
500 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

Channel Code Using Constrained-Random-
Number Generator Revisited

Jun Muramatsu and Shigeki Miyake

Abstract— A construction of a channel code by using a
source code with decoder side information is introduced. The
encoder and decoder pair of any source code can be used for
the construction. Constrained-random-number generators, which
generate random numbers satisfying a condition specified by a
function and its value, are used to construct stochastic encoders
and decoders. The result suggests that we can divide the channel
coding problem into the problems of channel encoding and source
decoding with side information.

Index Terms— Shannon theory, channel coding, source code
with decoder side information, constrained-random-number
generator.

I. INTRODUCTION

THIS paper revisits the channel code using constrained-
random-number generator introduced in [28] from the

viewpoint of the source code with decoder side information.
Our contributions are summarized as follows.

• It is shown that we can construct a stochastic decoder for
a source code with decoder side information by using a
constrained-random-number generator.

• It is shown that we can construct a channel code (Fig. 1)
from a given source code of X with decoder side infor-
mation Y (Fig. 2), where the channel input and output
are given by X and Y , respectively.

• We can construct a code that achieves the capacity by
letting X be an optimum channel input random variable
and using a source code achieving the limit H(X|Y).
It should be noted that [28] shows only the fact that there
are a pair of functions with which the code achieves the
capacity.

• The above facts imply that both encoding and decod-
ing functions of a channel code can be constructed by
using constrained-random-number generators. It should
be noted that, by assuming that a channel is memoryless,
we can use the sum-product algorithm or the Markov-
Chain-Monte-Carlo method to implement a tractable
constrained-random-number generator [28], [29], where
‘tractable’ means that there is an iterative approximation

Manuscript received April 16, 2017; revised July 23, 2018; accepted
September 24, 2018. Date of publication October 26, 2018; date of current ver-
sion December 19, 2018. This paper was presented in part at the 2016 Interna-
tional Symposium on Information Thoeory and its Applications (ISITA2016)
and in part at the 2017 IEEE International Symposium on Information
Thoeory (ISIT2017).

J. Muramatsu is with NTT Communication Science Laboratories, NTT
Corporation, Kyoto 619-0237, Japan (e-mail: muramatsu.jun@lab.ntt.co.jp).

S. Miyake is with NTT Network Innovation Laboratories, NTT Corporation,
Kanagawa 239-0847, Japan (e-mail: miyake.shigeki@lab.ntt.co.jp).

Communicated by V. Vaishampayan, Associate Editor for Source Coding.
Digital Object Identifier 10.1109/TIT.2018.2878217

Fig. 1. Channel Coding: An encoder sends a codeword x obtained from a
message m by using a (possibly stochastic) encoding function �. A decoder
receives an output y of a channel W and reproduces m from y by using
a (possibly stochastic) decoding function � .

Fig. 2. Source Coding with Decoder Side Information: An encoder sends
a codeword Ax obtained from a source output x by using an encoding
function A. A decoder reproduces x from the codeword and side information y
by using a (possibly stochastic) decoding function �X A .

algorithm with polynomial computational complexity
with respect to the block length by assuming the constant
number of iterations.

A. Relation to Previous Results
The source coding with decoder side information is a special

case of the distributed coding of correlated sources introduced
by Slepian and Wolf [41]. Let (Xn, Y n) be a pair of correlated
sources. We consider a source code where an encoder transmits
a codeword obtained from a source output Xn and a decoder
reproduces Xn from the codeword and the side informa-
tion Y n , where it is expected that the decoding error probability
is close to zero. From the Slepian-Wolf theorem [41], the
asymptotically optimum encoding rate for stationary memo-
ryless sources is given by the conditional entropy H (X |Y).
The result is extended to general correlated sources (X, Y)
in [25] and [43], where conditions such as stationarity and
ergodicity are not assumed and the fundamental limit is given
by the conditional spectral sup-entropy rate H (X|Y). This
paper considers a pair of general correlated sources (X, Y),
and the results can be applied to the stationary memoryless
case.

Historically, the Slepian-Wolf codes are constructed by
using channel codes. In [41], the code is given by using a set of
randomly-generated channel codewords that covers the condi-
tionally typical set of X for a given Y . Wyner [45] introduced
the Slepian-Wolf code by using parity check matrices, where it
is shown by Elias [13] that the capacity of a binary symmetric
channel is achievable by using a linear or a convolutional
code. In accordance with this idea, the Slepian-Wolf codes are
constructed in [3], [17], [21], and [38] from turbo codes [5],

0018-9448 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5016-5717

MURAMATSU AND MIYAKE: CHANNEL CODE USING CONSTRAINED-RANDOM-NUMBER GENERATOR REVISITED 501

polar codes [2], and low density parity check (LDPC)
codes [16] with practical decoding algorithms, where the cor-
relation of two sources are assumed to be binary-symmetric.
Codes for an asymmetric channel can be constructed by using
the channel-input alphabet extension [4], [15, Sec. 6.2], the
chaining construction [26], or polar codes [20].

On the other hand, Cover [9] introduced the random bin-
ning method for constructing the Slepian-Wolf code, where
conditions such as symmetric correlations are not assumed for
two sources. Following this idea, Csiszár [11] proved that the
fundamental limit is achievable by using a linear code. In [37],
it is proved that the fundamental limit is achievable by using
an LDPC code. These results are unified by introducing the
notion of hash property [30], [31], which is the extension of
the 2-universal class of hash functions [7]. It should be noted
that the use of a typical-set decoder or a maximum-likelihood
decoder is assumed in these results.

Based on the concept of hash functions, in this paper we
adopt an approach where we construct a channel code from
a source code with decoder side information. This approach
was originated from [27, Sec. III], [37, Th. 4] and is cat-
egorized in the integrated scheme [26]. A similar approach
is investigated in the context of the linear codebook-level
duality of channel codes and the Slepian-Wolf codes [8],
where the symmetric correlation of two sources (channel
input and output) is assumed. This paper does not assume
such correlations. It should be noted that this approach is
investigated in [24], [28], [30], and [46], where these papers
prove that there is a pair consisting of a source code with
decoder side information and a encoding map to construct
a channel code. However, a maximal-likelihood decoder is
assumed, and it is unknown whether for an arbitrary given
source code with decoder side information there is a good
encoding map with which to construct a channel code. In [37],
it is proved by assuming a stationary memoryless condition
that for a given arbitrary linear source code with decoder side
information there is a good encoding map with which to con-
struct a channel code, where the encoding map is intractable.
In contrast, this paper introduces a tractable encoding map by
using a constrained-random-number generator [28]. We can
use any source code with decoder side information, where
it is confirmed theoretically or empirically that the decoding
error probability is small. Neither a typical-set decoder nor
a maximal-likelihood decoder is assumed for the source code
with decoder side information. Our result suggests that we can
divide channel coding problem into the problems of channel
encoding and source decoding with decoder side information.
It should be noted that the similar results have been appeared
in [39, Remark 2], [46] when the output distribution of the
encoder with side information is close to a uniform distribu-
tion. In contrast, this paper clarifies that such an assumption
is unnecessary.

B. Paper Outline
This paper is organized as follows. In Section II, we review

the constrained-random-number generator introduced in [28].
In Section III, we construct a source code with decoder side
information, where a stochastic decoder is constructed by

using a constrained-random-number generator. In Section IV,
we introduce the construction of a channel code by using an
arbitrary source code with decoder side information, where a
stochastic encoder is introduced by using another constrained-
random-number generator. Based on these results, we show
that the channel capacity is achievable with these codes using
constrained-random-number generators. Proof of theorems is
presented in Section V.

