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Rigorous Dynamics of Expectation-
Propagation-Based Signal Recovery from

Unitarily Invariant Measurements
Keigo Takeuchi , Member, IEEE

Abstract— Signal recovery from unitarily invariant measure-
ments is investigated in this paper. A message-passing algorithm
is formulated on the basis of expectation propagation (EP).
A rigorous analysis is presented for the dynamics of the algorithm
in the large system limit, where both input and output dimensions
tend to infinity while the compression rate is kept constant. The
main result is the justification of state evolution (SE) equations
conjectured by Ma and Ping. This result implies that the
EP-based algorithm achieves the Bayes-optimal performance that
was originally derived via a non-rigorous tool in statistical physics
and proved partially in a recent paper, when the compression rate
is larger than a threshold. The proof is based on an extension of
a conventional conditioning technique for the standard Gaussian
matrix to the case of the Haar matrix.

Index Terms— Compressed sensing, expectation propagation,
unitarily invariant measurements, state evolution, Haar matrices.

I. INTRODUCTION

A. Motivation

CONSIDER the recovery problem of an N -dimensional
signal vector x from a compressed noisy measurement

vector y ∈ CM (M ≤ N ) [1], [2],

y = Ax + w. (1)

In (1), A ∈ CM×N denotes a known measurement matrix. The
signal vector x is an unknown sparse1 vector that is composed
of independent and identically distributed (i.i.d.) elements. The
noise vector w ∈ CM is independent of the other random
variables. The goal of compressed sensing is to recovery the
sparse vector x from the knowledge about y and A, as well
as the statistics of all random variables.

A breakthrough for signal recovery is to construct message-
passing (MP) that is Bayes-optimal in the large system limit,
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1In this paper, a signal x ∈ R is called sparse if the Rényi information

dimension [3] of x is smaller than 1. If x is zero with probability 1− p, the
information dimension is at most p. If x is discrete, it is zero.

where the input and output dimensions N and M tend to
infinity while the compression rate δ = M/N is kept constant.
The origin of this approach dates back to the Thouless-
Anderson-Palmer (TAP) equation [4] in statistical physics.
Motivated by the TAP approach, Kabashima [5] proposed
an MP algorithm based on approximate belief propagation
(BP) in the context of code-division multiple-access (CDMA)
systems with i.i.d. zero-mean measurement matrices. When
the compression rate is larger than the so-called BP thresh-
old [6], the BP-based algorithm was numerically shown to
achieve the Bayes-optimal performance in the large system
limit, which was originally conjectured by Tanaka [7] via the
replica method—a non-rigorous tool in statistical physics, and
proved in [8], [9] for i.i.d. zero-mean Gaussian measurements.
However, Kabashima [5] presented no rigorous analysis on the
convergence property of the BP-based algorithm.

In order to resolve lack of a rigorous proof, approximate
message-passing (AMP) was proposed in [10] and proved
in [11] to achieve the optimal performance for i.i.d. zero-
mean Gaussian measurements, when the compression rate is
larger than the BP threshold. Spatially coupled measurement
matrices are required for achieving the optimal performance in
the whole regime [6], [12]–[14]. However, it is recognized that
AMP fails to converge when the i.i.d. zero-mean assumption
of measurement matrices is broken [15], unless damping [16]
is employed.

As solutions to this convergence issue, since Opper and
Winther’s pioneering work [17, Appendix D], as well as [18],
several algorithms have been proposed on the basis of
expectation propagation (EP) [19], expectation consistent
(EC) approximations [17], [20], [21], S-transform [22], vec-
tor AMP [23], or turbo principle [24]–[27]. The EP-based
algorithm [19] is systematically derived from Minka’s EP
framework [28] by approximating the posterior distribution
of x with factorized Gaussian distributions. The EC-based
algorithms [17], [20], [21] are iterative algorithms for solv-
ing a fixed point (FP) of the EC free energy. An algo-
rithm in [22] is derived via the S-transform of AHA.
Rangan et al. [23] considered an EP-like approximation of the
BP algorithm on a factor graph with vector-valued nodes. The
algorithms [24]–[27] based on turbo principle are derived from
a few heuristic assumptions. Interestingly, the algorithms in
[17], [19], [21], [23], [26] are essentially equivalent, with the
exception of [20], [22]. In this paper, these algorithms for
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signal recovery are simply referred to as EP-based algorithms,
since we follow the EP-based derivation in [19].

Ma et al. [25] and Ma and Ping [26] derived state evo-
lution (SE) equations of an EP-based algorithm under two
heuristic assumptions. By investigating the properties of the
SE equations, they conjectured that, for unitarily invariant
measurement matrices, the FPs of the SE equations are the
same as the extrema of an asymptotic energy function that
describes the Bayes-optimal performance in the large system
limit. The energy function was originally derived in [29], [30]
via the replica method, and proved for bounded signals in
[31]. In other words, the EP-based algorithm was conjectured
to achieve the optimal performance in the large system limit,
when the compression rate is larger than the BP threshold.
Since the algorithm attempts to solve the minimum of the EC
free energy [17], it is conjectured that the extrema of the EC
free energy correspond to those of the Bayes-optimal one for
unitarily invariant measurement matrices. The purpose of this
paper is to present a rigorous proof for the conjecture.

B. Proof Strategy
The proof strategy is based on a conditioning technique used

in [11], originally proposed by Bolthausen [32]. A challenging
part in the proof is to evaluate the distribution of an estimation
error in each iteration conditioned on estimation errors in all
preceding iterations. Bayati and Montanari [11] evaluated the
conditional distribution via the distribution of the measurement
matrix A conditioned on the estimation errors in all preceding
iterations. When linear detection is employed as part of MP,
the conditional distribution of A can be regarded as the poste-
rior distribution of A given linear, noiseless, and compressed
observations of A, determined by the estimation errors in all
preceding iterations. For i.i.d. Gaussian measurement matrices,
it is well known that the posterior distribution is also Gaussian.
The proof in [11] heavily relies on this well-known fact.

In order to present our proof strategy, assume M = N ,
and that A is a Haar matrix [33], [34], which is uniformly
distributed on the space of all possible N×N unitary matrices.
Under appropriate coordinate rotations in the column spaces
of A, it is possible to show that the linear, noiseless, and
compressed observation of A is equivalent to observing part
of the columns in A. Since any Haar matrix is bi-unitarily
invariant [33], the distribution of A after the coordinate
rotations is the same as the original one. Thus, evaluating
the conditional distribution of A reduces to analyzing the
conditional distribution of a Haar matrix given part of its
columns. This argument was implicitly used in [11].

Evaluation of this conditional distribution is an important
part in this paper, while this part is not required for i.i.d.
Gaussian measurements. For simplicity, let N = 3 and fix the
first column of a Haar matrix A = (a1, a2, a3). Evaluation of
the conditional distribution is equivalent to characterizing a2

and a3 for given a1. The two vectors must be on a plane
perpendicular to a1. From the orthonormality between a2

and a3, the two vectors are on a unit circle that has the
center at the intersection of the plane and ca1 for c ∈ C.
Intuitively, a2 and a3 should be Haar-distributed on this unit
circle. Generalizing this intuition, we find that A given its first
t columns should have degrees of freedom that are equal to

those of an (N − t) × (N − t) Haar matrix. On the basis of
this intuition, we evaluate the conditional distribution of A.

C. Related Work

A similar paper [35] was posted on the arXiv a few months
before posting the first version [36] of this paper. Short
versions of the two papers were published in [23] and [37].
The posted paper [35] addressed real-valued systems and was
published in [38], while we consider complex-valued systems.
Interestingly, the two papers share the common proof strategy
based on [11]. However, there is a mathematically critical
difference between them.

The main difference is in mathematical treatments on almost
sure convergence. An empirical convergence based on pseudo-
Lipschitz functions was considered in [35]. The approach
allows us to analyze general Lipschitz-continuous decision
functions and general pseudo-Lipschitz performance measures,
as considered in [11]. However, Rangan et al. [35] omitted
the proof of an important part on almost sure convergence—
required in establishing the empirical convergence based on
pseudo-Lipschitz functions—as pointed out in Appendix A-B.

In this paper, we present a rigorous proof of the part on
almost sure convergence. Our approach relies on advanced
results in probability theory, such as the strong law of large
numbers for dependent random variables [39] and statistical
properties of a Haar matrix. While this paper considers a
Bayes-optimal decision function and the mean-square error
(MSE), the part on almost sure convergence is proved in a
general form, as considered in [35]. Thus, combining [35]
and this paper establishes a rigorous proof of SE for general
decision functions and general performance measures.

D. Contributions

The main contribution is the rigorous justification of the
SE equations for the EP-based algorithm, conjectured in [26].
More precisely, we derive SE equations for individual elements
of the signal vector in the large system limit. This implies the
achievability of the Bayes-optimal performance proved in [31],
when the compression rate is larger than the BP threshold,
while the converse theorem is partially open, i.e. there are no
algorithms outperforming the EP-based algorithm in the large
system limit when unbounded signals are considered.

The technical novelty is in an extension of the conditioning
technique in [11] for i.i.d. Gaussian measurement matrices to
the case of Haar matrices. This paper presents a construc-
tive proof for the conditional distribution of a Haar matrix.
The proposed conditioning technique is applicable to any
MP algorithm for signal recovery from unitarily invariant
measurements, such as the AMP, unless the algorithm con-
tains nonlinear processing in the measurement vector y, e.g.
quantization [27]. However, whether the obtained SE becomes
simple depends on the MP algorithm and the statistics of
A [40]. Thus, it is an important future work to design a low-
complexity MP algorithm such that simple SE equations are
obtained for unitarily invariant measurements.

E. Organization

The remainder of this paper is organized as follows: After
summarizing the notation used in this paper, Section II
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presents the definition of unitarily invariant matrices and
technical results associated with Haar matrices. In Section III,
we introduce assumptions used throughout this paper, and then
formulate an EP-based algorithm. The main result is presented
in Section IV, and proved in Section V. Several technical
results are proved in appendices.

F. Notation

The notation o(1) denotes a vector of which the Euclidean
norm converges almost surely toward zero in the large system
limit. For a vector v ∈ CN , we write the nth element of v
as vn. For a subset N ⊂ {1, . . . , N}, the vector xN consists
of the elements {xn : n ∈ N}, while x\N is obtained by
eliminating {xn : n ∈ N} from x. For a scalar function
f : C → C, we introduce a convention in which f(v) denotes
the vector obtained by the component-wise application of f
to v, i.e. [f(v)]n = f(vn).

For a complex number z ∈ C and a matrix M ∈ CM×N ,
the complex conjugate, transpose, and the conjugate transpose
are denoted by z∗, MT, and MH. We write the (m, n)th
element of M as Mmn. When M is Hermitian, λmin(M )
represents the minimum eigenvalue of M . For M ≥ N ,
UM×N denotes the space of all possible M ×N matrices with
orthonormal columns, while UM×N for M < N represents the
space of all possible M ×N matrices with orthonormal rows.
When M = N holds, UM×N is written as UN , which is the
space of all possible N × N unitary matrices.

We write the singular-value decomposition (SVD) of M as

M = ΦM (ΣM , O)ΨH
M (2)

for M ≤ N , with ΦM ∈ UM and ΨM ∈ UN . Furthermore,
ΣM is an M ×M positive semi-definite diagonal matrix. The
unitary matrix ΨM is partitioned as ΨM = (Ψ�

M ,Ψ⊥
M ), in

which Ψ�
M ∈ UN×M is composed of the first M columns

of ΨM , while Ψ⊥
M ∈ UN×(N−M) consists of the remaining

columns. For M > N , we write the SVD of M as

M = ΦM

(
ΣM

O

)
ΨH

M , (3)

with ΦM ∈ UM and ΨM ∈ UN . Furthermore, ΣM is an
N × N positive semi-definite diagonal matrix. The unitary
matrix ΦM = (Φ�

M ,Φ⊥
M ) is partitioned in the same manner

as for M ≤ N .
When M has full rank, the pseudo-inverse of M is

denoted by M † = (MHM)−1MH ∈ CN×M for M > N .
Let P

�
M denote the orthogonal projection matrix onto the

space spanned by the columns of M . We have P
�
M =

Φ�
M (Φ�

M )H = MM †. The projection matrix P⊥
M onto

the orthogonal complement is given by P⊥
M = IM − P

�
M .

For M ≤ N , we define M † = MH(MMH)−1, P
�
M =

Ψ�
M (Ψ�

M )H = M †M , and P⊥
M = IN − P

�
M .

