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Optimal Pliable Fractional Repetition Codes
That Are Locally Recoverable:
A Bipartite Graph Approach

Yi-Sheng Su

Abstract— The main purpose of this paper is to construct
pliable fractional repetition (FR) codes that are locally recover-
able for distributed storage systems (DSSs). FR codes are integral
in constructing a class of distributed storage codes with exact
repair by transfer. Pliable FR codes are a new type of FR codes
in which both the per-node storage and repetition degree can
easily be adjusted simultaneously; thus, pliable FR codes are
vital for DSSs in which parameters can dynamically change over
time. However, the constructions of pliable FR codes with repair
locality remain unknown. In addition, the tradeoffs between the
code minimum distance of an FR code and its repair locality
are not fully understood. To address these problems, this paper
first presents general results regarding FR codes. Subsequently,
this paper presents an improved Singleton-like bound for locally
recoverable FR codes under an additional requirement that each
node must be part of a local structure that, upon failure, allows it
to be exactly recovered by a simple download process. Moreover,
this paper proposes a construction of locally recoverable FR
codes that can achieve the proposed Singleton-like bound; this
construction is based on bipartite graphs with a given girth.
In particular, this paper also proposes a general bipartite-graph-
based approach to constructing optimal pliable FR codes with
and without repair localities; in this approach, a new family of
bipartite graphs, called matching-feasible graphs, is introduced.
Finally, this paper proposes the explicit constructions of optimal
pliable FR codes by using a family of matching-feasible graphs
with arbitrary large girth. Notably, in addition to attaining a
Singleton-like bound for FR codes, the explicit pliable FR codes
are optimal locally recoverable FR codes from two perspectives
of repair locality. The explicit pliable FR codes can also be used
as FR batch codes to provide load balancing in DSSs.

Index Terms— Bipartite graphs, combinatorial batch codes,
data reconstruction, distributed storage systems, girth, pliable
fractional repetition codes, repair locality.

I. INTRODUCTION

IN GENERAL, a distributed storage system (DSS) is formed
by networking together numerous, say n, inexpensive and
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unreliable storage devices (hereafter referred to as nodes).
To provide reliable access to data stored in a DSS, data redun-
dancy based on coding techniques is introduced in DSSs. Tra-
ditional coding techniques for DSSs are to 1) treat the file to
be stored in a DSS as a set of information symbols over a suf-
ficiently large finite field, 2) use an (n, k) maximum-distance
separable (MDS) code [e.g., a Reed-Solomon (RS) code] to
generate coded symbols, and 3) store the coded symbols in
the n nodes to allow any data collector to reconstruct the
entire file by downloading the data stored in any k < n
nodes. One of the limitations related to such approaches is that,
upon failure of a single node, an amount of data equivalent to
reconstruct the file must be downloaded from the remaining
nodes. Because single-node failures occur frequently in large-
scale DSSs, a considerable volume of network traffic must
be dedicated to the repair of failed nodes. Therefore, DSSs
must be designed to repair single-node failures efficiently.
The design of new erasure coding techniques for DSSs has
attracted considerable attention in academia and in industry
over the past decade [1]–[35].

A. Related Work

In [2] and [6], a new construction of erasure codes, called
exact-repair minimum bandwidth regenerating (MBR) codes
with repair by transfer (or called uncoded repair), has been
proposed for DSSs. The codes in [2] and [6] enable uncoded
exact node repair with the minimum repair-bandwidth and
disk-I/O by requiring 1) that a failed node must be replaced
by a replacement node that stores data identical to those in the
failed node and 2) that every node participating in a node repair
process must only pass, without any decoding, exactly one
coded symbol that will be directly stored in the replacement
node. The construction in [2] and [6] involves a concatenation
of an outer MDS code with an inner repetition code based on
a complete graph.

The codes in [2] and [6] were subsequently generalized
and a new family of distributed storage codes with exact
repair by transfer was proposed in [24]. The new family of
distributed storage codes in [24] relaxes the requirement of
an arbitrary fixed-size subset of nodes for repairing a failed
node; under this requirement, a replacement node can connect
to only certain fixed subsets of nodes for repair, and the repair
thus becomes table-based. Similar to the codes in [2] and [6],
the new family of distributed storage codes in [24] consists
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of the concatenation of an outer MDS code and an inner
repetition code. The inner repetition codes in [24], however,
are different from those in [2] and [6] and are called fractional
repetition (FR) codes. The new family of distributed storage
codes in [24] can be briefly summarized as follows: Given
a file to be stored in a DSS, the file is first encoded using
an outer MDS code. The encoded symbols obtained from the
outer MDS code are then placed in different nodes according
to an inner FR code. The purpose of the inner FR code is to
specify the placement of the encoded symbols in the nodes
such that certain desirable properties are satisfied, which is
explained in a later section.

FR codes constitute a notable erasure coding technique
for DSSs. Constructions for FR codes have been considered in
numerous papers starting from [24]. In [24], constructions of
FR codes based on regular graphs and Steiner systems were
presented, and bounds on the file size (i.e., the maximum
amount of data that can be stored in a DSS using an FR
code) were also discussed. In [25], optimal FR codes that
attain the bounds on the file size were presented. In [26], DSSs
of which the storage capacity per node is considerably larger
than the repetition degree (i.e., the number of repetitions of the
coded symbols) were investigated, for which explicit construc-
tion algorithms based on bipartite cage graphs and mutually
orthogonal Latin squares were proposed. In [27] and [28],
generalization of FR codes to general or irregular FR codes
for heterogeneous DSSs has been considered, where each
node can store a different amount of coded symbols or each
coded symbol can have a different repetition degree. In [29],
FR codes that have adaptable storage capacity per node, called
adaptive FR codes, were considered, and constructions of
adaptive FR codes based on symmetric designs were pre-
sented. In [30] and [31], a class of FR codes from resolvable
designs was proposed, for which the repetition degree can be
varied in a simple manner. Recently, in [32], a new type of
FR codes, called pliable FR codes, was introduced, for which
both the per-node storage and repetition degree can easily be
adjusted simultaneously. Constructions of pliable FR codes
were also proposed in [32].

In addition to repair-bandwidth and disk-I/O, repair locality
is a crucial metric in large-scale DSSs [17]–[23]. There-
fore, FR codes with locality, called locally recoverable FR
codes and also known as locally repairable FR codes, were
first introduced in a conference [33] and later appeared in
a journal publication [31]; in these studies, the trade-offs
between the code minimum distance of an FR code and its
repair locality (i.e., upper bounds on the minimum distance
of locally recoverable FR codes) were identified/discovered,
and constructions of locally recoverable FR codes that can
achieve the trade-offs were also proposed. In [34], locally
recoverable FR codes with small repetition degrees (i.e., rep-
etition degrees 2 and 3) were investigated. Moreover, in [35],
a construction of locally recoverable FR codes based on
symmetric designs was presented.

B. Contributions of This Paper
Pliable FR codes are vital for DSSs in which parameters

can dynamically change over time. Although pliable FR codes

were constructed in [32], optimal pliable FR codes that are
locally recoverable remain unknown. Additionally, the trade-
offs between the code minimum distance of an FR code and its
repair locality were not completely resolved in [31] and [33].
Moreover, in [31] and [33], the proposed code construction
that can achieve an upper bound on the minimum distance of
locally recoverable FR codes imposes additional requirements
on code parameters and is limited to very specific choices of
file size. To address these limitations, this paper proposes a
general bipartite-graph-based approach to constructing opti-
mal pliable FR codes that are locally recoverable from the
two perspectives of repair locality specified by the bounds
in (4) and (6). This paper also presents an improved upper
bound on the minimum distance of locally recoverable FR
codes as well as a code construction that can achieve the
presented upper bound. The contributions of this paper are
summarized as follows.

• This paper presents general results regarding FR codes,
including the exact file size of FR codes, a condition
under which an FR code attains an upper bound on
the file size, and a condition under which an FR code
is optimal with respect to a Singleton-like bound on
its minimum distance. These results are obtained by
exploiting a bipartite graph representation of FR codes,
along with a given girth.1

• This paper presents an improved Singleton-like bound for
locally recoverable FR codes under an additional require-
ment that each node must be part of a local structure that,
in case of failure, allows it to be exactly recovered just
by a simple download process. This paper also proposes
a construction of locally recoverable FR codes that can
achieve the improved Singleton-like bound; this construc-
tion is based on bipartite graphs with a given girth.

• This paper proposes a general bipartite-graph-based
approach to constructing optimal pliable FR codes with
and without repair locality; in this approach, a new fam-
ily of bipartite graphs, called matching-feasible graphs,
is introduced. Matching-feasible graphs are used to con-
struct optimal pliable FR codes that are locally recover-
able from the perspectives of repair locality in (4) and (6).
Additionally, FR batch (FRB) codes are constructed
from matching-feasible graphs, for which the batch size
(i.e., the number of symbols that can be read in parallel)
is determined exactly [25].

