Inequality (7) for these four processes:
{H(Wn)} and {1−H(Wn)} along with {H(Vn)} as well as
{1−H(Vn)}. This results in the four inequalities in Claim 11.
And we are done. It remains to prove Lemmas 12 to 14 in
order to prove the main theorem.

VII. LOCAL LDP BEHAVIOR (PROOF OF LEMMA 13)

In this section, we will first prove the two fundamental
theorems of polar coding in Section VII-A (for the Z-end)
and in Section VII-B (for the S-end). And then we will target
that the following inequalities hold with high probability:

Zmad(W (i)
G

) � � exp(qZmad(W )�)(qZmad(W ))�i
2/3�	,

((8)’s copy)

Smax(W
(�+1−i)
G

) � � exp(qSmax(W )�)(qSmax(W ))�i
2/3�	.

((9)’s copy)

By the duality between the two fundamental theorems and
between the two targeted inequalities, it is not hard to see that
it suffices to prove the Zmad-case and the Smax-case follows
immediately. We will prove that the first targeted inequality,

for each i ∈ [�], holds with probability 1 − 3q−
√

�/13 in
Section VII-D, closing this section.

A. Proof of FTPCZ (Theorem 9)

As is promised in Section IV-C, we prove the two funda-
mental theorems of polar coding. We first go for the Z-end.

Recall that f
(i)
GZ(z) :=

�
u�

i+1
zwt(0i−1

1 1iu
�
i+1G) is the weight

enumerator of the i-th coset code. Theorem 9 claims that
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Zmad(W (i)) � f
(i)
GZ(Zmad(W )). By the definition of W (i) and

the definition of the Bhattacharyya parameter, Zmad(W (i)) is

max
0�=di∈Fq

�
ui∈Fq

�
ui−1
1 y�

1∈F
i
q×Y�

�
W (i)(ui, u

i−1
1 y�

1)W (i)(ui + di, u
i−1
1 y�

1).

By the nature of max0�=di∈Fq , it suffices to show that the dou-

ble sum is at most f
(i)
GZ(Zmad(W )) for arbitrary nonzero di.

In the upcoming argument, tuple concatenation takes prece-
dence over vector-matrix multiplication and vector addition.
Fix a di, we argue that�
ui∈Fq

�
ui−1
1 y�

1∈Fi
q×Y�

�
W (i)(ui, u

i−1
1 y�

1)W (i)(ui + di, u
i−1
1 y�

1)

=
�
ui
1y�

1

�
W (i)(ui, u

i−1
1 y�

1)W (i)(ui + di, u
i−1
1 y�

1)

=
�
ui
1y�

1

� �
u�

i+1∈F
�−i
q

W �(ui
1u

�
i+1G, y�

1)

×�
v�

i+1∈F
�−i
q

W �(ui−1
1 (ui + di)v�

i+1G, y�
1)

�
�
ui
1y�

1

�
u�

i+1

�
v�

i+1


W �(ui

1u
�
i+1G, y�

1)
×W �(ui−1

1 (ui + di)v�
i+1G, y�

1)

=
�
y�
1

�
u�
1

�
d�

i+1∈F
�−i
q

�
W �(u�

1G, y�
1)W �(ui−1

1 (u�
i + d�

i)G, y�
1)

=
�
y�
1

�
x�
1∈F�

q

�
d�

i+1

�
W �(x�

1, y
�
1)W �(x�

1 + 0i−1
1 d�

iG, y�
1)

=
�
d�

i+1

�
y�
1

�
x�
1

�
W �(x�

1, y
�
1)W �(x�

1 + e�
1, y

�
1)

=
�
d�

i+1

�
y�
1

�
x�
1

�
j∈[�]

�
W (xj , yj)W (xj + ej , yj)

=
�
d�

i+1

�
y�
1

�
x�
1

�
j∈J


W (xj , yj)
×W (xj + ej , yj)

�
k/∈J

W (xk, yk)

=
�
d�

i+1

�
j∈J

��
xjyj


W (xj , yj)
×W (xj + ej , yj)

� �
k/∈J

��
xkyk

W (xk, yk)
�

=
�
d�

i+1

�
j∈J

��
xjyj

�
W (xj , yj)W (xj + ej, yj)

�
�

�
d�

i+1

�
j∈J

max
0�=ej∈Fq

��
xjyj

�
W (xj , yj)W (xj + ej , yj)

�
=

�
d�

i+1

�
j∈J

Zmad(W ) =
�
d�

i+1

Zmad(W )|J|

=
�
d�

i+1

Zmad(W )wt(0i−1
1 did

�
i+1G)

=
�
d�

i+1

Zmad(W )wt(0i−1
1 1id

�
i+1G) = f

(i)
GZ(Zmad(W )).

The first equality abbreviates the summation. The next equal-
ity expands W (i) by the very definition, where u�

i+1 and
v�

i+1 are free variables in Fq. The next inequality is by
the sub-additivity of the square root. In the next equality

we define d�
i+1 := v�

i+1 − u�
i+1; so summing over v�

i+1 is
equivalent to summing over d�

i+1. In the next equality we
define x�

1 := u�
1G; so summing over u�

1 is equivalent to
summing over x�

1 as G is invertible. In the next equality we
substitute e�

1 := 0i−1
1 d�

iG and reorder the summation. The next
equality expands the product of the memoryless channels. The
next equality classifies the indices into two classes—j ∈ J are
those such that ej �= 0 and k /∈ J are such that ek = 0. The
next equality is the distributive law ax + ay + bx + by =
(a + b)(x + y). The next equality uses the fact that W (x, y)
sum to 1. In the next inequality we replace ej by a nonzero
element that maximizes the sum in the parentheses. In the next
equality we realize that the maximum is the Bhattacharyya
parameter (surprisingly). The second last equality uses the fact
that multiplying a vector by a scalar preserves its Hamming
weight. And quod erat demonstrandum.

Experienced readers may find that all but the last inequality
follows the proof strategy of [27, Lemma 10]. An instant
improvement made here is that we stop at the weight enumer-
ator f

(i)
GZ(Zmad) instead of loosening to q�−iZminimum distance

mad .
This is a decent gain as the majority of codewords has
Hamming weights much higher than the minimum distance.
Another remark is that [29, Lemma 33] deals with Zmax (not
our Zmad). While the lemma itself is fine, the parameter Zmax

is not bi-Hölder to H . This suppresses the application of
Lemma 12, which requires (pt). To rephrase it, Zmad is the
correct generalization of Z for q > 2.

B. Proof of FTPCS (Theorem 10)

We now go for the S-end of the fundamental theorem of
polar coding. Recall the character χ(x) := exp(2πi tr(x)/p).
We need these properties: (xa) χ(0) = 1; (xb) |χ(x)| = 1
for all x ∈ Fq; (xc) χ(x)χ(z) = χ(x + z) for all x, z ∈
Fq; (xd)

�
x∈Fq

χ(x) = 0. See also [29, Definition 24] or
a dedicated book [82]. To prove the theorem, we first verify
that Fourier coefficients recover the origin: Let M(w, y) :=
Wout(y)M(w | y) =

�
z∈Fq

W (z, y)χ(wz), then�
w∈Fq

M(w, y)χ(−xw) =
�

w∈Fq

�
z∈Fq

W (z, y)χ(wz)χ(−xw)

=
�
z∈Fq

W (z, y)
�

w∈Fq

χ(w(z − x))

=
�
z∈Fq

W (z, y)qI{z − x = 0} = qW (x, y).

The first equality expands M(w, y) by the definition. The next
equality uses that χ is an additive character (xc), and reorders
the summation. The next equality uses

�
w∈Fq

χ(w) = 0 (xd)
and

�
w∈Fq

χ(0) = q (xa); and I is the indicator function.
Knowing W (xj , yj) = q−1

�
wj∈Fq

M(wj , yj)χ(−xjwj),
we proceed to

W (i)(ui, u
i−1
1 y�

1) =
�
u�

i+1

W �(u�
1G, y�

1)

=
�

u�
i+1∈F

�−i
q

W �(x�
1, y

�
1) =

�
u�

i+1

�
j∈[�]

W (xj , yj)
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=
�
u�

i+1

�
j∈[�]

�1
q

�
wj∈Fq

M(wj , yj)χ(−xjwj)
�

=
1
q�

�
u�

i+1

�
w�

1

�
j∈[�]

M(wj , yj)χ(−xjwj)

=
1
q�

�
u�

i+1

�
w�

1

χ(−x�
1(w

�
1)

�)
�
j∈[�]

M(wj , yj)

=
1
q�

�
u�

i+1

�
w�

1

χ(−x�
1(w

�
1)

�)M �(w�
1, y

�
1)

=
1
q�

�
u�

i+1

�
w�

1

χ(−u�
1G(w�

1)
�)M �(w�

1, y
�
1)

=
1
q�

�
u�

i+1

�
w�

1

χ(−u�
1(w

�
1G

�)�)M �(w�
1, y

�
1)

=
1
q�

�
u�

i+1

�
v�
1

χ(−u�
1(v

�
1)

�)M �(v�
1G

−�, y�
1)

=
1
q�

�
v�
1

χ(−ui
1(v

i
1)

�)M �(v�
1G

−�, y�
1)

�
u�

i+1

χ(−u�
i+1(v

�
i+1)

�)

=
1
q�

�
v�
1

χ(−ui
1(v

i
1)

�)M �(v�
1G

−�, y�
1)q

�−i
I{v�

i+1 = 0}

=
1
qi

�
vi
1

χ(−ui
1(v

i
1)

�)M �(vi
10

�
i+1G

−�, y�
1).

The first equality expands the definition of W (i). In the next
equality, we substitute x�

1 := u�
1G. The next equality expand

the definition of W � down to W . The next two equalities
Fourier expand W and reorder the operators. The next equal-
ity merges all χ(−xjwj) into one term by additivity (xc).
In the next equality we define M �(w�

1, y
�
1) to be the product

of all M(wj , yj). The next two equalities use x�
1(w

�
1)

� =
u�

1G(w�
1)

� = u�
1(w

�
1G

�)�. In the next equality we define
v�
1 := w�

1G
�; so summing over w�

1 is equivalent to summing
over v�

1. (Recall that G−� is the notation of the inverse
transpose of G.) The last three equalities sum over u�

i+1 to
force v�

i+1 = 0.
Having that W (i)(ui, u

i−1
1 y�

1) = q−i
�

vi
1
χ(−ui

1(v
i
1)

�)×
M �(vi

10�
i+1G

−�, y�
1) in mind, we move on to

M (i)(ωi, u
i−1
1 y�

1) :=
�

zi∈Fq

W (i)(zi, u
i−1
1 y�

1)χ(ωizi)

=
�

zi∈Fq

1
qi

�
vi
1

χ(−ui−1
1 zi(vi

1)
�)M �(vi

10
�
i+1G

−�, y�
1)χ(ωizi)

= 1

qi

�
vi
1

χ(−ui−1
1 (vi−1

1 )�)M �(vi
10

�
i+1G

−�, y�
1)

�
zi∈Fq

χ(zi(ωi−vi))

=
1
qi

�
vi
1

χ(−ui−1
1 (vi−1

1 )�)M �(vi
10

�
i+1G

−�, y�
1)qI{ωi = vi}

=
q

qi

�
vi−1
1

χ(−ui−1
1 (vi−1

1 )�)M �(vi−1
1 ωi0�

i+1G
−�, y�

1).

In the first line we let M (i) be the Fourier coefficient of W (i).
The next equality plugs in what we have about W (i) in mind.
The next three equalities sum over zi to force vi = ωi.

With M (i)(ωi, u
i−1
1 y�

1) = q1−i
�

vi−1
1

χ(−ui−1
1 (vi−1

1 )�)×
M �(vi−1

1 ωi0�
i+1G

−�, y�
1) in place, we obtain that with arbitrary

0 �= ωi ∈ Fq,�
ui−1
1 y�

1∈Fi−1×Y�

|M (i)(ωi, u
i−1
1 y�

1)| (11)

=
�

ui−1
1 y�

1

��� q

qi

�
vi−1
1

χ(−ui−1
1 (vi−1

1 )�)M �(vi−1
1 ωi0�

i+1G
−�, y�

1)
���

�
�

ui−1
1 y�

1

q

qi

�
vi−1
1

|M �(vi−1
1 ωi0�

i+1G
−�, y�

1)|

=
�
y�
1

�
vi−1
1

|M �(vi−1
1 ωi0�

i+1G
−�, y�

1)|

=
�
y�
1

�
vi−1
1

�
j∈[�]

|M(wj , yj)|

=
�
y�
1

�
vi−1
1

�
j∈J

|M(wj , yj)|
�
k/∈J

|M(wk, yk)|

=
�
vi−1
1

�
j∈J

��
yj

|M(wj , yj)|
� �

k/∈J

��
yk

|M(wk, yk)|
�

=
�
vi−1
1

�
j∈J

��
yj

|M(wj , yj)|
�

�
�
vi−1
1

�
j∈J

Smax(W )

=
�
vi−1
1

Smax(W )|J| =
�
vi−1
1

Smax(W )wt(vi−1
1 ωi0

�
i+1G−�)

=
�
vi−1
1

Smax(W )wt(vi−1
1 1i0

�
i+1G−�) = f

(i)
GS(Smax(W )).