The proper complex Gaussian distribution with mean m
and covariance Σ is denoted by CN (m,Σ). The expectation
and variance of a random variable X is denoted by E[X ]
and V[X ], respectively. For random variables X and Y , the
notation E[f(X, Y )|Y ] represents the conditional expectation

of a function f(X, Y ) with respect to X given Y , which may
be written as EX [f(X, Y )]. The notation X

a.s.= Y means that

X is almost surely equal to Y . Similarly,
a.s.→ ,

a.s.≥ , and
a.s.≤

indicate that →, ≥, and ≤ hold almost surely. The notation
X ∼ Y means that X follows the same distribution as Y .
The notation X |Y indicates that we focus on the conditional
distribution of X given Y .

II. PRELIMINARIES

A. Definitions

The purpose of this section is to present the strong law of
large numbers for a Haar matrix. The result corresponds to
[11, Lemma 2] for an i.i.d. Gaussian matrix. We first present
several definitions.

Definition 1: A unitary random matrix U ∈ Un is called a
Haar matrix if U is uniformly distributed on Un.

An important property of a Haar matrix is bi-unitary invari-
ance [34]—used throughout this paper.

Definition 2: A random matrix M is said to be bi-unitarily
invariant if M ∼ UMV holds for all deterministic unitary
matrices U and V .

In this paper, the functions z∗f(x + z) and |x− f(x + z)|2
of x ∈ C and z ∈ C are considered for a Lipschitz-continuous
function f : C → C. To characterize these functions, we
follow [11] to define pseudo-Lipschitz functions.

Definition 3: For k ≥ 1, we say that a function f : Cn →
C is pseudo-Lipschitz of order k if there is some Lipschitz
constant L > 0 such that

�f(x) − f(y)� ≤ L�x− y|(1 + �x�k−1 + �y�k−1) (4)

holds for all x, y ∈ Cn.
Note that any pseudo-Lipschitz function of order 1 is

Lipschitz-continuous. A pseudo-Lipschitz function f(x) of
order k is O(�x�k) as�x� → ∞.

The following proposition is used for further evaluation of
the upper bound (4) throughout this paper.

Proposition 1: For any k ≥ 1, there is some constant C > 0
such that

(a + b)k ≤ C(ak + bk) (5)

holds for all a ≥ 0 and b ≥ 0.
Proof: The inequality follows from a general upper bound

� · �1 ≤ 21−1/k� · �k on C2.

B. Results

We consider an array {XN ∈ CN}∞N=1 of dependent ran-
dom variables XN = (X1,N , . . . , XN,N)T. An array {XN}
allows the distribution of each element Xn,N to change as
N grows, while the distribution of each element is fixed in a
sequence X ∈ CN . We first present the strong law of large
numbers for an array {XN ∈ CN}∞N=1 of dependent random
variables.

Theorem 1 (Lyons [39]): Let {XN} denote an array of
complex random variables with finite second moments, and
define SN =

∑N
n=1 Xn,N . If the following assumption holds:

∞∑
N=1

√
V[SN ]
N2

< ∞, (6)
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the strong law of large numbers for TN = (SN − E[SN ])/N
holds, i.e. limN→∞ TN

a.s.= 0.
Proof: Lyons [39, Theorem 6] proved Theorem 1 for a

sequence of complex random variables, i.e. Xn,N = Xn,N ′

for all N 
= N �. However, the proof is applicable to the array
case with no changes, by defining Xn,N = 0 for n > N .
Thus, Theorem 1 holds.

The condition (6) is satisfied when V[SN ] = O(Nα) holds
for some α < 2. In particular, we have α = 1 when {Xn,N}
are uncorrelated random variables. We next present the strong
law of large numbers associated with a Haar matrix.

Lemma 1: For t� ∈ N, suppose that fn : C
t′+1 → C

denote a pseudo-Lipschitz function of order k with a Lipschitz
constant Ln > 0. Let �N = (�1,N , . . . , �N,N)T ∈ CN denote
a vector that satisfies

lim
N→∞

1
N

N∑
n=1

Ln|�n,N |2 a.s.= 0, (7)

lim sup
N→∞

1
N

N∑
n=1

Ln|�n,N |2k−2 a.s.
< ∞. (8)

Suppose that aτ,N = (aτ,1,N , . . . , aτ,N,N)T ∈ CN for τ =
0, . . . , t� satisfies

lim sup
N→∞

1
N

N∑
n=1

Li
n|aτ,n,N |2k−2 a.s.

< ∞ for i = 1, 2. (9)

For t > 0, let EN = (eT
1,N , . . . , eT

N,N)T ∈ CN×t denote a
matrix that satisfies

lim sup
N→∞

1
N

N∑
n=1

Ln�en,N�max{2,2k−2} a.s.
< ∞, (10)

lim inf
N→∞

λmin

(
1
N

EH
NEN

)
a.s.
> C (11)

for some constant C > 0. Suppose that {XN ∈ CN} is an
array of unitarily invariant random variables conditioned on
�N , {aτ,N}, and EN , i.e. ΦXN ∼ XN conditioned on �N ,
{aτ,N}, and EN for any deterministic unitary matrix Φ ∈ UN .
For some v > 0, postulate the following:

lim
N→∞

1
N

�XN�2 a.s.= v > 0. (12)

Let z ∼ CN (0, IN ) denote a standard complex Gaussian
random vector independent of the other random variables.
Then, the following two properties hold:

1) Postulate the following assumptions:

• �N has finite (2k−2)th moments and vanishing second
moments, i.e. E[|�n,N |2] → 0 as N → ∞.

• aτ,N has finite (2k − 2)th moments.
• EN has finite max{2, 2k − 2}th moments.
• XN has finite (max{2, 2k − 2} + �)th moments for

some � > 0.

Then, for any t ≥ 0

lim
N→∞

E

[
fn(an,0,N , . . ., an,t′−1,N ,

an,t′,N + �n,N + [Φ⊥
EN

XN−t]n)
]

= E

[
fn(an,0,N , . . ., an,t′−1,N , an,t′,N +

√
vzn)

]
,

(13)

where the convention Φ⊥
EN

= IN is introduced for t = 0.
2) If the sequence of Lipschitz constants satisfies

1
N

N∑
n=1

L2
n < ∞, (14)

then for t ≥ 0

lim
N→∞

1
N

N∑
n=1

{
fn(an,0,N , . . . , an,t′−1,N ,

an,t′,N + �n,N + [Φ⊥
EN

XN−t]n)

−Ezn [fn(an,0,N , . . . ,an,t′−1,N , an,t′,N +
√

vzn)]
}

a.s.= 0.

(15)

Proof: See Appendix A.
Lemma 1 is used repeatedly to prove the main theorem of

this paper. Finally, we prove the following corollary that is
used in the derivation of the EP-based algorithm.

Corollary 1: Let a ∈ CN denote a vector that satisfies
limN→∞ N−1�a�2 a.s.= 1. Suppose that D ∈ CN×N is
a Hermitian matrix with limN→∞ N−1Tr(Di) a.s.= di for
i = 1, 2. Let V ∈ UN denote a Haar matrix independent
of a and D. Then,

lim
N→∞

1
N

aHV HDV a
a.s.= d1. (16)

Proof: Without loss of generality, we can assume that D
is diagonal since V is a Haar matrix. For XN = V a, we
have

1
N

aHV HDV a =
1
N

N∑
n=1

fn(Xn,N), (17)

with fn(z) = Dn|z|2, in which Dn denotes the nth diagonal
element of D. Since fn is a pseudo-Lipschitz function of
order 2 with the Lipschitz constant |Dn|, the assumptions on
a and D imply that all assumptions in Lemma 1 are satisfied
with v = 1. Thus, we use Lemma 1 to arrive at

1
N

aHV HDV a
a.s.=

1
N

N∑
n=1

DnE[|zn|2] + o(1) a.s.→ d1 (18)

as N → ∞, which implies Corollary 1.

III. SYSTEM MODEL

A. Assumptions

Assumptions on the measurement model (1) are presented.
Assumption 1: The signal vector x is composed of zero-

mean i.i.d. non-Gaussian elements with unit variance and finite
(2 + �)th moments for some � > 0.

From the strong law of large numbers [41], Assumption 1
implies that N−1�x�2 converges almost surely to 1 as N →
∞. The i.i.d. assumption for x is implicitly used in the
derivation of an EP-based algorithm. We require no additional
assumptions for the prior distribution of each element to
prove the main theorem, whereas it is practically important to
postulate some prior distribution indicating the sparsity of x.

Definition 4: A Hermitian random matrix M is said to be
unitarily invariant if M ∼ UMUH holds for any determin-
istic unitary matrix U .
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Assumption 2: The measurement matrix A has the follow-
ing properties:

• AHA is unitarily invariant.
• The empirical eigenvalue distribution of AAH converges

almost surely to a deterministic distribution ρ(λ) with a
compact support in the large system limit.

We write the SVD of A as

A = U(Σ, O)V H, (19)

with U ∈ UM and V ∈ UN . Furthermore, Σ is an M × M
positive semi-definite diagonal matrix. From Assumption 2, V
is a Haar matrix and independent of UΣ [34].

Assumption 3: The noise vector w has finite (2 + �)th
moments for some � > 0. Let D ∈ CM×M denote any
Hermitian matrix such that D is independent of UHw, and
that M−1Tr(D2) converges almost surely as M → ∞. Then,

lim
M→∞

1
M

{
wHUDUHw − σ2Tr(D)

}
a.s.= 0. (20)

Assumption 3 implies that σ2 corresponds to the noise
power σ2 a.s.= limM→∞ M−1�w�2 per element, by selecting
D = IM . Assumption 3 is satisfied if w is unitarily invariant,
e.g. w ∼ CN (0, σ2IM ), or if U is a Haar matrix.

B. Expectation Propagation

We start with an MP algorithm proposed in [26]. Let the
detector postulate that the noise vector w in (1) is a circularly
symmetric complex Gaussian (CSCG) random vector with
covariance σ2IM . This postulation needs not be consistent
with the true distribution of w.

As derived in Appendix B, the MP algorithm for this case
is based on EP and composed of two modules. In iteration t, a
first module—called module A—calculates the extrinsic mean
xt

A→B and variance vt
A→B of the signal vector x from xt

B→A

and vt
B→A provided by the other module—called module B.

xt
A→B = xt

B→A + γtW
t(y − Axt

B→A), (21)

vt
A→B = γt − vt

B→A. (22)

In the initial iteration t = 0, the prior mean x0
B→A = 0 and

variance v0
B→A = N−1E[�x�2] = 1 are used.

In (21), the linear minimum mean-square error (LMMSE)
filter W t ∈ CN×M is given by

W t = AH
(
σ2IM + vt

B→AAAH
)−1

. (23)

The normalization coefficient2 γt in (21) is defined as

1
γt

= lim
M=δN→∞

1
N

Tr(W tA) a.s.=
1

γ(vt
B→A)

(24)

due to Assumption 2, with

1
γ(v)

=
∫

δλ

σ2 + vλ
dρ(λ), (25)

where ρ(λ) denotes the asymptotic eigenvalue distribution of
AAH in the large system limit. The coefficient γt keeps the
orthogonality between estimation errors in the two modules.

2γ−1
t = N−1Tr(W tA) may be used in practical situations.

On the other hand, module B computes the minimum mean-
square error (MMSE) estimator and the posterior variance
of x

η̃t(xt
A→B) = E[x|xt

A→B], (26)

vt+1
B =

1
N

{
E[�x�2|xt

A→B] − �η̃t(xt
A→B)�2

}
, (27)

given the virtual additive white Gaussian noise (AWGN)
observation,

xt
A→B = x + zt, zt ∼ CN (0, vt

A→BIN ). (28)

If a termination condition is satisfied, module B outputs
η̃t(xt

A→B) as an estimate of x. Otherwise, module B feeds
the extrinsic mean xt+1

B→A and variance vt+1
B→A of x back to

module A, given by

xt+1
B→A = ηt(xt

A→B), (29)
1

vt+1
B→A

=
1

vt+1
B

− 1
vt
A→B

, (30)

where the extrinsic decision function ηt : C → C is defined
as

ηt(z) = vt+1
B→A

(
η̃t(z)
vt+1
B

− z

vt
A→B

)
. (31)

Remark 1: The extrinsic decision function (31) is zero if
x ∼ CN (0, IN ) holds. We have postulated Assumption 1 to
avoid a constant decision function.

It is not trivial whether the posterior variance (27) is
bounded. Therefore, we postulate the following assumption:

Assumption 4: Each posterior variance E[|xn|2|xt
n,A→B]−

|η̃t(xt
n,A→B)|2 is almost surely bounded.

Assumption 4 is a necessary condition for utilizing the EP-
based algorithm in practical situations. The author believes that
Assumption 4 can be proved without additional conditions.

We present important properties of the Bayes-optimal deci-
sion function η̃t in module B. We start with the definition of
the Wirtinger derivative of a complex function.

