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Minimum Description Length Principle in
Supervised Learning With Application to Lasso

Masanori Kawakita and Jun’ichi Takeuchi, Member, IEEE

Abstract— The minimum description length (MDL) principle
is extended to supervised learning. The MDL principle is a
philosophy that the shortest description of given data leads to the
best hypothesis about the data source. One of the key theories for
the MDL principle is Barron and Cover’s theory (BC theory),
which mathematically justifies the MDL principle based on two-
stage codes in density estimation (unsupervised learning). Though
the codelength of two-stage codes looks similar to the target
function of penalized likelihood methods, parameter optimization
of penalized likelihood methods is done without quantization of
parameter space. Recently, Chatterjee and Barron have provided
theoretical tools to extend BC theory to penalized likelihood
methods by overcoming this difference. Indeed, applying their
tools, they showed that the famous penalized likelihood method
‘lasso’ can be interpreted as an MDL estimator and enjoys
performance guarantee by BC theory. An important fact is that
their results assume a fixed design setting, which is essentially the
same as unsupervised learning. The fixed design is natural if we
use lasso for compressed sensing. If we use lasso for supervised
learning, however, the fixed design is considerably unsatisfactory.
Only random design is acceptable. However, it is inherently
difficult to extend BC theory to the random design regardless of
whether the parameter space is quantized or not. In this paper,
a novel theoretical tool for extending BC theory to supervised
learning (the random design setting and no quantization of
parameter space) is provided. Applying this tool, when the
covariates are subject to a Gaussian distribution, it is proved
that lasso in the random design setting can also be interpreted
as an MDL estimator, and that lasso enjoys the risk bound of BC
theory. The risk/regret bounds obtained have several advantages
inherited from BC theory. First, the bounds require remarkably
few assumptions. Second, the bounds hold for any finite sample
size n and any finite feature number p even if n � p. Behavior
of the regret bound is investigated by numerical simulations.
We believe that this is the first extensions of BC theory to
supervised learning (random design).

Index Terms— Lasso, risk bound, regret bound, random
design, MDL principle, supervised learning, penalized likelihood.
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I. INTRODUCTION

THE minimum description length (MDL) principle is a
philosophy that the shortest description of given data

leads to the best hypothesis about the data source. Barron and
Cover’s theory (BC theory) is a seminal work on the MDL
principle, which firstly gives a quantitative representation
of the MDL principle based on two-stage codes in density
estimation (unsupervised learning). More concretely, it states
an inequality

statistical risk of an estimator induced by a two-stage code

≤ redundancy of the code. (1)

Statistical risk measures the discrepancy between the true
distribution generating data and the probability distribution
used to encode the data in the two-stage code. This inequality
guarantees that finding a code that has small redundancy
(description length) leads to a small risk bound. This mathe-
matically justifies the MDL principle. A common goal recog-
nized in the MDL community is to generalize BC theory
to wider estimation problems or estimators. Some major
progress has been made for penalized likelihood methods.
Penalized likelihood methods are now one of the important
estimation methods in many fields including statistics, machine
learning and information theory. They include many types of
estimators, e.g. kernel methods, sparse learning, compressed
sensing, graph estimation, learning of neural network and
so on. There is a similarity between two-stage codes and
penalized likelihood methods as follows. When a parametric
model {pθ(xn)|θ ∈ Θ} is employed, a two-stage code encodes
data xn as follows. First of all, we prepare a countable
subset �Θ by quantizing the parameter space Θ (i.e., �Θ ⊂ Θ).
The two-stage code encodes the parameter θ̃ ∈ �Θ in order
to specify probability distribution pθ̃(x

n) that is used to
encode the data xn. Then the data xn is encoded using the
probability distribution pθ̃(x

n). The resulting codelength is the
sum of data description length − log pθ̃(x

n) and parameter
description (or often called ‘model description’) length L̃(θ̃).
In order to minimize the codelength, the parameter θ̃ and the
quantization �Θ should be chosen such that the codelength is
as short as possible. As a result, for a given quantization �Θ,
the codelength of the two-stage code can be written as

codelength of two-stage code = min
θ̃∈�Θ

�
− log pθ̃(x

n) + L̃(θ̃)
�
.
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This codelength looks similar to the minimized target function
(penalized likelihood) of penalized likelihood methods

negative penalized likelihood=min
θ∈Θ

{− log pθ(xn) + Pen(θ)} ,

where Pen(θ) is a penalty function. A major difference
between two-stage codes and penalized likelihood methods
is in the quantization of the parameter space for two-stage
codes. Several references [3], [4], [17] proposed theoretical
tools to extend BC theory to penalized likelihood methods
by overcoming the difference. In general, we need to have
the following two conditions satisfied in order to extend BC
theory to a certain estimator (or estimation problem) other than
density estimation.

Definition 1 (BC-Proper MDL Estimator): We say that an
estimator is a ‘BC-proper MDL estimator’ if the following two
conditions are satisfied.

Condition 1: The estimator can be exactly interpreted as an
MDL estimator. In other words, the target function
minimized by the estimator can be interpreted as
codelength of a prefix code.

Condition 2: The estimator has a risk bound such that
its statistical risk is bounded by redundancy-type
quantity like (1) through a kind of BC theory.

Even if a risk bound of the form such as (1) is obtained
by applying BC theory, the redundancy-type quantity cannot
be exactly interpreted as the redundancy unless Condition
1 is satisfied. However Conditions 1 and 2 are independent
in general. Hence we can say that the justification of the
MDL principle by BC theory is successfully extended to
the estimator if both conditions are satisfied. We refer to
such an estimator as ‘BC-proper MDL estimator’ since BC
theory properly holds for the estimator. Chatterjee and Barron
provided two convenient sufficient conditions for the above
conditions, respectively, in case of penalized likelihood, which
are named ‘codelength validity’ for Condition 1 and ‘risk
validity’ for Condition 2. By these tools, they succeeded
in showing that lasso [34] is a BC-proper MDL estimator
under certain conditions. Note that codelength validity does
not necessarily imply risk validity and vice versa. Lasso is an
important estimation method in many areas including variable
selection [34], compressed sensing [15], graph estimation [22],
learning of neural networks [27] and so on. An important
fact is that their results postulate the fixed design setting. In
the fixed design setting, the purpose is not estimation of the
conditional distribution p(yn|xn) but a single density of yn

for a specific xn. That is, the estimation problem in the fixed
design setting is in the framework of unsupervised learning
(we use the term ‘unsupervised learning’ as the problem to
estimate an unconditional probability distribution although it
is sometimes used for nonprobabilistic learning problems). The
fixed design is natural if we use lasso for compressed sensing.
If we use lasso for supervised learning, however, the fixed
design is considerably unsatisfactory. Only random design is
acceptable. However, it is essentially difficult to extend their
result to the random design setting. The difficulty arises from a
certain property of BC theory itself, which will be explained in
Section III-B. In the end, extension of BC theory to supervised

TABLE I

HISTORY OF THE SPREAD OF THE MDL PRINCIPLE. PLM DENOTES
PENALIZED LIKELIHOOD METHODS

setting is difficult regardless of whether the parameter space
is quantized or not. To our knowledge, Yamanishi [35] is the
only work to apply BC theory to supervised setting in a certain
limited situation where the drawback stemming from the above
property is not so severe. This history is summarized in Table I.
There may be no literature to extend the MDL world (the
set of BC-proper MDL estimators) to penalized likelihood in
supervised setting. In the remainder part of this paper, we use
the word ‘supervised learning’ as penalized likelihood in the
random design setting.

Our main target is to extend the MDL world to supervised
learning. We provide extension of codelength validity and the
risk validity to supervised learning. Our extension may give a
tight risk bound such as (1) by overcoming the above difficulty
ingeniously. Roughly speaking, the obtained risk bound is of
the form

statistical risk ≤ redundancy + negligibly small term,

which also approximately guarantees Condition 2. When the
covariates are subject to a Gaussian distribution, it will be
proved by this extension that lasso is a BC-proper MDL
estimator even in the random design setting. We believe that
our work is the first work that extends BC theory to penalized
likelihood in the random design setting.

A. Risk Bound for Lasso

In the process of proving Condition 2, a risk bound such
as (1) is obtained. We briefly compare this bound with
the bounds derived in past studies. There have been many
studies about theoretical properties of lasso. Most of such
studies have evaluated either the following three aspects of
lasso.

1) Prediction accuracy of the estimated regression function
f̂(x) for the future sample x, y.

2) Estimation accuracy of the parameter itself.
3) Consistency of feature selection. This is also called

‘support estimation’.

Since lasso is known also as a feature selection method, there
are many studies about consistency of the feature selection.
However, our interest in this paper is in prediction accuracy
(statistical risk). Thus, we compare our analysis with several
past studies that treated prediction accuracy of lasso, which
include [6], [12], [13]. Since accuracy of parameter estimation
implies prediction accuracy to some extent, we add a famous
reference [38] which treated accuracy of parameter estimation
and feature selection. A comparison between our setting and
such studies is summarized in Table II. In lasso, the ordinary �1
norm �θ�1 =

�m
j=1 |θj | is used as a penalty function Pen(θ).

In contrast, several references including this paper employ
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TABLE II

COMPARISON OF PAST STUDIES ABOUT LASSO WITH OUR ANALYSIS. THE TERM ‘DESIGN’ INDICATES THE SETTING OF LASS IS EITHER ‘FIXED
DESIGN’ OR ‘RANDOM DESIGN’. THE TERM ‘BOUNDEDNESS’ INDICATES SOME KINDS OF BOUNDEDNESS ON COVARIATES. IN CASE OF THE

FIXED DESIGN, THIS TERM INDICATES CONDITIONS THAT ARE IMPOSED ON THE COVARIATES DATA. THE TERM ‘MODEL’ INDICATES

THAT THE ASSUMPTION ABOUT THE REGRESSION FUNCTION E[Y |X]

the weighted �1 penalty with certain specific weights. We
can prove that the lasso with this weighted norm is exactly
equivalent to the ordinary lasso after column normalization.
The term ‘column normalization’ means normalizing the data
matrix so that each column (covariate) has unit variance. See
Section III-B for the details. The column normalization is both
practically and theoretically important. It is usual that the given
data matrix is normalized as having zero mean and unit vari-
ance (column normalization) when we apply lasso to practical
data. If not, the computation algorithm may be unstable so that
the accuracy of solution may be also unstable. To our knowl-
edge, some kind of column normalization assumption are
necessary also for theoretical analysis. Past studies imposed
either column normalization or boundedness on covariates in
the random design setting. Even in the fixed design setting,
the derived bounds is usually somehow sensitive to the sample
variance of covariates. More concretely, tightness of risk
bound depends severely on that upper bound of covariates. In
addition, it is hard to know the true upper bound of covariates
in practice. Taking these into account, column normalization
(or equivalently the weighted �1 penalty) is more favorable.
Actually, our analysis gives a tighter risk bound to lasso with
the weighted �1 penalty than lasso with the ordinary �1 penalty.
Furthermore, we can’t prove Condition 1 for lasso with the
ordinary �1 penalty (though we can’t interpret it as an MDL
estimator) in contrast to the weighted �1 penalty. As a result,
column normalization is more favorable in view of MDL.

Furthermore, a remarkable property of our risk bound is
that the number of required assumptions are quite fewer
and simpler compared to other studies. Many of the past
studies impose various complicated or technical conditions
other than the boundedness of covariates. Some of them are
quite hard to check. In contrast, our assumptions are simple.
Another remarkable fact is that most past results include
several constants that cannot be easily determined. As seen
in Table II, Bunea et al. derived an upper bound of loss
function for finite n,m. However their result essentially shows
just the asymptotic order of the loss function because the
bound includes an undetermined scaling factor. The bounds
derived by Zhang and Bickel et al. also include constants
which cannot be determined easily because of computational
difficulty. Although the bound derived by Bartlett et al. has
no such constants, their result is not guaranteed to hold for
finite n,m. Our bound has also no such constants and holds
for finite n,m. This is the reason why we cannot compare
our risk bound fairly with other past risk bounds in numerical
simulations.

The paper [6] gives a risk bound to lasso in random design
with the ordinary �1 penalty that looks similar to our risk
bound. While most of the references before Bartlett et al. [6]
gives a risk bound that involves the sparsity directly, the risk
upper bounds derived in this paper and by Bartlett et al. has the
form of the target function of lasso. Bartlett et al. assumes the
boundedness of covariates and asymptotic situation (n,m →
∞ such that logm = o(n)) while the regression model is free
and the required condition of noise is only sub-Gaussianity.
In contrast, we impose the Gaussianity on both covariates and
noise while the boundedness of covariates is not necessary
and the risk bound holds for any finite n,m. Another major
difference is in the loss function. Bartlett et al. used the
mean squared error as a loss function, while we use Rényi
divergence.

B. Organization of the Paper

This paper is organized as follows. Section II introduces a
definition of MDL estimators. We briefly review the original
BC theory for density estimation in Section III-A. Section III-
B summarizes the extension of BC theory to penalized likeli-
hood estimators. We also explain the reason why the original
BC theory and also its extension are difficult to be applied
to supervised setting (random design) regardless whether the
parameter space is quantized or not. Some devised technical
tools will be provided to extend BC theory to the supervised
learning in IV-A. Using them, lasso in the random design
setting will be proved to be a BC-proper MDL estimator in
Section IV-B. Section V contains numerical simulations. All
proofs of our results are given in Section VI. A conclusion will
appear in Section VII. In this paper, we use many complicated
mathematical symbols. For reader’s convenience, a glossary
will be given in Appendix.

II. MDL ESTIMATORS IN SUPERVISED LEARNING

First we review the definition of MDL estimators for density
estimation. Suppose that we have n training data yn := {yi ∈
Y |i = 1, 2, · · · , n} generated from p∗(yn) =

�n
t=1 p∗(yt),

where p∗ is a probability density function over Y with a
certain reference measure. Here we assume the data source
is independently and identically distributed (i.i.d.) for sim-
plicity, but it is not important. We assume that Y could be
continuous or countable. Let us consider the estimation of p∗
using a hypothesis set {pθ|θ ∈ Θ}, where pθ is a density over
Y and the parameter set Θ ⊂ R

m is assumed to be convex.
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In general, an MDL estimator for θ based on a two-stage code
is defined as

θ̈ = θ̈(yn) = arg min
θ̃∈Θ̃

�
− log pθ̃(y

n) + L̃(θ̃)
�
. (2)

Here �Θ is a countable set, which is obtained by quantizing Θ
appropriately and L̃(θ̃) is a codelength function over �Θ which
satisfies the Kraft’s inequality:	

θ̃∈Θ̃

exp(−L̃(θ̃)) ≤ 1.

The first term of the right side of (2) is called as the data
description length and the second the parameter (model)
description length. Note that we employ ‘nat’ for the unit
for the codelength, then we have e in the Kraft’s inequality.
In quantization of typical applications, each coordinate of
θ is discretized as its precision is O(1/

√
n), which yields

L̃(θ̈) = (m/2) logn + O(1) and the total codelength of the
two-part code is

− log pθ̈(y
n) +

m

2
logn+O(1).

This is known as the MDL criterion for the statistical model
selection, in which the second term works as a regularization
term among many parametric models.

Let us write the minimum description length attained by the
two-stage code as

L̃2(yn) := − log pθ̈(y
n) + L̃(θ̈). (3)

It is important that L̃2 satisfies Kraft’s inequality with respect
to yn as shown below, where we assume Y is countable.	

yn

exp
�
−L̃2(yn)

�
=

	
yn

exp


−min

θ̃∈�Θ

�
− log pθ̃(y

n) + L̃(θ̃)
��

=
	
yn

max
θ̃∈�Θ

�
exp

�
log pθ̃(y

n) − L̃(θ̃)
��

≤
	
yn

	
θ̃∈�Θ

exp
�
log pθ̃(y

n) − L̃(θ̃)
�

=
	
θ̃∈�Θ

	
yn

pθ̃(y
n) exp

�
−L̃(θ̃)

�
=

	
θ̃∈�Θ

exp
�
−L̃(θ̃)

�
≤ 1.

