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STEP-Archival: Storage Integrity and Tamper
Resistance Using Data Entanglement

Hugues Mercier , Maxime Augier, and Arjen K. Lenstra

Abstract— We present STEP-archives, a novel and practical
data archival architecture, where an attacker who wants to
censor or tamper with a data object must cause obvious collateral
damage to a large number of other objects in the system.
We use maximum distance separable erasure codes to entangle
unrelated data blocks and provide redundancy against storage
failures, which results in an archive with constant time read–write
operations. We show a tradeoff for the attacker between attack
complexity, irrecoverability, and collateral damage. We also show
that the problem is asymmetric between attackers and defenders;
while a defender can efficiently recover from imperfect attacks,
an attacker must solve an NP-hard problem to find a perfect
(irrecoverable) attack that minimizes collateral damage to other
data objects, or even approximate its size. We then study efficient
sample-heuristic attack algorithms that lead to irrecoverable
but large damage and demonstrate how some strategies and
parameter choices allow to resist these sample attacks. Finally,
we provide empirical evidence that an attacker who wants to
irrecoverably tamper with a document archived long enough
must destroy a constant fraction of the archive.

Index Terms— Distributed storage, data archival, anti-
tampering, anti-censorship, data integrity, data entanglement,
MDS codes.

I. INTRODUCTION

THE way we store and archive data is being transformed
by the emergence of information and communication

technologies. Among these technologies, distributed file stor-
age, sharing and synchronization systems on the cloud are
becoming ubiquitous, and all major information technology
players are offering some flavor of it: Dropbox, iCloud,
Google Drive, OneDrive, Amazon S3, . . . They provide easy
access to data from multiple devices and locations as well as
protection against data loss from hardware failures. However,
recent developments in the wake of expansive and sometimes
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unauthorized government access to private and sensitive data
raise major privacy and security concerns about data located in
the cloud, especially when data is physically located or transits
outside the legal jurisdiction of its rightful owner.

In this article, we consider long-term digital data storage and
permanent archiving. A first major challenge is data integrity.
The objective is to provide verifiable guarantees to users
that their data is and will likely remain properly, securely,
and reliably archived. How can a user be sure that his data
will not stop being taken care of after a system update or a
maintenance budget cut, or that his data will be as securely and
reliably stored as data from more important customers using
the same service? These problems are especially relevant with
old archives, some of which might not need to be accessed for
decades. Despite remarkable recent theoretical and technical
progress, users often still rely in the good faith they have in
their providers (and in the catastrophic consequences for their
providers’ bottom line should they lose the data).

A second challenge of digital storage and permanent archiv-
ing is tamper resistance. This is closely related to protection
against censorship. Research and scientific data as well as
medical, legal and financial records can include sensitive
information that can be viewed as threatening or compromising
by potential censors, with incentives worth billions of dollars
to tamper with it. A good archival system must thus make it
difficult for a powerful censor to irrecoverably destroy or tam-
per with archived data, especially in an undetectable way.
This is a different issue from the traditional definition of
data integrity and authenticity, for which there already exist
plenty of solutions from the client perspective using client-side
cryptography.

There is currently no practical software-based archival
system providing strong anti-tampering and anti-censorship.
Designing such a system is a difficult endeavor, both in theory
and in practice. This is the main objective of our work.

A. State of the Art

1) Censorship-Resistant File Sharing: Censorship-resistant
file sharing systems and overlays have been studied in var-
ious forms and for a large number of settings and applica-
tions, starting with the Eternity Service proposal [1]. This
was followed by Publius [2], Freenet [3], Free Haven [4],
Dagster [5], Tangler [6], SiRiUS [7], Tahoe [8], and
Clouds [9]. All these solutions are summarized and put in
context in a recent survey on privacy and decentralization [10].

Randomized encryption can prevent a malicious storage sys-
tem from extracting information about its users, by observing
which users independently store identical files (specifically,
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it prevents the system from noticing when unrelated files are
identical). It can also be used to prevent the system from
preemptively censoring documents corresponding to known
content. This has been implemented with success in practice,
notably by the Tahoe [8] filesystem. Encryption keys are semi-
deterministically derived from the hash of a cleartext block so
that efficient deduplication can still be performed on encrypted
blocks to reduce storage space. However, a third party could
publish the encryption key for a particular block, and prove
that some block decrypts to censorable content, prompting an
authority to individually censor particular blocks.

Perng et al. [11] point out that none of the above solutions
quantifies the amount nor the quality of anti-censorship they
provide, reverting instead to statements such as “Our system
should make it extremely difficult for a third party to make
changes to or force the deletion of published materials” [2].
They also show that the censorship-resistance of these systems
is not comprehensive. To overcome this lack of formalism, [11]
provides the first definition of censorship resistance by model-
ing the adversary as a selective filter that must block a targeted
document while allowing the retrieval of the other documents.
They show that private information retrieval [12] is a necessary
but insufficient condition to guarantee censorship resistance in
this context.

2) Data Entanglement: The idea behind data entanglement
is that an adversary who wants to censor or tamper with a
specific piece of data must also censor or tamper with tangled
data elsewhere in the system. Providing anti-censorship using
data entanglement was first proposed by Dagster [5] and
Tangler [6]. In Dagster, documents and blocks have the same
size. To add a new document in the system, c blocks already
stored are chosen at random, and a new block consisting of
the exclusive-or of the new document with the c blocks is
stored. A censor wanting to delete a document can erase one
of its c+ 1 blocks, which on average will destroy O(c) other
documents, the older documents being more protected than
newer ones. In Tangler, two old blocks chosen randomly and
a new document to be archived are used to generate two new
blocks using (3, 4) Shamir secret sharing [13]. The two new
blocks are then stored. The original document can be recovered
with any three of the four blocks using Lagrange interpolation.
In [14], it is shown that erasing two blocks from a random
Tangler document erases on average O( log n

n ) other documents.
However, the number of documents erased irrecoverably is
much smaller, since some partly corrupted documents can be
decoded to recover erased blocks. No analysis of the system
resistance against tampering is presented.

A theory of data entanglement is developed in [14]. In this
setting, clients submit their files to a trusted third party
that entangles them into a common store. Clients who want
to retrieve their file use recovery algorithms. An important
contribution is the introduction of all-or-nothing integrity:
intuitively, either all the documents are recoverable with high
probability, or no document is. The authors show that all-
or-nothing integrity is possible with some restrictions on the
power of the attacker. Ateniese et al. [15] extend the work
by allowing stronger all-or-nothing integrity without a trusted
third party. They also present a simulation-based security

analysis in the universal composability model, and guarantee
the privacy of the data and randomness used to encode it in
the presence of an adversary in possession of a subset of this
information. Unfortunately, the protocols provided in both arti-
cles [14], [15] remain far from real-life implementations: users
must entangle their data in a single, costly and coordinated
fashion, and they cannot add new data without re-entangling
everything from scratch. Furthermore, the scheme is based on
polynomial interpolation whose degree depends on the number
of users. As importantly, no data is recoverable if the storage
provider corrupts or fails to maintain a small part of the data.

3) WORM Storage: For compliance and legal reasons
(such as SEC Rule 17a-4 [16], [17]), sensitive data may
be stored using a “write-once, ready-many” (WORM) tech-
nology. WORM storage is a niche market of secure data
storage solutions that has been historically fulfilled using
hardware approaches. It has a long history predating CD-R
disks and was commercialized in several forms for protection
against tampering: tape cartridges, secure digital flash memory
cards, SD cards, . . . Physical implementations typically offer
more constrained data access than logical approaches and are
more dependent on hardware robustness against failures and
destruction. To alleviate these shortcomings, recent solutions
integrate WORM hardware with software control, where the
protection against data rewrite is embedded at the physical
disk level. There is little peer-reviewed work on WORM
technologies [18], and parties interested in the state of the art
must consult recent business white papers and patents from
providers such as Dell EMC [19], GreenTec [20], HP [21]
HubStor [22] and IBM [23], [24]. As pointed out in [18],
WORM technologies seek compliance as much as security,
and do not provide strong WORM security such as guaranteed
retention despite insider’s physical access.

4) Proofs of Storage: A significant amount of work on
provable data possession [25] and proofs of retrievability [26]
has emerged in the last ten years. The idea behind provable
data possession is that clients sign data prior to transmitting
it to a remote server. Once data is stored, clients can audit
the remote server by challenging it to prove that randomly
chosen data blocks are still in its possession. The answer
takes the form of a constant size proof of possession, and
with high probability the server will be unable to answer
correctly if the blocks are corrupted. Proofs of retrievability
use error-correcting codes on top of signed data. This allows
the client to challenge the remote server to succinctly prove
that it has the entire data object in its possession with high
probability. Work on these topics was extended to tackle
many issues such as proof of multiple stored replicas [27],
scalability [28], deduplication [29] and data updates [30]. All
these mechanisms allow a client to learn whether a remote
server still has the data at a specific time when challenged.
They cannot guarantee that the server will agree to disclose
the data when prompted to do so and thus offer no censorship
protection, nor do they protect against tampering.

B. Our Contributions

In this article, we introduce STEP-archives. Using data
entanglement and erasure-correcting codes, we propose,
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develop and analyze a novel data storage architecture where a
stored document can only be deleted or modified by compro-
mising the integrity of other documents in the system. There
are two main objectives behind this work. The first objective is
data integrity. We want to provide guarantees to users that their
data cannot be deleted or corrupted without compromising
other data stored by themselves or other users. The second
objective is to provide tamper and censorship resistance by
forcing an adversary who wants to censor or tamper with
data to do so noisily, and corrupt a large number of other
documents in the system. An ancillary result deriving from the
two objectives is increased redundancy and protection against
failures, which can be seen as attacks from random or failure-
specific censors.

1) Attacker - Defender Asymmetry: An attacker who wants
to tamper with a document must try to destroy it irrecoverably
by recursively eliminating all cascading dependencies in other
documents. One of the interesting aspects of our approach is
its asymmetry. On the one hand, it is easy to repair the system
if the damage done by an attacker is recoverable. On the other
hand, we prove that irrecoverably destroying a target document
while minimizing the number of other documents destroyed
by the attack is NP-hard. Even approximating the size of the
smallest irrecoverable attack is hard, unless P = NP.

2) System Robustness and Forward Integrity: In the data
entanglement work of [14] and [15], all-or-nothing integrity
makes it essentially impossible to recover anything if the
storage provider corrupts or fails to maintain a small part of
the data. Although this feature is a strong incentive for the
storage provider to behave responsibly, it has a perverse and
undesirable effect: a malicious attacker, having compromised
an honest provider, can deny access to all the data by denying
access to a small part of the system, and irrecoverably destroy
the entire data by corrupting a small amount of it.

We take the dual approach to achieve the same objective
and introduce the concept of forward integrity. We use an
append-only coding scheme for which unrelated pieces of data
eventually become mutually dependent. When a document has
been archived long enough, it can only be lost by destroying a
large number of other documents. Furthermore, for an archive
to reach the state where old documents are irrecoverably
destroyed, the storage provider must be very sloppy, or the
attacker must be very powerful and willing to do a lot of
work.

3) Entanglement Strategies and Suboptimal Attacks: After
introducing and describing our architecture, we present dif-
ferent entanglement strategies and suboptimal attacks within
this model, and study how their interactions affect the system
resilience. We show that entangling data in a sliding win-
dow limited to the recent past bounds the collateral damage
required to irrecoverably destroy a document. We also provide
evidence that entanglement chosen uniformly at random forces
an attacker who wants to irrecoverably destroy a document
archived long enough to destroy a constant fraction of all
document archived after it.

4) Practical Considerations: In the data entanglement work
of [14] and [15], all-or-nothing integrity only works with
static data stores. Furthermore, the proposed solution based

on polynomial interpolation is too complex for a practi-
cal implementation in its current form. We emphasize that
our objective is to achieve both data integrity and censor-
ship/tamper resistance in a way implementable in practical
systems. Thus, we use practical constraints that keep an actual
implementation realistic while being simple enough to allow
analysis. We aim for solutions that archive a new document
using only a small constant amount of data already archived
and without modifying it, and read archived documents using
a small constant amount of archived data. All our underlying
assumptions and design choices are implementable using state-
of-the-art and optimized coding and storage techniques.

C. Publication Note

We presented a preliminary version of this work at the
2015 International Symposium on Information Theory [31].
This extended version includes additional material such as the
hardness of the optimal attack, additional suboptimal attacks,
extended simulations, the proofs, implementation details, and a
comprehensive discussion of the security and implementation
strengths and weaknesses of the architecture.