C. Definitions and Notations
Throughout this paper, we use the following definitions and

notations. The complement of U is denoted by Uc and the set
difference is defined as U \V ≡ U∩Vc. Let F x denote a value
taken by a function F at x ∈ X n , where F may be nonlinear.
When F is a linear function expressed by an l × n matrix,
we assume that X ≡ GF(q) is a finite field and the range of
functions is X l . For a function F and a set F of functions,
let ImF and ImF be defined as

ImF ≡ {F x : x ∈ X n}
ImF ≡

�

F∈F
ImF.

We define a set CF (v) as

CF (v) ≡ {x : F x = v}.
The random variables of a function F and a vector v are

denoted by the sans serif letters F and v, respectively. It should
be noted that the random variable of an n-dimensional vector
x ∈ X n is denoted by the Roman letter Xn that does not
represent a function. The symbol E denotes the expectation.
For example, EFv[·] denotes the expectation with respect to
random variables F and v.

Let Fn be a set of functions on X n and pF,n be a probability
distribution on Fn . We call a pair (Fn, pF,n) an ensemble.
We sometimes omit the dependence of F and pF on n.

All the results in this paper are presented by using the infor-
mation spectrum method introduced in [18], [19], and [44],
where the consistency and stationarity are not assumed.

II. CONSTRAINED-RANDOM-NUMBER GENERATOR

Here, we review the constrained-random-number generator
introduced in [28]. It is used in the construction of stochastic
encoder and decoder.

For a given probability distribution μXn of Xn ,
a constrained-random-number generator generates random
sequence X̆n ∈ X n subject to a distribution

μX̆n |Vn
(x|v) ≡ μXn (x)χ(F x = v)

�

x� μXn (x�)χ(F x� = v)

= μXn (x)χ(F x = v)

μXn (CF (v))
(1)

for a given function F on X n and a vector v ∈ ImF , where
χ(·) is a support function defined as

χ(S) ≡
�

1, if the statement S is true

0, if the statement S is false.
(2)

The constrained-random-number generator generates x that
satisfies F x = v with probability μX̆n |Vn

(x|v).

502 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

When F is a q-ary matrix and Xn is memoryless, we can
use the sum-product algorithm or the Markov-Chain-Monte-
Carlo method to implement the constrained-random-number
generator [28], [29]. When we use the sum-product algorithm,
the computational complexity is O(ι[n − l]lw2

rowq), where
F is assumed to be an l × n-ary matrix and ι denotes the
number of iterations of the sum-product algorithm and wrow
denotes the maximum row weight of F [29].1 When we use
the Markov-Chain-Monte-Carlo method, the computational
complexity is O(κwcolq), where κ denotes the number of
iterations of Markov chain and wcol denotes the maximum
column weight of F [29]. It should be noted that κ depends
on the size and density of F to obtain good approximation.

III. SOURCE CODE WITH DECODER SIDE INFORMATION

In this section, we consider a source code with decoder side
information illustrated in Fig. 2. The fundamental limit for this
problem is given as the conditional spectral sup-entropy rate
H(X |Y) for a general source (X, Y), which is specified by a
sequence {μXnY n }∞n=1 of joint probability distributions.

The achievability of this problem is proved via the
Slepian-Wolf theorem using random binning [9], [25], [43] or
the ensemble of all q-ary matrices [11]. The construction of an
encoder using sparse matrix is studied in [38] and [40] and the
achievability is proved in [31] and [37] by using a maximum-
likelihood or minimum-divergence decoding. We obtain the
coding theorem based on the collision-resistance property as
a corollary of [30, Th. 7] for stationary memoryless sources.

A. Code Construction
First, we construct a source code with decoder side infor-

mation using the constrained-random-number generator intro-
duced in [28]. The construction is analogous to the syndrome
encoding/decoding when an encoder is a linear function.

We assume that the alphabet X n of Xn is a finite set
but allow the alphabet Yn of Y n to be an arbitrary (infinite,
continuous) set. For a given encoding rate r , let (A, pA) be
an ensemble of functions on the set X n satisfying

r = 1

n
log |ImA|. (3)

We fix an encoding function A : X n → ImA generated at
random subject to the distribution pA. The codeword c of x ∈
X n is given as c ≡ Ax.

Here, we use a constrained-random-number generator to
construct a stochastic decoder �Xn

A : Im A × Yn → X n . Let
Cn ≡ AXn . For given codeword c ∈ Im A and side information
y ∈ Yn , the reproduction �Xn ≡ �Xn

A(c, y) ∈ X n is determined
at random subject to the distribution

μ
�Xn |CnY n (�x|c, y) ≡ μXn |Y n (�x| y)χ(A�x = c)

μXn |Y n (CA(c)| y)
, (4)

1In [29], the computational complexity is given as O(ι[n − l]lw2
rowqwrow).

However, we can reduce the computational complexity by using (Fast-)
Fourier-Transform to compute convolutions in the sum-product algorithm. We
assume q ≤ wrow when q is a prime number and logp q ≤ wrow when q
is a power of a prime number p to obtain the computational complexity
O(ι[n − l]lw2

rowq).

where μXn |Y n be defined as

μXn |Y n (x| y) ≡ μXnY n (x, y)
�

x� μXnY n (x�, y)
.

This constrained-random-number generator generates �x that
satisfies A�x = c with probability μ

�Xn |CnY n (�x|c, y).
The decoding error probability Error(A) is given as

Error(A) ≡
�

x,y,�x
�x 	=x

μ
�Xn |CnY n (�x|Ax, y)μXnY n (x, y). (5)

B. (α,β)-Collision-Resistance Property
To state the theorem, we introduce a variant of the hash

property [28], [30]. We revisit [30, Remark 1], which men-
tions that some ensembles of sparse matrices satisfy the
weaker condition limn→∞[1/n] log αA(n) = 0. We introduce
the collision-resistance property as follows.

Definition 1: Let An be a set of functions on X n and
pA,n be a probability distribution on An . Then a sequence
(A, pA) ≡ {(An, pA,n)}∞n=1 has an (αA,βA)-collision-
resistance property if there are two sequences αA ≡
{αA(n)}∞n=1 and βA ≡ {βA(n)}∞n=1, depending on {pA,n}∞n=1,
such that

lim sup
n→∞

1

n
log αA(n) = 0 (CR1)

lim sup
n→∞

βA(n) = 0 (CR2)

and
�

x�∈X n\{x}:
pA,n ({A:Ax=Ax �})> αA(n)

|ImAn |

pA,n
��

A : Ax = Ax�	
 ≤ βA(n)

(CR3)

for all sufficiently large n and all x ∈ X n . In the following,
we omit the dependence of αA, and βA on n.

Here, let us introduce examples satisfying the collision-
resistance property. When A is a two-universal class of
hash functions [7] and pA is the uniform distribution on A,
then (A, pA) has a (1, 0)-collision-resistance property, where
1 and 0 denote the constant sequences of 1 and 0, respectively.
Random binning [9] and a set of all linear functions [11]
are examples of the two-universal class of hash functions.
Since an ensemble of sparse matrices has a hash prop-
erty [28, Sec. III-B], we have the fact that this ensemble also
has a collision-resistance property. Furthermore, we can show
that some expurgated ensembles of sparse matrices have a
collision-resistance property [4], [14].

