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Wiretap Channels With Causal State
Information: Strong Secrecy

Te Sun Han , Fellow, IEEE, and Masahide Sasaki

Abstract— The coding problem for wiretap channels with
causal channel state information available at the encoder and/or
the decoder is studied under the strong secrecy criterion. This
problem consists of two aspects: one is due to wiretap channel
coding and the other is due to one-time pad cipher based
on the secret key agreement between Alice and Bob using
the channel state information. These two aspects are closely
related to each other and give rise to an intriguing tradeoff
between exploiting the state to boost secret-message rates versus
extracting cryptographic key to improve secrecy capabilities.
This issue has yet to be understood how to optimally reconcile
the two. We newly devised the “iterative” forward–backward
coding scheme, combining wiretap channel coding and secret-
key-agreement-based one-time pad cipher. We then established
reasonable lower bounds of the secrecy capacity for wiretap
channels with causal channel state information available only at
the encoder (Theorem 1), which can be easily extended to general
cases with various kinds of correlated channel state information
at the encoder (Alice), decoder (Bob), and wiretapper (Eve).
In particular, for degraded wiretap channels, we give the secret-
message (secret-key) capacity bounds (Theorems 2, 4, and 5).

Index Terms— Wiretap channel, channel state information,
causal coding, secret key agreement, secrecy capacity, strong
secrecy.

I. INTRODUCTION

IN THIS paper the coding problem for the wiretap channel
(WC) with causal channel state information (CSI) available

at the encoder (Alice) and/or the decoder (Bob) is studied. The
concept of WC (without CSI) originates in Wyner [1] and was
extended to a more general WC by Csiszár and Körner [2].
These landmark papers have been followed by many subse-
quent extensions and generalizations from the viewpoint of
theory and practice. In particular, among others, the WC with
CSI has also been extensively investigated in the literature.
Early works include Luo et al. [6], Chen and Vinck [7], and
Liu and Chen [8] that have studied the capacity-equivocation
region for degraded WCs with non-causal CSI to establish
inner and/or outer bounds on the region, which was motivated
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by physical-layer security problems to actually intervene in
practical fading channel communications. Moreover, subse-
quent recent developments in this direction with non-causal
CSI can be found also in Vinck et al. [10], Boche and
Schaefer [11], Dai and Luo [18], Prabhakaran et al. [24],
Goldfeld et al. [25], Bunin et al. [26], etc.

Generally speaking, the coding scheme with causal/
non-causal CSI outperforms the one without CSI, because
knowledge of the CSI enables us to share a common secret
key between Alice and Bob to augment the secrecy capacity.
More specifically, then, in addition to the standard WC coding
(called the Wyner’s WC coding [1], [2]) without resorting to the
CSI, we may incorporate also the cryptographic scheme called
the Shannon’s one-time pad (OTP) cipher (cf. Shannon [4])
based on the secret key agreement (cf. Maurer [12], Ahlswede
and Csiszár [13]) using the CSI between Alice and Bob.
Thus, the problem consists of two aspects: one is due to
wiretap channel coding and the other is due to one-time
pad cipher based on the secret key agreement. Here is the
trade-off between them depending on how to use the state
information S.

Recent works taking account of such a secrecy key agree-
ment aspect include Khistiet al. [14], Chia and El Gamal [17],
Sonee and Hodtani [19], and Fujita [20]. In particular,
[14] addresses the problem of key capacity that focuses
on the maximum rate of secret key agreement between
Alice and Bob rather than on the maximum rate of secure
message transmission. However, we cannot say that the
secrecy capacity problem in these works with causal CSI has
now been fully solved. This is because the problem with
causal/non-causal CSI necessarily includes the two separate
but closely related coding schemes as mentioned in the above
paragraph.

Among others, Chia and El Gamal [17] addresses the case
with causal common CSI available at both Alice and Bob,
whereas Fujita [20] deals with the case with causal CSI
available only at Alice (given a physically degraded WC). Both
includes lower bounds on the weak secrecy capacity, but with
tight secrecy capacity formulas in special cases. The present
paper is motivated mainly by these two papers, and the main
result to be given in this paper is in nice accordance with their
results. In particular, we have newly established the “iterative”
forward-backward coding scheme for WCs with causal CSI
available at Alice with reasonable lower bounds on secrecy
capacity. For degraded channels, we successfully established
not only lower/upper bounds, but also several exact secret-
massage (secret-key) capacities.
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Fig. 1. WC with CSI available only at Alice (i = 1, 2, · · · , n).

The present paper is organized as follows.
In Section II, we give the statement of the problem and the

key result (Theorem 1) for the WC with causal CSI available
only at Alice along with comparison with the work of Chia
and El Gamal [17].

In Section III, we give the detailed proof of Theorem 1
to establish lower bounds on the strong secrecy capacity.
The main ingredients for the proof are Slepian-Wolf cod-
ing, Csiszár-Körner’s key construction, Gallager’s maximum
likelihood decoding, and Han-Verdú’s resolvability argument,
where in the process of these proofs we do not invoke the
argument of typical sequences at all, which enables us to
cope with alphabets that are not necessarily finite (e.g., for
Gaussian WCs).

In Section IV, in order to obtain insights into the sig-
nificance of Theorem 1, we provide specific secrecy capac-
ity bounds (including upper/lower bounds) for degraded
WCs with causal/non-causal CSI (Theorems 2, 4, 5 and
Corollaries 1, 2, 3).

In Section V, since the present work has partly close bearing
with that of Fujita [20], we compare both of them to scrutinize
the details of these works.

In Section VI, we conclude the paper with several remarks.

II. PROBLEM STATEMENT AND THE RESULT

A stationary memoryless WC as illustrated in Fig. 1 is
specified by giving the conditional (transition) probability

p(y, z|x, s) = PY Z |X S(y, z|x, s) (1)

with input random variable X (for Alice), outputs random
variables Y (for Bob), Z (for Eve), and CSI random variable S,
which are assumed to take values in alphabets X ,Y,Z,S,
respectively. Alice X (sender), who only has access to station-
ary memoryless CSI S available, wants to send a confidential
message M ∈ M = [1 : 2nR] (over n channel transmissions)
to Bob Y (legitimate receiver) while keeping it secret from
Eve Z (eavesdropper), where we use here and hereafter the
notation [i : j ] = {i, i +1, · · · , j −1, j} for j ≥ i , and R ≥ 0
is called the rate.

An (n, 2nR) code for the WC with causal CSI S at the
encoder consists of
(i) a message set M = [1 : 2nR],
(ii) a stochastic “causal” encoder fi : M × S i → X subject
to conditional probability p(x |m, si)
to produce the channel input Xi (M) = fi (M, Si ) at each time
i ∈ [1 : n], and

(iii) a decoder g : Yn → M (for Bob) to assign an estimate
M̂ to each received sequence Y, where we use the notation
ai = a1a2 · · · ai (in particular, a = a1a2 · · · an: the bold-faced
letters indicate sequences of length n) and assume that the
message M is uniformly distributed on the message set M.

The probability of error is defined to be Pe = Pr
{M̂ �= M}. The information leakage at Eve with output
sequence Z, which measures the amount of information about
M that leaks out to Eve, is defined to be IE = I (M; Z) (the
mutual information between M and Z). It should be noted
here that this measure is not RE = 1

n I (M; Z) (the information
leakage rate). This means that in this paper we are concerned
only with the strong secrecy but not the weak secrecy as was
the case in the literature (e.g., cf. Chia and El Gamal [17],
Fujita [20]).

A secrecy rate R is said to be achievable if there exists a
sequence of codes (n, 2nR) with Pe → 0 and IE → 0 as
n → ∞. The secrecy capacity with CSI available only at
the encoder (=E), denoted by CCSI-E, is the supremum of all
achievable rates.

In order to implement the coding scheme for the WC, it is
convenient to introduce its associated channel ω as follows:
Let U be an arbitrary auxiliary random variable with values
in a set U that is independent of the CSI variable S, and
let h : U × S → X be a stochastic mapping subject to
conditional probability p(x |u, s). According to the Shannon
strategy [5], we define the ω as the WC specified by the
conditional probability

p(y, z|u, s) =
∑
x∈X

p(y, z|x, s)p(x |u, s), (2)

which gives the associated WC (called a test channel) with
input variable U (Alice), outputs variables Y, Z (Bob and Eve)
and CSI variable S. Thus, hereafter we may focus solely on
the coding problem for the channel ω from the standpoint of
achievable rates.

