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A New Approach to the Kasami Codes of Type 2
Minjia Shi , Denis S. Krotov , Member, IEEE, and Patrick Solé

Abstract— The dual of the Kasami code of length q2 −1, with
q a power of 2, is constructed by concatenating a cyclic MDS
code of length q + 1 over Fq with a Simplex code of length
q − 1. This yields a new derivation of the weight distribution
of the Kasami code, a new description of its coset graph, and
a new proof that the Kasami code is completely regular. The
automorphism groups of the Kasami code and the related q-ary
MDS code are determined. New cyclic completely regular codes
over finite fields a power of 2, generalized Kasami codes, are
constructed; they have coset graphs isomorphic to that of the
Kasami codes. Another wide class of completely regular codes,
including additive codes, as well as unrestricted codes, is obtained
by combining cosets of the Kasami or generalized Kasami code.

Index Terms— Kasami codes, completely regular codes, cyclic
codes, concatenation, automorphism group.

I. INTRODUCTION

D ISTANCE-REGULAR graphs form the most extensively
studied class of structured graphs due to their many con-

nections with codes, designs, groups and orthogonal polyno-
mials [1], [6]. Since the times of Delsarte [7], a powerful way
to create distance-regular graphs, especially in low diameters,
has been to use the coset graph of completely regular codes.
A linear or additive code is completely regular if the weight
distribution of each coset solely depends on the weight of its
coset leader. Many such examples from Golay codes, Kasami
codes, and others, can be found in [6]. A recent survey is [5].

In this note we focus on the Kasami code of type (ii) in the
sense of [6, § 11.2]. This code was also studied in [3]. It is a
cyclic code of length 22m − 1 with the two zeros α, α1+2m

,
where α denotes a primitive root of F22m . We call such a
code a classical Kasami code. We give a new construction
by concatenating a cyclic MDS code with a binary Simplex
code. This gives a new derivation of its weight distribution,
a non trivial calculation in [13], and a characterization of its
automorphism group.
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More generally, we construct generalized Kasami codes
of lengths q2−1

p−1 , when q is an even power of p, and p
itself a power of 2. This is obtained by concatenation of
a q-ary cyclic MDS code with a p-ary Simplex code. The
resulting code is cyclic with two zeros α, α(p−1)(1+q), where
α denotes a primitive root of Fq2 . When p > 2, we obtain
in that way infinitely many new cyclic completely regular
codes with a coset graph isomorphic to the coset graph of a
Kasami code.

We emphasize that one of the main contributions of our
research is in applying the concatenation with the Simplex
code to cyclic codes, with the result being cyclic too. In
general, the concatenation approach in the construction of
linear completely regular codes is known, see [16], [17], [4],
[5]. In particular, in [4], the concatenation of dual-distance-3
MDS codes with the Simplex code was considered (note that a
distance-3 MDS code, even non-linear, is always completely
regular [12, Cor. 6]); the result is a two-weight q-ary code,
whose dual is a covering-radius-2 completely regular code.
We use a similar approach, but start with a cyclic dual-
distance-4 MDS code, and prove also the cyclicity of the
resulting p-ary (p is a power of two) completely regular code
of covering radius 3, which is known as the Kasami code
if p = 2, and is a new cyclic completely regular code if
p > 2. In fact, concatenation with the Simplex code can be
applied as well to produce a completely regular p-ary code
from a linear completely regular q-ary code, q = pk, with
the same intersection array, independently on the concrete
parameters. Moreover, even more general approach guarantees
that from any unrestricted (not necessarily linear or additive) q-
ary completely regular code (and even an equitable partition)
we can construct a completely regular code with the same
intersection matrix over any alphabet p such that q is a power
of p (the alphabet sizes p and q are not required to be
prime powers). This approach is based on the existence of
a locally bijective homomorphism, known as a covering, see,
e.g., [8, Sect. 6.8], between the Hamming graphs H(n, q) (in
the role of the cover) and H( q−1

p−1n, p) (in the role of the
target) of the same degree. With the inverse homomorphism,
an equitable partition or completely regular code of the target
graph automatically maps to an equitable partition or com-
pletely regular code, respectively, of the cover graph, with
the same intersection matrix. This combinatorial approach is
very powerful and allows to connect equitable partitions of
different graphs, especially translation graphs (Cayley graphs
over abelian groups), such as, for example, bilinear forms
graphs and Hamming graphs. However, it does not always
allow to track some nice algebraic properties of the codes
such as cyclicity.
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The material is arranged as follows. The next section
collects the notions and notations needed for the rest of the
paper. Section III describes the concatenation approach and
the inner code used. Section IV gives a new description of the
classical Kasami codes, including their weight distributions,
and their automorphism groups. Section V describes the (new)
generalized Kasami codes obtained by allowing a more general
alphabet in the outer code. This includes a determination of
the weight distribution, and of the coset graphs. Section VI
provides a combinatorial way to derive new completely regular
codes from old, and applies it to the generalized Kasami codes.
Section VII recapitulates the path followed, and points out new
directions.

II. DEFINITIONS AND NOTATION

A. Graphs

All graphs in this note are finite, undirected, connected,
without loops or multiple edges. In a graph Γ, the neighbor-
hood Γ(v̄) of the vertex v̄ is the set of vertices connected to v̄.
The degree of a vertex v̄ is the size of Γ(v̄). A graph is regular
if every vertex has the same degree. The i-neighborhood Γi(v̄)
is the set of vertices at geodetic distance i to v̄. A graph is
distance regular (DR) if for every pair or vertices ū and v̄ at
distance i apart the quantities

bi = |Γi+1(ū) ∩ Γ(v̄)|, ci = |Γi−1(ū) ∩ Γ(v̄)|,
which are referred to as the intersection numbers of the
graph, solely depend on i and not on the special choice of
the pair (ū, v̄). The automorphism group of a graph is the
set of permutations of the vertices that preserve adjacency.
The Hamming graph H(n, q) (we consider only the case
of prime power q) is a distance-regular graph on F

n
q , two

vectors being connected if they are at Hamming distance
one. It is well known [14] that any automorphism of the
Hamming graph acts as a permutation π of coordinates and,
for every coordinate, a permutation σi of Fq; i.e., σ ◦ π:
(v1, . . . , vn) → (σ1(vπ−1(1)), . . . , σn(vπ−1(n))).