The following lemma is related to the collision-resistance
property, that is, if the number of bins is greater than the
number of items then there is an assignment such that every
bin contains at most one item.

Lemma 1 ([28, Lemma 4], [30, Lemma 1]): If (A, pA)
satisfies (CR3), then

pA ({A : [G \ {x}] ∩ CA(Ax) 	= ∅}) ≤ |G|αA

|ImA| + βA

for all G ⊂ X n and x ∈ X n .

MURAMATSU AND MIYAKE: CHANNEL CODE USING CONSTRAINED-RANDOM-NUMBER GENERATOR REVISITED 503

C. Existence of Good Function
Now, we are in position to state the theorem, where the

proof is given in Section V-A. It should be noted that Y is
allowed to be an infinite/continuous set and the correlation of
the two sources is allowed to be asymmetric.

Theorem 1: Let (X, Y) be a pair of correlated gen-
eral sources. Assume that an ensemble (A, pA) has an
(αA,βA)-collision-resistance property for a given r satisfy-
ing (3) and

r > H (X|Y). (6)

Then for any δ > 0 and all sufficiently large n there is a
function (sparse matrix) A ∈ A such that

Error(A) ≤ δ.

Remark 1: We can use the maximum a posteriori probabil-
ity decoder �x A : ImA × Yn → X n defined as

�x A(c, y) ≡ arg max
x∈CA(c)

μXn |Y n (x| y) (7)

instead of the stochastic decoder in the above coding scheme.
When the maximum a posteriori probability decoder is used,
the theorem is implicitly proved in [28, eq. (58)] from
Lemma 1. Although the maximum a posteriori probability
decoder minimizes the decoding error probability, it may be
intractable. On the other hand, our theorem asserts that the
stochastic decoding by using the constrained-random-number
generator is sufficient and tractable to achieve the fundamental
limit.

IV. CHANNEL CODE BY USING ARBITRARY SOURCE

CODE WITH DECODER SIDE INFORMATION

In this section, we construct a channel code by using an
arbitrary source code with decoder side information. Because
the theorem depends only on the performance of a source
code with decoder side information but does not depend on
its construction, it is not mandatory to use the code introduced
in the previous section.

A. Construction of Channel Code
This section introduces a channel code. The idea for the

construction is drawn from [30], [33], and [37]. We assume
that the channel input alphabet X n is a finite set but allow
the channel output alphabet Yn to be an arbitrary (infinite,
continuous) set.

We consider a general source and a general channel. A gen-
eral source X is defined by a sequence X ≡ {μXn }∞n=1
of probability distributions and a general channel is defined
by a sequence W ≡ {μY n |Xn }∞n=1 of conditional probability
distributions. We assume that the channel distribution μY n |Xn

and the input distribution μXn are given. Then the joint
distribution of (Xn, Y n) is given as

μXn Y n (x, y) ≡ μY n |Xn (y|x)μXn (x).

Here, we assume that an arbitrary source code (A, �Xn
A) with

decoder side information (Fig. 2) is given, where A : X n →
ImA is an encoding function and �Xn

A : ImA × Yn → X n

is a (possibly stochastic) decoding function specified by a
conditional probability distribution μ

�Xn |CnY n . Then the coding
rate2 r of the code is given as

r ≡ 1

n
log |ImA|. (8)

The decoding error probability Error(A) of this code is given
by (5), where μ

�Xn |CnY n is allowed to be an arbitrary con-
ditional probability distribution and need not to be defined
by (4). It should be noted that we can use any source code as
well as that constructed in the previous section. The condition
limn→∞ Error(A) = 0 is not assumed for this code, and this
code may be sub-optimal in the sense that the coding rate r
is not close to the fundamental limit H (X|Y).

For a given rate R > 0 of the channel code, let (B, pB) be
an ensemble of functions on the set X n satisfying

R = 1

n
log |ImB|, (9)

where ImB represents the set of all messages. We obtain a
function B ∈ B and a vector c ∈ ImA generated at random
subject to the distribution pB and {μXn (CA(c))}c∈ImA , respec-
tively. It should be noted that we can obtain c ≡ Ax generated
at random subject to the distribution {μXn (CA(c))}c∈ImA by
generating x at random subject to the distribution μXn and
operating A on x.

We fix B and c so that they are shared by the chan-
nel encoder and the channel decoder. To summarize, the chan-
nel encoder has functions A, B , and a vector c, and the channel
decoder has functions �Xn

A , B , and a vector c.
We use a constrained-random-number generator to construct

a stochastic encoder. For a given message m ∈ ImB, let
�Xn ≡ �Xn

AB (c, m) be a random variable corresponding to the
distribution

μ
�Xn |Cn Mn

(x|c, m) ≡ μXn (x)χ(x ∈ CAB(c, m))

μXn (CAB (c, m))
,

where CAB (c, m) ≡ CA(c) ∩ CB(m). The encoder generates
x that satisfies Ax = c and Bx = m with probability
μ

�Xn |Cn,Mn
(x|c, m). We define the stochastic channel encoder

�n : ImB → X n as

�n(m) ≡
�

�Xn
AB (c, m), if μXn (CAB(c, m)) > 0,

“error,” if μXn (CAB(c, m)) = 0.

Let y ∈ Yn be a channel output. We define the (possibly
stochastic) channel decoder �n : Yn → ImB as

�n(y) ≡ B �Xn
A(c, y),

2It should be noted that (8) is different from (3). Eq. (8) is a condition for
a fixed encoding function A while (3) is a condition for an ensemble A of
encoding functions.

Error(A, B, c) ≡
�

m:
μXn (CAB (c,m))=0

1

|ImB| +
�

m,x,y,�x:
μXn (CAB (c,m))>0

x∈CAB (c,m)
B�x 	=m

μ
�Xn |CnY n (�x|c, y)μY n |Xn (y|x)μ

�Xn |Cn Mn
(x|c, m)

|ImB| , (10)

504 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

Fig. 3. Construction of Channel Code

where the decoder reproduces x that satisfies Ax = c by
using arbitrary (possibly stochastic) decoding function �Xn

A and
obtains a reproduced message m = Bx. The flow of vectors
is illustrated in Fig. 3.

The error probability Error(A, B, c) is given by (10), shown
at the bottom of the previous page, where the first term
corresponds to the encoding error probability and the second
term corresponds to the decoding error probability.

B. (α,β)-Balanced-Coloring Property
To state the theorem, we review the balanced-coloring

property [29], which is a variant of the hash property.
It requires weaker conditions than the hash property introduced
in [28], [32], and [33].

Definition 2 [29]: Let Bn be a set of functions on
X n and pB,n be a probability distribution on Bn . Then
a sequence (B, pB) ≡ {(Bn, pB,n)}∞n=1 has an (αB,βB)-
balanced-coloring property if there are two sequences αB ≡
{αB(n)}∞n=1 and βB ≡ {βB(n)}∞n=1, depending on {pB,n}∞n=1,
such that

lim sup
n→∞

αB(n) = 1 (BC1)

lim sup
n→∞

1

n
log(βB(n) + 1) = 0 (BC2)

and
�

x�∈X n\{x}:
pB,n ({B:Bx=Bx�})> αB(n)

|ImBn |

pB,n
��

B : Bx = Bx�	
 ≤ βB(n)

(BC3)

for all sufficiently large3 n and all x ∈ X n , where (BC3) is
the same as (CR3). In the following, we omit the dependence
of αB and βB on n.