D. Outline

The rest of this article is organized as follows. Our
novel storage architecture is formally described in Section II,
followed by assumptions and architecture constraints in
Section III. We present our recovery algorithm in Section IV.
We analyze the optimal attack in Section V, and describe
suboptimal attacks in Section VI. Two entanglement strate-
gies, proximity entanglement, and uniformly random entan-
glement, are respectively studied in Sections VII and VIII.
In Section IX, we discuss extensions and general security
considerations. Finally, we conclude the paper in Section X.

II. ENTANGLEMENT ARCHITECTURE

USING ERASURES CODES

Definition 1: A (s, t, e, p)-archive is a storage system
where each archived document consists of a codeword with
s source blocks, t tangled blocks, p parity blocks and that
can correct e � p − s block erasures.

When a document is archived, it is split into s ≥ 1 source
blocks. Using the s source blocks with t distinct old blocks
already archived, a systematic maximum distance separable
(MDS) code [32] is used to create p ≥ s parity blocks which
are then archived on the system. The code rate is s+t

s+t+p , but
since only the parity blocks are archived, the storage rate
on the physical medium is s

p . An archived document can be
recovered from s + t or more of its blocks. The code can
correct p block erasures per document codeword, but since the
source blocks are not archived and are considered as erased,
at most e � p− s block erasures per document on the storage
medium can be corrected.1 Note that increasing t does not

1Any two of the three parameters s, e, p are sufficient to calculate the other.
The parameter e is included for convenience to distinguish the local erasure
capability of our scheme, which is different from that of an MDS code used
straightforwardly. It is also possible to use a code which is systematic for the
old entangled blocks but not for the source blocks. This allows us to puncture
the code without decreasing its error-correcting capability since the source
blocks must no longer be erased.
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Algorithm 1: Entanglement and Archival of Document dk

input : S← s source blocks of document dk

1 Select t old blocks already archived based on a
predefined entanglement strategy

2 Apply the MDS code to the t pointer blocks and s
source blocks to generate p parity blocks

3 Archive the p parity blocks

increase the storage overhead nor the local error-correcting
capability, but does increase coding and decoding complexity.
Algorithm 1 summarizes the entanglement and archival of
a document dk . The challenging part of our approach is to
choose the pointers to entangled blocks in a way that provides
good anti-tampering and data integrity.

An attacker can censor a document dk by erasing more
than e blocks from it. However, by entangling new docu-
ments with documents already archived, it might be possible
for the system to recover the deleted blocks by decoding
other documents that use them. As an example, consider
the (1, 3, 2, 3)-archive presented in Figure 1. Each document
codeword consists of one source block, three pointers to old
blocks, and three parity blocks. Only the parity blocks are
stored when a new document is archived; the source block is
not stored and the pointer blocks were previously stored as
parity blocks of older documents. Block 0 is a known anchor
that cannot be corrupted. If an MDS code is used, any four of
the six stored blocks belonging to a document are sufficient
to recover it (i.e., e = 2). In Figure 1a, an attacker wants to
censor document d5 by erasing its blocks {2, 7, 11, 13, 14, 15}
from the archive. However, although d5 cannot be recovered
locally from its codeword, all the blocks are recoverable:
Block 2 can be recovered by decoding d1 or d2, Block 7 can
be recovered by decoding d3, d4 or d8, Block 11 can be
recovered by decoding d4, Block 14 can be recovered by
decoding d7, Block 15 can be recovered by decoding d8, and
in the last step Block 13 can be recovered by decoding d5.
Having been unable to erase d5, the attacker continues his
attack more cleverly and further erases blocks {20, 21, 22, 24},
as illustrated in Figure 1b. Document d5 is now destroyed
irrecoverably, as are also d7 and d8 (the irrecoverable blocks
and documents are shown in red). Blocks 2, 7 and 11 are
still recoverable, which means that the attacker could have
irrecoverably destroyed d5 without destroying them.

Definition 2: A set of documents forms an integrity set I if
for all the documents in I , at least e+1 blocks do not appear
in any document of the complementary set I . We write I (dk)
to express that a document dk belongs to I .

If an attacker wants to irrecoverably censor a document dk ,
he must partition the set of documents in two: an integrity
set I (dk) of corrupted documents including dk , each with at
least e + 1 erased blocks,2 and the complementary set I (dk)
of uncorrupted documents without any erased block.

Definition 3: Let A be the set of all (s, t, e, p)-archives
with K ≥ k archived documents and fixed s, t, e,

2From our definition of integrity set, it is possible to delete e + 1 blocks
for every document in I without causing damage outside I .

and p.3 We write Imin(dk) to denote the size of the smallest
integrity set of document dk for a fixed archive a ∈ A,
Imin(dk) � min

1≤ j≤k
(Imin(d j )) for the size of the smallest of the

integrity sets of the first k documents for a fixed archive a ∈ A,
and maxImin(dk) � max

a∈A
(Imin(dk)) for the largest Imin(dk) over

all possible archives a ∈ A. We write Imin and maxImin when
K � k.

Note that Imin(dk), maxImin(dk), Imin and maxImin are non-
decreasing functions of k. The dependency between documents
is not symmetric: if the smallest integrity set containing doc-
ument dk also contains document dl , the smallest integrity set
containing dl does not necessarily contain dk , and Imin(dl) ≤
Imin(dk).

Our goal is to ensure that the smallest integrity set is as large
as possible for every document. If the smallest integrity set is
large, we guarantee data integrity, tamper resistance and censor
resistance at the same time: every document dk is as securely
and reliably archived as the smallest integrity set containing
it. A large Imin with K � k guarantees that all old enough
documents have good integrity.

Another relevant parameter is the size of the integrity
window required to irrecoverably delete a document. The
integrity window of an integrity set I = {di , di1 , di2 , . . . , d j }
where i < i1 < i2 < · · · < j is W � {di , di+1, di+2, . . . , d j },
and its size is j−i+1. It is the number of documents, including
documents that are not deleted, from the oldest to the most
recent document of a given integrity set.

Definition 4: Let A be the set of all (s, t, e, p)-archives
with K ≥ k archived documents and fixed s, t, e, and
p.4 We write Wmin(dk) to denote the size of the smallest
integrity window of document dk for a fixed archive a ∈ A,
Wmin(dk) � min

1≤ j≤k
(Wmin(d j )) for the size of the smallest of the

integrity windows of the first k documents for a fixed archive
a ∈ A, and maxWmin(dk) � max

a∈A
(Wmin(dk)) for the largest

Wmin(dk) over all possible archives a ∈ A. We write Wmin

and maxWmin when K � k.
From Figure 1b, we can see that the attack in red is optimal,

thus Imin(d5) = 3 and Wmin(d5) = 4. In fact, it is not hard to
show that irrecoverably destroying any of the first 5 documents
of the archive requires the deletion of blocks from at least three
documents in a window of size at least 4, thus Imin(d5) = 3
and Wmin(d5) = 4. Imin(d6) = 2 since d6 can be destroyed by
deleting the blocks {16, 17, 18, 26} in documents d6 and d9.

III. MODEL ASSUMPTIONS AND ARCHITECTURE

CONSTRAINTS

A. Storage Backend Requirements

We intend STEP-archives to be used on top of existing
available storage services, and we make a number of assump-
tions about the behaviour of the storage services used as the
backends for data and metadata. We examine the consequences
of relaxing these assumptions in Sections III-C, IX and X.

3What distinguishes the archives in A is which tangled blocks are selected
for each document.

4See Footnote 3.
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Fig. 1. (1,3,2,3)-archive. 4 out of 6 blocks are required to recover a document. (a) Blocks {2, 7, 11, 13, 14, 15} are erased. (b) Blocks
{2, 7, 11, 13, 14, 15, 20, 21, 22, 24} are erased.

• We use an immutable key-value store as the underlying
structure for storage of data. In this context, updates
to old documents effectively become new documents.
This is a reasonable assumption for a large class of
applications, and has great practical benefits. In addition,
we require that the storage interface to the data provides
self-integrity; that is, when fetching a stored block B
using the corresponding storage key, the system must
either return the same block B or an error; it cannot return
another data block B ′ �= B . In practice, this is achieved by
having the storage key computed as a cryptographically
secure (collision-resistant) hash function of B , and have
the storage client validate the hash from the data against
the storage key for every read operation. A malicious
server must be able to break the hash function in order
to break this self-integrity.

• We assume that the data store uses blocks of a fixed size.
Padding and splitting large documents into smaller pieces
is left to the layers above our construction.

• We allow malicious servers to refuse to complete arbitrary
data requests, however, we require stronger integrity for
metadata. We assume that the adversary is not able to
tamper with existing metadata at all. Thus, after an
attack (or accidental failure), the system knows with
certainty which data blocks have been corrupted or tam-
pered with, i.e., the only errors at this level are
erasures.

• There are no confidentiality constraints for the data, nor
for the metadata. On the other hand, we make no confi-
dentiality guarantees either; proper usage of encryption is
again left to the upper layer. We assume that the adversary
knows which data blocks belong to which document. The
attacker can also observe the creation date of each data
block and can therefore order them chronologically if
required.

• In practice, popular cloud storage solutions, like Amazon
S3 or Microsoft Azure Blob Storage, can be used for the
data storage. A decentralized cloud storage system similar
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to the Sia [33] and Storj [34] projects could also be of
interest.

B. Forward Integrity

With immutable data structures such as STEP-archives, all-
or-nothing integrity as defined in [14] and [15] is unattainable
because the best system will at most guarantee that data can
only be tampered with by destroying all data stored after it.
Although this can be seen as an undesirable property, we argue
that we cannot achieve all-or-nothing integrity without violat-
ing our practical requirements. The best we can hope for in
this setting is forward integrity. Digital storage capacity and
usage have increased at an exponential rate for the last 40 years
and might do so for the foreseeable future. This allows the
possibility to provide comprehensive forward integrity quickly
on a time scale.

We note that all-or-nothing forward integrity is possible with
STEP-archives using a non-constant number of pointers per
document: on an archive with s = 1 and e ≥ 1, one can
use k − 1 entangled blocks for document dk , more precisely
a pointer to the first parity block of each of the k − 1
documents already archived. If a censor wants to delete a
document dk irrecoverably, it must corrupt all the documents
archived after dk . In other words, for every k, document dk is
recoverable if and only if all the documents archived after dk

are recoverable. Of course, the number of pointers to tangled
blocks in this example grows linearly with the number of
documents, which makes encoding and decoding too complex
to be of any practical value. Although one might imagine
interesting settings in which t grows logarithmically with the
size of the archive, in this work we target highly efficient
solutions. We thus focus on archives with t constant and small,
and attempt to quantify the amount of forward integrity they
can provide.

We again emphasize that with STEP-archives the integrity,
tamper-resistance and censorship-resistance of any document
are equivalent and correspond to the size of the largest integrity
set containing it. To destroy a document, we must recursively
destroy other documents. This is the dual of the architecture
of [14] and [15], for which destroying a small amount of data
recursively destroys all the data.

C. Trust Model

Our goal is to offer a storage system providing forward
integrity, allowing tradeoffs between security and performance
with different deployment models. In a trusted private cloud
where the clients trust the storage provider to behave correctly,
the entanglement, encoding and decoding, scrubbing,5 and
metadata bookkeeping, can be performed by the storage sys-
tem itself. In this setup, the STEP-archive is a simple redun-
dant storage system, with attractive robustness and offline
censorship and tampering resistance. Malicious clients cannot
force an honest storage provider to misbehave and thus cannot
alter the entanglement properties of the archive. The system

5Background recovery of corrupted data.

therefore resists censorship by destruction of stored data, but
not censorship by malicious alteration of its behaviour.

Without a trusted infrastructure, we can guard against
insider censorship and tampering resistance by assuming that
the adversary has full control over the behaviour of the
data storage system. The entanglement, encoding, decoding,
scrubbing, and metadata bookkeeping must thus be performed
by the clients, who might not trust each other. The clients
check the integrity of all blocks and codewords read from the
storage system before performing operations on them. Com-
pared to the previous scenario, writes have a computational
and bandwidth overhead (the clients need to fetch at least
the t pointers before encoding a document locally). In an
untrusted environment, one possibility is to store the metadata
in a blockchain. Our metadata is immutable, and therefore
perfect for such storage. Cryptographically signing it would
allow clients to build a reputation, as anyone can verify the
soundness of metadata, at the cost of fetching and decoding
the relevant blocks.

Even within a blockchain, malicious clients could perform
two classes of online attacks. The first is to store large amounts
of irrelevant data, lowering the effective impact of the collat-
eral damage mandated by censorship resistance. This cannot
be avoided, but at least comes with a significant storage cost
for the adversary. The second is to store unsound metadata,
i.e., either invalid metadata or valid metadata corresponding
to invalid codewords that do not actually allow recovery
of concerned erased blocks. In our mathematical analysis,
we assume that an attacker wishes to perform an offline attack
on a well-constructed STEP-archive without bogus documents.
We discuss the two online attacks and their countermeasures
in Section X-D.