The first equality expands the Fourier coefficients. The next
inequality is triangle plus (xb). The next equality cancels the
summation over ui−1

1 with q1−i. In the next equality we
substitute w�

1 := vi−1
1 ωi0�

i+1G
−�; slightly different from the

free w�
1 before, they are now restricted to a proper subspace.

The next equality classifies the indices into two classes—j ∈ J
are those such that wj �= 0 and k /∈ J are such that wk = 0.
The next two equalities reorder the operators and simplify�

yk
|M(0, yk)| =

�
yk

Wout(yk) = 1. The next inequality
replaces wj by one that maximizes

�
yk
|M(wj , yk)|. The rest

is trivial.
Theorem 10 claims that Smax(W (i)) � f

(i)
GS(Smax(W )),

where f
(i)
GS is the weight enumerator of the i-th dual coset

code. Since Smax(W (i)) is merely the maximum of For-
mula (11) over 0 �= ωi ∈ Fq , we arrive at Smax(W (i)) �
f

(i)
GS(Smax(W )). And quod erat demonstrandum.

Experienced readers may find that all but the last inequality
is a duplicate of [29, Lemma 34]. An instant improvement
made here is to stop at f

(i)
GS(Smax) instead of ending at

qi−1Sminimum distance
max .

C. An Upper Bound on Entropy Functions

For all z ∈ [0, 1],
h2(z) �

√
ez.
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Fig. 6. Binary entropy function h2(z) and an upper bound of
√

ez.

See Fig. 6 for evidence. Continue this paragraph for a proof.
There are three cases. Whenever 0 � z � 1/6, replace
(1 − z) log2(1 − z) by the tangent line z/ log 2; it suffices
to show −z log2 z + z/ log 2 � √

ez. Substitute z �→ ζ2;
want to show −2ζ2 log2 ζ + ζ2/ log 2 � ζ

√
e. Clean up; it

remains to show −2ζ log ζ + ζ � √
e log 2. The left-hand

side is monotonically increasing and does not reach
√

e log 2
so long as z � 1/6 (i.e., ζ � 1/

√
6). This closes the first

case. Whenever 1/6 � z � 2/7, replace h2(z) by the tangent
line at z = 2/9. This line is of the form f(z) := h�

2(2/9)
(z−2/9)+h2(2/9). It remains to show f(z)−√ez � 0. The
left-hand side is a quadratic function in

√
z whose roots can be

computed algebraically. The roots lie outside 1/
√

6 � √z ��
2/7, which close the second case. Whenever 2/7 � z � 1,

similarly, replace h2(z) by the tangent line at z = 1/3; that is,
f(z) := h�

2(1/3)(z−1/3)+h2(1/3). The roots of f(z)−√ez,
again, lie outside the concerned interval. This closes the third
and last case.

More generally, for all prime powers q,

1− 1
log q

D

�
z
��� 1− 1

q

�
= 1− z logq

z

1− 1/q
− (1− z) logq

1− z

1/q

= −z logq

z

q − 1
− (1 − z) logq(1− z) �

√
ez

for all z ∈ [0, 1], where D is the Kullback–Leibler divergence
with the natural logarithm. This falls back to the h2 case when
q = 2. Figure 7 plots for q = 3, 4, 5, 7. It can be observed that
as q → ∞ the function tends to a line connecting (0, 0) and
(1, 1), hence the upper bound should hold. Taking derivative
in q shows that the left-hand side decreases as q increases and
z < 1/2.

It will be seen later that
√

ez acts as an easy-to-manipulate
alternative of the Gilbert–Varshamov bound. We have not seen
any relaxation like this in other works.

D. On the Weight Distribution of Random Linear Codes

This subsection contains the nontrivial part of the proof of
Lemma 13. Fix any i ∈ [�]. We want to prove that when
G ∈ GL(�, q) is selected uniformly at random, the inequality

Zmad(W (i)
G

) � � exp(qZmad(W )�)(qZmad(W ))�i
2/3�	

((8)’s copy)

Fig. 7. 1 − D(z � 1 − 1/q)/ log q for q = 3, 4, 5, 7 and an upper bound
of

√
ez.

holds with probability 1−3q−
√

�/13. In bounding the left-hand
side, the fundamental theorem of polar coding—Z-end reads
Zmad(W (i)

G
) � f

(i)
GZ(Zmad(W )), where f

(i)
GZ is the weight

enumerator of codewords of the form 0i−1
1 1u�

i+1G. Thus it
remains to show the inequality with the left-hand side replaced

f
(i)
GZ(z) � � exp(qz�)(qz)�i

2/3�	

where z := Zmad(W ) for short. This inequality is in fact a
consequence of

f
(i)
GZ(z) � �(1 + (q − 1)z)�−�i2/3�	((q − 1)z)�i

2/3�	 (12)

because (1+a)b � exp(ab). We will show the last inequality.
Now divide i into two cases: 1 � i �

√
3� and

√
3� < i � �.

For i = 1, 2, . . . ,
√

3�, the exponent �i2/3�� is nothing
but 1, thus the inequality to be proven reads f

(i)
GZ(z) �

�(1 + (q − 1)z)�−1(q − 1)z. The right-hand side overcounts
all nonzero codewords by choosing a nonzero position (�),
assigning a nonzero symbol ((q − 1)z), and filling in the
rest of � − 1 blanks arbitrarily ((1 + (q − 1)z)�−1). On the
left-hand side, f

(i)
GZ enumerates only codewords of the form

0i−1
1 1iu

�
i+1G, which are all nonzero as G is invertible. Hence

Inequality (12) holds for i �
√

3� and nonnegative z regardless
of what kernel G is in effect.

For i =
√

3� + 1,
√

3� + 2, . . . , �, let k := � − i and let
d := i2/3�. These variables resemble the dimension and the
minimal distance of a linear block code as in the notation an
[�, k, d]-code in classical (algebraic) coding theory. To make
Inequality (12) hold, we execute a two-phase procedure to
avoid all codewords of weight less than d and to eliminate ker-
nels with poor overall scores. In further detail, we will reject
a kernel G if there exists u�

i+1 such that wt(0i−1
1 1u�

i+1G) < d
and call it phase I. Afterwards, among surviving kernels with
only heavy (high weight) codewords, we will reject a kernel
if its overall score f

(i)
GZ(z) is too low and call it phase II. The

failing probability 3q−
√

�/13 is the price we pay for rejecting.
Up to this point, two things remain to be analyzed: how much
probability we pay for rejecting light (low weight) codewords
in phase I (answer: q−

√
�/13), and what is the Markov cutoff

that honors Inequality (12) in phase II (answer: 2q−
√

�/13).
Phase I analysis is as follows: Fix u�

i+1 and vary G ∈
GL(�, q); the codeword X�

1 := 0i−1
1 1iu

�
i+1G is a nonzero

vector distributed uniformly on F�
q \ {0�

1}. This distribution is
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almost identical to the uniform distribution on F�
q. Assume X�

1

follows the latter; this makes X�
1 lighter, which is compatible

with the direction of the inequalities we want. Then the
probability that X�

1 has weight less than d is the probability
that � Bernoulli trials—each Xj is “zero” with probability
1/q and “nonzero” with probability (q − 1)/q—result in
less than d “nonzero”s. By the large deviations theory [83,
Exercise 2.2.23(b)], wt(X�

1) < d holds with probability less
than

exp
�
−�D

�d

�

��� 1
2

��
= 2−�(1−h2(d/�))

for the q = 2 case, where D is the Kullback–Leibler diver-
gence. For general q, similarly, wt(X�

1) < d holds with
probability less than

exp
�
−�D

�d

�

��� 1− 1
q

��
� q−�(1−h2(d/�)).

It is less than q−�(1−h2(d/�)) by comparing Figs. 6 and 7
(meaning that q = 2 is the most difficult case). By Fig. 6,
h2(d/�) <

�
ed/� =

�
ei2/3�2 = (

�
e/3)i/� < 0.952i/�. So

the single rejecting probability is less than q−�(1−h2(d/�)) <
q−�+0.952i. Take into account that there are q�−i possibilities
of u�

i+1. The union bound yields q�−iq−�+0.952i = q−0.048i <

q−0.048
√

3� < q−
√

�/13. Therefore, the total rejecting probabil-
ity is q−

√
�/13. Phase I ends here.

Phase II analysis is as follows: After we reject some G

in phase I, some codewords will disappear; particularly, this
includes all light codewords. Therefore, the expectation of
f

(i)
GZ(z) is bounded by the weight enumerator of all heavy

codewords rescaled by the number of codewords. In detail,
start from

E[f (i)
GZ(z) | Gsurvives phase I]

= E[f (i)
GZ(z)I{Gsurvives}]/P{Gsurvives}

� E[f (i)
GZ(z)I{Gsurvives}]/(1− q−

√
�/13). (13)

I is the indicator function. In the denominator, 1− q−
√

�/13 >
1/4 as � � 30. Put that aside and redefine d := �i2/3��. The
expected value part is bounded from above by

E[f (i)
GZ(z)I{Gsurvives}] = E

��
u�

i+1

zwt(u�
i+1G)

I{Gsurvives}
�

� E

��
u�

i+1

zwt(u�
i+1G)

I{wt(u�
i+1G) � d}

�
=

�
u�

i+1

E[zwt(u�
i+1G)

I{wt(u�
i+1G) � d}]

� q�−i
E[zwt(X�

1)I{wt(X�
1) � d}]

= q�−iq−�
�
x�
1

zwt(x�
1)I{wt(x�

1) � d}

= q−i
�
w�d



�
w

�
zw(q − 1)w � q−i

�
w�d



�
d

�

�−d
w−d

�
zw(q − 1)w

= q−i



�
d

� �
w�d



�−d
w−d

�
zw−d(q − 1)w−d((q − 1)z)d.

= q−i



�
d

�
(1 + (q − 1)z)�−d((q − 1)z)d

(overestimate the scalar q−i



�
d

�
)

� (q−
√

�/13�/2)(1 + (q − 1)z)�−d((q − 1)z)d.

The first equality expands the definition. The next inequality
replaces G surviving phase I by a weaker condition. The
next equality swaps E and

�
. The next inequality replaces

the ensemble of u�
i+1G by a uniform X

�
1 ∈ F

�
q. The next

equality expands the definition of the expectation over X�
1.

The next equality counts codewords. The next inequality
selects w positions by first selecting d and then selecting
w − d. The next two equalities factor and apply the binomial
theorem. The rest is by a series of inequalities that overes-
timate the scalar: q−i

��
d

�
= q−i

� �
�i2/4�	

�
< q−i

� �
i2/4�

�
�/2 <

q−i2�h2(i
2/4�2)�/2 � q−i+�h2(i2/4�2)�/2. Similar to the end

of phase I, the exponent part is −i + �h2(i2/3�2) < −i +
�
�

ei2/3�2 = −i + i
�

e/3 < −0.048i < −0.048
√

3� <

−√�/13. Hence the scalar part is less than q−
√

�/13�/2.
Put 1 − q−

√
�/13 > 1/4 back to the denominator as in

Inequality (13); E[f (i)
GZ(z) | Gsurvives phase I] has an upper

bound of

2q−
√

�/13�(1 + (q − 1)z)�−d((q − 1)z)d.

By Markov’s inequality, Inequality (12) holds with probability
1 − 2q−

√
�/13, i.e., the rejecting probability is 2q−

√
�/13.

Phase II ends here. The sum of the two rejecting probabilities
is 3q−

√
�/13 as claimed in Lemma 13, hence the lemma settled.

E. Bibliographic Remarks

Concerning the fundamental theorems: Nonlinear gW is
not taken into consideration for that it is harder to deal
with the MacWilliams duality of nonlinear codes. Also the
S-parameter does not generalize to non-field input alphabet.
Concerning random linear codes: [9, Section II.C] portrays
a clear picture of the weight distributions of binary random
linear codes. Section VII-D accommodates and extends their
argument to general prime power q. Concerning the LDP
behavior: [27, Theorem 22] showed that π < 1 can be arbitrary
close to 1 over binary alphabet utilizing the Bose–Chaudhuri–
Hocquenghem codes. Our Lemma 13, on the other hand,
implies that almost all kernels make π close to 1.

We are halfway through the clarification of (cr). It remains
to prove Lemmas 12 and 14.