Let us now describe the main result. Set

RCSI-0(p(u), p(x |u, s))

= I (U ; Y ) − I (U ; Z), (3)

RCSI-1(p(u), p(x |u, s))

= min
[

I (U ; Y ) − I (U ; SZ)

+H (S|Z) − H (S|UY ),

I (U ; Y ) − H (S|UY )
]
, (4)

RCSI-2(p(u), p(x |u, s))

= min
[

H (S|U Z) − H (S|UY ), I (U ; Y ) − H (S|UY )
]
,

(5)

where I (·; ·), I (·; ·|·) denote the (conditional) mutual infor-
mations; and H (·), H (·|·) denote the (conditional) entropies.
Moreover, for simplicity we use the notation A1 A2 · · · Am to
denote (A1, A2, · · · , Am).

Then, we have the following theorem on the secrecy
capacity CCSI-E with the understanding that RCSI-1(p(u),
p(x |u, s)) = 0 when I (U ; Y ) − I (U ; SZ) < 0 or H (S|Z) −
H (S|UY ) < 0:
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Fig. 2. WC with the same CSI available at Alice and Bob (i = 1, 2, · · · , n).

Theorem 1: Let us consider the WC with CSI as in Fig.1
with causal CSI available only at Alice. Then, the (strong)
secrecy capacity CCSI-E is lower bounded as

CCSI-E ≥ max
[

max
p(u),p(x |u,s)

RCSI-0(p(u), p(x |u, s)),

max
p(u),p(x |u,s)

RCSI-1(p(u), p(x |u, s)),

max
p(u),p(x |u,s)

RCSI-2(p(u), p(x |u, s))
]
,

(6)

where p(u), p(x |u, s) ranges over all possible (conditional)
probability distributions such that p(u, s) = p(u)p(s), and
notice here that p(s) is a given distribution and so cannot be
varied.

The term H (S|UY ) in (4), (5) specifies the rate of
(auxiliary) Slepian-Wolf coding for information reconcillation
in secret key agreement (for OPT cipher) between Alice and
Bob using the CSI; in (4) the term I (U ; Y ) − I (U ; SZ)
specifies the transmission rate of confidential message via WC
coding2; the term H (S|Z)− H (S|UY ) in (4) specifies the key
rate to transmit an additional confidential message via OTP
cipher with the secret key shared between Alice and Bob using
the CSI; the term I (U ; Y ) − H (S|UY ) in (4), (5) specifies
the upper bound on total transmission rates for two kinds of
confidential messages as above, excluding the Slepian-Wolf
auxiliary message.

The achievability of RCSI-0(p(u), p(x |u, s)) is well known,
which is attained by the standard WC coding without resorting
to the OTP cipher using the secret key generated by CSI
(cf. Csiszár and Körner [2], El Gamal and Kim [29],
Dai and Luo [18]). This is actually attained by employing the
“one-time” CSI coding in the sense of Han et al. [22].

The achievability proof for RCSI-1(p(u), p(x |u, s)) and
RCSI-2(p(u), p(x |u, s)) in Theorem 1 is provided in the next
section.

Remark 1: Chia and El Gamal [17] have considered the
WC with common CSI available at both Alice and Bob
as illustrated in Fig. 2. This channel, however, equiva-
lently reduces to that in Fig. 1 with output YS ≡ SY
instead of Y . Then, since H (S|UYS) = H (S|U SY ) = 0,
RCSI-1(p(u), p(x |u, s)) and RCSI-2(p(u), p(x |u, s)) in (4), (5)

2Notice here that the WC ω in this paper is equipped with no public
authenticated noiseless channel between Alice and Bob unlike in the standard
setting of secret key agreement, but all communications occur inside the WC
ω in one-way fashion from Alice to Bob.

reduce to

RCSI-1(p(u), p(x |u, s))

= min
[

I (U ; SY ) − I (U ; SZ) + H (S|Z), I (U ; SY )
]
,

(7)

RCSI-2(p(u), p(x |u, s))

= min
[

H (S|U Z), I (U ; SY )
]
, (8)

where the right-hand side of (7) exactly coincides with the
weak secrecy lower bound

min
[

I (U ; SY ) − I (U ; SZ) + H (S|Z), I (U ; SY )
]

(9)

that was given by Chia and El Gamal [17], while the right-
hand side of (8) coincides with one more weak secrecy lower
bound

min
[

H (S|U Z), I (U ; SY )
]

(10)

that was also given by [17]. Thus, Theorem 1 specialized
to the case with “common” CSI available at both Alice
and Bob provides the strong secrecy version of their results.
Specifically, this concludes that Theorems 1, 2 and 3 in [17]
all hold with the strong secrecy criterion.

Remark 2: A basic feature of this paper is that we do not
invoke the argument of typical sequences at all, so we do not
need the finiteness of alphabets U,X ,Y,Z , while the alphabet
S of CSI S needs to be finite.

III. PROOF OF THEOREM 1

The whole coding scheme involves the transmission of
b independent messages over the b + 1 channel blocks
each of length n (b is a sufficiently large fixed positive
integer), which are indexed by j = 0, 1, 2, · · · , b. The formal
proof is provided in the sequel, where in block j we let
U j , S j , X j , Y j , Z j (correlated i.i.d. sequences of length n sub-
ject to joint probability PU S XY Z ) denote the random variables
to indicate channel input sequence, CSI sequence, channel
input sequence for Alice, channel output sequences for Bob
and Eve, respectively, whereas M j , M0 j , M1 j , N j denote the
random variables to indicate uniformly distributed confidential
messages to be sent, and auxiliary message, respectively. Their
realizations are indicated by the corresponding lower case
letters.

Case A): Proof for the Achievability of RCSI-1: In what
to follow, many kinds of (nonnegative) rates intervene with
inequality constraints, which are listed as follows:

R < I (U ; Y ), (11)

R = R0 + R1, (12)

R − R0 > I (U ; SZ), (13)

R2 > H (S|UY ), (14)

R0 + R1 + R2 < R, (15)

R1 + R2 < H (S|Z). (16)

Fourier-Motzkin elimination (cf. El Gamal and Kim [29])
claims that the supremum of R over all rates satisfying
(11)∼(16) coincides with the right-hand side of (4), so it
suffices to show that rates R satisfying (11)∼(16) are indeed
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achievable, where R is used to indicate an achievable rate for
usual channel coding (non-WC) between Alice and Bob.

Codebook Generation: For each block j ∈ [1 : b], split
message M j ∈ [1 : 2nR ] into two independent uniform
messages M0 j ∈ [1 : 2nR0 ] and M1 j ∈ [1 : 2nR1]; thus
R = R0 + R1, where, in the process of channel transmission,
message M0 j is protected by WC coding, and message M1 j

is protected by OTP cipher with the secret key shared using
CSI. The codebook generation consists of the following two
parts:

1) Message Codebook Generation: For each block j ∈
[0 : b], randomly and independently generate sequences
u j (l), l ∈ [1 : 2nR], each according to probability distribution∏n

i=1 pU (ui ) (u j (l) = u1u2 · · · un). This is a random code
and is denoted by H j . On the other hand, partition the set
[1 : 2nR] of indices into 2nR0 equal-size bins B(m0), m0 ∈ [1 :
2nR0 ]. Moreover, partition the indices within each bin B(m0)
into 2nR1 equal-size sub-bins B(m0, m1), m1 ∈ [1 : 2nR1 ].
Furthermore, partition the indices within each bin B(m0, m1)
into 2nR2 equal-size sub-sub-bins B(m0, m1, m2), m2 ∈ [1 :
2nR2 ] (cf. Fig. 3 on the next page). These bins are all
non-empty because of (15).

2) Key Codebook Generation: In order to construct an
efficient key K j = κ(S j ) of rate R1 using the CSI S j ,
we invoke the following two celebrated lemmas:

Lemma 1 (Slepian and Wolf [3]): Let ε > 0 be an arbi-
trarily small number and let R2 > H (S|UY ) (cf. (14)). Then,
there exists (deterministic) functions σ : Sn → [1 : 2nR2 ] and
φ : [1 : 2nR2 ] × Un × Yn → Sn such that

Pr{S j �= S̃ j } ≤ ε (17)

for all sufficiently large n, where S̃ j = φ(σ(S j ), U j , Y j ).
For simplicity, we use also the notation N j+1 ≡ σ(S j ),

which is the random variable conveying the auxiliary mes-
sage used for generating the common secret key between
Alice and Bob.

