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Bayesian Model Averaging With Exponentiated
Least Squares Loss

Dong Dai, Lei Han, Ting Yang, and Tong Zhang

Abstract— The model averaging problem is to average multiple
models to achieve a prediction accuracy not much worse than
that of the best single model in terms of mean-squared error.
It is known that if the models are misspecified, model averaging
is superior to model selection. Specifically, let n be the sample
size, then the worst case regret of the former decays at a rate
of O(1/n), whereas the worst case regret of the latter decays
at a rate of O(1/

√
n). The recently proposed Q-aggregation

algorithm solves the model averaging problem with the optimal
regret of O(1/n) both in expectation and in deviation; however,
it suffers from two limitations: 1) for continuous dictionary,
the proposed greedy algorithm for solving Q-aggregation is not
applicable and 2) the formulation of Q-aggregation appears
ad hoc without clear intuition. This paper examines a different
approach to model averaging by considering a Bayes estimator
for deviation optimal model averaging by using exponentiated
least squares loss. We establish a primal-dual relationship of this
estimator and that of Q-aggregation and propose new algorithms
that satisfactorily resolve the above-mentioned limitations of
Q-aggregation.

Index Terms— Model averaging, exponentiated least squares
loss, continuous dictionary, deviation optimal.

I. INTRODUCTION

THIS paper considers the model averaging problem, where
the goal is to average multiple models in order to achieve

improved prediction accuracy.
Let x1, . . . , xn be n given design points from a space X ,

let H = { f1, . . . , fM } be a given dictionary of real valued
functions on X and denote f j = ( f j (x1), . . . , f j (xn))

� ∈ R
n

for each j . The goal is to estimate an unknown regression
function η : X → R at the design points based on observations

yi = η(xi )+ ξi ,

where ξ1, . . . , ξn are i.i.d. variables from N (0, σ 2).
The performance of an estimator η̂ is measured by its mean

squared error (MSE) defined by

MSE(η̂) = 1

n

n�

i=1

(η̂(xi )− η(xi))
2.
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We want to find an estimator η̂ that mimics the function
in the dictionary with the smallest MSE. Formally, a good
estimator η̂ should satisfy the following exact oracle inequality
in a certain probabilistic sense:

MSE(η̂) ≤ min
j=1,...,M

MSE( f j )+�(n,M, σ 2), (1)

where the remainder term � > 0 should be as small as
possible.

The problem of model averaging has been well-studied,
and it is known (see, e.g., [2], [3]) that the smallest possible
order for �(n,M, σ 2) is σ 2 log M/n for oracle inequalities
in expectation, where “the smallest possible” is understood
in the following minimax sense. There exists a dictionary
H = { f1, . . . , fM } such that the following lower bound holds.
For any estimator η̂, there exists a regression function η such
that

E MSE(η̂) ≥ min
j=1,...,M

MSE( f j )+ Cσ 2 log M

n

for some positive constant C . It also implies that the lower
bound holds not only in expectation but also with positive
probability.

Although our goal is to achieve an MSE as close as that
of the best model in H, it is known (see [4, Th. 2.1]) that
there exists a dictionary H such that any estimator η̂ taking
values restricted to the elements of H (such an estimator is
referred to as a model selection estimator) cannot achieve an
oracle inequality of form (1) with a remainder term of order
smaller than σ

�
(log M)/n; in other words, model selection is

suboptimal for the purpose of competing with the best single
model from a given family.

Instead of model selection, we can employ model averaging
to derive oracle inequalities of form (1) that achieves the
optimal regret in expectation (see the references in [4]). More
recently, several work has produced optimal oracle inequalities
for model averaging that not only hold in expectation but also
in deviation [1], [3], [5]–[8]. In particular, the current work
is closely related to the Q-aggregation estimator investigated
in [1] which solves the optimal model averaging problem
both in expectation and in deviation with a remainder term
�(n,M, σ 2) of order O(1/n); the authors also proposed a
greedy algorithm GMA-0 for Q-aggregation which improves
the Greedy Model Averaging (GMA) algorithm firstly
proposed by [8]. Yet there are still two limitations of
Q-aggregation: (1) Q-aggregation can be generalized for
continuous candidates dictionary H, but the greedy model
averaging method GMA-0 can not be applied in such
setting; (2) Q-aggregation can be regarded intuitively as
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regression with variance penalty, but it lacks a good theoretical
interpretation.