VIII. LOCAL CLT BEHAVIOR (PROOF OF LEMMA 14)

We are to prove that the following inequality holds with
high probability (w.r.t. the random kernel G):

��
i=1

hα(H(W (i)
G

)) < 4�1/2+α. ((10)’s copy)

The target inequality is the sum of the following three
inequalities:

��
i=�H(W )�+�1/2+α	+1

hα(H(W (i)
G

)) < �1/2+α, (14)
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�H(W )�+�1/2+α	�
i=�H(W )�−�1/2+α�+1

hα(H(W (i)
G

)) < 2�1/2+α,

�H(W )�−�1/2+α��
i=1

hα(H(W (i)
G

)) < �1/2+α. (15)

The second one is trivial as hα(z) � (1/2)α. The first one
will be proven in Section VIII-C with failing probability
�− log(�)/20. The third one will be proven in Section VIII-D
with failing probability �− log(�)/20. Before the main proofs,
we devote Section VIII-A to introduce the symmetrization
trick, which will reduce our proof to the case of symmetric
q-ary channels. A channel W being symmetric means that for
any affine shifting ξ ∈ Fq , there exists a permutation σ on Y
such that W (y | ξ + x) = W (σ(y) | x) holds for all x ∈ Fq

and y ∈ Y . It also means that the uniform input achieves the
Shannon capacity. This justifies the usage of linear codes. In
Section VIII-B, we invoke some universal bound on entropies
and exponents from Chang, Draper, and Sahai’s works. Finally,
we will be abusing the theory of random (linear) codes in
Section VIII-C for robustness over noisy channels and in
Section VIII-D for secrecy over wiretap channels.

A. Symmetrize Channel and Uniformize Input

Let W : Fq → Y be any q-ary channel; let X and Y be some
input and the corresponding output. Symmetrize the channel
as follows: Let Ξ ∈ Fq be a uniform r.v. independent of X, Y .
Let W̄ : Fq×(Fq×Y)→ [0, 1] be the probability mass function
of this combination of r.v.s (Ξ+X, (X, Y )) ∈ Fq× (Fq×Y).
This W̄ behaves like a channel such that, quote, unquote,
W̄ ((x, y) | z) = W (x, y)/q for all inputs z ∈ Fq and outputs
(x, y) ∈ Fq × Y . Despite that this channel might be properly
simulated by a symmetric channel with feedback Ξ to the
sender, all that matters is that the biased input X is neutralized
by the uniform r.v. Ξ, and becomes uniform. Let gW be the
multiplication of an invertible matrix G from the right. Let
W̄ (i)(ui, u

i−1
1 x�

1y
�
1) be the probability mass function of the

tuple (Ui, U
i−1
1 X�

1Y
�
1 ), where U �

1G = Ξ�
1+X�

1. This definition
is compatible with the channel transformation of W̄ as if W̄
was an actual channel in the first place. Let H(W̄ (i)) be
H(Ui | U i−1

1 X�
1Y

�
1 ); this is also compatible. The following

lemma justifies why W̄ is useful in theory.
Lemma 15 (Channel Symmetrization): W̄ is a symmetric

q-ary channel, H(W̄ ) = H(W ), and H(W̄ (i)) = H(W (i))
for all i ∈ [�].

This lemma is by [29, Definition 6 and Lemmas 7 and 8],
plus the arguments in between. See also [33, Theorem 2]
where they cared about whether Z(W̄ (i)) = Z(W (i)). One
could also expand all definitions to verify the identities.

The consequence of this lemma is that W̄ behaves like
a shadow copy of W , but is symmetric. All inequalities
involving entropies of W and W (i) are reduced to inequalities
involving entropies of W̄ and W̄ (i). Subsequently, passing
statements to W̄ is effectively assuming that the channel W is
symmetric with the uniform input to begin with. In the upcom-
ing subsections, we will prove that the targeted inequalities,
(14) and (15), hold for any symmetric q-ary channel W with

the uniform input with high probability. We conjecture that
the symmetrization technique is optional as it seems like a
wrapper of complicated Bayesian formulas.

B. Chang–Sahai’s Universal Quadratic Bound

This and the next two subsections contain the most convo-
luted part of the proof of Lemma 14. This subsection prepares
a universal upper bound on Gallager’s E-null function, which
ultimately evolves into a universal lower bound on Gallager’s
error exponent.

Let W : X → Y be a q-ary channel. Symmetry is not
required in this subsection but it is in the next two. Assume
the uniform input distribution Win(x) = 1/q for all x ∈ X .
Define Gallager’s E-null function and its complement
[73, Formula (1)]:

E0(t) := − log
�
y∈Y

��
x∈X

Win(x)W (y | x)
1

1+t

�1+t

,

Ē0(t) := log
�
y∈Y

��
x∈X

W (x, y)
1

1+t

�1+t

.

By complement we mean that under the uniform input,
Ē0(t) degenerates to

Ē0(t) = log
�
y∈Y

��
x∈X

(q−1W (y | x))
1

1+t

�1+t

= t log q + log
�
y∈Y

��
x∈X

q−1W (y | x)
1

1+t

�1+t

= t log q − E0(t).

Equivalently, E0(t)+ Ē0(t) = t log q. For non-uniform inputs,
Win(x) does not penetrate the summations.

The E-null function and its complement deeply associate to
the following family of measures. For any t ∈ [−2/5, 1], define
the t-tilted probability mass function : X × Y → [0, 1] as
in [73, Definition 1]:

(x, y) :=


 �
ξ∈X

W (ξ, y)
1

1+t

�1+t

�
η∈Y


 �
ξ∈X

W (ξ, η)
1

1+t

�1+t ×
W (x, y)

1
1+t�

ξ∈X
W (ξ, y)

1
1+t

Do not confuse W � with , the latter is tilted. When
t = 0, the tilted falls back to its italic origin W 0(x, y) =
W (x, y). These measures can be interpreted as follows:
behaves like a channel with a dedicated input distribution. The
first fraction in the definition specifies the output distribution

(y). The second fraction specifies the a posteriori distri-
bution (x | y) when y is known. As is not an actual
channel, it is not meaningful to alter the input distribution
and ask for the corresponding output. Like the symmetrization
trick, all that matters is that we can compute entropies, and
what not, as if they were real channels. Quantities we are
interested in are listed below: Let He be the base-e entropy.
Let He( ) be He( | ) where ( , ) is a tuple
r.v. that follows . Let He( �y) be the entropy of the
a posteriori distribution of given = y; to be specific,
He( �y) =

�
x∈X (x | y) log (x | y).
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[73, Formula (13) and (19)] have that the following hold
for t ∈ [0, 1]:

d

dt
Ē0(t) = Ē�

0(t) = He( ), and

d2

dt2
Ē0(t) = Ē��

0 (t) =
d

dt
He( )

=
1

1 + t

�
y∈Y

(y)
�
x∈X

(x | y) log( (x | y))2

+
t

1 + t

�
y∈Y

(y)He( �y)2 −He( )2. (16)

Careful readers may verify them by hand or follow
[73, Formulas (13) to (19)] and [74, Lemmas 9 and 10].
Similar computations are also carried out by [19], [21].

Notice that Ē0(t), He( ), and every other term in Equa-
tion (16) are all holomorphic functions in t on the half-plane
Re t > −1 (there is a singularity at 1/(1 + t) = ∞). By
the identity theorem in complex analysis [84, Corollary 8.16],
[85, page 127], Equation (16) holds for all t ∈ [−2/5, 1].
Dropping the nonpositive square, we deduce an upper bound
for each t ∈ [−2/5, 1]:

Ē��
0 (t) � 1

1 + t

�
y∈Y

(y)
�
x∈X

(x | y) log( (x | y))2

+
max(0, t)

1 + t

�
y∈Y

(y)He( �y)2. (17)

This upper bound on Ē��
0 (t) is a positive combination of�

x∈X
(x | y) log( (x | y))2 and He( �y)2

parametrized by y ∈ Y , so it remains to bound them separately.
For the second kind of constituents, the entropy cannot exceed
log q so He( �y)2 � log(q)2. For the first kind of con-
stituents, the following lemma adapted from [73, Lemma 1]
helps.

Lemma 16 (Second Moment): If w1, w2, , . . . , wq are posi-
tive numbers of sum 1, then�

i

wi log(wi)2 �
�

log(q)2 for q � 3
0.563 for q = 2

�
� 1.2 log(q)2.

With the lemma,
�

x∈X (x | y)(log (x | y))2 �
1.2 log(q)2 can be stated. Now Inequality (17) becomes

Ē��
0 (t) � 1

1 + t

�
y∈Y

(y) · 1.2 log(q)2

+
max(0, t)

1 + t

�
y∈Y

(y) log(q)2

� 1
1 + t

· 1.2 log(q)2 +
max(0, t)

1 + t
log(q)2

� 2 log(q)2

for all t ∈ [−2/5, 1]. Since E0(t) is a linear function t log q
minus Ē0(t), their first derivatives sum to log q while their sec-
ond derivatives are opposite. Hence the following lemma.

Lemma 17 (Universal Quadratic Bound): [73, Theorem 2].
Cf. [6, Theorem 5.6.3]. Let W be a q-ary channel. Assume

the uniform input distribution. Then Gallager’s E-null function
satisfies

E0(0) = 0,

E�
0(0) = I(W ) log q,

E��
0 (t) � −2 log(q)2

for all t ∈ [−2/5, 1]. In particular, it satisfies

E0(t) � I(W )t log q − t2 log(q)2.

C. Gallager’s Argument at Bob’s End

This subsection take advantage of the universal bound devel-
oped three lines ago and starts actually proving Lemma 14.
This subsection deals with

��
i=�H(W )�+�1/2+α	+1

hα(H(W (i)
G

)) < �−1/2+α ((14)’s copy)

by passing it to an inequality that captures the performance of
noisy-channel coding. Owing to hα’s concavity, the left-hand
side of Inequality (14) is

��
i=j+1

hα(H(W (i)
G

)) � (�− j)hα

� 1
�− j

��
i=j+1

H(W (i)
G

)
�

where j := �H(W )� + �1/2+α� for short. It suffices to prove
that the right-hand side is less than �−1/2+α. In the spirit of the
motivational Chain Rule (1), the sum of the chain of H(W (i)

G
)

on the right-hand side is H(U �
j+1 | U j

1Y �
1 ). In order to prove

Inequality (14), we will show

(�− j)hα

� 1
�− j

H(U �
j+1 | U j

1Y �
1 )

�
< �−1/2+α. (18)

But what is H(U �
j+1 | U j

1Y �
1 )? It measures the equivocation at

Bob’s end when U j
1 is known to Bob. In other words, we may

as well pretend that there is a random rectangular full-rank
matrix G� with � columns and only k := �−j = ��−H(W )�−
�1/2+α� rows, that Alice computes and sends X�

1 := Uk
1 G� to

Bob, and that Bob attempts to decode Ûk
1 upon receiving Y �

1

using the MAP decoder. The equivocation is thus, by Fano’s
inequality, bounded in terms of the probability that Bob fails
to decode Uk

1 :

H(U �
j+1 | U j

1Y �
1 )

� −Pe logq Pe − (1− Pe) logq(1 − Pe) + Pe logq(q
k − 1)

� −Pe logq Pe +
Pe

log q
+ Pe = Pe

�1− log Pe

log q
+ k

�
. (19)

Here Pe is the probability that Bob fails to decode, Ûk
1 �= Uk

1 .
The following is how to compute Bob’s decoder block error

probability. The generator matrix G� Alice uses is selected
uniformly from the ensemble of full-rank k-by-� matrices. The
difference of every pair of codewords distributes uniformly
on F�

q \ {0�
1}. Over symmetric channels, the difference alone

determines the likelihood ratios because W �(y�
1 | ξ�

1 + x�
1) =

W �(σ�
1(y�

1) | x�
1) for some component-wise permutation σ�

1
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on Y� depending on ξ�
1. So Gallager’s bound applies. To elab-

orate, let t ∈ [0, 1]. Then Bob’s average error probability
satisfies [6, Inequalities (5.6.2) to (5.6.14)]

EP{Bob fails to decode Uk
1 given G

�}
= E

�
uk
1

1
qk

�
y�
1

W �(y�
1 | uk

1G
�)I

�
Bob has Ûk

1 �= uk
1

given G�, uk
1 , y

�
1

�
= E

�
y�
1

W �(y�
1 | 0�

1)I{Bob has Ûk
1 �= 0k

1given G
�, 0k

1 , y
�
1}

� E

�
y�
1

W �(y�
1 | 0�

1)
� �

vk
1 �=0k

1

I

�
Bob prefers vk

1

over 0k
1given G�

��t

� E

�
y�
1

W �(y�
1 | 0�

1)
� �

vk
1 �=0k

1

W �(y�
1 | vk

1G�)
1

1+t

W �(y�
1 | 0�

1)
1

1+t

�t

= E

�
y�
1

W �(y�
1 | 0�

1)
1

1+t

� �
vk
1 �=0k

1

W �(y�
1 | vk

1 G
�)

1
1+t

�t

�
�
y�
1

W �(y�
1 | 0�

1)
1

1+t

�
E

�
vk
1 �=0k

1

W �(y�
1 | vk

1 G
�)

1
1+t

�t

=
�
y�
1

W �(y�
1 | 0�

1)
1

1+t

� �
x�
1 �=0�

1

qk − 1
q� − 1

W �(y�
1 | x�

1)
1

1+t

�t

� qkt
�
y�
1

W �(y�
1 | 0�

1)
1

1+t

� �
x�
1 �=0�

1

1
q�

W �(y�
1 | x�

1)
1

1+t

�t

� qkt
�
y�
1

W �(y�
1 | 0�

1)
1

1+t

��
x�
1

1
q�

W �(y�
1 | x�

1)
1

1+t

�t

= qkt
�
y�
1

��
x�
1

1
q�

W �(y�
1 | x�

1)
1

1+t

���
x�
1

1
q�

W �(y�
1 | x�

1)
1

1+t

�t

= qkt
�
y�
1

��
x�
1

1
q�

W �(y�
1 | x�

1)
1

1+t

�1+t

= qkt
�
y�
1

��
x�
1

W �
in(x�

1)W
�(y�

1 | x�
1)

1
1+t

�1+t

= exp(kt log q − (the E-null function of W �)(t))
= exp(kt log q − �E0(t)).