• This paper proposes an explicit construction of optimal
pliable FR codes that attain a Singleton-like bound for
FR codes, by specializing to a family of matching-feasible
graphs with arbitrary large girth. Notably, the explicit pli-
able FR codes and their transposed counterparts (i.e., the
codes obtained by reversing the roles of storage nodes
and the MDS coded symbols of the explicit pliable FR
codes, which are also pliable) are also optimal locally
recoverable FR codes and can be used as FRB codes.

C. Organization
The remainder of this paper is organized as follows.

In Section II, the definitions of FR codes including pliable

1The girth of a bipartite graph is the length of its shortest cycles.
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FR codes are reviewed, and a brief overview of their vital
properties is also provided. In Section III, some general results
on FR codes are presented, and in Section IV, an improved
Singleton-like bound for locally recoverable FR codes and a
code construction that can achieve the improved Singleton-like
bound are presented. Furthermore, in Section V, a bipartite-
graph-based approach to constructing optimal pliable FR codes
with and without repair locality is presented. In Section VI,
explicit constructions of optimal pliable FR codes that are
locally recoverable are proposed. Section VII presents a com-
parison of the proposed FR codes with related results in the
literature. Finally, in Section VIII, concluding remarks with a
discussion of opportunities for future work are presented.

II. PRELIMINARIES

An (n, k, d)-DSS is formed by networking together n nodes
such that any data collector that can contact any k out of
the n nodes can recover the file stored in the DSS. When a
single node fails, an (n, k, d)-DSS allows a replacement node
to reconstruct the data stored in the failed node by connecting
to some d helper nodes out of the remaining n − 1 nodes.
Before proceeding, some notation is established as follows.
Let Zi denote {0, 1, . . . , i − 1} for any positive integer i
and let � � Zθ denote the index set of θ (coded) symbols
{c0, c1, . . . , cθ−1} that are obtained from an outer (θ, M(k))
MDS code, where M(k) denotes the size of the file stored
in the DSS. Furthermore, let V � {V0, V1, . . . , Vn−1} be a
collection of n subsets of �. Then, FR codes can be defined
as follows [30], [31].

Definition 1: An FR code C for an (n, k, d)-DSS with
repetition degree ρ is a pair (�,V) such that the following
properties are satisfied:

1) for each i ∈ Zn , |Vi | = α, where | · | is the cardinality
of a finite set,

2) each element of � belongs to exactly ρ sets in V , and
3) for any (ρ − 1)-subset ˜V of V and for each Vi ∈ ˜V,

there exists some d-subset
{

Vr0 , Vr1 , . . . , Vrd−1

}

of V \˜V
such that for each j ∈ Zd , |Vr j ∩ Vi | = 1, and
⋃d−1

j=0

(

Vr j ∩ Vi
) = Vi .

In Definition 1, every set Vi ∈ V denotes a set of indices
of the symbols stored in node i . Therefore, Property 1 states
that α is the per-node storage, and Property 2 indicates
that ρ denotes the repetition degree. Moreover, Property 3
states that the data stored in node i can be recovered by
downloading a β = 1 symbol from each of the d helper
nodes r0, r1, . . . , rd−1. This indicates that a replacement node
downloads dβ = d symbols in total for repairing a failed node.
To support β > 1, trivial β-expansion (i.e., replicating the
symbols in the storage system) may be employed. Suppose
that the DSS operates at the MBR point, under which the
condition α = dβ = d is necessary. Therefore, α and d are
used interchangeably in this paper. Additionally, for simplicity,
the notion of incidence matrices is used in this paper to
alternatively denote FR codes, as detailed subsequently.

Definition 2: An incidence matrix N of an FR code C =
(�,V) is a θ × n binary matrix, with the (i, j)th entry equal
to 1 if the index i of the coded symbol ci is contained

in Vj (i.e., i ∈ Vj ) and equal to 0 otherwise, where i ∈ Zθ

and j ∈ Zn .
A crucial property of FR codes is the size of the file stored

in the DSS. In an (n, k, d)-DSS, the stored file should be
reconstructed from any set of k nodes; therefore, the file size
depends on the parameter k and is defined as follows.

Definition 3: The file size that is supported by an FR code
C = (�,V) for an (n, k, d)-DSS, denoted by M(k), is equal
to the minimum number of distinct symbols stored in any set
of k nodes and is given by

M(k) = min
{I⊆Zn ||I |=k}

| ∪i∈I Vi |. (1)

The following lemma provides a tight upper bound on the
file size that is supported by an FR code [24], [25].

Lemma 1: The file size that is supported by an FR code
C = (�,V) for an (n, k, d)-DSS is bounded from above by

M(k) ≤ ϕ(k) (2)

where ϕ(k) is defined recursively by

ϕ(1) = α,

ϕ(k + 1) = ϕ(k) + α −
⌈

ρϕ(k) − kα

n − k

⌉

.

Another crucial property of FR codes is their minimum
distance. The proposed FR codes are evaluated in terms of
minimum distance. The minimum distance of FR codes is
defined as follows [30], [31].

Definition 4: The minimum distance of an FR code C =
(�,V) for an (n, k, d)-DSS, denoted by dmin(C), is equal to
the smallest size of a subset ˜V of V such that the number of
distinct symbols in V \ ˜V is less than the file size M(k). The
minimum distance can be explicitly formulated as follows:

dmin(C) = min{J⊆Zn||∪i∈Zn \J Vi |<M(k)} |J | .

In other words, the minimum distance is equal to the size of
a smallest subset of nodes whose failure guarantees that the file
stored in the DSS cannot be reconstructed from the surviving
nodes. The following lemma provides a Singleton-like bound
on the minimum distance of an FR code [30], [31].

Lemma 2: The minimum distance of an FR code C =
(�,V) for an (n, k, d)-DSS is bounded from above by

dmin(C) ≤ n −
⌈

M(k)

α

⌉

+ 1. (3)

FR codes with the local repair property (i.e., FR codes with
d < k) are introduced as follows.

Definition 5: An FR code C = (�,V) for an (n, k, d)-DSS
is said to be locally recoverable if the condition d < k is
satisfied.

Codes with the local repair property receive a penalty on
the maximum possible minimum distance [19], and FR codes
are no exception. In fact, when d < k, the Singleton-like
bound in (3) must be refined, as detailed in the following
lemma [31], [33].

Lemma 3: Let C = (�,V) be an FR code for an
(n, k, d)-DSS. The minimum distance of C is bounded from
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above by

dmin(C) ≤ n −
⌈

M(k)

α

⌉

−
⌈

M(k)

dα

⌉

+ 2. (4)

Remark 1: By comparing the Singleton-like bound in (3)
with the Singleton bound (i.e., dmin ≤ n − k + 1), one can
see that a given FR code for an (n, k, d)-DSS meets the
Singleton-like bound in (3) if k = � M(k)

α �. Similarly, a given
locally recoverable FR code for an (n, k, d)-DSS meets the
Singleton-like bound in (4) if k = � M(k)

α �+� M(k)
dα �−1. These

observations provide simple means of examining whether an
FR code is optimal with respect to the Singleton-like bounds
in (3) and (4).

Definition 6 describes a new type of FR codes, called pliable
FR codes; this definition was introduced in [32], and these
pliable FR codes are the primary focus of this paper.

Definition 6: Let C = (�,V) be an FR code for an
(n, k, d)-DSS. Accordingly, C is considered to be pliable if
the following two properties are satisfied:

1) � can be partitioned into disjoint subsets (called index
groups) such that each index group and each Vi ∈ V
intersect in exactly one symbol index in �, and

2) V can be partitioned into disjoint subsets (called parallel
classes) such that each parallel class contains all the
symbol indices in � and any two different Vi , Vj ∈
V in a given parallel class have no symbol indices in
common.

Remark 2: In Definition 6, each index group is a single
subset of �, whereas each parallel class comprises several sub-
sets of �. Moreover, according to Property 1 of Definition 6,
the per-node storage can be varied by simply adjusting the
number of index groups. Similarly, according to Property 2
of Definition 6, the repetition degree can be easily varied
by changing the number of parallel classes. Some parameters
of pliable FR codes can be determined from Definitions 1
and 6 as follows. First, according to Properties 1 and 2 of
Definition 6, the total number of index groups in a pliable FR
code must be equal to α and the total number of parallel classes
must be equal to ρ. Next, with Property 1 of Definition 6
as well as Property 2 of Definition 1, n must be divided
by ρ, and each index group thus contains n

ρ symbol indices.
Similarly, with Property 2 of Definition 6 as well as Property 1
of Definition 1, θ must be divided by α, and each parallel class
thus comprises θ

α subsets of �.
Through the establishment of a connection to combinatorial

batch codes, FR codes can provide load balancing in DSSs,
which are called FRB codes [25], as detailed in the following
passages.

Definition 7: An FRB code with batch size t is an FR code
C = (�,V) with the additional property that any batch of t
symbols from {c0, c1, . . . , cθ−1} can be retrieved by reading
at most one symbol from each node.