Lemma 2 (Csiszár and Körner [27, Corollary 17.5]): Let
ε > 0 be an arbitrarily small number and let R1 + R2 <
H (S|Z) (cf. (16)). Then, with the same N j+1 ≡ σ(S j ) as in
Lemma 1, there exists a (deterministic) key function κ : Sn →
[1 : 2nR1 ] such that

S
(
κ(S j )σ (S j )|Z j

) ≤ ε (18)

for all sufficiently large n, where we use the notation (called
the security index):1

S(K |F)
�= D(PK F ||QK × PF ) (19)

with the uniform distribution QK on the range of K , the KL
divergence D(·||·) and the product distribution QK × PF .

We use the thus defined deterministic function K j−1 ≡
κ(S j−1) as the key to be used in the next block j .

1Specifically, in the proof of this lemma, it suffices to make uniform random
hashing (κ, σ ) : Sn → [1 : 2n R1 ] × [1 : 2n R2 ] (and hence uniform
random binnning σ : Sn → [1 : 2n R2 ] simultaneously) to construct a
pair of deterministic mappings κ(S j )σ (S j ) ≡ (κ(S j ), σ (S j )) satisfying (17)
and (18). This is possible owing to rate constraints R2 > H (S|UY ) and
R1 + R2 < H (S|Z).

Encoding Scheme: We use the block coding scheme as
in Fig. 4 on the next page, which is based on the block
Markov coding scheme invented by Cover and El Gamal [16]
(cf. Fig. 4) and applied to the WC with CSI by Chia and
El Gamal [17]. The first block j = 0 provides only the CSI
sequence S0 for Alice to be used for encoding in the second
block j = 1 with M0 = N0 = “1” (fixed dummy message).
In each block j ∈ [1 : b], given a message triple (M0 j = m0,
M1 j = m1, N j = m2), Alice first computes c j = k j−1 ⊕ m1

(mod 2nR1 ) and let L
�= L(m0, c j , m2) be the random

index uniformly distributed on the bin B(m0, c j , m2) with
k j−1 = κ(s j−1) as specified in Lemma 2. Alice then sends out
for channel transmission a randomly generated sequence X j

according to conditional probability
∏n

i=1 pX |U S(xi |ui (L), si ),
where

x j = x1x2 · · · xn,

u j (L) = u1(L)u2(L) · · · un(L),

s j = s1s2 · · · sn .

and we set U j = u j (L) for simplicity.
Decoding Scheme and Evaluation of Probability of Error:

Let Y j be the output for Bob due to U j . Consider the
stationary memoryless channel ωn(y|u) ≡ PY j |U j (y|u) with
input u and output y. For this channel we use the maximum
likelihood decoding, that is, we let l̂ denote an index such that

ωn(y|u j (l̂)) = max
l∈[1:2nR ]

ωn(y|u j (l)), (20)

and set Û j = u j (l̂). Find the (m̂0, ĉ, m̂2) such that l̂ ∈ B
(m̂0, ĉ, m̂2). Next, compute m̂1 = ĉ� k̂ j−1 (mod 2nR1 ), where
k̂ j−1 = κ(ŝ j−1) with ŝ j−1 = φ(m̂2, u j−1(l̂), y j−1) and we
notice that ŝ j−1 = s̃ j−1 if m̂2 = m2 and u j−1(l̂) = u j−1(L)
(cf. Lemmas 1 and 2). Finally, declare that the message pair
(m̂0, m̂1) was sent. In order to evaluate the probability of
decoding error

Pe( j) ≡ Pr{(M0 j , M1 j ) �= (M̂0 j , M̂1 j )|H}, (21)

we invoke
Lemma 3 (Gallager [28, Theorem 5.6.2]): Let ε > 0 be

an arbitrarily small number and let R < I (U ; Y ) (cf. (11)).
Then,

Pr{(M0 j , C j , N j ≡ M2 j , U j )

�= (M̂0 j , Ĉ j , N̂ j ≡ M̂2 j , Û j )|H} ≤ ε (22)

for all sufficiently large n.
Then, in view of Lemmas 1 and 3, we have

Pe( j) ≤ Pr{(M0 j , C j , N j , U j ) �= (M̂0 j , Ĉ j , N̂ j , Û j )|H}
+ Pr{S j �= S̃ j }

≤ 2ε. (23)

Thus, it is concluded that the total probability of decoding
error over all the b blocks is less than or equal to 2bε. It should
be remarked here that the total transmission rate averaged over
all b + 1 blocks is bR

b+1 because only the b blocks of them
are effective for message transmission, which can be made as
close to R as desired by letting b large enough.



6754 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 10, OCTOBER 2019

Fig. 3. Bin-partitioning for message codebook generation in each channel block j .

Fig. 4. Sequence diagram of block Markov coding (C j = K j−1 ⊕ M1 j ; j = 1, 2, · · · , b).

Evaluation of Information Leakage: We use the following
notation: for j ∈ [1 : b],

H = H1H2 · · ·Hb,

M j = M0 j M1 j ,

M j = M1 M2 · · · M j ,

M [ j ] = M j M j+1 · · · Mb,

Z j = Z1Z2 · · · Z j ,

Z[ j ] = Z j Z j+1 · · · Zb,

where we notice that Z j is the channel output for Eve in
block j .

Remark 3: Since K j−1 and M1 j are independent and M1 j

is assumed to be uniformly distributed, the OTP cipher claims
that K j−1 and C j = K j−1 ⊕ M1 j are independent and C j is
uniformly distributed (cf. Shannon [4]). Notice here that K j−1
is not necessarily uniformly distributed, and hence M1 j and
C j are not necessarily independent. On the other hand, Z j−1
may affect Z j only through K j−1 N j and inversely Z j−1 may
be affected by Z j only through C j N j . This property plays
the crucial role in evaluating the performance of our coding
scheme (cf. Fig.4).

In the sequel we show that the information leakage to Eve
IE = I (Mb; Zb|H) over the whole b + 1 blocks goes to zero
as n → ∞.

To do so, we begin with

A
�= I (Mb; Zb|H)

=
b∑

j=1

I (M j ; Zb|M [ j+1]H)

(a)≤
b∑

j=1

I (M j ; Zb|S j M [ j+1]H)

(b)=
b∑

j=1

I (M j ; Z j |S jH)

=
b∑

j=1

I (M0 j M1 j ; Z j |S jH)

=
b∑

j=1

I (M0 j M1 j ; Z j−1|S jH)

+
b∑

j=1

I (M0 j M1 j ; Z j |Z j−1S jH)
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(c)=
b∑

j=1

I (M0 j M1 j ; Z j |Z j−1S jH)

= B + C (24)

with

B
�=

b∑
j=1

I (M0 j ; Z j |Z j−1S jH) (25)

C
�=

b∑
j=1

I (M1 j ; Z j |M0 j Z j−1S jH), (26)

where (a) follows from the independence of M j and S j

given M [ j+1]H; (b) follows from the Markov chain property
M j → Z j S j → Z[ j+1]M [ j+1] given H; (c) follows from the
independence of M0 j M1 j S j and Z j−1 given H.

Let us now separately evaluate B and C in (25) and (26).
First,

B =
b∑

j=1

I (M0 j ; Z j |Z j−1S jH)

≤
b∑

j=1

I (Z j−1 M0 j ; Z j |S jH)

=
b∑

j=1

I (M0 j ; Z j |S jH)

+
b∑

j=1

I (Z j−1; Z j |M0 j S jH)

≤
b∑

j=1

I (M0 j ; Z j |S jH)

+
b∑

j=1

I (Z j−1; N j M0 j S j Z j |H)

(d)=
b∑

j=1

I (M0 j ; S j Z j |H)

+
b∑

j=1

I (N j ; Z j−1|H), (27)

where (d) follows from the independence of M0 j and S j and
from the Markov chain property Z j−1 → N j → M0 j S j Z j

given H.
Next, C can be upper bounded as

C =
b∑

j=1

I (M1 j ; Z j |M0 j Z j−1S jH)

≤
b∑

j=1

I (Z j−1 M1 j ; Z j |M0 j S jH)

= D + E, (28)

where

D
�=

b∑
j=1

I (M1 j ; Z j |M0 j S jH) (29)

E
�=

b∑
j=1

I (Z j−1; Z j |M0 j M1 j S jH). (30)

Then,

D ≤
b∑

j=1

I (M1 j ; C j Z j |M0 j S jH)

= F + G, (31)

where

F =
b∑

j=1

I (M1 j ; C j |M0 j S jH),

G =
b∑

j=1

I (M1 j ; Z j |M0 j S j C jH). (32)

Then,

F =
b∑

j=1

I (M1 j ; C j |M0 j S jH)

( f )=
b∑

j=1

I (M1 j ; C j )

= H (C j ) − H (C j |M1 j )

(k)= H (C j ) − H (K j−1|M1 j )

(g)= H (C j ) − H (K j−1)

(p)= D(PK j−1 ||QK j−1), (33)

where ( f ) follows from the independence of M1 j C j and
M0 j S jH; (k) follows from K j−1 ⊕ M1 j = C j ; (g) follows
from the independence of K j−1 and M1 j ; (p) follows from
that C j is uniformly distributed on the range of K j−1.