Here, let us introduce examples satisfying the
balanced-coloring property. When B is a two-universal
class of hash functions [7] and pB is the uniform distribution
on B, then (B, pB) has a (1, 0)-balanced-coloring property.

3In [29], an ensemble is required to satisfy (10) for all n and all x ∈
X n . However, it is sufficient to assume that an ensemble satisfies (10) for
sufficiently large n and all x ∈ X n because we finally let n → ∞.

Random binning [9] and a set of all linear functions [11]
are examples of the two-universal class of hash functions.
It is proved in [29] that an ensemble of systematic sparse
matrices has a balanced-coloring property, where a matrix
has an identity sub-matrix with the same number of rows.

The following lemma is an extension of the leftover hash
lemma [22], the balanced-coloring lemma [1, Lemma 3.1],
[12, Lemma 17.3], and the output statistics of random
binning [46]. This lemma implies that there is a function B
such that T is almost equally partitioned by B with respect to
a measure Q.

Lemma 2 ([28, Lemma 5], [33, Lemma 4]): If (B, pB)
satisfies (BC3), then

EB

�

�

m

Q (T ∩ CB(m))

Q(T)
− 1

|ImB|

�

≤
�

αB − 1 + [βB + 1]|ImB| maxx∈T Q(x)

Q(T)

for any function Q : X n → [0,∞) and T ⊂ X n , where

Q(T) ≡
�

x∈T
Q(x).

C. Existence of Good Function
Now, we are in position to state the theorem, where the

proof is given in Section V-B.
Theorem 2: Let (A, �Xn

A) be an arbitrary source code with
decoder side information, where the encoding rate and
the decoding error probability are given by (8) and (5),
respectively. Assume that (B, pB) has an (αB,βB)-balanced-
coloring property for a given R satisfying (9) and

r + R < H (X), (11)

where H(X) is the spectral inf-entropy rate. Then for any
δ > 0 and all sufficiently large n there is a function B ∈ B,
and a vector c ∈ ImA such that

Error(A, B, c) ≤ Error(A) + δ. (12)

Remark 2: In [39, Remark 2], [46], inequality (12) is
shown by assuming that the output distribution of an encoding
function A is close to a uniform distribution. In contrast, such
an assumption is not assumed in the above theorem.

D. Achievablity to Channel Capacity
In this section, we show that the channel capacity is

achievable by combining proposed codes.
First, we review the definition of the capacity of a general

channel. Let X and Y be the alphabets of a channel input
and output, respectively. Then product sets X n and Yn are the
alphabets of a channel input vector Xn and a channel output
vector Y n , respectively. It should be noted that X and Y are
allowed to be infinite/uncountable/continuous sets on condition
that probability distributions/measures μXn and μY n |Xn (·|x),
x ∈ X n are well-defined.

Here, we define the operational channel capacity with a
channel input constraint specified by a set Pn of probability

MURAMATSU AND MIYAKE: CHANNEL CODE USING CONSTRAINED-RANDOM-NUMBER GENERATOR REVISITED 505

distributions on X n . A typical example of a channel input
constraint is the cost constraint, where any distribution μ ∈ Pn

satisfies
�

cn(x)μ(x)d x < C

for a given cost function cn : X n → [0,∞) and C ∈ [0,∞).
Definition 3: Let P ≡ {Pn}∞n=1 be a sequence of the set

of probability distributions on X n . For a general channel W ,
we call a rate R achievable if for all δ > 0 and all sufficiently
large n there is a pair consisting of a (possibly stochastic)
encoder �n : Mn → Sn and a (possibly stochastic) decoder
�n : Yn → Mn such that

1

n
log |Mn| ≥ R

μXn ∈ Pn

Prob(�Mn 	= Mn) ≤ δ,

where we call a subset S of X a signaling alphabet,4 Mn is
a set of messages, [1/n] log |Mn| represents the rate of the
code, Mn is a random variable of the message corresponding
to the uniform distribution on Mn , Y n is the random variable
of a channel output with an input Xn ≡ �n(Mn), �Mn ≡
�n(Y n) is the random variable of a reproduction, and the joint
distribution μMn XnY n �Mn

of (Mn , Xn, Y n, �Mn) is given as

μMn XnY n �Mn
(m, x, y, �m)

≡ μ
�Mn |Y n (�m| y)μY n |Xn (y|x)μXn |Mn (x|m)

|Mn|
by using conditional distributions μXn |Mn and μ

�Mn |Y n char-
acterizing �n and �n , respectively. The channel capacity
CS (W) is defined by the supremum of the achievable rate,
where the signaling alphabet S is specified.

It should be noted that the standard definition of channel
capacity can be denoted by CX (W), where the signaling
alphabet S is equal to X . It should also be noted that we
can let Pn be the set of all probability distributions on X n

when it is assumed that there is no channel input constraint.
In the following, we review the formulas of channel

capacity for a general channel W , where encoders and
decoders are assumed to be deterministic. Let �CX (W) be
the channel capacity for deterministic encoders and decoders.
The information theoretic expression of �CX (W) is derived
in [44], [19, Th. 3.6.1]5 as

�CX (W) = sup
X∈P

I (X; Y),

where the supremum is taken over all general sources X =
{μXn }∞n=1 such that μXn ∈ Pn for every n, and the joint
distribution μXnY n is given as

μXn Y n (x, y) ≡ μY n |Xn (y|x)μXn (x). (13)

Furthermore, similarly to the proof in [28], we can show the
formula

�CX (W) = sup
X∈P

�

H (X) − H(X|Y)
�

4This terminology comes from [6].
5In [19, Th. 3.6.1], it is assumed that P is a cost constraint. However,

we can easily extend the result to an arbitrary channel input constraint.

when X is finite, where the supremum is taken over all
general sources X and the joint distribution of (X, Y) is given
by (13). We can show by using random coding argument that
CX (W) = �CX (W), which implies the capacity formula as

CX (W) = sup
X∈P

�

H(X) − H(X |Y)
�

. (14)

This implies that the capacity does not increase by allowing
stochastic encoders and decoders.

Here, let us assume that X is a finite set. Then, from
Theorems 1 and 2, we have the following corollary, which
is an improvement of [28, Th. 1]. It should be noted that the
conditions for (A, pA) and (B, pB) are weaker than those
in [28, Th. 1]. Furthermore, both encoding and decoding
functions can be constructed by using constrained-random-
number generators.

Corollary 3: Assume that (A, pA) and (B, pB) have
an (αA,βA)-collision-resistance property and an (αB,βB)-
balanced-coloring property, respectively, for given r and R
satisfying

r = 1

n
log |ImA|

R = 1

n
log |ImB|

r > H(X |Y)

r + R < H(X).

Then for any δ > 0 and all sufficiently large n there are
functions A ∈ A, B ∈ B, and a vector c ∈ ImA such that
the decoding error probability is less than δ. The channel
capacity is achievable with the proposed code by letting X
be a source that attains the supremum on the right hand side
of (14), Mn ≡ ImB, r → H(X |Y), R → H(X) − H (X|Y),
and δ → 0.

Finally, let us apply our results to the case when X is an
infinite/continuous set. Let us define the capacity Cq

X (W) of
a channel with a finite signaling alphabet as

Cq
X (W) ≡ sup

S⊂X :|S|≤q
CS (W).

Since {S : |S| ≤ q} ⊂ {S : |S| ≤ q + 1}, we have the fact
that Cq

X (W) is a non-decreasing function of q . We have the
following lemma.