In Definition 7, load balancing in DSSs is achieved by limit-
ing the maximum number of symbols that can be downloaded
from each node, which is set to 1. Notably, the retrieval of t
symbols can be performed by t different users in parallel such
that each user retrieves a different symbol.

A graph G = (Y ∪ Z , E) is called bipartite if its vertex set
can be partitioned into two parts Y and Z such that for every
edge {y, z} ∈ E , either y ∈ Y and z ∈ Z or z ∈ Y and y ∈ Z .
As with FR codes, for simplicity, the notion of biadjacency
matrices is used in this paper to alternatively denote bipartite
graphs, as detailed subsequently.

Definition 8: Let G = (Y ∪ Z , E) be a bipartite graph
with the set of vertices consisting of two parts: Y =
{

y0, y1, . . . , y|Y |−1
}

and Z = {

z0, z1, . . . , z|Z |−1
}

. The biad-
jacency matrix of G is a |Y | × |Z | binary matrix B in which
the (i, j)th entry is equal to 1 if

{

yi , z j
} ∈ E and equal to 0

otherwise.
Remark 3: If one views an incidence matrix as a biadja-

cency matrix, one can represent an FR code C = (�,V) using
a bipartite graph representation, where the vertex set is �∪V
and the edge set comprises edges of the form

{

i, Vj
}

, where
i ∈ Zθ , Vj ∈ V , and i ∈ Vj .

III. GENERAL RESULTS ON FR CODES

This section presents general results on FR codes. First,
the following theorem provides a general result on the exact
file size that is supported by FR codes and a condition under
which an FR code attains the upper bound on the file size
in (2).

Theorem 1: Let g be the girth of the bipartite graph rep-
resenting an FR code C = (�,V) for an (n, k, d = α)-DSS
with repetition degree ρ. Then, the file size that is supported
by C can be determined as follows:

M(k) =
{

kα − (k − 1), if 1 ≤ k ≤ g
2 − 1

g
2 α − g

2 , if k = g
2 .

(5)

Moreover, C attains the upper bound on the file size in (2)
for any 1 ≤ k ≤ min( g

2 − 1, k), where k is the lowest value
of k such that kα − (k − 1) > n−1

ρ−1 holds; in other words,

k = � n−ρ
(α−1)(ρ−1)�.

Proof: For the file size M(k), consider first the case of
k = g

2 . Notably, in a bipartite graph with girth g, there exist
no cycles of length g−2 or less. This, along with the structure
of a cycle of length g, implies that in any k = g

2 columns of
the incidence matrix of C, there are exactly g

2 rows containing
exactly two 1’s, and all the other rows each contain at most one
1. This indicates that M( g

2 ) = g
2 α− g

2 . Notably, for the case of
1 ≤ k ≤ g

2 −1, in any 1 ≤ k ≤ g
2 −1 columns of the incidence

matrix of C, there must be k − 1 rows containing exactly
two 1’s, and all the other rows each contain at most one 1.
Accordingly, for any 1 ≤ k ≤ g

2 − 1, M(k) = kα − (k − 1).
For the achievability of the upper bound in (2), one can
readily verify that, if kα − (k − 1) ≤ n−1

ρ−1 , the recursive
definition of ϕ(k) in Lemma 1 implies that ϕ(k) = kα −
(k − 1). Therefore, C attains the upper bound on the file
size in (2) for 1 ≤ k ≤ min( g

2 − 1, k). This completes the
proof.

Remark 4: According to Theorem 1, when g ≥ 2α,
the exact file size of FR codes can be completely determined
for any 1 ≤ k ≤ α. However, when g < 2α, the file size for
g
2 + 1 ≤ k ≤ α remains unclear. Notably, characterizing the
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file size for g
2 + 1 ≤ k ≤ α is generally nontrivial, and the

file size depends heavily on the cycles in the representative
bipartite graphs when k exceeds g

2 [32].
The following theorem provides a general result on the

achievability of the Singleton-like bound in (3) in terms of
the girth of the representative bipartite graphs of FR codes.

Theorem 2: Let C = (�,V) be an FR code for an
(n, k, d = α)-DSS. Furthermore, let g denote the girth of
the bipartite graph representing C. Accordingly, C is optimal
with respect to the Singleton-like bound in (3) for 1 ≤ k ≤
min(d, g

2 ) − I{d= g
2 }, where I{·} denotes the indicator of an

event {·}.
Proof: Suppose that d 
= g

2 and consider first the case
of min(d, g

2 ) = d , under which g ≥ 2(d + 1) must hold.
Therefore, according to Theorem 1, for any 1 ≤ k ≤ d ,
M(k) = kα− (k −1). This indicates that � M(k)

α � = �k − k−1
α �.

Because 1 ≤ k ≤ d = α, the condition 0 ≤ k−1
α < 1

must hold. Accordingly, � M(k)
α � = �k − k−1

α � = k. In other
words, according to Remark 1, C meets the Singleton-like
bound in (3) with equality for 1 ≤ k ≤ min(d, g

2 ) = d .
Next, consider the case of min(d, g

2 ) = g
2 , under which

d = α ≥ g
2 + 1 must hold. According to Theorem 1,

it is sufficient to consider only the case of k = g
2 , under

which M( g
2 ) = g

2 α − g
2 holds. Therefore, this indicates that

k = g
2 = � g

2 −
g
2
α � = � M( g

2 )

α � = � M(k)
α � must hold. According

to Remark 1, C meets the Singleton-like bound in (3) with
equality for 1 ≤ k ≤ min(d, g

2 ) = g
2 . Suppose now that d = g

2 .
Then, one can readily verify from the previous discussion
that C meets the Singleton-like bound in (3) with equality for
1 ≤ k ≤ min(d, g

2 ) − 1.
Remark 5: In addition to being beneficial for verifying

whether an FR code is optimal with respect to the Singleton-
like bound in (3), Theorem 2 provides insight into FR codes.
First, the proof of Theorem 2 implies that an FR code C is
optimal with respect to the Singleton-like bound in (3) for
1 ≤ k ≤ d = α if the bipartite graph representing C has girth
g ≥ 2(d+1). In other words, the larger g is, the more easily an
FR code meets the Singleton-like bound in (3) with equality.
Second, the proof of Theorem 2 also implies that an FR code
is optimal with respect to the Singleton-like bound in (3) for
1 ≤ k ≤ g

2 if α ≥ g
2 + 1. This indicates that a high value of α

is beneficial for achieving the Singleton-like bound in (3) for
FR codes.

IV. IMPROVED SINGLETON-LIKE BOUND OF LOCALLY

RECOVERABLE FR CODES AND ITS ACHIEVABILITY

As noted in Section II, when d < k, the Singleton-like
bound in (3) must be refined. A refinement is provided in
Lemma 3, i.e., the Singleton-like bound in (4). According to
the reports in [31] and [33], this section considers a refinement
of the bound in (3) under an additional requirement that each
node is part of a local structure (which actually forms an
FR code and is thus hereafter called a local FR code) that,
upon failure, allows it to be exactly recovered by a simple
download process. Theorem 3 is one of the main results of this
paper.

Theorem 3: Let C = (�,V) be a locally recoverable FR
code for an (n, k, d = α)-DSS, where each node is part of
a local FR code C ′ = (

�′,V ′), with |�′| = θ ′, |V ′| = n′,
per-node storage α′ = α and repetition degree ρ′. Accordingly,
the minimum distance of C is bounded from above by

dmin(C) ≤ n −
⌈
(

ρ′ − 1
)

θ ′⌊M(k)−1
θ ′

⌋+ M(k)

α

⌉

+ 1. (6)

Algorithm 1: Iteratively Construct a Sufficiently Large Set
S ⊂ V for Upper Bounding the Minimum Distance by
n −|S|; in This Algorithm, H (·) Is a Set Function Defined
Over the Power Set of V and H (X ) Returns the Index Set
of Distinct Symbols in Any Subset X ⊆ V

Input : C = (�,V), M(k)
Output: S

1 S = ∅
2 while |H (S)| < M(k) do
3 Select a local FR code C ′ = (

�′,V ′) with V ′ 
⊂ S
such that |�′ ∩ H (S)| is maximized.

4 if |H (S ∪ V ′)| < M(k) then
5 Set S = S ∪ V ′.
6 end
7 else
8 Identify the largest A ⊂ V ′ such that

|H (S ∪ A)| < M(k).
9 Set S = S ∪ A.