Definition 5 (Wirtinger derivative): For a complex number
z = x + iy, the Wirtinger derivative is defined as

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
. (32)

For a complex function f : C → C, we write (∂/∂z)(�[f ] +
i
[f ]) as ∂f/∂z.

Lemma 2 ([26], [42]): Suppose that z ∼ CN (0, vt
A→B) is

a CSCG random variable with variance vt
A→B and independent

of xn. Then, the decision function η̃t is Lipschitz-continuous
and satisfies

Ez [z∗η̃t(xn + z)] = vt
A→BEz

[
∂η̃t

∂z
(xn + z)

]
, (33)

E [z∗η̃t(xn + z)] = MMSE(vt
A→B) (34)

for any n, where MMSE(vt
A→B) denotes the MMSE based

on an AWGN observation, given by

MMSE(vt
A→B) = E

[|xn − η̃t(xn + z)|2] . (35)

Proof: See Appendix C for the proof based on [26].
Lemma 2 is used to prove the orthogonality between

estimation errors in the two modules. The identity (33) is a
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generalization of Stein’s lemma [43] to the complex-valued
case.

Remark 2: As considered in [23], [26], we can replace the
decision function η̃t with another suboptimal function. Such a
replacement may be important when the true prior distribution
of the signal elements is unknown. Nonetheless, for simplicity,
we only consider the optimal decision function η̃t. See [23]
for a generalization of the decision function.

C. Error Recursion

An error recursion for the EP-based algorithm is formulated
to analyze the convergence property. Let ht = xt

A→B−x and
qt = xt

B→A −x denote the estimation errors for the extrinsic
estimates in modules A and B, respectively. Substituting the
system model (1) into the update rule (21) of xt

A→B, and using
the SVD (19) and the update rule (29) of xt

B→A, we obtain
the error recursion

bt = V Hqt, (36)

mt = bt − γtW̃ t{(Σ, O)bt − w̃}, (37)

ht = V mt, (38)

qt+1 = ηt(x + ht) − x, (39)

with w̃ = UHw. In (37), the linear filter W̃ t is given by

W̃ t = (Σ, O)H
(
σ2IM + vt

B→AΣ2
)−1

. (40)

Furthermore, we define η−1(·) = 0 to obtain q0 = −x.
In analyzing the convergence property, we focus on the

distribution of the estimation error ht conditioned on the
preceding iteration history. Thus, it is useful to represent the
error recursion in the matrix form. Define

Qt =(q0, . . . , qt−1) ∈ C
N×t,

Bt =(b0, . . . , bt−1) ∈ C
N×t,

M t =(m0, . . . , mt−1) ∈ C
N×t,

Ht =(h0, . . . , ht−1) ∈ C
N×t. (41)

The error recursion is represented as

V HQt = Bt, (42)

M t = Gt(Bt, w̃), (43)

V M t = Ht, (44)

Qt+1 = F t(Ht, x), (45)

where the τ th columns of Gt(Bt, w̃) and F (Ht, x) are equal
to the right-hand sides (RHSs) of (37) and (39) for t = τ ,
respectively.

The random vectors defined in Section III may have ele-
ments of which the distributions change as N grows. Thus,
the subscript N should have been added in terms of the math-
ematical notation. Nonetheless, we have omitted the subscript
N for notational simplicity.

IV. MAIN RESULT

Ma and Ping [26] conjectured that the following SE equa-
tions describe the dynamics of the EP-based algorithm in the

large system limit:

v̄t
A→B = γ

(
v̄t
B→A

)− v̄t
B→A, (46)

1
v̄t+1
B→A

=
1

MMSE(v̄t
A→B)

− 1
v̄t
A→B

, (47)

with v̄0
B→A = 1, in which γ(·) and MMSE(·) are given in

(25) and (35), respectively. The following theorem justifies
their conjecture.

Theorem 2: Define v̄t
A→B and v̄t

B→A via the SE equa-
tions (46) and (47). Then, the following results hold in the
large system limit:

lim
M=δN→∞

1
N

�xt
A→B − x�2 a.s.= v̄t

A→B, (48)

lim
M=δN→∞

1
N

�η̃t(xt
A→B) − x�2 a.s.= MMSE(v̄t

A→B), (49)

lim
M=δN→∞

1
N

�ηt(xt
A→B) − x�2 a.s.= v̄t+1

B→A. (50)

The update rules (22) and (30) in the EP-based algorithm
have the same representation as that in the SE equations (46)
and (47). This implies that the EP-based algorithm predicts the
exact dynamics of the extrinsic variances in the large system
limit. The FPs of the SE equations were proved in [26] to
correspond to those of an asymptotic energy function that
describes the Bayes-optimal performance [29]–[31]. Thus, the
Bayes-optimal performance is achievable when the SE equa-
tions have a unique FP, or equivalently when the compression
rate δ is larger than the BP threshold.

The following theorem justifies the SE equations (46) and
(47) in terms of individual MSEs.

Theorem 3: Define v̄t
A→B and v̄t

B→A via the SE equa-
tions (46) and (47). Then, for any n

lim
M=δN→∞

E[|η̃t(xt
n,A→B) − xn|2] = MMSE(v̄t

A→B),(51)

lim
M=δN→∞

E[|ηt(xt
n,A→B) − xn|2] = v̄t+1

B→A. (52)

Remark 3: For simplicity, the individual MSE for the
extrinsic estimate in module A is not analyzed in this paper.
Furthermore, we have assumed the i.i.d. property of the
elements of the signal vector x. However, our proof strategy
can be applied to justify that the individual MSE E[|xt

n,A→B−
xn|2] for module A converges to v̄t

A→B in the large system
limit. Furthermore, the assumption on x can be relaxed to the
case of independent but non-identically distributed signals.

We shall introduce several notations to present a general
theorem, of which corollaries are Theorems 2 and 3. The
random variables in the error recursions (42)–(45) are divided
into three groups: V , Θ = {Σ, w̃, x}, and

Xt,t′ =
{

Qt+1, Bt′ , M t′ , Ht

∣∣∣BH
t′M t = QH

t′Ht,

M t′ = Gt′(Bt′ , w̃), Qt+1 = F t(Ht, x)
}

, (53)

for t� = t or t� = t + 1, while we define X0,0 = {Q1} and
X0,1 = {Q1, B1, M1|M1 = G1(B1, w̃)}. See Table I for
the notational conventions used in this paper.

The set Θ is fixed throughout this paper. Thus, conditioning
on Θ is omitted. The set Xt,t describes the history of all
preceding iterations just before updating (36), while Xt,t+1
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TABLE I

NOTATIONAL CONVENTIONS FOR t = 0

represents the history just before updating (38). Note that the
condition BH

t′M t = QH
t′Ht is a constraint for letting V be

unitary, and follows from (42) and (44). In order to investigate
the dynamics of the error recursions, the distribution of the
Haar matrix V conditioned on Xt,t′ is analyzed.

Let m⊥
t = P⊥

Mt
mt. Since m

�
t = mt − m⊥

t is in the

space spanned by the columns of M t, we have (m�
t )Hm⊥

t =
0. Furthermore, m

�
t is represented as m

�
t = M tαt, with

αt = M †
tmt ∈ Ct. Similarly, we define q⊥

t′ = P⊥
Qt′ qt′ and

q
�
t′ = qt′ − q⊥

t′ = Qt′βt′ , with βt′ = Q†
t′qt′ ∈ Ct′ .

For notational convenience, we define the conventions listed
in Table I, which imply P⊥

O = I , m⊥
0 = m0, and q⊥

0 = q0.
Theorem 4: Let D = diag{D1, . . . , DN} denote any N ×

N real diagonal matrix that is a function of Σ. For some
� > 0, suppose that N−1Tr(Dk) converges almost surely for
all k ∈ [0, 4 + �) as N → ∞. Then, the following properties
for module A hold for each iteration τ = 0, 1, . . .:

(A1) Define

b̃τ = Bτβτ +Mτo(1)+Bτo(1)+Φ⊥
(Bτ ,Mτ )zτ , (54)

with
zτ = Ṽ

H
(Φ⊥

(Qτ ,Hτ ))
Hqτ , (55)

where Ṽ ∈ UN−2t is a Haar matrix and independent of
Θ and Xτ,τ . Then, we have

bτ |Θ,Xτ,τ ∼ b̃τ (56)

conditioned on Θ and Xτ,τ in the large system limit,
with

lim
M=δN→∞

1
N

{�zτ�2 − �q⊥
τ �2
} a.s.= 0. (57)

(A2) For all τ � ≤ τ ,

lim
M=δN→∞

1
N

bH
τ ′DW̃ τ w̃

a.s.= 0, (58)

lim
M=δN→∞

1
N

{
bH

τ ′Dbτ − Tr(D)
N

qH
τ ′qτ

}
a.s.= 0, (59)

lim
M=δN→∞

1
N

bH
τ ′mτ

a.s.= 0, (60)

where W̃ τ is given by (40).
(A3) Define v̄τ

A→B in the SE equations (46) and (47), Then,

lim
M=δN→∞

vτ
A→B

a.s.= v̄τ
A→B, (61)

lim
M=δN→∞

1
N

�mτ�2 a.s.= v̄τ
A→B. (62)

(A4) For some � > 0 and C > 0,

lim
M=δN→∞

E
[|mτ,n|2+�

]
< ∞, (63)

lim sup
M=δN→∞

1
N

mH
τ Dmτ

a.s.
< ∞, (64)

lim inf
M=δN→∞

λmin

(
1
N

MH
τ+1M τ+1

)
a.s.
> C. (65)

The following properties hold for module B:
(B1) Define

h̃τ = Hτατ + Qτ+1o(1) + Hτo(1) + Φ⊥
(Qτ+1,Hτ )z̃τ ,

(66)
with

z̃τ = Ṽ (Φ⊥
(Bτ+1,Mτ ))

Hmτ , (67)

where Ṽ ∈ UN−(2t+1) is a Haar matrix and independent
of Θ and Xτ,τ+1. Then, we have

hτ |Θ,Xτ,τ+1 ∼ h̃τ (68)

conditioned on Θ and Xτ,τ+1 in the large system limit,
with

lim
M=δN→∞

1
N

{�z̃τ�2 − �m⊥
τ �2
} a.s.= 0. (69)

(B2) For all τ � ≤ τ ,

lim
M=δN→∞

1
N

hH
τ qτ ′+1

a.s.= 0. (70)

(B3) Define v̄τ
A→B and v̄τ+1

B→A in the SE equations (46) and
(47), Then,

lim
M=δN→∞

vτ+1
B

a.s.= MMSE(v̄τ
A→B), (71)

lim
M=δN→∞

vτ+1
B→A

a.s.= v̄τ+1
B→A, (72)

lim
M=δN→∞

1
N

�η̃t(x + ht) − x�2 a.s.= MMSE(v̄τ
A→B),

(73)

lim
M=δN→∞

1
N

�qτ+1�2 a.s.= v̄τ+1
B→A. (74)

(B4) For some � > 0 and C > 0,

lim
M=δN→∞

E
[|qτ+1,n|2+�

]
< ∞, (75)

lim inf
M=δN→∞

λmin

(
1
N

QH
τ+2Qτ+2

)
a.s.
> C. (76)

(B5) Define v̄τ
A→B and v̄τ+1

B→A in the SE equations (46) and
(47), Then,

lim
M=δN→∞

E[|η̃τ (xn + hτ,n) − xn|2] a.s.= MMSE(v̄τ
A→B),

(77)

lim
M=δN→∞

E[|qτ+1,n|2] a.s.= v̄τ+1
B→A. (78)

Proof: See Section V.
Ma and Ping [26, Assumption 1] postulated that z̃τ in (66)

has independent CSCG elements. The assumption is too strong
to be justified. In fact, the references [44], [45] imply that the
assumption is not correct, while the assumption holds only
for finite subsets of the elements of z̃τ . However, the weaker
property (B1) is sufficient to prove Theorem 4.

Proof of Theorem 2: The property (48) follows from the
definition (38) of ht and (62). Furthermore, (49) and (50) are
due to (73) and (74), respectively.

Proof of Theorem 3: Theorem 3 follows from (77)
and (78).
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V. PROOF OF THEOREM 4

A. Technical Lemma

We need to evaluate the two distributions p(mt, bt|Θ,Xt,t)
and p(qt+1, ht|Θ,Xt,t+1). The former distribution represents
the error recursions (36) and (37) conditioned on the history
of all preceding iterations, while the latter describes the error
recursions (38) and (39). We follow the proof strategy in [11]
to evaluate the two distributions via the conditional distribution
p(V |Θ,Xt,t′) for t� = t or t� = t + 1. See Section I-B for the
main idea in analyzing the conditional distributions.