In this paper we introduce a novel method called
Bayesian Model Averaging with Exponentiated Least Squares
Loss (BMAX). We note that the previously studied exponential
weighted model aggregation estimator EWMA (e.g., [4]) is
the Bayes estimator under the least squares loss (posterior
mean), which leads to optimal regret in expectation but is
suboptimal in deviation. In contrast, the new BMAX model
averaging estimator is essentially a Bayes estimator under an
appropriately defined exponentiated least squares loss, and we
will show that the Q-aggregation formulation (with Kullback-
Leibler entropy) in [1] is essentially a dual representation
of the newly introduced BMAX formulation, and it directly
implies the optimality of the aggregate by BMAX. Compu-
tationally, the new model aggregation method BMAX can be
approximately solved by a greedy model averaging algorithm
and a gradient descend algorithm which is applicable to
continuous dictionary. In summary, this paper establishes a
natural Bayesian interpretation of Q-aggregation, and provides
additional computational procedures that are applicable for
the continuous dictionary setting. This relationship provides
deeper understanding for model averaging procedures, and
resolves the above mentioned limitations of the Q-aggregation
scheme.

II. NOTATIONS

This section introduces some notations used in this paper.
In the following, we denote by Y = (y1, . . . , yn)

� the obser-
vation vector, η = (η(x1), . . . , η(xn))

� the model output, and
ξ = (ξ1, . . . , ξn)

� the noise vector. The underlying statistical
model can be expressed as

Y = η + ξ , (2)

with ξ ∼ N(0, σ 2 In). We also denote �2 norm as �Y�2 =
(
�n

i=1 y2
i )

1/2, and the inner product as 	ξ , f
 = ξ�f.
Let �M be the flat simplex in R

M defined by

�M =
⎧
⎨

⎩λ = (λ1, . . . , λM )
� ∈ R

M : λ j ≥ 0,
M�

j=1

λ j = 1

⎫
⎬

⎭,

and μ = (π1, . . . , πM )
� ∈ �M be a given prior.

Each λ ∈ �M yields a model averaging estimator
as fλ = �M

j=1 λ j f j ; that is, using the vector notation

fλ = ( fλ(x1), . . . , fλ(xn))
� we have fλ = �M

j=1 λ j f j . The
Kullback-Leibler divergence for λ,μ ∈ �M is defined as

K(λ,μ) =
M�

j=1

λ j log(λ j/π j ),

and in the definition we use the convention 0 · log(0) = 0.
For matrices A, B ∈ R

n×n , A ≥ B indicates that A − B is
positive semi-definite.

III. BAYESIAN MODEL AVERAGING WITH

EXPONENTIATED LEAST SQUARES LOSS

The traditional Bayesian model averaging estimator is the
exponential weighted model averaging estimator EWMA [4]

which optimizes the least squares loss. Although the estimator
is optimal in expectation, it is suboptimal in deviation [1].
In this section we introduce a different Bayesian model aver-
aging estimator called BMAX that optimizes an exponentiated
least squares loss.

In order to introduce the BMAX estimator, we consider
the following Bayesian framework, where we should be noted
that the assumptions below are only used to derive BMAX,
and these assumptions are not used in our theoretical analysis.
Y is a normally distributed observation vector with mean
μ = (μ1, . . . , μM )

� and covariance matrix ω2 In :

Y |μ ∼ N(μ, ω2 In), (3)

and for j = 1, . . . ,M , the prior for each model f j is

π(μ = f j ) = π j . (4)

In this setting, the posterior distribution of μ given Y is

p(μ = f j |Y) = p(Y |μ = f j )p(μ = f j )�M
j=1 p(Y |μ = f j )p(μ = f j )

=
exp

�
−�f j−Y�2

2
2ω2

�
π j

�M
j=1 exp

�
−�f j −Y�2

2
2ω2

�
π j

.

In the Bayesian decision theoretical framework considered in
this paper, the quantity of interest is η = EY , and we consider
a loss function L(ψ,μ) which we would like to minimize with
respect to the posterior distribution. The corresponding Bayes
estimator ψ̂ minimizes the posterior expected loss from μ as
follows:

ψ̂ = argmin
ψ∈Rn

E


L(ψ,μ)|Y�. (5)

It is worth pointing out that the above Bayesian framework
is only used to obtain decision theoretically motivated model
averaging estimators (Bayesian estimators have good theoret-
ical properties such as admissibility, etc). In particular we do
not assume that the model itself is correctly specified. That
is, in this paper we allow misspecified models, where the
parameters μ and ω2 are not necessarily equal to the true mean
η and the true variance σ 2 in (2), and η does not necessarily
belong to the dictionary {f1, . . . , fM }.

The Bayesian estimator of (5) depends on the underlying
loss function L(·, ·). For example, under the standard least
squares loss L(ψ,μ) = �ψ − μ�2

2, the Bayes estimator is
the posterior mean, which leads to the Exponential Weighted
Model Aggregation (EWMA) estimator [4]:

ψ�2
(ω2) =

�M
j=1 exp

�
−�f j −Y�2

2
2ω2

�
π j f j

�M
j=1 exp

�
−�f j−Y�2

2
2ω2

�
π j

. (6)

This estimator is optimal in expectation [9], [10], but subop-
timal in deviation [1].