10 Exit.
11 end
12 end

Proof: The proof of this theorem follows that of [31,
Lemma 16] (or [33, Lemma 4]), which involves the use of
an algorithmic approach. The algorithm for determining the
minimum distance bound is presented in Algorithm 1, which
is a simplified version of the algorithms in [31] and [33].
In Algorithm 1, a sufficiently large set S ⊂ V is iteratively
constructed so that |H (S)| < M(k), where H (·) is a set
function defined over the power set of V and H (X ) returns the
index set of distinct symbols in any subset X ⊆ V . Notably, for
each local FR code C ′ = (

�′,V ′), the equation �′ = H (V ′)
must hold. With the output S obtained from Algorithm 1, the
minimum distance of C is bounded by dmin(C) ≤ n − |S|.
To simplify the following discussion, let Si denote the set S
at the i th iteration, where i is counted from 1. Si represents
the set of nodes (i.e., subsets of � in V) totally included
in S at the end of the i th iteration. Similarly, let H (Si)
represent the index set of distinct symbols included at the end
of the i th iteration. Furthermore, let si = |Si | − |Si−1| and
hi = |H (Si)| − |H (Si−1)| represent the increments of S and
H (S) between the (i − 1)th and i th iterations, respectively.

First, 0 ≤ si ≤ n′ must hold. Therefore, if the bipartite
graph representation of a local FR code C ′ is considered,
the minimum number of symbols covered by n′ − si nodes
(i.e., n′ − si subsets of �′ in V ′) is at least equal to (n′−si )α

′
ρ′ .
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Accordingly,

hi ≤ θ ′ − (n′ − si )α
′

ρ′
(∗)= siα

′

ρ′ , (7)

where step (∗) uses n′α′ = θ ′ρ′. Suppose that Algorithm 1
enters Line 5 u times. Then, according to (7),

∑u
i=1 si ≥

ρ′
α′
∑u

i=1 hi . If Algorithm 1 exits after entering Line 8, more
nodes must be added so that strictly less than M(k) −
∑u

i=1 hi symbols are covered. One can readily verify that at

least � M(k)−∑u
i=1 hi

α′ � more nodes can be included. Therefore,
the total number of nodes accumulated in S can be bounded
from below as follows:

|S| ≥ ρ′

α′
u
∑

i=1

hi +
⌈

M(k) −∑u
i=1 hi

α′

⌉

− 1 (8)

≥ ρ′ − 1

α′
u
∑

i=1

hi + M(k)

α′ − 1 (9)

(�)≥ ρ′ − 1

α′ θ ′
⌊

M(k) − 1

θ ′

⌋

+ M(k)

α′ − 1, (10)

where step (�) follows simply from long division that
θ ′� M(k)−1

θ ′ � is the largest multiple of θ ′ that is less than M(k).
The conclusion now follows from n − |S|.

Remark 6: One can readily verify that the upper bound
in (6) reduces to that in (3) when M(k) ≤ θ ′. This is because
M(k) ≤ θ ′ implies no repair locality (i.e., k ≤ d); under
this condition, it is sufficient to consider only one local FR
code and it becomes equivalent to exploring an FR code.
Therefore, the upper bound in (6) is more general than that
in [31] and [33], because the upper bound in [31] and [33]
requires the file size to be greater than θ ′ (i.e., M(k) > θ ′) and
cannot reduce to that in (3) when M(k) ≤ θ ′.2 In addition,
the upper bound in (6) is tighter than that in [31] and [33].
To demonstrate this, let M(k) = uθ ′ +φ, where u is a positive
integer and 0 < φ ≤ θ ′; moreover, consider the following two
cases of φ, because the upper bound in [31] and [33] consists
of two parts:

1) 0 < φ ≤ α′: In this case, the upper bound in [31]
and [33] becomes

dmin(C) ≤ n −
⌈

M(k)ρ′

α′

⌉

+ ρ′. (11)

Substitute M(k) = uθ ′ + φ into (6) and (11), and
consider the difference between the right-hand sides
of (11) and (6):

⌈

(ρ′ − 1) uθ ′ + uθ ′ + φ

α′

⌉

− 1 −
(⌈

uθ ′ρ′ + φρ′

α′

⌉

− ρ′
)

(♣)=
⌈

un′α′ + φ

α′

⌉

− 1 −
(⌈

un′α′ + φρ′

α′

⌉

− ρ′
)

2For self-containedness, the upper bound in [31] and [33] is provided as
follows:

dmin(C) ≤ max

(

n −
⌈

M(k)ρ′
α′

⌉

+ ρ′, n + n′ + 1 −
⌈

M(k)ρ′ + θ ′
α′

⌉)

.

(♦)= un′ −
(⌈

un′ + φρ′

α′

⌉

− ρ′
)

(♠)≥ un′ −
(⌈

un′ + α′ρ′

α′

⌉

− ρ′
)

= 0,

where step (♣) uses n′α′ = θ ′ρ′ and steps (♦) and (♠)
are due to the assumed condition 0 < φ ≤ α′.

2) α′ < φ ≤ θ ′: In this case, the upper bound in [31]
and [33] becomes

dmin(C) ≤ n + n′ + 1 −
⌈

M(k)ρ′ + θ ′

α′

⌉

. (12)

Similarly, substitute M(k) = uθ ′ + φ into (6) and (12),
and consider the difference between the right-hand sides
of (12) and (6):

n′ +
⌈

(ρ′ − 1) uθ ′ + uθ ′ + φ

α′

⌉

−
⌈

uθ ′ρ′ + φρ′ + θ ′

α′

⌉

(♣)= n′ +
⌈

un′α′ + φ

α′

⌉

−
⌈

un′α′ + φρ′ + θ ′

α′

⌉

= n′ +
⌈

φ

α′

⌉

−
⌈

φρ′ + θ ′

α′

⌉

(♦)=
⌈

θ ′ρ′ + φ

α′

⌉

−
⌈

φρ′ + θ ′

α′

⌉

=
⌈

θ ′ρ′ − θ ′ + θ ′ + φ

α′

⌉

−
⌈

φρ′ + θ ′

α′

⌉

=
⌈

θ ′(ρ′ − 1) + θ ′ + φ

α′

⌉

−
⌈

φρ′ + θ ′

α′

⌉

(♠)≥
⌈

φ(ρ′ − 1) + θ ′ + φ

α′

⌉

−
⌈

φρ′ + θ ′

α′

⌉

=
⌈

φρ′ + θ ′

α′

⌉

−
⌈

φρ′ + θ ′

α′

⌉

= 0,

where steps (♣) and (♦) use n′α′ = θ ′ρ′ and step (♠)
is due to the assumed condition α′ < φ ≤ θ ′.

The following provides a simple construction of locally
recoverable FR codes that can achieve the Singleton-like
bound in (6) with equality on the basis of bipartite graphs
with a given girth.

Theorem 4: Let C ′ = (

�′,V ′) be an FR code for an
(n′, k ′, d ′ = α′)-DSS with θ ′ symbols and repetition degree
ρ′ such that the bipartite graph representing C ′ has girth g.
Suppose that a locally recoverable FR code C = (�,V)
is constructed from C ′ by considering the disjoint union of
w ≥ 1 copies of C ′ and let the file size of C be given by
M(k) = uθ ′ + k ′α′ − (k ′ − 1) for some 0 ≤ u < w and
1 ≤ k ′ ≤ min

(

α′, g
2 − 1

)

. Accordingly, C is optimal with
respect to the Singleton-like bound in (6).

Proof: If M(k) = uθ ′ + k ′α′ − (k ′ − 1) is substituted into
the Singleton-like bound in (6), the minimum distance bound
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in (6) becomes

dmin(C) ≤ wn′−
⌈

u
(

ρ′−1
)

θ ′+uθ ′+k ′α′ − (k ′ − 1)

α′

⌉

+ 1

(♣)= wn′ −
⌈

un′α′ + k ′α′ − (k ′ − 1)

α′

⌉

+ 1

(♦)= (w − u) n′ − k ′ + 1,

where step (♣) uses n′α′ = θ ′ρ′ and step (♦) is due to the
condition 1 ≤ k ′ ≤ min

(

α′, g
2 − 1

)

. Therefore, C is optimal
with respect to the Singleton-like bound in (6) when any k =
un′ + k ′ nodes (i.e., k = un′ + k ′ subsets of � in V) cover
at least M(k) = uθ ′ + k ′α′ − (k ′ − 1) symbols. For the proof,
a greedy selection of un′ + k ′ nodes from V that cover exact
M(k) = uθ ′ +k ′α′ −(k ′ −1) symbols is first presented herein;
followed by a demonstration that any other selection of un′+k ′
nodes cannot cover fewer symbols than the greedy selection.
The greedy selection of un′ + k ′ nodes follows the greedy
paradigm and works as follows. Initially, a node is randomly
selected from V . Subsequently, among the remaining nodes,
the node that contributes the smallest increment of symbols3 is
selected; this selection process is repeated until a total of un′+
k ′ nodes are selected. Similar to Algorithm 1, one can see 1)
that the greedy selection of the first un′ nodes is equivalent
to picking any u local FR codes and 2) that the last k ′ nodes
are picked from another local FR code. One can readily verify
that the previously explained greedy selection of un′+k ′ nodes
covers exact M(k) = uθ ′ + k ′α′ − (k ′ − 1) symbols. To show
that the aforementioned greedy selection of un′ + k ′ nodes
covers the least number of symbols, suppose that a selected
node in the greedy selection is now replaced by another node,
say Vi , that has yet to be selected. If Vi belongs to a “new”
local FR code, the replacement must lead to an increase in
M(k). However, if Vi belongs to the same local FR code as
the last k ′ selected nodes, the replacement cannot cause M(k)
to decrease either; otherwise, it leads to a contradiction of the
assumption that each selected node contributes the smallest
increment of symbols. According to the preceding discussion,
the greedy selection of un′ + k ′ nodes must cover the least
number of symbols. This completes the proof.