IV. RECONSTRUCTION ALGORITHM

One of the interesting aspects of our approach is its asym-
metry: while it is impossible for an attacker to find the optimal
strategy to irrecoverably tamper with a target document dk in
polynomial time (unless P = NP), repairing the system if the
damage done is recoverable is easy and doable in linear time,
as shown in Algorithm 2. The idea is first to scan the archive
and build the set C of corrupted documents with at most e
erased blocks. We can then take any document d in C , remove
it from C , decode it, recover its erased blocks, and update C
by adding the corrupted documents, if any, that previously had
strictly more than e erased blocks but that now have at most e.
The algorithm stops when C is empty, at which point either all
the erased blocks are recovered or all the remaining corrupted
documents have more than e erased blocks. The following
lemma is straightforward.

Lemma 5: Let B be the set of erased blocks, and C the
corresponding set of corrupted documents. The set of docu-
ments R irrecoverable by the reconstruction algorithm is the
largest integrity set I ⊆ C whose set of erased blocks is a
subset of B.

Proof: By design of the reconstruction algorithm, R is
an integrity set whose set of erased blocks is a subset of B .
It is clear that R ⊇ I because the reconstruction will never be
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Algorithm 2: Reconstruction Algorithm
input : e← erasure decoding capability of the code

C ← set of corrupted documents in the archive

1 while C �= ∅ do
2 pick an element d ∈ C
3 decode d and recover its set of erased blocks B
4 forall the archived documents d ′ with at least one

block in B do
5 if d ′ is corrupted and has at most e erased blocks

then
6 C ← C ∪ {d ′}
7 C ← C \ {d}

Fig. 2. (1,2,1,2)-archive with dependency cycle.

able to recover any document in I . It is also clear that R ⊆ I ,
otherwise R ∪ I , which is an integrity set whose set of erased
blocks is a subset of B , would be larger than I . �

In Figure 1a, the reconstruction algorithm can recover all the
erased blocks, whereas in Figure 1b it can recover the yellow
blocks {2, 7, 11} but is incapable of recovering the red blocks
{13, 14, 15, 20, 21, 22, 24}. The algorithm is highly paralleliz-
able: in Figure 1a, it can recover blocks {2, 7, 11, 14, 15} in
parallel, after which it recovers Block 13 in a second step.

In certain cases, it is possible to recover the documents in
an integrity set with more than e erased blocks per document.
Consider the small section of a (1, 2, 1, 2)-archive shown
in Figure 2. If an attacker erases blocks {1, 2, 4}, none of
the three documents can be decoded and recovered by itself.
However, we can easily find a code (linear or nonlinear) such
that there is only one solution for the three erased blocks
that results in three valid codewords. This occurred because
blocks {1, 2, 4} form a dependency cycle between the three
documents and the attacker only erased blocks belonging
to that cycle. However, even if there is only one solution
for each erased block, the reconstruction algorithm will fail
and reconstruction codeword per codeword in not possible.6

6In principle a grouped recovery could be attempted, at a greatly increased
cost as the algorithm now needs to find all cycles in the block-document graph.
Furthermore, the attack algorithms we present later can easily be tweaked to
avoid cycle formation, at the expense of solution quality.

Furthermore, a single erased block that is not constrained
by other documents is sufficient to ensure multiple solutions.
In Figure 2, the attacker could also have erased Block 3, which
breaks the dependency cycle by adding a degree of freedom.

V. OPTIMAL ATTACK

The most natural way to represent a (s, t, e, p)-archive is as
a (t+ p)-uniform hypergraph H ∗ = (V ∗, E∗), where the set of
vertices V ∗ is the set of all archived blocks, and each document
dk corresponds to a hyperedge in E∗. However, the dual
(t + p)-regular hypergraph H = (V , E) is more conducive to
analysis, thus it is the model used in this section. In this setting,
the set of vertices V is the set of all archived documents, and
each archived block corresponds to a hyperedge in E . Finding
the best attack to censor a document dk irrecoverably corre-
sponds to finding the minimum subhypergraph V ′ of minimum
degree at least e + 1 containing dk . This subhypergraph V ′
corresponds to the smallest integrity set Imin(dk).

For simple undirected graphs, the problem of finding the
minimum subgraph of minimum degree ≥ d (MSMDd), also
called d-girth, has a long history starting from the work of
Erd’́os et al. [35] and Bollobás and Brightwell [36]. More
recently, [37] proved that for d ≥ 3, MSMDd is NP-hard and
cannot be approximated within a constant factor in polynomial
time if P �= NP. This was improved in [38], where the authors
showed that for d ≥ 3 and � > 0 there is no polynomial-
time algorithm with approximation ratio 2O(log1−� n) unless
NP ⊆ DTIME

(
2O(log1−� n)

)
, even with graphs with degree

d or d + 1. The authors also presented a polynomial-time
randomized approximation algorithm with ratio O

(
n

log n

)
,

and a brute-force polynomial-time deterministic approxima-
tion algorithm of ratio O

(
n log n

log log n

)
for low-degree graphs.

The parametrized complexity of the d-girth problem was
studied in [39], where the authors proved that the problem is
W[1]-hard7 for general graphs, but fixed-parameter tractable
when graphs have bounded local tree width. From the discus-
sion in [38], optimization of the d-girth problem for d ≥ 3
appears very hard, in the vein of other very hard problems
to approximate like maximum clique, chromatic number and
longest path, and the authors conjecture that

there is no polynomial-time approximation algo-
rithm for the d-girth problem with ratio n1−δ for
some constant δ > 0 unless P = NP.

We note that for d = 2, the problem is the standard girth of
a graph and corresponds to the length of its shortest cycle,
which is solvable efficiently by dynamic programming.

In this section, we consider a target document dk archived
long enough, i.e., with K � k documents archived after it.
We mention that for general hypergraphs, contrary to graphs,
the 2-girth problem seems difficult as well, however we show
that under certain conditions, there exists a polynomial-time
algorithm for the optimal attack on (s, t, e, p)-archives with
e = 1. To prove this result, we present a polynomial-time
algorithm to calculate the 2-girth of multigraphs with loops,
which appears to be new. We then show, using a reduction to

7Consult [40] for a formal definition.



4240 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 6, JUNE 2018

the e+1-girth problem, that for e ≥ 2 and t ≥ e+2, finding the
optimal attack targeting document dk is NP-hard, impossible
to approximate within a constant factor in polynomial time if
P �= NP, and impossible to approximate with ratio 2O(log1−� n)

unless NP ⊆ DTIME
(

2O(log1−� n)
)

.
Lemma 6: There exists a polynomial-time algorithm to cal-

culate the 2-girth of a multigraph with loops.
Proof: Consult Appendix A. �

Corollary 7: If each block of a (s, t, 1, p)-archive belongs
to at most two documents, then there is a polynomial-time
algorithm to find the smallest integrity set containing docu-
ment dk.

Proof: If each block belongs to at most two documents,
then each hyperedge has one or two vertices, thus the hyper-
graph is a multigraph with loops. Since e = 1, the smallest
integrity set of this multigraph is its 2-girth which from
Lemma 6 can be found in polynomial time. �

Theorem 8: Let � > 0, and consider a (s, t, e, p)-archive
with e ≥ 2, t ≥ e + 2, and K � k documents archived
after a target document dk. Finding Imin(dk) is NP-hard.
Furthermore, approximating Imin(dk) within constant factor in
polynomial time is impossible if P �= NP, and approximating
Imin(dk) with approximation ratio 2O(log1−� k) in polynomial
time is impossible unless NP ⊆ DTIME

(
2O(log1−� k)

)
.

Proof: Consult Appendix A. �
Note that it follows from the reconstruction algorithm that

verifying whether a set of documents is an integrity set is in
P, hence finding Imin(dk) is NP-complete.

VI. SUBOPTIMAL ATTACKS

Because we do not know any good polynomial-time algo-
rithms to optimally solve the girth problem relevant to attack-
ing our system (or even to find a good approximate solution),
we turn to more specific techniques, taking the special struc-
ture of our archive into account. In this section we consider
several linear-time heuristics, and use them in later sections to
study entanglement strategies.

All the heuristics formulate the attack as a search problem
on a tree of partial solutions. A partial solution consists of a
set of target documents we are currently committed to destroy,
and a set of erased blocks. A solution is complete if the set
of erased blocks is sufficient to make the target document
set irrecoverable, more precisely an integrity set with at
least e + 1 erased blocks per document. A partial solution
must be completed by deleting some blocks referenced by
recoverable documents. To make sure the target document set
is not recoverable, no destroyed blocks must be referenced by
documents outside of the target set; every time we choose to
destroy a new block, we must commit to destroy all documents
referencing it.

From a partial solution, every possible choice of new blocks
to erase gives a new partial (or possibly complete) solution,
forming a tree of solutions. For the initial solution, we take
the set of documents to censor, along with a (yet) empty set
of erased blocks.

Observe that, except at the start of the algorithm, the target
set can be unambiguously computed from the set of erased

Algorithm 3: Greedy Attack Framework
input : k ← the index of the target document

e← erasure decoding capability of the code

output: B// set of erased blocks making dk

irrecoverable
note : documents(b) is the set of documents with b as a

block

1 R← {k} // Corrupted but decodable
targets

2 C ← {k} // All corrupted targets
3 B ← ∅ // Erased blocks
4 while R �= ∅ do
5 r ← min(R)
6 while dr has fewer than e + 1 erased blocks do
7 score← ∅
8 forall the blocks b not erased in dr do
9 score[b] ← heuristic(C, B, b)

// Available heuristics:
// MinimumAttack, LeapingAttack,
// CreepingAttack, TailoredAttack

10 b← arg min
b

score[b]
11 B ← B ∪ {b}
12 R← R ∪ (documents(b) \ C)
13 C ← C ∪ documents(b)

14 R← R\{r}
15 return B

blocks. The tree is, in fact, a lattice, as two different paths
may lead to the same partial solution, differing only in order
of processing. This lattice is finite, having at its other extremity
the worst case where the entire system has been erased.

A. Greedy Attacks

The simplest way to explore this lattice is with a greedy
algorithm. We iteratively walk down the lattice of solutions
along a single path, eventually reaching a complete solution.
The greedy attack framework is described in Algorithm 3. For
convenience, we maintain the set C of all corrupted targets
and the set R of corrupted but decodable targets. The attack
is complete when R becomes empty, at which point all the
documents in C are irrecoverable. Until then, we iterate over
R in chronological order, and for each document in it, we erase
the minimal8 number of blocks required to make the processed
document impossible to decode locally. As there will most
of the time be more candidate blocks for deletion than the
minimum required, we use one of four simple heuristics to
choose the blocks to delete. This leads to four variants of a
greedy attack: minimum attack, leaping attack, creeping attack,
and tailored attack.

1) Minimum Attack: The minimum attack, described in
Algorithm 4, minimizes the set C of corrupted target
documents, by always preferring blocks that are referenced

8This is dictated by the code parameters and the number of blocks already
erased in earlier steps.
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Algorithm 4: MinimumAttack(C, B, b)

1 return |C ∪ documents(b)|

Algorithm 5: LeapingAttack(C, B, b)

1 N ← documents(b) \ C
2 if N = ∅ then
3 return −∞ ; // free block

4 else
5 return −min(N)

by the least amount of documents not already in the target
set.

2) Leaping Attack: The leaping attack, described in
Algorithm 5, is based on the intuition that it is easier to attack
recent documents than older ones. We show in Section VIII
that the leaping attack is especially suitable to damage a sys-
tem built with entangled blocks chosen uniformly at random.
The score of each block is the negation of the timestamp of the
oldest document in C to reference it, with higher timestamps
more desirable. Intuitively, we try to leap over documents by
moving min(R) forward in time as fast as possible toward the
end of the archive. When all documents referencing a block
are already in C , the block score is the minimum of an empty
set of integers, which we take as negative infinity. In this case,
the block is free and can thus be erased without propagation to
uncorrupted documents. Thus, free blocks are always erased
in priority (free blocks are implicitly deleted in priority for the
minimum attack as well).

Observe that a document can always be made undecodable
by deleting all its parity blocks, without having to delete any
pointers. This is because, as defined in Section II, the number
of parity blocks p is strictly greater than the number of
correctable errors e.

Also, the oldest document referencing a block is always the
primary document of this block. It follows that with the leaping
heuristic, parity blocks are always favored over pointers unless
all the older documents using a pointed block are already in C .