In summary, EP{Bob fails to decode Uk
1 given G�} is less

than exp(kt log q − �E0(t)) whenever 0 � t � 1. Recall the
universal quadratic bound E0(t) � I(W )t log q − t2 log(q)2

derived in Lemma 17. We obtain that the exponent is

kt log q − �E0(t) = (�− j) log q − �E0(t)

= (�−H(W )�− �1/2+α)t log q − �E0(t)

= (I(W )�− �1/2+α)t log q − �E0(t)

� (I(W )�− �1/2+α)t log q − �(I(W )t log q − t2 log(q)2)

= (�t log q − �1/2+α)t log q

(redeem the infimum at t = �−1/2+α/2 log q)

�→ (��−1/2+α/2− �1/2+α)�−1/2+α/2

= −�2α/4 = −�2 log(log �)/ log �/4 = − log(�)2/4.

So far we obtain that the average error probability is less than
exp(− log(�)2/4) = �− log(�)/4.

Run Markov’s inequality with cutoff �− log(�)/20. To put
it another way, we sample a random kernel and reject it if
P{Bob fails to decode Uk

1 given G�} � �− log(�)/5. Then the
rejecting probability is �− log(�)/20 because 1/20+1/5 = 1/4.
An upper bound on Bob’s error probability being Pe <
�− log(�)/5, an upper bound on Bob’s equivocation is

H(U �
j+1 | U j

1Y �
1 ) � �− log(�)/5

�1− log �− log(�)/5

log q
+ k

�
= �− log(�)/5

�1 + log(�)2/5
log q

+ k
�

by Inequality (19). Plugging the latter into khα(this place/k),
we derive that the left-hand side of Inequality (18) is less than

khα

��− log(�)/5

k

�1 + log(�)2/5
log q

+ k
��

= k
�
�− log(�)/5

�1 + log(�)2/5
k log q

+ 1
��α

= �−α log(�)/5k
�1 + log(�)2/5

k log q
+ 1

�α

< �−α log(�)/5�
�1 + log(�)2/5

� log q
+ 1

�α

< �−α log(�)/5 · � · 2α = 2α� log(�)− log(�)/5.

The first inequality uses that the left-hand side increases
monotonically in k and k := � − j = �� − H(W )
� − �1/2+α� < �. The second inequality uses the assumption
� � 2. In any regard, the quantity at the end of the inequalities
decays to 0 as � → ∞, so eventually it becomes less than
�1/2+α, the right-hand side of Inequality (18). This proves
that Inequality (14) holds with failing probability �− log(�)/20

as soon as � is large enough. The lower bound on � in the
statement of Lemma 14 is large enough, hence the first half
of Lemma 14 settled.

D. Hayashi’s Argument at Eve’s End

This subsection contains the very last ingredient of the
proof of Lemma 14. We dealt with Inequality (14) in the last
subsection. We now deal with

�H(W )�−�1/2+α��
i=1

hα(H(W (i)
G

)) < �1/2+α. ((15)’s copy)

Similar to how we motivated Inequality (18), we hereby apply
Jensen’s inequality and the chain rule of conditional entropy
to simplify Inequality (15). The left-hand side becomes
jhα(H(U j

1 | Y �
1 )/j) where j := �H(W )� − �1/2+α� for

short. (This is not the same j as in the last subsection.)
The input uniform, the argument of hα is H(U j

1 | Y �
1 )/

j = 1−I(U j
1 ; Y �

1 )/j, which can be replaced by I(U j
1 | Y �

1 )/j
thanks to the evenness hα(1 − z) = hα(z). We will show

jhα

�1
j
I(U j

1 ; Y �
1 )

�
< �1/2+α. (20)

But what is I(U j
1 ; Y �

1 )? It is the amount of information Eve
learns from wiretapping Y �

1 if they know that U �
j+1 are junk.

In other words, we may pretend that Alice transmits X�
1 :=

U j
1V �

j+1G with confidential bits U j
1 and obfuscating bits V �

j+1,



WANG AND DUURSMA: POLAR CODES’ SIMPLICITY, RANDOM CODES’ DURABILITY 1497

Fig. 8. A finer setup for Hayashi’s secrecy exponent. Charlie generates Y �
1 such that X�

1 := Uj
1V �

j+1G and Y �
1 follow W �. Despite of the seemingly

sequential structure, Karl, Alice, and Vincent work independently.

Bob receives X�
1 in full, and Eve learns Y �

1 . This context falls
back to (a special case of) the traditional setup of wiretap
channels [86] where various bounds are studied, some in terms
of Gallager’s E-null function.

Here are some preliminaries to control the information
leaked to Eve. We follow the blueprint of how Hayashi derived
the secrecy exponent in [87, Inequality (21)]. Consider the
communication protocol depicted in Fig. 8: Karl fixes a kernel
G ∈ GL(�, q) and everyone knows G. Alice chooses the
confidential message U �

1 . Vincent chooses the obfuscating bits
V �

j+1. Charlie generates Y �
1 by plugging X�

1 := U j
1V �

j+1G

into a simulator of W �. Eve learns Y �
1 and is interested

in knowing U j
1 alone. So the channel on topic is the com-

position of Vincent and Charlie. Notation: Running out of
symbols, we all use P with proper subscriptions to indicate
the corresponding probability measures. That said, indices in
the subscription will be omitted. As Eve is interested in the
relation between U j

1 and Y �
1 , let Y �

1 �Guj
1 be the r.v. that

follows the a posteriori distribution of Y �
1 given G = G and

U j
1 = uj

1. More formally, PY �Gu(y�
1) = PY |GU (y�

1 | G, u�
1) =

PGUY (G, uj
1, y

�
1)/PGU (G, uj

1). We could have defined Y �
1 �G

to be the a posteriori distribution of Y �
1 given G = G; but it is

simply the same distribution as Y �
1 since U j

1V �
j+1G traverses

all inputs uniformly regardless of the choice of G. That is,
PY |G(y�

1 | G) = PY (y�
1) for all y�

1 ∈ Y�.
Fix G as an instance of G. Let Ie be the base-e mutual

information. The channel Eve cares about leaks information
of this amount:

Ie(U
j
1 ; Y �

1 | G)

=
�
uj
1y�

1

PUY |G(uj
1, y

�
1 | G) log

PY |GU (y�
1 | G, uj

1)
PY |G(y�

1 | G)

=
�
uj
1

PU (uj
1)

�
y�
1

PY |GU (y�
1 | G, uj

1) log
PY |GU (y�

1 | G, uj
1)

PY |G(y�
1 | G)

=
�
uj
1

PU (uj
1)

�
y�
1

PY �Gu(y�
1) log

PY �Gu(y�
1)

PY (y�
1)

=
�
uj
1

PU (uj
1)D(Y �

1 �Guj
1 � Y1). (21)

D(Y �
1 �Guj

1 � Y �
1 ) is the Kullback–Leibler divergence from

the a posteriori distribution of Y �
1 given G, uj

1 to the coarsest
distribution Y �

1 . We are to take expectation over G to find the
average information leak since we are interested in Markov’s

Fig. 9. A simplified setup for Hayashi’s secrecy exponent. Charlie generates
Y �
1 such that X�

1 and Y �
1 follow W �.

inequality. Equality (21) yields

EIe(U
j
1 ; Y �

1 | G) =
�
G

PG(G)Ie(U
j
1 ; Y �

1 | G)

=
�
G

PG(G)
�
uj
1

PU (uj
1)D(Y �

1 �Guj
1 � Y �

1 ). (22)

We now discover that there are redundancies in traversing all
G and u�

1: After all, Xj
1 is uj

1V
�
j+1G = uj

10
�
j+1G + 0j

1V
�
j+1G,

which is a fixed linear combination of the first j rows plus a
random vector from the span of the bottom �− j rows. When
V �

1 varies, the track of X�
1 forms an affine subspace of F�

q,
a coset code as in the context of the fundamental theorems.
So what matters is the distribution of this coset code.

In this regard, we replace the uniform ensemble of (G, U j
1 )

by the uniform ensemble of K a rank-(�− j) affine subspace
of F�

q , where j := �H(W )�−�1/2+α�. Karl and Alice together
choose K uniformly. Vincent chooses X�

1 ∈ K uniformly.
Charlie generates Y �

1 by throwing X�
1 into a simulator of

W �. See Fig. 9 for the depiction of the new scheme. Hence
Equality (22) becomes

EIe(U
j
1 ; Y �

1 | G) =
�
K

PK(K)D(Y �
1 �K � Y �

1 )

where Y �
1 �K is the a posteriori distribution of Y �

1 given
K = K. Suddenly, the quantity EIe(U

j
1 ; Y �

1 | G) we are
interested in turns into the mutual information Ie(K ; Y �

1 )
between K and Y �

1 as K replaces the role of U j
1 in For-

mula (21). Recall that in Lemma 17 the mutual information
is the derivative of Gallager’s E-null function. We exploit
this. Define the double-stroke E-null function for (K, Y �

1 ) as
follows

E0(t) := − log
�
y�
1

��
K

PK(K)PY |K(y�
1 | K)

1
1+t

�1+t

.

Then E�
0(0) = Ie(K ; Y �

1 ) = EIe(U
j
1 ; Y �

1 | G). Owing
to the concavity of the E-null function, E�

0(0) � E0(t)/t
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whenever −2/5 � t < 0. Recap: To bound the average leaked
information EIe(U

j
1 ; Y �

1 | G) it suffices to bound Ie(K ; Y �
1 ),

which is then morphing to bounding E�
0(0) from above and to

bounding E0(t) from below.
The double-stroke E-null function is bounded as below.

Assume −2/5 � t < 0. Let s be −t/(1 + t); so 0 < s � 2/3
and (1 + s)(1 + t) = 1. For any fixed K and fixed x�

1 ∈
K , the base of the (1 + t)-th root in the definition of the
double-stroke E-null function is

PY |K(y�
1 | K) =

�
ξ�
1∈K

PX|K(ξ�
1 | K)PY |X(y�

1 | ξ�
1)

=
�

ξ�
1∈K

qj
PX(ξ�

1)PY |X(y�
1 | ξ�

1) =
�

ξ�
1∈K

qj
PXY (ξ�

1, y
�
1)

= qj
�
PXY (x�

1, y
�
1) +

�
x�
1 �=ξ�

1∈K

PXY (ξ�
1, y

�
1)
�

= qj
�
PXY (x�

1, y
�
1) + PXY (K\x�

1, y
�
1)
�
.

Here PXY (K\x�
1, y

�
1) is a temporary shorthand for the sum-

mation of PXY (ξ�
1, y

�
1) over ξ�

1 ∈ K that excludes x�
1. Raise

PY |K(y�
1 | K) to the power of s; it becomes qjs(PXY (x�

1, y
�
1)+

PXY (K\x�
1, y

�
1))s � qjs(PXY (x�

1, y
�
1)s + PXY (K\x�

1, y
�
1)s)

by sub-additivity. Put that aside; raise PY |K(y�
1 | K) to the

power of 1 + s = 1/(1 + t):

PY |K(y�
1 | K)1+s = PY |K(y�

1 | K)PY |K(y�
1 | K)s

=
�

x�
1∈K

qj
PXY (x�

1, y
�
1)PY |K(y�

1 | K)s

�
�

x�
1∈K

qj
PXY (x�

1, y
�
1)q

js
�

PXY (x�
1, y

�
1)

s +PXY (K\x�
1, y

�
1)

s
�

= qj+js
� �

x�
1∈K

PXY (x�
1, y

�
1)

1+s

+
�

x�
1∈K

PXY (x�
1, y

�
1)PXY (K\x�

1, y
�
1)

s
�
.

The inequality rewrites the s-th power of PY |K(y�
1 | K). Then

the inner sum of the E-null function morphs as follows�
K

PK(K)PY |K(y�
1 | K)1+s

�
�
K

PK(K)qj+js
� �

x�
1∈K

PXY (x�
1, y

�
1)

1+s

+
�

x�
1∈K

PXY (x�
1, y

�
1)PXY (K\x�

1, y
�
1)

s
�

= qj+js
�
K

PK(K)
�

x�
1∈K

PXY (x�
1, y

�
1)

1+s (diagonal arc)

+ qj+js
�
K

PK(K)
�

x�
1∈K

PXY (x�
1, y

�
1)PXY (K\x�

1, y
�
1)

s. (off)

The inequality rewrites the (s+1)-th power of PY |K(y�
1 | K).

Divide and conquer—the inner sum of the double-stroke E-
null function is split into two arcs as labeled.