This implies that p̃2, which is defined below, is a sub-
probability distribution over Y n.

p̃2(yn) = exp(−L̃2(yn)) = pθ̈(y
n) exp(−L̃(θ̈)).

Next, we consider MDL estimators for supervised learning.
Suppose that we have n training data (xn, yn) := {(xi, yi) ∈
X × Y |i = 1, 2, · · · , n} generated from p̄∗(xn, yn) =
q∗(xn)p∗(yn|xn), where X is a domain of feature vector
x and Y could be 	 (regression) or a finite set (classi-
fication) according to target problems. Here the sequence
(x1, y1), (x2, y2), · · · is not necessarily i.i.d. but can be a
stochastic process in general. We write the jth component of
the ith sample as xij . To define an MDL estimator according

to the notion of two-stage code [30], we need to describe data
itself and a statistical model used to describe the data too.
Letting L̃(xn, yn) be the codelength of the two-stage code to
describe (xn, yn), L̃(xn, yn) can be decomposed as

L̃(xn, yn) = L̃(xn) + L̃(yn|xn)

by the chain rule. Since a goal of supervised learning is to
estimate p∗(yn|xn), we need not estimate q∗(xn). In view of
the MDL principle, this implies that L̃(xn) (the description
length of xn) can be ignored. Therefore, we only consider
the encoding of yn given xn hereafter. This corresponds to a
description scheme in which an encoder and a decoder share
the data xn. To describe yn given xn, we use a parametric
model pθ(yn|xn) with parameter θ ∈ Θ. The parameter space
Θ is a certain continuous space or a union of continuous
spaces. Note that, however, the continuous parameter cannot
be encoded. Thus, we need to quantize the parameter space
Θ as �Θ(xn). According to the notion of the two-stage code,
we need to describe not only yn but also the model used
to describe yn (or equivalently the parameter θ̃ ∈ �Θ(xn))
given xn. Again by the chain rule, such a codelength can be
decomposed as

L̃(yn, θ̃|xn) = L̃(yn|xn, θ̃) + L̃(θ̃|xn).

The term L̃(yn|xn, θ̃) expresses a codelength to describe yn

using pθ̃(y
n|xn), which is, needless to say, − log pθ̃(y

n|xn).
On the other hand, L̃(θ̃|xn) expresses a codelength to describe
the model pθ̃(y

n|xn) itself. Note that L̃(θ̃|xn) must satisfy
Kraft’s inequality 	

θ̃∈�Θ(xn)

exp(−L̃(θ̃|xn)) ≤ 1.

The MDL estimator is defined by the minimizer of the above
codelength:

θ̈(xn, yn) := arg min
θ̃∈�Θ(xn)

�− log pθ̃(y
n|xn) + L̃(θ̃|xn)


.

Let us again write the minimum description length attained by
the two-stage code as

L̃2(yn|xn) := − log pθ̈(y
n|xn) + L̃(θ̈|xn). (4)

Here L̃2 also satisfies the Kraft’s inequality with respect to yn

for each xn because	
yn

exp
�
−L̃2(yn|xn)

�
=

	
yn

exp

�
− min

θ̃∈�Θ(xn)

�
− log pθ̃(y

n|xn) + L̃(θ̃|xn)
��

=
	
yn

max
θ̃∈�Θ(xn)

�
exp

�
log pθ̃(y

n|xn) − L̃(θ̃|xn)
��

≤
	
yn

	
θ̃∈�Θ(xn)

exp
�
log pθ̃(y

n|xn) − L̃(θ̃|xn)
�

=
	

θ̃∈�Θ(xn)

	
yn

pθ̃(y
n|xn) exp

�
−L̃(θ̃|xn)

�
=

	
θ̃∈�Θ(xn)

exp
�
−L̃(θ̃|xn)

�
≤ 1. (5)
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Hence it is interpreted as a codelength of a prefix two-stage
code. Therefore,

p̃2(yn|xn) := exp(−L̃2(yn|xn)) (6)

is a conditional sub-probability distribution corresponding to
the two-stage code. Finally, we remark that any symbols with
tilde like L̃ is related to the case where the parameter space
is quantized. If the same symbol does not have the tilde,
the symbol corresponds to its counterpart in the case where
the parameter space is not quantized.

III. BARRON AND COVER’S THEORY

We briefly review Barron and Cover’s theory (BC theory)
in density estimation and its extension to penalized likelihood
methods in the fixed design setting. Furthermore, we will
explain why such an extension is difficult for the random
design setting.

A. Barron and Cover’s Theory for Density Estimation

In BC theory, the Rényi divergence [29] between p(y) and
r(y) with order λ ∈ (0, 1)

dn
ι(p, r) = − 1

1 − λ
logEp(yn)



r(yn)
p(yn)

�1−ι

(7)

is used as a loss function. See [21] for several properties
of the Rényi divergence. The Rényi divergence converges to
Kullback-Leibler (KL) divergence

Dn(p, r) :=
�
p(yn)



log

p(yn)
r(yn)

�
dyn (8)

as λ→ 1, i.e.,
lim
ι→1

dn
ι(p, r) = Dn(p, r) (9)

for any p and any r. We also note that the Rényi divergence
at λ = 0.5 is equal to Bhattacharyya divergence [11]

dn
0.5(p, r) = −2 log

� �
p(yn)r(yn)dyn. (10)

We drop n of each divergence like dι(p, r) if it is defined
with a single random variable, i.e.,

dι(p, r) = − 1
1 − λ

logEp(y)



r(y)
p(y)

�1−ι

.

BC theory requires the model description length to satisfy a
little bit stronger Kraft’s inequality defined as follows.

Definition 2: Let β be a real number in (0, 1). We say that
a function h(θ̃) satisfies β-stronger Kraft’s inequality if	

θ̃

exp(−βh(θ̃)) ≤ 1,

where the summation is taken over a range of θ̃ in its context.
BC theory [2] gives the following two theorems. Though

these theorems were shown only for the case of Hellinger
distance in the original paper [2], we state them with the Rényi
divergence.

Theorem 1: Let β be a real number in (0, 1). Assume that
L̃ satisfies β-stronger Kraft’s inequality. Then

1
n
Ep∗(yn)d

n
ι(p∗, pθ̈)

≤ 1
n
Ep∗(yn)

�
inf
θ̃∈Θ̃

�
log

p∗(yn)
pθ̃(yn)

+ L̃(θ̃)
��

(11)

=
1
n
Ep∗(yn) log

p∗(yn)
p̃2(yn)

(12)

for any λ ∈ (0, 1 − β].
Theorem 2: Let β be a real number in (0, 1). Assume that

L̃ satisfies β-stronger Kraft’s inequality. Then

Pr
�dn

ι(p∗, pθ̈)
n

− 1
n

log
p∗(yn)
p̃2(yn)

≥ τ
�
≤ e−nτβ (13)

for any λ ∈ (0, 1 − β].
The right side of (12) is the redundancy of the two-stage

code. Similarly, the second term of the left side of (13) is
the regret of the two-stage code. Therefore, both theorems
claim that small redundancy/regret leads to the small bound on
statistical risk of the estimator θ̈. This is the first and the most
essential mathematical justification of the MDL principle as
ever. Prominently, both theorems hold in a variety of situation
because no noisy assumptions are necessary.

Remark: About (11) of Theorem 1, by exchanging expec-
tation and infimum, we have

1
n
Ep∗(yn)

�
inf
θ̃∈Θ̃

�
log

p∗(yn)
pθ̃(yn)

+ L̃(θ̃)
��

≤ inf
θ̃∈Θ̃

1
n
Ep∗(yn)

�
log

p∗(yn)
pθ̃(yn)

+ L̃(θ̃)
�

= inf
θ̃∈Θ̃

�
Dn(p∗, pθ̃)

n
+
L̃(θ̃)
n

�

The right side is “the index of resolvability of p∗” introduced
in [2], which expresses the trade off between approximation
error and the complexity of the used model. This is particularly
important when the true distribution p∗ does not belong to the
model {pθ}, but the situation is out of scope of this paper.
Hence, we do not discuss it in detail.

Both theorems can be proved by the following lemma.
Lemma 1: Let β be a real number in (0, 1). Assume that

L̃ satisfies β-stronger Kraft’s inequality. Let θ̇ be an arbitrary
function from Y n to Θ̃. Then,

Ep∗(yn) exp
�
βdn

ι(p∗, pθ̇) − β log
p∗(yn)
pθ̇(yn)

− βL̃(θ̇)
�
≤ 1

(14)

holds for any λ ∈ (0, 1 − β].
By letting θ̇ be θ̈ and by using the Jensen’s inequality,

we have Theorem 1. Similarly, usage of Markov’s inequality
yields Theorem 2.
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Proof of Lemma 1: We can assume λ = 1 − β, since the
Rényi divergence is increasing in λ. We have

Ep∗(yn) exp
�
βdn

ι(p∗, pθ̇) − β log
p∗(yn)
pθ̇(yn)

− βL̃(θ̇)
�

≤Ep∗(yn)

	
θ̃

exp
�
βdn

ι(p∗, pθ̃) − β log
p∗(yn)
pθ̃(yn)

− βL̃(θ̃)
�

≤
	

θ̃

exp
�
−βL̃(θ̃) + βdn

ι(p∗, pθ̃)
�
Ep∗(yn)

�pθ̃(y
n)

p∗(yn)

�1−ι

≤
	

θ̃

exp
�
−βL̃(θ̃)

�
≤ 1.

In the last line, we have used

Ep∗(yn)

�pθ̃(y
n)

p∗(yn)

�1−ι

= exp
�
−βdn

ι(p∗, pθ̃)
�
, (15)

which cancels the factor exp(βdn
ι(p∗, pθ̃)) in the second last

line. This is a key trick of BC theory.
We would like to note that Lemma 1 can be stated with

exponential stochastic inequality (ESI) notation that was intro-
duced by [25]. For any pair of random variables (U,U �) sub-
ject to a probability distribution p and any positive real number
b ∈ 	, the notation U�p

b U
� denotes Ep[exp(b(U−U �))] ≤ 1.

Using the definition, (14) can be written as

dn
ι(p∗, pθ̇) �p∗

β log
p∗(yn)
p̃2(yn)

. (16)

Since Theorems 1 and 2 are immediately obtained from
Lemma 1, ESI notation (16) is a simple device to summarize
both theorems. However, in the main content of this paper,
our results are a little more complicated statements in the risk
bound. Hence, we cannot use ESI notations as itself. Hence
we do not employ the ESI notation hereafter.

The theorems and their proofs in this subsection are more
sophisticated ones compared to the original form by Barron
and Cover. In particular, the expectation form (Theorem 1)
was established in 1999 in Ph.D thesis of Li [28], who is
a former student of Barron. Also in 2004, Zhang [36] gave
the essentially same result and proof with certain generalized
results. In 2009, Zhang [37] gave the more general results
including the probability form (Theorem 2). See a historical
note by Grünwald (in p. 483, [23]) for more detailed history.

B. Barron and Cover’s Theory for Penalized Likelihood

Since 2008, Barron et al. [3], Barron and Luo [4], and
Chatterjee and Barron [17] have been developing a framework
to enhance BC theory to penalized likelihood methods with-
out quantization of parameters, essentially for unsupervised
setting. Here we briefly review their contributions. For their
purpose, they introduced notions called codelength validity
and risk validity of penalty functions. When the employed
penalty function satisfies both notions of validity, we can show
that the considered penalized likelihood estimator

θ̂(yn) := arg min
θ∈Θ

{− log pθ(yn) + L(θ)} (17)

is a BC-proper MDL estimator. The penalty function is written
as L(θ) here instead of Pen(θ) because we try to interpret

this term as a counterpart of codelength L̃. However Θ is
a continuous space so that θ cannot be encoded. Thus,
L(θ) is not codelength (needless to say, it does not satisfy
Kraft’s inequality) but just a penalty function. This implies
that pθ̂(y

n) exp(−L(θ̂)) is not necessarily a sub-probability
density function in general.

Codelength validity is defined as follows.
Definition 3 (Codelength Validity): Suppose that there exist

a quantized parameter space Θ̃ (a countable set) and a code-
length function L̃ over Θ̃ which satisfies Kraft’s inequality,
such that

∀n ≥ 1, ∀yn ∈ Y n,

min
θ∈Θ

{− log pθ(yn) + L(θ)} ≥ min
θ̃∈�Θ

�
− log pθ̃(y

n) + L̃(θ̃)
�
.

Then, L is said to be codelength valid.
Suppose that L is codelength valid. Since the right side

satisfies Kraft’s inequality as a function of yn, the left side also
satisfies Kraft’s inequality. Hence this is a sufficient condition
for Condition 1. This implies that pθ̂(y

n) exp(−L(θ̂)) is a
sub-probability density over Y n. See Section IV-A for more
details about how the codelength validity works. Though the
explanation there is described for supervised learning, its
essence is the same.

The following is risk validity.
Definition 4 (Risk Validity for Density Estimation): Sup-

pose that there exist a quantized parameter space Θ̃ (a count-
able set) and a codelength function L̃ over Θ̃ which satisfies
β-stronger Kraft’s inequality (0 < β < 1), such that

∀n ≥ 1, ∀yn ∈ Y n,

max
θ∈Θ

�
dn

ι(p∗, pθ) − log
p∗(yn)
pθ(yn)

+ L(θ)
�

≤ max
θ̃∈Θ̃

�
dn

ι(p∗, pθ̃) − log
p∗(yn)
pθ̃(yn)

+ L̃(θ̃)
�
. (18)

Then, L is said to be risk valid.
Now suppose that L is risk valid. Let V (yn, θ) and Ṽ (yn, θ̃)

denote the inside of max of the left and right sides of (18),
respectively. For any function θ̇ : Y n → Θ, we have

Ep∗(yn) exp(βV (yn, θ̇)) ≤ Ep∗(yn) exp(βmax
θ∈Θ

V (yn, θ))

≤ Ep∗(yn) exp(βmax
θ̃∈�Θ

Ṽ (yn, θ̃))

≤ 1.

The second inequality is obtained by the risk validity, while
the last inequality is obtained by Lemma 1. This yields the
similar risk bound for θ̂ as Theorems 1 and 2 by the same
way. Further if L is codelength valid, the right sides of the
bounds are interpreted as redundancy and regret, respectively.
Then, we have an extension of BC theory for penalized
likelihood methods. Similarly as for codelength functions, the
corresponding penalty functions are desirable to be as small as
possible. Hence, the remainder task is to obtain small penalty
functions which are codelength and risk valid. In [3], [4],
and [17], various penalized maximum likelihood estimators are
considered. For example in [17], they obtain penalty functions
with codelength and risk validity for the graphical lasso, which
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is an estimator for multivariate Gaussian distributions with �1-
penalty.