Example 1: Let C ′ = (

�′,V ′) be an FR code for an
(n′ = 9, k ′, d ′ = α′ = 3)-DSS with θ ′ = 9 symbols and
repetition degree ρ′ = 3. Suppose that the incidence matrix N
of C ′ is given as follows:

N =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

1 0 0 0 1 0 0 0 1

0 1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (13)

3If there is a tie, randomly choose one.

As shown in the columns 0, 3, and 8, the girth of the bipartite
graph representing C ′ is equal to g = 6. Next, suppose that a
locally recoverable FR code C = (�,V) is constructed from
C ′ by considering the disjoint union of w = 3 copies of C ′,
and let u = 2 and k ′ = 2 such that the file size of C is given
by M(k) = uθ ′+k ′α′−(k ′−1) = 2×9+2×3−(2−1) = 23.
One can readily verify that any set of 20 nodes covers at least
23 symbols; therefore, the minimum distance of C is equal to
8 when the file size is equal to 23. This coincides with (6).
However, the upper bound in [31] and [33] becomes the upper
bound in (12) and yields dmin(C) ≤ 11, which is obviously not
sufficiently tight. �

Remark 7: In Theorem 4, setting w = 1 reveals that C
is optimal with respect to the Singleton-like bound in (3)
when the file size is equal to M(k) = k ′α′ − (k ′ − 1) for
1 ≤ k ′ ≤ min

(

α′, g
2 − 1

)

. This is consistent with the result in
Theorem 2.

V. BIPARTITE-GRAPH-BASED APPROACH

TO CONSTRUCTING OPTIMAL

PLIABLE FR CODES

This section presents a bipartite-graph-based approach to
constructing optimal pliable FR codes and shows that the
proposed approach can yield optimal pliable FR codes that are
locally recoverable from the two perspectives of repair locality
specified by the bounds in (4) and (6). First, a new family of
bipartite graphs is introduced in the following subsection.

A. A New Family of Bipartite Graphs

Some background information on matchings in bipartite
graphs are first provided as follows. A matching in a bipartite
graph G = (Y ∪ Z , E) is a subset of edges H ⊆ E , no two of
which have a common vertex. A matching in a bipartite graph
G = (Y ∪ Z , E) is said to be perfect if every vertex in Y ∪ Z
is incident to exactly one edge of the matching. A new family
of bipartite graphs, called matching-feasible graphs, is then
defined as follows.

Definition 9: A bipartite graph G = (Y ∪ Z , E) is consid-
ered to be matching-feasible if each of the two parts Y and Z
can be further grouped into clusters such that for every pair
of clusters

{

Yi , Z j | Yi ⊂ Y, Z j ⊂ Z
}

from different parts,
the edges of the subgraph induced by Yi ∪ Z j form a perfect
matching of this subgraph.

Some properties and parameters of a matching-feasible
graph G = (Y ∪Z , E) can be determined from the definition of
perfect matchings and Definition 9 as follows. First, according
to the properties of perfect matchings, all the perfect matchings
between clusters must be of equal size (i.e., the same number
of edges must exist in the perfect matchings). Therefore,
the size of the perfect matchings between clusters is hereafter
denoted by h. Then, according to Definition 9, all the clusters
in Y and Z must be the same size h. Second, the number of
clusters in Y (resp. Z ) must be equal to |Y |

h (resp. |Z |
h ). Third,

according to Definition 9, all the nodes in Y (resp. Z ) must
have the same degree |Z |

h (resp. |Y |
h ). Fourth, if a cluster and

a perfect matching can be regarded as a “supernode” and a
“superedge,” respectively, a matching-feasible graph becomes
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Fig. 1. Matching-feasible graph G = (Y ∪ Z , E), where the two parts Y and Z can be divided into three and two clusters of size h = 7, respectively. The
degrees of the nodes in Y and Z are equal to 2 and 3, respectively. The edge set E can be divided into six disjoint perfect matchings of size h = 7.

a complete bipartite “supergraph.” Accordingly, the edge set E
can be divided into |Y |·|Z |

h2 disjoint perfect matchings of size h.
An example of matching-feasible graphs is presented in Fig. 1.

B. Optimal Pliable FR Codes Based
on Matching-Feasible Graphs

The following theorems present a construction of optimal
pliable FR codes by using matching-feasible graphs.

Theorem 5: Suppose that G is a biadjacency matrix of a
matching-feasible graph G = (Y ∪ Z , E) with girth g > 4 and
matching size h, where the rows and columns are labeled with
the nodes in Y and Z , respectively, each of which is ordered
lexicographically under a fixed ordering. Then, the following
hold:

1) G (resp. G�) is an incidence matrix of pliable FR codes
for an (n = |Z |, k, d = |Y |

h )-DSS [resp. (n = |Y |,
k, d = |Z |

h )-DSS] with θ = |Y | (resp. θ = |Z |) symbols
and repetition degree ρ = |Z |

h (resp. ρ = |Y |
h ), where �

denotes the transpose operator.
2) If the condition g ≥ 2( |Y |

h + 1) [resp. g ≥ 2( |Z |
h + 1)]

holds, then the pliable FR code for which G (resp. G�)
is the incidence matrix is optimal with respect to the
Singleton-like bound in (3) for 1 ≤ k ≤ d = α = |Y |

h
(resp. 1 ≤ k ≤ d = α = |Z |

h ).
Proof: From the structure of G, in G, 1) there are |Y |

rows, 2) there are |Z | columns, 3) each row has |Z |
h 1’s, and

4) each column has |Y |
h 1’s. Because g > 4, no cycles of

length 4 exist in G, and any two rows or columns of G have at
most one 1-component in common. Therefore, a replacement
node downloads only a β = 1 symbol from each helper
node. This proves that d = α must hold. Hence, G is an
incidence matrix of an FR code for an (n = |Z |, k, d = |Y |

h )-

DSS with θ = |Y | symbols and repetition degree ρ = |Z |
h .

Additionally, according to the properties of matching-feasible
graphs, � can be divided into |Y |

h index groups, each of which
corresponds to a cluster in Y , and V can be partitioned into
|Z |
h parallel classes, each of which corresponds to a cluster in

Z . Specifically, G is an array of permutation matrices (PMs),
each of which corresponds to a perfect matching in G. This
indicates that G is an incidence matrix of a pliable FR code.
Moreover, according to Theorem 2 or Remark 5, the pliable
FR code for which G is the incidence matrix is optimal with
respect to the Singleton-like bound in (3) for 1 ≤ k ≤ d = α,
provided that g ≥ 2(d + 1). Therefore, if the condition
g ≥ 2( |Y |

h + 1) holds, G yields an optimal pliable FR code
that achieves the Singleton-like bound in (3) with equality for

1 ≤ k ≤ d = α = |Y |
h . For the case of G�, the proof is

the same as that for the case of G and is thus omitted. This
completes the proof.

The following example illustrates Theorem 5.
Example 2: Consider the matching-feasible graph in Fig. 1;

a biadjacency matrix of the graph is provided as follows:

G=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(14)

The code for which G in (14) is the incidence matrix is
verified as having M(3) = 7 and is optimal with respect to
the Singleton-like bound in (3) for 1 ≤ k ≤ 3 = α. In addi-
tion, the code for which the transpose of G in (14) is the
incidence matrix is optimal with respect to the Singleton-like
bound in (3) for 1 ≤ k ≤ 2 = α. This is because the
girth of the matching-feasible graph in Fig. 1 is g = 12,
which can be verified from the columns 0, 2, 6, 7, 9, and
10 of G in (14). �

Notably, the pliable FR codes constructed from
matching-feasible graphs are locally recoverable and
can be optimal with respect to the Singleton-like bound
in (4), as detailed by the following theorem.

Theorem 6: Let G be a biadjacency matrix of a
matching-feasible graph G = (Y ∪ Z , E) with girth g > 4
and matching size h. Furthermore, let C = (�,V) be a pliable
FR code for an (n, k, d = α)-DSS, with G or G� serving
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as the incidence matrix. Suppose that a and b are positive
integers such that 1 ≤ a ≤ b < α. If g ≥ 2(aα + b + 2) holds,
then C is an optimal locally recoverable code with respect to
the Singleton-like bound in (4) when the file size is equal to
M(k) = kα − (k − 1), with k = aα + b + 1.