The diagonal arc is exactly

qj+js
�
K

PK(K)
�

x�
1∈K

PXY (x�
1, y

�
1)

1+s

= qj+js 1
qj

�
x�
1∈F�

q

PXY (x�
1, y

�
1)

1+s

= qjs
�

x�
1∈F�

q

PX(x�
1)

1+s
PY |X(y�

1 | x�
1)

1+s

= qjs−�s
�

x�
1∈F�

q

PX(x�
1)PY |X(y�

1 | x�
1)

1+s.

The off-diagonal arc is

qj+js
�
K

PK(K)
�

x�
1∈K

PXY (x�
1, y

�
1)PXY (K\x�

1, y
�
1)

s

= qj+js
�

x�
1∈F�

q

PXY (x�
1, y

�
1)

�
Kx�

1

PK(K)PXY (K\x�
1, y

�
1)

s.

The inner sum is loosen to�
Kx�

1

PK(K)PXY (K\x�
1, y

�
1)

s

=
1
qj

�
Kx�

1

PK|X(K | x�
1)PXY (K\x�

1, y
�
1)

s

� 1
qj

� �
Kx�

1

PK|X(K | x�
1)PXY (K\x�

1, y
�
1)
�s

=
1
qj

� �
Kx�

1

PK|X(K | x�
1)

�
x�
1 �=ξ�

1∈K

PXY (ξ�
1, y

�
1)
�s

=
1
qj

�q�−j − 1
q� − 1

�
x�
1 �=ξ�

1∈F�
q

PXY (ξ�
1, y

�
1)
�s

.

� 1
qj+js

� �
x�
1 �=ξ�

1∈F�
q

PXY (ξ�
1, y

�
1)
�s

The last equality counts the multiplicity of ξ�
1. So the

off-diagonal arc is loosen to

qj+js
�

x�
1∈F�

q

PXY (x�
1, y

�
1)

�
Kx�

1

PK(K)PXY (K\x�
1, y

�
1)

s

�
�

x�
1∈F�

q

PXY (x�
1, y

�
1)
� �

x�
1 �=ξ�

1∈F�
q

PXY (ξ�
1, y

�
1)
�s

�
�

x�
1∈F�

q

PXY (x�
1, y

�
1)
� �

ξ�
1∈F�

q

PXY (ξ�
1, y

�
1)
�s

=
�

x�
1∈F�

q

PXY (x�
1, y

�
1)PY (y�

1)
s

= PY (y�
1)PY (y�

1)
s = PY (y�

1)
1+s.

Both the diagonal and off-diagonal arcs conquered, merge
them and raise to the (1 + t)-th power. The summand for any
fixed y�

1 in the definition of the double-stroke E-null function
is��

K

PK(K)PY |K(y�
1 | K)

1
1+t

�1+t

� (off-diagonal + diagonal)1+t � off1+t + diagona1+t

�
�

PY (y�
1)

1+s
�1+t

+ diagon1+t � PY (y�
1) + diago1+t

= PY (y�
1) +

�
qjs−�s

�
x�
1∈F�

q

PX(x�
1)PY |X(y�

1 | x�
1)

1+s
�1+t
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= PY (y�
1) + q�t−jt

� �
x�
1∈F�

q

PX(x�
1)PY |X(y�

1 | x�
1)

1+s
�1+t

We can finally bound the double-stroke E-null function
per se:

exp(−E0(t)) =
�
y�
1

��
K

PK(K)PY |K(y�
1 | K)

1
1+t

�1+t

�
�
y�
1

PY (y�
1) + q�t−jt

� �
x�
1∈F�

q

PX(x�
1)PY |X(y�

1 | x�
1)

1+s
�1+t

= 1 + q�t−jt
�
y�
1

� �
x�
1∈F�

q

PX(x�
1)PY |X(y�

1 | x�
1)

1+s
�1+t

= 1 + q�t−jt exp(−(the E-null function of W �)(t))

= 1 + q�t−jt exp(−�E0(t)).

All efforts we spent on bounding Ie(U
j
1 ; Y �

1 ) are for
three creeds: First, we see Gallager’s bound possessing innate
elegance. Second, it fits the paradigm that solving the primary
(noisy channel) and the dual (wiretap channel) problems as a
whole is easier than solving the primary problem alone. Third,
the universal quadratic bound is waiting ahead for the E-null
function. We infer that

EIe(U
j
1 ; Y �

1 | G) = Ie(K ; Y �
1 ) = E

�
0(0)

� 1
t
E0(t) =

1
−t

log
�
exp(−E0(t))

�
� 1
−t

log
�
1 + q�t−jt exp(−�E0(t))

�
<

1
−t

q�t−jt exp(−�E0(t))

= exp(− log(−t) + (�− j)t log q − �E0(t)).

Recall the universal quadratic bound E0(t) � I(W )t log
q− t2 log(q)2 as stated in Lemma 17 and used in the previous
subsection. But this time −2/5 � t < 0. We obtain that the
exponent is

− log(−t) + (�− j)t log q − �E0(t)

= − log(−t) + (�−H(W )� + �1/2+α)t log q − �E0(t)

= − log(−t) + (I(W )� + �1/2+α)t log q − �E0(t)

� − log(−t)+(I(W )�+�
1
2 +α)t log q−�(I(W )t log q−t2 log(q)2)

= − log(−t) + (�t log q + �1/2+α)t log q

(redeem the infimum at t = −�−1/2+α/2 log q)

�→ − log
��−1/2+α

2 log q

�
−

�
− ��−1/2+α

2
+ �1/2+α

��−1/2+α

2

=
log �

2
− α log � + log 2 + log log q − �2α

4

=
log �

2
− log log � + log 2 + log log q − �2 log(log �)/ log �

4

<
log �

2
+ log log q − log(�)2

4
.

The first inequality uses �−j = �−H(W )�+�1/2+α. The last
inequality uses the assumption � � e2. With the last line we

conclude that EIe(U
j
1 ; Y �

1 | G) < exp(log(�)/2 + log log q−
log(�)2/4) = �1/2−log(�)/4 log q. Switch back to the base-q
mutual information EI(U j

1 ; Y �
1 | G) < �1/2−log(�)/4.

We now reject kernels such that I(U j
1 ; Y �

1 | G) �
�1/2−log(�)/5. By Markov’s inequality, the opposite direction
(<) holds with probability 1 − �− log(�)/20 because 1/5 +
1/20 = 1/4. Plug this upper bound into hα. The left-hand
side of Inequality (20) is less than

jhα

�1
j
�1/2−log(�)/5

�
= jj−α�α/2−α log(�)/5

< �1−α�α/2−α log(�)/5 = �1−α/2−α log(�)/5

= � log(�)−1/2−log(�)/5.

The inequality uses that the left-hand side increases monoton-
ically in j and j := H(W )� − �1/2+α < �. In any regard,
the quantity at the end of the inequalities decays to 0 as �→
∞, so eventually it becomes less than �1/2+α, the right-hand
side of Inequality (20). This proves that Inequality (15) holds
with failing probability �− log(�)/20 as soon as � is large
enough. The lower bound on � in the statement of Lemma 14
is large enough, hence the second half of Lemma 14 settled.
That means the proof of the whole lemma has finally come to
an end.

E. Bibliographic Remarks

Concerning the second moment bound: [78, Lemma 1]
has a looser bound comparing to Lemma 16. A similar
bound for the third moment is [18, Lemma 46], wherein
Inequality (468) looks dubious. In general, Gallager’s E-null
function is the cumulant generating function (the logarithm
of the moment generating function), and bounding E-null
is equivalent to bounding higher moments. Concerning the
group symmetry: On both Bob and Eve’s ends, we use
heavily the 2-transitive nature of GL(�, q)’s action on F�

q.
Interestingly enough, 2-transitivity is the main ingredient to
prove that Reed–Muller codes achieve capacity over BECs
[88] as well. Concerning the secrecy bound: According to
Hayashi [87, Remark 4], this technique of bounding secrecy
exponent via the resolvability exponent and then the E-null
function dated back to Oohama’s conference paper [89],
although no formal proof was found there. See [90], [91] for
alternative descriptions and approaches on the same topic.

For readers who took Lemma 12 as granted or went through
Appendices B and C in advance, this is the last sentence of the
proof of the main theorem—polar codes’ simplicity, random
codes’ durability.

IX. CONCLUSION

Shannon introduced what we now understand as discrete
memoryless channels seventy-two years ago. In the beginning,
Shannon had no tool but developed their own theory of typical
set, proved the noisy-channel coding theory, and justified
the notion of capacity. Gallager brought in error exponents.
Capacities and error exponents quantify the first and second
order terms in the asymptotic performance of codes. Only
in 2010 we are revealed the complete second order term. It was
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TABLE II

POLAR CODING WORKS ARRANGED BY THEIR CONTRIBUTION
IN TERMS OF TARGETED CHANNELS AND TARGETED

BEHAVIORS. SEE SECTION IX FOR DETAILS

around the time that polar coding as a graceful instrument to
explore the limits at low cost was discovered when Arıkan
experimented with the channel transformation and with error
exponents. Another ten years it took to grow variants and proof
techniques of polar coding. Ultimately, it is feasible, and done
by us coincidentally, to piece the puzzle together to show the
mere possibility to achieve the second order limits at low cost.

An overall comparison is integrated in Table II. Columns
are classes of channels; from left to right: (BEC) binary
erasure channels; (BDMC) binary-input discrete-output mem-
oryless channels; (p-ary) channels of prime input size;
(q-ary) channels of prime power input size; (finite) channels
of discrete input. Columns to the right are wider than columns
to the left. The last column is exceptional; (asym.) is about
whether we can achieve the true Shannon capacity, instead of
the symmetric capacity. Rows are goals; from top to bottom:
(LLN) to achieve (symmetric) capacity; (wLDP) there exists
π > 0 such that Pe < exp(−Nπ); (wCLT) there exists ρ > 0
such that R > I − N−ρ; (wMDP) there exist π, ρ > 0 such
that Pe < exp(−Nπ) and R > I−N−ρ at once; (LDP) the π
in (wLDP) can be arbitrarily close to 1; (CLT) the ρ in (wCLT)
can be arbitrarily close to 1/2; (MDP) the (π, ρ)-pair can be
arbitrarily close to π+2ρ = 1. Row (MDP) implies every other
row; row (CLT) implies (wCLT); row (LDP) implies (wLDP);
and every other row implies (LLN). Rows (LDP) and (CLT)
together almost imply (MDP) (need the partial distance pro-
file). Cells represent how various goals are achieved over var-
ious channels. The greenish background means it is possible
using Arıkan’s kernel [11

0
1]. The purplish background means

it is possible using other kernels. The orangish background
means it is only possible using dynamic kernels.

The following works made critical progresses but our clas-
sification fails to include them: Rate-dependent result in LDP
paradigm [28]. Optimal relations among channel parameters
[29]. First family of (π, ρ) pairs in MDP paradigm [38].
AWGNCs intersecting MDP [39].

We did our best to excavate the archive but throughout
the course of manuscript preparation we found ourselves
underestimating early works multiple times so the record kept
updating. We sincerely hope to hear about possible references
to add to the table.

Potential improvements include but are not limited to what
follow: (Tolls) Tighten the explicit Hölder tolls. The current
toll between any pair of parameters H , Pe, Z , Zmad, T , S,
and Smax is roughly the total of the tolls collected when
traveling through the spanning tree illustrated in Lemma 7.
Any improvement on the Smax–S–P–H path will tighten
the bounds in Lemma 12. (FTPC) Tighten the two funda-
mental theorems such that they degenerate to equalities over
erasure channels. Once done, {Zn} is a supermartingale and
Appendix C-A is obsolete. (Symmetry) Generalize the argu-
ments presented in Sections VIII-B to VIII-D to asymmetric
channels. Once done, Section VIII-A is obsolete. Note that
the proof of the fundamental theorems applies to asymmetric
channels. (Bijection) Early works on polar coding over arbi-
trary alphabets introduced arbitrary bijections gW . Generalize
the two fundamental theorems to include arbitrary bijections.
(Dynamic) Achieve the main theorem with a large, but fixed,
kernel. This does not immediately make the code practical.
But the answer should shed light on our understanding of
coding. (Alphabet) Achieve the main theorem without the
reduction to prime power alphabets. This is currently not an
option because linear codes are barely defined over non-fields.
Plus the S-parameter—and thus FTPCS—would simply break.
(Dispersion) Recall Proposition 2. Weird things happens when
the channel dispersion vanishes V = 0. Can we describe those
channels better? One example of such channels is this:�

�1/2 1/2 0
1/2 0 1/2
0 1/2 1/2

�
� .

(Quantization) Control the cardinality of the output alphabets
of the synthetic channels [46], [64], [93]. This step is a
necessity for application because real numbers are not real—
rounding errors emerges in the a posteriori probabilities in
Section III. We anticipate a generalization of our theory that
meets [46]’s standard, namely polynomially (NO(1)) sized
output alphabet.

We look forward to generalizations of the main the-
orem to non-identical channels (i.e., non-stationary) [94],
dependent channels (i.e., with memory) [95], [96], deletion
channels [97], [98], channels with restrictions on input distri-
butions (e.g., due to energy constrains) [99], wiretap channels
[100], [101], rate-distortion problem [56], Wyner-Ziv prob-
lem [56], Slepian-Wolf problem [102], broadcast channels
[103], [104], and multiple access channels [105], [106]. We
focus on noisy-channel coding in this work for its historical
significance.