3) Creeping Attack: The creeping attack, described in Algo-
rithm 6, intuitively tries to keep the set of corrupted documents
C as compact as possible in time. We will see in Section VII
that the creeping attack is effective against window-based
entanglement strategies. The creeping attack is similar in
essence to the dual of the leaping attack. However, simply
mirroring the min-max behavior of the leaping attack does
not give a useful algorithm, as it can cause C to grow fast and
far in the past. We could explicitly forbid the algorithm from
targeting documents older than the initial target (this constraint
is implicit in the leaping attack), but instead we address this
shortcoming by minimizing the range of C . Although this is
not explicitly written in the algorithm, when two blocks have
the same cost, the algorithm erases the block with the smallest
|C ′|. Thus, as for the leaping attack, the free blocks that do
not propagate to other documents are erased in priority.

4) Tailored Attack: Although we study pointers selected
uniformly at random in Section VIII, here we briefly

Algorithm 6: CreepingAttack(C, B, b)

1 C ′ ← C ∪ documents(b)
2 return max(C ′)−min(C ′)

Algorithm 7: TailoredAttack(C, B, b)

input: t ; // Number of pointers per
document

input: K ; // Number of archived documents
note : documents(b) is the set of documents with b as a

block
blocks(c) is the set of blocks of document dc

1 cost← 0
2 B ′ ← B ∪ b
3 C ′ ← C ∪ documents(b)
4 forall the c ∈ C ′ do
5 yettoerase← max(0, e + 1− |B ′ ∩ blocks(c)|)
6 cost← cost+ 1+ yettoerase · ln (

1+ K−c
c

)t

7 return cost

mention that we can calculate the expected number of times
a parity block is used as a pointer by younger documents
(Lemma 14). This allows us to estimate, when we erase a
block, the propagation of the attack to all the documents used
by that block. This attack, tailored to uniform random entan-
glement, is described in Algorithm 7 and further discussed in
Section VIII.

B. Depth-First Search

The greedy algorithms are fast since their complexity is
linear in the number of archived documents. We implemented
a recursive depth-first search over the tree of partial solutions
using our four heuristics. The first complete solution produced
always matches the output of the greedy attack. The tree is then
backtracked, looking for smaller integrity sets. Since the cost
function |C| is nondecreasing as we go down the tree, we can
perform branch pruning as soon as the partial cost exceeds the
cost of the currently best known solution.

This algorithm thus offers a tradeoff between time and
solution quality, at the expense of increased memory usage.
Figure 3 shows the progression of solution quality over
time for twelve randomly selected archives. Unfortunately,
as shown in this sample run, even with pruning depth-first
search is expensive and does not always progress to the
optimal solution quickly. Solution quality9 is not proportional
to the time spent attacking. Instead, the solution improves in
unpredictable large steps. Intuitively, this can be explained by
the fact that more recent documents are less protected, and
much easier to attack. By searching depth-first, we spend a
lot of effort trying to optimize the later stages of the attack,
which may already be close to optimal, whereas the decisions
with the most impact on the overall cost are the ones taken at
the beginning of the attack.

9as the inverse of the size of the integrity set.
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Fig. 3. Trace of the depth-first search leaping attacks for twelve
(1, 3, 2, 3)−archives with 104 documents, target document d1000 and pointers
chosen uniformly at random. The algorithm traversed the entire tree in
≈ 104 seconds in the worst case.

C. Bounded Breadth-First Search

The inefficiency of depth-first search motivates the inves-
tigation of bounded breadth-first search algorithms. For large
systems, it is practically infeasible to traverse the entire solu-
tion tree, and bounded breadth-first search algorithms converge
much faster than depth-first search protocols. We thus keep a
collection of partial attack states, ranked according to some of
our heuristics, and expand the most promising partial solutions
first. We expand all the partial solutions into their child states
at once, then only retain the best ones, up to the selected
buffer size. We thus deal with a series of sets of solutions,
for which all solutions in the same set are located at the
same depth in the tree. This simplifies the analysis of the
behavior: we can enforce a constant maximum width, for all
depths, on the subtree we are exploring. We cannot apply the
same pruning strategy as in the depth-first search, because no
complete solution is known before the end of a run, but we
can control how much time we spend in the most critical part
of the search tree.

VII. PROXIMITY ENTANGLEMENT

When a document is not being pointed to, it can always
be tampered with, without propagation. Thus, it makes sense
to ensure that a new document will be quickly pointed to.
A potential solution is to choose the entangled blocks using
a sliding window bounding the pointers to documents in the
recent past. We show in this section that this approach has
the drawback that an attacker can irrecoverably tamper with
documents, with an efficient attack to do so, concentrated in
the close vicinity of the target document.

Definition 9: We define the entangled and parity blocks of
document dk for a (s, t, e, p)-archive as

dk � (t1
k , t2

k , . . . , t t
k , b1

k , b2
k , . . . , b p

k ).

Consider a (s, t, e, p)-archive with a sliding window of size
w, i.e., the pointers in document dk do not point to documents
older than dk−w . The first thing to consider is the number
of pointers per document. If t < p, in other words if the
number of pointers per document is smaller than the number

of archived blocks per document, then with a sliding window
some blocks will never be pointed to. These unprotected
blocks can thus be deleted without propagation to blocks from
other documents. If t = 1, for instance, then maxImin = 2 and
maxWmin = w + 1. This can be achieved by taking the single
entangled block of document dk from the parity blocks of
document dk−w . Using this structure, an attacker who wants
to delete dk irrecoverably can do so by deleting the parity
blocks of dk and the unprotected parity blocks of dk+w . It is
possible to obtain a larger minimum integrity set and/or a
larger minimum integrity window for some documents, but in
this case other documents will remain completely unprotected.

We now increase the number of pointers per document to
t = p and organize the pointers so that every block is pointed
to at most once. We show with the next lemma that the size
of the best integrity windows increases but remains bounded.

Lemma 10: Consider a (s, t, e, p)-archive with p ≥ 3,
t = p, a sliding window of size w > p, and such that every
block in the archive is pointed to at most once. Then,

2w − p + 1 ≤ maxWmin ≤ 2w.

Proof: Consult Appendix B. �
Having more than p entangled blocks per document with a

fixed sliding window does not appear to provide much more
integrity, and even becomes harmful as t increases further,
as shown next.

Lemma 11: Consider a (s, t, e, p)-archive with a sliding
window of size w and t = p·w entangled blocks per document.
Then,

maxImin = maxWmin = w + 1.

Proof: Since t = p · w, the entangled blocks of every
document must point to every parity block of every document
in its sliding window. For the first w archived documents,
the entangled blocks that should be pointing to documents
that do not exist do instead point to an anchor block. Since
the entanglement structure is the same for every document dk ,
we can without loss of generality attack dk by tampering with
documents archived after dk . Thus, to erase dk , at least e+1 of
its p parity blocks must be erased. Since we use every block
of dk as an entanglement block in documents dk+1, . . . , dk+w ,
this is sufficient to erase dk irrecoverably. �

If w is small, a malicious customer is capable of censoring
a newly archived document dk at anytime in the future
by archiving 2w − 1 junk documents immediately after dk .
Allowing several pointers to point to the same parity block
does not appear to make this attack more difficult: if the
pointers are bounded to w documents in the past, then the
anti-tampering protection is also bounded.

A. Random Entanglement Within a Sliding Window

With a small sliding window, we can explore the search tree
exhaustively. To illustrate the previous results, Figure 4 shows
the result of the optimal attack over (1, t, 2, 3)-archives with
105 documents, t ∈ {1, 2, . . . , 30} and entangled blocks cho-
sen at random in a sliding window of size w = 10. The attack
targets document d1000. For each value of t , the figures show
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Fig. 4. Optimal attack for 1000 (1, t, 2, 3)-archives with a sliding window of size w = 10 and t ∈ {1, 2, . . . , 30}. The archive contains 105 documents,
and the attack targets d1000. The box-and-whisker plots show the minimum, first quartile, median (in blue), third quartile, interquartile range (in orange) and
maximum across all simulation runs. (a) Size of the smallest integrity set Imin(d1000). The green squares represent the size of the smallest integrity sets for
the best regular entanglement within the window (see Section VII-B). (b) Size of the integrity windows for the integrity sets found in Figure 4a.

a box-and-whisker10 plot for 1000 simulations. Figure 4a
shows how the integrity sets vary, whereas Figure 4b focuses
on the integrity windows. The green squares in Figure 4a
represent the best regular entanglement within the window
(see Section VII-B). The figures illustrate Lemmas 10 and 11:
the median integrity size (integrity window) first increases
quickly and then decreases to Wmin(d1000) = Imin(d1000) =
w + 1 = 11 as the number of pointers increases. The large
maximal integrity windows for small t do not contradict the
lemmas, because our optimal algorithm minimizes the size of
the integrity set without considering the integrity window.

Figure 5 shows the result of min
990≤k≤1010

Imin(dk) with the

same simulation parameters. The attack sequentially targets
di for 990 ≤ i ≤ 1010, and shows the size of the smallest
integrity set among the targeted documents. Compared to
Figure 4, we can see that with few pointers, the probability
that one of the documents in the interval is weakly protected is
high. As the number of pointers increases, the protection from
document to document becomes more uniform, and Figures 4
and 5 have the same behavior.

Figures 6 and 7 respectively show the result of the creeping
and leaping attacks for the same system parameters, respec-
tively. It shows the general efficiency of the creeping attack,
and the inefficiency of the leaping attack when t is small.
With large t , however, the randomness in pointer selection
disappears and both greedy attacks behave like the optimal
attack.

B. Regular Entanglement Within a Sliding Window

Instead of choosing the pointers randomly within the sliding
window, we can use the same entanglement structure for each
document. We call this strategy regular entanglement. For
instance, with t = 3 pointers and a sliding window of size

10Showing the minimum, first quartile, median (in blue), third quartile,
interquartile range (in orange) and maximum across all simulation runs.

w = 10, the regular structure

(t1
k � b1

k−1, t2
k � b2

k−3, t3
k � b3

k−10)

gives maxImin = 8, i.e., the smallest integrity set of
any document archived long enough has size eight. This
is the best regular structure for (1, 3, 2, 3)-archives and
w = 10, although it is not unique. The green squares in
Figures 4a and 5a show the size of the smallest integrity sets
for the best regular entanglement structures for (1, 3, 2, 3)-
archives as the number of pointers per document increases
from 1 to 30. The light green squares for t ∈ {14, 15, . . . , 23}
are lower bounds since we did not explore all the possible
regular structures for these values of t . In this example,
regular entanglement is more robust than random entanglement
with a small number of pointers, but with a lot of pointers
both strategies are equivalent. We mention to conclude this
section that the creeping attack always works well for regular
entanglement within a sliding window. The leaping attack,
however, performs poorly and will generally propagate from
the target document to the end of the archive.

VIII. RANDOM ENTANGLEMENT

In this section, we study the impact of uniformly random
entanglement. In practice, choosing entangled blocks uni-
formly at random offers two important advantages over highly
structured entanglement. First, a structure with randomness
prevents the attacker from planning the attack in advance, for
instance by using amortized cost expensive pre-computations
tied to the system structure. Second, a deterministic struc-
ture is harder to implement and maintain in real-time in a
large-scale distributed setting. Conversely, uniformly random
entanglement has two drawbacks. The first is that it takes an
increasingly longer time to protect young documents as the
archive increases. The second drawback, as illustrated in the
previous section, is that structured entanglement within a slid-
ing window is much more robust than random entanglement.

Uniformly random entanglement is well-suited for math-
ematical analysis. We first show a phase transition for the
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Fig. 5. Optimal attack for 1000 (1, t, 2, 3)-archives with a sliding window of size w = 10 and t ∈ {1, 2, . . . , 30}. The archive contains 105 documents.
(a) Distribution of min

990≤k≤1010
Imin(dk ). The green squares represent the size of the smallest integrity sets for the best regular entanglement within the window

(see Section VII-B). (b) Size distribution of the sliding windows for the integrity sets found in Figure 5a.

Fig. 6. Creeping attack for 1000 (1, t, 2, 3)-archives with a sliding window of size w = 10 and t ∈ {1, 2, . . . , 30}. The archive contains 105 documents, and
the attack targets d1000. (a) Size of the smallest integrity set Imin(d1000). (b) Size of the integrity windows W (d1000) for the integrity sets found in Figure 6a.

Fig. 7. Leaping attack for 1000 (1, t, 2, 3)-archives with a sliding window of size w = 10 and t ∈ {1, 2, . . . , 30}. The archive contains 105 documents, and
the attack targets d1000. (a) Size of the smallest integrity set Imin(d1000). (b) Size of the integrity windows W (d1000) for the integrity sets found in Figure 7a.

leaping attack as the number of pointers reaches a threshold.
Passed that threshold, an attacker who wants to erase a
document must corrupt a constant fraction of all documents

archived after it. We then provide numerical evidence and
conjecture that this phase transition exists for the optimal
attack.
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Suppose that we want to censor document dk on a
(s, t, e, p)-archive by deleting parity blocks from it. Let Li >
k be defined such that dLi is the i -th document having a pointer
to any of the parity blocks of dk for i ≥ 1. If the pointers to
entangled blocks are assigned randomly among all the blocks
already archived, then the following result can be established.