In this paper, we introduce the following exponentiated least
squares loss motivated from the exponential moment technique
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for proving large deviation tail bounds for sums of random
variables:

L(ψ,μ) = exp

�
1 − ν

2ω2 �ψ − μ�2
2

�
, (7)

where the parameter ν ∈ (0, 1). It is easy to verify that the
Bayes estimator defined by (5) with the loss function defined
in (7) can be written as

ψ X (ω
2, ν) = argmin

ψ∈Rn
J (ψ), (8)

where

J (ψ)=
M�

j=1

π j exp

�
− 1

2ω2 �f j −Y�2
2 + 1−ν

2ω2 �ψ−f j�2
2

�
. (9)

The estimator ψ X (ω
2, ν) will be referred to as the Bayesian

model aggregation estimator with exponentiated least squares
loss (BMAX).

To minimize J (ψ), it is equivalent to minimize log J (ψ).
Lemma 1 below shows the strong convexity and smoothness
(under some conditions) of log J (ψ).

Given ν ∈ (0, 1) and ω > 0, we define

A1 = 1 − ν

ω2 ; (10)

moreover, if the �2-norm of every f j is bounded by a constant
L ∈ R:

�f j �2 ≤ L, ∀ j = 1, . . . ,M, (11)

we define A2 and A3 as

A2 = 1 − ν

ω2 +
�

1 − ν

ω2

�2

L2, (12)

A3 =
�

1 − ν

ω2

�
L2 +

�
1 − ν

ω2

�2

L4. (13)

Lemma 1: For any ψ ∈ R
n, define the Hessian matrix of

log J (ψ) as ∇2 log J (ψ) = ∂2 log J (ψ)
∂ψ∂ψ� , then we have

∇2 log J (ψ) ≥ A1 In. (14)

If {f1, . . . , fM } satisfies condition (11), then

∇2 log J (ψ) ≤ A2 In, (15)

where A1 and A2 are defined in (10) and (12).

IV. DUAL REPRESENTATION AND Q-AGGREGATION

In this section, we will show that the Q-aggregation scheme
of [1] with the standard Kullback-Leibler entropy solves a dual
representation of the BMAX formulation defined by (8).

Given Y and {f1, . . . , fM }, Q-aggregation fλQ is defined as
follows:

fλQ =
M�

j=1

λ
Q
j f j , (16)

where λQ = (λ
Q
1 , . . . , λ

Q
M )

� ∈ �M such that

λQ ∈ argmin
λ∈�M

Q(λ), (17)

Q(λ) = �fλ−Y�2
2+ν

M�

j=1

λ j�f j −fλ�2
2+2ω2Kρ(λ,μ), (18)

for some ν ∈ (0, 1), where the ρ-entropy Kρ(λ,μ) is defined
as

Kρ(λ,μ) =
M�

j=1

λ j log

�
ρ(λ j )

π j

�
, (19)

where ρ is a real valued function on [0, 1] satisfying

ρ(t) ≥ t, t logρ(t) is convex. (20)

When ρ(t) = t , Kρ(λ,μ) becomes K(λ,μ), i.e., the
Kullback-Leibler entropy. When ρ(t) = 1, Kρ(λ,μ) =�M

j=1 λ j log(1/π j ), a linear entropy in �M , and in particular
the penalty Kρ(λ,μ) in (18) becomes a constant when μ is a
flat prior.

Now, to illustrate duality, we shall first introduce a function
T : R

n → R as

T (h) = − ν

1 − ν
�h − Y�2

2

− 2ω2 log

⎛

⎝
M�

j=1

π j exp
�
− ν

2ω2 �f j − h�2
2

�
⎞

⎠, (21)

and denote the maximizer of T (h) as

ĥ = argmax
h∈Rn

T (h). (22)

Define function S : �M × R
n → R as

S(λ, h)=− ν

1−ν �h−Y�2
2+ν

M�

j=1

λ j �f j −h�2
2+2ω2K(λ,μ).

(23)

It is not difficult to verify that for ν ∈ (0, 1), S(λ, h) is convex
in λ and concave in h. The following duality lemma states the
relationship between ĥ and fλQ .