APPENDIX A
EXPLICIT HÖLDER TOLLS (PROOF OF LEMMA 8)

As was promised in Section IV-A, we prove the explicit
Hölder toll. Let be a q-ary channel. In the upcoming
arguments, H , Pe, Z , Zmad, S, and Smax mean H(W ),
Pe(W ), Z(W ), Zmad(W ), S(W ), and Smax(W ), respectively.
Also q� means q−1, and q�� means q−2. Furthermore, lg means
the base-2 logarithm; this is handy when we jump back and
forth between nats, bits, and q-bits.
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First we show

Zmad � q
�

H log4 q. ((2)’s copy)

Start from Zmad: By the definition Zmad � q�Z . Move on
to Z: By Lemma 3, q�q−2(

√
1 + q�Z − √1− Z)2 � Pe

so
√

1 + q�Z − √1− Z � q
�

Pe/q�. Multiplying by the

conjugate yields (1+q�Z)− (1−Z) � q
�

Pe/q�(
√

1 + q�Z +√
1− Z). The left-hand side is qZ; in the right-hand side√
1 + q�z +

√
1− z has maximum q/

√
q� at z = q��/q� by

calculus. So Z �
�

Pe/q�(q/
√

q�) = q
√

Pe/q�. Move on to
Pe: By Lemma 6 (the first lower bound), 2Pe � H lg q or
equivalently Pe � H log4 q. Now we chain the inequalities
Zmad � q�Z � q

√
Pe � q

�
H log4 q. This completes

Inequality (2). That being proven, we use a weaker form

Zmad � q3
√

H

in the calculus machinery for global MDP.
Second we show

H �
�

eq�Zmad/2. ((3)’s copy)

Start from H : By Lemma 6 (the upper bound, Fano’s inequal-
ity), H lg q � h2(Pe)+Pe lg q�. By Fig. 6, h2(Pe)+Pe lg q� �√

ePe + Pe lg q� =
√

Pe(
√

e +
√

Pe lg q�). What is inside
parentheses is less than

√
e +

�
q�/q lg q�. Hence H �√

Pe(
√

e +
�

q�/q lg q�)/ lg q. Focus on the scalar—(
√

e +�
q�/q lg q�)/ lg q has maximum

√
e at q = 2 (remember that

q � 2). So H �
√

ePe. Move on to Pe: By Lemma 3, Pe �
q�Z/2. Move on to Z: By definition Z � Zmad. Now we chain
the inequalities H �

√
ePe �

�
eq�Z/2 �

�
eq�Zmad/2. This

completes Inequality (3). That being proven, we use a weaker
form

H � q3
�

Zmad

in the calculus machinery for global MDP.
Third we show (notice the logarithm is natural)

Smax � q�q
�

(1−H) log(q)/2. ((4)’s copy)

Start from Smax: By definition Smax � q�S. Move on to S:
By Lemma 5, S � q�q(q�/q − Pe)

�
1− q

q�
q��
q� . The square

root simplifies to
�

1/(q�)2 = 1/q� as qq�� = (q�)2 − 1. So
S � q� − qPe. Move on to q� − qPe: By Lemma 6 (the upper
bound, Fano’s inequality), H lg q � h2(Pe) + Pe lg q�. We
claim that h2(Pe) + Pe lg q� � lg q− 2(q�/q− Pe)2/ log 2. To
prove the claim, Taylor expand both sides at Pe = q�/q. Verify
that both evaluate to lg q at Pe = q�/q; verify that both have
derivative 0 at Pe = q�/q; and verify that the acceleration of
the left-hand side,−1/(Pe(1−Pe) log 2), is more negative than
the acceleration of the right-hand side, −4/ log 2. By Taylor’s
theorem, mean value theorem, or Euler method, the function
with greater acceleration is greater; hence the claim. See also
[80, Fig. 1]; the Φ-curve seems parabolic at the upper right
corner. Now we have H lg q � lg q − 2(q�/q − Pe)2/ log 2,
which is equivalent to 2(q�/q−Pe)2/ log q � 1−H and to q�−
qPe � q

�
(1 −H) log(q)/2. Now we chain the inequalities

Smax � q�S � q�(q� − qPe) � q�q
�

(1−H) log(q)/2. This

completes Inequality (4). That being proven, we use a weaker
form

Smax � q3
√

1−H

in the calculus machinery for global MDP.
Fourth we show

1−H � q�Smax/ log q. ((5)’s copy)

Start from 1 − H : By Lemma 6 (the second lower bound),
H lg q � q�q lg(q/q�)(Pe − q��/q�) + lg q�. The right-hand
side is lg q − q� lg(q/q�)(q� − qPe) by matching the (rational)
coefficients of Pe lg q, Pe lg q�, lg q, and lg q�, respectively. As
H lg q � lg q − q� lg(q/q�)(q� − qPe) we bound lg(q/q�) =
lg(1 + 1/q�) � 1/q� by the tangent line at 1/q� = 0. So
H lg q � lg q−(q�−qPe) and hence 1−H � (q�−qPe)/ lg q.
Move on to q� − qPe: By Lemma 5, 1 − qPe/q� � S so
q� − qPe � q�S. Move on to S: By definition S � Smax.
Now we chain the inequalities 1 − H � (q� − qPe)/ lg q �
q�S/ lg q � q�Smax/ lg q. This completes Inequality (5). That
being proven, we use a weaker form

1−H � q3
�

Smax

in the calculus machinery for global MDP.
This is end of the proof of Lemma 8. The proof of Lemma 7

follows the same logic, only shorter.

APPENDIX B
CALCULUS MACHINERY FOR GLOBAL MDP

(PROOF OF LEMMA 12)

We are to prove that

P{Hn < exp(−�πnn)} > 1− H0 − �−ρn+o(n) ((7)’s copy)

given premises (pb), (pm), (pt), and (pl), the local LDP
behavior, the local CLT behavior, and that π + 2ρ � 1− 8α.
The proof is split into several stepping stones. We will prove
each of the following inequalities (including two equalities)
in each of the upcoming subsections. This will be proven in
Appendix B-A: The eigen behavior reads

E [hα(Hn+1) | Fn] � 4�−1/2+3αhα(Hn). (23)

This will be proven in Appendix B-B: As a lemma, {Hn} and
{Zn} converges to 0 with probability 1− H0, i.e.,

P{Zn → 0} = P{Hn → 0} = 1− H0. (24)

This will be proven in Appendix B-C: The en23 behavior
reads

P{Zn < exp(−n2/3)} > 1− H0 − �(−1/2+4α)n+o(n). (25)

This will be proven in Appendix C-A: As a lemma, process
{min(�−2, 4

√
Zn)} is a supermartingale, i.e.,

E [min(�−2, 4
�

Zn+1) | Fn] � min(�−2, 4
�

Zn). (26)

This will be proven in Appendix C-B: As a lemma, the fol-
lowing hold when Zn < �−8:

Zn+1 � Z
�K2

n+1/3�	·3/4
n , (27)

E [(�K 2
n+1/3�� · 3/4)−1/2 | Fn] < �−1/2+2α. (28)
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This will be proven in Appendix C-C: The een13 behavior
reads

P{Zn < exp(−en1/3
)} > 1− H0 − �(−1/2+4α)n+o(n). (29)

This will be proven in Appendix C-D: The elpin behavior
reads for any constants π, ρ > 0 such that π + ρ � 1− 8α,

P{Zn < exp(−�πnn2)} > 1− H0 − �−ρn+o(n). (30)

The last inequality is a bi-Hölder toll away from

P{Hn < exp(−�πnn)} > 1− H0 − �−ρn+o(n), ((7)’s copy)

our destination. This finishes the proof of Lemma 12.
The eigen, en23, een13, and elpin behaviors are intermediate

checkpoints pinned in a way that moving from one to the
next is easy while skipping any of them makes the next
unreachable. Their entire purpose is to form a chain that
connects the local LDP and CLT behaviors to the global MDP
behavior and we do not specify if any of them falls inside the
LDP, CLT, or MDP paradigm.

A. The Eigen Behavior

We want to prove Inequality (23), E [hα(Hn+1) | Fn] �
4�−1/2+3αhα(Hn), given the local LDP behavior and the
local CLT behavior. The idea is that, for Hn that is close
to 1/2, the local CLT behavior provides a measurement of
the dichotomy/bifurcation behavior of Hn+1. For Hn that are
close to 0, the Z -part of the local LDP behavior provides a
measurement of the attraction toward 0. For Hn that is close
to 1, the S-part handles it dually. The formal proof is below.

Inequality (23) is a local statement so we may assume
n = 0. To prove that E [hα(H1)] � 4�−1/2+3αhα(H0),
we divide it into three cases per how H0 compares to
�−2 and 1 − �−2. The mediocre case: if �−2 � H0 �
1 − �−2 then hα(H0) � �−2α. The local CLT behav-
ior implies E [hα(H1)] < 4�−1/2+α = 4�−1/2+3α�−2α �
4�−1/2+3αhα(H0) and we are done with this case. The noisy
case: if H0 > 1− �−2, we replace (H, Z , S) by (1−H, S, Z )
to dual it to the reliable case dealt below and we are done
with this case. (This is the only place in the proof where
we ever mentioned S explicitly. Nevertheless, every statement
concerning Z concerns S by duality.)

The last case—the reliable case: when H0 < �−2, we further
split it into two subcases per how K1 compares to k :=
�1/2+5α/2. For the small K1 subcase, the martingale property
fits; for the large K1 subcase, the local LDP behavior fits:

E [hα(H1)]

= E [hα(H1) | K1 � k]
k

�
+ E [hα(H1) | K1 > k]

�− k

�

� hα(E [H1 | K1 � k])
k

�
+ hα(E [H1 | K1 > k])

�− k

�
. (31)

For the K1 � k := �1/2+5α/2 subcase, the martingale
property E [H1] = H0 implies E [H1 | K1 � k] � H0�/k.
Therefore, hα(E [H1 | K1 � k])k/� � hα(H0�/k)k/� =
hα(H0)�αk−αk�−1 = hα(H0)�α�−α/2−5α2/2�1/2+5α/2�−1 �
�−1/2+3αhα(H0). And the K1 � k subcase is closed.

For the K1 > k := �1/2+5α/2 subcase, pay the explicit
Hölder toll: Z0 � q3

√
H0 < q3/� < 1. Invoke the local LDP

behavior:

E [Z1 | K1 > k] � E [� exp(qZ0�)(qZ0)�K2
1 /3�	 | K1 > k]

� � exp(qZ0�)(qZ0)k2/3� � � exp(q4)(q4
�

H0)k2/3�

= � exp(q4)(q8H0)log(�)5/6.

Pay the explicit Hölder toll for the return-trip: H1 � q3
√

Z1 �
q3�1/2 exp(q4/2)(q8H0)log(�)5/12. Now we claim and prove
that the following quantity is less than 1: (there is nothing to
show if hα(H0) = 0)

(hα(H1)/�−1/2+3αhα(H0))12/α

= H12
1 �6/α−36H−12

0 < H12
1 �6 log �−30H−12

0

� q36�6 exp(6q4)(q8H0)log(�)5�6 log �−30H−12
0

= q36+8 log(�)5e6q4
�6 log �−24H log(�)5−12

0

< q36+8 log(�)5e6q4
�6 log �−24�−2 log(�)5+24

= q36+8 log(�)5e6q4
�6 log �−1.6 log(�)5−0.4 log(�)5

� q36+8 log(�)5e6q4
�6 log �−8 log(q) log(�)4−0.4 log(�)5

= q36e6q4
�6 log �−0.4 log(�)5

= q36e6q4
�6 log �−0.1 log(�)5e−0.3 log(�)6

< q36e6q4
�6 log �−0.1 log(�)5e−0.3 log(41)2(q log 3)4

< q36e6q4
�6 log �−0.1 log(�)5e−6.02q4

< q36�6 log �−0.1 log(�)5

= e36 log q+6 log(�)2−log(�)6/30−log(�)6/15

� e36 log q+6 log(�)2−5 log(q) log(22)5/30−log(22)4 log(�)2/15

< e0 � 1.

The inequality involving 1.6 uses � � q5. The inequality
involving 0.3 uses � � max(41, 3q). The inequality involving
15 uses � � max(22, q5). We have just showed that the quo-
tient hα(H1)/�−1/2+3αhα(H0) is less than 1, with and hence
without the power of 12/α. Therefore, E [hα(H1) | K1 > k] �
�−1/2+3αhα(H0). And the K1 > k := �1/2+5α/2 subcase is
closed.

To sum up the reliable case: We bound separately the two
terms in Formula (31) by considering two subcases. Both of
them are at most �−1/2+3αhα(H1), hence their sum is at most
2�−1/2+3αhα(H1). Since Inequality (23) allows 4, let alone 2,
the reliable case is closed. And the proof of the eigen behavior,
Inequality (23), is sound when combining the three cases.