Proof: If g ≥ 2(k + 1) = 2(aα + b + 2) holds, then
according to Theorem 1, the file size is equal to M(k) = kα−
(k −1), with k = aα+b+1. Therefore, when k = aα+b+1,
the following holds:

⌈

M(k)

α

⌉

=
⌈

kα − (k − 1)

α

⌉

=
⌈

k − a − b

α

⌉

(∗)= k − a,

where step (∗) is due to the assumed condition b < α.
Moreover, when k = aα + b + 1, the following holds:

⌈

M(k)

dα

⌉

=
⌈

kα − (k − 1)

α2

⌉

=
⌈

(k − 1)α + α − (k − 1)

α2

⌉

=
⌈

(aα + b)α + α − (aα + b)

α2

⌉

=
⌈

a + b − (a − 1) − b
α

α

⌉

(�)= a + 1,

where step (�) is due to the assumed condition 1 ≤ a ≤
b < α. Therefore, � M(k)

α � + � M(k)
dα � = k + 1, and according

to Remark 1, C is an optimal locally recoverable code with
respect to the Singleton-like bound in (4). This completes the
proof.

The following example illustrates Theorem 6.
Example 3: Consider again the matching-feasible graph

in Fig. 1 and the biadjacency matrix G in (14). For demonstra-
tion, suppose that a = b = 1. The code for which G in (14) is
the incidence matrix is verified as having M(5) = 11, yielding
� M(k)

α � + � M(k)
dα � = � 11

3 � + � 11
3×3� = 5 + 1 = k + 1. Hence,

the pliable FR code for which G in (14) is the incidence
matrix is an optimal locally recoverable code with respect
to the Singleton-like bound in (4) when M(5) = 11. One
can readily verify that the code for which the transpose of G
in (14) is the incidence matrix is an optimal locally recoverable
code with respect to the Singleton-like bound in (4) when
M(4) = 9. �

Remark 8: In Theorem 6, the matching size h does not
seem to play any role. However, according to Theorem 5, both
d and α depend on h. Additionally, if, in Theorem 6, a is set
to 0, Theorem 6 becomes equivalent to Theorem 5. Therefore,
when 0 ≤ a ≤ b < α, Theorem 6 is a generalization of
Theorem 5.

In addition to being optimal with respect to the
Singleton-like bound in (4), the pliable FR codes constructed
from matching-feasible graphs can be optimal with respect to

the Singleton-like bound in (6), as detailed by the following
theorem.

Theorem 7: Let G be a biadjacency matrix of a
matching-feasible graph G = (Y ∪ Z , E) with girth g > 4
and matching size h. Suppose that G is disconnected such that
it is a union of v > 1 isomorphic connected subgraphs, and
let C = (�,V) be the pliable FR code for an (n, k, d = α)-
DSS, with G or G� serving as the code’s incidence matrix.
Accordingly, C is an optimal locally recoverable code with
respect to the Singleton-like bound in (6) when the file size
is equal to M(k) = uθ ′ + k ′α′ − (k ′ − 1) for some 0 ≤ u < v
and 1 ≤ k ′ ≤ min

(

d, g
2 − 1

)

, where θ ′ = |�|
v and α′ = α.

Proof: When G is disconnected and is a union of
v > 1 isomorphic connected subgraphs, the pliable FR code
for which either G or G� is the incidence matrix is a direct
sum of v > 1 FR codes, each of which has θ ′ = |�|

v symbols
and per-node storage α′ = α. Thus, the proof follows directly
from Theorem 4 and Remark 5.

The following example illustrates Theorem 7.
Example 4: As a demonstration, consider the union G ∪ G

of w = 2 copies of G, where G is the matching-feasible graph
in Fig. 1. Because G∪G = ((Y ∪Y )∪(Z ∪ Z), E ∪ E), G∪G is
a matching-feasible graph, and a biadjacency matrix of G ∪ G
can be represented by

G =
[

G 0
0 G

]

, (15)

where G is provided in (14). Let C be the pliable FR code
for which G in (15) is the incidence matrix. Accordingly, C
is a pliable FR code for an (n = 28, k, d = α = 3)-DSS
with θ = 42 symbols and repetition degree ρ = 3. Next,
suppose that u = 1 and k ′ = 2. Accordingly, the file size is
equal to M(k) = 26. One can readily verify that any set of
16 nodes covers at least 26 symbols; therefore, the minimum
distance of C is equal to 13 when M(k) = 26. This coincides
with (6). The upper bound in [31] and [33], however, yields
dmin(C) ≤ 18, which is obviously not sufficiently tight. C is
optimal with respect to the Singleton-like bound in (6) when
M(k) = 21 u + 3 k ′ − (k ′ − 1) for some 0 ≤ u < 2 and
1 ≤ k ′ ≤ min

(

3, 12
2 − 1

) = 3. �
Remark 9: Given that G is connected and comprises only

v = 1 connected subgraph, Theorem 7 states that C is an
optimal code with respect to the Singleton-like bound in (3)
when the file size is equal to M(k) = k ′α′ − (k ′ − 1) for
1 ≤ k ′ ≤ min

(

d, g
2 − 1

)

. This is consistent with the result
in Theorem 2. Therefore, Theorem 7 still holds when G is
connected and this theorem can be regarded as a generalization
of Theorem 2.

The pliable FR codes constructed from matching-feasible
graphs can be used as FRB codes, as detailed by the following
theorem.

Theorem 8: Let G be a biadjacency matrix of a
matching-feasible graph G = (Y ∪ Z , E) with girth g > 4
and matching size h. Accordingly, the code for which either
G or G� is the incidence matrix is an FRB code with the
batch size t = min(|Y |, |Z |).



994 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 2, FEBRUARY 2019

Proof: According to the proof of Theorem 5, the batch
size t remains to be determined. As noted in the proof of
Theorem 5, G is an array of PMs. Therefore, for a pliable FR
code for which either G or G� is the incidence matrix, t can
be easily determined and is equal to t = min(|Y |, |Z |).

A limitation of the presented bipartite-graph-based approach
to constructing optimal pliable FR codes may be the lack of
an infinite family of matching-feasible graphs. For address-
ing this limitation, this paper presents an infinite family
of matching-feasible graphs (as described in the following
section), through which explicit constructions of optimal pli-
able FR codes are obtained.

VI. EXPLICIT CONSTRUCTIONS OF OPTIMAL PLIABLE FR
CODES THAT ARE LOCALLY RECOVERABLE

This section first introduces an infinite family of
matching-feasible graphs and then presents explicit construc-
tions of optimal pliable FR codes that are locally recoverable
based on the family of matching-feasible graphs.

A. Infinite Family of Matching-Feasible Graphs

An infinite family of bipartite graphs defined by a system
of equations over Galois fields [36] is presented as follows.

Definition 10: Let m ≥ 2 be a positive integer and GF(q)
denote the Galois field of size q , where q is a prime power.
Accordingly, a family of bipartite graphs, denoted by D(m, q),
is defined as follows. The vertex set of D(m, q) is the disjoint
union of two copies of GF(q)m , denoted by Pm and Lm .
Elements of Pm are called points, each of which is represented
by (p) = (p0, p1, . . . , pm−1), where pi ∈ GF(q). Similarly,
elements of Lm are called lines, and each line is represented
by [l] = [

l0, l1, . . . , lm−1
]

, where li ∈ GF(q). The edge
set of D(m, q) comprises edges, each of which is denoted
by {(p), [l]}, in which the following m − 1 relations on the
coordinates of (p) and [l] hold:

p1 + l1 = p0l0,

p2 + l2 = p0l1, (16)

and, for 3 ≤ i ≤ m − 1,

pi + li =
{

−pi−2l0, if (i + 1) ≡ 0 or 1 (mod 4)

p0li−2, if (i + 1) ≡ 2 or 3 (mod 4).
(17)

Remark 10: Some crucial properties of D(m, q) are sum-
marized as follows [37]–[39].

1) D(m, q) is a family of bipartite graphs on 2qm vertices
(with qm vertices called points and qm vertices called
lines), each of which has q edges incident with itself.

2) For every point (p) (resp. line [l]) of D(m, q) and every
e ∈ GF(q), there exists a unique neighbor of (p) (resp.
[l]) whose first coordinate is e.

3) The girth of D(m, q) is shown to be at least equal to
2�m

2 � + 4.
4) Interchanging pi and li for each i = 0, 1, . . . , m − 1

in (16) and (17) yields another family of bipartite graphs.
This family of bipartite graphs is isomorphic to D(m, q).

5) As shown previously, when D(m, q) is disconnected,
it is a union of isomorphic connected subgraphs. Addi-
tional results regarding the connectedness of D(m, q)
are provided as follows. D(2, 2) is connected, whereas
D(m, 2) is disconnected for m ≥ 3. In addition, for
m ≥ 6, all D(m, q) are disconnected. For q = 3
and q > 4, D(m, q) has qv−1 isomorphic connected
components, where v = �m+2

4 �. Moreover, D(2, 4) and
D(3, 4) have only one component, whereas D(m, 4) has
4v isomorphic connected components for m ≥ 4.