They also considered the lasso too. We guess that many
readers can hardly understand the difference between their
analysis and our analysis of this paper immediately. Thus we
introduce their result first by using notation which makes the
difference clear. As is well known, lasso can be interpreted
as a penalized likelihood method. The readers unfamiliar to
lasso can refer to the head of Section IV-B. Its likelihood
is not pθ(yn) but a conditional likelihood pθ(yn|xn). In the
analysis, they fixed xn to a specific value through learning and
validation processes. This setting is called supervised learning
in fixed design setting in machine learning. It means that xn

does not play nothing more than the role of index which
specifies the hypothesis class {pθ(yn|xn)|θ ∈ Θ}. Hence the
fixed design setting is equivalent to the unsupervised learning
(density estimation). Thus, the above discussion for density
estimation holds for the the fixed design setting as follows. For
evaluation of lasso in [17], the Rényi divergence was defined
for given xn as

dn
ι(p, r|xn) = − 1

1 − λ
log

�
p(yn|xn)



r(yn|xn)
p(yn|xn)

�1−ι

dyn.

(19)
Further the risk validity condition (18) is simply modified as
follows.

Definition 5 (Risk Validity for Fixed Design): For given
xn, suppose that there exist a quantized parameter space Θ̃
(a countable set) and a codelength function L̃ over Θ̃ which
satisfies β-stronger Kraft’s inequality (0 < β < 1), such
that

∀n ≥ 1, ∀yn ∈ Y n,

max
θ∈Θ

�
dn

ι(p∗, pθ|xn)−log
p∗(yn|xn)
pθ(yn|xn)

−L(θ|xn)
�

≤ max
θ̃∈�Θ(xn)

�
dn

ι(p∗, pθ̃|xn)−log
p∗(yn|xn)
pθ̃(yn|xn)

−L̃(θ̃|xn)
�
. (20)

Then, L is said to be risk valid.
Note that their original definition in [17] was presented only

for the case where λ = 1−β. We define a penalized likelihood
estimator by

θ̂(xn, yn) = min
θ∈Θ

{− log pθ(yn|xn) + L(θ|xn)} . (21)

As described in Section II, it is natural that the codelength
of parameter depends on xn. By analogy we consider penalty
functions of the form L(θ|xn) though widely used penalty
functions are usually independent of xn. As the result of the
paper, the data-dependent penalty functions are more suitable
in view of the MDL principle. Similarly to (4) and (6) in the
quantized case, we can formally define

L2(yn|xn) := min
θ∈θ

{− log pθ(yn|xn) + L(θ|xn)} , (22)

p2(yn|xn) := exp(−p2(yn|xn)) = pθ̂(y
n|xn) · exp(−L(θ̂)).

(23)

However we again note that L2(yn|xn) is not necessarily code-
length and that p2(yn|xn) is not necessarily a sub-probability

distribution due to the same reason as the unsupervised case.
By this risk validity, it is easy to obtain a similar risk bound

Ep∗(yn|xn)d
n
ι(p∗, pθ̂|xn)

≤ Ep∗(yn|xn)

�
inf
θ∈Θ

�
log

p∗(yn|xn)
pθ(yn|xn)

+ L(θ|xn)
��

= Ep∗(yn|xn)

�
log

p∗(yn|xn)
p2(yn|xn)

�
by the same way as before. Codelength validity can be
directly extended without any problem. Thus, we can say
that penalized likelihood estimators in the fixed design setting
are BC-proper MDL estimators under the codelength and risk
validity.

However it is clear that dn
ι(p∗, pθ̂|xn) cannot measure gen-

eralization error in supervised learning. In the random design
setting, xn is also stochastic (subject to a certain distribution
q∗(xn)). For supervised learning, we employ the following
conditional Rényi divergence as a loss function.

dn
ι(p, r) :=

− 1
1 − λ

log
�
q∗(xn)p(yn|xn)



r(yn|xn)
p(yn|xn)

�1−ι

dxndyn. (24)

Note that dn
ι(p, r) depends on the distribution q∗ of the

covariates. This is a natural generalization of (7) and can
measure generalization error. Similarly to the unsupervised
version, it converges to conditional Kullback-Leibler (KL)
divergence

Dn(p, r) :=
�
q∗(xn)p(yn|xn)



log

p(yn|xn)
r(yn|xn)

�
dxndyn,

(25)
as λ→ 1, i.e.,

lim
ι→1

dn
ι(p, r) = Dn(p, r) (26)

for any p and r. In addition, the Rényi divergence at λ = 0.5
is equal to Bhattacharyya divergence [11]

dn
0.5(p, r) = −2 log

�
q∗(xn)

�
p(yn|xn)r(yn|xn)dxndyn.

(27)
Again, we drop n of each divergence like dι(p, r) if n = 1,
i.e., dι(p, r) := d1

ι(p, r). Hereafter we see why the above
idea in the fixed design setting is significantly difficult to
be extended to the random design setting. By extending the
definition of risk validity to random design straightforwardly,
we obtain the following definition.

Definition 6 (Risk Validity in Random Design): Let β be a
real number in (0, 1) and λ be a real number in (0, 1 − β].
We say that a penalty function L(θ|xn) is risk valid if there
exist a quantized space �Θ(xn) ⊂ Θ and a model description
length L̃(θ̃|xn) satisfying β-stronger Kraft’s inequality for
each xn such that

∀n ≥ 1, ∀xn ∈ X n, yn ∈ Y n,

max
θ∈Θ

�
dn

ι(p∗, pθ) − log
p∗(yn|xn)
pθ(yn|xn)

− L(θ|xn)
�

≤ max
θ̃∈�Θ(xn)

�
dn

ι(p∗, pθ̃) − log
p∗(yn|xn)
pθ̃(yn|xn)

− L̃(θ̃|xn)
�
. (28)
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In contrast to the fixed design case, (20) must hold not only
for a fixed xn ∈ X n but also for all xn ∈ X n. By this risk
validity, let us try to recover Lemma 1, which is the essence of
BC theory. Assume β = 1− λ for the same reason as before.
Let V (xn, yn, θ) and Ṽ (xn, yn, θ̃) denote the inside of max of
the left and right sides of (28), respectively. For any function
θ̇ : X n × Y n → Θ,

Ep̄∗(xn,yn) exp
�
βV (xn, yn, θ̇)

�
≤Ep̄∗(xn,yn) exp



max
θ∈Θ

{βV (xn, yn, θ)}
�

≤Ep̄∗(xn,yn) exp

�
max

θ̃∈�Θ(xn)

�
βṼ (xn, yn, θ̃)

��
(29)

≤Ep∗(yn|xn)q∗(xn)

	
θ̃∈�Θ(xn)

exp
�
βṼ (xn, yn, θ̃)

�
=Eq∗(xn)

	
θ̃∈�Θ(xn)

exp
�
−βL̃(θ̃|xn)

�
exp(βdn

ι(p∗, pθ̃))

·Ep∗(yn|xn) exp


−β log

p∗(yn|xn)
pθ̃(yn|xn)

�
=Eq∗(xn)

	
θ̃∈�Θ(xn)

exp
�
−βL̃(θ̃|xn)

�
exp(βdn

ι(p∗, pθ̃))

· F (θ̃, xn),

where we let

F (θ̃, xn) = Ep∗(yn|xn) exp


−β log

p∗(yn|xn)
pθ̃(yn|xn)

�
.

Since
Eq∗(xn)F (θ̃, xn) = exp(−βdn

ι(p∗, pθ̃)), (30)

if we can apply the expectation about xn directly to F (θ̃, xn),
then the Rényi divergence factor will vanish (a key trick of
BC theory) and we can utilize the Kraft’s inequality about θ̃,
which yields the same result as Lemma 1. However, it seems
impossible in general. A simple solution is to assume the
following condition.

Condition 3 (Independent Condition): Both the quantized
space and the model description length are independent of
xn, i.e., �Θ(xn) = �Θ, L̃(θ̃|xn) = L̃(θ̃). (31)

We can easily check that this condition overcomes the above
issue. Also, it seems difficult to find another substitute. This is
not specific to penalized likelihood. The independent condition
is necessary also for the two-stage code in the random design
setting. If we try to recover Lemma 1 for this case, we have
for any θ̇ : X n × Y n → �Θ(xn)

Ep̄∗(xn,yn) exp


βdn

ι(p∗, pθ̇)−β log
p∗(yn|xn)
pθ̇(yn|xn)

− βL̃(θ̇|xn)
�

= Ep̄∗(xn,yn) exp
�
βṼ (xn, yn, θ̇)

�
≤ Ep̄∗(xn,yn) exp

�
max

θ̃∈�Θ(xn)

�
βṼ (xn, yn, θ̃)

��
.

Since the right side is the same as (29), the remaining step is
exactly the same. Thus, the independent condition is necessary

regardless if the parameter space is quantized or not. In fact,
Yamanishi [35] employed the quantization and the codelength
function which satisfy the independence condition. In general,
the restriction caused by the independence condition prevents
us from optimizing the quantization and the parameter code-
length according to xn.

In addition, we face another difficulty caused in applying
the idea of risk validity for penalized likelihood estimators (no
quantization). Let us explain the main difficulties by using
lasso as an example. Under the independent condition, (28)
can be equivalently rewritten as

∀n ≥ 1, ∀xn ∈ X n, ∀yn ∈ Y n, ∀θ ∈ Θ,

min
θ̃∈�Θ

�
dn

ι(p∗, pθ) − dn
ι(p∗, pθ̃) + log

pθ(yn|xn)
pθ̃(yn|xn)

+ L̃(θ̃)
�

≤ L(θ|xn). (32)

For simplicity, we write the inside part of the minimum of
the left side of (32) as H(θ, θ̃, xn, yn). We want to evaluate
minθ̃{H(θ, θ̃, xn, yn)} in order to find its upper bound (risk
valid penalties). Chatterjee and Barron [17] provided a fairly
nice technique to obtain a tight upper bound on the minimum
for the fixed design case. Below, we roughly explain their idea
assuming xn is fixed and using the notation L(θ) instead of
L(θ|xn).

The idea of Chatterjee and Barron is to evaluate
Eθ̃H(θ, θ̃, xn, yn) by randomizing θ̃ dexterously instead
of evaluating the minimum since minθ̃ H(θ, θ̃, xn, yn) ≤
Eθ̃H(θ, θ̃, xn, yn). In addition, the randomization of θ̃ was
constructed based on the following idea. Assume that L(θ) is
a smooth function (for example class C1) and that L(θ̃) =
L̃(θ̃) + C holds over �Θ with a certain real number C. If
the parameter space is quantized finely enough, the penalized
likelihood estimator θ̂(xn, yn) is expected to behave similarly
to θ̈(xn, yn) and is expected to have a similar risk bound. In
order to make L similar to L̃ risk valid, taking θ̃ close to θ
seems to be a good choice for given θ ∈ Θ. If θ̃ is close to
θ, the first three terms of H(θ, θ̃, xn, yn) is expected to be
small so that H is close to L̃(θ). In the end, it is expected
that L(θ) which is similar to L̃(θ) satisfies (32). Indeed by
randomizing θ̃ on �Θ around θ nicely, Chatterjee and Barron
succeeded in bounding the first three terms of H from above
by a small value and in showing that the weighted �1 penalty
(see (33) for its definition) is risk valid under an appropriate
condition. Note that the distribution of θ̃ is designed as it
naturally reduces to the point mass at θ when θ ∈ �Θ holds.
We also employ their technique for the random design setting
in this paper, since there seems no other significantly better
way.

Let us see what will happen if we apply the technique
of Chatterjee and Barron (called CB technique hereafter) to
random design setting. For any choice of �Θ ⊂ Θ and L̃(θ̃), we
consider the following two cases separately: Case (a): θ /∈ �Θ,
and Case (b): θ ∈ �Θ.

Consider Case (a) first. In contrast to Case (b),
Eθ̃H(θ, θ̃, xn, yn) depends on not only θ but also xn, yn.
Though Chatterjee and Barron succeeded in removing the
dependency of Eθ̃H(θ, θ̃, xn, yn) on yn by carefully tuned
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randomization in case of linear regression (including lasso),
the dependency on xn is hard to eliminate. Let us write
the resultant expectation as H �(θ, xn) := Eθ̃[H(θ, θ̃, xn, yn)].
Since the risk valid penalties derived by CB technique are
upper bounds on H �(θ, xn) for any xn, the above fact implies
that the obtained risk valid penalties depend on xn in general.
If not (L(θ|xn) = L(θ)), L(θ) must satisfy

max
xn

H �(θ, xn) ≤ L(θ),

which makes L(θ) much larger. Indeed the resultant H(θ, xn)
is unbounded with respect to xn in case of linear regression
despite the effort to mimic the case θ ∈ �Θ. The unboundedness
of H �(θ, xn) originates from the third term of the left side
of (32). This can be seen by checking Section III of [17].
Though their setting is fixed design, this fact is also true for the
random design. This is again unfavorable in view of the MDL
principle. Hence we should design the risk valid penalties as
they depend on xn in general.

However penalty functions used by penalized likelihood are
often independent of xn. Indeed the �1 norm used in the usual
lasso does not depend on xn. Hence, at first sight, the risk
validity seems to be useless for lasso. However the following
weighted �1 norm

�θ�w,1 :=
m	

j=1

wj |θj |,

where w := (w1, · · · , wm)T , wj :=

���� 1
n

n	
i=1

x2
ij (33)

plays an important role here. The superscript T denotes the
vector/matrix transpose. The lasso with this weighted �1 norm
is equivalent to an ordinary lasso with column normalization
such that each column of the design matrix has the same norm.

Lemma 2 (Column Normalization): The ordinary lasso
with column normalization is equal to the lasso with weighted
�1 penalty. More formally, provided that W is a diagonal
matrix which has no zero diagonal element,

arg min
θ∈�m

�
1

2nσ2
�Y −Xθ�2

2 + μ1�θ�w,1

�
= arg min

θ∈�m

�
1

2nσ2
�Y −X �θ�2

2 + μ1�θ�1

�
,

where W = diag{w1, w2, · · · , wm}, X � := XW−1 and
�θ�1 :=

�m
j=1 |θj |.

See Section IV-B for the definitions of the above
matrix/vector notations.

Proof:

arg min
θ∈�m

�
1

2nσ2
�Y −Xθ�2

2 + μ1�θ�w,1

�
= arg min

θ∈�m

�
1

2nσ2
�Y −XW−1Wθ�2

2 + μ1�Wθ�1

�
= arg min

θ∈�m

�
1

2nσ2
�Y −X �Wθ�2

2 + μ1�Wθ�1

�
= arg min

θ′∈�m

�
1

2nσ2
�Y −X �θ��2

2 + μ1�θ��1

�
.

The column normalization is theoretically and practically
important as mentioned in Section I-A. Hence we try to find
a risk valid penalty of the form L1(θ|xn) = μ1�θ�w,1 + μ2,
where μ1 and μ2 are real coefficients. Indeed, there seems
to be no other useful penalty dependent on xn for the
usual lasso. Chatterjee and Barron succeeded in deriving a
condition such that L1(θ|xn) is risk valid in the fixed design
setting.

However, as long as we employ CB technique, we cannot
find any ‘useful’ risk valid weighted �1 penalty in the random
design setting. Even if L(θ|xn) actually depends on xn like
the weighted �1 norm, the form of H �(θ, xn) differs from that
of desirable penalty functions in general. Thus it is not easy to
bound H �(θ, xn) by penalty function L(θ|xn) for the whole
range of xn in general. Indeed it seems desperately difficult
in case of lasso.