B. Equitable Partitions, Completely Regular Codes

A partition (P0, . . . , Pk) of the vertex set of a graph Γ is
called an equitable partition (also known as regular partition,
partition design, perfect coloring) if there are constants Sij

such that

|Γ(v̄) ∩ Pj | = Sij for every v̄ ∈ Pi, i, j = 0, . . . , k.

The numbers Sij are referred to as the intersection
numbers, and the matrix (Sij)k

i,j=0 as the intersec-
tion (or quotient) matrix. If the intersection matrix
is tridiagonal, then P0 is called a completely regu-
lar code of covering radius k and intersection array
(S01, S12, . . . , Sk−1 k;S10, S21, . . . , Sk k−1). That is to say,
a set of vertices C is a completely regular code if the distance
partition with respect to C is equitable. As was proven by
Neumaier [15], for a distance regular graph, this definition
is equivalent to the original Delsarte definition [7]: a code
C is completely regular if the outer distance distribution
(|C∩Γi(v̄)|)i=0,1,2,... of C with respect to a vertex v̄ depends
only on the distance from v̄ to C.

C. Linear and Additive Codes

A linear code (that is, a linear subspace of F
n
q ) of length n,

dimension k, minimum distance d over the field Fq is called
an [n, k, d]q code. An [n, k, d]q code is called an MDS code
if d = n − k + 1. The duality is understood with respect
to the standard inner product. Let Aw denote the number of
codewords of weight w.

Linear codes are partial cases of the additive codes, which
are, by definition, the subgroups of the additive group of F

n
q . A

coset of an additive code C is any translate of C by a constant
vector. A coset leader is any coset element that minimizes
the weight. The weight of a coset is the weight of any of its
leaders. The coset graph ΓC of an additive code C is defined
on the cosets of C, two cosets being connected if they differ
by a coset of weight one.

Lemma 1 (see, e.g., [6]). An additive code with dis-
tance at least 3 is completely regular with intersec-
tion array {b0, . . . , bρ−1; c1, . . . , cρ} if and only if the
coset graph is distance-regular with intersection numbers
b0, . . . , bρ−1, c1, . . . , cρ.

The weight distribution of a code is displayed as
[�0, 1�, · · · , �w,Aw�, · · · ], where Aw denotes the number of
codewords of weight w.

D. Cyclic Codes

A cyclic code C of length n over Fq is, up to polynomial
representation of vectors, an ideal of the ring Fq[x]/(xn − 1).
All ideals are principal with a unique monic generator, called
the generator polynomial of C, and denoted by g(x). If this
polynomial has t irreducible factors over Fq, then the code C
is called a cyclic code with t zeros. In that case, the dual C⊥

admits a trace representation with t terms of the form

c(a1, . . . , at) =
( t∑

i=1

Tr(aiα
j
i )

)n

j=1
,

where

• ki is the degree of the factor indexed i of g(x),
• Tr = Trqki /q is the trace from Fqki down to Fq,
• ai is arbitrary in Fqki ,
• αi is a primitive root in F

×
qki

,

In general the relative trace from Fqr to Fq, where q is a
power of a prime, is defined as

Trqr/q(z) = z + zq + · · · + zqr−1
.

If q is prime, then Trqr/q(z) is the absolute trace. See the
theory of the Mattson–Solomon polynomial in [13] for details
and a proof.

E. Automorphisms

The automorphism group Aut(C) of a q-ary code C of
length n is the stabilizer of C in the automorphism group of
the Hamming graph H(n, q). Note that every automorphism
acts as the composition of a coordinate permutation and a
permutation of the alphabet in every coordinate.
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We will say that a subgroup A of the automorphism group
of the Hamming graph H(n, q) acts imprimitively on the
coordinates if the set of coordinates can be partitioned into
subsets, called blocks, and denoted by N1, …, Nt, 1 <
t < n, such that the coordinate-permutation part of every
automorphism from A sends every block to a block. If there
is no such a partition, then the action of the group on the
coordinates is primitive (for example, this is the case for
Aut(C) of any cyclic code C of prime length).

We denote by Aut0(C) the stabilizer of the all-zero word in
Aut(C). The monomial automorphism group AutM(C) of a
q-ary code C is defined as the set of all monomial transforms
that leave the code wholly invariant [11]. A monomial trans-
form acting on F

n
q is the product of a permutation matrix by

an invertible diagonal matrix, both in F
n×n
q . The subgroup

consisting of all such transforms with trivial diagonal part
is called the permutation part of the automorphism group.
The group AutS(C) consists of the semilinear automorphisms
of a q-ary code C, where each semilinear automorphism is
the composition τ ◦ μ of a monomial transform μ and an
automorphism τ of the field Fq (acting simultaneously on the
values of all coordinates) such that τ ◦ μ(C) = C. Note that
for any linear code C, the groups AutM(C) and AutM(C⊥)
are always isomorphic, as well as the groups AutS(C) and
AutS(C⊥); the same is not necessarily true for Aut or Aut0.

If q is not prime and Fq has a subfield Fp, we also use
the notation AutLp(C) to denote the subgroup of Aut0(C)
consisting of only transformations that are linear over Fp. Any
automorphism from AutLp(C) acts as the composition of
a coordinate permutation and a Fp-linear permutation (from
GL(logp q, p)) of Fq in every coordinate. In particular, if q
is a power of 2, then we have AutM(C) ≤ AutS(C) ≤
AutL2(C) ≤ Aut0(C) ≤ Aut(C), and if q = 2, then the
first four of these groups are the same (the last group, for an
additive code, is the product of Aut0(C) and the group of
translations by codewords).

III. CONCATENATION WITH THE SIMPLEX CODE

Concatenation is the replacement of the symbols of the
codewords of some code, called the outer code, by the
codewords of some other code, called the inner code. The role
of the inner code in our study is played by a Simplex code;
moreover, we mainly focused on the case when this code is
cyclic.

Let p be a prime power; let q = pk. Let ξ be a root of
unity of order q−1

p−1 in Fq . We assume that k and p − 1 are
coprime; hence, so are q−1

p−1 and p− 1 (indeed, by induction,
pk−1
p−1 ≡ k mod p− 1). It follows that

F
×
q =

{
bξl | b ∈ F

×
p , l ∈ {1, . . . , q−1

p−1}
}

(1)

and, in particular, all powers of ξ are mutually linear indepen-
dent over Fp. Then, the matrix (ξ1, . . . , ξ

q−1
p−1 ), considered as

a k× q−1
p−1 matrix over Fp, is a generator matrix of a Simplex

code of size q, where the distance between any two different
codewords is pk−1 [11, Th. 2.7.5].