Lemma 3 ([34, Theorem 2]6): When CX (W) < ∞,
we have

CX (W) = lim
q→∞ Cq

X (W)

= lim
q→∞ sup

S⊂X :|S|≤q

sup
X∈P:

Xn∈Sn for all n

I (X; Y)

= lim
q→∞ sup

S⊂X :|S|≤q

sup
X∈P:

Xn∈Sn for all n

[H(X) − H(X |Y)], (15)

where the condition Xn ∈ Sn implies that the support of the
probability distribution of a channel input is a subset of Sn .

From the above lemma, we have the fact that the capacity
of a channel with an uncountable channel input alphabet is

6In [34, Th. 2], deterministic encoders and decoders are allowed. We can
show the lemma by using the relation CX (W) = �CX (W).

506 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

achievable with the code by optimizing the finite signaling
alphabet S and letting |S| → ∞.

Remark 3: For many channels it is known that an optimal
input distribution in a channel coding has a discrete support,
where a support is defined as the set of all elements with
positive measure. For example, for an additive white Gaussian
noise (AWGN) channel, it is shown in [42] that the optimal
input distribution has a discrete and finite support under the
maximum power constraint. It should be noted that the above
lemma implies that we can approach the capacity with a
sufficiently large signaling alphabet for any channel with an
uncountable/continuous channel input alphabet (e.g. AWGN
channel under the average power constraint).

Remark 4: In [6, Sec. 7.8], the optimal signaling alphabet
S ∈ X is derived for an additive white Gaussian noise channel,
where it is assumed that all the symbols in S are used equally
often, that is, the input distribution is uniform on S. This
assumption is natural when we use conventional linear codes.
On the other hand, it is unnecessary to assume that the input
distribution is uniform on S in our code construction, where
the encoding rate may increase.

V. PROOF OF THEOREMS

In the following proofs, we omit the dependence on n of
X , Y , C , and �X when they appear in the subscripts of μ, T ,
and T . The integral over the alphabet Yn is denoted by

�

.

A. Proof of Theorem 1

From (6), we have the fact that there is ε > 0 satisfying

r > H(X|Y) + ε. (16)

Let T X |Y ⊂ X n × Yn be defined as

T X |Y ≡
�

(x, y) : 1

n
log

1

μX |Y (x| y)
≤ H(X |Y) + ε

�

.

Assume that (x, y) ∈ T X |Y and �x A(Ax, y) 	= x, where
�x A(Ax, y) is defined by (7). Then we have the fact that there
is x� ∈ CA(Ax) such that x� 	= x and

μX |Y (x�| y) ≥ μX |Y (x| y) ≥ 2−n[H (X|Y)+ε].

This implies that
�

T X |Y (y) \ {x}� ∩ CA(Ax) 	= ∅, where
T X |Y (y) ≡ {x : (x, y) ∈ T X |Y }. We have

EA
�

χ(�xA(Ax, y) 	= x)
�

≤ pA
��

A : [T X |Y (y) \ {x}] ∩ CA(Ax) 	= ∅	

≤ |T X |Y (y)|αA

|ImA| + βA

≤ 2−n[r−H (X|Y)−ε]αA + βA (17)

for all (x, y) ∈ T X |Y , where χ(·) is defined by (2), the second
inequality comes from Lemma 1, and the third inequality
comes from (6) and the fact that |T X |Y (y)| ≤ 2n[H (X|Y)+ε].

We have the fact that

EA
�

μXY ({(x, y) : �xA(Ax, y) 	= x})�

= EA

⎡

⎣

�

x,y

μXY (x, y)χ(�xA(Ax, y) 	= x)

⎤

⎦

=
�

(x,y)∈T X |Y

μXY (x, y)EA
�

χ(�xA(Ax, y) 	= x)
�

+
�

(x,y)/∈T X |Y

μXY (x, y)EA
�

χ(�xA(Ax, y) 	= x)
�

≤ 2−n[r−H (X|Y)−ε]αA + βA + μXY ([T X |Y]c), (18)

where the last inequality comes from (17). From (CR1),(CR2),
(16) and the fact that μXY ([T XY]c) → 0 as n → ∞, we have
the fact that there is a function A ∈ A satisfying

μXY ({(x, y) : �x A(Ax, y) 	= x}) ≤ δ

2
(19)

for all δ > 0 and all sufficiently large n.
Since the joint distribution of (Xn, Y n, Cn) is given as

μXY C(x, y, c) = μXY (x, y)χ(Ax = c), (20)

we have

μX |CY (x|c, y) = μXY (x, y)χ(Ax = c)
�

x� μXY (x�, y)χ(Ax� = c)

= μX |Y (x| y)χ(Ax = c)
μX |Y (CA(c)| y)

= μ
�X |CY (x|c, y), (21)

that is, the constrained-random-number generator defined
by (4) is the stochastic decision with μX |CY . Furthermore,
we have

�x A(c, y) = arg max
�x∈CA(c)

μX |Y (�x| y)

= arg max
�x

μX |Y (�x| y)χ(Ax = c)

= arg max
�x

μX |Y (�x| y)χ(Ax = c)μY (y)
μCY (c, y)

= arg max
�x

μX |CY (�x|c, y), (22)

that is, �x A(c, y) is a maximum a posteriori decision for a
given joint distribution μXY C , where the last equality comes
from (20). Then we have

Error(A)

=
�

x,y,c,�x

μ
�X |CY (�x|c, y)μXY (x, y)χ(Ax = c)χ(�x 	= x)

=
�

x,y,c,�x

μX |CY (�x|c, y)μX |CY (x|c, y)μCY (c, y)χ(�x 	= x)

≤ 2
�

x,y,c

μX |CY (x|c, y)μCY (c, y)χ(�x A(c, y) 	= x)

= 2
�

x,y,c

μXY (x, y)χ(Ax = c)χ(�x A(c, y) 	= x)

= 2
�

x,y

μXY (x, y)χ(�x A(Ax, y) 	= x)

= 2μXY ({(x, y) : �x A(Ax, y) 	= x})
≤ δ (23)

MURAMATSU AND MIYAKE: CHANNEL CODE USING CONSTRAINED-RANDOM-NUMBER GENERATOR REVISITED 507

for all δ > 0 and all sufficiently large n, where the second
equality comes from (20) and (21), the first inequality comes
from Lemma 4 in Appendix, and the last inequality comes
from (19).

B. Proof of Theorem 2

From (11), we have the fact that there is ε > 0 satisfying

r + R < H (X) − ε. (24)

Let T X ⊂ X n be defined as

T X ≡
�

x : 1

n
log

1

μX (x)
≥ H(X) − ε

�

.

First, for all A, we have

EBc

�

�

m

μX (CAB(c, m))

μX (CA(c))
− 1

|ImB|

�

= EB

�

�

m,c

μX (CAB(c, m)) − μX (CA(c))
|ImB|

�

≤ EB

�

�

m,c

μX (CAB(c, m) ∩ T X) − μX (CA(c) ∩ T X)

|ImB|

�

+ EB

�

�

m,c

μX (CAB(c, m) ∩ [T X]c)

�

+ EB

�

�

m,c

−μX (CA(c) ∩ [T X]c)

|ImB|

�

= EB

�

�

m,c

μX (CAB(c, m) ∩ T X) − μX (CA(c) ∩ T X)

|ImB|

�

+ EB

�

�

m,c

μX (CAB(c, m) ∩ [T X]c)

�

+ EB

�

�

m,c

μX (CA(c) ∩ [T X]c)

|ImB|

�

, (25)

where the first equality comes from the fact that the distrib-
ution of the random variable c is {μX (CA(c))}c∈Im A, the first
inequality comes from the triangular inequality and the fact
that

μX (CAB(c, m)) = μX (CAB(c, m) ∩ T X)

+ μX (CAB(c, m) ∩ [T X]c)

μX (CA(c)) = μX (CA(c) ∩ T X) + μX (CA(c) ∩ [T X]c).