In fact, we can show, by focusing on Case (b), that the
weighted �1 norm type penalties derived by CB technique
cannot be risk valid. Recall that the distribution of θ̃ used in
CB technique reduces to the point mass at θ when θ ∈ �Θ.
Hence we have Eθ̃[H(θ, θ̃, xn, yn)] = H(θ, θ, xn, yn) =
L̃(θ), which means

L̃(θ) ≤ L(θ|xn) (34)

must hold for any θ ∈ �Θ and any xn to make L(θ|xn) to be
risk valid. Recalling the definition of �θ�w,1 (33) and L̃, we
have

L̃(θ) ≤ min
xn

L(θ|xn) = min
xn

μ1�θ�w,1 + μ2 = μ2

for any θ ∈ �Θ. That is, L̃(θ) must be bounded and can-
not satisfy Kraft’s inequality over �Θ, since �Θ is countably
infinite. (This case is equivalent to the condition that e−L̃(θ)

cannot be normalized over �Θ.) Since the definition of the risk
validity requires L̃ to satisfy β-stronger Kraft’s inequality,
we cannot obtain any risk valid penalty by using CB tech-
nique. Here we should note that minxn �θ�w,1 is attained
when wj = 0 for all j. It implies that the design matrix
X is zero. Such extreme cases including non full rank X
should be avoided. However, even if we assume wj > 0
for all j, we still have infxn �θ�w,1 = 0 for all θ ∈ �Θ,
and the same conclusion follows. If L̃ could depend on
xn, the choice L̃(θ|xn) = L(θ|xn) = L1(θ|xn) solved the
above issue. In this sense, the main difficulty is caused by
Condition 3. This issue does not seem to be specific to
lasso.

Another major issue is the Rényi divergence dn
ι(p∗, pθ). In

the fixed design case, the Rényi divergence dn
ι(p∗, pθ|xn) is a

simple convex function in terms of θ, which makes the analysis
easy. In contrast, the Rényi divergence dn

ι(p∗, pθ) in case of
random design is not convex and more complicated than that
of fixed design cases, which makes it significantly difficult to
evaluate H �(θ, xn). We will describe why the non-convexity of
loss function makes the derivation difficult in Section VI-G. In
order to solve this issue, another version of Rényi divergence
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seems to be a good alternative.

altdn
ι(p, r|q∗)

:= − 1
1 − λ

�
q∗(xn) log

�
p(yn|xn)



r(yn|xn)
p(yn|xn)

�1−ι

dyndxn

=
�
q∗(xn)dn

ι(p, r|xn)dxn.

It is immediate to see that altdn
ι satisfies definition of statis-

tical divergence. If the Rényi divergence of the fixed design
case dn

ι(p, r|xn) has a simple form, then altdn
ι is likely to

be simple because altdn
ι is obtained by taking its expectation

with respect to xn. Indeed, altdn
ι is just a sort of mean squared

error of θ̂ for lasso setting. Thus, it is easy to analyze and to
interpret. However, this try fails due to another reason. Since
the divergence altdn

ι(p∗, pθ̃) does not satisfy (30), the key trick
of BC theory is not applicable to derive a risk bound. There is
a possibility that a similar risk bound can be derived by other
technique than BC theory. However we see that altdn

ι(p, r|q∗)
is an upper bound on dn

ι(p, r) by Jensen’s inequality. Hence,
the statistical risk with altdn

ι(p, r|q∗) is harder than that with
dn

ι(p, r) (or impossible) to be bounded from above by the
same redundancy.

The difficulties that we face when we use the techniques of
[17] in the random design case are not limited to them. We
do not explain them here because it requires the readers to
understand their techniques in detail. However, we only remark
that these difficulties seem to make their techniques useless for
supervised learning with random design. We propose a remedy
to solve all these issues in the next section.

IV. MAIN RESULTS

First, we extend some theoretical tools given by Chatterjee
and Barron to supervised learning. Using them, we show that
the lasso estimator is a BC-proper MDL estimator.

A. Extension of BC Theory to Supervised Learning

In order to extend the MDL world (the set of BC-proper
MDL estimator) to supervised learning, the idea of codelength
validity and risk validity seems to be basically promising. On
one hand, the definition of codelength validity (Definition 3) is
applicable to the random design setting almost as itself, which
enables us to interpret θ̂ as an MDL estimator. We will see
its exact definition later in this section. On the other hand,
the straightforward extension of the risk validity to supervised
learning is useless as explained in Section III-B. Thus we need
some essential modifications. As was seen in Section III-B,
the difficulties basically stems from the fact xn can freely
move in X n, which is unbounded in general. Our idea can
be roughly summarized as follows. A key concept is a so-
called typical set of xn, which is determined by the true
distribution q∗(xn). We employ a definition of typical sets
which is different from the usual one, but the following prop-
erty remains. Though the typical set is significantly smaller
than X n, its probability is close to one. Further, their statistics
(average and empirical covariance matrix) are close to their
expectation. We modify the definition of the risk validity such

that the inequality (32) is required to hold not for all xn but
only for xn in the typical set. By restricting the range of xn

to the typical set, we can find a weighted �1 norm that bounds
H �(θ, xn) from above.

Let us go into details. We postulate that a probability
distribution of stochastic process x1, x2, · · · , is a member of
a certain class Px. Furthermore, we define Pn

x by the set of
marginal distributions of the first n elements x1, x2, · · · , xn.
For each q ∈ Px, 	

xn+1

q(xn+1) = q(xn)

holds for each n. We assume that we can define a collection
of typical set {An

� ⊂ X n|� > 0, n = 1, 2, · · · } for each
q∗ ∈ Pn

x , i.e., Pr(xn ∈ An
� ) → 1 as n → ∞ for any � > 0

and An
� ⊂ An

�′ for any real positive numbers �, �� such that
� < ��. This is possible if q∗ is stationary and ergodic for
example. See [19] for detail. To be concise, Pr(xn ∈ An

� ) is
written as Pn

� hereafter. We modify the risk validity by using
the typical set.

Definition 7 (Restricted Risk Validity): Let β, λ, � be real
numbers such that β, � ∈ (0, 1), λ ∈ (0, 1 − β]. We say that
L(θ|xn) is restricted risk valid for (λ, β, �,Pn

x , A
n
� ) if for

any q∗ ∈ Pn
x , there exist a quantized subset �Θ(q∗) ⊂ Θ and a

model description length L̃(θ̃|q∗) satisfying β-stronger Kraft’s
inequality such that �Θ(q∗) and L̃(θ̃|q∗) satisfy Condition 3 and

∀xn ∈ An
� , ∀yn ∈ Y n,

max
θ∈Θ

�
dn

ι(p∗, pθ) − log
p∗(yn|xn)
pθ(yn|xn)

− L(θ|xn)
�

≤ max
θ̃∈�Θ(q∗)

�
dn

ι(p∗, pθ̃) − log
p∗(yn|xn)
pθ̃(yn|xn)

− L̃(θ̃|q∗)
�
.

Note that both �Θ and L̃ can depend on the unknown distrib-
ution q∗(xn). This is not problematic because the final penalty
L does not depend on the unknown q∗(xn). A difference from
(32) is the restriction of the range of xn onto the typical set.
From here to the next section, we will see how this small
change solves the problems described in the previous section.
First, we show what can be proved for restricted risk valid
penalties.

Theorem 3 (Risk Bound): Let β, � be arbitrary real numbers
in (0, 1). Define En

� as a conditional expectation with regard
to p̄∗(xn, yn) given that xn ∈ An

� . For any λ ∈ (0, 1 − β],
if L(θ|xn) is restricted risk valid for (λ, β, �,Pn

x , A
n
� ),

En
� d

n
ι(p∗, pθ̂) ≤ En

� log
p∗(yn|xn)
p2(yn|xn)

+
1
β

log
1
Pn

�

. (35)

In addition, if L(θ|xn) is codelength valid,

En
� d

n
ι(p∗, pθ̂) ≤ En

� log
p∗(yn|xn)
p2(yn|xn)

+
1
β

log
1
Pn

�

≤ 1
Pn

�

Ep̄∗ log
p∗(yn|xn)
p2(yn|xn)

+
1
β

log
1
Pn

�

. (36)

Theorem 4 (Regret Bound): Let β, � be arbitrary real num-
bers in (0, 1). For any λ ∈ (0, 1 − β], if L(θ|xn) is restricted
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risk valid for (λ, β, �,Pn
x , A

n
� ),

Pr
�dn

ι(p∗, pθ̂)
n

− 1
n

log
p∗(yn|xn)
p2(yn|xn)

≥ τ
�

≤ exp(−nτβ) + 1 − Pn
� . (37)

A proof of Theorem 3 is described in Section VI-A,
while a proof of Theorem 4 is described in Section VI-B.
Note that both bounds become tightest when λ = 1 −
β because the Rényi divergence dn

ι(p, r) is monotonically
increasing in terms of λ (see [23] for example). We call
the quantity − log(1/p2(yn|xn)) − (− log(1/p∗(yn|xn))) in
Theorem 4 ‘regret’ of the two-stage code p2 on the given data
(xn, yn) in this paper, though the ordinary regret is defined
as the codelength difference from log(1/pθ̂mle

(yn|xn)), where
θ̂mle denotes the maximum likelihood estimator. Compared
to the usual BC theory, there are additional terms, i.e.,
(1/β) log(1/Pn

� ) in (35) and (36) or 1 − Pn
� in (37). Due to

the property of the typical set, these terms decrease to zero as
n→ ∞. Therefore, the first term of the right side of (35)-(37)
is the main term, which has a form of redundancy/regret
of two-stage codes like the original BC theory. In order to
interpret the main term exactly as redundancy/regret, we need
to prove that − log p2(yn|xn) satisfies Kraft’s inequality. The
condition for it is ‘codelength validity’ as mentioned before.
We can use its definition of fixed design case almost as itself.
The exact definition of codelength validity in random design
cases is given as follows.

Definition 8 (Codelength Validity): We say that L(θ|xn) is
codelength valid if there exist a quantized subset �Θ(xn) ⊂
Θ and a model description length L̃(θ̃|xn) satisfying Kraft’s
inequality such that

∀yn ∈ Y n,

min
θ∈Θ

�
− log pθ(yn|xn) + L(θ|xn)

�
≥ min

θ̃∈�Θ(xn)

�
− log pθ̃(y

n|xn) + L̃(θ̃|xn)
�

(38)

for each xn.
We note that both the quantized parameter space and the

model description length on it can depend on xn in contrast to
the definition of restricted risk validity. This is because xn can
be fixed in order to justify the redundancy/regret interpretation.
Let us see that L2(yn|xn) = − log p2(yn|xn) can be exactly
interpreted as a codelength if L(θ|xn) is codelength valid.
First, we assume that Y , the range of y, is discrete. By (4)
and (22), the codelength validity means that

L2(yn|xn) ≥ L̃2(yn|xn).

As shown by (5), the codelength L̃2(yn|xn) satisfies Kraft’s
inequality. Since L2(yn|xn) is equal to or larger than
L̃2(yn|xn) for any xn, yn, L2(yn|xn) must satisfy Kraft’s
inequality. Recall that − log p2(yn|xn) can be exactly inter-
preted as a codelength of a prefix code. Next, we consider the
case where Y is a continuous space. The Kraft’s inequality
trivially holds by replacing the sum with respect to yn with an
integral. Thus, p2(yn|xn) is guaranteed to be a sub-probability
density function. Needless to say, − log p2(yn|xn) cannot

be interpreted as a codelength as itself in continuous cases.
As is well known, however, difference (− log p2(yn|xn)) −
(− log p∗(yn|xn)) can be exactly interpreted as difference of
codelength by way of quantization. See Section III of [2] for
details. This indicates that both the redundancy interpretation
of the fist term of (35) and the regret interpretation of the
(negative) second term in the left side of the inequality in the
first line of (37) are justified by the codelength validity. Note
that the restricted risk validity does not imply the codelength
validity and vice versa in general.

We discuss about the conditional expectation in the risk
bounds (35) or (36). This conditional expectation seems to be
hard to be replaced with the usual (unconditional) expectation.
The main difficulty arises from the unboundedness of the
loss function. Indeed, we can immediately show a similar
risk bound with unconditional expectation for bounded loss
functions. As an example, let us consider a class of divergence,
called α-divergence [18]

Dn
α (p, r) :=

4
1 − α2

� 

1 −



r(yn|xn)
p(yn|xn)

� 1+α
2

�
q∗(xn)p(yn|xn)dxndyn.

(39)

The α-divergence approaches KL divergence as α→ ±1 [1].
More exactly,

lim
α→−1

Dn
α (p, r) = Dn(p, r), lim

α→1
Dn

α (p, r) = Dn(r, p).
(40)

Furthermore, α-divergence with α = 0 is four times the
squared Hellinger distance

d2,n
H (p, r) :=� ��

p(yn|xn) −
�
r(yn|xn)

�2

q∗(xn)p(yn|xn)dxndyn,

(41)

which has been studied and used in statistics for a long
time. We focus here on the following two properties of α-
divergence:
(i) The α-divergence is bounded:

Dn
α (p, r) ∈ [0, 4/(1 − α2)] (42)

for any p, r and α ∈ (−1, 1).
(ii) The α-divergence is bounded by the Rényi divergence as

dn
(1−α)/2(p, r) ≥

1 − α

2
Dn

α (p, r) (43)

for any p, r and α ∈ (−1, 1). See [32] for its proof.
As a corollary of Theorem 3, we obtain the following risk
bound.

Corollary 5: Let β, � be arbitrary real numbers in (0, 1).
Define a function λ(t) := (1− t)/2. For any α ∈ [2β − 1, 1),
if L(θ|xn) is restricted risk valid for (λ(α), β, �,Pn

x , A
n
� ) and

p2(yn|xn) is a sub-probability distribution,

Ep̄∗ [D
n
α (p∗, pθ̂)] ≤ 1

λ(α)
Ep̄∗

�
log

p∗(yn|xn)
p2(yn|xn)

�
+

Pn
�

λ(α)β
log

1
Pn

�

+
(1 − Pn

� )
λ(α)(λ(α) + α)

,
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In particular, taking β = (α + 1)/2 yields the tightest bound

Ep̄∗ [Dn
α (p∗, pθ̂)]

≤ 1
λ(α)

Ep̄∗

�
log

p∗(yn|xn)
p2(yn|xn)

�
+

Pn
�

λ(α)(λ(α) + α)
log

1
Pn

�

+
(1 − Pn

� )
λ(α)(λ(α) + α)

. (44)

Its proof will be described in Section VI-C. Though it
is not so obvious when the condition “p2(yn|xn) is a sub-
probability distribution” is satisfied, we remark that the code-
length validity of L(θ|xn) is its simple sufficient condition.
The second and the third terms of the right side vanish
as n → ∞ due to the property of the typical set. The
boundedness of loss function is indispensable for the proof.
On the other hand, it seems to be impossible to bound the risk
for unbounded loss functions. Our remedy for this issue is the
risk evaluation based on the conditional expectation on the
typical set. Because xn lies out of An

� with small probability,
the conditional expectation is likely to capture the expectation
of almost all cases. In spite of this fact, if one wants to remove
the unnatural conditional expectation, Theorem 4 offers a more
satisfactory bound.

We remark the relationship of our result with KL divergence
Dn(p, r). Because of (26) or (40), it seems to be possible
to obtain a risk bound with KL divergence. However, it is
impossible because taking λ → 1 in (35) or α → ±1 in (44)
makes the bounds diverge to the infinity. That is, we cannot
derive a risk bound for the risk with KL divergence by BC
theory, though we can do it for the Rényi divergence and
the α-divergence. It sounds somewhat strange because KL
divergence seems to be related the most to the notion of the
MDL principle because it has a clear information theoretical
interpretation. This issue originates from the original BC
theory and has been cast as an open problem for a long time.
We remark one possibility based on recent progress. In [25],
some developments were made for unbounded losses. If we
apply their idea to our problem for lasso, we may have a risk
bound for the KL divergence, which is an interesting future
work.

Finally, we remark that the effectiveness of our proposal
in real situations depends on whether we can show the risk
validity of the target penalty and derive a sufficiently small
bound for log(1/Pn

� ) and 1 − Pn
� . Actually, much effort is

required to realize them for lasso.