The following lemma provides a useful representation of
V ∈ UN conditioned on Θ and Xt,t′ , and corresponds to [11,
Lemma 10]. See Section I-F for the notation.

Lemma 3: Suppose that Y ∈ CN×t has full rank
for 0 < t < N , and consider the noiseless and compressed
observation X ∈ CN×t of V given by

X = V HY . (79)

Then, the conditional distribution of the Haar matrix V given
X and Y satisfies

V |X,Y ∼ Y (Y HY )−1XH + Φ⊥
Y Ṽ (Φ⊥

X)H, (80)

where Ṽ ∈ UN−t is a Haar matrix independent of X and Y .
Proof: See Appendix D.

Proposition 2: Let a ∈ Ct and M = (m0, . . . , mt−1) ∈
CN×t. If N−1�mτ�2 is bounded for any τ as N → ∞, then

lim sup
N→∞

1
N

aHMHMa < ∞. (81)

Proof: Proposition 2 follows from N−1�mτ�2 < ∞ and
�Ma�2 ≤ �M�2�a�2.

We are ready to prove Theorem 4. The proof is by induction.
We first prove the properties of modules A and B for τ = 0.
Then, the properties are proved for τ = t under the induction
hypotheses for all τ < t.

B. Module A for τ = 0
Property (A1) for τ = 0: Property (A1) for τ = 0 is

trivial from the definition (36) of b0, because of the notational
convention.

Eq. (58)–(60) for τ = 0: We first prove (58) and (59) for
τ = 0. Let XN = b0 and fn(z) = z∗[DW̃ 0w̃]n to have the
representation

1
N

bH
0 DW̃ 0w̃ =

1
N

N∑
n=1

fn(b0,n). (82)

From Property (A1) for τ = 0, XN is unitarily invariant. The
definition (36) of b0, q0 = −x, and Assumption 1 imply the
condition (12) with v = 0. Since fn is Lipschitz-continuous
with the Lipschitz constant Ln = |[DW̃ 0w̃]n|, we need to
prove the condition (14) to use Lemma 1. Using the definition
w̃ = UHw and Assumption 3 yields

1
N

N∑
n=1

L2
n =

1
N

w̃HW̃
H

0 D2W̃ 0w̃

a.s.=
σ2

N
Tr
(
D2W̃ 0W̃

H

0

)
+ o(1)

≤σ2

{
Tr(D4)

N

}1/2
{

Tr{(W̃ 0W̃
H

0 )2}
N

}1/2

+ o(1)

a.s.
< ∞ (83)

in the large system limit, where the first inequality follows
from the Cauchy-Schwarz inequality, and where the bounded-
ness is due to the definition of D, the definition (40) of W̃ 0,
and Assumption 2. Thus, we can use Lemma 1 to obtain (58)
for τ = 0. Similarly, we use Lemma 1 for fn(z) = Dn|z|2 to
have (59) for τ = 0.

We next prove (60) for τ = 0. Let k ∈ [0, 4 + �). We use
Hölder inequality for any p ∈ (1, (4 + �)/k) to obtain

1
N

Tr
{(

DW̃ 0(Σ, O)
)k
}

≤ 1
N

{
Tr(Dkp)

}1/p
{

Tr
[(

W̃ 0(Σ, O)
)kq
]}1/q

a.s.
< ∞ (84)

as N → ∞, with q−1 = 1 − 1/p, where the boundedness is
obtained by repeating the proof of the boundedness in (83).
Thus, we use (58) and (59) for τ = 0 to have

γ0

N
bH
0 DW̃ 0 {(Σ, O)b0 − w̃}

a.s.= γ0
Tr(DW̃ 0(Σ, O))

N

1
N

qH
0 q0 + o(1). (85)

In particular, for D = IN we use the definition (24) of γ0

to obtain
γ0

N
Tr
{
W̃ 0(Σ, O)

}
a.s.= 1 + o(1). (86)

Applying (86) to (85), we find

γ0

N
bH
0 W̃ 0 {(Σ, O)b0 − w̃} a.s.=

1
N

qH
0 q0 + o(1). (87)

From the definition (37) of m0, (59) with D = IN for τ = 0,
and (87), we arrive at (60) for τ = 0.

Eqs. (61)–(65) for τ = 0: The almost sure conver-
gence (61) for τ = 0 follows from the update rule (22) of
v0
A→B, the definition (24) of γ0, the SE (46) for module A,

and v0
B→A = v̄0

B→A = 1.
Let us prove (64) for τ = 0, before proving (62). Using the

definition (37) of m0, (85), and Assumption 3, as well as (59)
for τ = 0, we have

mH
0 Dm0

N

a.s.=
Tr(D)

N

qH
0 q0

N
− 2γ0

Tr(DW̃ 0(Σ, O))
N

qH
0 q0

N

+
γ2
0Tr(D̃)

N

qH
0 q0

N
+

σ2γ2
0

N
Tr
(
W̃

H

0 DW̃ 0

)
+ o(1) (88)

in the large system limit, with

D̃ =
(
Σ
O

)
W̃

H

0 DW̃ 0(Σ, O). (89)

It is straightforward to confirm the boundedness of (88). Thus,
(64) holds for τ = 0.
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In particular, for D = IN we have

Tr(D̃) = Tr
{(

σ2IM + v0
B→AΣ2

)−2
Σ4
}

, (90)

Tr
(
W̃

H

0 W̃ 0

)
= Tr

{(
σ2IM + v0

B→AΣ2
)−2

Σ2
}

. (91)

Applying these results, (86), and N−1�q0�2 = N−1�x�2 a.s.→
v0
B→A = 1 to (88), we obtain (62) for τ = 0.

To prove the moment property (63) for τ = 0, we observe
that b0 has finite (2 + �)th moments, by using the defini-
tion (36) of b0, q0 = −x, and Assumption 1. Thus, the
moment property (63) for τ = 0 follows from the defini-
tion (37) of m0, the definition (40) of W̃ 0, Assumption 2,
and Assumption 3.

Finally, (65) for τ = 0 is equivalent to N−1�m0�2 a.s.=
v̄0
A→B > 0, which follows from (62) for τ = 0.

C. Module B for τ = 0

Property (B1) for τ = 0: We prove (68) for τ = 0.
Applying Lemma 3 with X = b0 and Y = q0 to the
definition (38) of h0 yields

h0 ∼ bH
0 m0

�q0�2
q0 + Φ⊥

q0
Ṽ (Φ⊥

b0
)Hm0 (92)

conditioned on Θ and X0,1, in which Ṽ ∈ UN−1 is a Haar
matrix and independent of Θ and X0,1. From q0 = −x,
Assumption 1, and (60) for τ = 0, we find

h0 ∼ q0o(1) + Φ⊥
q0

Ṽ (Φ⊥
b0

)Hm0 (93)

in the large system limit, which implies (68) for τ = 0,
because of the notational convention.

In order to complete the proof, we shall prove (69) for τ =
0. Define

ν0 =
1
N

mH
0 P⊥

b0
m0. (94)

Applying P⊥
b0

= IN − �b0�−2b0b
H
0 to (94), and using (59)

and (60) for τ = 0, we have

ν0
a.s.=

1
N

mH
0 m0 + o(1) a.s.= v̄0

A→B + o(1) (95)

in the large system limit, where the last equality follows from
(62) for τ = 0. In particular, we have the convention m⊥

0 =
m0 to find (69) for τ = 0. Thus, Property (B1) holds for
τ = 0.

Let XN = z̃0 given in (67), a0,N = x, �N = q0o(1),
and EN = q0. For k = 1 or k = 2, we prove that all
conditions in Lemma 1 with v = v̄0

A→B are satisfied for any
pseudo-Lipschitz function fn : C2 → C of order k with an
n-independent Lipschitz constant L > 0. Thus,

E [fn(xn, h0,n)] a.s.= E [fn(xn, z̃0,n)] + o(1), (96)

1
N

N∑
n=1

fn(xn, h0,n) a.s.=
1
N

N∑
n=1

Ez̃0,n [fn(xn, z̃0,n)] + o(1)

a.s.=
1
N

N∑
n=1

E [fn(xn, z̃0,n)] + o(1) (97)

in the large system limit, with z̃0 ∼ CN (0, v̄0
A→BIN ), where

the latter equality follows from Assumption 1.
The conditions (7), (8), (9), and (10) follow from q0 = −x,

Assumption 1, and Theorem 1. The condition (11) is due to
N−1�q0�2 a.s.→ 1. The condition (12) with v = v̄0

A→B follows
from (62) and (69) for τ = 0, as well as the convention m⊥

0 =
m0. The moment conditions of aN , �N , and EN are due to
q0 = −x and Assumption 1. The moment condition of X
follows from the definition (67) of z̃0 and (63) for τ = 0.
Thus, all conditions in Lemma 1 are satisfied.

Eqs. (71) and (72) for τ = 0: We first prove (71) for
τ = 0. From the definition (27) of the posterior variance v1

B,
we have

v1
B =

1
N

N∑
n=1

fn(xn, h0,n), (98)

with fn(x, z) = V[xn|x0
n,A→B = x+z] defined via the virtual

AWGN observation (28). From Assumption 4, the posterior
variance V[xn|x0

n,A→B] is bounded, so that fn(x, z) is a
Lipschitz-continuous function with a Lipschitz constant L > 0.
We use (97) to arrive at

v1
B

a.s.= MMSE(v̄0
A→B) + o(1) (99)

in the large system limit, where we have used the fact that
the expectation of the posterior variance is equal to the
MMSE (35). Thus, (71) holds for τ = 0.

We next prove (72) for τ = 0. From (61) and (71) for τ = 0,
we observe that v1

B→A given in (30) converges almost surely
to v̄1

B→A given in (47) in the large system limit. Thus, (72)
holds for τ = 0.

Eq. (70) for τ = 0: The Lipschitz-continuity of η̃0 proved
in Lemma 2 implies that fn(xn, z) = z∗η̃0(xn + z) is a
pseudo-Lipschitz function of order 2 with an n-independent
Lipschitz constant L > 0. From (97), we obtain

1
N

hH
0 η̃0(x + h0)

a.s.= E
[
z̃∗0,nη̃0(xn + z̃0,n)

]
+ o(1) (100)

in the large system limit. Using Lemma 2 yields

1
N

hH
0 η̃0(x + h0)

a.s.= MMSE(v̄0
A→B) + o(1) (101)

in the large system limit. Similarly, we obtain

1
N

hH
0 x

a.s.→ 0 (102)

in the large system limit.
We use the definition (39) of q1, the definition (31) of η0,

(72) for τ = 0, and (102) to obtain

1
N

hH
0 q1

a.s.= v̄1
B→A

(
hH

0 η̃0(x + h0)
NMMSE(v̄0

A→B)
− �h0�2

Nv̄0
A→B

)
+ o(1)

a.s.= o(1) (103)

in the large system limit, where the last equality follows from
the definition (38) of h0, (62) for τ = 0, and (101). Thus,
(70) holds for τ = 0.

Eqs. (73) and (74) for τ = 0: We first prove (73) for
τ = 0. By repeating the proof of (70) for τ = 0, we find

1
N

�η̃0(x + h0) − x�2 a.s.= E
[|η̃0(xn + z̃0,n) − xn|2

]
+ o(1)

(104)
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in the large system limit. Since the variance of z̃0.n is equal
to v̄0

A→B, from the definition (35) of the MMSE function, we
arrive at (73) for τ = 0.

We next prove (74) for τ = 0. Using the definition (39)
of q1 and the definition (31) of η0, and the definition (47) of
v̄1
B→A, as well as (61), (71), and (72) for τ = 0, we have

q1 =
v̄1
B→A{η̃0(x + h0) − x}

MMSE(v̄t
A→B)

− v̄1
B→A

v̄0
A→B

h0. (105)

Applying (70) and (73) for τ = 0, as well as (101), (102), and
N−1�h0�2 a.s.→ v̄0

A→B obtained from the definition (38) of h0

and (62) for τ = 0, we have

1
N

�q1�2 a.s.=
(v̄1

B→A)2

MMSE(v̄0
A→B)

− (v̄1
B→A)2

v̄0
A→B

+ o(1) a.s.→ v̄1
B→A

(106)
in the large system limit, where the last equality follows from
the definition (47) of v̄1

B→A. Thus, (74) holds for τ = 0.
Eq. (75) for τ = 0: From the definition (39) of q1 and

Proposition 1, we have

E[|q1,n|2+�] < C
(
E[|η0(xn + h0,n)|2+�] + E[|xn|2+�]

)
(107)

for some constant C > 0. Since Assumption 1 implies the
boundedness of the second term, it is sufficient to prove that
η0(xn + h0,n) has a finite (2 + �)th moment for some � > 0.