Moreover,

G =
b∑

j=1

I (M1 j ; Z j |M0 j S j C jH)

(e)=
b∑

j=1

I (K j−1; Z j |M0 j S j C jH)

( j )≤
b∑

j=1

I (K j−1; N j |M0 j S j C jH)

(m)=
b∑

j=1

I (K j−1; N j ), (34)

where (e) follows from C j = K j−1 ⊕ M1 j ; ( j) follows from
the data processing lemma using the Markov chain property
K j−1 → N j → Z j given M0 j S j C jH; (m) follows from the
independence of K j−1 N j and M0 j S j C jH.

On the other hand,

E ≤
b∑

j=1

I (Z j−1; K j−1 N j Z j |M0 j M1 j S jH)

(h)=
b∑

j=1

I (Z j−1; K j−1 N j |M0 j M1 j S jH)

(i)=
b∑

j=1

I (K j−1 N j ; Z j−1|H), (35)
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where (h) follows from the Markov chain property Z j−1 →
K j−1 N j → Z j given M0 j M1 j S jH; (i) follows from the
independence of Z j−1K j−1 N jH and M0 j M1 j S j .

Thus, summarizing up (24)∼ (35), we have the upper bound
on the information leakage to Eve IE = I (Mb; Zb|H) as

Lemma 4 (Information leakage bound):

I (Mb; Zb|H) ≤
b∑

j=1

I (M0 j ; S j Z j |H) (36)

+
b∑

j=1

I (N j ; Z j−1|H). (37)

+
b∑

j=1

I (K j−1; N j ) (38)

+
b∑

j=1

D(PK j−1 ||QK j−1) (39)

+
b∑

j=1

I (K j−1 N j ; Z j−1|H). (40)

Here, the first term I (M0 j ; S j Z j |H) specifies the resolvability
performance for Eve; the second term I (N j ; Z j−1|H) spec-
ifies the inter-block interaction effect in the block Markov
coding scheme; the third and fourth terms I (K j−1; N j ),
D(PK j−1 ||QK j−1) specify the key performance for Bob; and
the fifth term I (K j−1 N j ; Z j−1|H) specifies the key perfor-
mance for Eve.

The third and fourth ones are evaluated as follows. We can
rewrite the security index S(κ(S j )σ (sS j )|Z j ) in (18) of
Lemma 2 as

S(κ(S j )σ (S j )|Z j )

≥ D(Pκ(S j )σ (S j )||Qκ(S j ) × Qσ(S j ))

= D(Pκ(S j )σ (S j )||Pκ(S j ) × Pσ(S j ))

+D(Pκ(S j )||Qκ(S j )) + D(Pσ(S j )||Qσ(S j ))

≥ D(Pκ(S j )σ (S j )||Pκ(S j ) × Pσ(S j ))

= I (κ(S j ); σ(S j ))

= I (K j ; N j+1). (41)

Moreover,

S(κ(S j )σ (S j )|Z j )

≥ S(κ(S j )|Z j )

= D(PK j ||QK j ) + I (K j ; Z j )

≥ D(PK j ||QK j ). (42)

Therefore, Lemma 2 claims that

I (K j−1; N j ) ≤ ε, (43)

D(PK j−1 ||QK j−1) ≤ ε. (44)

In order to evaluate the second and fifth ones, we use the
following lemma, which is the Alice-only CSI counterpart
of [17, Proposition 1]:

Lemma 5 (Key secrecy lemma): Let ε > 0 be an arbitrarily
small number and let R1 + R2 < H (S|Z) (cf. (16)). Then, for
j ∈ [1 : b],

i) I (K j−1 N j ; Z j−1|H) ≤ ε, (45)

ii) I (K j−1 N j ; Z j−1|H) ≤ bε (46)

for all sufficiently large n.
Proof: See Appendix A.
From (46) we immediately have

I (N j ; Z j−1|H) ≤ I (K j−1 N j ; Z j−1|H) ≤ bε. (47)

Now, what remains to be done is to evaluate the first
one I (M0 j ; S j Z j |H). To do so, we invoke the following
resolvability lemma:

Lemma 6 (Resolvability lemma): Let ε > 0 be an arbitrar-
ily small number and let R − R0 > I (U ; SZ) (cf. (13)).
Then,

I (M0 j ; S j Z j |H) ≤ ε (48)

for all sufficiently large n.
Proof: See Appendix B.
An immediate consequence of Lemma 4 together with (43),

(44), (47) and (48) is

I (Mb; Zb|H) ≤ (3b + 2b2)ε, (49)

thereby completing the proof for Case A).
Case B): Proof for the Achievability of RCSI-2: The remain-

der of Theorem 1 to be proved is the acievability of
RCSI-2(p(u), p(x |u, s)) in (5).

The rate constraints in this case are listed as follows
(R0 = 0):

R < I (U ; Y ), (50)

R = R1, (51)

R2 > H (S|UY ), (52)

R1 + R2 < R, (53)

R1 + R2 < H (S|U Z). (54)

These constraints are the same as those in Case A) with R0 = 0
and H (S|U Z) instead of H (S|Z), where constraint (13) is
not necessary here because of R0 = 0. The reason for the
replacement of H (S|Z) by H (S|U Z) is that, since R0 = 0,
we cannot here leverage the randomization (over input U j )
due to Wyner’s WC coding to keep the U j secure from the
attack by Eve.

Fourier-Motzkin elimination claims that the supremum of
R over all rates satisfying (50)∼ (54) coincides with the
RCSI-2(p(u), p(x |u, s)), so it suffices to show that rates R
satisfying (50)∼ (54) are achievable.

In this case too, the proof argument parallels those as devel-
oped in the proof for Case A) with R0 = 0, where we notice
that I (M0 j ; S j Z j |H) = 0 in Lemma 4 and hence Lemma 6
is not needed here, thereby completing the achievability proof
for this case.
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IV. SECRECY CAPACITY RESULTS

Thus far we have developed achievability arguments for
WCs with CSI available only at the encoder (Alice) to establish
Theorem 1 on lower bounds to the secrecy capacity CCSI-E. In
this section, in order to get more insights into this theorem,
we address the problem of bounding the secrecy capacities for
the case of (statistically) degraded WCs, which is an important
class of WCs.

Let us first describe the first theorem in this section:
Theorem 2: For any degraded WC (Z is a degraded version

of Y ) with causal CSI only at Alice, we have

CCSI-E ≥
max
p(x |s) min

(
I (X S; Y ) − I (X S; Z), I (X S; Y ) − H (S)

)
,

(55)

CCSI-E ≤
max
p(x |s) min

(
I (X S; Y ) − I (X S; Z), I (X S; Y ) − I (S; Y )

)
,

(56)

CK
NCSI-E ≥

max
I (X S;Y )≥H(S)

(
I (X S; Y ) − I (X S; Z)

)
, (57)

CK
NCSI-E ≤

max
p(x |s)

(
I (X S; Y ) − I (X S; Z)

)
, (58)

where CK
NCSI-E denotes the non-causal secret-key capacity

(as for the definition, see, e.g., Khisti et al. [15],
Prabhakaran et al. [24], Bunin et al. [26]). In contrast
with this, CCSI-E may be called the secret-message capacity.
The maximization in (57) is taken over all X S such that
I (X S; Y ) ≥ H (S).

Remark 4: Lower bounds (55) and (57) hold without the
assumption of degradedness. It is is easy to check that
I (X S; Y ) − I (X S; Z) in (55) ∼ (58) is nonnegative for
degraded WCs, while I (X S; Y ) − H (S) in (55) may be
negative.

Proof of (55) (Achievability): Let (X, S) be arbitrarily given,
then the functional representation lemma [29] claims that there
exist a random variable U and a deterministic function f : U×
S → X such that U and S are independent and X = f (U, S).

Then, the first term of the achievable rate RCSI-1(p(u),
p(x |u, s)) given in Theorem 1 can be rewritten as follows.