B. Application to Lasso in Random Design Setting

By using the tools in the previous section, we will show
that lasso is a BC-proper MDL estimator. In the setting of
lasso, training data {(xi, yi) ∈ 	m ×	|i = 1, 2, · · · , n} obey
a usual regression model yi = xT

i θ
∗ + υi for i = 1, 2, · · · , n,

where θ∗ ∈ Θ = 	m is a true parameter and {υi} is i.i.d.
Gaussian noise having zero mean and a known variance σ2.
That is, our parametric model is written as

pθ(yn|xn) = Πn
i=1N(yi|xT

i θ, σ
2)

where N(x|μ,Σ) is the density of Gaussian distribution with
a mean vector μ and a covariance matrix Σ. By introducing

Y := (y1, y2, · · · , yn)T , Υ := (υ1, υ2, · · · , υn)T and an n×
m matrix X := [x1 x2 · · ·xn]T , we have a vector/matrix
expression of the regression model Y = Xθ∗ + Υ. In the
original lasso setting [34], the penalty function is defined by
the usual �1 norm

L(θ|xn) = μ1�θ�1 + μ2,

where μ1, μ2 are positive real numbers. However we employ
the penalty function with the weighted �1 norm

L(θ|xn) = μ1�θ�w,1 + μ2

due to the reason explained in Section I-A and
Section III-B. The constant μ2 plays no role in estimation
of θ∗ while it influences risk bounds. The resultant lasso
estimator is defined as a penalized likelihood estimator

θ̂(xn, yn) := arg min
θ∈Θ

{− log pθ(yn|xn) + L(θ|xn)}

= arg min
θ∈Θ

�
1

2nσ2
�Y −Xθ�2

2 + μ1�θ�w,1 + μ2

�
.

(45)

Note that the dimension p of parameter θ can be greater than
n. When xn is Gaussian with zero mean, we can derive a risk
valid weighted �1 penalty by choosing an appropriate typical
set.

Lemma 3: Let S (m) be a set of all positive definite
symmetric m×m matrices. For any � ∈ (0, 1), define

Pn
x := {q(xn) = Πn

i=1N(xi|0,Σ)|Σ ∈ S (m)},

An
� :=

�
xn

��� ∀j, 1 − � ≤ (1/n)
�n

i=1 x
2
ij

Σjj
≤ 1 + �

�
. (46)

Here, Σjj denotes the jth diagonal element of Σ and xij

denotes the jth element of xi. Assume a linear regression
setting:

p∗(yn|xn) = Πn
i=1N(yi|xT

i θ
∗, σ2),

pθ(yn|xn) = Πn
i=1N(yi|xT

i θ, σ
2).

Let β be a real number in (0, 1) and λ be a real number in
(0, 1− β]. The weighted �1 norm L1(θ|xn) = μ1�θ�w,1 + μ2

is restricted risk valid for (λ, β, �,Pn
x , A

n
� ) if

μ1 ≥
�

n log 4m
βσ2(1 − �)

· λ+ 8
√

1 − �2

4
, μ2 ≥ log 2

β
. (47)

Furthermore, if the variance of each xj is additionally assumed
to be bounded from above such as

∀j, Σjj ≤M,

then the ordinary �1 norm L1(θ|xn) = μ1�θ�1 + μ2 is
restricted risk valid for (λ, β, �,Pn

x , A
n
� ) if

μ1 ≥M

�
n log 4m
βσ2

· λ+ 8(1 + �)
4

, μ2 ≥ log 2
β

. (48)

We describe its proof in Section VI-F. The derivation
is much more complicated and requires more techniques,
compared to the fixed design setting in [17]. This is because
the Rényi divergence is a usual mean square error (MSE) in
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Fig. 1. Plot of
�

(λ + 8)/8(1 − λ) against λ.

the fixed design setting, while it is not in the random design
setting in general. In addition, it is important for the risk
bound derivation to choose an appropriate typical set in a
sense that we can show that Pn

� approaches to one sufficiently
fast and we can also show the restricted risk validity of the
target penalty with the chosen typical set. In case of lasso with
normal design, the typical set An

� defined in (46) satisfies such
properties.

Let us compare the coefficient of the risk valid weighted
�1 penalty with the fixed design setting in [17]. They showed
that the weighted �1 norm satisfying

μ1 ≥
�

2n log 4m
σ2

, μ2 ≥ log 2
β

(49)

is risk valid in the fixed design setting. The condition for μ2

is the same, while the condition for μ1 in (47) is more strict
than that of the fixed design setting. We compare them by
taking β = 1 − λ (the tightest choice) and � = 0 in (47)
because � can be negligibly small for sufficiently large n. The
minimum μ1 for the risk validity in the random design setting
is �

λ+ 8
8(1 − λ)

times that for the fixed design setting. Hence, the smallest
value of regularization coefficient μ1 for which the risk
bound holds in the random design is always larger than
that of the fixed design setting for any λ ∈ (0, 1) but
its extent is not so large unless λ is extremely close to 1
(See Fig. 1).

Next, we show that Pn
� exponentially approaches to one as

n increases.
Lemma 4 (Exponential Bound of Typical Set): Suppose that

xi ∼ N(xi|0,Σ) independently. For any � ∈ (0, 1),

Pn
� ≥

�
1 −2 exp

�
−n

2
(�− log(1 + �))

��m

(50)

≥ 1 − 2m exp
�
−n

2
(�− log(1 + �))

�
≥ 1 − 2m exp



−n�

2

7

�
.

See Section VI-H for its proof. In the lasso case, it is often
postulated that p is much greater than n. Due to Lemma 4,
1 − Pn

� is O(m · exp(−n�2/7)), which also implies that the
second term in (35) can be negligibly small even if n  m.
In this sense, the exponential bound is important for lasso.

Another remaining task is to show the codelength validity of
the weighted �1 penalty in order to interpret lasso as an MDL
estimator. Interestingly, the weighted �1 penalties derived in
Lemma 3 are not only restricted risk valid but also codelength
valid.

Lemma 5: Assume a linear regression setting:

p∗(yn|xn) = Πn
i=1N(yi|xT

i θ
∗, σ2),

pθ(yn|xn) = Πn
i=1N(yi|xT

i θ, σ
2).

If μ1 and μ2 satisfy (47), then the weighted �1 norm
L(θ|xn) = μ1�θ�w,1 + μ2 is codelength valid.

Its proof will be described in Section VI-I. On the contrary,
the ordinary �1 penalty satisfying (48) cannot be shown to
satisfy (38) for every xn. By this fact, lasso with column
normalization can be interpreted as an MDL estimator because
it is obtained by minimizing the codelength. That is, Condition
1 is satisfied for lasso with column normalization. It also
indicates that we can obtain the unconditional risk bound
with respect to α-divergence for those weighted �1 penalties
by Corollary 5 without any additional condition. Combining
Lemmas 3, 4 and 5 with Theorems 3 and 4, our main result
about lasso with ‘column normalization’ is summarized in the
following theorem.

Theorem 6: Let S (m) be a set of all positive definite
symmetric m×m matrices. For any � ∈ (0, 1), define

Pn
x := {q(xn) = Πn

i=1N(xi|0,Σ)|Σ ∈ S (m)},
An

� :=
�
xn

��� ∀j, 1 − � ≤ (1/n)
�n

i=1 x
2
ij

Σjj
≤ 1 + �

�
.

Assume a linear regression setting:

p∗(yn|xn) = Πn
i=1N(yi|xT

i θ
∗, σ2),

pθ(yn|xn) = Πn
i=1N(yi|xT

i θ, σ
2).

Let β be a real number in (0, 1). For any λ ∈ (0, 1 − β], if

μ1 ≥
�

log 4m
nβσ2(1 − �)

· λ+ 8
√

1 − �2

4
, μ2 ≥ log 2

nβ
, (51)

the weighted �1 penalty L(θ|xn) = μ1�θ�w,1 + μ2 is both
restricted risk valid for (λ, β, �,Pn

x , A
n
� ) and codelength valid.

As a result, the lasso estimator θ̂(xn, yn) in (45) has a risk
bound

En
� [dι(p∗, pθ̂(xn,yn))]

≤En
�

�
inf
θ∈Θ

���Y −Xθ�2
2−�Y −Xθ∗�2

2

 
2nσ2

+μ1�θ�w,1+μ2

�!

− m log
�
1−2 exp

�−n
2 (�− log(1 + �))

  
nβ

, (52)

≤ 1
1 − ρn
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·Ep̄∗

�
inf
θ∈Θ

���Y −Xθ�2
2−�Y −Xθ∗�2

2

 
2nσ2

+μ1�θ�w,1+μ2

�!

− m log
�
1−2 exp

�−n
2 (�− log(1 + �))

  
nβ

, (53)

ρn := 2m exp(−n�2/7)

and a regret bound

dι(p∗, pθ̂(xn,yn)) ≤

inf
θ∈Θ

���Y −Xθ�2
2 − �Y −Xθ∗�2

2

 
2nσ2

+ μ1�θ�w,1 + μ2

�
+ τ

(54)

with probability at least�
1 −2 exp

�
−n

2
(�− log(1 + �))

��m

− exp(−τnβ), (55)

which is bounded from below by

1 −O (m · exp (−nκ))

with κ := min{�2/7, τβ}.
Remark: The main terms of these bounds are approximately

less than
μ1�θ∗�w,1 + μ2,

which replaces (m̄/2) logn term in usual MDL estimators.
Here m̄ is �0 norm of θ∗. Hence, our bounds are related to �1
norm of θ∗ instead of the number of true parameters m̄. This is
related to the fact that lasso is different from �0-regularization
algorithms.

Since p̄∗(x, y) is i.i.d. now, dn
ι(p, r) = ndι(p, r). Hence,

we presented the risk bound as a single-sample version in (52)
by dividing the both sides by n. Theorem 6 clearly proved
that lasso with column normalization is a BC-proper MDL
estimator if (47) holds. Furthermore, the statistical risk of
lasso is bounded from above by the redundancy of the two-
stage code associated with lasso. That is, the right side of (53)
and (54) can be exactly interpreted as the redundancy and the
regret. This also implies that ‘lasso is an MDL estimator that
attains the minimum description length’. On the other hand,
(53) provides the risk bound of the form

statistical risk of lasso

≤ redundancy of lasso + negligibly small term.

Hence, the justification of the MDL principle by BC theory
was successfully extended to lasso.

We finally remark that what we can know about the lasso
without column normalization (the ordinary �1 norm) when we
assume the boundedness of covariates like Bartlett et al. [6].
Note that we need the boundedness of Σjj in order to show
the restricted risk validity of the ordinary �1 norm as seen
in Lemma 3 while Bartlett et al. assumes the boundedness
of covariates xn directly. However the boundedness of Σjj

implies the boundedness of xn through the typical set in our
analysis. Hence our boundedness assumption is essentially
similar to that of [6]. When each Σjj is bounded, we can
have the same result as Theorem 6 except replacing (51)
with (48). The restricted risk valid penalties and the resultant
redundancy/regret bounds directly depend on the constant of

TABLE III

NOISE VARIANCE AND REGULARIZATION CONSTANTS
ACCORDING TO SNR

Fig. 2. Plot of (55) against ε ∈ (0, 1) when n = 200, m = 1000 and
τ = 0.03. The dotted vertical line indicates ε = 0.5.

the boundedness M in a similar way with the result of [6].
This makes the risk bound loose in general because the weight
is replaced with its worst value M2. Furthermore, we cannot
show the codelength validity. That is, lasso without column
normalization cannot be interpreted as an MDL estimator.
As a result, lasso with column normalization is favorable in
terms of both BC-properness and the tightness of the risk
bound.

V. NUMERICAL SIMULATIONS

We investigate the behavior of the risk/regret bounds of
lasso, i.e., (52) and (54). In both bounds, we let β = 1 − λ
in order to make the bounds tightest. Furthermore, we let μ1

and μ2 be their smallest values in (47). The Rényi divergence
in the left side of (54) does not include the well-known KL
divergence (the mean square error in this case) but includes
the Bhattacharyya divergence (d0.5) in (27). By (43), the
Bhattacharyya divergence is an upper bound on two times
the squared Hellinger distance 2d2

H . The Hellinger distance
was defined in (41) as n sample version (i.e., d2

H = d2,1
H ).

Since the Hellinger distance is also a common loss function,
we investigate the behavior of d2

H = d2,1
H and risk/regret

bounds (52) and (54) through (43). We set n = 200, m =
1000 and Σ = Im to mimic a typical situation of sparse
learning where Im is an identity matrix of order m. The
true parameter θ∗ has only 100 nonzero components that are
generated from the Gaussian distribution with mean 0 and
variance 1 independently. The lasso estimator is calculated by
a proximal gradient method [10]. To make the regret bound
tight, we take τ = 0.03 that is close to zero compared to the
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Fig. 3. Histograms of the gap among d0.5 (Bhattacharyya div.), 2d2
H (Hellinger dist.) and RegBound (the RegBound with τ = 0.03) in case that SNR=0.5.

Fig. 4. Histograms of the gap among d0.5 (Bhattacharyya div.), 2d2
H (Hellinger dist.) and RegBound (the regret bound with τ = 0.03) in case that SNR=2.

main term (regret). For this τ , Fig. 2 shows the plot of (55)
against �. We should choose the smallest � as long as the regret
bound holds with large probability. Our choice is � = 0.5 at
which the value of (55) is 0.81.

First, we consider the three cases in which the signal-to-
noise ratios (SNR) Eq∗ [(xT θ∗)2]/σ2 varies among 6, 2, 0.5
(i.e., σ2 varies). For each SNR, the noise variance σ2 and the
minimum value of μ1 and μ2 satisfying (47) are summarized
in Table III. In the above setting we have the following
relationship

2d2
H(p∗, pθ̂) ≤ d0.5(p∗, pθ̂(xn,yn))

≤ inf
θ∈Θ

���Y −Xθ�2
2 − �Y −Xθ∗�2

2

 
2nσ2

+ μ1�θ�w,1 + μ2

�
+ τ.

We sometimes abbreviate it 2d2
H ≤ d0.5 ≤RegBound here-

after. We show the results about the regret bound in Figs. 3-5.
In each figure, three panels (a)-(c) show histograms of the gaps
d0.5 − 2d2

H , RegBound-d0.5 and RegBound−2d2
H that were

obtained by hundred repetitions. First of all, we remark that the
regret bound dominated the Rényi divergence over all trials,
though the regret bound is probabilistic. One of the reason is
the looseness of the lower bound (55) of the probability for the

regret bound to hold. This suggests that � can be reduced more
in order to derive a tighter bound. The panel (a) in the three
figures show that the gap between 2d2

H and d0.5 is negligible
relative to the gap from the regret bound. In contrast magnitude
of the gap ‘RegBound-d0.5’ depends on SN ratio. As SN
ratio got larger, the gap had larger mean and larger variance.
To make sure this aptitude, we investigate the behavior of the
conditional risk and risk bounds in (52) against SN ratio. The
expectation in the conditional risk and the risk bound was
calculated by taking conditional mean in hundred repetitions.
The panel (b) of Fig. 6 shows the result. At first glance it seems
to be strange that the value of loss function got larger as SN
ratio got larger. The reason is that our measure of goodness is
not the error of parameter estimation but the Rényi information
(discrepancy of distribution). Clearly the gap between the
conditional risk and its risk bound gets larger as SNR gets
larger. When SN ratio gets small, the penalty term gets large
relative to the likelihood term since the likelihood term is of
order O(1/σ2) while μ1 is O(1/

√
σ2). As a result, the lasso

estimator θ̂ is shrunk to the zero vector to minimize the penalty
term. Hence the penalty term μ1�θ̂�w,1 is also close to zero.
The resultant regret bound behaves like a constant and gets
close to the loss. However since the value of the loss function
also behaves like a constant because θ̂ is close to the constant
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Fig. 5. Histograms of the gap among d0.5 (Bhattacharyya div.), 2d2
H (Hellinger dist.) and RegBound (the regret bound with τ = 0.03) in case that SNR=6.