Lemma 2: When ρ(t) = t , we have the following result

Q(λ) = max
h∈Rn

S(λ, h), T (h) = min
λ∈�M

S(λ, h).

min
λ∈�M

Q(λ) = min
λ∈�M

max
h∈Rn

S(λ, h)

= max
h∈Rn

min
λ∈�M

S(λ, h)

= max
h∈Rn

T (h),

where the equality is achieved at (λQ , ĥ). Moreover, we have

�
(λQ, ĥ)

�
= A ∩ B,
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where A and B are two hyper-surfaces in �M × R
n defined

as

A =
�
(λ, h) ∈ �M × R

n : h = 1

ν
Y − 1 − ν

ν
fλ

�
,

B =
�
(λ, h) ∈ �M × R

n :

λ j =
exp

�
− ν

2ω2 �f j − h�2
2

�
π j

�M
i=1 exp

�
− ν

2ω2 �fi − h�2
2

�
πi

�
. (24)

Lemma 2 states that, (λQ, ĥ) is the only joint of hyper-
surfaces A and B , and the only saddle point of function S(λ, h)
over space �M × R

n .
With T (h) defined as in (21), we can employ the transfor-

mation h = 1
νY − 1−ν

ν ψ, and it is easy to verify that

T (h) = −2ω2 log (J (ψ)), (25)

where J (ψ) is defined in (9). Since J (ψ) is strictly convex,
T (h) is strictly concave and ĥ is unique. It follows that
maximizing T (h) is equivalent to minimizing J (ψ), and thus

ĥ = 1

ν
Y − 1 − ν

ν
ψ X (ω

2, ν).

We can combine this representation with

ĥ = 1

ν
Y − 1 − ν

ν
fλQ

from Lemma 2 to obtain ψ X (ω
2, ν) = fλQ . Therefore,

we directly have the following relationship.
Theorem 1: When ρ(t) = t ,

ψ X (ω
2, ν) = fλQ ,

where ψ X (ω
2, ν) is defined by (8) and (9), and fλQ is defined

by (16),(17) and (18).
Theorem 1 states that, when ρ(t) = t , Kρ(λ,μ) becomes

the Kullback-Leibler entropy, and Q-aggregation with the
Kullback-Leibler entropy leads to an estimator fλQ that is
essentially a dual representation of the BMAX estimator
ψ X (ω

2, ν). It follows that, ψ X (ω
2, ν) should share the same

optimality (both in expectation and deviation) as fλQ in solving
the model averaging problem (optimality of fλQ is shown in
[1, Th. 3.1] with more general Kρ(λ,μ), where ρ(t) only
needs to satisfy the condition (20)).

However, unlike the primal objective function J (ψ) which
is defined on R

n , the dual objective function Q(λ) is defined
on R

M . When M is large or infinity, the optimization of Q(λ)
is non-trivial. Although greedy algorithms are proposed in [1],
they cannot handle the standard KL-divergence; instead, they
can only work with the linear entropy where ρ(t) = 1; it gives
a larger penalty than the standard KL-divergence (and thus
worse resulting oracle inequality), and it cannot be generalized
to handle continuous dictionaries (because in such case the
linear entropy with ρ(t) = 1 will always be +∞). Therefore,
the numerical greedy procedures of [1] converge to a solution
with a worse oracle bound than that of the solution for the
primal formulation considered in this paper.

The following two corollaries (Corollary 1 and Corollary 2)
are listed for illustration convenience. They are directly derived
from Theorem 1 and the optimality of fλQ in [1, Th. 3.1], so we
omit their proofs.

Corollary 1: Assume that ν ∈ (0, 1) and ω2 ≥ σ 2

min(ν,1−ν) .
For any λ ∈ �M , the following oracle inequality holds

�ψ X (ω
2, ν)− η�2

2 ≤ ν

M�

j=1

λ j �f j − η�2
2 + (1 − ν) �fλ − η�2

2

+ 2ω2K(λ,μδ), (26)

with probability at least 1 − δ. Moreover,

E�ψ X (ω
2, ν)− η�2

2

≤ ν

M�

j=1

λ j �f j − η�2
2 + (1 − ν) �fλ − η�2

2 + 2ω2K(λ,μ)

≤ �fλ − η�2
2 + ν

M�

j=1

λ j �f j − fλ�2
2 + 2ω2K(λ,μ). (27)

Corollary 1 implies that when the term ν
�M

j=1 λ j �f j −
fλ�2

2 and the divergence term K (λ,μ) are small, ψ X (ω
2, ν)

can compete with an arbitrary fλ in the convex hull with any
λ ∈ �M . Actually, we can obtain an oracle inequality that
competes with the best single model, which is the situation
that λ is at a vertex of the simplex �M :

Corollary 2: Under the assumptions of Corollary 1,
ψ X (ω

2, ν) satisfies

�ψ X (ω
2, ν)− η�2

2 ≤ min
j∈1,...,M

�
�f j − η�2

2+2ω2 log

�
1

π j δ

��
,

(28)

with probability at least 1 − δ. Moreover,

E�ψ X (ω
2, ν)− η�2

2 ≤ min
j∈1,...,M

�
�f j −η�2

2+2ω2 log

�
1

π j

��
.

(29)

It is also worth pointing out that the condition ω2 ≥
σ 2

min(ν,1−ν) implies that ω2 is at least greater than 2σ 2 (when
ν = 1/2), and intuitively this inflation of noise allows the
Bayes estimator to handle misspecification of the true mean η,
which is not necessarily included in the dictionary H. Similar
observations were found by [11].