I (U ; Y ) − I (U ; SZ) + H (S|Z) − H (S|UY )

= I (U ; SY ) − I (U ; S|Y ) − I (U ; SZ)

+H (S|Z) − H (S|UY )

= I (U ; Y |S) − I (U ; Z |S) + H (S|Z) − H (S|Y )
(v)= I (XU ; Y |S) − I (XU ; Z |S) + H (S|Z) − H (S|Y )
(w)= I (X; Y |S) − I (X; Z |S) + H (S|Z) − H (S|Y )

= I (X S; Y ) − I (X S; Z), (59)

where (v) follows from that X is a deterministic function
of (U, S); (w) follows from that U → SX → Y Z forms
a Markov chain.

On the other hand, the second term of RCSI-1(p(u),
p(x |u, s)) can be rewritten as follows.

I (U ; Y ) − H (S|UY )

= I (U ; SY ) − I (U ; S|Y ) − H (S|UY )

= I (U ; Y |S) − H (S|Y )
(y)= I (XU ; Y |S) − H (S|Y )
(z)= I (X; Y |S) − H (S|Y )

= I (X S; Y ) − H (S), (60)

where in (y), (z) we have used the similar argument to
(v), (w).

Therefore, in view of Theorem 1, combining (59) and (60)
yields (55).

Proof of (56) (Converse): Here, we invoke the following
simple but powerful lemma:

Lemma 7 (Chen and Vinck [7]): Let us consider a degra-
ded WC with CSI S such that Z is a degraded version of Y .
Then, the secrecy capacity with non-causal CSI only at the
encoder (=E), denoted by CNCSI-E, is upper bounded as

CNCSI-E ≤ max
p(u|s)p(x |u,s)

(I (U ; Y ) − I (U ; Z)), (61)

where we notice that U and S may be correlated.
We compute I (U ; Y ) and I (U ; Z) separately with arbitrary

U SX .

I (U ; Y )

= I (U SX; Y ) − I (SX; Y |U)

= I (S; Y ) + I (U X; Y |S) − I (S; Y |U) − I (X; Y |U S)

= I (X; Y |S) + I (S; Y ) − I (S; Y |U) − I (X; Y |U S).

(62)

Similarly,

I (U ; Z)

= I (X; Z |S) + I (S; Z) − I (S; Z |U) − I (X; Z |U S).

(63)

Hence,

I (U ; Y ) − (U ; Z)

= I (X; Y |S) − I (X; Z |S) + I (S; Y ) − I (S; Z)

−(
I (S; Y |U) − I (S; Z |U)

)
−(

I (X; Y |U S) − I (X; Z |U S)
)

≤ I (X; Y |S) − I (X; Z |S) + I (S; Y ) − I (S; Z)

= I (X; Y |S) − I (X; Z |S) + H (S|Z) − H (S|Y )

= I (X S; Y ) − I (X S; Z), (64)

where in the above inequality we have used the propertry
I (S;Y |U)−I (S;Z |U)≥0 and I (X;Y |U S)−I (X;Z |U S) ≥ 0,
which comes from the assumed degradedness.

Another upper bound R ≤ I (SX; Y ) − I (S; Y ) is derived
as follows. For any achievable rate R, Fano inequality yields
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(with εn → 0 as n tends to ∞):

n R = H (M)

≤ H (M) − H (M|Y n) + nεn

= I (M; Y n) + nεn

=
n∑

i=1

I (M; Yi |Y i−1) + nεn

≤
n∑

i=1

I (MY i−1; Yi ) + nεn

≤
n∑

i=1

I (MY i−1; Si Yi ) + nεn

(p)=
n∑

i=1

I (MY i−1; Yi |Si ) + nεn

≤
n∑

i=1

I (Xi MY i−1; Yi |Si ) + nεn

(q)=
n∑

i=1

I (Xi ; Yi |Si ) + nεn

(r)= nI (X J ; YJ |SJ J ) + nεn

≤ nI (J X J ; YJ |SJ ) + nεn
(s)= nI (X J ; YJ |SJ ) + nεn
(t)= nI (X; Y |S) + nεn, (65)

where (p) comes from the independence of Si and MY i−1; (q)
follows from the Markov chain property MY i−1 → Xi Si →
Yi ; in (r) J is the random variable such that Pr{J = i)} =
1
n (i = 1, · · · , n); (s) follows from the Markov chain property
J → X J SJ → YJ ; in (t) we have set X = X J , Y = YJ ,
S = SJ .

An immediate consequence (deviding by n and letting
n → ∞) of (65) is

R ≤ I (X; Y |S)

= I (X S; Y ) − I (S; Y ) (66)

with input2 X . Thus, combining (64) and (66) together with
Lemma 7 yields (56).

Secret-Key Capacity Results: We see that there is a gap
between the second terms of (55) and (56), i.e., H (S) �=
I (S; Y ). These terms are due to the physical channel capa-
bility limitation, which are indispensable when we are con-
cerned with the secret-message capacity like in the foregoing.
On the other hand, however, as far as we are concerned
with the secret-key capacity, such terms are not necessarily
involved.

Proof of (57) (Achievability): We first invoke the following
achievability theorem:

Theorem 3 (Khisti et al. [15]): For any WC, the (weak)
secret-key capacity with non-causal CSI available only at the

2Actually, in order to conclude (56), we need to show that X in (64) and
X (66) can be taken to be the same. However, this can be ascertained by
carefully scritinizing the proof of Lemma 7.

encoder is lower bounded as

CK
NCSI-E ≥ max

I (V ;Y )≥I (V ;S)
(I (V ; Y ) − I (V ; Z)), (67)

where the maximization in (67) is taken over all V S such
that I (V ; Y ) ≥ I (V ; S) and we notice that V and S may be
correlated.

Remark 5: The “causal” version of formula (67) in Theo-
rem 3 is given by

CK
CSI-E ≥ max

I (V ;Y )≥I (V ;S)
(I (V ; Y ) − I (V ; Z)), (68)

where V = (U, S) (U and S are independent) and CK
CSI-E

denotes the (strong) secret-key capacity with causal CSI
available only at the encoder. Accordingly, CK

NCSI-E in (57)
and (58) can be replaced by CK

CSI-E. The proof of (68) will be
given in a forthcoming paper [33] as a special case of more
general causal WCs.

Now, let (X, S) be arbitrarily given and let U and f be
those as specified by the functional representation lemma [29]
as in the proof of (55). We then compute the right-hand side
of (67) with V = (U, S) as follows:

I (U S; Y ) − I (U S; Z)
(b)= I (U SX; Y ) − I (U SX; Z)
(c)= I (X S; Y ) − I (X S; Z), (69)

where in (b) we noticed that X is a deterministic function
of (U, S); (c) follows from that U → X S → Y Z forms a
Markov chain. On the other hand,

I (U S; Y ) − I (U S; S)

= I (SU ; Y ) − H (S)
(d)= I (X SU ; Y ) − H (S)
(e)= I (X S; Y ) − H (S), (70)

where (d) follows since X is a deterministic function of
(U, S); (e) follows from the Markov chain property U →
X S → Y . Thus, Theorem 3 together with (69) and (70)
yields (57).

Proof of (58) (Converse): To show the converse part, we first
observe that Lemma 7 is still valid with CK

NCSI-E instead of
CNCSI-E, which can be ascertained by carefully scrutinizing the
proof in [7] (with secret key K instead of secret message M)
of Lemma 7. Then, in the entirely same way as above, we have
(64), implying the converse here.

An immediate consequence of Theorem 2 is the following
corollaries with degraded WCs, where, hereafter, we denote
by CCSI-ED, CNCS-ED, CK

NCSI-ED the (strong) secrecy capacities
of WCs with common CSI S available at both the enceder
(=E) and decoder (=D):

Corollary 1 (Strengthening of Chia and El Gamal [17]):
It holds that

CCSI-ED = CNCSI-ED

= max
p(x |s) min

(
I (X S; Y S) − I (X S; Z),

I (X S; Y S) − H (S)
)

= max
p(x |s) min

(
I (X; Y |S) − I (X; Z |S) + H (S|Z),

I (X; Y |S)
)

(71)
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Corollary 2: It holds that

CK
CSI-ED = CK

NCSI-ED

= max
p(x |s)

(
I (X S; Y S) − I (X S; Z)

)
= max

p(x |s)
(
I (X; Y |S) − I (X; Z |S) + H (S|Z)

)
.

(72)

Proof: It suffices to replace Y by SY in (55) ∼ (58), where
we have taken account of Remark 5. .