Lemma 12: If the pointers for a (s, t, e, p)-archive are
chosen uniformly at random, then

E[Li ] = ∞ if t = 1;

E[Li ] ∼ k
(

1+ 1
t−1

)i
if t > 1 and i ∈ o(k).

Proof: Consult Appendix C. �
Suppose now that we want to erase a chosen parity block

b in document dk , and let us define Mi > k such that dMi is
the i -th document having a pointer to block b for i ≥ 1. With
pointers chosen uniformly at random, we obtain the following
result.

Lemma 13: If the pointers for a (s, t, e, p)-archive are
chosen uniformly at random, then

E[Mi ] = ∞ if t ≤ p;

E[Mi ] ∼ k

(
1+ p

t − p

)i

if t > p and i ∈ o(k).

Proof: The lemma can be proved directly in a similar
fashion as Lemma 12, although this results in a rather cum-
bersome proof.

Instead, we prove the lemma when t is a multiple of p.
For large enough k, the pointer behavior of an archive with p
parity blocks and t pointers per document, if t is a multiple
of p, is similar to the pointer behavior of an archive with
1 parity block and t ′ = t

p pointers per document. Hence,
from Lemma 12 we obtain

E[M1] ∼ k

(
1+ 1

t ′ − 1

)i

∼ k

(
1+ 1

t
p − 1

)i

∼ k

(
1+ p

t − p

)i

.

�
Let Nl , l > 0, be the number of documents hav-

ing a pointer to a parity block of document dk once
document dk+l is reached. The following result can be
established.

Lemma 14: Consider a (s, t, e, p)-archive with the pointers
chosen uniformly at random. If l ∈ O(k), then

E[Nl ] ∼ ln

(
1+ l

k

)t

.

Proof: Consult Appendix C. �
Corollary 15: Let i be a positive integer. The expected

number of documents in the archive required before the parity
blocks of document dk are pointed to i times is

Di ∼ k ·
(

e
1
t

)i
.

Proof: Using Nl = i in Lemma 14 leads to

l ∼ k(e
i
t − 1),

thus

Di = k + l

∼ k + k(e
i
t − 1)

= k
(

e
1
t

)i
.

�
To illustrate the previous lemmas, consider a (1,4,2,3)-

archive with 10 million documents. At that point, when a new
document is archived, from Lemma 12 we can expect that
its parity blocks will be pointed to for the first time when the
archive reaches 15 million documents, and for the second time
when it reaches 22.5 million documents. From Lemma 14,
the expected number of archived documents required until
there is one pointer to its parity blocks is 13.96 million, and
19.48 million documents until there are two pointers to its
parity blocks. The difference from the results of Lemmas 12
and 14 is due to the skewness of the probability distribution.
From Lemma 13, the expected number of archived documents
required before a chosen parity block of that document is
pointed to the first time is 40 million. As the archive gets
bigger, it takes an increasingly long time before a document
is pointed to, and during that time it can be tampered with
without propagation to any other document in the archive.

The increasing intervals before documents get pointed to
suggest a strategy for an attacker who wants to destroy a
document: the leaping attack. When executing the leaping
attack, the attacker moves away from dk towards the most
recent documents in chronological order, making increasingly
larger leaps until it reaches documents that have not been
pointed to yet. Using the results presented so far in this
section, we prove that when the number of pointers per
codeword is small enough, the leaping attack can erase a
document permanently by deleting a sublinear number of
newer documents in the archive.

Theorem 16: Suppose that an attacker wants to erase doc-
ument dk from a (s, t, e, p)-archive with uniformly random
pointers, and that the number of documents archived after dk

is K � k. If the number of pointers per document is chosen
such that t < 1

ln r , where r is the largest real root of the
polynomial x p+1− x p− xe+1− 1

p , then E[Imin(dk)] ∈ o(K ).
Proof: Consult Appendix C. �

The recurrence relation in the proof Theorem 1611 is not
optimal for three reasons. Firstly, it assumes that each new
document to destroy during the attack has only one pointer
to a document already destroyed. Pointers that collide are
advantageous for the attacker because the involved documents
can be destroyed by deleting fewer than e blocks from them.
Secondly, it assumes that an attacker always targets parity
blocks when completing the deletion of a document. If the
attacker is lucky, it is possible that a pointer block can be
erased because all the older documents that use it have already

11See Eq. (12) in Appendix C.
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TABLE I

LOWER BOUND FOR THE NUMBER OF POINTERS FROM THEOREM 16 AND

LEMMA 17 FOR DIFFERENT CODE RATES s
p

been erased. Thirdly, it assumes that the first few pointers to
d point to different parity blocks. This becomes increasingly
improbable as p increases and e remains fixed, i.e., if we
increase the rate of the code. If the first few pointers to parity
blocks of d point to the same block b, then the attacker will
not erase it and will be able to propagate the attack further
toward the most recent archived documents by targeting the
other parity blocks of d . To illustrate this, we slightly improve
on Theorem 16 by calculating the expected time required until
the most advantageous blocks for the attacker are pointed to
for archives with s = 1.

Lemma 17: Suppose that an attacker wants to erase docu-
ment dk from a (1, t, 1, p)-archive with random pointers and
that the number of documents archived after dk is K � k.
If the number of pointers per document is chosen such that

t < 1
ln r , where r = 1+

√
5− 4

p

2 , then E[Imin(dk)] ∈ o(K ).
Table I contains the lower bound for the number of point-

ers from Theorem 16 and Lemma 17 for different code
rates s

p . The only difference is for s
p = 1

2 , for which
Theorem 16 gives tmin ≥ 3 and Lemma 17 gives tmin ≥ 4.
To compare the theoretical bounds, we simulated the damage
caused by the leaping attack on (1, t, 2, 3)-archives with
106 documents and t ∈ {1, 2, 3, 4, 5, 10} pointers per docu-
ment chosen uniformly at random. The results are shown in
Figure 8. On each graph, the curves represent target documents
{d1, d5, d10, d50, d100, d500, d1000}, averaged over 100 simula-
tions. The phase transition as the number of pointers increases
is obvious from the graphs. When reaching the threshold,
the asymptotic cost of the leaping attack no longer depends on
the target document: an attacker who wants to irrecoverably
destroy a document must destroy a constant fraction of all
documents archived after it. For s

p = 1
3 , the bound given by

Theorem 16 and Lemma 17 is t = 3, which appears tight
when observing Figure 8. Increasing t further accelerates the
convergence and increases the fraction of documents that must
be destroyed.

A. Optimal Attack and Random Entanglement

We conjecture, with entanglement chosen uniformly at
random, that there is a constant number of pointers threshold
after which even the optimal attack will require the erasure of a
constant fraction of all documents archived after an old enough
target. Since simulating the optimal attack is computationally

intractable and we do not have good enough theoretical
lower bounds, to support this conjecture we simulate the
bounded breadth-first search attack described in Section VI-C.
By bounding the size of the buffer, we can control the number
of nodes traversed at each level of the solution tree.

We use the bounded breadth-first search algorithm with
two heuristics: the minimum (Section VI-A.1) and tailored
(Section VI-A.4) heuristics. The tailored heuristic is based on
Lemma 14: when we decide whether or not to include a new
document in the attacked set, we estimate the beginning of
its propagation to other documents with Lemma 14 times the
number of blocks to erase in the document. This is more accu-
rate than selecting the document that propagates to the smallest
number of documents (minimum heuristic), or selecting the
document leaping as far as possible towards the end of the
archive (leaping heuristic).

Figure 9 shows the damage caused by the tailored bounded
breadth-first search attack on (1, 5, 2, 3)-archives of size 104

with pointers chosen uniformly at random and target document
di for i ∈ {1, 5, 10, 50, 100}. Each curve represents a different
tree width (buffer size). The leaping attack is also shown for
comparison. Each curve is the average over 100 simulations.
Figure 10 shows the damage caused by the minimum bounded
breadth-first attack with the same simulation parameters. The
figures show the efficiency of the greedy leaping attack.
Furthermore, they show that the number of documents that
must be erased to compromise a target converges to a constant
fraction of the archive, as we conjectured for the optimal
attack.

IX. EXTENSIONS AND DISCUSSION

In this section, we discuss in greater detail the assumptions
made and constraints self-imposed in this article. We also
extend and relax them in various ways, and examine the
consequences.

A. To Store or Not to Store Source Blocks?

In the presented architecture, we use codes in semi-
systematic form and do store the source blocks. This comes
at a non-negligible performance cost: accessing a document
requires decoding of its corresponding codeword, and thus
fetching the required threshold of valid blocks. Even with a
fast decoding algorithm, we still incur the bandwidth overhead
of fetching s + t blocks to retrieve s effective blocks of data.

It is tempting to remove this overhead by including the
source blocks in the systematic form of the code, and allow
the clients to directly fetch the source blocks. However,
from the censorship-resistance perspective, a systematic code
would invalidate all our previous reasoning. We can no longer
equate recoverability of a codeword and recoverability of the
corresponding document, as the source blocks may still be
recoverable even though the codeword is below the decoding
threshold. In an extreme case, the adversary can censor all the
stored parity blocks, losing all the redundancy in the storage
system, without degradation of service. Targeted source blocks
can then be destroyed at will, making their corresponding
codewords undecodable; all more recent codewords having
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Fig. 8. Damage caused by the leaping attack on (1, t, 2, 3)-archives of size 106 with pointers chosen uniformly at random and t ∈ {1, 2, 3, 4, 5, 10}. On each
graph, the curves represent target document {d1, d5, d10, d50, d100, d500, d1000}, respectively. Each curve is the average over 100 simulations. (a) t = 1 pointer.
(b) t = 2 pointers. (c) t = 3 pointers. (d) t = 4 pointers. (e) t = 5 pointers. (f) t = 10 pointers.

pointers to these source blocks immediately become unde-
codable if they weren’t already so, and the attack does not
need to propagate further. A system with stored and readily
available source blocks thus provides no censorship-resistance,
as this attack, even at a high material cost, does not affect data
availability.

This material cost can further be reduced. An adversary
could tweak his attack algorithm to always spare the source
blocks (except for the original target). This results in a system
that has lost redundancy for some documents but is still able

to directly serve all non-censored source blocks. Recall that
for all documents but the initial target, the attacker needs to
destroy at most e blocks (the code requires e + 1 errors to
fail, but at least one block is already missing, otherwise the
document would not have entered the target set). We have
e ≤ p − s (with equality reached for MDS codes), so it is
always possible to exclude the source blocks from the attack,
and choose among the p − s remaining blocks. This offers
a complexity tradeoff between computational effort versus
number of blocks to make the attack irrecoverable.
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Fig. 9. Damage caused by the tailored bounded breadth-first search attack on (1, 5, 2, 3)-archives of size 104 with pointers chosen uniformly at random and
target document di for i ∈ {1, 5, 10, 50, 100}. Each curve represents a different tree width (buffer size). The leaping attack is also shown for comparison. Each
curve is the average over 100 simulations. (a) Target document d1. (b) Target document d5. (c) Target document d10. (d) Target document d50. (e) Target
document d100.

One can wonder whether we can prevent this by hiding
which of the p parity blocks are actual source blocks. This
could be achieved by storing the identity of the source blocks
separately from the rest of the metadata. Users with access
to the public metadata could still repair the system, without
needing to know the identity of the source blocks. This is akin
to the Repair Capabilities mechanism of Tahoe [8]. However,
if clients use this fast path to access documents, a passive
adversary monitoring access to the system could very quickly
deduce which blocks are the source blocks. To counter this,

clients could request all the blocks and avoid decoding, but
this does not appear a worthwhile tradeoff considering the
bandwidth overhead.

B. Hiding Metadata

We assumed so far that the metadata, providing the asso-
ciations between blocks and documents (and required for
decoding) would be made public. Our attacks have relied on
this metadata being public, but so do our repair algorithms.
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Fig. 10. Damage caused by the minimum bounded breadth-first search attack on (1, 5, 2, 3)-archives of size 104 with pointers chosen uniformly at random
and target document di for i ∈ {1, 5, 10, 50}. Each curve represents a different tree width (buffer size). The leaping attack is also shown for comparison. Each
curve is the average over 100 simulations. (a) Target document d1. (b) Target document d5. (c) Target document d10. (d) Target document d50.

One can wonder whether hiding the metadata from the public
results in a net gain or loss of censorship resistance for the
users.