Since {CAB (c, m)}c,m and {CA(c)}c form a partition, the
second and the third terms on the right hand side of (25) are
evaluated as

EB

�

�

m,c

μX (CAB(c, m) ∩ [T X]c)

�

= μX ([T X]c) (26)

EB

�

�

m,c

μX (CA(c) ∩ [T X]c)

|ImB|

�

= μX ([T X]c). (27)

On the other hand, the first term on the right hand side of (25)
is evaluated as (28), shown at the bottom of this page, where
the fist inequality comes from Lemma 2 and the fact that
μX (x) ≤ 2−n[H (X)−ε] for all x ∈ T X , the second inequality
comes from the Jensen inequality, the third equality comes
from (8), (9), and the last inequality comes from the fact
that μX (T X) ≤ 1.

Next, we have

EBc

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

m,x,y,�x:
μXn (CAB(c,m))>0

x∈CAB(c,m)
B�x 	=m

μ
�X |CY (�x|c, y)μXY (x, y)

μX (CA(c))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤ EBc

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�

m,x,y,�x:
x∈CAB(c,m)

�x 	=x

μ
�X |CY (�x|c, y)μXY (x, y)

μX (CA(c))

⎤

⎥

⎥

⎥

⎥

⎥

⎦

EB

�

�

m,c

μX (CAB(c, m) ∩ T X) − μX (CA(c) ∩ T X)

|ImB|

�

=
�

c

μX (CA(c) ∩ T X)EB

�

�

m

μX (CB(m) ∩ CA(c) ∩ T X)

μX (CA(c) ∩ T X)
− 1

|ImB|

�

≤
�

c

μX (CA(c) ∩ T X)

�

αB − 1 + [βB + 1]|ImB|2−n[H(X)−ε]
μX (CA(c) ∩ T X)

≤ μX (T X)

�

�

c

μX (CA(c) ∩ T X)

μX (T X)

�

αB − 1 + [βB + 1]|ImB|2−n[H(X)−ε]
μX (CA(c) ∩ T X)

�

= μX (T X)

�

αB − 1 + [βB + 1]|ImA||ImB|2−n[H(X)−ε]
μX (T X)

=
�

[αB − 1] μX (T X)2 + [βB + 1]2−n[H(X)−r−R−ε]μX (T X)

≤
�

αB − 1 + [βB + 1]2−n[H(X)−r−R−ε] (28)

508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

= EB

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�

c,m,x,y,�x:
x∈CAB(c,m)

�x 	=x

μ
�X |CY (�x|c, y)μXY (x, y)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= EB

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�

c,m,x,y,�x:
x∈CAB(c,m)

�x 	=x

μ
�X |CY (�x|Ax, y)μXY (x, y)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
�

x,y,�x:
�x 	=x

μ
�X |CY (�x|Ax, y)μXY (x, y), (29)

where the first equality comes from the fact that the distribu-
tion of the random variable c is {μX (CA(c))}c∈Im A, the second
equality comes from the fact that x ∈ CAB(c, m) is equivalent
to Ax = c and Bx = m, and the third equality comes from
the fact that {CAB(c, m)}c,m forms a partition.

Finally, we have (30), shown at the bottom of this page,
where the first inequality comes from (29) and the fact that

�

m,x,y,�x:
μX (CAB (c,m))>0

x∈CAB (c,m)
B�x 	=m

μ
�X |CY (�x|c, y)μXY (x, y)

·
�

1

|ImB|μX (CAB(c, m))
− 1

μX (CA(c))

�

≤
�

m,x,y,�x:
μX (CAB (c,m))>0

x∈CAB (c,m)
B�x 	=m

μ
�X |CY (�x|c, y)μXY (x, y)

·

1

|ImB|μX (CAB(c, m))
− 1

μX (CA(c))

≤
�

m:
μX (CAB (c,m))>0

μX (CAB(c, m))

·

1

|ImB|μX (CAB(c, m))
− 1

μX (CA(c))

=
�

m:
μX (CAB (c,m))>0

μX (CAB(c, m))

μX (CA(c))
− 1

|ImB|

=
�

m

μX (CAB(c, m))

μX (CA(c))
− 1

|ImB|

−
�

m:
μX (CAB (c,m))=0

1

|ImB| ,

(31)

and the second inequality comes from (25)–(28). From (BC1),
(BC2), (24), (30), and the fact that μX ([T X]c) → 0 as n →
∞, we have the fact that there is a pair consisting of a function
B ∈ B and a vector c ∈ ImA that satisfy (12).

VI. CONCLUDING REMARKS

It is shown that we can construct a channel code from a
given source code of X with decoder side information Y ,
where the channel input and output are given by X and Y ,
respectively. We can construct a code that achieves the capacity
by letting X be an optimum channel input random variable and
using a source code achieving the limit H(X |Y). This idea can
be extended to multiple-input-multiple-output channels [36]
including multiple-access channels and broadcast channels.

Constrained-random-number generators provide building
blocks for code constructions.6 We can implement tractable
stochastic encoding and decoding functions by assum-
ing a memoryless channel and using constrained-random-
number generator with the sum-product algorithm or the
Markov-Chain-Monte-Carlo method [28], [29]. Finding good

6We would like to call this type of codes CoCoNuTS (Codes based on
Constrained Numbers Theoretically-achieving the Shannon limit).

EBc
�

Error(A, B, c)
�

= EBc

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

m:
μXn (CAB(c,m))=0

1

|ImB| +
�

m,x,y,�x:
μXn (CAB(c,m))>0

x∈CAB(c,m)
B�x 	=m

μ
�X |CY (�x|c, y)μY |X (y|x)μX (x)

|ImB|μX (CAB(c, m))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= EBc

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�

m:
μXn (CAB(c,m))=0

1

|ImB| +
�

m,x,y,�x:
μXn (CAB(c,m))>0

x∈CAB(c,m)
B�x 	=m

μ
�X |CY (�x|c, y)μXY (x, y)

�

1

μX (CA(c))
+ 1

|ImB|μX(CAB(c, m))
− 1

μX (CA(c))

�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≤
�

x,y,�x:
�x 	=x

μ
�X |CY (�x|Ax, y)μXY (x, y) + EBc

�

�

m

μX (CAB(c, m))

μX (CA(c))
− 1

|ImB|

�

≤ Error(A) +
�

αB − 1 + [βB + 1]2−n[H(X)−r−R−ε] + 2μX ([T X]c) (30)

MURAMATSU AND MIYAKE: CHANNEL CODE USING CONSTRAINED-RANDOM-NUMBER GENERATOR REVISITED 509

matrices and improving of these algorithms are left as a future
research.

APPENDIX

This appendix reviews the result of [35], which investigates
the error probability of the stochastic decision. It should be
noted that stochastic decoding is a stochastic decision in the
context of a coding scheme.

Let U and V be the alphabets of random variable U and V ,
respectively. We assume that the joint distribution pU V of
(U, V) is given.