Remark 6: In fact, Khisti et al. [15] has, instead of (72),
given the following (weak) formula (not assuming the degrad-
edness) as:

CK
NCSI-ED = max

p(u,x |s)
(
I (U ; Y |S) − I (U ; Z |S) + H (S|Z)

)
. (73)

However, the proof in [15] for the converse part seems to
contain a serious technical flaw.

Next, following Chia and El Gamal [17], let us consider the
following special WC to have

Corollary 3: Let us consider a degraded WC such that Z
is a degraded version of Y and p(y, z|x, s) = p(y, z|x), then
we have

CCSI-E = CNCSI-E = max
p(x)

(I (X; Y ) − I (X; Z)). (74)

Remark 7: This result coincides with an intuition that this
WC may reduce simply to a WC without CSI at Alice and
Bob, because CSI S at Alice has no correlation to Bob. In this
connection, it will be useful to compare this result with that
in [17] with common CSI S available at both the encoder and
decoder, the secrecy capacity of which is given as

CCSI-ED = CNCSI-ED

= max
p(x)

min[I (X; Y ) − I (X; Z) + H (S), I (X; Y )].
(75)

Clearly, in (75) the state information S contributes to making
achievable rates higher by H (S), whereas in (74) the CSI
makes no contribution. This shows that “two-sided” CSI
(available both at Alice and Bob) indeed can outperform
“one-sided” CSI (available only at Alice).

Proof of Corollary 3: We first observe that

RCSI-0(p(u), p(x |u, s)) = I (U ; Y ) − I (U ; Z)

= I (X; Y ) − I (X; Z) (76)

by setting X = U with S independent of X , which implies
the achievability.

In order to show the converse part, we compute as follows:

I (U ; Y ) − I (U ; Z)

= I (U X; Y ) − I (X; Y |U)

−I (U X; Z) + I (X; Z |U)

= I (X; Y ) − I (X; Z)

−I (X; Y |U) + I (X; Z |U). (77)

On the other hand, owing to the assumed degradedness,
we have

I (X; Y |U)

= I (X; ZY |U)

= I (X; Z |U) + I (X; Y |U Z). (78)

From (77) and (78), it follows that

I (U ; Y ) − I (U ; Z) ≤ I (X; Y ) − I (X; Z). (79)

Thus, in light of Lemma 7 together with (76) and (79), the
corollary is concluded.

So far, we have studied WCs with non-binary alphabets.
It would also be interesting to see what happens with binary
WCs (U = X = Y = Z = S = {0, 1}). Letting ⊕ denote the
exclusive OR, we consider the binary WC defined by

Y = X ⊕ S ⊕ �, (80)

Z = X ⊕ S ⊕ 	, (81)

where X, S,	,� are mutually independent. and 	,� play
the role of external “additive” noises independent from the
CSI S. We assume here that H (	) > H (�) and hence Z is
a degraded version of Y in (80) and (81).

Theorem 4: For the thus defined binary degraded WC,
we have

CCSI-E = CNCSI-E = H (	) − H (�). (82)

Remark 8: For comparison, let us consider the case where
the encoder is not provided the CSI S. In this case, it is natural
to regard S as an additive noise to the channel, then we have
the secrecy capacity CM without CSI:

CM = H (S ⊕ 	) − H (S ⊕ �). (83)

It is obvious that

H (	) − H (�) > H (S ⊕ 	) − H (S ⊕ �), (84)

which implies that the existence of CSI S can indeed outper-
form the channel without CSI. Formula (82) means that the
secrecy capacity for this WC does not depend on S, which is a
consequence of elimination of “noise” S by making use of the
CSI and is in nice accordance with the formula of Costa [32]
on writing on (Gaussian) dirty paper. A Gaussian counterpart
is discussed also in Khisti et al. [15].

Proof of Theorem 4: Set X = U ⊕ S where U and
X, S,	,� are independent, then

Y = U ⊕ �, (85)

Z = U ⊕ 	. (86)

To show the achievability part, it suffices only to consider

RCSI-0(p(u), p(x |u, s))

= I (U ; Y ) − I (U ; Z)

= H (U) − H (U |Y ) − (H (U) − H (U |Z))

= H (U |Z) − H (U |Y )

= H (U |U ⊕ 	) − H (U |U ⊕ �)

= H (	|U ⊕ 	) − H (�|U ⊕ �)

= H (	) − H (�), (87)
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where the last step follows by setting U ∼(1/2, 1/2), which
implies the achievability.

On the other hand, in order to show the converse part,
we invoke (61) of Lemma 7. Let us evaluate the right-hand
side of (61) as follows:

I (U ; Y )

= I (U ; X ⊕ S ⊕ �)
(a)= I (U ⊕ S; X ⊕ �)

= I (X, U ⊕ S; X ⊕ �)

−I (X; X ⊕ �|U ⊕ S)

= I (X; X ⊕ �)

−I (X; X ⊕ �|U ⊕ S), (88)

where in (a) we noticed that (U, X⊕S⊕�) and (U⊕S, X⊕�)
are in one-to-one correspondence under operation ⊕S.

Similarly, we have

I (U ; Z)

= I (X; X ⊕ 	)

−I (X; X ⊕ 	|U ⊕ S). (89)

Hence,

I (U ; Y ) − I (U ; Z)

= I (X; X ⊕ �) − I (X; X ⊕ 	)

−(I (X; X ⊕ �|U ⊕ S) − I (X; X ⊕ 	|U ⊕ S)).(90)

We now notice that X ⊕	 is a degraded version of X ⊕� to
obtain

I (X; X ⊕ �|U ⊕ S) ≥ I (X; X ⊕ 	)|U ⊕ S), (91)

from which together with (90) it follows that

I (U ; Y ) − I (U ; Z) ≤ I (X; X ⊕ �) − I (X; X ⊕ 	). (92)

It is easy also to see that

max
p(x)

(I (X; X ⊕ �) − I (X; X ⊕ 	)) = H (	) − H (�), (93)

where max can be attained with X ∼ (1/2.1/2), which implies
the converse.

In passing this section, let us look back at Theorem 2
to scrutinize more the significance. We first notice that the
achievability of RCSI-1(p(u), p(x |u, s)) in Theorem 1 (and
hence the achievability (55) in Theorem 2) is based on one-
time pad cipher that is attained by reproducing CSI Sn at Alice
as Ŝn at Bob. Furthermore, the achievability in Theorem 3 with
V = (U, S) (and hence the achievability (57) in Theorem 2)
is also based on the reproduction of CSI Sn at Alice as Ŝn at
Bob as well.

In view of these observations along with Remark 5, we
are now interested in what happens if we confine ourselves
to within those coding schemes that the CSI Sn at Alice is
required to be reproduced as Ŝn at Bob (this kind of coding
schemes are said to be state-reproducing). To see this, let the
corresponding secret-message capacity and secret-key capacity
be denoted by the overlined quantities as C , then we have the
following theorem:

Theorem 5: For any degraded WC (Z is a degraded version
of Y ) with causal CSI only at Alice, we have

CCSI-E = CNCSI-E

= max
p(x |s) min

(
I (X S; Y ) − I (X S; Z),

I (X S; Y ) − H (S)
)
, (94)

C
K
CSI-E = C

K
NCSI-E

= max
I (X S;Y )≥H(S)

(
I (X S; Y ) − I (X S; Z)

)
. (95)

Remark 9: It is easy to check that the right-hand side of
(94) is not greater than the right-hand side of (95).

Proof of (94): It suffices to prove only the converse. Since
message M and CSI Sn are independent and Sn is reproducible
at Bob, Fano inequality with achievable rates R and εn → 0
claims that

n R = H (M)

≤ H (M) − H (M Sn|Y n) + nεn

≤ H (M Sn) − H (Sn) − H (M Sn|Y n) + nεn

≤ I (M Sn ; Y n) − nH (S) + nεn

=
n∑

i=1

I (M Sn ; Yi |Y i−1) − nH (S) + nεn

≤
n∑

i=1

I (M Sn Y i−1; Yi ) − nH (S) + nεn

≤
n∑

i=1

I (Xi M SnY i−1; Yi ) − nH (S) + nεn

=
n∑

i=1

I (Xi Si M Si−1 Sn
i+1Y i−1; Yi ) − nH (S) + nεn

(u)=
n∑

i=1

I (Xi Si ; Yi ) − nH (S) + nεn

=
n∑

i=1

(I (Xi Si ; Yi ) − H (Si)) + nεn

(y)= n(I (X S; Y ) − H (S)) + nεn, (96)

where (u) follows from the Markov chain property
M Si−1 Sn

i+1Y i−1 → Xi Si → Yi ; in (y) we have used the
argument similar to that in (65). Thus, R ≤ I (X S; Y )− H (S),
which together with the proof of (56) implies the converse
here.