Encoding the Simplex code. Let L be a nondegenerate
Fp-linear function from Fq to Fp. Any such function can be
represented as L(·) ≡ Trq/p(a·) for some a ∈ Fq , and in our
context we can always assume that L is Trq/p. Define φ :

Fq → F

q−1
p−1
p by

φ(z) =
(
L(zξ1), . . . , L(zξ

q−1
p−1 )

)
;

expand its action to F
n
q coordinatewise, and to any set of words

in F
n
q wordwise.

Lemma 2. For any two words ȳ, z̄ in F
n
q , we have

d(φ(ȳ), φ(z̄)) = pk−1d(ȳ, z̄). I.e., φ is a scaled isometry.

Proof: Immediately from the fact that the Simplex code
is a one-weight code with nonzero weight pk−1, we have

d(φ(y1, . . . , yn), φ(z1, . . . , zn))
= d

(
(φ(y1), . . . , φ(yn)), (φ(z1), . . . , φ(zn))

)

=
n∑

i=1

d(φ(yi), φ(yi)) =
n∑

i=1

pk−1d(yi, yi)

= pk−1d((y1, . . . , yn), (z1, . . . , zn)).

Lemma 3. Assume that M = (Mij)m
i=1

n
j=1 is an m × n

generator matrix of a code C in F
n
q . Then the matrix

Φ(M) =

⎛
⎜⎝

M11ξ
1 ... M11ξ

q−1
p−1 M12ξ

1 . . . M1nξ
q−1
p−1

... ... ... ... . . . ...

Mm1ξ
1 ... Mm1ξ

q−1
p−1 Mm2ξ

1 . . . Mmnξ
q−1
p−1

⎞
⎟⎠,

considered as a km × q−1
p−1n matrix over Fp, is a generator

matrix of the code φ(C) in F

q−1
p−1 n
p .

Proof: The proof is straightforward. Any codeword c̄ of
the code generated by Φ(M) is a linear combination of its
rows, and so is of the form

c̄ =
m∑

i=1

(
Li(Mi1ξ

1), . . . , Li(Minξ
q−1
p−1 )

)

for some Fp-linear functions Li : Fq → Fp. Since Li(·) ≡
L(ai·) for some ai ∈ Fq, we have

c̄ =
m∑

i=1

(
L(aiMi1ξ

1), . . . , L(aiMinξ
q−1
p−1 )

)

=
m∑

i=1

(
φ(aiMi1), . . . , φ(aiMin)

)

=
m∑

i=1

(
φ(aiMi1, . . . , aiMin)

)

= φ
( m∑

i=1

ai(Mi1, . . . ,Min)
)
.

That is, c̄ is a φ-image of some codeword of C.

The following lemma provides an alternative explanation
to the fact that completely regular codes with identical coset
graphs can exist over different alphabets [17].
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Lemma 4. The coset graph ΓC⊥ of the dual C⊥ of a linear
code C in F

n
q and the coset graph Γφ(C)⊥ of the dual φ(C)⊥

of its image φ(C) in F

q−1
p−1 n
p are isomorphic.

Proof: We first observe that the number of cosets of C⊥

coincides with size of the code C, which is the same as the size
of the code φ(C), which is, in its turn, the number of cosets of
φ(C)⊥. That is, the considered graphs have the same number
of vertices.

Let C be a code over Fq with a generator matrix M , which
is a check matrix of the dual code C⊥. The cosets of C⊥

naturally correspond to the syndromes under the action of
the check matrix M . By the definition of the coset graph
ΓC⊥ , two cosets are adjacent in the coset graph if and only
if the difference between the corresponding syndromes is the
syndrome of a weight-1 word. We call the syndromes of the
weight-1 words the connecting syndromes because they play
a connecting role for the coset graph (this terminology is
in agree with that for a more general class of graphs called
Cayley graphs). For the check matrix M = (Mij)m

i=1
n
j=1 over

Fq, the connecting syndromes are

a(M1j , . . . ,Mmj)T, j ∈ {1, . . . , n}, a ∈ F
×
q (2)

(corresponding to the weight-1 words with a in the j-th
position).

Now, consider the matrix Φ(M), which, by Lemma 3, is a
generator matrix for φ(C) and a check matrix for φ(C)⊥. The
connecting syndromes are

b(ξlM1j, . . . , ξ
lMmj)T, (3)

j ∈ {1, . . . , n}, l ∈
{
1, . . . ,

q − 1
p− 1

}
, b ∈ F

×
p ,

corresponding to the weight-1 words with b in the position
(j − 1) q−1

p−1 + l. Since {bξl | b ∈ F
×
p , l ∈ {1, . . . , q−1

p−1}}
coincides with F

×
q (see (1)), we find that the sets of connecting

syndromes (2), (3) for both matrices coincide; call this set S.
Two cosets of C⊥ are adjacent in ΓC⊥ if and only if

the corresponding syndromes have the difference in S. Two
cosets of φ(C)⊥ are adjacent in Γφ(C)⊥ if and only if
the corresponding syndromes have the difference in S. So,
indexing the cosets by the syndromes induces an isomorphism
between the ΓC⊥ and Γφ(C)⊥ .

Corollary 1. If the code C⊥ is completely regular, then the
code φ(C)⊥ is completely regular with the same intersection
array.

In the rest of this section, we establish important relations
between the automorphism groups of a code and its concate-
nated image.

A. Automorphism Group

Lemma 5. The group AutLp(C) is isomorphic to a subgroup
of AutM(φ(C)) such that the action of this subgroup on the
coordinates is imprimitive with the blocks

{
1, . . . ,

q − 1
p− 1

}
, . . . ,

{q − 1
p− 1

(n−1)+1, . . . ,
q − 1
p− 1

n
}
.

Proof: The action of the monomial automorphism group
on a codeword c of C can be represented as a permutation of
the coordinates and, for every i from 1 to n the action of an
element of GL(m, p) on of the value in the i-th coordinate,
understood as an element of F

m
p . We first consider these two

actions separately.
(i) A permutation of coordinates corresponds to a permuta-

tion of blocks for φ(C): we see that

φ(zπ−1(1), . . . , zπ−n(n)) = (φ(zπ−1(1)), . . . , φ(zπ−n(n)))

is obtained from φ(z1, . . . , zn) by sending each i-th block of
coordinates to the place of the φ(i)-th block.