Fig. 6. Plot of the conditional risk and its bound against μ1 and SNR.

(zero) vector, the regret bound can get close to the value of
the loss function safely (no risk of breaking the bound).

Finally we investigate how sensitively the gap between the
conditional risk and the risk bound (the mean of regret bounds)
depends on the choice of the regularization parameter μ1.
Panel (a) of Fig. 6 shows their gap against μ1. The value of
μ1 moved within the range that does not violate the condition
(51). Though the conditional risk and its risk bound got larger
slowly as μ1 got larger, the gap was not sensitive to the choice
of μ1.

VI. PROOFS OF THEOREMS, LEMMAS AND COROLLARY

We give all proofs to the theorems, the lemmas and the
corollary in the main results.

A. Proof of Theorem 3

Here we prove our main theorem. The proof proceeds along
with the same line as [17] though some modifications are
necessary.

Proof: Define

F θ
ι(xn, yn) := dn

ι(p∗, pθ) − log
p∗(yn|xn)
pθ(yn|xn)

.

By the restricted risk validity, we obtain

En
�

"
exp

�
βmax

θ∈Θ

�
F θ

ι (xn, yn) − L(θ|xn)
��#

≤ En
�

"
exp

�
βmax

θ̃∈�Θ

�
F θ̃

ι (xn, yn) − L̃(θ̃|q∗)
��#

≤
	

θ̃∈�Θ(q∗)

En
�

"
exp

�
β
�
F θ̃

ι (xn, yn) − L̃(θ̃|q∗)
��#

=
	

θ̃∈�Θ(q∗)

exp(−βL̃�θ̃|q∗) En
�

"
exp

�
βF θ̃

ι (xn, yn)
�#
. (56)

The following fact is an extension of the key technique of BC
theory:

En
�

�
exp

�
βF θ̃

ι(xn, yn)
�!

= exp (βdn
ι(p∗, pθ))En

�

�

pθ̃(y

n|xn)
p∗(yn|xn)

�β
!

≤ 1
Pn

�

exp (βdn
ι(p∗, pθ))Ep̄∗

�

pθ̃(y

n|xn)
p∗(yn|xn)

�β
!

=
1
Pn

�

exp (βdn
ι(p∗, pθ)) exp

�−βdn
1−β(p∗, pθ)

 
≤ 1
Pn

�

exp (βdn
ι(p∗, pθ)) exp (−βdn

ι(p∗, pθ)) =
1
Pn

�

.

The first inequality holds because Ep̄∗(xn,yn) [A] ≥ Pn
� E

n
� [A]

for any non-negative random variableA. The second inequality
holds because of the monotonically increasing property of
dn

ι(p∗, pθ) in terms of λ. Thus, the right side of (56) is
bounded as	

θ̃∈�Θ(q∗)

exp(−βL̃�θ̃|q∗) En
�

"
exp

�
βF θ̃

ι (xn, yn)
�#

≤ 1
Pn

�

	
θ̃∈�Θ(q∗)

exp(−βL̃�θ̃|q∗) ≤ 1
Pn

�

.

Hence we have an important inequality

1
Pn

�

≥ En
�

�
exp



βmax

θ∈Θ

�
F θ

ι (xn, yn) − L(θ|xn)
��

. (57)
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Applying Jensen’s inequality to (57), we have

1
Pn

�

≥ exp


En

�

�
βmax

θ∈Θ

�
F θ

ι(xn, yn) − L(θ|xn)
��

≥ exp
�
En

�

"
β
�
F θ̂

ι (xn, yn) − L(θ̂|xn)
�#�

.

Thus we have

− logPn
�

β
≥En

�

�
dn

ι(p∗, pθ̂)−log
p∗(yn|xn)
pθ̂(y

n|xn)
−L(θ̂|xn)

�
.

Rearranging the terms of this inequality, we have (35). Fur-
thermore, if L(θ|xn) is codelength valid, p2(yn|xn) is a sub-
probability distribution. In this case, the right side of (35) is
bounded from above by the ordinary (unconditional) redun-
dancy as follows. Let further IA(xn) be an indicator function
of a set A ⊂ X n. By the decomposition of expectation,
we have

En
�

"
log

p∗(yn|xn)
p2(yn|xn)

#
=

1
Pn

�

Ep̄∗(xn,yn)

"
IAn

ε
(xn) log

p∗(yn|xn)
p2(yn|xn)

#
=

1
Pn

�

Eq∗(xn)

�
IAn

ε
(xn)Ep∗(yn|xn)

�
log

p∗(yn|xn)
p2(yn|xn)

��
≤ 1
Pn

�

Eq∗(xn)

�
Ep∗(yn|xn)

�
log

p∗(yn|xn)
p2(yn|xn)

��
.

Since the conditional expectation part is non-negative, remov-
ing the indicator function IAn

ε
(xn) cannot decrease this quan-

tity, which gives the last inequality.

B. Proof of Theorem 4

It is not necessary to start from scratch. We reuse the proof
of Theorem 3.

Proof: We can start from (57). For convenience, we define

ξ(xn, yn)

=
1
n

max
θ∈Θ

�
F θ

ι(xn, yn) − L(θ|xn)


= max
θ∈Θ

�
dn

ι(p∗, pθ)
n

− 1
n

log
p∗(yn|xn)
pθ(yn|xn)

− L(θ|xn)
n

�
.

By Markov’s inequality and (57),

Pr (ξ(xn, yn) ≥ τ |xn ∈ An
� )

= Pr (exp (nβξ(xn, yn)) ≥ exp(nβτ)|xn ∈ An
� )

≤ exp(−nτβ)
Pn

�

.

Hence, we obtain

Pr (ξ(xn, yn) ≥ τ)
= Pn

� Pr (ξ(xn, yn) ≥ τ |xn ∈ An
� )

+ (1 − Pn
� ) Pr (ξ(xn, yn) ≥ τ |xn /∈ An

� )
≤ Pn

� Pr (ξ(xn, yn) ≥ τ |xn ∈ An
� ) + (1 − Pn

� )
≤ exp(−nτβ) + (1 − Pn

� ).

The proof completes by noticing that

(1/n)
�
F θ̂

ι (xn, yn) − L(θ̂|xn)
�
≤ ξ(xn, yn)

for any xn and yn.

C. Proof of Corollary 5

The proof is obtained immediately from Theorem 3.
Proof: Let again En

� denote a conditional expectation with
regard to p̄∗(xn, yn) given that xn ∈ An

� . The unconditional
risk is bounded as

Ep̄∗ [Dn
α (p∗, pθ̂)]

= Ep̄∗ [IAn
ε
(xn)Dn

α (p∗, pθ̂)]
+ Ep̄∗ [(1 − IAn

ε
(xn))Dn

α (p∗, pθ̂)]

≤ Pn
� E

n
� [Dn

α (p∗, pθ̂)] + (1 − Pn
� ) · 4

1 − α2

≤ Pn
�

λ(α)
En

� [dn
ι(α)(p∗, pθ̂)] +

(1 − Pn
� )

λ(α)(λ(α) + α)

≤ Pn
�

λ(α)



1
Pn

�

Ep̄∗ log
p∗(yn|xn)
p2(yn|xn)

+
1
β

log
1
Pn

�

�
+

(1 − Pn
� )

λ(α)(λ(α) + α)

=
1

λ(α)
Ep̄∗

�
log

p∗(yn|xn)
p2(yn|xn)

�
+

Pn
�

λ(α)β
log

1
Pn

�

+
(1 − Pn

� )
λ(α)(λ(α) + α)

.

The first and second inequalities follow from the two proper-
ties of α-divergence in (42) and (43) respectively. The third
inequality follows from Theorem 3 because λ(α) ∈ (0, 1−β)
by the assumption. The final part of the statement follows
from the fact that taking λ = 1 − β makes the bound in (35)
tightest because of the monotonically increasing property of
Rényi divergence with regard to λ.

As mentioned in the main text, we remark that the
sub-probability condition of p2(yn|xn) can be replaced
with its sufficient condition “L(θ|xn) is codelength valid.”
In addition, the sub-probability condition can be relaxed
to

sup
xn∈X n

�
p2(yn|xn)dyn <∞,

under which the bound increases by

(1 − Pn
� ) log sup

xn∈X n

�
p2(yn|xn)dyn.

D. Rényi Divergence and Its Derivatives

In this section and the next section, we prove a series of
lemmas, which will be used to derive restricted risk valid
penalties for lasso. First, we show that the Rényi divergence
can be understood by defining p̄ι

θ (x, y) in Lemma 6. Then,
their explicit forms in the lasso setting are calculated in
Lemma 7.

Lemma 6: Define a probability distribution p̄ι
θ (x, y)

by

p̄ι
θ (x, y) :=

q∗(x)p∗(y|x)ιpθ(y|x)1−ι

Zι
θ

,
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where Zι
θ is a normalization constant. Then, the Rényi diver-

gence and its first and second derivatives are written as

dι(p∗, pθ) =
−1

1 − λ
logZι

θ ,

∂dι(p∗, pθ)
∂θ

= −Ep̄λ
θ

[sθ(y|x)] , (58)

∂2dι(p∗, pθ)
∂θ∂θT

= −Ep̄λ
θ

[Gθ(x, y)]

− (1 − λ)Varp̄λ
θ

(sθ(y|x)) , (59)

where Varp(A) denotes a covariance matrix of A with respect
to p and

sθ(y|x) :=
∂ log pθ(y|x)

∂θ
, Gθ(x, y) :=

∂2 log pθ(y|x)
∂θ∂θT

.

Proof: The normalizing constant is rewritten as

Zι
θ =

�
q∗(x)p∗(y|x)



pθ(y|x)
p∗(y|x)

�1−ι

dxdy

= Ep̄∗(x,y)

�

pθ(y|x)
p∗(y|x)

�1−ι
!
.

Thus the Rényi divergence is written as

dι(p∗, pθ) = − 1
1 − λ

logZι
θ .

Next, we calculate the partial derivative of logZι
θ as

∂ logZι
θ

∂θ

=
1
Zι

θ

∂Zι
θ

∂θ

=
1
Zι

θ

Ep̄∗

�

pθ(y|x)
p∗(y|x)

�1−ι
∂

∂θ
log



pθ(y|x)
p∗(y|x)

�1−ι
!

=
1 − λ

Zι
θ

Ep̄∗

�

pθ(y|x)
p∗(y|x)

�1−ι
∂ log pθ(y|x)

∂θ

!

=
1 − λ

Zι
θ

�
q∗(x)p∗(y|x)ιpθ(y|x)1−ιsθ(y|x)dxdy

= (1 − λ)Ep̄λ
θ
[sθ(y|x)].

Therefore, the first derivative is

∂dι(p∗, pθ)
∂θ

= − 1
1 − λ

∂ logZι
θ

∂θ
= −Ep̄λ

θ
[sθ(y|x)] .

Furthermore, we have

∂ log p̄ι
θ (x, y)
∂θ

=
∂

∂θ
log



q∗(x)p∗(y|x)ιpθ(y|x)1−ι

Zι
θ

�
= (1 − λ)

∂ log pθ(y|x)
∂θ

− ∂ logZι
θ

∂θ
= (1 − λ)sθ(y|x) − (1 − λ)Ep̄λ

θ
[sθ(y|x)]

= (1 − λ)
�
sθ(y|x) − Ep̄λ

θ
[sθ(y|x)]

�
.

Hence,

∂2dι(p∗, pθ)
∂θ∂θT

= −
�
sθ(y|x)p̄ι

θ (x, y)


∂ log p̄ι

θ (x, y)
∂θ

�T

+ p̄ι
θ (x, y)

∂sθ(y|x)
∂θT

dxdy

= −Ep̄λ
θ

�
(1 − λ)sθ(y|x)

�
sθ(y|x) − Ep̄λ

θ
[sθ(y|x)]

�T

+
∂2 log pθ(y|x)

∂θ∂θT

�
= −Ep̄λ

θ

�
∂2 log pθ(y|x)

∂θ∂θT

�
− (1 − λ)

·Ep̄λ
θ

��
sθ(y|x)−Ep̄λ

θ
[sθ(y|x)]

��
sθ(y|x)−Ep̄λ

θ
[sθ(y|x)]

�T
�

= −Ep̄λ
θ

�
∂2 log pθ(y|x)

∂θ∂θT

�
−(1 − λ)Varp̄λ

θ
(sθ(y|x)) .

Lemma 7: Let

θ(λ) := λθ∗ + (1 − λ)θ, θ̄ := θ − θ∗, θ̄� := Σ1/2θ̄,

c :=
σ2

λ(1 − λ)
, qι

θ (x) :=
�
p̄ι

θ (x, y)dy, pι
θ (y|x) :=

p̄ι
θ (x, y)
qι
θ

.

If we assume that p∗(y|x) = N(y|xT θ∗, σ2) (i.e., linear
regression setting),

pι
θ (y|x) =N(y|xT θ(λ), σ2),

qι
θ (x) =

q∗(x) exp
�− 1

2c(x
T θ̄)2

 
Zι

θ

,

∂dι(p∗, pθ)
∂θ

=
λ

σ2
Eqλ

θ
[xxT ]θ̄,

∂2dι(p∗, pθ)
∂θ∂θT

=
λ

σ2
Eqλ

θ
[xxT ] − λ

σ2c
Varqλ

θ

�
xxT θ̄

 
. (60)

If we additionally assume that q∗(x) = N(x|0,Σ) with a non-
singular covariance matrix Σ,

qι
θ (x) = N(x|0,Σι

θ ),
∂dι(p∗, pθ)

∂θ
=

λ

σ2



c

c+ �θ̄��2
2

�
Σ1/2θ̄�, (61)

∂2dι(p∗, pθ)
∂θ∂θT

=
λ

σ2



c

c+ �θ̄��2
2

�
Σ

− 2λ
σ2



c

(c+ �θ̄��2
2)2

�
Σ1/2θ̄�

�
θ̄�
 T Σ1/2,

(62)

where

Σι
θ := Σ − Σ1/2θ̄�(θ̄�)T Σ1/2

c+ �θ̄��2
2

.
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Proof: By completing squares, we can rewrite p̄ι
θ (x, y) as

p̄ι
θ (x, y)

=
q∗(x)

(2πσ2)
1
2 Zι

θ

· exp


−λ(y − xT θ∗)2 + (1 − λ)(y − xT θ)2

2σ2

�
=

q∗(x)

(2πσ2)
n
2 Zι

θ

· exp


− (y − xT θ(λ))2 + λ(1 − λ)(xT (θ∗ − θ))2

2σ2

�
=
q∗(x)
Zι

θ

· exp


−λ(1 − λ)(xT θ̄)2

2σ2

�
N(y|xT θ(λ), σ2).

Hence, pι
θ (y|x) is N(y|xT θ(λ), σ2). Integrating y out, we also

have

qι
θ (x) =

q∗(x) exp
�− 1

2c(x
T θ̄)2

 
Zι

θ

.