Proof of (95): It suffices to prove only the converse. Since
Sn is reproducible at Bob, similarly to the derivation in (96)
we have

nH (S) ≤ H (Sn) − H (Sn|Y n) + εn

= I (Sn; Y n) + εn

=
n∑

i=1

I (Sn; Yi |Y i−1) + εn

≤
n∑

i=1

I (SnY i−1; Yi ) + εn
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≤
n∑

i=1

I (Xi Si Si−1 Sn
i+1Y i−1; Yi ) + nεn

=
n∑

i=1

I (Xi Si ; Yi ) + nεn

= nI (X S; Y ) + nεn. (97)

Thus, H (S) ≤ I (X S; Y ), which together with the proof of
(58) implies the converse here.

V. COMPARISON WITH THE PREVIOUS RESULT

We have so far studied the problem of how to convey
confidential message over WCs with causal CSI available only
at Alice under the information leakage IE = I (Mb; Zb) → 0.
In this connection, we notice that this kind of problem with
causal CSI has not yet been brought to enough attention of the
researcher, although the problem for WCs with non-causal CSI
has extensively been investigated in the literature. On the other
hand, to the best of our knowledge, Fujita [20] is supposed
to be the first who has significantly addressed the problem of
WCs with causal CSI available only at Alice (used for key
agreement with Bob), although its non-causal counterpart had
been studied by Khisti et al. [15]. In this section, we develop
the comparison with our results.

In order to describe the main result of [20] in our
terminology, define

FCSI-1(p(u), p(x |u, s))

= min
[

I (U ; SY ) − I (U ; SZ)

+H (S|Z) − H (S|Y ),

I (U ; SY ) − H (S|Y )
]
, (98)

and let Cw
CSI-E denote the secrecy capacity under the weak

secrecy criterion 1
n I (Mb; Zb) → 0 instead of CCSI-E. Then,

Theorem 6 (Fujita [20, Lemma 1]): Let us consider a
degraded WC where Z is a physically degraded version of Y ,
then

Cw
CSI-E ≥ max

p(u),p(x |u,s)
FCSI-1(p(u), p(x |u, s)) (99)

holds.
For comparison, we rewrite FCSI-1(p(u), p(x |u, s)) in (98)

as follows.

FCSI-1(p(u), p(x |u, s))

= min
[

I (U ; Y ) − I (U ; SZ)

+H (S|Z) − H (S|UY ),

I (U ; Y ) − H (S|UY )
]
, (100)

which is justified because

I (U ; SY ) = I (U ; Y ) + I (U ; S|Y ), (101)

H (S|Y ) = H (S|UY ) + I (U ; S|Y ). (102)

Recalling that the lower bound RCSI-1(p(u), p(x |u, s)) in
Theorem 1 is

RCSI-1(p(u), p(x |u, s))

= min
[

I (U ; Y ) − I (U ; SZ)

+H (S|Z) − H (S|UY ),

I (U ; Y ) − H (S|UY )
]

(103)

and comparing it with (100), it turns out that RCSI-1(p(u),
p(x |u, s)) exactly coincides with FCSI-1(p(u), p(x |u, s)).
Hence, the two largest lower bounds in Theorems 1 and 6
coincide with one another:

max
p(u),p(x |u,s)

RCSI-1(p(u), p(x |u, s))

= max
p(u),p(x |u,s)

FCSI-1(p(u), p(x |u, s)).

(104)

On the other hand, the other largest lower bound in
Theorem 1:

max
p(u),p(x |u,s)

RCSI-2(p(u), p(x |u, s)) (105)

can be shown to be strictly larger than the left-hand side
of (104) for an approximately selected WC in which Y is
a degraded version of Z (e.g., see [17, Example 2]), that is

max
p(u),p(x |u,s)

RCSI-2(p(u), p(x |u, s))

> max
p(u),p(x |u,s)

RCSI-1(p(u), p(x |u, s)),

(106)

which together with (104) implies that for this WC the lower
bound in Theorem 1 is strictly larger than the lower bound in
Theorem 6.

Now, we are in a position to point out further crucial
differences between [20] and this paper, which is due to the
completely different approaches taken to the problem. These
are summarized as follows.

• [20] heavily depends on the assumption that the WC
treated needs to be physically degraded, whereas this
paper makes no such assumption.

• [20] confines itself to within the weak secrecy criterion
problem ( 1

n I (M; Z) → 0), whereas this paper employs
the strong secrecy criterion approach (I (M; Z) → 0).
As a consequence, all the results in [20] (and [17]) are
guaranteed to hold as they are under the strong secrecy
criterion too.

• In [20] all alphabets such as U,S,X ,Y,Z are required
to be finite, whereas in this paper U,X ,Y,Z except
for S may be arbitrary (including continuous alphabet
cases), so that Theorem 1 as stated in Section II is directly
applicable also to, e.g., Gaussian WCs with causal CSI
available at Alice.

• The fundamental mathematical tool in [20] to deal
with the problem is the typical sequence argument
(of course, well established), whereas in this paper the
fundamental ingredients consist of Slepian-Wolf coding,
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Csiszár-Körner’s key construction, Gallager’s maximum
likelihood decoding, and Han-Verdú’s resolvability argu-
ment (of course, well established). This methodological
difference brings about a new look from the viewpoint of
information theoretic perspective and applicability. One
of the consequences is that the way of proving the main
theorem here is significantly different from that in [20].
This, for example, enabled us to naturally establish the
strong secrecy property, which, as is well known, would
not be quite easy to be attained by the usual typical
sequence arguments.

• Most importantly, we see that there exists a crucial
difference between [20] and this paper from the cod-
ing theoretic standpoint. Seemingly, both invoke the
block Markov coding scheme as devised in [16], which
is furnished with a kind of forward-backward coding
procedure.

However, in [20], the “recursive” forward-backward
coding procedure is employed in the sense that the
j -th encoding in each block j is carried out (which is
carried over to the next block j+1) according to the order
j = 1, 2, · · · , b. During this procedure over the total b
blocks no decoding is carried out. When the encoding
reaches the final block j = b the decoding procedure
gets started, which is carried back to block j = b − 1.
This decoding procedure is repeated backward according
to the order j = b, b − 1, · · · , 1, which causes at worst
“2b block decoding delay” in the whole process.

On the other hand, this paper employs the “iterative”
forward-backward coding procedure in the sense that not
only the j -th encoding in each block j (which is carried
over to the next block j + 1) but also the decoding for
the previous block j − 1 are carried out according to
the order j = 1, 2, · · · , b. This one-way coding scheme
causes only “one block decoding delay.”

Why is this difference? The reason for this is that
in [20] the decoding operation in block j is to be made
upon receiving the information S j Y j but the decoding
operation for S j is postponed to the next block j +1 and
it is in turn postponed to block j + 2, and recursively
so on to reach the final block j = b. Thus, actually, S j

is decoded according to the order j = b, b − 1, · · · , 1.
In contrast with this, in this paper the decoding operation
in block j is made upon receiving the information Y j ,
based on which U j is decoded and used to decode S j−1
in block j − 1, and then proceed to the next block j + 1.
This means that only one block decoding delay and hence
low complexities are needed.

VI. CONCLUDING REMARKS

In this last section, let us get started with quoting a
paragraph from Chia and El Gamal [17], which addressed an
interesting non-trivial problem:

“We used key generation from state information to improve
the message transmission rate. It may be possible to extend
this idea to the case when the state information is available
only at the encoder. This case, however, is not straightforward

to analyze since it would be necessary for the encoder to
reveal some state information to the decoder (and, hence,
partially to the eavesdropper) in order to agree on a secret
key, which would reduce the wiretap coding part of the
rate.”

Motivated by it, we have investigated the coding problem
for WCs with causal CSI at Alice and/or Bob, and established
reasonable lower bounds on the secrecy capacity, which are
summarized as Theorems 1 (one of the key results in this
paper). Although Theorem 1 treats the WC with CSI available
only at Alice, it can actually be useful enough for investigating
general WCs with three correlated causal CSIs available at
Alice, Bob and Eve, respectively. We would like to remind
that this seemingly “general” WCs can actually be reduced to
our WCs with CSI available only at Alice. In this connection,
the reader may refer, for example, to Khisti et al. [15], and
Goldfeld et al. [25].