Finally we note that in the Bayesian framework stated in this
section, when we change the underlying loss function L(ψ,μ)
from the standard least squares loss to the exponentiated least
squares loss (7), Bayes estimator changes from EWMA which
is optimal only in expectation to BMAX which is optimal both
in expectation and in deviation. The difference is that the least
squares loss only controls the bias, while the exponentiated
least squares loss controls both bias and variance (as well as
higher order moments) simultaneously. This can be seen by
using Taylor expansion

exp

�
1 − ν

2ω2 �ψ − μ�2
2

�
= 1 + 1 − ν

2ω2 �ψ − μ�2
2

+ (1/2)
�

1 − ν

2ω2 �ψ − μ�2
2

�2

+ · · ·.
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Since deviation bounds require us to control high order
moments, the exponentiated least squares loss is naturally
suited for obtaining deviation bounds.

It is also natural to extend Corollary 1 from discrete
candidates dictionary H = {f1, . . . , fM } to infinite dictionary
(M = ∞) as well as continuous dictionary. For example, given
a matrix X ∈ R

n×d , we may consider a continuous dictionary
parameterized by vector w as H� = {fw : fw = Xw ∈ R

n}
where � = {w : w ∈ R

d }. Then, we have the following result.
Corollary 3: Assume ν ∈ (0, 1) and for any distribution

p(w) over the parameter space �, the divergence term
K( p,μ) is finite for given prior π(w). Then, if ω2 ≥

σ 2

min(ν,1−ν) , we have the oracle inequality

�ψ̂ − η�2
2 ≤ ν

�

�
�fw − η�2

2 p(w)dw

+ (1 − ν)

����
�

�
fw p(w)dw − η

����
2

2
+ 2ω2K( p,μδ) (30)

with probability at least 1 − δ. Moreover,

E�ψ̂ − η�2
2

≤ ν

�

�
�fw − η�2

2 p(w)dw + (1 − ν)

����
�

�
fw p(w)dw − η

����
2

2

+ 2ω2K( p,μ)

≤
����
�

�
fw p(w)dw − η

����
2

2
+ ν

�

�

����fw −
�

�
fw p(w)dw

����
2

2

× p(w)dw + 2ω2K( p,μ ), (31)

where

ψ̂ = argmin
ψ∈Rn

�

�
exp

�
− 1

2ω2 �fw − Y�2
2

+1 − ν

2ω2 �fw − ψ�2
2

�
π(w)dw.

When the distribution p on w ∈ R
d is concentrated around

a single model, for example, p is an uniform distribution on a
small ball {w : �w−w0�2 ≤ r} for some small r > 0, we have�
� fw p(w)dw = fw0 and the term 1

n

�
� �fw−fw0�2

2 p(w)dw ≤
r2

n �X�2
F is small if 1

n �X�2
F is bounded (� · �F is the matrix

Frobenius norm). Although a small r would lead to a larger
divergence term K( p,μ) and there is a tradeoff between�
� �fw− fw0�2

2 p(w)dw and K( p,μ), by dividing the number
of observations n on both sides of Eq. (31), the term 1

nK( p,μ)
could also be small as long as n is sufficiently large. Therefore,
Corollary 3 implies that ψ̂ can compete with a single model
fw0 , similar to the case of discrete dictionary.

V. ALGORITHMS TO SOLVE BMAX

In this section, we propose two algorithms, the Greedy
Model Averaging (GMA-BMAX) algorithm and the Gradi-
ent Descent (GD-BMAX) algorithm, to solve BMAX. The
convergence rates of both algorithms will be shown. Specifi-
cally, denote k as the number of iterations in the algorithms,
GMA-BMAX algorithm has a converge rate of O(1/k) and
GD-BMAX algorithm converges with a geometric rate of

Algorithm 1 Greedy Model Averaging Algorithm
(GMA-BMAX)
Input: Noisy observation Y , dictionary H = { f1, . . . , fM },

prior μ ∈ �M , parameters ν, ω.
Output: Aggregate estimator ψ (k).

Let ψ (0) = 0;

for k = 1, 2, . . . do
Set αk = 2

k+1 ;
J (k) = argmin j log J (ψ(k−1) + αk(f j − ψ (k−1)));
ψ (k) = ψ(k−1) + αk(fJ (k) − ψ(k−1));

end for

O(qk) for some q ∈ (0, 1). Oracle inequalities will be derived
for the estimators in the iterations for both the algorithms.