Bibliographic remarks: [43, Theorem 7] also cut the cases
at �−2 and 1− �−2. In contrast, [46, Theorem 5.1] cut at �−4

and 1 − �−4 + ε. A potential improvement is, when �−2 �
H0 < �−1, Inequality (15) will simply evaporate. Similarly,
Inequality (14) evaporates when 1 − �−1 < H0 � 1 − �−2.
They tighten the right-hand side of Inequality (10). The lesson
here is that the hard transition between local LDP and CLT
behaviors weakens the bounds.

B. Polarization in Mean
We want to prove Equality (24), namely P{Z0 → 0} =

P{H0 → 0} = 1−H0, given the martingale property and the
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eigen behavior. The idea is that the eigen behavior expels Hn

from being close to 1/2, so the only reasonable limits are 0
and 1. The formal proof is below.

As a bounded martingale {Hn} converges to an r.v.—which
we call H∞—a.s. (almost surely). This is Doob’s martingale
convergence theorem [107, Theorem 4.2.11]. Owing to hα’s
continuity, hα(Hn) → hα(H∞) a.s. Point-wise convergence
and (uniform) boundedness imply convergence in L1, i.e.,
E [hα(Hn)] → E [hα(H∞)] as n → ∞. This is Lebesgue’s
dominated convergence theorem [107, Theorem 1.6.7]. By the
eigen behavior, E [hα(Hn)] decays toward 0 by a constant
factor every time n increases, thus E [hα(H∞)] is 0. This
forces ha(H∞) = 0 a.s. and hence H∞ ∈ {0, 1} a.s. Since H∞
is Bernoulli P{H∞ = 0} = E [I{H∞ = 0}] = E [1 − H∞] ←
E [1 − Hn] = 1 − H0. So P{Hn → 0} = 1 − H0. By the
implicit bi-Hölder toll, Hn → 0 if and only if Zn → 0, thus
the latter has the same probability measure. And the proof of
Equality (24) is sound.

Bibliographic remarks: The statement Hn → H∞ ∈ {0, 1}
is usually referred to as channel polarization in spite of
that it does not guarantee the corresponding codes to be
capacity-achieving. See also [25, Proposition 10], [29, Def-
inition 3], [31, Lemma 3.8]. This lemma should have been
bestowed upon the (zeroth) fundamental theorem. But it is
not mandatory if some sort of CLT behavior is present; see
[38, Lemma 1], [43, Lemma 4], [46, Lemma 9.5]. Recently,
Reed–Muller codes’ channels are shown to polarize [108];
Reed–Muller codes achieving capacity is not a consequence,
but a different story.

C. The en23 Behavior
We want to prove P{Zn < exp(−n2/3)} < 1 − H0 −

�(−1/2+4α)n+o(n), namely Inequality (25), given the eigen
behavior and the polarization in mean. The idea is to read
off the behavior of {Hn} from the behavior of {hα(Hn)} in
the eigen behavior. The formal proof is below.

E [hα(Hn+1) | Fn] � �−1/2+4αhα(Hn) by � � e4 and the
eigen behavior. This simplifies the eigenvalue. Without loss
of generality, we rescale hα such that hα(H0) = 1. Let εn

be exp(−n3/4); note that εn � H0 � 1 − εn for n large
enough. Owing to hα’s concavity, that hα(0) = h(1) = 0,
and that hα(H0) = 1, we deduce that hα(z) � εn whenever
εn � z � 1 − εn. Consider these three events as a partition:
let An be {Hn < εn}; let Bn be {εn � Hn � 1− εn}; let Cn

be {1− εn < Hn}. Note that Bn implies hα(Hn) � εn.
Next we want to show that P(Bn) < �(−1/2+4α)n+o(n):

Telescoping leads to E[hα(Hn)] � ha(H0)�(−1/2+4α)n =
�(−1/2+4α)n. Markov’s inequality leads to P{h(Hn) � εn} �
E[h(Hn)]/εn � �(−1/2+4α)n/εn = �(−1/2+4α)n+O(n3/4) <
�(−1/2+4α)n+o(n). Therefore P(Bn) � P{h(Hn) � εn} <
�(−1/2+4α)n+o(n), as desired. Moreover, summing the geomet-
ric series leads to

�
m�n P(Bm) < �(−1/2+4α)n+o(n).

Next we show 1 − H0 − P(An) < �(−1/2+4α)n+o(n): The
left-hand side is at most the probability measure of {H∞ =
0} \ An. That is the probability that Hn was not small (not
in An) but Hn+1, Hn+1, . . . will end up converging to 0.
Note that being a martingale causes 1 − Hn+1 � �(1 − Hn),
which forbids Hn jumping from Cn directly into An+1—it

must pass by Bm for some m � n before ever landing in
Am+1. From the summation of P(Bm) over m � n we know
that very few descendants of Hn can do that; the probability
measure of {H∞ = 0} \ An is less than �(−1/2+4α)n+o(n).
Therefore 1−H0 − P(An) < �(−1/2+4α)n+o(n) and P{Hn <
exp(−n3/4)} = P(An) > 1 − H0 − �(−1/2+4α)n+o(n). Pay
the implicit bi-Hölder toll P{Zn < exp(−n2/3)} > 1 −
H0 − �(−1/2+4α)n+o(n). And the proof of the en23 behavior,
Inequality (25), is sound.

Bibliographic remarks: The functionality of this step is
translating the eigen behavior into an estimate of this general
form P{Hn < threshold} > limit − decay. In this vein are
[38, Theorem 1], [43, Lemma 4], [53, Theorem 2.5], and [46,
Lemma 9.5]. The proof presented here is not the shortest one,
but it applies to processes that are not martingale, e.g., {Zn}.
This is the case if we are given the eigen behavior of {Zn}.

APPENDIX C
THE EEN13 AND ELPIN BEHAVIORS

In this section, we continue proving Lemma 12. The previ-
ous section covers (23) to (25). We are left with (26) to (30).

A. A Supermartingale

We want to show that a certain monotonic function in Zn is a
supermartingale so we can control how frequently does Zn stay
in the turf where the local LDP behavior dominates. Making it
a supermartingale, we are able to cite Ville’s inequality [109]
(or Doob’s optional stopping theorem [107, Theorem 4.8.4])
later. The formal proof is below.

Inequality (26) is a local statement so we may assume
n = 0. To prove that E [min(�−2, 4

√
Z1)] � 4

√
Z0, we may

assume Z0 < �−8 or the inequality becomes trivial. Invoke
the local LDP behavior Z1 � � exp(qZ0�)(qZ0)�K2

1 /3�	 �
�e(qZ0)�K2

1 /3�	. The last inequality uses q � �. When K1 �√
3�, we do nothing but apply the last-resort exponent 1:

E [min(�−2, 4
�

Z1) | K1 �
√

3�] � 4
�

�eqZ0.

When K1 >
√

3�, a stronger exponent applies:

E [min(�−2, 4
�

Z1) | K1 >
√

3�]

� E
�

4
�

�e(qZ0)�K2
1 /3�	 �� K1 >

√
3�

 
� 4

�
�e(qZ0)2 = 4

�
�eq2Z0Z0

� 4
�

�eq2Z0/�8 � 4
�

eq2Z0/�7.

Combining the two cases that are cut per how K1 compares
to
√

3�, we infer that

E [min(�−2, 4
�

Z1)]

= E [ 4
�

Z1 | K1 �
√

3�]

√
3�

�
+ E [ 4

�
Z1 | K1 >

√
3�]

�−√3�

�

� 4
�

�eqZ0 ·
√

3�

�
+ 4

�
eq2Z0/�3 · �

�

=



4
�

9eq/� + 4
�

eq2/�7
�

4
�

Z0 � 4
�

Z0.

The last inequality uses � � max(50, q5). And the proof of
Inequality (26) is sound.
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Bibliographic remarks: This lemma is inspired by
[25, Proposition 9]. In [36, Lemma 22] Arıkan’s lemma is
overlooked and another is reinvented that serves the same
purpose. The latter lemma also served in [38, Theorem 3].
We generalized the idea to non-binary cases in [50, Lemma 1].
The quartic root here is an aesthetic choice; min(�−2, 2+β

√
Zn)

is also a supermartingale but only for astronomic � (depending
on q). For any non-random kernel, a small enough power
works provided that the kernel polarizes channels in the first
place.

B. A Cramér–Chernoff Gadget
Let Dn+1 be �K 2

n+1/3�� · 3/4. We want to prove Inequali-
ties (27) and (28), that Zn < �−8 implies Zn+1 � Z Dn+1

n and
E [D−1/2

n+1 | Fn] < �−1/2+2α, given the local LDP behavior.
The motivation is to reformat the local inequalities so that it
is easy to telescope for future reference. The formal proof is
below.

Both of them are local statements, hence we may assume
n = 0. When Z0 < �−8, invoke the local LDP behavior

Z1 � � exp(qZ0�)(qZ0)�K2
1 /3�	 � �e(qZ0)�K2

1 /3�	

� �e(q4Z0)�K2
1 /3�	/4Z �K2

1 /3�	·3/4
0

� �e(�−7)�K2
1 /3�	/4Z �K2

1 /3�	·3/4
0 � Z �K2

1 /3�	·3/4
0 .

The fourth inequality uses � � q4. That validates Inequal-
ity (27). For the second inequality,

E [D−1/2
1 ] =

1
�

��
k=1

�!k2

3�

"
· 3
4

�−1/2

<
1
�

√
3��

k=1

�3
4

�−1/2

+
1
�

��
k=

√
3�+1

�k2

4�

�−1/2

<
1
�

√
3�

2√
3

+
1
�

√
4�

# �

√
3�

dk

k

= 2�−1/2 + 2�−1/2 log k
����√

3�
< 2�−1/2 + 2�−1/2 log �

= 2�−1/2 + 2�−1/2+α < 4�−1/2+α < �−1/2+2α.

The last inequality uses � � e4. This validates Inequality (28).
And the proof of Inequalities (27) and (28) is sound.

C. The een13 Behavior

We want to prove P{Zn < exp(−en1/3
)} > 1 −

H0 − �(−1/2+4α)n+o(n), namely Inequality (29), given the
en23 behavior, the supermartingale property, and the Cramér–
Chernoff gadget. The idea is to apply the gadget consecutively
to show that Zn becomes smaller and smaller as n increases.
To reach the goal exp(−en1/3

), we apply
√

n times to avoid
losing too much code rate.

(Define events.) Let E0
0 be the empty event. For every

m =
√

n, 2
√

n, . . . , n − √n, we hereby define five series of
events Am, Bm, Cm, Em, and Em

0 inductively as below: Let
Am be {Zm < exp(−m2/3)}\Em−√

n
0 . Let Bm be a subevent

of Am where Zk � �−8 for some k � m. Let Cm a subevent
of Am where

Dm+1Dm+2 · · ·Dm+
√

n � �2α
√

n. (32)

Let Em be Am \ (Bm ∪ Cm). Let Em
0 be Em−√

n
0 ∪ Em.

Let am, bm, cm, em, and em
0 be the probability measures of

the corresponding capital letter events. Moreover, let gm be
1− H0 − em

0 .
(Bound bm/am from above.) Conditioning on Am, we want

to estimate the probability that Zk � �−8 for some k � m,
which is equal to the probability that min(�−2, 4

√
Zk) � �−2

for some k � m. Recall that min(�−2, 4
√

Zk) was made a
supermartingale. Hence by Ville’s inequality (see [109] or
[107, Exercise 4.8.2]), P{min(�−2, 4

√
Zk) � �−2for some

k � m | Am} � min(�−2, 4
√

Zm)�2 < exp(−m2/3/4)�2.
This is an upper bound on bm/am and will be summoned in
Formula (33).

(Bound cm/am from above.) We want to estimate how often
does Inequality (32) happen. That would be the probability
of (Dm+1Dm+2 · · ·Dm+

√
n)−1/2 � �−α

√
n. This probability

must not exceed E [(Dm+1Dm+2 · · ·Dm+
√

n)−1/2]�α
√

n =
E [D−1/2

1 ]
√

n�α
√

n = (E [D−1/2
1 ]�α)

√
n � �(−1/2+3α)

√
n by

Markov’s inequality. This is an upper bound on cm/am and
will be summoned in Formula (33).

(Bound (gm−√
n − am)+ from above.) By the definition,

gm−√
n−am = 1−H0−(em−√

n
0 +am). The definition of Am

forces it to be disjoint from Em−√
n

0 , therefore em−√
n

0 + am

is the probability measure of Em−√
n

0 ∪Am. This union event
must contain the event {Zm < exp(−m2/3)} by how Am was
defined. From the en23 behavior P{Zm < exp(−m2/3)} >
1 − H0 − �(−1/2+4α)m. Chaining all inequalities together,
we deduce that gm−√

n − am < �(−1/2+4α)m+o(m). Let
(gm−√

n − am)+ be max(0, gm−√
n − am) so we can write

(gm−√
n−am)+ < �(−1/2+4α)m+o(m). This upper bound will

be summoned in Formula (34).
(Bound en

0 from below.) We start rewriting gm with g+
m

being max(0, gm):

gm = 1− H0 − em
0 = 1− H0 − (em−√

n
0 + em)

= 1− H0 − em−√
n

0 − em = gm−√
n − em

= gm−√
n

�
1− em

am

�
+

em

am
(gm−√

n − am)

� g+
m−√

n

�
1− em

am

�
+

em

am
(gm−√

n − am)+

� g+
m−√

n

�
1− em

am

�
+ (gm−√

n − am)+

� g+
m−√

n

�bm

am
+

cm

am

�
+ (gm−√

n − am)+

< g+
m−√

n

�
exp(−m2/3/4)�2 + �(−1/2+3α)

√
n
�

(33)

+ �(−1/2+4α)m+o(m) (34)

The first four equalities are by the definitions of gm and Em
0 .