(ii) Next, we show that the action of a Fp-linear permutation
on the value zi in the i-th coordinate corresponds to a
monomial transform inside the i-th block of φ(z1, . . . , zn).
Here, a crucial observation if the following well-known fact.

(*) Any bijective linear transform of the Simplex code
is equivalent to the action of some of its monomial auto-
morphisms. This fact is straightforward from the form of a
generator matrix of the Simplex code, which consists of a
complete collection of pair-wise linearly independent columns
of height m. Applying a bijective linear transform to the rows,
we obtain another generator matrix with the same property. It
is obvious that one such matrix can be obtained from another
one by permuting columns and multiplying each column by a
nonzero coefficient, that is, by a monomial transform.

Consider the value zi in the i-th position and some per-
mutation τi of Fq that is linear over Fp. Since φ is also
linear over Fp and invertible, we have a bijective linear
transform φ(τi(φ−1(·))) of the Simplex code. By (*), there
is a monomial automorphism σi of the Simplex code whose
action on this code is identical to φ(τi(φ−1(·))). Then, we have

φ(τi(zi)) = σi(φ(zi)),

i.e., the action of a Fp-linear permutation τi in the i-th
coordinate of a word z̄ from F

n
q corresponds to the action

of the monomial transform σi in the i-th block of coordinates
of φ(z̄).

Summarizing (i) and (ii), we get the following. If the
mapping

(z1, . . . , zn) → (
τi(zπ−1(1)), . . . , τi(zπ−n(n))

)
belongs to AutLp(C), then

(φ(z1), . . . , φ(zn)) → (
σi(φ(zπ−1(1))), . . . , σi(φ(zπ−n(n)))

)
maps φ(C) to itself, i.e., belongs to AutM(φ(C)). This proves
the statement.

Lemma 6. Assume that C is a linear code over Fq and C⊥

satisfies the following property:
(i) the minimum distance of C⊥ is at least 4.

Then the groups AutLp(C), AutM(φ(C)), and
AutM(φ(C)⊥) are isomorphic.

Proof: We will first deduce from (i) that
(ii) Aut0(φ(C)⊥) (and hence, also AutM(φ(C)⊥)) acts

imprimitively on the coordinates with the blocks{
1, . . . ,

q − 1
p− 1

}
, . . . ,

{q − 1
p− 1

(n−1)+1, . . . ,
q − 1
p− 1

n
}
.
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(As we see from Lemma 5, this property is indeed necessary,
while (i) is only sufficient to guarantee (ii).) To show (ii),
we note two other facts. From the code distance ≥ 4 of C⊥,
we see that
(iii) for every codeword of weight 3 in φ(C)⊥, the three

nonzero coordinates belong to the same block. Indeed,
assume that φ(C)⊥ has a codeword with exactly three
nonzero coordinates, with values β, β� and β�� respec-
tively. This means that for some i, i�, i��, j, j�, j�� such
that (i, j) �= (i�, j�) �= (i��, j��) �= (i, j), the equation

βL(ziξ
j) + β�L(zi′ξ

j′ ) + β��L(zi′′ξ
j′′ ) = 0

is satisfied for every (z1, . . . , zn) from C. Since L is
linear and nondegenerate, this implies

(βξj)zi + (β�ξj′ )zi′ + (β��ξj′′ )zi′′ = 0

for all (z1, . . . , zn) from C. The last equation contradicts
to the code distance of C⊥, unless i = i� = i��, i.e., the
three coordinates are from the same block.

On the other hand, because the dual of a Simplex code is a
1-perfect Hamming code, we have
(iv) every two coordinates from the same block are nonzero

coordinates for some weight-3 codeword in φ(C)⊥.
Indeed, in the generator matrix of the Simplex code,
the sum of any two columns is proportional to some
other column. The same relation takes place between the
corresponding coordinates from the same block of the
concatenated code, which implies the required property.

From (iii) and (iv), we see that the code properties of φ(C)⊥

distinguish the pairs of coordinates in the same block and the
pairs of coordinates in different blocks. Hence, the automor-
phism group does not break blocks and we have (ii).

Next, we observe that property (i) excludes some degenerate
cases with vanishing coordinates:

(v) every codeword of the Simplex code occurs in every
block, over the codewords of the concatenated code
φ(C). Indeed, this obviously equivalent to the fact that
for every symbol of Fq and every position, there is
a codeword of C with the given symbol in the given
position. Since C is linear, it is the same as to say that
there is no vanishing coordinate in C. Equivalently, C⊥

does not contain a weight-1 codeword, which follows
immediately from (i).

Now, we have that every automorphism from
AutM(φ(C)⊥) permutes blocks, permutes coordinates
inside each block, and permutes the values of Fp for every
coordinate (fixing 0). The same is true for AutM(φ(C)),
because it is isomorphic to AutM(φ(C)⊥) with the
isomorphism keeping the permutation part. According to
(v), the last two steps (permuting coordinates inside each
block, and permuting the values of Fp for every coordinate)
must be compatible with the automorphism group of the
Simplex code, and result in a permutation of its codewords.
A permutation of the codewords of the Simplex code in each
block, for the code φ(C), corresponds to a permutation of the
elements of Fq in the corresponding coordinate for C; and
a permutation of the blocks corresponds to a permutation of

the coordinates for C. So, we see that every automorphism
from AutM(φ(C)) corresponds to some automorphism of C:

AutM(φ(C)) � Aut0(C).

Moreover, because all considered transformations are linear
over Fp, we have

AutM(φ(C)) � AutLp(C).

From Lemma 5, we have the inverse correspondence. It
remains to note that AutM of a code and its dual are
isomorphic.

IV. CLASSICAL KASAMI CODES

Let q = 2m for some integer m ≥ 1. Consider the cyclic
code M⊥

q of length q + 1 defined over Fq by the check
polynomial h(x) = (x − 1)(x − ζ)(x − ζq), for the root
ζ = αq−1 of order q + 1 over Fq2 , where α is a primitive
root of Fq2 (for some notation reasons, we first define M⊥

q

and then Mq as the dual to M⊥
q ). Note that ζq2

= ζ, so that

(x−ζ)(x−ζq) = x2−(ζ+ζq)x+ζq+1 = x2−(Trq2/qζ)x+1

has its coefficients in Fq .