When q∗(x) = N(0,Σ),

qι
θ (x) =

exp
�− 1

2x
T Σ−1x− 1

2cx
T θ̄θ̄Tx

 
(2π)m/2|Σ|1/2Zι

θ

=
exp

�− 1
2x

T
�
Σ−1 + 1

c θ̄θ̄
T
 
x
 

(2π)m/2|Σ|1/2Zι
θ

. (63)

Since Σ is strictly positive definite by the assumption, Σ−1 +
(1/c)θ̄θ̄T is non-singular. Hence, by the inverse formula
(Lemma 10 in Appendix),

Σι
θ =



Σ−1 +

1
c
θ̄θ̄T

�−1

= Σ − Σθ̄θ̄T Σ
c+ θ̄T Σθ̄

= Σ − Σ1/2θ̄�(θ̄�)T Σ1/2

c+ �θ̄��2
2

. (64)

Therefore, qι
θ (x) = N(x|0,Σι

θ ). The score function and
Hessian of log pθ(y|x) are

sθ(y|x) =
1
σ2
x(y − xT θ),

∂2 log pθ(y|x)
∂θ∂θT

= − 1
σ2
xxT . (65)

Using (58), the first derivative is obtained as

∂dι(p∗, pθ)
∂θ

= −Ep̄λ
θ
[sθ(y|x)]

= −Eqλ
θ

"
Epλ

θ
[sθ(y|x)]

#
= −Eqλ

θ

�
Epλ

θ

�
1
σ2
x(y − xT θ)

��
= −Eqλ

θ

�
1
σ2
xxT (θ(λ) − θ)

�
=

λ

σ2
Eqλ

θ

$
xxT

%
θ̄

because θ(λ) − θ = −λθ̄. When q∗(y|x) = N(0,Σ),

∂dι(p∗, pθ)
∂θ

=
λ

σ2
Σι

θ θ̄.

From (64), we have

Σι
θ θ̄ = Σθ̄ − Σ1/2θ̄�(θ̄�)T Σ1/2θ̄

c+ �θ̄��2
2

= Σ
1
2 θ̄� −


 �θ̄��2
2

c+ �θ̄��2
2

�
Σ1/2θ̄�

=



c

c+ �θ̄��2
2

�
Σ1/2θ̄�, (66)

which gives (61). Though (62) can be obtained by differenti-
ating (61), we derive it by way of (59) here. To calculate the
covariance matrix of sθ in terms of p̄ι

θ , we decompose sθ as

sθ(y|x) =
1
σ2
x(y − xT θ(λ) + xT θ(λ) − xT θ)

=
1
σ2
x(y − xT θ(λ)) − λ

σ2
xxT θ̄.

Note that the covariance of (1/σ2)x(y − xT θ(λ)) and
−(λ/σ2)xxT θ̄ vanishes since

Ep̄λ
θ
[x(y − xT θ(λ))(xxT θ̄)T ]

= Eqλ
θ

"
xxT (xT θ̄)Epλ

θ

$
(y − xT θ(λ))

%#
= 0.

Therefore, we have

Varp̄λ
θ

(sθ)

= Varp̄λ
θ



1
σ2
x(y − xT θ(λ))

�
+ Varp̄λ

θ



λ

σ2
xxT θ̄

�
=

1
σ4
Ep̄λ

θ

$
(y − xT θ(λ))2xxT

%
+
λ2

σ4
Varqλ

θ

�
xxT θ̄

 
=

1
σ2
Eqλ

θ

$
xxT

%
+
λ2

σ4
Varqλ

θ

�
xxT θ̄

 
By (59) combined with (65), the Hessian of Rényi divergence
is calculated as

∂2dι(p∗, pθ)
∂θ∂θT

=
1
σ2
Ep̄λ

θ
[xxT ]

− (1 − λ)



1
σ2
Eqλ

θ
[xxT ] +

λ2

σ4
Varqλ

θ

�
xxT θ̄

 �
=

λ

σ2
Eqλ

θ
[xxT ] − λ2(1 − λ)

σ4
Varqλ

θ

�
xxT θ̄

 
=

λ

σ2
Eqλ

θ
[xxT ] − λ

σ2c
Varqλ

θ

�
xxT θ̄

 
.

When q∗(x) = N(0,Σ), Varqλ
θ

�
xxT θ̄

 
is calculated as fol-

lows. Note that

Varqλ
θ
(xxT θ̄) = Eqλ

θ

$
(xxT θ̄)(xxT θ̄)T

%− (Σι
θ θ̄)(Σ

ι
θ θ̄)

T .

The (j1, j2) element of Eqλ
θ

$
xxT θ̄θ̄TxxT

%
is calculated as

Eqλ
θ

"�
xxT θ̄θ̄TxxT

 
j1j2

#
=

m	
j3,j4=1

θ̄j3 θ̄j4Eqλ
θ

[xj1xj2xj3xj4 ] ,

where xj denotes the jth element of x only here. Thus,
we need all the fourth-moments of qι

θ (x). We rewrite Σι
θ as

S to reduce notation complexity hereafter. By the formula of
moments of Gaussian distribution, we have

Eqλ
θ

[xj1xj2xj3xj4 ] = Sj1j2Sj3j4 + Sj1j3Sj2j4 + Sj2j3Sj1j4 .
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Therefore, the above quantity is calculated as

Eqλ
θ

"�
xxT θ̄θ̄TxxT

 
j1j2

#
=

m	
j3,j4=1

θ̄j3 θ̄j4(Sj1j2Sj3j4 + Sj1j3Sj2j4 + Sj2j3Sj1j4)

= θ̄TSθ̄Sj1j2 + 2(Sθ̄)j1(Sθ̄)j2 .

Summarizing these as a matrix form, we have

Eqλ
θ

$
xxT θ̄θ̄TxxT

%
= (θ̄TSθ̄)S + 2Sθ̄(Sθ̄)T .

As a result, Varqλ
θ
(xxT θ̄) is obtained as

Varqλ
θ
(xxT θ̄) = (θ̄TSθ̄)S + 2Sθ̄θ̄TS − Sθ̄θ̄TS

= Sθ̄θ̄TS + (θ̄TSθ̄)S. (67)

Using (66), the first and second terms of (67) are calculated
as

Sθ̄θ̄TS =



c2

(c+ �θ̄��2
2)2

�
Σ1/2θ̄�

�
θ̄�
 T Σ1/2,

θ̄TSθ̄ =



c

c+ �θ̄��2
2

�
(θ̄)T Σ1/2θ̄� =

c�θ̄��2
2

c+ �θ̄��2
2

.

Combining these,

∂2dι(p∗, pθ)
∂θ∂θT

=
λ

σ2
S

− λ

σ2c



c2

(c+ �θ̄��2
2)2

Σ1/2θ̄�
�
θ̄�
 T Σ1/2 +

c�θ̄��2
2

c+ �θ̄��2
2

S

�
=

λ

σ2
· c

c+ �θ̄��2
2

S − λ

σ2
· c

(c+ �θ̄��2
2)2

Σ1/2θ̄�
�
θ̄�
 T Σ1/2

=
λ

σ2
· c

c+ �θ̄��2
2



Σ − Σ1/2θ̄�(θ̄�)T Σ1/2

c+ �θ̄��2
2

�
− λ

σ2
· c

(c+ �θ̄��2
2)2

Σ1/2θ̄�
�
θ̄�
 T Σ1/2

=
λ

σ2
· c

c+ �θ̄��2
2

Σ − 2λ
σ2

· c

(c+ �θ̄��2
2)2

Σ1/2θ̄�
�
θ̄�
 T Σ1/2.

E. Upper Bound of Negative Hessian

Using Lemma 7 in Section VI-D, we show that the negative
Hessian of the Rényi divergence is bounded from above.

Lemma 8: Assume that q∗(x) = N(x|0,Σ) and p∗(y|x) =
N(y|xT θ∗, σ2), where Σ is non-singular. For any θ, θ∗,

−∂
2dι(p∗, pθ)
∂θ∂θT

� λ

8σ2
Σ, (68)

where A � B implies that B −A is positive semi-definite.
Proof: By Lemma 7, we have

−∂
2dι(p∗, pθ)
∂θ∂θT

=
2λ
σ2



c

(c+ �θ̄��2
2)2

�
Σ1/2θ̄�

�
θ̄�
 T Σ1/2

− λ

σ2



c

c+ �θ̄��2
2

�
Σ.

For any nonzero vector v ∈ 	m,

vT Σ1/2θ̄�
�
θ̄�
 T

Σ1/2v =
�
vT Σ1/2θ̄�

�2

≤ �Σ1/2v�2
2 · �θ̄��2

2 = vT (�θ̄��2
2 Σ)v

by Cauchy-Schwartz inequality. Hence, we have

Σ1/2θ̄�
�
θ̄�
 T

Σ1/2 � �θ̄��2
2 Σ.

Thus,

− ∂2dι(p∗, pθ)
∂θ∂θT

� 2λ
σ2



c�θ̄��2

2

(c+ �θ̄��2
2)2

�
Σ − λ

σ2



c

c+ �θ̄��2
2

�
Σ

=
λ

σ2



c(�θ̄��2

2 − c)
(c+ �θ̄��2

2)2

�
Σ.

Define

f(t) :=
c(t− c)
(c+ t)2

for t ≥ 0. Checking the properties of f(t), we have

f(0) = −1, f(c) = 0, f(∞) = 0,
df(t)
dt

=
c(3c− t)
(t+ c)3

.

Therefore, maxt∈[0,∞) f(t) = f(3c) = 1/8. As a result, we
obtain

−∂
2dι(p∗, pθ)
∂θ∂θT

� λ

8σ2
Σ.

F. Proof of Lemma 3

We are now ready to derive restricted risk valid weighted
�1 penalties.

Proof: Similarly to the rewriting from (20) to (32), we can
rewrite the condition for restricted risk validity as

∀xn ∈ An
� , ∀yn ∈ Y n, ∀θ ∈ Θ,

min
θ̃∈�Θ(q∗)

�
dn

ι(p∗, pθ) − dn
ι(p∗, pθ̃)& '( )

loss variation part

+ log
pθ(yn|xn)
pθ̃(yn|xn)

+ L̃(θ̃|q∗)& '( )
codelength validity part

�

≤ L(θ|xn). (69)

We again write the inside part of the minimum in (69) as
H(θ, θ̃, xn, yn). As described in Section III-B, the direct
minimization of H(θ, θ̃, xn, yn) seems to be difficult. Instead
of evaluating the minimum explicitly, we borrow a nice
randomization technique introduced in [17] with some modifi-
cations. Their key idea is to evaluate not minθ̃ H(θ, θ̃, xn, yn)
directly but its expectation Eθ̃[H(θ, θ̃, xn, yn)] with respect
to a dexterously randomized θ̃ around θ because the expec-
tation is larger than the minimum. Let us define w∗ :=
(w∗

1 , w
∗
2 , · · · , w∗

m)T , where w∗
j =

�
Σjj and W ∗ :=

diag(w∗
1 , · · · , w∗

m). We quantize Θ as�Θ(q∗) := {δ(W ∗)−1z|z ∈ Z m}, (70)

where δ > 0 is a quantization width and Z is the set of all
integers. Though �Θ depends on xn in fixed design cases [17],
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we must remove the dependency to satisfy the restricted risk
validity as above. For each θ, θ̃ is randomized as

θ̃j =

⎧⎪⎨⎪⎩
δ

w∗
j
�aj� with prob. aj − �aj�

δ
w∗

j
�aj� with prob. �aj� − aj

δ
w∗

j
aj with prob. 1 − (�aj� − �aj�)

, (71)

where aj := w∗
j θj/δ and each component of θ̃ is statistically

independent of each other. Its important properties are

Eθ̃[θ̃] = θ, (unbiasedness)

Eθ̃[|θ̃|] = |θ|, (72)

Eθ̃[(θ̃j − θj)(θ̃j′ − θj′ )] ≤ I(j = j�)
δ

w∗
j

|θj |,

where |θ̃| denotes a vector whose jth component is the
absolute value of θ̃j and similarly for |θ|. Using these, we can
bound Eθ̃[H(θ, θ̃, xn, yn)] as follows. The loss variation part
in (69) is the main concern because it is more complicated
than squared error of fixed design cases. Let us consider the
following Taylor expansion

dn
ι(p∗, pθ) − dn

ι(p∗, pθ̃)

= −


∂dn

ι(p∗, pθ)
∂θ

�T

(θ̃ − θ)

− 1
2
Tr



∂2dn

ι(p∗, pθ◦)
∂θ∂θT

(θ̃ − θ)(θ̃ − θ)T

�
, (73)

where θ◦ is a vector between θ and θ̃. The first term in the
right side of (73) vanishes after taking expectation with respect
to θ̃ because Eθ̃[θ̃−θ] = 0. As for the second term, we obtain

Tr


−∂

2dn
ι(p∗, pθ◦)
∂θ∂θT

(θ̃ − θ)(θ̃ − θ)T

�
≤ nλ

8σ2
Tr



Σ
�
θ̃ − θ

��
θ̃ − θ

�T
�

by Lemma 8. Thus, expectation of the loss variation part with
respect to θ̃ is bounded as

Eθ̃

$
dn

ι(p∗, pθ) − dn
ι(p∗, pθ̃)

% ≤ δnλ

16σ2
�θ�w∗,1. (74)

The codelength validity part in (69) have the same form as that
for the fixed design case in its appearance. However, we need
to evaluate it again in our setting because both �Θ and L̃ are
different from those of [17]. The likelihood term is calculated
as

1
2σ2

�
2(Y −Xθ)TX(θ − θ̃)+Tr

�
XTX(θ̃ − θ)(θ̃ − θ)T

��
.

Taking expectation with respect to θ̃, we have

Eθ̃

�
log

pθ(yn|xn)
pθ̃(yn|xn)

�
=

n

2σ2
Eθ̃

"
Tr

�
W 2(θ̃ − θ)(θ̃ − θ)T

�#
≤ δn

2σ2

m	
j=1

w2
j

w∗
j

|θj |,

where W := diag(w1, w2, · · · , wm). We define a codelength
function C(z) := �z�1 log 4m + log 2 over Z m. Note that

C(z) satisfies Kraft’s inequality. Let us define a codelength
function on �Θ(q∗) as

L̃(θ̃|q∗) :=
1
β
C



1
δ
W ∗θ̃

�
=

1
βδ

�W ∗θ̃�1 log 4m+
log 2
β

.

(75)

By this definition, L̃ satisfies β-stronger Kraft’s inequality and
does not depend on xn but depends on q∗(x) through W ∗. By
taking expectation with respect to θ̃, we have

Eθ̃

"
L̃(θ̃|q∗)

#
=

log 4m
βδ

�θ�w∗,1 +
log 2
β

because of (72). Thus the codelength validity part is bounded
from above by

δn

2σ2

m	
j=1

w2
j

w∗
j

|θj | + log 4m
βδ

�θ�w∗,1 +
log 2
β

.

Combining with the loss variation part, we obtain an upper
bound of Eθ̃[H(θ, θ̃, xn, yn)] as

δnλ

16σ2
�θ�w∗,1+

δn

2σ2

m	
j=1

w2
j

w∗
j

|θj |+ log 4m
βδ

�θ�w∗,1+
log 2
β

.

Since xn ∈ An
� , we have�

(1 − �)w∗
j ≤ wj ≤

�
(1 + �)w∗

j . (76)

Thus we can bound Eθ̃[H(θ, θ̃, xn, yn)] by the data-dependent
weighted �1 norm �θ�w,1 as

Eθ̃[H(θ, θ̃, xn, yn)]

≤ δnλ

16σ2

�θ�w,1√
1 − �

+
δn

√
1 + �

2σ2

m	
j=1

w2
j

wj
|θj | + log 4m

βδ

�θ�w,1√
1 − �

+
log 2
β

=


δn

σ2



λ

16
√

1 − �
+

√
1 + �

2

�
+

log 4m
δβ

√
1 − �

�
�θ�w,1

+
log 2
β

.