The next equality is simple algebra. The next two inequalities
are by 0 � em/am � 1. The next inequality is by the
definition of Em. The last inequality summons upper bounds
derived in the last few paragraphs. The last line contains two
terms in the big parentheses. Between them �(−1/2+3α)

√
n

dominates exp(−m2/3/4)�2 once m is greater than O(n3/4).
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Subsequently, we obtain this recurrence relation$
gO(n3/4) � 1;
gm � 2g+

m−√
n
�(−1/2+4α)

√
n + �(−1/2+4α)m+o(m).

Solve it (cf. the master theorem); we get that gn−√
n <

�(−1/2+4α)n+o(n). By the relation between en−√
n and gn−√

n,

we immediately get en−√
n

0 > 1− H0 − �(−1/2+4α)n+o(n).
(Analyze En−√

n
0 .) We want to estimate Hn when En−√

n
0

happens. More precisely, we attempt to bound Zm+
√

n when
Em happens for each m =

√
n, 2
√

n, . . . , n − √n. When
Em happens, its superevent Am happens, so we know that
Zm < exp(−m2/3). But Bm does not happen, so Zk < �−8

for all k � m. This implies that Zk+1 � Z Dk+1
k for those

k. Telescope; Zm+
√

n is less than Zm raised to the power
of Dm+1Dm+2 · · ·Dm+

√
n. But Cm does not happen, so the

product is greater than �2α
√

n. Jointly we have Zm+
√

n �
Z �2α

√
n

m < exp(−m2/3�2α
√

n). Recall that Zk+1 � �eqZk

for all k � m +
√

n so long as Zk stays below �−8,
which it does because Bm is excluded. Then telescope again;
Zn � (�eq)n−m−√

nZm+
√

n < (�eq)n exp(−m2/3�2α
√

n) <

exp(−en1/3
) provided that n is sufficiently large. In other

words, En−√
n

0 implies Zn < exp(−en1/3
).

(Summary.) Now we conclude P{Zn < exp(−en1/3
)} �

P(En−√
n

0 ) = en
0 > 1 − H0 − �(−1/2+4α)n+o(n). And hence

the proof of the een13 behavior, Inequality (29), is sound.
This subsection is parallel to [50, Section V] and also to

[46, Section 10.2]. Do not confuse this subsection with the
next. The subtlety is explained in [50, Section III].

D. The Elpin Behavior

Recall π, ρ > 0 is such that π + 2ρ � 1− 8α. We want to
prove P{Zn < exp(−�πnn2)} > 1−H0− �−ρn+o(n), namely
Inequality (30), given the een13 behavior, the supermartingale
property, and the Cramér–Chernoff gadget. The idea is to apply
the gadget consecutively to show that Zn becomes smaller and
smaller as n increases. To reach the goal exp(−�πn), we apply
as many times as possible before we run out of depth n.

(Define events.) Let A0
0 and E0

0 be the empty event. For
every m =

√
n, 2
√

n, . . . , n−√n, we hereby define six series
of events Am, Am

0 , Bm, Cm, Em, and Em
0 inductively as

follows: Let Am be {Zm < exp(−em1/3
)} \Am−√

n
0 . Let Am

0

be Am−√
n

0 ∪Am. Let Bm be a subevent of Am where Zk � �−8

for some k � m. Let Cm a subevent of Am where

Dm+1Dm+2 · · ·Dn � �πn. (35)

Let Em be Am \ (Bm ∪ Cm). Let Em
0 be Em−√

n
0 ∪ Em. Let

am, am
0 , bm, cm, em, and em

0 be the probability measures
of the corresponding capital letter events. Moreover, let fm be
1− H0 − am

0 and let gm be 1− H0 − em
0 .

(Bound bm/am from above.) Conditioning on Am, we want
to estimate the probability that Zk � �−8 for some k � m,
which is equal to the probability that min(�−2, 4

√
Zk) �

�−2 for some k � m. Recall that min(�−2, 4
√

Zk) was made
a supermartingale. Hence by Ville’s inequality (see [109] or
[107, Exercise 4.8.2]), P{min(�−2, 4

√
Zk) � �−2 for some

k � m | Am} � min(�−2, 4
√

Zm)�2 < exp(−em1/3
/4)�2.

This is an upper bound on bm/am and will be summoned in
Formula (36).

(Bound cm/am from above.) We want to estimate how
often does Inequality (35) happen. That would be the prob-
ability of (Dm+1Dm+2 · · ·Dn)−1/2 � �−πn/2. By Markov’s
inequality, this probability is at most E [D−1/2

1 ]n−m�πn/2 <
�(−1/2+2α)(n−m)�πn/2 = �(1/2−2α)m−(1/2−2α−π/2)n, and
finally, � �(1/2−2α)m−(ρ+2α)n. The final inequality uses
Inequality (6), π + 2ρ � 1 − 8α. This is an upper bound
on cm/am and will be summoned in Formula (36).

(Bound f+
m from above.) The definition of fm reads

1−H0− am
0 . Here am

0 is the probability measure of Am
0 , and

Am
0 is a superevent of Am by how the former is defined. Event

Am
0 must contain {Zm < exp(−em1/3

)} by how Am was
defined. By the een13 behavior, P{Zm < exp(−em1/3

)} >
1 − H0 − �(−1/2+4α)m+o(m). Chaining all inequalities
together, we infer that fm < �(−1/2+4α)m+o(m). Let f+

m be
max(0, fm+

√
n) so we can write f+

m < �(−1/2+4α)m+o(m).
This upper bound will be summoned in Formula (37).

(Bound en
0 from below.) We start rewriting gm − f+

m with
(fm−√

n − am)+ being max(0, fm−√
n − am):

gm − f+
m = 1− H0 − em

0 − (1 − H0 − am
0 )+

= 1− H0 − em−√
n

0 − em − (1− H0 − am−√
n

0 − am)+

= gm−√
n − em − (fm−√

n − am)+

� gm−√
n − em − em

am
(fm−√

n − am)+

� gm−√
n − em − em

am
(f+

m−√
n
− am)

= gm−√
n − f+

m−√
n

+ f+
m−√

n

�
1− em

am

�
� gm−√

n − f+
m−√

n
+ f+

m−√
n

�bm

am
+

cm

am

�
< gm−√

n − f+
m−√

n
+ �(−1/2+4α)(m−√

n)+o(m−√
n) (36)

×
�
exp(−em1/3

/4)�2 + �(1/2−2α)m−(ρ+2α)n
�

(37)

The first three equalities are by the definitions of gm and fm.
The next inequality is by 0 � em/am � 1. The next inequality
is by max(0, f − a) = max(a, f) − a � max(0, f) − a.
The next equality is simple algebra. The next inequality is
by the definition of Em. The last inequality summons upper
bounds derived in the last few paragraphs. Now the last line
contains two terms in the big parentheses. Between them,
�(1/2−2α)m−(ρ+2α)n dominates exp(−em1/3

/4)�2 once n →
∞. Subsequently, we obtain this recurrence relation$

g0 − f+
0 = 0;

gm − f+
m � gm−√

n − f+
m−√

n
+ 2�−ρn+o(n).

Solve it (cf. the Cesàro summation); we get that gn−√
n −

f+
n−√

n
< �−ρn+o(n). Once again we summon f+

n−√
n

<

�(−1/2+4α)(n−√
n)+o(n) < �−ρn+o(n); therefore gn−√

n <

�−ρn+o(n). Based on the relation between en−√
n and gn−√

n

we immediately get en−√
n

0 > 1− H0 − �−ρn+o(n).
(Analyze En−√

n
0 .) We want to estimate Zn when En−√

n
0

happens. More precisely, we attempt to bound Zn when Em
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happens for each m =
√

n, 2
√

n, . . . , n − √n. When Em

happens, its superevent Am happens, so we know that Zm <

exp(−em1/3
). But Bm does not happen, so Zk < �−8 for all

k � m. This implies Zk+1 � Z Dk+1
k for those k. Telescope; Zn

is less than Zm raised to the power of Dm+1Dm+2 · · ·Dn. But
Cm does not happen, so the product is greater than �πn. Jointly
we have Zn � Z �πn

m < exp(−em1/3
�πn) < exp(−�πnn2).

In other words, En−√
n

0 implies Zn < exp(−�πnn2).
(Summary.) Now we conclude P{Zn < exp(−�πnn2)} �

P(En−√
n

0 ) = en
0 > 1−H0− �−ρn+o(n). And hence the proof

of the elpin behavior, Inequality (30), is sound.
This subsection is parallel to [50, Section VI] and also to

[46, Section 10.3]. Do not confuse this subsection with the
previous. The subtlety is explained in [50, Section III].

As we finish proving Inequalities (23) to (30), we finish the
proof of Lemma 12. Lemmas 12 to 14 are all finished. This
is the last sentence of the proof of the main theorem.

APPENDIX D
WHEN BINARY AND SYMMETRIC

In this appendix, we list some simplifications of the nota-
tions and the proofs when W is BDMC and symmetric
(or asymmetric but with uniform input).

We have H(W )+ I(W ) = 1. Since there is no need to add
dummy symbols, W remains what it was after Section II.

In Section III, the DUs in the decoder can either pass a pos-
teriori probabilities or log-likelihood ratios, whichever is easier
to imagine. Since the input is uniform, the flattening channel
W� is completely noisy. Ergo, its synthetic descendants W

(i)
� ,

(W (i)
� )(j), ((W (i)

� )(j))(k), et seq. are all completely noisy. The
frozen bits are either fair, independent coin tosses or some
fixed values (for asymmetric channels the choice matters). The
encoder falls back into the usual matrix multiplication.

The selection of information bits, I, depends solely on
whether H



(· · · (W (k1)) · · · )(kn)

�
< θn or not, and not on

1−H


(· · · (W (k1)

� ) · · · )(kn)
�

< θn anymore because the test
always passes. For the same reason, the channel process {Vn}
is constantly, completely noisy. Thus the last two inequalities
of Claim 11 are pointless.

Zmad becomes Z; so FTPCZ is just [27, Lemma 10]. To the
S-end, the character χ is the alternating character χ(x) =
(−1)x. The Fourier coefficients are:%

M(0 | y)
M(1 | y)

&
:=

%
1 1
1 −1

& %
W (0 | y)
W (1 | y)

&
The inverse of the Hadamard matrix is half of itself. Note
that M(0 | y) is always (for all channels) 1 because that
is the sum of probabilities. Note also that |M(1 | y)| =�

x∈F2
|W (x | y) − 1/2| = 1 − 2 maxx∈F2 W (x | y); so

S = Smax coincide with T = 1 − 2Pe. Beyonds these,
the proof of FTPCS does not change too much.

In the local LDP behavior, the q’s in Eq. (8) can be dropped:
Zmad(W (i)

G
) � � exp(Zmad(W )�)(Zmad(W ))�i

2/3�	. Same
applies to Eq. (9). This is because they are, in fact, (q− 1) in
the proof; we prefer q over q − 1 to save spaces. As for the
proof, since q = 2 is the tightest case to begin with, the proof

does not simplify too much. (Besides that we do not have to
mention Kullback–Leibler divergence.)

Other than that the symmetrization trick is unnecessary, both
the statement and the proof of the local CLT behavior stays
unchanged. None of Chang–Sahai, Gallager, or Hayashi’s
argument is designed for any particular q, we believe. Like-
wise, the global MDP machinery is designed to deal with
abstract processes {Hn}, {Zn}, and {Sn}; it has little to do
with q and symmetry.

APPENDIX E
CONSTANTS DEPENDENCE SUMMARY

Take a discrete memoryless channel W . The sender chooses
the message alphabet size ς � 2. Depending on the factoriza-
tion of ς , we choose q to be a certain prime power or alternate
between q2, q3, q5, . . . (a finite list depending on ς). Fix a q.
Given constants π, ρ > 0 such that π + 2ρ < 1; fix them.
Choose �; this also determines α := log(log �)/ log �. The
choice of � is such that π+2ρ � 1−8α and such that the failing
probabilities in Lemmas 13 and 14 do not sum to 1. It depends
on q, π, ρ. Once � is fixed, the complexity is a function in n
(or in N = �n). The asymptotic complexity O(N log N) hides
the scalar term that is determined by q and �. The decaying
gap �−ρn+o(n) in Claim 11 and Lemma 12 hides two things:
A scalar term in front of � determined by q and � alongside
with a O(n1−ε) term in the exponent determined by the choice
of en23 and een13 checkpoints. This ε is fixed throughout the
paper and is irrespective of ς, π, ρ, q, �.
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