The following lemma shows that D(m, q) is a family of
matching-feasible graphs.

Lemma 4: D(m, q) is a family of matching-feasible graphs
with girth g ≥ 2�m

2 � + 4 and matching size h = qm−1.
Proof: Letting either Y = Pm and Z = Lm or Y = Lm

and Z = Pm , and E comprise the edges of the form {(p), [l]}
satisfying the relations in (16) and (17) reveals that G = (Y ∪
Z , E) is a matching-feasible graph. The remaining part of the
proof follows directly from Definition 10 and Remark 10.

Remark 11: In addition to being a family of
matching-feasible graphs, D(m, q) has connections with
combinatorial designs. A connection between D(m, q) and
a combinatorial design is provided as follows. Let ν and
κ be positive integers. Then, a (ν, κ, 1)-packing design
is an ordered pair (V ,B) where V is a ν-set and B is
a collection of κ-subsets of V (called blocks) such that
every 2-subset of V occurs in at most one block of B [40].
As discussed previously, in D(m, q), there are qm points and
qm lines, each of which has q edges incident with itself.
Additionally, in D(m, q), any two points or lines have zero
or one (i.e., at most one) neighbor in common. Accordingly,
viewing each point in D(m, q) as an element in V and each
line in D(m, q) as a block in B , or vice versa, yields a
(qm, q, 1)-packing design. However, D(m, q) may not yield
a balanced incomplete block design because, in a balanced
incomplete block design, each pair of distinct elements must
appear together in the same number of blocks.

B. Optimal Pliable FR Codes Derived From D(m, q)

This section first presents a class of optimal pliable FR
codes based on D(m, q) that attains the Singleton-like bound
in (3).

Corollary 1: Suppose that B is a biadjacency matrix
of D(m, q) in which the rows and columns are labeled
(p) and [l], respectively, which are ordered lexicographically
under a fixed ordering of GF(q). Accordingly, the following
hold:

1) Both B and B� are incidence matrices of pliable FR
codes for an (n = qm, k, d = q)-DSS with θ = qm

symbols and repetition degree ρ = q .
2) When m is selected such that �m

2 � + 1 ≥ q , the pliable
FR code for which either B or B� is the incidence
matrix attains the Singleton-like bound in (3) for 1 ≤
k ≤ d = α.

Proof: The proof immediately follows from Theorem 5
and Lemma 4.
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The following example illustrates Corollary 1.
Example 5: Let m = 3 and q = 2. In addition, suppose

that the indices of the rows and columns run over the set
{000, 001, 010, 011, 100, 101, 110, 111}. Accordingly, the two
relations on the coordinates of (p) = (p0, p1, p2) and
[l] = [l0, l1, l2] in (16) yield the following biadjacency
matrix B of size 8 × 8:

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (18)

If B in (18) or its transpose is regarded as an incidence matrix
of FR codes, a pliable FR code for an (n = 8, k, d = 2)-DSS
with θ = 8 and ρ = 2 is derived. Additionally, the pliable FR
code for which B in (18) or its transpose is the incidence

matrix is optimal with respect to the Singleton-like bound
in (3) for 1 ≤ k ≤ 2.4 �

The pliable FR codes constructed from D(m, q) are
locally recoverable and can be optimal with respect to the
Singleton-like bound in (4).

Corollary 2: Let B be a biadjacency matrix of D(m, q).
Suppose that a and b are integers such that 1 ≤ a ≤ b <
q . If m is selected such that �m

2 � ≥ aq + b, the pliable
FR code for which either B or B� is the incidence matrix
is an optimal locally recoverable code with respect to the

4For simplicity and conciseness, only the scenario in which q = 2 is
presented in this subsection, although the construction also works when q
is replaced by other values. A scenario in which q = 3, however, is already
available for demonstration in this paper. To demonstrate this, let m = 2 and
q = 3, and suppose that the indices of the rows and columns run over the
set {00, 01, 02, 10, 11, 12, 20, 21, 22}. Accordingly, the first relation on the
coordinates of (p) = (p0, p1) and [l] = [l0, l1] in (16) yields a biadjacency
matrix of size 9 × 9, which is just the incidence matrix N in (13). As noted
in Example 1, when N in (13) or its transpose is regarded as an incidence
matrix of FR codes, a pliable FR code for an (n = 9, k, d = 3)-DSS with
θ = 9 and ρ = 3 is derived. Additionally, the pliable FR code for which N
in (13) or its transpose is the incidence matrix is optimal with respect to the
Singleton-like bound in (3) for 1 ≤ k ≤ 2, but it is suboptimal for k = 3.
This is because the girth of D(2, 3) is equal to g = 6.

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(19)
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Singleton-like bound in (4) when the file size is equal to
M(k) = kq−(k−1) = (aq+b)(q−1)+q , with k = aq+b+1.

Proof: The proof follows from Theorem 6 and Lemma 4,
where m is selected such that 2�m

2 � + 4 ≥ 2(k + 1) = 2(aq +
b + 2) holds.

The following example illustrates Corollary 2.
Example 6: Let q = 2, and suppose that a = b = 1.

To ensure that �m
2 � ≥ aq+b, set m = 5. Accordingly, the code

for which the biadjacency matrix of D(5, 2) is the incidence
matrix is a pliable FR code for an (n = 32, k, d = 2)-DSS
with θ = 32 symbols and repetition degree ρ = 2. Consider
a scenario in which k = aq + b + 1 = 1 × 2 + 1 + 1 =
4 > 2 = d . In this scenario, the file size is equal to
M(4) = 4 ×2 − (4 − 1) = 5 and it can readily be verified that
k = 4 = � 5

2� +
⌈

5
2×2

⌉

− 1 = � M(k)
α � + � M(k)

dα � − 1. Therefore,
the code constructed from D(5, 2) attains the Singleton-like
bound in (4) when M(4) = 5. A biadjacency matrix of D(5, 2)
is provided as B in (19), as shown at the bottom of the previous
page, where the indices of the rows and columns run over the
set {00000, 00001, . . . , 11111}. Columns 0, 14, 16, and 29
of B in (19) (i.e., those labeled with 00000, 01110, 10000,
and 11101) can be used to verify that M(4) = 5. Moreover,
the pliable FR code for which the transpose of B in (19) is the
incidence matrix is verified to have M(4) = 5 and to attain
the Singleton-like bound in (4) when M(4) = 5. �

Remark 12: When Corollary 2 and Corollary 1 are com-
pared, for a given value of q , m must be set to a higher value
in order to guarantee the local repair property.

The pliable FR codes constructed from D(m, q) can be
optimal with respect to the Singleton-like bound in (6), as
detailed subsequently.

Corollary 3: Suppose that D(m, q) is disconnected such
that it is a union of v > 1 isomorphic connected subgraphs,
and let B be its biadjacency matrix. The pliable FR code for
which either B or B� is the incidence matrix is an optimal
locally recoverable code with respect to the Singleton-like
bound in (6) when the file size is equal to M(k) = u qm

v +k ′q−
(k ′ − 1) for some 0 ≤ u < v and 1 ≤ k ′ ≤ min

(

q, �m
2 � + 1

)

.
Proof: The proof immediately follows from Theorem 7

and Lemma 4.
The following example illustrates Corollary 3.
Example 7: Consider Example 5 and suppose that the

indices of the rows and columns run over the sets
{100, 011, 110, 000, 101, 010, 111, 001} and {000, 111, 011,
100, 001, 110, 010, 101}, respectively. Accordingly, B in (18)
becomes

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 1 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (20)

According to (20), D(3, 2) is a union of v = 2 FR codes.
More precisely, D(3, 2) is a union of v = 2 8-cycles
and, therefore, its girth is equal to g = 8. The FR

code for which B in (20) or its transpose is the inci-
dence matrix is optimal with respect to the Singleton-like
bound in (6) when M(k) = 4 u + 2 k ′ − (k ′ − 1)
for some 0 ≤ u < 2 and 1 ≤ k ′ ≤ min

(

2, � 3
2� + 1

) = 2.
Furthermore, consider Example 6 where D(5, 2) is employed
to construct an optimal locally recoverable code with respect
to the Singleton-like bound in (4). As noted in [39], D(5, 2)
is a union of v = 4 16-cycles. Then, B in (19) can be written
in the following form:

⎡

⎢

⎢

⎣

C 0 0 0
0 C 0 0
0 0 C 0
0 0 0 C

⎤

⎥

⎥

⎦

where

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 0 denotes a zero matrix; the FR code constructed based
on D(5, 2) is optimal with respect to the Singleton-like bound
in (6) when M(k) = 8 u + 2 k ′ − (k ′ − 1) for some 0 ≤ u < 4
and 1 ≤ k ′ ≤ min

(

2, � 5
2� + 1

)

= 2. �
Remark 13: Property 5 in Remark 10 demonstrates the

scenario when D(m, q) is disconnected such that it is a union
of v > 1 isomorphic connected subgraphs.