As was pointed out in Section V, the main ingredients
thereby to establish Theorems 1 actually consist of the well-
established information-theoretic lemmas such as Slepian-
Wolf coding, Csiszár-Körner’s key construction, Gallager’s
maximum likelihood decoding, and Han-Verdú’s resolvability
argument, while not invoking the celebrated argument of typ-
ical sequences, which enabled us to well handle also the case
with alphabets not necessarily finite, for example, including
possibly the case of Gaussian WCs with CSI. Actually, this
approach enabled us to derive some interesting results for
degraded WCs as follows. Theorem 2 gives lower and upper
bounds for the secret (-message) capacity, while, fortunately,
the exact formula for the secret-key capacity has been deter-
mined. Corollary 3 shows a causal secrecy capacity with one-
sided CSI, which has nice correspondence with the interesting
result of Chia and El Gamal with two-sided CSI [17], while
Theorem 4 gives the secrecy capacity for binary WCs with
one-sided CSI to establish a counterpart of Gaussian WCs
studied by Costa [32] as “Writing on dirty paper.” Thus,
these results together would provide a basic basis for further
investigation of WCs with causal CSI.

APPENDIX A
PROOF OF LEMMA 5

Proof of i): We can rewrite the security index S(κ(S j )
σ (S j )|Z j ) in (18) of Lemma 2 as

S(κ(S j )σ (S j )|Z j )

= S(K j N j+1|Z j )

= D(PK j N j+1 ||QK j N j+1 ) + I (K j N j+1; Z j )

≥ I (K j N j+1; Z j ), (107)

which together with Lemma 2 gives i).
Proof of ii): Here we use the following recurrence relation:

I (K j−1 N j ; Z j−1|H)

= I (K j−1 N j ; Z j−1|H)

+I (K j−1 N j ; Z j−2|Z j−1H)

≤ I (K j−1 N j ; Z j−1|H)

+I (K j−2 N j−1 K j−1 N j ; Z j−2|Z j−1H)
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( j )= I (K j−1 N j ; Z j−1|H)

+I (K j−2 N j−1; Z j−2|Z j−1H)

(k)≤ I (K j−1 N j ; Z j−1|H)

+I (K j−2 N j−1; Z j−2|H), (108)

where ( j) follows from the Markov chain property Z j−2 →
K j−2 N j−1 → K j−1 N j given Z j−1H; (k) follows from the
Markov chain property Z j−2 → K j−2 N j−1 → Z j−1 given
H. Then, taking the summation of both sides in (108) over
j ∈ [1 : l] (1 ≤ l ≤ b) we have

I (Kl−1 Nl ; Zl−1|H) ≤
l∑

j=1

I (K j−1 N j ; Z j−1|H)

≤
b∑

j=1

I (K j−1 N j ; Z j−1|H)

(m)= bε, (109)

where we have noticed that I (K j−2 N j−1; Z j−2|H) = 0
for j = 1 and (m) follows from i) of Lemma 5, thereby
completing the proof.

APPENDIX B
PROOF OF LEMMA 6

The proof is carried out basically along the line of Han and
Verdú [31, (8.3)] and Hayashi [21, Theorem 3]). We evaluate
here the resolvability in terms of I (M0 j ; S j Z j |H) under rate
constraint

R − R0 > I (U ; SZ), (110)

which is developed as follows.
For each m0 ∈ [1 : 2nR0 ], let U(m0) denote the random

variable u j (L(m0)) where L(m0) is distributed uniformly on
the bin B(m0) with rate constraint (110), and define the
channel

W (t|u)
�= PT(m0)|U(m0),

where T(m0)
�= (S(m0), Z(m0)), t

�= (s, z) and we notice that
PS(m0)Z(m0)|U(m0) does not depend on m0, so that we can write
PUSZ instead of PU(m0)S(m0)Z(m0). Now, set

Ln = 2n(R−R0) (111)

and

iUW (u, t) = log
W (t|u)

PT(t)
. (112)

Then,

I (M0 j ; S j Z j |H)

= 1

2nR0

2nR0∑
m0=1

EHD(PT(m0)|U(m0)||PT(m0))

(a)= EHD(PT|U||PT)

=
∑

t∈Sn×Zn

∑
c1∈Un

· · ·
∑

cLn ∈Un

PU(c1) · · · PU(cLn)

· 1

Ln

Ln∑
j=1

W (t|c j ) log

(
1

Ln

Ln∑
k=1

exp iUW (ck, t)

)

=
∑

c1∈Un

· · ·
∑

cLn ∈Un

PU(c1) · · · PU(cLn )

·
∑

t∈Sn×Zn

W (t|c1) log

(
1

Ln

Ln∑
k=1

exp iUW (ck, t)

)

(b)≤
∑

c1∈Un

∑
t∈Sn×Zn

W (t|c1)PU(c1)

· log

(
1

Ln
exp iUW (c1, t)+ 1

Ln

Ln∑
k=2

E exp iUW (Ck, t)

)

(c)≤ E

[
log

(
1 + 1

Ln
exp iUW (U, T)

)]
, (113)

where (a) follows from the symmetry of the random code H;
(b) follows from the concavity of the logarithm; (c) is the
result of

E[exp iUW (Ck, t)] = 1

for all t ∈ Sn ×Zn and k = 1, 2, · · · , Ln . Now, with Q(u) =
PU(u), apply a simple inequality with 0 < ρ < 1 and x ≥ 0:

log(1 + x) = log(1 + x)ρ

ρ
≤ log(1 + xρ)

ρ
≤ xρ

ρ

to (113) to eventaully obtain

I (M0 j ; S j Z j |H)

≤ 1

ρLρ
n

E

(
W (T|U)

PT(T)

)ρ

= 1

ρLρ
n

∑
t∈Sn×Zn

∑
u∈Un

Q(u)W (t|u)

(
W (t|u)

PT(t)

)ρ

= 1

ρLρ
n

∑
t∈Sn×Zn

∑
u∈Un

Q(u)W (t|u)1+ρ PT(t)−ρ.

(114)

On the other hand, by virtue of Hölder’s inequality,( ∑
u∈Un

Q(u)W (t|u)1+ρ

)
PT(t)−ρ

=
( ∑

u∈Un

Q(u)W (t|u)1+ρ

) ( ∑
u∈Un

Q(u)W (t|u)

)−ρ

≤
( ∑

u∈Un

Q(u)W (t|u)
1

1−ρ

)1−ρ

(115)

for 0 < ρ < 1. Therefore, it follows from (111) that

I (M0 j ; S j Z j |H)

≤ 1

ρLρ
n

∑
t∈Sn×Zn

( ∑
u∈Un

Q(u)W (t|u)
1

1−ρ

)1−ρ

= 1

ρ
exp

[−[nρ(R − R0) + E0(ρ, Q)]] , (116)
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where

E0(ρ, Q)

= − log

⎡
⎣ ∑

t∈Sn×Zn

( ∑
u∈Un

Q(u)W (t|u)
1

1−ρ

)1−ρ
⎤
⎦ .

(117)

Then, by means of Gallager [28, Theorem 5.6.3], we have
E0(ρ, Q)|ρ=0 = 0 and

∂ E0(ρ, Q)

∂ρ

∣∣∣∣
ρ=0

= −I (Q, W )

= −I (U; SZ)
(d)= −nIU ; SZ), (118)

where (d) follows because (U, SZ) is a correlated i.i.d.
sequence with generic variable (U, SZ). Thus, for any small
constant τ > 0 there exists a ρ0 > 0 such that, for all
0 < ρ ≤ ρ0,

E0(ρ, Q) ≥ −nρ(1 + τ )I (U ; SZ) (119)

which is substituted into (116) to obtain

I (M0 j ; S j Z j |H)

≤ 1

ρ
exp

[−nρ(R − R0 − (1 + τ )I (U ; SZ))
]
. (120)

On the other hand, in view of (110), with some δ > 0 we can
write

R − R0 = I (U ; SZ) + 2δ, (121)

which leads to

R − R0 − (1 + τ )I (U ; SZ)

= I (U ; SZ) + 2δ − I (U ; SZ) − τ I (U ; SZ)

= 2δ − τ I (U ; SZ)). (122)

We notice here that τ > 0 can be arbitrarily small, so that the
last term on the right-hand side of (122) can be made larger
than δ > 0. Then, (120) yields

I (M0 j ; S j Z j |H) ≤ 1

ρ
exp[−nρδ], (123)

which implies that, for any small ε > 0,

I (M0 j ; S j Z j |H) ≤ ε (124)

for all sufficiently large n, completing the proof of
Lemma 6.
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