In our model, a block can be in only two states, directly
recoverable (meaning the system is able to provide an uncor-
rupted version of the block when queried for it), or lost. The
block could be considered lost for several reasons, including
that the actual storage has been silently corrupted, that the data
is missing, or even that the data is intact and present, but that
the system has been coerced into ignoring requests for such a
block. The latter scenario is relevant in a censorship context,
where it might be easier for a censor to impose a blacklist of
forbidden content than to endlessly hunt and remove blocks
as they pop up on various systems.

Consider a system where the metadata is kept privately.
In such a context, the adversary has no a priori information
about the relationships between blocks, but has been made
aware of the existence of a document to censor by revelation
of the corresponding metadata. In such a model, if enough
blocks are lost to make a document irrecoverable, users must
wait for a third party to access an entangled document. The
said third party must then notice that not all blocks are healthy,
and after decoding the document, proceed to reupload the
missing blocks at its own expense. Some techniques, like the
mechanism of repair caps in Tahoe [8], can delegate repairs

to incentivized third parties, however to do so they must be
trustworthy enough to receive a copy of the secret metadata.
Furthermore, a system with private metadata is in position
of censoring repair attempts simply by refusing to serve the
forbidden blocks, no matter how many third parties try to
reupload them. By contrast, if the metadata is public, users
can perform their own repairs as long as the attack is not
irrecoverable, and for this they do not need an additional
incentive. Reuploading the missing content is still at their own
cost, but the system has a direct incentive to accept it: every
missing block costs the system up to s + t fetches of other
blocks. In fact, it saves bandwidth for the system to perform
the repair itself.

C. Hiding Timing Information

The proposed basic attacks all heuristically rely on the
attacker being able to infer a strict ordering of documents in
time. On the other hand, the reconstruction algorithm does not
need such information. This leads to two important questions:
is it possible to hide this timing information from an attacker,
and is it useful?

Suppose the metadata has been stripped of any explicit
timestamps. Can the attacker still compute an ordering of the
documents? With the exception of anchor blocks, every block
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in the system must be included as a parity block in exactly one
document, and may appear any number of times as a pointer
block in newer documents. This property is sufficient to define
a partial order on the documents.

An adversary can use a topological sort algorithm to gen-
erate a compatible total order in linear time [41]. Because
block relationships are the only thing that matter to our attack
algorithms, such a total order would be suitable to run the
attack. Therefore, if we want to gain something by hiding the
document order, we have to ensure that the adversary cannot
deduce the role (stored or pointer) of blocks in a particular
codeword.

D. Hiding Block Roles

So far, all our representations of the system used a code
which had a fixed mapping from code slots to roles. We can
randomize this mapping without loss of generality. In a typical
setting, our initial, systematic, (n, k) MDS code, the encoding
process is used to generate codewords ck+1, . . . , cn from the
k source words c1, . . . , ck , whereas the decoding process can
find a unique solution for all the ci , from any k-subset of them.
As such, encoding is a special case of decoding (possibly with
better performance, depending on the code).

Therefore, when generating a new document, it is not
mandatory to have a fixed mapping between roles and slots.
The client can randomly allocate the pointer blocks to slots,
then compute the missing entries. Then, the adversary can no
longer locally distinguish between pointers and parity blocks
of a document.

Unfortunately, even if the system stores the metadata in such
a way that the block roles are locally obscured, an attacker
with a global view of the metadata can always recover such
roles with the following algorithm. The adversary can look
for blocks that appear exactly once in the whole system, and
will know that such occurrences are necessarily parity blocks.
Because the set of documents is finite and not empty, and our
block role property is transitive (a requirement for a partial
order), there must be at least one maximal document whose
parity blocks are not entangled with other documents. For
these maximal documents, the adversary will be able to infer
the role of all the parity blocks. If we assume that the amount
of parity and pointer blocks per document is a global constant,
the attacker knows he has successfully identified all the parity
occurrences of these maximal documents. All other occur-
rences of blocks can be identified as pointers. The attacker can
then remove these maximal documents (which will sit at the
top of the total order), and repeat the process recursively while
ignoring occurrences of blocks in the removed documents.
Eventually, the set of documents ends up empty with all the
occurrence roles known.

E. Metadata Write Access and Recoding Attack

We assumed that an attacker can read, but cannot alter
the archive metadata. The underlying assumption is that
metadata are small enough to be mass replicated using a
blockchain or stored locally by the clients interested in a
document. Recall that destroying all copies of the metadata

would make a document impossible to access, but that this is
not worse than losing the keys of the upper encryption layer.

Definition 18: Consider a (s, t, e, p)-archive. An extended
integrity set E(dk) is a set of documents containing dk such
that it is possible to erase at least e + s + 1 blocks per
document in E(dk) \ {dk}, at least e + 1 blocks in document
dk, and no block in any document in the complementary set
E(dk). We write Emin(dk) to denote the size of the smallest
extended integrity set of document dk.

If an attacker can write metadata, it can, instead of destroy-
ing files, decode and recode documents without destroying
them, and rewrite metadata accordingly. When doing such a
recoding attack, the attacker first decodes the document dk

to censor, replaces its content (source blocks) with something
else, erases e + 1 other blocks from the document codeword,
and recodes the censored document back in the archive.
Changing the target codeword will also affect documents
pointing to its erased blocks, thus the attacker must recursively
recode the documents pointing to the censored document
and erase enough blocks in the original codewords to allow
recoding. The difference between integrity sets and extended
integrity sets is that the source blocks of a recoded document
dk are recoverable, thus to make the original codeword of dk

irrecoverable, the attacker must erase at least e+s+1 = p+1
of its blocks instead of e + 1.

Theorem 19: The size |S| of the smallest irrecoverable
recoding attack of a target document dk is equal to Emin(dk).

Proof: We first prove that |S| ≤ Emin(dk). From the
smallest extended integrity set Emin(dk), an attacker can
decode all the documents in it, erase all the blocks required to
realize the extended integrity set, recode a censored version of
dk , and recode all the other documents di ∈ Emin(dk) \ {dk}.
The original codewords of documents di ∈ Emin(dk) \ {dk}
are missing at least e + s + 1 blocks, thus even by decoding
the new codewords and recovering the source blocks, the old
codewords will miss at least e+1 blocks, thus none of them is
recoverable. This recoding attack requires Emin(dk) recodings,
thus |S| ≤ Emin(dk).

We now show that |S| ≥ Emin(dk). Let S be the smallest
recoding attack. The original codeword of dk has at least
e + 1 erased blocks, otherwise dk could be recovered. Next,
consider a document di ∈ S such that di �= dk . We argue
that the original codeword of dk before recoding has at least
e + s + 1 erased blocks. Suppose that it is false. Using
the source blocks of the recoded documents, we run the
reconstruction algorithm and recover a nonempty set O of
original codewords including the original codeword of di .
If C includes the original codeword of dk , then dk can be
recoded, which is a contradiction, whereas if C does not
include it, it follows that all the codewords in C did not
have to be recoded, which contradicts the fact that S is the
smallest recoding attack. Hence, S is an extended integrity set
and Emin(dk) ≤ |S|. �

The size difference between the optimal recoding attack and
the optimal attack can be arbitrarily large. Consider a (1,1,2,3)-
archive where the pointer block from document di is entangled
with one of the parity blocks of di−1 for all i . We can easily
show that Imin(dk) = 2 and Emin(dk) = N+1, where N > 0 is
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the number of documents archived after dk . Thus, an attacker
can tamper with dk irrecoverably by also erasing dk+1, but
if it does not want to destroy other documents, even with
complete control over the data and metadata, it must recode
the N documents archived after dk .

F. STEP-Archival Versus WORM Storage

There have been proposals for immutable storage systems
with hardware enforcement. In such a system, the storage
controller (or the medium itself) will refuse or fail to honor
write requests that would overwrite existing data. It is assumed
that a hostile party (a rogue administrator, or an outside
attacker) may be able to compromise the operating system,
but not the firmware of the storage controller (or the laws of
physics, in the case of write-once media). In fact, WORM
technologies do not guarantee data retention when the insider
can physically access the storage media.

Furthermore, these techniques are applicable to fundamen-
tally different scenarios than the ones we are considering.
The storage controller can only guarantee that, as long as
the storage device is operating properly, all data ever written
is available for reading by the main system. A malicious
administrator could still practice censorship by having the
main system refuse to perform read requests for censored data.
In such a system, it would still be possible to restore access to
the censored data by taking back control of the main system.

When facing censorship from a legal authority, however,
it may not be possible to legally “take back control” and
restore the original intended system behavior. Again, with our
approach, it does not matter if censorship is implemented by
physically destroying blocks or by making them unavailable
for reading through other means. As long as decoding and
metadata management is performed on the client, the storage
system would need to either guess the intent of the client,
and selectively prevent access (and only achieve probabilistic
censorship), or prevent access without regard for the decoding
intent (and cause collateral damage).

X. CONCLUSION AND OPEN PROBLEMS

In this article, we introduced and studied STEP-archives
with the objective of providing tampering and censorship
resistance for long-term data storage and permanent archiving
in a practically implementable manner. Our long-term goals
are a proof of concept and a large-scale implementation, and to
achieve those goals there are theoretical and practical questions
to explore.

A. Variable Block Size

Imposing a fixed block size on the system level is rigid and
inefficient. An unnecessarily large block size wastes storage
space, decoding time and bandwidth, but a too small block size
bloats metadata and increases the number of I/O operations.
Because we need to be able to choose pointers to other blocks,
allowing arbitrary block sizes would considerably complicate
the pointer selection process. A reasonable compromise is to
allow a limited selection of regular block sizes, for instance

powers of a power of 2. Furthermore, one could split bigger
blocks or concatenate smaller blocks when choosing pointers.
This, however, considerably complicates the analysis of the
system behaviour under attack as one must also consider
partially erased blocks. It also potentially introduces additional
overhead, since not all storage APIs allow to fetch partial
blocks.

B. Data Expiration

We have no procedure to delete obsolete data and reclaim
storage space. While the impossibility to delete old data is
paramount to obtain strong censorship resistance, and while
storage technologies have shown exponential improvements
ever since the advent of computing, we still wish to explore
ways to relax this constraint. One might try to extend our
framework to only allow the owner to delete data, but this
is problematic in many ways. First, in a deduplicated system,
there might be more than one rightful owner. Allowing a single
owner to trigger the deletion would effectively let him censor
the other owners. Therefore, we would need a consensus
mechanism to ensure all owners effectively wish to delete.
Second, allowing the owner to drive deletion would make him
a designated target for a determined censor. Third, deletion
of data by its owner, for instance a bank tampering with its
transaction records, is not always a desirable feature. We can
avoid that simply by not giving the owner, or original creator,
any special privileges regarding preservation of data.

Still, it might be desirable for a system to be able to reclaim
storage from old, stale data. Unbounded pointer distributions,
like the uniform distribution we used in section VIII, do not
allow this. But in principle, if bounded distributions like
the sliding windows used in section VII are used, it would
be possible for a system to remove old data progressively,
providing a bound on the age of data recoverable by the clients.

In such a system, uploaded content would have an expiration
date, and clients would be responsible for periodically re-
inserting the data they do not want to see disappear when
it expires. Because this re-insertion step would require coding
against a different set of blocks, clients would no longer be
able to rely on the metadata hash to authenticate a document.12

The system would require a more sophisticated mechanism
for the users to authenticate the new versions of the metadata
blocks. Two possible approaches for this could be either some
kind of reputation system vetting on the authenticity of the new
metadata, or a proof of storage [26], [29] mechanism allowing
a client to interactively query the storage system, to ensure
with high probability the legitimacy of a new metadata block.

C. Entanglement and Coding

The main theoretical open problem is to derive non-trivial
lower bounds on the cost of the optimal irrecoverable attack.
Intuitively, the leaping attack is a good approach against uni-
form random entanglement, and we conjecture that the optimal
attack will not fare better when the number of pointers passes

12Even if a client had the hashes of the relevant source blocks, he would
be forced to pay the t bandwidth cost and proceed with the decoding before
being able to check it.
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a threshold since no amount of backtracking will compensate
for the exponential propagation of the dependencies in the
archive.

Another challenge to overcome is to provide quick tamper
resistance after archiving new data while providing strong
censorship-resistance in the long term. Essentially, we want
the benefits of regular entanglement in a sliding window
and the benefits of uniformly random entanglement. A pro-
totype in this direction involves pointers selected using a
half-normal distribution for quick forward integrity, combined
with pointers chosen uniformly at random for good long-
term protection [42]. The prototype also provides temporary
replication for new documents and gets rid of the replicas as
they age.

Finally, while we focused on MDS codes in this article,
the model can be used with any code allowing encoding of
the entangled blocks in systematic form, we want to study
how to provide strong censorship-resistance using modern and
efficient erasure codes for distributed storage. Furthermore,
considering that the bandwidth overhead is proportional to the
number of entangled blocks per document, we are especially
interested in adapting locally repairable codes to deal with
hardware failures.