Theorem 1. The code M⊥
q is MDS of parameters [q+1, 3, q−

1]q. Its weight distribution is
[〈

0, 1
〉
,
〈
q − 1,

q3 − q

2

〉
,
〈
q, q2−1

〉
,
〈
q+1,

q3 − 2q2 + q

2

〉]
.

(4)

Proof: The BCH bound (see e.g. [13, § 7.6]) applied to
Mq shows that Mq, hence M⊥

q is MDS. The frequency of
weight q − 1 is derived on applying [13, Corollary 5, p. 320].

Aq−1 = (q − 1)
(
q + 1
q − 1

)
= (q − 1)

(
q + 1

2

)
.

The frequency of weight q is derived on applying [13, p. 320].

Aq =
(
q + 1
3 − 2

)[
(q2 − 1) − q(q − 1)

]
= (q + 1)(q − 1).

The frequency of weight q+1 is derived by complementation
Aq+1 = q3 − 1 −Aq−1 −Aq.

Denote by Sq the binary Simplex code of parameters
[q− 1,m, q

2 ]2. The main result of this section is the following
theorem.

Theorem 2. The concatenation of M⊥
q with Sq is a binary

cyclic code K⊥
q of parameters [q2 − 1, 3m], with nonzeros α,

α1+q , with α a primitive root of Fq2 .

Proof: As ζ = αq−1 is a root of order q + 1 of Fq2 , by
the facts of Section 2.4, we have

M⊥
q =

{ (
c+ Trq2/q(δζj)

)q+1

j=1

∣∣ c ∈ Fq, δ ∈ Fq2

}
.

Let θ = α1+q . Clearly θ is a root of order q − 1 of Fq . The
concatenation map φ from Fq to Sq is conveniently described
by using the trace function Trq/2. For all β ∈ Fq let

φ(β) =
(
Trq/2(βθ),Trq/2(βθ2), . . . ,Trq/2(βθq−1)

)
=

(
Trq/2(βθi)

)q−1

i=1
.
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Replacing β by the generic coordinate of M⊥
q , we obtain an

expression depending on i and j.

Trq/2(cθi) + Trq2/2(δαi(q+1)+j(q−1)).

By using the Chinese Remainder Theorem for integers for the
product q2−1 = (q+1)×(q−1), we see that the exponent of
α in the second sum ranges over 1, . . . , q2−1 modulo q2−1.
This is the Trace formula for a cyclic code with nonzeros α,
θ = α1+q .

Corollary 2. The weight distribution of K⊥
q is

[〈
0, 1

〉
,

〈q2 − q

2
, q

(q2 − 1)
2

〉
,

〈q2
2
, q2 − 1

〉
,

〈q2 + q

2
,
q3 − 2q2 + q

2

〉]
.

Proof: Concatenation with Sq multiplies the weights of
M⊥

q by a factor q
2 , while leaving their frequencies unchanged.

Remark 1. This result is derived in [13, Th. 32, p. 252] by
the complex formula of [13, Ch. 6, Th. 2].

Corollary 3. The coset graphs of Kq and Mq are isomorphic.
In particular [3], Kq is a completely regular code of diameter
3 and intersection array

{q2 − 1, q(q − 1), 1; 1, q, q2 − 1}. (5)

Proof: The first claim holds by Lemma 4, where C =
Mq, C⊥ = M⊥

q , φ(C) = K⊥
q , and φ(C)⊥ = Kq . Since Mq

is a completely regular code with intersection array (5), see
[5, F.5], the coset graphs are distance regular and the code Kq

is completely regular with the same intersection array.

In the rest of this section, we find the automorphism groups
of Kq and related codes.

Remark 2. The concatenation construction for the partial case
q = 4 of the code Kq was suggested in [4, Sect. 4.1], without
considering the cyclicity.

A. Automorphism Groups

According to Lemma 6, to know the automorphism group
of Kq, we have to find AutL2(M⊥

q ). We first prove that it
coincides with AutS(M⊥

q ).

Lemma 7. The automorphism groups of the linear [q + 1, 3,
q − 1]q MDS code M⊥

q satisfy

Aut0(M⊥
q ) = AutL2(M⊥

q ) = AutS(M⊥
q ).

Proof: The proof applies ideas from [9] for differ-
ent code parameters. Assume that π is a permutation
of coordinates and σ = (σ1, . . . , σn) is a collection
of permutations of Fq fixing 0 such that σ ◦ π :
(v1, . . . , vn) → (σ1(vπ−1(1)), . . . , σn(vπ−1(n))) belongs to
Aut0(M⊥

q ). Denote by πM⊥
q the code whose codewords

are obtained from the codewords of M⊥
q by applying the

coordinate permutation π. So, σ(πM⊥
q ) = M⊥

q .
We split the proof into four steps. The first step is sufficient

to see the first equality in the claim of the lemma.

(i) We state that for every coordinate i and every a, b ∈ Fq

it holds σi(a + b) = σi(a) + σi(b). Equivalently, σ ◦ π ∈
AutL2(M⊥

q ). Indeed, consider two codewords ȳ, z̄ ∈ πM⊥
q

of minimum weight, q − 1, with zeros in different positions
and having a and b in the i-th position. Consider the two words
ū = σ(ȳ + z̄) and v̄ = σ(ȳ) + σ(z̄). They both lie in M⊥

q .
Moreover, they coincide in every position where ȳ or z̄ has 0.
Since ȳ has 0 in two positions and z̄ has 0 in another pair of
positions, ū or v̄ differ in less than q−1 positions. As the code
distance is q − 1, we have ū = v̄. In particular, their values
σi(a + b) and σi(a) + σi(b) in the i-th coordinate coincide,
which proves (i).