Let us assume the situation where a decoder make a
stochastic decision of the invisible state U after the obser-
vation V . We use a random number generator �U ∈ U after
observing V and let �U be a decision (guess) about the state U .
Formally, we generate �U subject to the conditional distribution
q

�U |V (·|V) on U depending on an observation V and let an
output be a decision of U , where U and �U are conditionally
independent for a given V , that is, U ↔ V ↔ �U forms a
Markov chain. The joint distribution pU V �U of (U, V , �U) is
given as

pU V �U (u, v,�u) = q
�U |V (�u|v)pU |V (u|v)pV (v).

Let us call q
�U |V a stochastic decision rule. As a special case,

when q
�U |V is given by using a function f : U → V and is

defined as

q
�U |V (�u|v) =

�

1 if �u = f (v)

0 if �u 	= f (v),
(32)

we call q
�U |V or f a deterministic decision rule.

Let χ be defined by (2). Then the error probability
Error(q

�U |V) of a (stochastic) decision rule q
�U |V is given as

Error(q
�U |V)

=
�

v

pV (v)
�

u

pU |V (u|v)
�

�u

q
�U |V (�u|v)χ(�u 	= u)

=
�

v

pV (v)
�

u

pU |V (u|v)[1 − q
�U |V (u|v)]. (33)

In the last equality, 1 − q
�U |V (u|v) corresponds to the error

probability of the decision rule q
�U |V after the observation

v ∈ V , and Error(q
�U |V) corresponds to the average of this

error probability. When q
�U |V is defined by using f : V →

U and (32), the decision error probability Error(f) of a
deterministic decision rule f is given as

Error(f) ≡
�

v

pV (v)
�

u

pU |V (u|v)χ(f (v) 	= u)

=
�

v

pV (v)[1 − pU |V (f (v)|v)]. (34)

It should be noted that the right hand side of the first equality
can be derived directly from (33) and the fact that

q
�U |V (u|v) = χ(f (v) = u)

= 1 − χ(f (v) 	= u). (35)

That is, we have Error(f) = Error(q
�U |V) when f and q

�U |V
satisfy (32).

It is well-known fact (see [35, Lemma 1]) that an optimal
strategy for guessing the state U is finding �u which maxi-
mize the conditional probability pU |V (�u|v) depending on a

given observation v. Formally, by taking �u that maximizes
pU |V (�u|v) for each v ∈ V , we can define the function fMAP :
V → U as

fMAP(v) ≡ arg max
�u

pU |V (�u|v) (36)

= arg max
�u

pU V (�u, v). (37)

We call (36) and (37) a maximum a posteriori decoder and a
maximum likelihood decoder, respectively. It should be noted
that the discussion does not depend on the choice of states
with the same maximum probability.

Here, let us consider the case q
�U |V (�u|v) = pU |V (�u|v)

for all (�u, v), that is, we make a stochastic decision with
the conditional distribution pU |V of a state U for a given
observation V . It should be noted that the joint distribution
pU V �U of (U, V , �U) is given as

pU V �U (u, v,�u) = pU |V (�u|v)pU |V (u|v)pV (v).

We call this type of decision rule a stochastic decision with
the a posteriori distribution.

We have the following lemma. It should be noted that
this lemma is presented in [23, Lemma 3]7 in the context
of stochastic decoding of channel code.

Lemma 4 ([10, Eq. (29)] [35, Lemma 3]): Let (U, V) be
a pair consisting of a state U and an observation V and pU V

be the joint distribution of (U, V). When we make a stochastic
decision with pU |V , the decision error probability of this rule
is at most twice the decision error probability of the maximum
a posteriori decision rule fMAP. That is, we have

Error(pU |V) ≤ 2Error(fMAP).

Proof: In this proof, we assume that U and V are finite
sets. It should be noted that the result does not change when
V is an infinite/continuous set, where the summation should
be replaced with the integral. We have

Error(pU |V)

=
�

v

pV (v)
�

u

pU |V (u|v)[1 − pU |V (u|v)]

=
�

v

pV (v)

�

1 −
�

u

pU |V (u|v)2

�

≤
�

v

pV (v)
�

1 − pU |V (fMAP(v)|v)2
�

=
�

v

pV (v)[1 − pU |V (fMAP(v)|v)][1 + pU |V (fMAP(v)|v)]

≤ 2
�

v

pV (v)[1 − pU |V (fMAP(v)|v)]
= 2Error(fMAP), (38)

where the second inequality comes from the fact that
pU |V (f (v)|v) ≤ 1 and the fourth equality comes from (34).

ACKNOWLEDGMENT

The authors thank the anonymous reviewers and Associate
Editor Prof. V. Vayshampayan for constructive comments and
suggestions. They have significantly improved the presentation
of the results.

7Lemma 3 indicates the lemma not in the conference proceedings version
but in the online version.

510 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 1, JANUARY 2019

REFERENCES

[1] R. Ahlswede and I. Csiszár, “Common randomness in information theory
and cryptography—Part II: CR capacity,” IEEE Trans. Inf. Theory,
vol. 44, no. 1, pp. 225–240, Jan. 1998.

[2] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[3] J. Bajcsy and P. Mitran, “Coding for the Slepian–Wolf problem with
turbo codes,” in Proc. IEEE Globecom, Nov. 2001, pp. 1400–1404.

[4] A. Bennatan and D. Burshtein, “On the application of LDPC codes
to arbitrary discrete-memoryless channels,” IEEE Trans. Inf. Theory,
vol. 50, no. 3, pp. 417–438, Mar. 2004.

[5] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes,” in Proc. Int. Conf.
Commun., Geneva, Switzerland, May 1993, pp. 1064–1070.

[6] R. E. Blahut, Principles and Practice of Information Theory. Reading,
MA, USA: Addison-Welsey, 1987.

[7] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143–154, Apr. 1979.

[8] J. Chen, D.-K. He, A. Jagmohan, L. A. Lastras-Montaño, and
E.-H. Yang, “On the linear codebook-level duality between
Slepian–Wolf coding and channel coding,” IEEE Trans. Inf. Theory,
vol. 55, no. 12, pp. 5575–5590, Dec. 2009.

[9] T. Cover, “A proof of the data compression theorem of Slepian
and Wolf for ergodic sources (Corresp.),” IEEE Trans. Inf. Theory,
vol. IT-21, no. 2, pp. 226–228, Mar. 1975.

[10] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967.

[11] I. Csiszár, “Linear codes for sources and source networks: Error expo-
nents, universal coding,” IEEE Trans. Inf. Theory, vol. IT-28, no. 4,
pp. 585–592, Jul. 1982.

[12] I. Csiszár and J. Körner, Information Theory: Coding Theorems for
Discrete Memoryless Systems, 2nd ed. Cambridge, U.K.: Cambridge
Univ. Press, 2011.

[13] P. Elias, “Coding for noisy channels,” IRE Int. Conv. Rec., vol. 3,
pp. 37–46, 1955.

[14] U. Erez and G. Miller, “The ML decoding performance of LDPC
ensembles over Zq ,” IEEE Trans. Inf. Theory, vol. 51, no. 5,
pp. 1871–1879, May 2005.

[15] R. G. Gallager, Information Theory and Reliable Communication.
Hoboken, NJ, USA: Wiley, 1968.

[16] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge,
MA, USA: MIT Press, 1963.

[17] J. Garcia-Frias and Y. Zhao, “Compression of correlated binary sources
using turbo codes,” IEEE Commun. Lett., vol. 5, no. 10, pp. 417–419,
Oct. 2001.

[18] T. S. Han and S. Verdú, “Approximation theory of output statistics,”
IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 752–772, May 1993.