D. Modeling Malicious Clients and Servers

In our mathematical analysis, we assume that the archive
is properly constructed, that is, all metadata is sound and
accessible to any client. Furthermore, we assume that all
documents in the archive are important. We now discuss what
can happen when attackers maliciously construct the archive
in ways that break these assumptions. These attacks can be
perpetrated by malicious clients or servers alike, but note that
for an attacker to behave as such, it must proactively partic-
ipate in the construction of the archive before it knows what
to censor or tamper with, hoping that when the time comes,
the quality of entanglement will be weaker and facilitate the
destruction of the targeted data.

A first possible attack is to store a large number of bogus
documents. Later, when performing censorship of targeted
data, the attacker can try to direct collateral damage to degrade
the bogus documents. This does not reduce the amount of work
required to destroy a document (it might even increase it),
but decreases the amount of collateral damage to other valid
documents. Note, however, that this would not affect systems
offering all-or-nothing forward integrity. The attacker can go
further and entangle bogus documents in a poor fashion, for
instance by selecting all the pointers from documents in the
recent past. This creates zones of weak entanglement in the
archive, which makes censorship of documents pointing to
these zones easier to accomplish. As of this writing more work
is required to analyze the repercussions of this attack based on
the proportion and location of bogus documents in the archive.

A second attack is to store unsound metadata. Two variants
are possible: storing invalid metadata that does not match
source blocks, and storing valid metadata for stored blocks
that do not form valid codewords. In both cases, the system
may appear to allow recovery of some blocks through the

corresponding metadata entry, while said recovery would
actually be impossible; a legitimate client would only notice
the problem after attempting to decode a missing block. This is
an important issue, as it can mislead clients about their actual
capacity to recover lost blocks. As we build our system on
top of a self-integrity verifying store, invalid metadata cannot
cause a client to decode invalid data; the malicious metadata
would be immediately detected. Valid metadata for invalid
codewords can also be detected but requires decoding: a client
can fetch all the blocks from a given codeword, erase e of
them, decode the erased blocks and verify if they match.

Because metadata soundness can be verified by any third
party observer (at the cost of some bandwidth and processing
for decoding), a large amount of unsound metadata would
eventually be detected. Unsound metadata, when detected,
can simply be regarded as nonexistent by the client. Like for
bogus documents, creating unsound metadata cannot weaken
the integrity of preexisting documents a posteriori, but may
weaken it for ulterior documents. Attackers might go further
and store invalid codewords followed by a large number of
properly coded but bogus documents pointing to the invalid
codewords. An honest client could still perform a recursive
verification of the metadata before encoding its document, but
the bandwidth cost and decoding time would be prohibitive.
A shallow check with constant cost may be sufficient to
amortize and distribute the verification cost over all clients,
but again this likely depends on the proportion and location
of invalid codewords and bogus documents in the system, and
needs to be investigated further.

APPENDIX A
PROOFS FROM SECTION V

Proof of Lemma 6: Let G = (V , E) be a multigraph with
loops. We consider the size g2 of the minimum subgraph of
minimum degree at least two that includes a target vertex dk .
We can find the 2-girth over the multigraph by repeating the
algorithm for all vertices. Furthermore, although we omit the
details, the vertices of the smallest subgraph can be found
by keeping track of the vertices in optimal paths during the
execution of the algorithm.

The five types of minimum subgraphs of minimum degree
at least 2 in a multigraph with loops are shown in Figure 11.
If the multigraph has two loops at dk (Fig. 11a), then g2 = 1.
If the multigraph has fewer than two loops at dk but parallel
edges from dk (Fig. 11b), then g2 = 2. If none of the first
two cases applies, then g2 = min(gc

2, gd
2 , ge

2), where gc
2 is the

smallest cycle including dk (Fig. 11c), which can be found
in polynomial time using dynamic programming, gd

2 is the
smallest simple path including dk in the middle and ending at
both sides with a cycle, a loop, or parallel edges (Fig. 11d),
and ge

2 is the smallest path such that dk has a loop on one
side of a simple path ending at the other side with a cycle,
a loop or parallel edges (Fig. 11e).

We now present Algorithm 8, a polynomial-time algorithm
to calculate min(gd

2 , ge
2) when some vertices can be traversed

more than once. The algorithm calculates the smallest path
starting from each vertex incident to dk that ends with a
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Fig. 11. Types of minimum subgraphs of minimum degree at least 2 in a
multigraph with loops. (a) 2 loops at dk . (b) Parallel edges from dk . (c) dk
part of a cycle. (d) dk in the middle of a simple path ending at both sides
with a cycle, a loop or parallel edges. (e) dk with a loop on one side of a
simple path ending at the other side with a cycle, a loop or parallel edges.

Algorithm 8: MSMD2 With Repeated Vertices (Types 11d
and 11e)
input : Vi (dk)← the set of incident vertices to target

vertex dk // dk /∈ Vi (dk) even if dk has
a loop

output: min(gd
2 , ge

2)

1 forall the vi ∈ Vi (dk) do
2 forall the v ∈ V \ {dk ∪ vi } do
3 p(vi , v)← length of shortest path from vi to v

4 p(vi , vi )← 0

5 forall the v ∈ V \ {dk} do
6 c(v)← length of shortest cycle including v

// The shortest cycle can be a
loop or parallel edges if present

7 if there is no loop at dk then
8 return

min
vi1 ,vi2∈Vi
vi1 �=vi2

v1,v2∈V \{dk}

(p(vi1 , v1)+ c(v1)+ p(vi2 , v2)+ c(v2)+ 1)

9 else
10 return min

vi1∈Vi
v1∈V \{dk}

(p(vi1 , v1)+ c(v1)+ 1)

cycle, a loop, or parallel edges, and does not pass through
dk . It returns the length of the smallest such path if dk has a
loop (Type 11e), and the sum of the two smallest such paths
if dk is in the middle of the path (Type 11d). For Type 11d,
the algorithm does not verify that the two smallest paths are

disjoint. However, if they are not disjoint, it implies that dk is
part of a cycle smaller than ge

2, a case that is accounted for
when calculating the smallest cycle including dk (Type 11c).
We conclude the proof by pointing out that all the steps of
Algorithm 8 are executed in polynomial time. �

Proof of Theorem 8: Let G = (V , E) be a graph with n
vertices all of degree e+1 or e+2, and whose e + 1-girth is δ.
We prove the theorem by reducing the smallest integrity set
problem to finding the (e+ 1)-girth of G, which is NP−hard
and hard to approximate in polynomial time if e ≥ 2 [37],
[38]. To be precise, we reduce our problem to the (e + 1)-girth
problem that includes a vertex v1 ∈ V . This problem is as
hard as the original e + 1-girth, otherwise we could solve it n
times for the n vertices and solve the original problem. From
the constraints of the graph, we can bound the e + 1-girth by
e + 2 ≤ δ ≤ n. This graph has at most n(e+2)

2 ≤ ne edges.
We represent G using an incidence matrix Mn×ne , where each
row identifies with a vertex, each column with an edge, and
mij = 1 if vertex vi and edge e j are incident, and 0 otherwise.
Each row of M has either e + 1 or e + 2 ones.

We construct a (s, t, e, p)−archive A from M , represented
as the incidence matrix of its underlying hypergraph. Figure 12
shows the incidence matrix of the top of the archive. Each
row represents a document (vertex), and each column a block
(hyperedge). Element ai j = 1 if block b j belongs to document
di , and 0 otherwise. The archive has p archived blocks per
document, and t bootstrap anchor blocks. The top of the
archive has n(e + 1) documents. For each of the first ne
documents, the t entangled blocks point to the t anchors
(the big green block 1ne×t at the top-left of the figure).
For documents dne+1 to dn(e+1), we split the matrix M in
columns m1, m2, . . . , mne, and use mi as part of the hyperedge
of the first parity block of di for i ∈ {1, 2, . . . , ne} (blue
vertical rectangles in Figure 12). Since we need t pointers per
document, we add t − e − 2 pointers to the first t − e − 2
anchors for documents dne+1 to dn(e+1), which explains our
assumption that t ≥ e+ 2 (the green block 1ne×(t−e−2) at the
bottom-left of the figure). Since the degree of the vertices of
G is e+ 1 or e+ 2, we add a pointer to the last anchor block
for document dne+i if vi ∈ V has degree e + 1 (pink block
in the figure). This ensures that each document has exactly t
pointers.

Figure 13 shows the incidence matrix of the entire archive,
which we extend by adding � np

t � + 1 blocks 1n(e+1)×t of
pointers and a sufficient number of documents to cover all
such blocks. The first such block points to the t anchor
blocks, and we cascade the other � np

t � blocks under the parity
blocks of documents dne+1 to dn(e+1). The number of archived
documents is therefore

n(e + 1) ·
(⌈np

t

⌉
+ 2

)
∈ O(n2).

We now explain the motivation behind all these gadgets.
We want to find Imin(dk) where dk � dne+1. We can erase all
the parity blocks from documents d1 to dne. This corresponds
to the integrity region inside the thick border in Figure 13.
It is clear that we erased at least e + 1 blocks per document
from d1 to dn(e+1), and no block in the other documents.
Hence, Imin(dk) ≤ n(e + 1). By construction, all the blocks
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Fig. 12. Polynomial reduction from Imin(dk) to the e+ 1-girth problem: incidence matrix for the top of the archive.

Fig. 13. Polynomial reduction from Imin(dk) to the e+ 1-girth problem: incidence matrix for the entire archive.

outside the integrity region are used in at least n(e + 1) + 1
documents, thus none of them can be part of the smallest
integrity set containing dk . We can therefore limit our search
for the smallest integrity set inside the integrity region.

We now reduce Imin(dk) to the (e+ 1)-girth of G. Assume
without loss of generality that there is exactly one smallest
subgraph H , of size δ, of minimum degree at least e + 1
in G. This minimum subgraph H has at most δ·(e+2)

2 edges.
By construction of the archive, it follows that we can form an
integrity set by erasing the blocks corresponding to edges in
the minimum subgraph. This erases one document per vertex
in H (dne+i is erased if and only vi is in H ), and also erases
one document per edge in H (di is erased if and only ei is in
H ). Thus,

Imin(dk) ≤ δ + δ · (e + 2)

2

≤ δ

(
1+ e + 2

2

)
. (1)

It is not possible for an integrity set of dk to contain fewer
than δ documents between dne+1 and dn(e+1), because it would
imply that the (e + 1)-girth of G is smaller than δ. The
smallest subgraph H has at least δ(e+1)

2 edges. By construction,
it means that the smallest integrity set must include at least
δ(e+1)

2 blocks in δ + δ(e+1)
2 documents (one erased document

for each edge and vertex in H), thus

Imin(dk) ≥ δ + δ · (e + 1)

2

= δ

(
1+ e + 1

2

)
. (2)

Putting (1) and (2) together and solving for δ, we obtain

Imin(dk)

1+ e+2
2

≤ δ ≤ Imin(dk)

1+ e+1
2

.

Hence, if we could calculate Imin(dk) in polynomial time,
we could also approximate δ within a constant factor in
polynomial time, which is not possible if P �= NP. Thus, cal-
culating Imin(dk) is NP-hard. Furthermore, if we could approx-
imate Imin(dk) in polynomial time, we could also approximate
δ in polynomial time. The approximation hardness results
from [37] and [38] therefore also apply to our problem.

We complete the proof by mentioning that finding Imin(dk)
for 1 ≤ k < ne + 1 is also hard. The proof uses the same
construction, but reduces Imin(dk) to the d-girth problem such
that the smallest subgraph must contain a specific edge. This
forces the erasure of the parity block of dk that contains the
edge. Without this condition, if the edge incident to dk is not
in H , then Imin(dk) = 1. �

APPENDIX B
PROOFS FROM SECTION VII

Proof of Lemma 10: We first prove the upper bound.
If there are fewer than 2w−1 documents archived after dk , then
the parity blocks from dk and the documents that follow can
be erased. If there are more than 2w − 1 documents archived
after dk , then we erase the parity blocks in documents dk to
dk+w−1 and erase the tangled blocks (pointers) in documents
dk+w to dk+2w−1. There are at least p > e erased blocks per
document, and the code can only correct e block erasures per
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codeword. From the sliding window, none of the erased blocks
from the first w documents are pointed to by a document newer
than dk+2w−1, and none of the erased pointers from the last
w documents points to documents older than dk . To complete
the proof, we observe that some of the pointers from the last
w documents might also point to parity blocks from other
documents among the last w, but these parity blocks cannot be
at the same time pointed to by documents newer than dk+2w−1
because we assumed that every block in the archive is pointed
to at most once. Hence, maxImin ≤ maxWmin ≤ 2w.