From Lemma 2 η̃0 is Lipschitz-continuous, so that η0 given
by (31) is so. Thus, we use Proposition 1 to have

E
[|η0(xn + h0,n)|2+�

] ≤ L
(
1 + E[|xn|2+�] + E[|h0,n|2+�]

)
,

(108)
for some L > 0. The boundedness of E[|h0,n|2+�] follows
from the definition (38) of h0 and (63) for τ = 0. Thus, (75)
holds for τ = 0.

Eq. (76) for τ = 0: If lim infM=δN→∞ N−1�q⊥
1 �2

converges almost surely to a strictly positive constant, (76)
holds for τ = 0 [11, Lemmas 8 and 9]. Using (74) for τ = 0,
we have

�q⊥
1 �2

N
=

qH
1 P⊥

q0
q1

N

a.s.=
E[�q1�2]

N
−
∣∣∣∣∣
√

N(Φ�
q0

)Hq1

N

∣∣∣∣∣
2

+o(1),

(109)
where q1 in the first term is given by q1 = η0(x + z̃0) − x.

Let fn(xn, z) =
√

N [Φ�
q0

]∗n{η(xn +z)−xn}. The function
fn is a Lipschitz-continuous function with the Lipschitz con-
stant Ln = L

√
N |[Φ�

q0
]n| for some L > 0. The normalization

�Φ�
q0
�2 = 1 implies N−1

∑N
n=1 L2

n = L, so that we can use
(97) to obtain

√
N(Φ�

q0
)Hq1

N

a.s.=
E{(Φ�

q0
)HEz̃0 [q1]}√
N

+ o(1). (110)

Using the Cauchy-Schwarz inequality yields∣∣∣E [(Φ�
q0

)HEz̃0 [q1]
]∣∣∣ ≤ E {�Ez̃0 [q1]�} ≤ E [�q1�] , (111)

where the latter inequality follows from Jensen’s inequality.
Thus, we obtain

�q⊥
1 �2

N

a.s.≥ 1
N

{
E[�q1�2] − (E [�q1�])2

}
+ o(1) (112)

which is strictly positive in the large system limit. Thus, (76)
holds for τ = 0.

Eqs. (77) and (78) for τ = 0: From (73) and (74) for
τ = 0, we may conclude (77) and (78) for τ = 0, since x and
h0 have identically distributed elements in the large system
limit. Nonetheless, we present a generic proof applicable to
the non-identically-distributed case.

We only prove (77) for τ = 0, since (78) can be proved in
the same manner. Lemma 2 implies that |η̃0(xn +h0,n)−xn|2
is a pseudo-Lipschitz function of order 2. We use (96) to have

E[|η̃0(xn + h0,n) − xn|2] → MMSE(v̄0
A→B) (113)

in the large system limit.
We have proved that Theorem 4 holds for τ = 0. Next, we

assume that Theorem 4 is correct for all τ < t, and prove that
Theorem 4 holds for τ = t.

D. Module A by Induction

Property (A1) for τ = t: We prove (56) for τ = t.
Let Y = (Qt, Ht) and X = (Bt, M t) in Lemma 3. The
induction hypotheses (65) and (76) τ < t imply that M t and
Qt have full rank. From the definition (44) of Ht and the
induction hypothesis (70) for τ < t, we find that Y has full
rank. Using the definition (36) of bt and Lemma 3 yields

bt ∼ (Bt, M t)(Qt, Ht)†qt + Φ⊥
(Bτ ,Mτ )zt (114)

conditioned on Θ and Xt,t, with zt defined in (55).
We evaluate the first term on the RHS of (114). Using the

induction hypothesis (70) for τ < t yields

(Qt, Ht)† =
1
N

(
N−1QH

t Qt N−1QH
t Ht

N−1HH
t Qt N−1HH

t Ht

)−1(
QH

t

HH
t

)
a.s.=
(

Q†
t + o(N−1)HH

t

H†
t + o(N−1)QH

t

)
. (115)

Substituting (115) into the first term, and using the same
induction hypothesis again, we obtain

(Bt, M t)(Qt, Ht)†qt
a.s.= Btβt+Bto(1)+M to(1), (116)

which implies (56) for τ = t.
We next prove (57) for τ = t. Repeating the derivation of

(116) with (115) yields

1
N

�zt�2 =
1
N

qH
t P⊥

(Qt,Ht)qt

a.s.=
qH

t

N

{
P⊥

Qt
− P

�
Ht

+ o(1)
QtH

H
t

N
+ o(1)

HtQ
H
t

N

}
qt

a.s.=
1
N

�q⊥
t �2 + o(1), (117)

where the last equality follows from the induction hypothe-
sis (70) for τ < t. Thus, (57) holds for τ = t.

Let XN = zt, and �N = Bto(1) + M to(1), a1,N =
Btβt, and EN = (Bt, M t) in Lemma 1. We prove that,
for k = 1 or k = 2, all conditions in Lemma 1 with v =
μt = limM=δN→∞ N−1�q⊥

t �2 are satisfied for any pseudo-
Lipschitz function fn of order k with a Lipschitz-constant Ln,
in which limN→∞ N−1

∑N
n=1 L2

n < ∞ holds for k = 1 and
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in which limN→∞ N−1
∑N

n=1 L4
n < ∞ holds for k = 2, so

that

1
N

N∑
n=1

fn(bt,n)

a.s.=
1
N

N∑
n=1

E [fn([Btβt]n + zt,n)|Θ,Xt,t] + o(1) (118)

conditioned on Θ and Xt,t in the large system limit, with
zt ∼ CN (0, μtIN ).

The conditions (7) and (10) follow from Proposition 2, the
induction hypotheses (59), (64), and (74) for τ < t. For
k = 1, the conditions (8) and (9) are trivial. For k = 2,
the condition (8) is due to (7). The condition (9) follows from
Proposition 2, the induction hypotheses (59), (74) for τ < t,
as well as from the boundedness of �βt�,

�βt�2 =
qH

t Qt

N

(
1
N

QH
t Qt

)−2
QH

t qt

N

a.s.
< C

∥∥∥∥ 1
N

QH
t qt

∥∥∥∥
2

≤ C

N

t−1∑
τ=0

�qτ�2 �qt�2

N

a.s.
< ∞ (119)

for some constant C > 0, where the first two inequalities
follow from the induction hypothesis (76) for τ = t − 2
and from the Cauchy-Schwarz inequality, respectively, and
where the boundedness is due to the induction hypothesis (74)
for τ < t.

The condition (11) follows from the induction hypotheses
(60), (65), and (76) for τ < t, as well as the definition (42)
of Bt. The condition (12) with v = μt follows from (57) for
τ = t. We have proved all assumptions in Lemma 1. Thus,
(118) holds.

Eqs. (58)–(60) for τ = t: We first prove (58) for
τ = t. Define the Lipschitz-continuous function fn(z) =
z∗[DW̃ tw̃]n. We note that W̃ t given in (40) is independent
of vt

B→A in the large system limit, because of the induction
hypothesis (72) for τ = t − 1. Repeating the proof of (83),
we find that N−1�DW̃ tw̃�2 is almost surely bounded as
N → ∞. Thus, we can use (118) to obtain

1
N

bH
τ DW̃ tw̃

a.s.=
1
N

βH
τ BH

τ DW̃ tw̃ + o(1) a.s.→ 0, (120)

where the last convergence follows from the induction hypoth-
esis (58) for all τ < t. Thus, (58) holds for τ = t.

We next prove (59) for τ = t. From (118) for fn(z) =
Dn|z|2, we have

1
N

bH
τ Dbt

a.s.=
1
N

E

[
bH

τ D(Btβt + zt)
∣∣∣Θ,Xt,t

]
+ o(1)

(121)
in the large system limit for all τ ≤ t, where bτ is replaced
by Btβt + zt for τ = t. For τ < t, we have

1
N

bH
τ Dbt

a.s.=
1
N

bH
τ DBtβt + o(1). (122)

Using the induction hypothesis (59) for τ < t, q
�
t = Qtβt,

and qH
τ ′q⊥

t = 0 yields (59) for τ = t and τ � < t.
For τ = t, we obtain

1
N

bH
t Dbt

a.s.=
1
N

βH
t BH

t DBtβt +
μt

N
Tr(D) + o(1) (123)

in the large system limit. The induction hypothesis (59) for
τ < t implies that the fist term converges almost surely
to limM=δN→∞ N−1�q�

t �2N−1Tr(D). Thus, (59) holds for
τ = τ � = t.

Finally, we prove (60) for τ = t. Repeating the proof of
(84) yields the boundedness of N−1Tr{(DW̃ t(Σ, O))k} for
k ∈ [0, 4 + �). Thus, we can use (58) and (59) to find

γt

N
bH

τ DW̃ t {(Σ, O)bt − w̃}
a.s.= γt

Tr{DW̃ t(Σ, O)}
N

1
N

qH
τ qt + o(1). (124)

In particular, for D = IN we find that the almost sure
convergence (60) for τ = t follows from the definition (24) of
γt, the definition (40) of W̃ t, and Assumption 2, as well as the
boundedness of N−1qH

τ qt, obtained from the Cauchy-Schwarz
inequality and the induction hypothesis (74) for τ < t.

Eqs. (61)–(65) for τ = t: The almost sure conver-
gence (61) for τ = t follows from the definition (22) of vt

A→B,
the definition (24) of γt, the definition (46) of v̄t

A→B, and the
induction hypothesis (72) for τ = t − 1.

The properties (62) and (64) for τ = t are obtained by
repeating the proofs of (62) and (64) for τ = 0. The moment
property (63) for τ = t follows from the definition (37) of mt,
the definition (40) of W̃ t, Assumption 2, and Assumption 3,
since we have already proved the boundedness of the (2+�)th
moments of bt.

Finally, we prove (65) for τ = t. The induction hypoth-
esis (65) for τ < t implies that (65) holds for τ = t
if lim infM=δN→∞ N−1�m⊥

t �2 converges almost surely to
a strictly positive constant. We use the definition (37) of
mt, (62), and (118) for fn(z) = [

√
N(Φ�

Mt
)H{IN −

γtW̃ t(Σ, O)}]τ,nz for τ < t to obtain

�m⊥
t �2

N

a.s.=
Ezt

[�mt�2]
N

−
∥∥∥∥Ezt

[
(Φ�

Mt
)H

mt√
N

]∥∥∥∥
2

+ o(1).

(125)
By repeating the proof of (76) for τ = 0, we arrive at

�m⊥
t �2

N

a.s.≥ 1
N

(
Ezt

[�mt�2] − �Ezt
[mt]�2

)
+ o(1), (126)

which is strictly positive in the large system limit. Thus, (65)
holds for τ = t.

E. Module B by Induction

Property (B1) for τ = t: Let us prove (68) for τ = t.
Using (38) and Lemma 3 with Y = (Qt+1, Ht) and X =
(Bt+1, M t) yields

ht ∼ (Qt+1, Ht)(Bt+1, M t)†mt + Φ⊥
(Qt+1,Ht)z̃t (127)

conditioned on Θ and Xt,t+1, with z̃t given in (67), where we
have used the identity XHX = Y HY . Repeating the proof
of Property (A1) for τ = t, we arrive at Property (B1) for
τ = t.

Let XN = z̃t given in (67), a0,N = x, aτ+1,N = hτ for
τ < t, at+1,N = Htαt, �N = Qt+1o(1) + Hto(1), and
EN = (Qt+1, Ht). For k = 1 or k = 2, let fn : Ct+2 →
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C denote a pseudo-Lipschitz function of order k with an n-
independent Lipschitz constant L > 0. We shall prove

E[fn(xn, h0,n, . . . , ht,n)]
a.s.= E[gn(xn, h0,n, . . . , ht−1,n)] + o(1), (128)

1
N

N∑
n=1

fn(xn, h0,n, . . . , ht,n)

a.s.=
1
N

N∑
n=1

gn(xn, h0,n, . . . , ht−1,n) + o(1) (129)

conditioned on Θ and Xt,t+1 in the large system limit, with

gn(xn, h0,n, . . . , ht−1,n)
=Ez̃t,n [fn(xn, h0,n, . . . , ht−1,n, [Htαt]n + z̃t,n)] , (130)

where z̃t ∼ CN (0, νtIN ) is a CSCG vector with νt =
limM=δN→∞ N−1�m⊥

t �2.
It is sufficient to confirm that all conditions in Lemma 1

hold. The conditions (7) and (10) follow from the defini-
tion (38) of ht, the induction hypotheses (62), (74) for τ < t,
and Proposition 2. The conditions (8) and (9) are trivial for k =
1. For k = 2, the condition (8) is due to (7). The condition (9)
follows from Assumption 1 when τ = 0, the definition (38) of
hτ and the induction hypothesis (62) when τ = 1, . . . , t − 1,
and from the boundedness of �αt�2 when τ = t, obtained by
repeating the proof of (119) with the induction hypotheses (62)
and (65) for τ < t. The condition (11) is due to the induction
hypotheses (65), (70), and (76) for τ < t − 1, as well as the
definition (44) of Ht. The condition (12) follows from (69)
for τ = t.