Strong convexity of log J (ψ) directly implies that the mini-
mizer ψ X (ω

2, ν) is unique. Moreover, it implies the following
proposition which shows that an estimator that approximately
minimizes log J (ψ) satisfies an oracle inequality slightly
worse than that of ψ X (ω

2, ν) in Corollary 1. This result
suggests that we can employ appropriate numerical procedures
to approximately solve (8), and Corollary 1 implies an oracle
inequality for such approximate solutions.

Proposition 1: Let ψ̂ be an �-approximate minimizer of
log J (ψ) for some � > 0 that log J (ψ̂) ≤ minψ log J (ψ)+ �.
Then, we have

�ψ̂ − η�2
2 ≤ �ψ X (ω

2, ν)− η�2
2 + 2

�
2�/A1�ψ X (ω

2, ν)

− η�2 + 2�

A1
.

Next, we present the numerical algorithms to solve the
BMAX problem.

A. Greedy Model Averaging Algorithm (GMA-BMAX)

The GMA-BMAX algorithm given in Algorithm 1 is a
greedy algorithm that adds at most one function from the
dictionary H at each iteration. This feature is attractive as it
outputs a k-sparse solution that depends on at most k functions
from the dictionary after k iterations. Similar algorithms for
model averaging have appeared in [1] and [8].

The following proposition follows from the standard
analysis in [12]–[14]. It shows that the estimator ψ (k) from
Algorithm 1 converges to ψ X (ω

2, ν).
Proposition 2: For ψ(k)as defined in Algorithm 1

(GMA-BMAX), if {f1, . . . , fM } satisfies condition (11),
then

log J (ψ(k)) ≤ log J (ψ X (ω
2, ν))+ 8A3

k + 3
. (32)

Proposition 2 states that, after running the GMA-BMAX
algorithm for k steps to obtain ψ (k), the corresponding objec-
tive value log J (ψ (k)) converges to the optimal objective value
log J (ψ X (ω

2, ν)) at a rate O(1/k). Combining this result with
Proposition 1, we obtain the following oracle inequality, which
shows that the regret of the estimator ψ (k) after running k steps
of GMA-BMAX converges to that of ψ X (ω

2, ν) in Corollary 1
at a rate O(1/

√
k).
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Proposition 3: Assume ν ∈ (0, 1) and if ω2 ≥ σ 2

min(ν,1−ν) .
Consider ψ (k) as in Algorithm 1 (GMA-BMAX). For any
λ ∈ �M , the following oracle inequality holds

�ψ (k) − η�2
2 ≤ ν

M�

j=1

λ j �f j − η�2
2 + (1 − ν) �fλ − η�2

2

+ 2ω2K(λ,μδ)+ 2

�
16A3

A1(k + 3)
�ψ X (ω

2, ν)

− η�2 + 16A3

A1(k + 3)
(33)

with probability at least 1 − δ. Moreover,

E�ψ (k) − η�2
2 ≤ ν

M�

j=1

λ j �f j − η�2
2 + (1 − ν) �fλ − η�2

2

+ 2ω2K(λ,μ)+2

�
16A3

A1(k + 3)
E�ψ X (ω

2, ν)

− η�2 + 16A3

A1(k + 3)
. (34)

From Proposition 3, if ω2 ≥ σ 2

min(ν,1−ν) , for any j =
1, . . . ,M we have

�ψ (k) − η�2
2 ≤ �f j − η�2

2 + 2ω2 log

�
1

π jδ

�
+ O(1/

√
k)

with probability at least 1 − δ, and

E�ψ (k) − η�2
2 ≤ �f j − η�2

2 + 2ω2 log

�
1

π j

�
+ O(1/

√
k).

When k → ∞, ψ (k) achieves the optimal deviation bound.
However, it does not imply optimal deviation bound for
ψ (k) with small k, while the greedy algorithms described
in [8] (GMA) and [1] (GMA-0) achieve optimal devia-
tion bounds for small k when k ≥ 2. The advantage of
GMA-BMAX is that the resulting estimator ψ(k) competes
with any fλ with λ ∈ �M under the KL entropy, and such
a result can be applied even for infinity dictionaries con-
taining functions indexed by continuous parameters, as long
as the KL divergence K(λ,μ) is well-defined (see relevant
discussions in Section IV). On the other hand, the greedy
estimators of [1] for the Q-aggregation scheme can only
deal with an upper bound of KL divergence referred to as
linear entropy (see Section IV) that is not well-defined for
continuous dictionaries. This means that GMA-BMAX is more
generally applicable than the corresponding greedy algorithm
GMA-0 in [1].

B. Gradient Descent Algorithm (GD-BMAX)

An alternative way solving the BMAX is to use the gradient
descend method. The GD-BMAX algorithm is shown in
Algorithm 2. The gradient is

∇ log J (ψ (k−1)) = ∇ J (ψ(k−1))

J (ψ(k−1))
= 1 − ν

ω2 (ψ (k−1) − fλ(k−1) ),

Algorithm 2 Gradient Descent Algorithm (GD-BMAX)
Input: Noisy observation Y , dictionary H = { f1, . . . , fM },

prior μ ∈ �M , parameters ν, ω2.
Output: Aggregate estimator ψ (k).