[19] T. S. Han, Information-Spectrum Methods in Information Theory. Berlin,
Germany: Springer, 2003.

[20] J. Honda and H. Yamamoto, “Polar coding without alphabet extension
for asymmetric models,” IEEE Trans. Inf. Theory, vol. 59, no. 12,
pp. 7829–7838, Dec. 2013.

[21] N. Hussami, S. B. Korada, and R. Urbanke, “Performance of polar codes
for channel and source coding,” in Proc. IEEE Int. Symp. Inf. Theory,
Seoul, South Korea, Jun./Jul. 2009, pp. 1488–1492.

[22] R. Impagliazzo and D. Zuckerman, “How to recycle random bits,”
in Proc. 30th IEEE Symp. Fund. Comput. Sci., Oct./Nov. 1989,
pp. 248–253.

[23] S. Kudekar, S. Kumar, M. Mondelli, H. D. Pfister, and R. Urbanke,
“Comparing the bit-MAP and block-MAP decoding thresholds of
Reed–Muller codes on BMS channels,” [Online]. Available:
https://arxiv.org/abs/1602.06048

[24] S. Miyake and J. Muramatsu, “A construction of channel code, JSCC and
universal code for discrete memoryless channels using sparse matrices,”
IEICE Trans. Fundam., vol. E92-A, no. 9, pp. 2333–2344, Sep. 2009.

[25] S. Miyake and F. Kanaya, “Coding theorems on correlated gen-
eral sources,” IEICE Trans. Fundamentals, vols. E78-A, no. 9,
pp. 1063–1070, 1995.

[26] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “How to achieve the
capacity of asymmetric channels,” IEEE Trans. Inf. Theory, vol. 64,
no. 5, pp. 3371–3393, May 2018.

[27] J. Muramatsu, “Applications of Slepian–Wolf source coding,” in Proc.
Workshop Concepts Inform. Theory, Viareggio, Italy, Oct. 2004,
pp. 20–23.

[28] J. Muramatsu, “Channel coding and lossy source coding using a gener-
ator of constrained random numbers,” IEEE Trans. Inf. Theory, vol. 60,
no. 5, pp. 2667–2686, May 2014.

[29] J. Muramatsu, “Variable-length lossy source code using a constrained-
random-number generator,” IEEE Trans. Inf. Theory, vol. 61, no. 6,
pp. 3574–3592, Jun. 2015.

[30] J. Muramatsu and S. Miyake, “Hash property and coding theorems
for sparse matrices and maximum-likelihood coding,” IEEE Trans. Inf.
Theory, vol. 56, no. 5, pp. 2143–2167, May 2010.

[31] J. Muramatsu and S. Miyake. (Jun. 2010). “Construction of
Slepian–Wolf source code and broadcast channel code based on hash
property.” [Online]. Available: https://arxiv.org/abs/1006.5271

[32] J. Muramatsu and S. Miyake, “Construction of broadcast channel code
based on hash property,” in Proc. IEEE Int. Symp. Inf. Theory, Austin,
TX, USA, Jun. 2010, pp. 575–579.

[33] J. Muramatsu and S. Miyake, “Construction of strongly secure wiretap
channel code based on hash property,” in Proc. IEEE Int. Symp. Inf.
Theory, St. Petersburg, Russia, Jul./Aug. 2011, pp. 612–616.

[34] J. Muramatsu and S. Miyake, “Fundamental limits are achievable with
countable alphabet,” in Proc. Int. Symp. Inf. Theory Appl., Monterey,
CA, USA, Oct./Nov. 2016, pp. 573–577.

[35] J. Muramatsu and S. Miyake, “On the error probability of stochastic
decision and stochastic decoding,” in Proc. IEEE Int. Symp. Inf. Theory,
Aachen, Germany, Jun. 2017, pp. 1643–1647. [Online]. Available:
https://arxiv.org/abs/1701.04950

[36] J. Muramatsu and S. Miyake, “Multi-terminal codes using constrained-
random-number generators,” in Proc. Int. Symp. Inf. Theory
Appl., Singapore, Oct. 2018, pp. 612–616. [Online]. Available:
https://arxiv.org/abs/1801.02875

[37] J. Muramatsu, T. Uyematsu, and T. Wadayama, “Low-density parity-
check matrices for coding of correlated sources,” IEEE Trans. Inf.
Theory, vol. 51, no. 10, pp. 3645–3653, Oct. 2005.

[38] T. Murayama, “Statistical mechanics of the data compression theorem,”
J. Phys. A, Math. Gen., vol. 35, pp. L95–L100, Feb. 2002.

[39] J. M. Renes and R. Renner, “Noisy channel coding via privacy amplifi-
cation and information reconciliation,” IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7377–7385, Nov. 2011.

[40] D. Schonberg, S. S. Pradhan, and K. Ramchandran, “LDPC codes can
approach the Slepian Wolf bound for general binary sources,” in Proc.
40th Annu. Allerton Conf. Commun., Control, Comput. Monticello,
IL, USA: Allerton House, Oct. 2002, pp. 576–585.

[41] D. Slepian and J. K. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. IT-19, no. 4, pp. 471–480,
Jul. 1973.

[42] J. G. Smith, “The information capacity of amplitude- and variance-
constrained scalar Gaussian channels,” Inf. Control, vol. 18, no. 3,
pp. 203–219, Apr. 1971.

[43] Y. Steinberg and S. Verdú, “Channel simulation and coding with side
information,” IEEE Trans. Inf. Theory, vol. 40, no. 3, pp. 634–646,
May 1994.

[44] S. Verdú and T. S. Han, “A general formula for channel capacity,” IEEE
Trans. Inf. Theory, vol. 40, no. 4, pp. 1147–1157, Jul. 1994.

[45] A. D. Wyner, “Recent results in the Shannon theory,” IEEE Trans. Inf.
Theory, vol. IT-20, no. 1, pp. 2–10, Jan. 1974.

[46] M. H. Yassaee, M. R. Aref, and A. Gohari, “Achievability proof via
output statistics of random binning,” IEEE Trans. Inf. Theory, vol. 60,
no. 11, pp. 6760–6786, Nov. 2014.

Jun Muramatsu received the B.S. and M.S. degrees in mathematics and
the Ph.D. degree from Nagoya University, Aichi, Japan, in 1990, 1992, and
1998, respectively. He joined NTT Laboratories in 1992. At NTT, he has been
engaged in research on information theory. From Feb. 2007 to Feb. 2008,
he was a visiting researcher in ETH, Zurich, Switzerland. He is currently
a Research Scientist in NTT Communication Science Laboratories. He is
a member of the Institute of Electronics, Information and Communication
Engineers (IEICE) of Japan and the IEEE Information Theory Society. During
2006–2010, he was an associate editor of IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences. He received the
Young Researcher Award of SITA (the Society of Information Theory and
Its Application) in 2003 and the 63rd Best Paper Award of IEICE in 2007.

Shigeki Miyake received his B.E. and M.E. degrees in Physical Engineering
and Ph.D. degree in science from Tokyo University, Tokyo, Japan, in 1987,
1989, and 2010, respectively. He joined NTT Laboratories in 1989. He has
been engaged in research on information theory and its application except
from 1998 to 2004 when he worked in business division of NTT. He is
currently a Research Engineer in NTT Network Innovation Laboratories,
Kanagawa Japan. He is a member of the Institute of Electronics, Information
and Communication Engineers (IEICE) of Japan and the IEEE Information
Theory Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