(ii) We state that for any coordinate i and for any values a
and b from Fq , it holds

σ1(a)σi(b) = σ1(1)σi(ab). (6)

We first assume that i = 2 and there is a weight-(q − 1)
codeword ȳ = (1, b, y3, . . . , yn) of πM⊥

q . Since the codes
M⊥

q and πM⊥
q are linear and σ ◦ π is an automorphism of

M⊥
q , the words

σ(ȳ) = (σ1(1), σ2(b), σ3(y3), . . . , σn(yn)) and
σ(aȳ) = (σ1(a), σ2(ab), σ3(ay3), . . . , σn(ayn))

are codewords of M⊥
q , as well as the words ū = σ1(a)σ(ȳ)

and v̄ = σ1(1)σ(aȳ). The codewords ū and v̄ both have weight
0 or q − 1 and the same nonzero positions; moreover, they
coincide in the first coordinate (with the value σ1(1)σ1(a)).
It follows that the distance between ū and v̄ is smaller than
the minimum distance of M⊥

q , and hence ū = v̄. In particular,
the values σ1(a)σ2(b) and σ1(1)σ2(ab) in the second position
of ū and v̄ coincide, which proves (6).

In the next step, we still consider i = 2. A straightforward
and well-known property of an MDS code of dimension k
(and distance n− k+ 1) is that there is exactly one codeword
having chosen values in chosen k distinct coordinates. By ȳ(l),
l = 2, . . . , n−1, we denote the unique codeword of πM⊥

q with
1 in the first coordinate and 0 in the l-th and n-th coordinates.
For different l and t, the words ȳ(l) and ȳ(t) are different
(indeed, ȳ(l) cannot have 0 in the t-th position because its
weight cannot be less than the code distance q−1). Hence, they
are different in all positions except the first and the last (the
distance cannot be less than q− 1). So, ȳ(l), l = 2, . . . , n− 1,
possess n− 2 = q− 1 different values in the second position.
Therefore, for any given a, (6) holds for q− 1 distinct values
b ∈ Fq . It immediately follows from the bijectivity of σi that
(6) holds for the remaining value of b. So, (6) is true for i = 2
for any a and b. Similarly, it is true for any i �= 1.

The remaining case i = 1 is derived from the case i �= 1.

From (6) we see that the ratio
σi(ba)
σi(b)

does not depend on b.

By similarity, this holds for any i including i = 1. So, we have
σ1(ba)
σ1(b)

=
σ1(a)
σ1(1)

, which is (6) with i = 1. (i) is proven.

(iii) We state that there is an integer degree d such that

σi(a) = σi(1)ad (7)

for every i from 1 to n and every a in Fq.
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Indeed, assume β is a primitive element. From (6) we have
σi(ab) = σi(a)(σ1(b)/σ1(1)). Substituting b = β, a = βk

and denoting d = logβ(σ1(β)/σ1(1)), we get σi(βk+1) =
σi(βk) · βd, which proves (7) by induction on k.

(iv) The mapping a → ad, where d is from (iii), is an
automorphism of the field Fq. Indeed, this mapping preserves
the multiplication: (a · b)d = ad · bd. By (i), it preserves the
addition as well.

So, the action of every automorphism σ◦π from Aut0(M⊥
q )

can be represented as the combination of a coordinate permu-
tation, applying an automorphism of Fq to the values in all
coordinates, and multiplying the values of every coordinate
by a constant. By the definition, such automorphism belongs
to AutS(M⊥

q ).

To find AutS(M⊥
q ), we consider the isomorphic group

AutS(Mq). The next two lemmas establish the tight upper
and lower bounds for this group, respectively.

Lemma 8. The semilinear automorphism group AutS(Mq)
of the code Mq coincides with Aut0(Mq) (and, in particular,
with the intermediate AutL2(Mq)) and is isomorphic to a
subgroup of the general semilinear group ΓL(2, q).

Proof: Denote by Hq the Hamming [q+1, q−1, 3]q code
defined by the generator polynomial h(x) = (x− ζ)(x− ζq).
Note that Mq is a distance-4 subcode of Hq . From the
intersection array (5) of the completely regular code Mq,
we find that the number of vertices at distance at least 3 from
Mq is

|Mq| · q
2 − 1
1

· q(q − 1)
q

· 1
q2 − 1

= (q − 1)|Mq|,

i.e., coincides with |Hq\Mq|. It follows that Hq is a unique
distance-3 code of size qq−1 that includes Mq. It follows
that any automorphism π from Aut0(Mq) also belongs
to Aut0(Hq) (otherwise, π(Hq) is another distance-3 code
including Mq). It is known that AutS(Hq) is isomorphic
to ΓL(2, q) [10, Thm 7.2] and, moreover, Aut0(Hq) =
AutS(Hq) [9]. So, all automorphisms from Aut0(Mq) are
also semilinear, and we get Aut0(Mq) = AutS(Mq) ≤
Aut0(Hq) = AutS(Hq) � ΓL(2, q).

In [3, Prop. 3.3] (where their C(u) is our Kq), it is shown
that Aut0(Kq) contains a subgroup isomorphic to the general
linear group GL(2, q). The proof of the following lemma
pirates arguments from [3], adopting them to the q-ary code
Mq, instead of the binary Kq, and extending from GL(2, q)
to ΓL(2, q).

Lemma 9. The semilinear automorphism group AutS(Mq) of
the code Mq contains a subgroup of size |ΓL(2, q)|.

Proof: (i) In the first part of the proof, we consider
different equations defining Mq. For each i, we express ζi

as γi,0 + γi,1α, where γi,0, γi,1 ∈ Fq . The code Mq consists
of all c̄ = (c1, . . . , cq+1) from F

q+1
q such that

q+1∑
i=1

ci = 0, (8)

q+1∑
i=1

ciζ
i = 0, equivalently,

q+1∑
i=1

ciγi,j = 0, j = 0, 1. (9)

Assuming that (9) holds, we express the left part of (8) as
follows.

( q+1∑
i=1

ci

)2

=
q+1∑
i=1

c2i (ζ
i)0 =

q+1∑
i=1

c2i (ζ
i)(ζi)q

=
q+1∑
i=1

c2i (γi,0 + γi,1α)(γi,0 + γi,1α)q

=
q+1∑
i=1

c2i (γi,0 + γi,1α)(γi,0 + γi,1α
q)

=
q+1∑
i=1

c2i γ
2
i,0 + αq+1

q+1∑
i=1

c2i γ
2
i,1

+ (α+ αq)
q+1∑
i=1

c2i γi,0γi,1

=
( q+1∑

i=1

ciγi,0

)2

+ αq+1
( q+1∑

i=1

ciγi,1

)2

+ (α+ αq)
q+1∑
i=1

c2i γi,0γi,1

= (α+ αq)
q+1∑
i=1

c2i γi,0γi,1.