The pliable FR codes constructed from D(m, q) can be used
as FRB codes, as detailed subsequently.

Corollary 4: Let B be a biadjacency matrix of D(m, q).
Then, the code for which either B or B� is the incidence
matrix is an FRB code with the batch size t = qm .

Proof: This follows immediately from Theorem 8 and
Lemma 4.

VII. COMPARISON OF THE PROPOSED FR CODES WITH

RELATED RESULTS IN THE LITERATURE

This section presents a comparison of the FR codes pro-
posed in Sections III–VI with related results in the literature.
The most related results in the literature are those in [25]
and [31]–[33]. Table I summarizes the FR codes obtained
using the methods presented in this paper, including their
parameters.

A. Comparison With Pliable FR Codes in [32]

Pliable FR codes were first introduced in [32], wherein
various constructions of pliable FR codes based on Euclidean
geometry, circulant PMs, affine PMs, extended RS codes,
Euler squares, geometry decomposition, and zigzag codes
were proposed. One of the common characteristics of the
constructions in [32] is that the girth of the representative
bipartite graphs is g ≤ 8 when no index groups or parallel
classes are removed. In this case, the file size supported by the
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TABLE I

SUMMARY OF THE FR CODES CONSTRUCTED IN THIS PAPER, WHERE, UNLESS SPECIFIED OTHERWISE, g DENOTES THE GIRTH OF
A BIPARTITE GRAPH, G = (Y ∪ Z , E) IS A MATCHING-FEASIBLE GRAPH WITH GIRTH g > 4 AND MATCHING SIZE h ,

AND C = (�,V) IS AN FR CODE FOR AN (n, k, d = α)-DSS WITH θ SYMBOLS AND REPETITION DEGREE ρ

constructed codes in [32] was exactly determined for values
of k that are at most 1 ≤ k ≤ 4, although some file size
results obtained when k = g

2 + 1, with g = 6 and g = 8,
were identified in [32]. With these file sizes, the constructed
codes in [32] attain the upper bound in (2) for values of k that
are at most 1 ≤ k ≤ min(3, k) and achieve the Singleton-like
bound in (3) with equality for values of k that are at most
1 ≤ k ≤ 3. By contrast, the proposed FR codes attain the
upper bound in (2) for 1 ≤ k ≤ min( g

2 − 1, k) and achieve the
Singleton-like bound in (3) for 1 ≤ k ≤ g

2 − 1. Additionally,
the proposed FR codes can be optimal locally recoverable FR
codes with respect to the Singleton-like bounds in (4) and (6).

B. Comparison With FR Codes in [25]

Similar to Theorem 1, it was shown in [25] that FR
codes obtained from a graph with a sufficiently large girth

are optimal in the sense that the file size is maximized.
However, this result applies only to FR codes with a repetition
degree of 2 (i.e., ρ = 2) in [25]. Moreover, the graph
representation of FR codes used in [25] (i.e., each storage node
corresponding to a vertex in the graph and each MDS coded
symbol corresponding to an edge in the graph) is different
from that used in this study.

FR codes with ρ > 2 were also considered in [25], in which
transversal designs and generalized polygons were directly
employed to construct FR codes, rather than using graph
representation of FR codes. In [25], the codes constructed
using transversal designs were shown to attain the upper bound
on the file size in (2) for all 1 ≤ k ≤ α when α was
sufficiently large. Furthermore, in [25], the codes constructed
using generalized polygons were shown to have M(3) = 3α−2
and M(4) = 4α − 4 and to be able to attain the upper bound
on the file size in (2) for 1 ≤ k ≤ 3. The aforementioned
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results coincide with Theorem 1 when 1 ≤ k ≤ g
2 . This

is because the girths of the bipartite graphs representing FR
codes constructed using transversal designs and generalized
polygons are equal to 6 and 8, respectively. In contrast to The-
orems 2, 4–7 and Corollaries 1–3, Silberstein and Etzion [25]
did not investigate the trade-offs between the code minimum
distance of an FR code and its repair locality.

C. Comparison With Locally Recoverable
FR Codes in [31] and [33]

Similar to [25], locally recoverable FR codes with ρ = 2
and ρ > 2 have been considered in [31] and [33]. First, for the
case of ρ = 2, a construction of locally recoverable FR codes
(i.e., Construction 1) has been proposed in [31] and [33] and
these codes, analogous to those in Theorem 6 and Corollary 2,
can achieve the Singleton-like bound in (4) with equality. Two
relevant distinctions exist between the codes in [31] and [33]
and those in Theorem 6 and Corollary 2. One distinction is
that the codes in [31] and [33] apply to only DSSs with ρ = 2
(i.e., allowing local recovery only in the presence of a single
failure), whereas those in Theorem 6 and Corollary 2 apply to
DSSs with ρ ≥ 2 (i.e., allowing local recovery in the presence
of multiple failures). The other distinction lies in the types of
graphs used. The codes in [31] and [33] are based on a family
of graphs, namely (s, g)-graphs, where each vertex has degree
s and the girth is equal to g; by contrast, those in Theorem 6
and Corollary 2 are based on the family of matching-feasible
graphs. Notably, in Theorem 6 and Corollary 2, when the
matching-feasible graphs are replaced by other families of
bipartite graphs such as those in [41] and [42] characterized
by a given bi-degree r, s and girth g, the resultant FR codes
are still optimal locally recoverable codes with respect to the
Singleton-like bound in (4), as long as the girth is chosen to
satisfy g ≥ 2(k+1) = 2(aq+b+2). Nevertheless, the resultant
FR codes are not necessarily pliable when matching-feasible
graphs are replaced by other families of bipartite graphs.

Second, for the case of ρ > 2, [31, Lemma 16] or
[33, Lemma 4] provided a trade-off between the code min-
imum distance of an FR code and its repair locality under
an additional requirement that each node must be part of a
local structure that, in case of failure, allows it to be exactly
recovered just by a simple download process. Under the same
requirement, this paper presents an improved Singleton-like
bound in Theorem 3. The proof of Theorem 3 is similar
to that of [31, Lemma 16] or that of [33, Lemma 4]. The
difference between the proof of Theorem 3 and that of [31,
Lemma 16] or that of [33, Lemma 4] lies in bounding the total
number of nodes accumulated in S from below in (8)–(10).
Notably, in [31] and [33], a construction of locally recoverable
FR codes (i.e., Construction 2) similar to that in Theo-
rem 4 has been proposed. To be optimal with respect to the
Singleton-like bound in (6), Construction 2 in [31] and [33],
however, imposes complicated requirements on the parameters
of local FR codes. Moreover, Construction 2 in [31] and [33]
is less general than the construction in Theorem 4 because
Construction 2 is optimal only when the file size is equal
to M(k) = uθ ′ + α′ for some 1 ≤ u < w, rather than

M(k) = uθ ′ + k ′α′ − (k ′ − 1) for some 0 ≤ u < w and
1 ≤ k ′ ≤ min

(

α′, g
2 − 1

)

in Theorem 4.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents general results regarding FR codes,
including the exact file size of FR codes, a condition under
which an FR code attains an upper bound on the file size, and
a condition under which an FR code is optimal with respect to
a Singleton-like bound on the minimum distance. These results
are obtained by exploiting a bipartite graph representation
of FR codes, along with an important parameter of graphs
called the “girth.” In addition, this paper presents an improved
Singleton-like bound for locally recoverable FR codes under
an additional requirement that each node must be part of
a local structure that, upon failure, allows it to be exactly
recovered by downloading symbols from the surviving nodes.
This paper also proposes a construction of locally recoverable
FR codes that can achieve the improved Singleton-like bound
with equality based on bipartite graphs with a given girth. The
improved upper bound is proven to be tighter than that in the
literature, and the code construction is also shown to be more
general than that in the literature as well. In particular, this
paper proposes a bipartite-graph-based approach to construct-
ing optimal pliable FR codes with and without repair locality;
a new family of bipartite graphs, called matching-feasible
graphs, is introduced. Finally, this paper proposes explicit
constructions of optimal pliable FR codes, based on a family
of matching-feasible graphs with arbitrary large girth, in which
both the per-node storage and repetition degree can easily
be adjusted simultaneously. Notably, the explicit pliable FR
codes are also optimal locally recoverable codes from the two
perspectives of repair locality specified by the bounds in (4)
and (6); furthermore, their transposed counterparts are also
pliable FR codes. The explicit pliable FR codes can also be
used as FRB codes to provide load balancing in DSSs, for
which the batch size (i.e., the number of symbols that can be
read in parallel) is determined exactly.

This paper presents a construction of locally recoverable
FR codes that can achieve the improved Singleton-like bound
with equality; nevertheless, the construction is simple and can
be regarded as a Kronecker product of an identity matrix and
a biadjacency matrix. Therefore, alternate formalizations of
combinations of biadjacency matrices would be worthwhile.
Other possible future research directions may include deter-
mining the file size when k exceeds g

2 .
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