Let ψ (0) = 0.

for k = 1, 2, . . . do
Choose step size tk ∈ (0, 2/A2) for k > 0;
Let

fλ(k−1) =
M�

j=1

λ
(k−1)
j f j ,

where λ(k−1) ∈ �M and

λ
(k−1)
j ∝ π j exp

�
− 1

2ω2 �f j − Y�2
2

+1 − ν

2ω2 �ψ (k−1) − f j �2
2

�
(35)

ψ (k) = (1 − tk
1−ν
ω2 )ψ

(k−1) + tk
1−ν
ω2 fλ(k−1) ;

end for

where λ(k−1) ∈ �M is defined as (35). In the k-th step,
the update operation is

ψ (k) = (1 − tk
1 − ν

ω2 )ψ(k−1) + tk
1 − ν

ω2 fλ(k−1)

= ψ (k−1) − tk∇ log J (ψ(k−1)).

Therefore, Algorithm 2 is a gradient decent algorithm with
step size tk . The following proposition shows the convergence
of the GD-BMAX algorithm.

Proposition 4: For ψ (k) as defined in Algorithm 2, if we
choose a fixed step size tk = s ∈ (0, 2/A2) for k > 0 and
{f1, . . . , fM } satisfy condition (11), then

log J (ψ(k))− log J (ψ X (ω
2, ν))

≤ [1−2A1(s−(A2/2)s2)]k
�

logJ (ψ(0))−log J (ψ X (ω
2, ν))

�
.

(36)

Remark 1: We may choose tk = s = 1/A2 to minimize the
righthand side of (36) such that

log J (ψ (k))− log J (ψ X (ω
2, ν))

≤ (1 − A1/A2)
k
�

log J (ψ(0))− log J (ψ X (ω
2, ν))

�
.

Proposition 4 shows that the GD-BMAX algorithm con-
verges at a geometric rate of O(qk) with q = 1 − 2A1(s −
(A2/2)s2). Moreover, we have the following oracle inequality,
which shows that the regret of the estimator ψ(k) after running
k steps of GD-BMAX converges to that of ψ X (ω

2, ν) in
Corollary 1 at a rate of O(qk).

Proposition 5: Assume ν ∈ (0, 1) and if ω2 ≥ σ 2

min(ν,1−ν) ,
we have oracle inequality for any λ ∈ �M ,

�ψ (k) − η�2
2

≤ ν

M�

j=1

λ j �f j − η�2
2 + (1 − ν) �fλ − η�2

2
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+ 2ω2K(λ,μ)+ 2ω2 log(1/δ)

+ 2
�

L2[1 − 2A1(s − (A2/2)s2)]k�ψ X (ω
2, ν)− η�2

+ L2[1 − 2A1(s − (A2/2)s2)]k, (37)

with probability at least 1 − δ. Moreover,

E�ψ (k) − η�2
2

≤ ν

M�

j=1

λ j�f j − η�2
2 + (1 − ν) �fλ − η�2

2

+ 2ω2K(λ,μ)
+ 2

�
L2[1 − 2A1(s − (A2/2)s2)]kE�ψ X (ω

2, ν)− η�2

+ L2[1 − 2A1(s − (A2/2)s
2)]k . (38)

From Proposition 5, if ω2 ≥ σ 2

min(ν,1−ν) , for any j =
1, . . . ,M we have

�ψ (k) − η�2
2 ≤ �f j − η�2

2 + 2ω2 log

�
1

π jδ

�
+ O(qk),

with probability at least 1 − δ and

E�ψ (k) − η�2
2 ≤ �f j − η�2

2 + 2ω2 log

�
1

π j

�
+ O(qk),

for some constant q = 1 − 2A1(s − (A2/2)s2) ∈ (0, 1).
Though the GD-BMAX algorithm does not give sparse

output as the GMA-BMAX algorithm does, it has a faster
geometric convergence compared to GMA-BMAX. Similar to
Proposition 3, the results in Proposition 5 do not imply optimal
deviation bounds of ψ (k) for small k (k < ∞).