Therefore, in the system (8)–(9), the equation (8) can be
replaced by

q+1∑
i=1

c2i γi,0γi,1 = 0. (10)

The same arguments can be applied if we replace α by the
primitive element αt, where t is a power of two. So, (10) can
be replaced by

q+1∑
i=1

c2i γ
(t)
i,0γ

(t)
i,1 = 0, (11)

where γ
(t)
i,0 , γ

(t)
i,1 ∈ Fq are the coefficients in the expansion

ζi = γ
(t)
i,0 + γ

(t)
i,1α

t.
(ii) Now, consider an arbitrary nonsingular semilinear trans-

form

Ψ : γ0 + γ1α→ (
(aγ0 + a�γ1) + (bγ0 + b�γ1)α

)t

of Fq2 as a two-dimensional vector space over Fq, where a, a�,
b, b� are coefficients from Fq such that det

(
a a′

b b′
)

= ab�+a�b �=
0 and t is a power of two. So, (·)t is an automorphism of Fq,
and Ψ ∈ ΓL(2, q). Denote by ē(i), i = 1, . . . , q+1, the weight-
1 vector in F

q+1
q with 1 in the i-th coordinate. Consider the

mapping ψ that maps ē(i) to diē
(ji), di ∈ Fq if Ψ(ζi) = diζ

ji

(by (1), every nonzero element of Fq2 is uniquely represented
as dζl for some l ∈ {1, . . . , q + 1} and d ∈ F

×
q ). Using the

semilinearity identity ψ(λȳ + μz̄) = λtψ(ȳ) + μtψ(z̄), we
expand the domain of ψ to the whole vector space F

q+1
q . We

will show that ψ lies in AutS(Mq).
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Consider a codeword z̄ = (z1, . . . , zq+1) ∈ Mq . It satisfies
(9) and (10) with c̄ = z̄. We have to show that (9) and (11)
hold for c̄ = ψ(z̄). We start with (9). Note that in the case
c̄ = ψ(ē(i)), the expression

∑q+1
j=1 cjζ

i turns to

q+1∑
j=1

cjζ
j = diζ

ji = Ψ(ζi)

=
(
(aγi,0 + a�γi,1) + (bγi,0 + b�γi,1)α

)t
.

So, for

c̄ = ψ(z̄) = ψ
( q+1∑

i=1

ziē
(i)

)
=

q+1∑
i=1

zt
iψ(ē(i))

we have
q+1∑
j=1

cjζ
j =

q+1∑
i=1

Ψ(ziζ
i)

=
q+1∑
i=1

zt
i

(
(aγi,0 + a�γi,1) + (bγi,0 + b�γi,1)α

)t

=
(
(a+ bα)

q+1∑
i=1

ziγi,0 + (a� + b�α)
q+1∑
i=1

ziγi,1

)t

= 0

(the last two sums are zeros because of (9) for c̄ = z̄), which
is exactly (9).

Next, deal with (11). If c̄ = ψ(ē(i)), then the only nonzero
element of c̄ is the ji-th element, with the value cji = di, and
diζ

ji = cjiγ
(t)
ji,0

+ cjiγ
(t)
ji,1

αt = (aγi,0 + a�γi,1)t + (bγi,0 +
b�γi,1)tαt. Hence, for c̄ = ψ(ē(i)) we have

q+1∑
j=1

cjγ
(t)
j,0 · cjγ(t)

j,1 = (aγi,0 + a�γi,1)t(bγi,0 + b�γi,1)t.

Therefore, for c̄ = ψ(z̄) we have

q+1∑
j=1

cjγ
(t)
j,0 · cjγ(t)

j,1

=
q+1∑
i=1

zt
i(aγi,0 + a�γi,1)t · zt

i(bγi,0 + b�γi,1)t

= atbt
( q+1∑

i=1

ziγi,0

)2t

+ a�tb�t
( q+1∑

i=1

ziγi,1

)2t

+ (ab� + a�b)t
( q+1∑

i=1

z2
i γi,0γi,1

)t

= 0

(the last three sums are zeros because of (9) and (10) for
c̄ = z̄), which is exactly (11). Clearly, different Ψ correspond
to different ψ; so, the number of semilinear automorphisms of
Mq is at least |ΓL(2, q)|.

Summarizing the results above, we find the automorphism
groups of the Kasami and related codes.

Theorem 3. All the automorphism groups Aut0, AutL2,
AutS of the codes M⊥

q , Mq, Kq, K⊥
q are isomorphic to

each other and to ΓL(2, q). The groups AutM(M⊥
q ) and

AutM(Mq) are isomorphic to GL(2, q).

Proof: For the binary codes, we have Aut0(Kq) =
AutL2(Kq) = AutS(Kq) = AutM(Kq) and Aut0(K⊥

q ) =
AutL2(K⊥

q ) = AutS(K⊥
q ) = AutM(K⊥

q ). By Lemma 7,
AutS(M⊥

q ) = AutL2(M⊥
q ) = Aut0(M⊥

q ). By Lemmas 8
and 9, AutS(Mq) = AutL2(Mq) = Aut0(Mq) ∼= ΓL(2, q).
By Lemma 6, AutM(K⊥

q ) ∼= AutL2(M⊥
q ). For dual codes we

have AutS(Kq) = AutS(K⊥
q ), AutS(M⊥

q ) = AutS(Mq),
and AutM(M⊥

q ) = AutM(Mq). By the arguments in the
proof of Lemma 8, the subgroup AutM(Mq) of AutS(Mq)
coincides with the subgroup AutM(Hq) of AutS(Hq) and so
isomorphic to GL(2, q).

V. GENERALIZED KASAMI CODES

Let q = pm for some integer m ≥ 1, and some power of
two p. Thus the preceding section is the special case p = 2 of
the present section. As in the previous section, we consider the
cyclic code M⊥

q of length q+1 defined over Fq by the check
polynomial h(x) = (x−1)(x− ζ)(x− ζq), for some root ζ of
order q+1 over Fq2 . By Theorem 1, M⊥

q is a [q+1, 3, q−1]q
MDS code with weight distribution (4).

Denote by Sq the p-ary Simplex code of parameters
[ q−1
p−1 ,m,

q
p ]p. This code is cyclic when m and p − 1 are

coprime. The main result of this section is the following
theorem.