The moment conditions of �N , aτ,N , and EN follow from
Assumption 1, the induction hypothesis (75) for τ < t, and
the boundedness of the (2 + �)th moments of hτ for τ < t,
of which the last is due to the definition (38) of hτ and the
induction hypothesis (63) for τ < t. The moment condition
of XN is due to (63) for τ = t and the definition (67) of z̃t.
Thus, all conditions in Lemma 1 hold.

Define hG
τ recursively as

hG
τ = HG

τ ατ + z̃τ , (131)

with HG
τ = (hG

0 , . . . , hG
τ−1), where {z̃τ ∼ CN (0, νtIN )}

are independent CSCG vectors. By definition, hG
τ condi-

tioned on {ατ} and {ντ} is a CSCG vector. Comparing
the definition (66) of h̃τ and the definition (131) of hG

τ ,
from the definition (38) of ht and (62) for τ = t we find
N−1

E[�hG
t �2] → v̄t

A→B in the large system limit.
It is straightforward to confirm that the function (130) is

pseudo-Lipschitz of order k with an n-independent Lipschitz
constant. Thus, we can repeat the argument in (128) and (129)
to arrive at

E[fn(xn, h0,n, . . . , ht,n)]
a.s.= E[fn(xn, hG

0,n, . . . , hG
t−1,n)] + o(1), (132)

1
N

N∑
n=1

fn(xn, h0,n, . . . , ht,n)

a.s.=
1
N

N∑
n=1

E
[
fn(xn,N , hG

0,n, . . . , hG
t,n)
]
+ o(1). (133)

Eqs. (71) and (72) for τ = t: Repeating the proofs of (71)
and (72) for τ = 0 with (133), we arrive at (71) and (72) for
τ = t.

Eq. (70) for τ = t: For τ < t, we use the definition (36)
of bt and the definition (38) of ht to obtain

1
N

hH
t qτ+1 =

1
N

mH
t bτ+1

a.s.→ o(1) (134)

in the large system limit, where the last convergence follows
from (60) for τ = t and τ � = τ + 1 ≤ t.

For τ = t, we use (133) for the pseudo-Lipschitz function
fn(xn, ht,n) = h∗

t,n{ηt(xn + ht,n) − xn} of order 2 to have

1
N

hH
t qt+1

a.s.=
1
N

E

[
(hG

t )Hηt(x + hG
t )
]

+ o(1) (135)

in the large system limit. Since hG
t has independent CSCG

elements with variance v̄t
A→B, we repeat the proof of (70) for

τ = 0 to obtain (70) for τ = τ � = t.
Eqs. (73)–(75) for τ = t: Repeat the proofs of (73), (74),

and (75) for τ = 0 with (133).
Eq. (76) for τ = t: Repeat the proof of (65) for τ = t

with (129).
Eqs. (77)–(78) for τ = t: Repeat the proofs of (77)–(78)

for τ = 0 with (132).

APPENDIX A
PROOF OF LEMMA 1

A. Technical Results

A challenging part in the proof of Lemma 1 is
to prove the almost sure convergence in (15). To use
Theorem 1, we need to evaluate the variance of the sum of
{fn(an,0,N , . . . , an,t′−1,N , an,t′,N + �n,N + [Φ⊥

EN
XN−t]n)}.

For that purpose, we first represent the distribution of �N +
Φ⊥

EN
XN−t with a standard complex Gaussian random vector

z ∼ CN (0, IN ).
Consider t = 0. Since XN ∈ CN is unitarily invariant,

we use the SVD of XN to obtain XN = Φ�
XN

�XN�, in

which Φ�
XN

∈ UN×1 is Haar-distributed and independent of
the singular value �XN� [34]. Furthermore, u ∼ CN (0, IN )
is unitarily invariant, so that its SVD is given by u = Φ�

u�u�,
in which Φ�

u ∈ UN×1 is Haar-distributed and independent
of �u�. Since Φ�

XN
∼ Φ�

u holds, we have the following
representation:

�N + XN ∼ �N +
�XN�
�u� u. (136)

Let N = {1, . . . , t} for t > 0. We repeat the same argument
to obtain

�N + Φ⊥
EN

XN−t ∼�N +
�XN−t�
�u\N � Φ⊥

EN
u\N

=�̃N +
�XN−t�
�u\N � z, (137)

with z = ΦEN
u ∼ CN (0, IN ), �̃N = �N − ENδN , and

δN =
�XN−t�
�u\N � (EH

NEN )−1EH
NΦ�

EN
uN . (138)
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Introducing the convention u\N = u, �̃N = �N , and ΦEN
=

IN for t = 0, we arrive at the unified representation (137) for
t ≥ 0.

We next prove that �δN�2 given in (138) converges almost
surely to zero as N → ∞. From the assumption (12) and
(N − t)−1�u\N �2 a.s.→ 1, we have

�δN�2 a.s.= vuH
N (Φ�

EN
)HEN (EH

NEN )−2EH
NΦ�

EN
uN +o(1).

(139)
Using EN = Φ�

EN
ΣEN

ΨH
EN

and the assumption (11) yields

�δN�2 a.s.=
v

N
uH
N

(
1
N

Σ2
EN

)−1

uN + o(1)
a.s.
<

C

N
�uN �2

(140)
for some constant C > 0. For any a > 0, we utilize
Chebyshev’s inequality to obtain

∞∑
N=t+1

Pr
(�uN �2

N
> a

)
≤ E[�uN �4]

a2

∞∑
N=t+1

1
N2

< ∞.

(141)
Thus, the Borel-Cantelli lemma implies that �δN�2 converges
almost surely to zero as N → ∞.

Before proving Lemma 1, we prove several technical results.
Proposition 3: Let z ∼ CN (0, IN ). For any k ≥ 0,

E
[�z�−k

] ≤ 1 + o(1)
Nk/2

as N → ∞. (142)

Proof: By definition, 2�z�2 follows the chi-square dis-
tribution with 2N degrees of freedom. Let Γ(x) denote the
gamma function. For N > k/2, we use the probability density
function of the chi-square distribution to have

E

[
1

�z�k

]
= 2k/2

∫ ∞

0

1
xk/2

xN−1e−x/2

2NΓ(N)
dx

=
∫ ∞

0

xN−k/2−1e−x

Γ(N)
dx =

Γ(N − k/2)
Γ(N)

, (143)

where the last equality follows from the definition of the
gamma function. Using Γ(x + 1) = xΓ(x) and Gautschi’s
inequality Γ(x + s)/Γ(x) ≤ xs for all x > 0 and s ∈ [0, 1],
we have

E

[
1

�z�k

]
=

Γ(N − k/2)
(N − 1) · · · (N − �k/2�)Γ(N − �k/2�)

≤ 1
Nk/2

N �k/2	∏�k/2	
i=1 (N − i)

(144)

for N > �k/2�. Since the latter factor tends to 1 as N → ∞,
Proposition 3 holds.

Proposition 4: Let z ∼ CN (0, IN ). For any k ≥ 0,

E

[∣∣N − �z�2
∣∣k] = O(Nk/2) as N → ∞. (145)

Proof: Let ZN = N−1/2
∑N

n=1(|zn|2−1). By definition,
we have

1
Nk/2

E

[∣∣N − �z�2
∣∣k] = E

[|ZN |k] . (146)

The central limit theorem implies that ZN converges in
distribution to a zero-mean Gaussian random variable Z as
N → ∞. Furthermore, the sequence {|ZN |k} is uniformly

integrable [46] since the (k+1)th moment of ZN is bounded.
Thus, we arrive at

lim
N→∞

1
Nk/2

E

[∣∣N − �z�2
∣∣k] = E[|Z|k] < ∞, (147)

which implies Proposition 4.
Proposition 5: Let vN = �XN�2/N , and postulate (12)

and the moment assumption on XN in Lemma 1. For some
any � > 0,

lim
N→∞

E
[∣∣√vN −√

v
∣∣ρ] = 0 (148)

for any ρ ∈ [0, max{2, 2k − 2} + �).
Proof: From (12),

√
vN converges almost surely to√

v as N → ∞. Furthermore, (N−1�XN�)ρ is uniformly
integrable for all ρ ∈ [0, max{2, 2k − 2} + ��] with any
�� ∈ (0, �), because of the moment assumption on XN . Thus,
Proposition 5 holds.

Note that Proposition 5 implies the convergence of the ρth
moment

lim
N→∞

E

[
v

ρ/2
N

]
= vρ/2. (149)

B. Discussion

From the almost sure convergence �δN�2 a.s.→ 0, as well as
�XN�2/�u�2 a.s.→ v, Rangan et al. [35, Proof of Lemma 5]
concluded Lemma 1. However, what they have proved should
be regarded not as the almost sure convergence in (15) but as
the convergence in probability.

For simplicity, we assume t = 0, fn(z) = z, and �N =
0. Furthermore, let SN = N−1

∑N
n=1 Xn,N and S̃N =

(�XN�/�u�)N−1
∑N

n=1 un. From (136), for any � > 0 and
�� > 0 we have

Pr (|SN | > �) =Pr(EN,�′)Pr
(
|S̃N | > �

∣∣∣ EN,�′
)

+Pr(E�
N,�′)Pr

(
|S̃N | > �

∣∣∣ E�
N,�′

)
, (150)

with

EN,�′ =
{∣∣∣∣�XN�2

�u�2
− v

∣∣∣∣ ≤ ��
}

. (151)

The almost sure convergence �XN�2/�u�2 a.s.→ v implies that
the second term tends to zero as N → ∞. Using Chebyshev’s
inequality for the first term yields

Pr(EN,�′)Pr
(
|S̃N | > �

∣∣∣ EN,�′
)

<
�� + v

N�2
→ 0. (152)

Thus, we arrive at the convergence in probability Pr(|SN | >
�) → 0 as N → ∞.

However, it is not straightforward to prove the almost sure
convergence. To construct a simple counterexample, suppose
that pN,� = Pr(|S̃N | > �) is O(N−1). Then, we find

∞∑
N=1

Pr (|SN | > �) =
∞∑

N=1

pN,� = ∞. (153)

While we do not introduce any statistical properties of {XN}
with respect to N , we assume the independence of {SN}
to construct a counterexample. Then, from the second Borel-
Cantelli lemma we can conclude that SN does not converge
almost surely to zero. This counterexample implies that we
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need information about the convergence speed of pN,� to
establish the almost sure convergence in (15). Instead of
evaluating the actual convergence speed of pN,�, we use
Theorem 1 to prove the almost sure convergence directly.

C. Proof of (13)

Since �N has vanishing second moments and finite
(2k−2)th moments and since EN has finite max{2, 2k−2}th
moments, the almost sure convergence �δN�2 a.s.→ 0 implies
that �̃N = �N − ENo(1) has vanishing second moments and
finite (2k − 2)th moments. Furthermore, we only prove the
case t� = 1 with an,1,N = 0 since an extension of the proof to
the general case is straightforward. For notational simplicity,
we write XN−t and an,0,N as X and an,N .