For the lower bound, we construct (s, t, e, p)-archives with
s = 1. Let b1

k, b2
k , . . . , b p

k be the parity blocks of docu-
ment dk . For every k, the entangled blocks of dk are set to
t i
k = bi

k−w+i−1 for i ∈ {1, 2, . . . , p−1} and t p
k = b p

k−1. We set
bi

j � ba when j < 1, thus for the first w archived documents,
some of the entangled blocks point to an anchor block ba .
It should be clear that every parity block of dk will eventually
be pointed to exactly once after w additional blocks have been
archived.

Since the entanglement structure is the same for every
document dk , we can without loss of generality attack dk by
tampering with documents archived after dk . Thus, to erase dk ,
its p parity blocks must be erased. These parity blocks are used
in blocks dk+1 and dk+w−p+2, dk+w−p+3, . . . , dk+w−1, dk+w ,
which must be destroyed.

Consider now block dk+w−p+1; we show that we achieve
the lower bound whether we erase it or not.

If dk+w−p+1 is erased, then the entangled block to document
dk+w−p can be erased, but the other entangled blocks come
from documents older than dk and must be kept. That leaves
p− 1 parity blocks that must be deleted. The parity blocks of
document dk+w−p+1 are pointed to by blocks in documents
dk+w−p+2 and

dk+w−p+2+w−p+1, dk+w−p+2+w−p+2, . . . ,

dk+w−p+2+w−2, dk+w−p+2+w−1.

By taking the first p − 1 such blocks, the smallest integrity
window for dk must contain a document at least as recent as
dk+w−p+2+w−2 = dk+2w−p .

If dk+w−p+1 is not erased, then the pointer from document
dk+w−p+2 to document dk+w−p+1 cannot be erased, but since
dk+w−p+2 is erased, p of its other blocks must be erased.
Its pointer to dk is already erased, but its other entangled
blocks come from documents older than dk and must be kept.
We must thus erase p−1 of its parity blocks, thus a document
as least as new as dk+w−p+2+w−1 = dk+2w−p+1 must be
erased.

Hence,

Wmin(dk) ≥ min(2w − p + 1, 2w − p + 2) = 2w − p + 1.

Since the integrity is the same for every old enough document,
we conclude that

maxWmin ≥Wmin(dk) ≥ 2w − p + 1.

�

APPENDIX C
PROOFS FROM SECTION VIII

Proof of Lemma 12: Case i = 1. We consider the random
variable L ′ ≥ 1 defined as

L ′ � L1 − k. (3)

Since dk+L ′ is the first document pointing to any of the parity
blocks of dk , all the pointers from documents dk+1 to dk+L ′−1
cannot point to dk . It follows that

Pr[L ′ = l] =
(p(k−1)

t

)
(pk

t

) ·
(pk

t

)
(p(k+1)

t

) · · · · ·
(p(k+l−3)

t

)
(p(k+l−2)

t

)

·
(

1−
(p(k+l−2)

t

)
(p(k+l−1)

t

)
)

=
(p(k−1)

t

)
(p(k+l−2)

t

) ·
(

1−
(p(k+l−2)

t

)
(p(k+l−1)

t

)
)

=
(

p(k − 1)

t

)
·
(

1(p(k+l−2)
t

) − 1(p(k+l−1)
t

)
)

. (4)

The expectation of this random variable is

E[L ′] =
∞∑

l=1

l · Pr[L ′ = l]

=
(

p(k − 1)

t

) ∞∑
l=1

(
l(p(k+l−2)
t

) − l(p(k+l−1)
t

)
)

=
(

p(k − 1)

t

) ∞∑
l=k−1

1(pl
t

) .

The series diverges with t = 1, whereas when t > 1 we can
bound E[L ′] by(

p(k − 1)

t

)∫ ∞
k−1

1(pl
t

) dl ≤ E[L ′]

≤
(

p(k − 1)

t

) ∫ ∞
k−1

1(p(l−1)
t

) dl.

Given that
(n

t

) ∼ nt

t ! for t constant and large n, the upper
bound becomes

E[L ′] � pt (k − 1)t

t !
∫ ∞

k−1

t !
pt (l − 1)t

dl

≤ k − 1

t − 1
·
(

k − 1

k − 2

)t−1

∼ k

t − 1
(5)

and the lower bound becomes

E[L ′] � pt (k − 1)t

t !
∫ ∞

k−1

1
pt lt

t ! + o(l)
dl

� (k − 1)t
∫ ∞

k−1

1

lt + o(l)
dl

� (k − 1)t
∫ ∞

k−1

1

(l + 1)t
dl

≥ k − 1

t − 1
·
(

k − 1

k

)t−1

∼ k

t − 1
. (6)
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Putting (5) and (6) together it follows that

E[L ′] ∼ k

t − 1
(7)

and from (3), we can conclude that

E[L1] ∼ k

(
1+ 1

t − 1

)
.

Case i > 1. Since E[L1] = ∞ when t = 1, it is clear that
E[Li ] = ∞ when t = 1 and i > 1. For t > 1, we prove the
result by strong induction on i . Since the basis step was done
for the case i = 1, we can assume that the property is true for
i = 1, 2, . . . , n and prove the property for n + 1.

Using the iterated expectation, we can write

E[Ln+1] = E[E[Ln+1 | L1]]
=

∑
l1≥k+1

Pr[L1 = l1] · E[Ln+1 | L1 = l1].

The quantity E[Ln+1 | L1 = l1] corresponds to the expected
position of the (n + 1)-th document pointing to dk given that
dl1 is the first document pointing to it. Since the pointers are
chosen randomly, this is equivalent to the expected position of
the n-th document pointing to document dl1 . Since the property
is true for i = n from the induction hypothesis, it follows that

E[Ln+1] =
∑

l1≥k+1

Pr[L1 = l1] ·
[

l1 ·
(

1+ 1

t − 1

)n

+ o(k)

]
.

(8)

As done in (3) for the case i = 1, we use the random variable
L ′ = L1 − k and rewrite (8) as

E[Ln+1] =
∑
l≥1

Pr[L ′ = l] ·
[
(l + k) ·

(
1+ 1

t − 1

)n

+ o(k)

]

=
(

1+ 1

t − 1

)n

E[L ′]

+
[

k

(
1+ 1

t − 1

)n

+ o(k)

]∑
l≥1

Pr[L ′ = l] (9)

where Pr[L ′ = l] is defined as in (??). From (7), the first term
of (9) can be written as

(
1+ 1

t − 1

)n

E[L ′] =
(

1+ 1

t − 1

)n k

t − 1
+ o(k) (10)

whereas from (4) the second term of (9) can be written as
[

k

(
1+ 1

t − 1

)n

+ o(k)

]∑
l≥1

Pr[L ′ = l]

=
[

k

(
1+ 1

t − 1

)n

+ o(k)

]
·
(

p(k − 1)

t

)

·
∑
l≥1

(
1(p(k+l−2)
t

) − 1(p(k+l−1)
t

)
)

= k

(
1+ 1

t − 1

)n

+ o(k). (11)

Putting (10) and (11) together, we can conclude that

E[Ln+1] =
(

1+ 1

t − 1

)n k

t − 1
+ k

(
1+ 1

t − 1

)n

+ o(k)

= k

(
1+ 1

t − 1

)n (
1

t − 1
+ 1

)
+ o(k)

= k

(
1+ 1

t − 1

)n+1

+ o(k)

∼ k

(
1+ 1

t − 1

)n+1

.

�
Proof of Lemma 14: The probability that at least one block

of document dk+m points to one of the parity blocks of dk for
m > 0 is

1−
(p(k+m−2)

t

)
(p(k+m−1)

t

) ∼ 1−
(

m + k − 2

m + k − 1

)t

,

thus

E[Nl ] =
l∑

m=1

(
1−

(
m + k − 2

m + k − 1

)t)

= l −
l∑

m=1

(
m + k − 2

m + k − 1

)t

= l −
l∑

m=1

t∑
j=0

(
t

j

)
· (−1) j

(m + k − 1) j

= l −
l∑

m=1

(
1− t

m + k − 1
+ o(k−1)

)
.

Since by assumption l ∈ O(k), it follows that

E[Nl ] = l − l + t
l∑

m=1

1

m + k − 1
+ o(k)

= t (Hl+k−1 − Hk)

where Hn is the n-th partial sum of the harmonic series, which
can be bounded by Hn = ln n + o(n) [43]. We can therefore
conclude that

E[Nl ] = t (ln(l + k − 1)− ln(k))+ o(k)

∼ t ln

(
1+ l

k

)
.

�
Proof of Theorem 16: We split the leaping attack into lev-

els 1, 2, 3, . . . and count, for level n, the number of documents
that need to be corrupted between documents dkn−1 and dkn ,
where

kn = k
(

e
1
t

)n
.

We choose this specific kn because from Lemma 14 and
Corollary 15, we can expect that one of the parity blocks
from a document in level l will be pointed to once in each
subsequent level. Since the number of documents at each level
increases by a factor of e

1
t , the essence of the proof is that

the maximum number of documents that need to be corrupted
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by an attacker at each level grows at a slower rate than e
1
t if

the number of pointers per document is too small.
Let d be an intermediate document to be erased at level n of

the leaping attack. This means that at least one of the pointer
blocks of d was already erased when an older document was
erased earlier in the attack. Thus, at most e additional block
must be further erased from d . It is expected that one document
per level greater than n will point to a parity block of d , but
since the attacker can choose to erase any e of the p parity
blocks, it can skip the first p − e times that a block of d is
pointed to, and will propagate the attack to e documents, one
in each level from n + p − e + 1 to n + p. Once a block is
erased, the probability that it is pointed to by a document at
each subsequent level is 1

p . Let xn be the expected number of
documents that need to be erased at level n. From the previous
discussion, xn can be upper bounded by the recurrence relation

xn = xn−p+e−1 + · · · + xn−p + 1

p

n−p−1∑
i=1

xi . (12)

To solve this recurrence relation, we can write

xn−1 = xn−p+e−2 + · · · + xn−p−1 + 1

p

n−p−2∑
i=1

xi , (13)

and by subtracting (13) from (12) it follows that

xn − xn−1 = xn−p+e−1 + 1

p
xn−p−1 − xn−p−1

xn = xn−1 + xn−p+e−1 +
(

1

p
− 1

)
xn−p−1.

The solution of the recurrence relation is

xn = C1 rn
1 + C2 rn

2 + · · · + Cp+1rn
p+1

where the Ci are constants and the ri are the roots of the
characteristic polynomial13

f (x) = x p+1 − x p − xe + 1− 1

p
.

The rate of growth of xn when n is large is

lim
n→∞

xn+1

xn
= C1 rn+1

1 + C2 rn+1
2 + · · · + Cp+1rn+1

p+1

C1 rn
1 + C2 rn

2 + · · · + Cp+1rn
p+1= r

where r is the largest real root of f (x).
If r < e

1
t , equivalently if t < 1

ln r , it follows that the number
of documents at each level increases faster than the number of
documents that need to be tampered with at each level during
the leaping attack, thus E[Imin(dk)] ∈ o(K ). �

Proof of Lemma 17: Let M be the random variable defined
such that M = m, for m ≥ 1, means that the first m pointers
to parity blocks of document d point to the same block, and
the m + 1-th pointer points to a different block. It should be
clear that an attacker working on the leaping attack will not
choose the first document pointed to and that

Pr[M = m] =
(

p − 1

p

)m

.

13Without loss of generality, we assume that the roots have multiplicity one.
The analysis that follows remains valid if the roots are not all distinct.

We use a reasoning similar to the one in the proof of
Theorem 16. The recurrence relation for M = m is given
by

xn(m) = xn−m−1 + 1

p

n−m−2∑
i=1

xi .

The asymptotic recurrence relation for the leaping attack is
therefore

xn =
∞∑

m=1

Pr[M = m] · xn(m)

= p − 1

p

n−2∑
n=1

xi . (14)

To solve this recurrence relation, we can write

xn−1 = p − 1

p

n−3∑
n=1

xi (15)

and by subtracting (15) from (14) it follows that

xn = xn−1 + p − 1

p
xn−2.

The solution of the recurrence relation is

xn = c1

⎛
⎝1+

√
5− 4

p

2

⎞
⎠

n

+ c2

⎛
⎝1−

√
5− 4

p

2

⎞
⎠

n

and rate of growth of xn when n is large is

r � lim
n→∞

xn+1

xn
=

1+
√

5− 4
p

2
.

Hence, if t < 1
ln r , then the number of documents at each level

increases faster than the number of documents that need to be
tampered with at each level during the leaping attack and we
can conclude that E[Imin(dk)] ∈ o(K ). �
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