Theorem 4. The concatenation of M⊥
q with Sq is a p-

ary code Kp
q
⊥ of parameters [ q2−1

p−1 , 3m]p, with nonzeros α,
α(1+q)(p−1), with α a primitive root of Fq2 . If m and p − 1
are coprime, then this code is cyclic.

Proof: The proof is analogous to that of Theorem 2. The
only difference is the definition of θ = α(1+q)(p−1), which is
now a root of order q−1

p−1 in Fq2 .

When p > 2, as far as we know, the codes Kp
q are new, and

will be called generalized Kasami codes in this paper.

Corollary 4. The weight distribution of Kp
q
⊥ is

[〈
0, 1

〉
,

〈q2 − q

p
, q

(q2 − 1)
2

〉
,

〈q2
p
, q2 − 1

〉
,

〈q2 + q

p
,
q3 − 2q2 + q

2

〉]
.

Proof: Concatenation with Sq multiplies the weights of
M⊥

q by a factor q
p , while leaving their frequencies unchanged.

Corollary 5. The coset graphs of Kp
q and Mq are identical.

In particular, when p is even, Kp
q is completely regular of

diameter 3, and intersection array

{q2 − 1, q(q − 1), 1; 1, q, q2 − 1}.
Proof: This follows by Corollary 1.

Remark 3. We conjecture that AutS(Kp
q ) and Aut0(Kp

q ) are
isomorphic to ΓL(2, q), because it is so for Mq = Kq

q and
Kq = K2

q . However, our current tools do not allow to prove
this easily.
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VI. UNION OF COSETS

In this section, we prove a simple but important fact that
cosets of a linear completely regular code from the classes
considered in this paper can be merged to result in another
completely regular code with different parameters, which can
be linear, additive, or even non-additive.

Proposition 1. Let p, q be powers of 2, and let C be an
additive completely regular code over Fp with intersection
array {p2m − 1, p2m − q, 1; 1, q, p2m − 1}. Then

(i) for every k from 1 to p2m

q − 1, there is a completely
regular code Bk with intersection array

Ik = {p2m − 1, p2m − kq, 1; 1, kq, p2m − 1},
Bk being the union of k cosets of C;

(ii) moreover, if k is a power of 2, then there is an additive
code with intersection array Ik .

Proof: (i) Denote by C(d) the set of vertices at distance
d from C, d = 0, 1, 2, 3. By the definition of a completely
regular code, (C(0), C(1), C(2), C(3)) is an equitable partition
of H(p2m−1

p−1 , p) with the intersection matrix⎛
⎜⎜⎝

s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 p2m − 1 0 0
1 q − 2 p2m − q 0
0 q p2m − q − 2 1
0 0 p2m − 1 0

⎞
⎟⎟⎠ .

(12)

By standard double-counting arguments, we have
|C(3)|/|C(0)| = |C(2)|/|C(1)| = (p2m − q)/q = r − 1, where
r = p2m/q. Let C0 = C(0) = C and let {C1, . . . , Cr−1} be
a partition of C(3) into cosets of C(0). Each of the cosets of
C is a completely regular code with the same parameters.
For each i from 0 to r − 1, by Cr+i we denote the set of
vertices at distance 1 from Ci. In particular, C(1) = Cr and
C(2) = ∪r−1

i=1Cr+i.
We state that (Ci)2r−1

i=0 is an equitable partition with the
quotient matrix⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 p2m−1 0 · · · 0
0 0 · · · 0 0 p2m−1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · p2m−1
1 0 · · · 0 q−2 q · · · q
0 1 · · · 0 q q−2 · · · q
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 q q · · · q−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To show this, we first note that it is a partition; this is
straightforward from the fact that C0, …, Cr−1 are at distance
3 from each other (from s33 = 0 and s23 = 1 in (12)). Next,
we see that all the neighbors of Ci, i = 0, . . . , r − 1 are in
Cr+i. Finally, every vertex of Cr+i has one neighbor from Ci

(by the definition), exactly s11 = q − 2 neighbors from Cr+i

(because Ci is completely regular with intersection array (12)),
and exactly s21 = q neighbors from Cr+j for every j from
{0, . . . , r − 1}\{i} (because Cj is completely regular with
intersection array (12)).

Now, it is straightforward to check that denoting

B(0) =
k−1⋃
i=0

Ci, B(3) =
r−1⋃
i=k

Ci,

B(1) =
k−1⋃
i=0

Cr+i, B(2) =
r−1⋃
i=k

Cr+i,

we obtain an equitable partition (B(0), B(1), B(2), B(3)) with
the intersection matrix⎛

⎜⎜⎝
0 p2m − 1 0 0
1 kq − 2 p2m − kq 0
0 kq p2m − kq − 2 1
0 0 p2m − 1 0

⎞
⎟⎟⎠ .

Therefore, the set Bk = B(0) is a completely regular code
with the required intersection array.

(ii) We first note that the set B2 constructed as in (i)
is automatically additive. Then, we see that B2 satisfies
the hypothesis of the proposition for the code C, with 2q
instead of q. So, repeating the construction log2 k times,
we get an additive completely regular code with the required
parameters.

In the case m = 1, the code C from Proposition 1 can be
chosen as a 1

p -th part of the p-ary Hamming code of length
p+ 1 in the sense of [5, (F.5)] (note that p is a power of 2),
in particular, as the code Mq, in notation of Section IV.

In [5], this code is classified as belonging to the group
of completely regular codes obtained from perfect codes.
Proposition 1 shows that not only 1

p -th part, but also 1
2i -th

part, i = 1, 2, . . . , log2 p, of the p-ary Hamming code of
length p+1 can be chosen to be an additive completely regular
code. This remark essentially extends the class of completely
regular codes obtained from perfect codes.

VII. CONCLUSION AND OPEN PROBLEMS

In this article, we have used a concatenation scheme to
produce new completely regular codes from known ones. The
use of a one-weight code as the inner code is essential in
preserving the coset graph structure from the outer code to
concatenated code, as evidenced in the proof of Lemma 4.
The Simplex code is essentially the only one-weight code in
the Hamming graph by a classical result of Bonisoli [2]. It
is worth investigating systematically if another choice of the
outer code than the cyclic MDS code used here can lead to new
constructions of completely regular codes. More generally,
replacing the Hamming graph by other distance regular graphs
with a larger choice of one-weight codes could lead to new
constructions of completely regular codes in these graphs.
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