Let

Y 1
n,N =fn

(
an,N , �n,N + [Φ⊥

EN
X]n

)
−fn

(
an,N , �̃n,N + v

1/2
N−tzn

)
, (154)

Y 2
n,N =fn

(
an,N , �̃n,N + v

1/2
N−tzn

)
− fn

(
an,N , v

1/2
N−tzn

)
,

(155)

Y 3
n,N =fn

(
an,N , v

1/2
N−tzn

)
− fn

(
an,N , v1/2zn

)
, (156)

with vN−t = �XN−t�2/N . It is sufficient to prove

E
[∣∣Y 1

n,N

∣∣] = O
(

Ln√
N

)
, (157)

E
[∣∣Y 2

n,N

∣∣] = o(Ln), (158)

E
[∣∣Y 3

n,N

∣∣] = o(Ln) (159)

as N → ∞.
Let E = {�X�, aN , �N , EN}. We first evaluate the con-

ditional expectation E[|Y 1
n,N ||E ] to prove (157). Using the

representation (137), the pseudo-Lipschitz property of fn, and
Proposition 1 yields

E
[∣∣|Y 1

n,N |∣∣ E]
≤LnE

[∣∣∣∣ 1
�u\N � − 1√

N − t

∣∣∣∣ �X�|zn|
{

1 + |an,N |k−1

+ |�̃n,N |k−1 +
�X�k−1|zn|k−1

�u\N �k−1
+ v

k−1
2

N−t|zn|k−1

}∣∣∣∣ E
]

(160)

for some Ln > 0. Using the following upper bound:∣∣∣∣ 1
�u\N � − 1√

N − t

∣∣∣∣ = |N − t − �u\N �2|
�u\N �√N − t(

√
N − t + �u\N �)

<
|N − t − �u\N �2|

N − t

1
�u\N � , (161)

we have

E

[∣∣∣∣ 1
�u\N � − 1√

N − t

∣∣∣∣ �X�|zn||an,N |k−1

∣∣∣∣ E
]

<v
1/2
N−t|an,N |k−1

E

[ |N − t − �u\N �2|√
N − t

|zn|
�u\N �

∣∣∣∣ E
]

. (162)

To evaluate the conditional expectation, we use the Cauchy-
Schwarz inequality repeatedly to obtain

E

[ |N − t − �u\N �2|√
N − t

|zn|
�u\N �

∣∣∣∣ E
]

≤
{

E

[ |N − t − �u\N �2|2
N − t

]}1/2{
E

[ |zn|2
�u\N �2

∣∣∣∣ E
]}1/2

≤C

{
E

[ |N − t − �u\N �2|2
N − t

]}1/2{
E

[
1

�u\N �4

]}1/4

=O(N−1/2) (163)

for some C > 0, where the last follows from Propositions 3
and 4.

We repeat the same argument in evaluating the remaining
terms in (160). We only present evaluation of the fourth term,
since the other terms can be bounded in the same manner.
Applying the upper bound (161) and the Cauchy-Schwarz
inequality, we obtain

E

[∣∣∣∣ 1
�u\N � − 1√

N − t

∣∣∣∣ �X�k|zn|k
�u\N �k−1

∣∣∣∣ E
]

<
v

k/2
N−t√
N − t

E

[ |N − t − �u\N �2|√
N − t

(N − t)k/2|zn|k
�u\N �k

∣∣∣∣ E
]

<
Cv

k/2
N−t√

N−t

{
E

[ |N−t−�u\N �2|2
N−t

]} 1
2
{

E

[
(N − t)2k

�u\N �4k

]} 1
4

a.s.=O(vk/2
N N−1/2), (164)

for some C > 0, where the last follows from Propositions 3
and 4. Evaluating the remaining terms on the RHS of (160)
in the same manner, we arrive at

E
[ |Y 1

n,N |∣∣ E] a.s.= O
{

Lnv
1/2
N√
N

(1 + |an,N |k−1

+|�̃n,N |k−1 + v
(k−1)/2
N )

}
. (165)

Using the Cauchy-Schwarz inequality to evaluate the expec-
tation over E , we obtain

E
[|Y 1

n,N |] =O
(

Ln√
N

{
E[v1/2

N ] +
(
E[vN ]E[|an,N |2k−2]

)1/2

+
(
E[vN ]E[|�̃n,N |2k−2]

)1/2
+E[vk/2

N ]
})

, (166)

which reduces to (157), because of Proposition 5 and the
moment properties of an,N and �̃n,N .

We next prove (158). Using the definition (155) of Y 2
n,N ,

the pseudo-Lipschitz property of fn, and Proposition 1 yields

E[|Y 2
n,N ||E ]
Ln

≤|�̃n,N | (1 + |an,N |k−1 + |�̃n,N |k−1
)

+v
(k−1)/2
N−t |�̃n,N |E [|zn|k−1

]
(167)

for some Ln > 0. Using the Cauchy-Schwarz inequality and
Proposition 2, we have

E[|Y 2
n,N |]

Ln

a.s.≤C
(
E
[|�̃n,N |2])1/2

·(E [1 + |an,N |2k−2 + |�̃n,N |2k−2
])1/2

+C
(
E[vk−1

N−t]E
[|�̃n,N |2])1/2

(168)
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for some C > 0. Since |�̃n,N | has a vanishing second moment
and finite (2k − 2)th moment and since |an,N | has a finite
(2k − 2)th moment, we use Proposition 5 to arrive at (158).

Finally, we prove (159). Using the definition (156) of Y 3
n,N ,

the pseudo-Lipschitz property of fn, and Proposition 1 yields∣∣Y 3
n,N

∣∣ ≤Ln

∣∣∣v1/2
N−t −

√
v
∣∣∣ |zn|

{
1 + |an,N |k−1

+v
(k−1)/2
N−t |zn|k−1 + v(k−1)/2|zn|k−1

}
. (169)

Evaluating the conditional expectation yields

E
[ |Y 3

n,N |∣∣ E] a.s.≤ CLn

∣∣∣v1/2
N−t −

√
v
∣∣∣

·(1 + |an,N |k−1 + v
(k−1)/2
N−t ) (170)

for some C > 0. Using the Cauchy-Schwarz inequality to
evaluate the expectation of the second term, we have(

E

[∣∣∣v1/2
N−t −

√
v
∣∣∣ |an,N |k−1

])2

≤E

[∣∣∣v1/2
N−t −

√
v
∣∣∣2]E

[|an,N |2k−2
]→ 0, (171)

where the convergence follows from Proposition 5 and the
moment assumption of an,N . For the last term, we let
�� ∈ (0, �/k) to have

E

[{∣∣∣v1/2
N−t −

√
v
∣∣∣ v(k−1)/2

N−t

}1+�′
]

<E

[
v

k(1+�′)/2
N−t

]
+ v

1+ε′
2 E

[
v
(k−1)(1+�′)/2
N−t

]
< ∞, (172)

where the boundedness follows from Proposition 5. In other
words, the last term on the upper bound (170) is uniformly
integrable over �X�. Thus, we use the assumption (12) to
arrive at (159).

D. Proof of (15)

Since �N satisfies the assumptions (7) and (8), and since
EN satisfies the assumption (10), the almost sure convergence
�δN�2 a.s.→ 0 implies that �̃N = �N −ENo(1) satisfies (7) and
(8) with �N replaced by �̃N . Furthermore, we only prove the
case t� = 1 with an,1,N = 0 since an extension of the proof to
the general case is straightforward. For notational simplicity,
we write XN−t and an,0,N as X and an,N , and omit the tilde
on �̃n,N .

From the definitions (154) and (155) of Y 1
n,N and Y 2

n,N , we
need to prove

lim
N→∞

1
N

N∑
n=1

Y 1
n,N

a.s.= 0, (173)

lim
N→∞

1
N

N∑
n=1

Y 2
n,N

a.s.= 0, (174)

lim
N→∞

1
N

N∑
n=1

{
fn

(
an,N , v

1/2
N−tzn

)
−Ezn

[
fn

(
an,N ,

√
vzn

)]} a.s.= 0. (175)

Let us prove the first convergence (173). From the repre-
sentation (137) and Theorem 1, it is sufficient to prove that
Y 1

n,N given in (154) satisfies

lim
N→∞

1
N

N∑
n,n′=1

E
[ |Y 1

n,NY 1
n′,N |∣∣ E] a.s.

< ∞, (176)

with E = {�X�, aN , �N , EN}.
Repeating the derivation of (160), we have

E[|Y 1
n,N ||Y 1

n′,N ||E ]
LnLn′

≤ E

[∣∣∣∣ 1
�u\N � − 1√

N − t

∣∣∣∣
2

·�X�2|zn||zn′ |
{
1 + |an,N |k−1 + |�n,N |k−1 + v

k−1
2

N−t|zn|k−1

+
�X�k−1|zn|k−1

�u\N �k−1

}{
1 + |an′,N |k−1 + |�n′,N |k−1

+
�X�k−1|zn′ |k−1

�u\N �k−1
+ v

(k−1)/2
N−t |zn′ |k−1

}∣∣∣∣ E
]

. (177)

Let

An,n′ = LnLn′

∣∣∣∣ 1
�u\N � − 1√

N − t

∣∣∣∣
2 �X�2k|zn|k|zn′ |k

�u\N �2k−2
,

(178)

Bn,n′ = LnLn′

∣∣∣∣ 1
�u\N � − 1√

N − t

∣∣∣∣
2

�X�2|zn||zn′ |

·(|an,N |k−1 + |�n,N |k−1)(|an′,N |k−1 + |�n′,N |k−1). (179)

We only evaluate the conditional expectation of An,n′ and
Bn,n′ , since the other terms can be evaluated in the same
manner. Using the upper bound (161) yields

E[An,n′ |E ] <LnLn′vk
N−tE

[ |N − t − �u\N �2|2
(N − t)2

· (N − t)k |zn|k|zn′ |k
�u\N �2k

∣∣∣∣ E
]

. (180)

Repeating the proof of (163), we find that the last factor is
O(N−1). Thus, we obtain

1
N

N∑
n,n′=1

E[An,n′ |E ] a.s.= O
⎧⎨
⎩vk

N

(
1
N

N∑
n=1

Ln

)2
⎫⎬
⎭ a.s.= O(1),

(181)
because of the assumptions (12) and (14).

Similarly, we use the upper bound (161) to have

E[Bn,n′ |E ]
<Ln(|an,N |k−1 + |�n,N |k−1)Ln′(|an′,N |k−1 + |�n′,N |k−1)

·vN−tE

[ |N − t − �u\N �2|2
N − t

|zn||zn′ |
�u\N �2

∣∣∣∣ E
]

. (182)

We repeat the proof of (163) to find that the last factor is
O(N−1). Thus, we arrive at

1
N

N∑
n,n′=1

E[Bn,n′ |E ]

a.s.= O
⎧⎨
⎩vN

(
1
N

N∑
n=1

Ln(|an,N |k−1 + |�n,N |k−1)

)2
⎫⎬
⎭
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a.s.= O
⎧⎨
⎩vN

(
1
N

N∑
n=1

Ln(|an,N |2k−2 + |�n,N |2k−2)

)2
⎫⎬
⎭

=O(1), (183)

where the second equality follows from the Cauchy-Schwarz
inequality and the assumption (14), and where the last is due to
the assumptions (8), (9), and (12). Evaluating the conditional
expectation of the other terms in (177) in the same manner,
we arrive at (176). Thus, (173) holds.

We next prove the second convergence (174). Repeating the
proof of (167) yields

1
N

N∑
n=1

|Y 2
n,N |≤ 1

N

N∑
n=1

Ln|�n,N |
{

1 + |an,N |k−1

+ |�n,N |k−1 + v
(k−1)/2
N−t |zn|k−1

}
. (184)

Using the Cauchy-Schwarz inequality for the second term
yields (

1
N

N∑
n=1

Ln|�n,N ||an,N |k−1

)2

≤ 1
N

N∑
n=1

Ln|�n,N |2 1
N

N∑
n=1

Ln|an,N |2k−2 a.s.→ 0 (185)

as N → ∞, because of the assumptions (7) and (9). Similarly,
we find that the third term converges almost surely to zero as
N → ∞.

We use the Cauchy-Schwarz inequality for the last term on
the upper bound (184) to obtain

v
(k−1)/2
N−t

N

N∑
n=1

Ln|�n,N ||zn|k−1 ≤
(

1
N

N∑
n=1

Ln|�n,N |2
)1/2

·v
k−1
2

N−t

(
1
N

N∑
n=1

Ln|zn|2k−2

) 1
2

. (186)

The assumptions (7) and (12) imply that the first and second
factors converge almost surely to zero and v(k−1)/2 as N →
∞, respectively. Furthermore, from the assumption (14) we
use Theorem 1 to find

1
N

N∑
n=1

Ln|zn|2k−2 a.s.=
E[|z1|2k−2]

N

N∑
n=1

Ln + o(1) < ∞.

(187)
Thus, the last term on the upper bound (184) converges almost
surely to zero as N → ∞. Since the almost sure convergence
of the remaining terms to zero can be proved in the same
manner, we arrive at (174).

Finally, we prove the last convergence (175). We observe
that {fn(an,N , v

1/2
N−tzn)} are conditionally independent given

E . Furthermore, we use the pseudo-Lipschitz property of fn

to obtain

1
N

N∑
n=1

V

[
fn

(
an,N , v

1/2
N−tzn

)∣∣∣ E]

≤vN−t

N

N∑
n=1

L2
nEzn,Z

[|zn − Z|2 (1 + |an,N |2k−2

+vk−1
N−t|zn|2k−2 + vk−1

N−t|Z|2k−2
)∣∣ E] a.s.