Because this holds for any δ > 0, we can minimize the upper
bound with respect to δ. The minimum value of the upper
bound is attained by

δ = 4

�
σ2 log 4m

nβ
·

√
1 − �

λ+ 8
√

1 − �2
,

which completes the proof of (47). The latter part of the lemma
can be proved easily by modifying the above proof. By (76),
w2

j ≤ (1 + �)(w∗
j )2. Since w∗

j ≤M for all j,

�θ�w∗,1 =
m	

j=1

w∗
j |θj | ≤M

m	
j=1

|θj | = M�θ�1.



4266 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 7, JULY 2020

Thus, we can bound Eθ̃[H(θ, θ̃, xn, yn)] by the ordinary �1
norm �θ�w,1 as

Eθ̃[H(θ, θ̃, xn, yn)]

≤ δnλ

16σ2
�θ�w∗,1 +

δn(1 + �)
2σ2

m	
j=1

w∗
j |θj | + log 4m

βδ
�θ�w∗,1

+
log 2
β

=


δn

σ2



λ

16
+

1 + �

2

�
+

log 4m
δβ

�
�θ�w∗,1+

log 2
β

≤M



δn

σ2



λ

16
+

1 + �

2

�
+

log 4m
δβ

�
�θ�1+

log 2
β

.

Again, minimizing the upper bound with respect to δ, we have

δ = 4

�
σ2 log 4m

nβ(λ+ 8(1 + �))
,

which gives (48).

G. Some Remarks on the Proof of Lemma 3

The main difference of the proof from the fixed design case
is in the loss variation part. In the fixed design case, the Rényi
divergence dι(p∗, pθ|xn) is convex in terms of θ. When the
Rényi divergence is convex, the negative Hessian is negative
semi-definite for all θ. Hence, the loss variation part is trivially
bounded from above by zero. On the other hand, dι(p∗, pθ)
is not convex in terms of θ. This can be intuitively seen by
deriving the explicit form of dι(p∗, pθ) instead of checking the
positive semi-definiteness of its Hessian. From (63), we have

Zι
θ =

�
exp

�− 1
2

�
xT (Σι

θ )−1x
  

(2π)m/2|Σ|1/2
dx = |Σ|−1/2|Σι

θ |1/2

= |Σ−1/2Σι
θ Σ−1/2|1/2

=
����Im −



1

c+ �θ̄��2
2

�
θ̄�

�
θ̄�
 T

����1/2

=

�����Im −

 �θ̄��2

2

c+ �θ̄��2
2

�

θ̄�

�θ̄��2

�

θ̄�

�θ̄��2

�T
�����
1/2

. (77)

Prof. A. R. Barron suggested in a private discussion that Zι
θ

can be simplified more as follows. Let Q := [q1, q2, · · · , qm]
be an orthogonal matrix such that q1 := θ̄�/�θ̄��2. Using this,
we have

Im −

 �θ̄��2

2

c+ �θ̄��2
2

�

θ̄�

�θ̄��2

�

θ̄�

�θ̄��2

�T

= QQT −

 �θ̄��2

2

c+ �θ̄��2
2

�
q1q

T
1

=



1 −

 �θ̄��2

2

c+ �θ̄��2
2

��
q1q

T
1 +

m	
j=2

qjq
T
j

=



c

c+ �θ̄��2
2

�
q1q

T
1 +

m	
j=2

qjq
T
j

= Q

⎛⎜⎜⎜⎜⎜⎝
c/(c+ �θ̄��2

2) 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎠QT .

Hence, the resultant Zι
θ is obtained as

Zι
θ̃

=

�����Im − γ(�θ̄��2
2)



θ̄�

�θ̄��2

�

θ̄�

�θ̄��2

�T
�����
1
2

=



c

c+ �θ̄��2
2

� 1
2

.

Thus, we have a simple expression of the Rényi divergence as

dι(p∗, pθ) =
1

2(1 − λ)
log



1 +

�θ̄��2
2

c

�
. (78)

From this form, we can easily know that the Rényi divergence
is not convex. When the Rényi divergence is non-convex, it is
unclear in general whether and how the loss variation part is
bounded from above. This is one of the main reasons why the
derivation becomes more difficult than that of the fixed design
case.

We also mention an alternative proof of Lemma 3 based
on (78). We provided Lemma 6 to calculate Hessian of the
Rényi divergence. However, the above simple expression of
the Rényi divergence is somewhat easier to differentiate, while
the expression based on (77) is somewhat hard to do it. There-
fore, we can twice differentiate the above Rényi divergence
directly in order to obtain Hessian instead of Lemma 7 in
our Gaussian setting. However, there is no guarantee that
such a simplification is always possible in general setting.
In our proof, we tried to give a somewhat systematic way
which is easily applicable to other settings to some extent.
Suppose now, for example, we are aim at deriving restricted
risk valid �1 penalties for lasso when q∗(x) is subject to
non-Gaussian distribution. By (60) in Lemma 7, it suffices
only to bound Varqλ

θ
(xxT θ̄) in the sense of positive semi-

definiteness because −Eqλ
θ
[xxT ] is negative semi-definite. In

general, it seemingly depends on a situation which is better,
the direct differential or using (60). In our Gaussian setting,
we imagine that the easiest way to calculate Hessian for most
readers is to calculate the first derivative by the formula (58)
and then to differentiate it directly, though this depends on
readers’ background knowledge. For other settings, we believe
that providing Lemmas 6 and 7 would be useful in some cases.

H. Proof of Lemma 4

Here we show that xn distributes out of An
� with exponen-

tially small probability with respect to n.
Proof: The typical set An

� can be decomposed covariate-
wise as

An
� = Πm

j=1A
n
� (j),

An
� (j) :=

�
xj ∈ 	n

�� ��(w∗
j )2 − (�xj�2

2/n)
�� ≤ �(w∗

j )2


=
�
xj ∈ 	n

�� ��(w∗
j )2 − w2

j )
�� ≤ �(w∗

j )2

,
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where xj := (x1j , x2j , · · · , xnj)T and the above Π denotes a
direct product of sets. We write w2

j as z and (w∗
j )2 as s (the

index j is dropped for legibility). From its definition, w2
j is

subject to a Gamma distribution Ga((n/2), (2s)/n) because
xj ∼ Πn

i=1N(xj |0, s). We rewrite the Gamma distribution
g(z; s) in the form of exponential family:

g(z; s) := Ga


n

2
,
2s
n

�
=

Γ(n
2 )

z
n
2 −1

· exp
�
−nz

2s

�
2s
n

�n
2

= exp


n− 2

2
log z − nz

2s
− log



2s
n

�n
2

Γ
�n

2

��
= exp (C(z) + νz − ψ(ν)) ,

where

C(z) :=


n− 2

2

�
log z, ν := − n

2s
,

ψ(ν) := log(−ν)−n/2Γ(n/2).

That is, ν is a natural parameter and z is a sufficient statistic, so
that the expectation parameter η(s) is Eg(z;s)[z]. The relation-
ship between the variance parameter s and natural/expectation
parameters are summarized as

ν(s) := − n

2s
, η(ν) = − n

2ν
.

For exponential families, there is a useful Sanov-type inequal-
ity (Lemma 9 in Appendix). Using this Lemma, we can bound
Pr(xj /∈ An

� (j)) as follows. For this purpose, it suffices to
bound the probability of the event |w2

j −w∗2
j | ≤ w∗2

j �. When
s = (w∗

j )2 and s� = s(1 ± �),

D(ν(s± �s), ν)

=


− n

2s(1 ± �)
−

�
− n

2s

��
s(1 ± �) − n

2
log(1 ± �)

=
�
− n

2s

�

1

(1 ± �)
− 1

�
s(1 ± �) − n

2
log(1 ± �)

=
�
−n

2

�
(1 − (1 ± �)) − n

2
log(1 ± �)

=
n

2
(±�− log(1 ± �)) ,

where D is the single data version of the KL-divergence
defined by (8). It is easy to see that � − log(1 + �) ≤
−�− log(1 − �) for any 0 < � < 1. By Lemma 9, we obtain

Pr(|w2
j − w∗2

j | ≤ �w∗2
j )

= 1 − Pr(w2
j − w∗2

J ≥ �w∗2
j or w∗2

J − w2
j ≥ �w∗2

j )

= 1 − Pr(w2
j − w∗2

J ≥ �w∗2
j ) − Pr(w∗2

J − w2
j ≥ �w∗2

j )

≥ 1 − exp
�
−n

2
(�− log(1 + �))

�
− exp

�
−n

2
(−�− log(1 − �))

�
≥ 1 − 2 exp

�
−n

2
(�− log(1 + �))

�
.

Hence Pn
� can be bounded from below as

Pn
� = Pr(xn ∈ An

� ) = Πm
j=1(1 − Pr(xj /∈ An

� (j)))

≥
�
1 − 2 exp

�
−n

2
(�− log(1 + �))

��m

≥ 1 − 2m exp
�
−n

2
(�− log(1 + �))

�
.

The last inequality follows from (1 − t)m ≥ 1 −mt for any
t ∈ [0, 1] and m ≥ 1. To simplify the bound, we can do
more. The maximum positive real number u such that, for
any � ∈ [0, 1], u�2 ≤ (1/2)(� − log(1 + �)) is (1 − log 2)/2.
Then, the maximum integer u1 such that (1− log 2)/2 ≥ 1/u1

is 7, which gives the last inequality in the statement.

I. Proof of Lemma 5

We can prove this lemma by checking the proof of
Lemma 3.

Proof: Let

L1(θ|xn) := μ1�θ�w,1 + μ2.

Similarly to the rewriting from (28) to (32), we can restate
the codelength validity condition for L1(θ|xn) as “there exist a
quantize subset �Θ(xn) and a model description length L̃(θ̃|xn)
satisfying the usual Kraft’s inequality, such that

∀xn ∈ X n, ∀yn ∈ Y n, ∀θ ∈ Θ,

min
θ̃∈�Θ(xn)

�
log

pθ(yn|xn)
pθ̃(yn|xn)

+ L̃(θ̃|xn)
�

≤ L1(θ|xn).” (79)

Recall that (47) is a sufficient condition for the restricted risk
validity of L1, in fact, it was derived as a sufficient condition
for the proposition that L1(θ|xn) bounds from above

Eθ̃[H(θ, θ̃, vn, yn)] = Eθ̃

$
dn

ι(p∗, pθ) − dn
ι(p∗, pθ̃)

%& '( )
(i)

+Eθ̃

�
log

pθ(yn|vn)
pθ̃(yn|vn)

+ L̃(θ̃|q∗)
�

& '( )
(ii)

(80)

for any q∗ ∈ Pn
x , vn ∈ An

� , yn ∈ Y n, θ ∈ Θ, where θ̃ was
randomized on �Θ(q∗) and (�Θ(q∗), L̃(θ̃|q∗)) were defined by
(70) and (75), in particular, L̃(θ̃|q∗) satisfies β-stronger Kraft’s
inequality. Recall that H(θ, θ̃, xn, yn) is the inside part of the
minimum in (69). Here, we used vn instead of xn so as to
discriminate from the above fixed xn. To derive the sufficient
condition, we obtained upper bounds on the terms (i) and (ii)
of (80) respectively, and shown that L1(θ|vn) with vn ∈ An

� is
not less than the sum of both upper bounds if (47) is satisfied.
A point is that the upper bound on the term (i) we derived is
a non-negative function of θ (see (74)). Hence, if vn ∈ An

�

and (47) hold, L1(θ|vn) is an upper bound on the term (ii),
which is not less than

min
θ̃∈�Θ(q∗)

�
log

pθ(yn|vn)
pθ̃(yn|vn)

+ L̃(θ̃|q∗)
�
.

Now assume (47) and let us take q∗ ∈ Pn
x given xn, such

that Σjj is equal to (1/n)
�n

i=1 x
2
ij for all j. Then we have

xn ∈ An
� , which implies

L1(θ|xn) ≥ min
θ̃∈�Θ(q∗)

�
log

pθ(yn|xn)
pθ̃(yn|xn)

+ L̃(θ̃|q∗)
�
.

Since q∗ is determined by xn and L̃(θ̃|q∗) satisfies Kraft’s
inequality, the codelength validity condition holds for L1.
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VII. CONCLUSION

We proposed a way to extend BC theory to supervised
learning. Our extension does not require any additional com-
plicated assumptions. This is important in order to show the
correctness of the MDL principle in a wide range of situations.
As an interesting application, we proved that lasso is a BC-
proper MDL estimator. That is, lasso can be interpreted as an
estimator obtained by minimizing the description length of the
given data using a two-stage code. Furthermore, lasso is shown
to have a new risk and regret bounds in which its statistical
risk is bounded from above by its redundancy or regret. That
is, compressing the data more leads to the more favorable
estimator. The derived bounds hold for any n and p without
any complicated assumptions including bounded assumptions.
In this sense, our risk bound is unique compared to other
past studies. Numerical simulations illustrate how tight our
regret bound is. Our next challenges are extending our result to
wider situations including non-normal covariates, non-normal
noise, other penalties and other machine learning methods.
According to our naive trials, none of them is easily obtained
only by tracing the way of this paper as itself.

APPENDIX

SANOV-TYPE INEQUALITY

The following lemma is a special case of the result in [20].
Below, we give a simpler proof. In the lemma, we denote
a random variable of one dimension by X and denote its
corresponding one dimensional variable by x.

Lemma 9: Let

x ∼ pθ(x) := exp(θx− ψ(θ)),

where x and θ are of one dimension. Then,

Prθ(X ≥ η�) ≤ exp(−D(θ�, θ)) if η� ≥ η,

Prθ(X ≤ η�) ≤ exp(−D(θ�, θ)) if η� ≤ η,

where η is the expectation parameter corresponding to the nat-
ural parameter θ and similarly for η�. The symbol D denotes
the single sample version of the KL-divergence defined by
(25).

Proof: In this setting, the KL divergence is calculated as

D(θ, θ�) = Epθ

�
log



pθ(X)
pθ′(X)

��
= (θ− θ�)η−ψ(θ)+ψ(θ�).

Assume η� − η ≥ 0. Because of the monotonicity of natural
parameter and expectation parameter of exponential family,

X ≥ η� ⇔ (θ� − θ)X ≥ (θ� − θ)η�

⇔ exp ((θ� − θ)X) ≥ exp ((θ� − θ)η�) .

By Markov’s inequality, we have

Prθ (exp ((θ� − θ)X) ≥ exp ((θ� − θ)η�))

≤ Epθ
[exp ((θ� − θ)X)]

exp ((θ� − θ)η�)

=
�

exp(θx − ψ(θ)) exp((θ� − θ)x)dx · exp(−(θ� − θ)η�)

=
�

exp(θ�x− ψ(θ))dx · exp(−(θ� − θ)η�)

TABLE IV

GLOSSARY THAT CONTAINS ALMOST ALL SYMBOLS APPEARING IN THE
SECTIONS EXCEPT PROOF SECTION AND APPENDICES

= exp(ψ(θ�)) exp(−ψ(θ)) · exp(−(θ� − θ)η�)
= exp(− ((θ� − θ)η� − ψ(θ�) + ψ(θ))).

The other inequality can also be proved in the same way.

INVERSE MATRIX FORMULA

Lemma 10: Let A be a non-singular m × m matrix. If c
and d are both m×1 vectors and A+ cd is non-singular, then

(A+ cdT )−1 = A−1 − A−1cdTA−1

1 + dTA−1c
.

See, for example, Corollary 1.7.2 in [31] for its proof.

GLOSSARY

In this paper, many complicated symbols appeared. We pro-
vide a glossary for the reader’s convenience.
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