< ∞, (188)

where Z is a standard complex Gaussian random variable
and independent of zn, and where the boundedness follows
from the assumptions (9), (12), and (14). Thus, we can use
Theorem 1 to find

lim
N→∞

1
N

N∑
n=1

{
fn

(
an,N , v

1/2
N−tzn

)

−E

[
fn

(
an,N , v

1/2
N−tzn

)∣∣∣ E]} a.s.= 0. (189)

To obtain (175), from the definition (156) of Y 3
n,N we need

to prove N−1
∑N

n=1 E[Y 3
n,N |E ] a.s.→ 0 as N → ∞. Using (170)

yields∣∣∣∣∣ 1
N

N∑
n=1

E
[
Y 3

n,N

∣∣ E]
∣∣∣∣∣a.s.≤ C

∣∣∣v1/2
N−t −

√
v
∣∣∣

· 1
N

N∑
n=1

Ln(1 + |an,N |k−1 + v
(k−1)/2
N−t ), (190)

which converges almost surely to zero as N → ∞, because
of the assumptions (9), (12), and (14). Thus, (175) holds.

APPENDIX B
DERIVATION OF MESSAGE-PASSING

EP [19], [28] provides a framework for deriving MP
algorithms that calculate the marginal posterior distribution
p(xn|y, A) =

∫
p(x|y, A)dx\n, in which x\n is the vector

obtained by eliminating xn from x. We consider the large
system limit to derive an MP algorithm, which coincides with
the algorithm derived in a heuristic manner [26].

We approximate the marginal posterior distribution
p(xn|y, A) by a tractable probability density function (pdf)
qA(xn) =

∫
qA(x)dx\n, given by

qA(x) ∝ p(y|A, x)
N∏

n=1

qB→A(xn). (191)

In (191), the notation f(x) ∝ g(x) means that there is a pos-
itive constant C such that f(x) = Cg(x) holds. Furthermore,
qB→A(xn) is a conjugate prior to the likelihood p(y|A, x).
When the noise vector w in (1) is regarded as a CSCG random
vector with covariance σ2IM , the conjugate prior qB→A(xn)
is proper complex Gaussian,

qB→A(xn) ∝ exp
(
−|xn − xn,B→A|2

vB→A

)
, (192)

where xn,B→A and vB→A are the mean and variance of
qB→A(xn), respectively. In order to derive the MP algorithm
proposed in [26], we have selected the identical variance vB→A

for all n, while Céspedes et al. [19] selected different values
for different n to improve the performance for finite-sized
systems.

We first evaluate the marginal pdf qA(xn) in the large
system limit, defined via (191). Since the conjugate prior (192)
has been selected, the joint pdf qA(x) is also Gaussian.

qA(x) ∝ exp
{−(x − xA)HV −1

A (x − xA)
}

, (193)
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where the mean and covariance are given by

xA = xB→A +
1
σ2

V AAH(y − AxB→A), (194)

V A =
(

1
vB→A

IN +
1
σ2

AHA

)−1

, (195)

respectively. Using the matrix inversion lemma, it is possible
to show that (194) and (195) reduce to

xA = xB→A + vB→AAHΞ−1(y − AxB→A), (196)

[V A]n,n = vB→A − aH
n Ξ−1anv2

B→A, (197)

respectively, with

Ξ = σ2IM + vB→AAAH. (198)

We shall prove that aH
nΞ−1an converges almost surely to

γ(vB→A)−1 in the large system limit for all n, in which
γ(vB→A) is given by (25). Applying the SVD (19) to
aH

nΞ−1an, defined via (198), we have

aH
nΞ−1an = eH

n V DV Hen, (199)

with

D =
(
Σ
O

)(
σ2IM + vB→AΣ2

)−1
(Σ, O). (200)

In (199), en denotes the nth column of IN . Thus, Corollary 1
and Assumption 2 imply that aH

nΞ−1an converges almost
surely to γ(vB→A)−1 in the large system limit.

This observation indicates that for any n the diagonal
element (197) converges almost surely to

vA = vB→A − γ−1(vB→A)v2
B→A (201)

in the large system limit. Thus, the marginal pdf qA(xn) =∫
qA(x)dx\n is the proper complex Gaussian pdf with mean

xn,A = [xA]n and variance vA, i.e.

qA(xn) ∝ exp
(
−|xn − xn,A|2

vA

)
. (202)

In order to present a crucial step in EP, we define the
extrinsic pdf of xn as

qA→B(xn) ∝ qA(xn)
qB→A(xn)

. (203)

Let xn,B and vn,B denote the mean and variance of xn with
respect to the pdf pB(xn) ∝ qA→B(xn)p(xn). The crucial step
in EP is to update the message qB→A(xn) so as to satisfy the
moment matching conditions [28],

EqB [xn] = xn,B, (204)

VqB [xn] =
1
N

N∑
n=1

vn,B ≡ vB, (205)

where the expectations are taken with respect to

qB(xn) ∝ qA→B(xn)qnew
B→A(xn). (206)

In (206), the updated pdf qnew
B→A(xn) is given by

qnew
B→A(xn) ∝ exp

(
−|xn − xnew

n,B→A|2
vnew
B→A

)
. (207)

We first derive module A. Using (192) and (202), we find
that the extrinsic pdf (203) reduces to

qA→B(xn) ∝ exp
(
−|xn − xn,A→B|2

vA→B

)
, (208)

with

xn,A→B = vA→B

(
xn,A

vA
− xn,B→A

vB→A

)
, (209)

1
vA→B

=
1
vA

− 1
vB→A

. (210)

Substituting (201) into (210) yields

vA→B = γ(vB→A) − vB→A, (211)

which results in the update rule (22). Similarly, Applying
(196), (201), (210), and (211) to (209), we arrive at

xA→B = xB→A + γ(vB→A)AHΞ−1(y − AxB→A), (212)

which implies the update rule (21).
We next evaluate the moment matching conditions (204)

and (205) to derive module B. Substituting (207) and (208)
into (206) yields

qB(xn) ∝ exp
(
−|xn − x̃n,B|2

ṽB

)
, (213)

with

x̃n,B = ṽB

(
xn,A→B

vA→B
+

xnew
n,B→A

vnew
B→A

)
, (214)

1
ṽB

=
1

vA→B
+

1
vnew
B→A

. (215)

Using the moment matching conditions (204) and (205), we
arrive at the update rules (29) and (30) in module B,

xnew
B→A = vnew

B→A

(
xB

vB
− xA→B

vA→B

)
, (216)

1
vnew
B→A

=
1
vB

− 1
vA→B

. (217)

APPENDIX C
PROOF OF LEMMA 2

We utilize the following technical lemma:
Lemma 4: We define the cumulant generating function χt :

C → R of the posterior distribution of xn as

χt(z) =
vt
A→B

2
ln Exn

[
exp
(
−|z − xn|2

vt
A→B

)]
+

|z|2
2

. (218)

Then, χt is twice continuously differentiable with respect to
�[z] and 
[z], and satisfies

∂χt

∂�[z]
= �[η̃t(z)],

∂χt

∂
[z]
= 
[η̃t(z)], (219)

vt
A→B

2
∂2χt

∂�[z]2
= E

[
(�[xn] −�[η̃t(z)])2

∣∣ z] , (220)

vt
A→B

2
∂2χt

∂
[z]2
= E

[
(
[xn] −
[η̃t(z)])2

∣∣ z] , (221)

vt
A→B

2
∂2χt

∂�[z]∂
[z]
= E [�[xn]
[xn]| z] −�[η̃t(z)]
[η̃t(z)].

(222)
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Proof: The former statement follows from Assumption 1
and the dominated convergence theorem. The latter statement
is obtained by calculating the derivatives of χt directly.

We first prove the Lipschitz-continuity of η̃t. We need to
prove that all first-order derivatives of �[η̃t] and 
[η̃t] are
bounded. From Assumption 4 and Lemma 4, it is sufficient
to confirm that (222) is almost surely bounded. Using the
Cauchy-Schwarz inequality yields

(E [�[xn]
[xn]| z] −�[η̃t(z)]
[η̃t(z)])2

=(E [ (�[xn] −�[η̃t(z)])(
[xn] −
[η̃t(z)])| z])2

≤E
[
(�[xn] −�[η̃t(z)])2

∣∣ z]E [ (
[xn] −
[η̃t(z)])2
∣∣ z] ,

(223)

which is almost surely bounded, because of Assumption 4.
Thus, η̃t is Lipschitz-continuous.

We next prove (33) and (34). For notational convenience,
we write η̃t(xn + z) as η̃. By definition, we have

z∗η̃ = �[z]�[η̃] +
[z]
[η̃] + i(�[z]
[η̃]−
[z]�[η̃]). (224)

Since �[z] and 
[z] are independent Gaussian random vari-
ables with zero-mean and variance vt

A→B/2, using Stein’s
lemma [43] yields

Ez [z∗η̃] =
vt
A→B

2
Ez

[
∂�[η̃]
∂�[z]

+
∂
[η̃]
∂
[z]

]

+
ivt

A→B

2
Ez

[
∂
[η̃]
∂�[z]

− ∂�[η̃]
∂
[z]

]

=vt
A→BEz

[
∂

∂z
(�[η̃] + i
[η̃])

]
, (225)

where ∂/∂z denotes the Wirtinger derivative (32). This implies
that (33) holds. Furthermore, applying Lemma 4 to the former
expression in (225), we obtain

Ez [z∗η̃] = Ez

[|xn − η̃t(xn + z)|2] . (226)

Taking the expectation of both sides over xn, we arrive at
Lemma 2.

APPENDIX D
PROOF OF LEMMA 3

For V̂ = V ΦX ∈ UN , we first prove the identity

V̂ =
(
Φ�

Y ,Φ⊥
Y Ṽ
)

, (227)

with some unitary matrix Ṽ ∈ UN−t.
Since V is unitary, using the constraint (79) yields XHX =

Y HY . This implies that X and Y have identical singular
values and right-singular vectors, i.e. X = ΦX(ΣX , O)TΨH

X

and Y = ΦY (ΣY , O)TΨH
Y with ΣX = ΣY and ΨX =

ΨY . Since ΣX = ΣY is assumed to be invertible, applying
these SVDs to the constraint (79) yields

Φ�
Y = V ΦX

(
It

ON×(N−t)

)
. (228)

Consider the partition V̂ = (V̂ 0, V̂ 1), with V̂ 0 ∈ CN×t

and V̂ 1 ∈ CN×(N−t). From (228) we have V̂ 0 = Φ�
Y . Thus,

the orthogonality between the columns of V̂ 0 and V̂ 1 implies

the structure (227) with some matrix Ṽ ∈ C
(N−t)×(N−t).

Furthermore, from the orthonormality between the columns of
V̂ 1 we find that Ṽ is a unitary matrix. Thus, (227) is correct.

We next prove that (227) is equivalent to the RHS of (80).
Substituting (227) into V = V̂ ΦH

X yields

V = Φ�
Y (Φ�

X)H + Φ⊥
Y Ṽ (Φ⊥

X)H. (229)

It is straightforward to confirm that the first term on the RHS
of (80) reduces to Φ�

Y (Φ�
X)H, by using the SVDs of X and

Y with ΣX = ΣY and ΨX = ΨY .
To complete the proof of Lemma 3, we prove that Ṽ ∈

UN−t is a Haar matrix independent of X and Y . Since the
Haar matrix V is bi-unitarily invariant, we have V ΦX ∼ V .
Thus, without loss of generality, (228) allows us to assume
X = (It, O)T in the constraint (79). Under this assumption,
conditioning on X and Y is equivalent to conditioning the
first t columns V 0 of V .

Consider the following structure:

V =
(
V 0,Φ⊥

V 0
Ṽ
)

. (230)

We prove that V is Haar-distributed if and only if Ṽ is a Haar
matrix and independent of V 0. Since X and Y depend on V
only through V 0, we arrive at Lemma 3.

For any deterministic unitary matrix Φ ∈ UN , it is known
that the left-invariance ΦV ∼ V induces the Haar measure on
the unitary group of dimension N satisfying V ∼ V H, so that
we have the right-invariance V Ψ ∼ V HΨ = (ΨHV )H ∼
V H ∼ V for any deterministic Ψ ∈ UN . Thus, we only
consider the left-invariance ΦV ∼ V .

There is some unitary matrix UV 0 ∈ UN−t such that
ΦΦ⊥

V 0
= Φ⊥

ΦV 0
UV 0 holds, because of

ΦΦ⊥
V 0

(ΦΦ⊥
V 0

)H = Φ(IN − V 0V
H
0 )ΦH = P⊥

ΦV 0
. (231)

This implies that (230) satisfies

ΦV =
(
ΦV 0,Φ⊥

ΦV 0
UV 0Ṽ

)
, (232)

which indicates that ΦV ∼ V holds if and only if
(ΦV 0, UV 0 Ṽ ) ∼ (V 0, Ṽ ) is satisfied. Since V 0 is Haar-
distributed, ΦV ∼ V holds if and only if Ṽ is a Haar matrix
independent of V 0. Thus, Lemma 3 holds.
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