The GD-BMAX algorithm can be naturally applied to
continuous dictionary case. When the dictionary is contin-
uous or M is large, direct calculation of λ(k−1) ∈ �M

in (35) is impractical and we can use the Markov Chain
Monte Carlo (MCMC) sampling method [15] to approximate
λ(k−1) for the k-th iteration in Algorithm 2. A Metropolis-
Hastings (MH) algorithm is given in Algorithm 3. The MH
algorithm approximates fλ(k−1) with u(k−1)

T , so the resulting
estimator ψ (k) at the k-th step in Algorithm 2 will have
perturbations. Below we provide a result showing how the
perturbations from approximating fλ(k−1) would influence the
convergence of log J (ψ(k)) to log J (ψ X (ω

2, ν)).
Proposition 6: Given Y ∈ R

n, for all k > 0, we assume
that u(k−1)

T in Algorithm 3 satisfies

E[u(k−1)
T |ψ (k−1)] = fλ(k−1) , (39)

�C OV [u(k−1)
T |ψ(k−1)]�op ≤ s2, (40)

where � · �op is the matrix spectral norm. Then, we have

E

�
log J (ψ(k))− log J (ψ X (ω

2, ν))
�

≤ [1 − 2A1(s − (A2/2)s2)]k
�

log J (ψ(0))

− log J (ψ X (ω
2, ν))

�
+ A1 ns2/2.

A variant of the GD-BMAX algorithm with continuous
dictionary notation is also provided in Algorithm 4, in which
we assume the dictionary is parameterized by w as H� =
{f(w) : f(w) ∈ R

n} and � = {w : w ∈ R
d }.

Algorithm 3 Metropolis-Hastings (MH) Sampler for
Estimating fλ(k−1) at the k-th Step of Algorithm 2

Input: Noisy observation Y , dictionary H = { f1, . . . , fM },
prior μ ∈ �M , parameters ν, ω2, (k − 1)-th step estimator
ψ (k−1).

Output: u(k−1)
T as estimator of fλ(k−1) = �M

j=1 λ
(k−1)
j f j .

Initialize j (0) = 0;

for t = 1, · · · , T0 + T do
Generate j̃ ∼ q(·| j (t−1)) (e.g., q can be chosen as a
Gaussian distribution with mean f j (t−1));
Compute

ρ( j (t−1), j̃) = min

�
q( j (t−1)| j̃)θ( j̃)

q( j̃| j (t−1))θ( j (t−1))
, 1

�
,

where

θ( j) = π j exp

�
− 1

2ω2 �f j − Y�2
2

+1 − ν

2ω2 �ψ (k−1) − f j�2
2

�
;

Generate a random variable u ∈ [0, 1] and let

j (t) =
 

j̃, if u ≤ ρ( j (t−1), j̃);
j (t−1), otherwise;

end for
Calculate

u(k−1)
T = 1

T

T0+T�

t=T0+1

f j (t);

VI. EXPERIMENTS

Although the contribution of this work is mainly theoretical,
we include some simulations to illustrate the performance
of the GMA-BMAX algorithm and GD-BMAX algorithm
proposed for the BMAX method. We focus on the average
performance of different algorithms and configurations.

The simulations will focus on discrete dictionary in order
to compare the BMAX method with existing algorithms while
the BMAX method can deal with continuous dictionary. Set
n = 50 and M = 500. We identify a function f with a vector
( f (x1), . . . , f (xn))

� ∈ R
n . Let In denote the identity matrix

of R
n and let � ∼ N (0, In) be a random vector, and define

{f1, . . . , fM } as
 

f j = �+ s · ζ j for 1 ≤ j ≤ M1,

f j = ζ j for M1 < j ≤ M,
(41)

where ζ j ∼ N (0, In)( j = 1, . . . ,M) are independent random
vectors.

Let � ∼ N (0, In) be a random vector. The regression
function is defined by η = f1 + 0.5�. Note that typically f1
will be the closest function to η but not necessarily. The noise
vector ξ ∼ N (0, σ 2 In) is independent of {f1, . . . , fM } and
σ = 2.
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Algorithm 4 Gradient Descent Algorithm With Continuous
Dictionary
Input: Noisy observation Y , continuous dictionary H�, prior
μ�, parameters ν, ω2.

Output: Aggregate estimator ψ(k).
Let ψ (0) = 0.

for k = 1, 2, . . . do
Choose step size tk ∈ (0, 2/A2) for k > 0;
Initialize w(0);

for t = 1, · · · , T0 + T do
Generate w̃ ∼ q(·|w(t−1));
Compute

γ (w(t−1), w̃) = min

�
q(w(t−1)|w̃)θ(w̃)

q(w̃|w(t−1))θ(w(t−1))
, 1

�
,

where

θ(w) = π(w) exp

�
− 1

2ω2 �f(w)− Y�2
2

+ 1 − ν

2ω2 �ψ (k−1) − f(w)�2
2

�
;

Generate a random variable u ∈ [0, 1] and let

w(t) =
 
w̃, if u ≤ γ (w(t−1), w̃);
w(t−1), otherwise;

end for
Calculate

u(k−1)
T = 1

T

T0+T�

t=T0+1

f(w(t));

ψ (k) = (1 − tk
1 − ν

ω2 )ψ(k−1) + tk
1 − ν

ω2 u(k−1)
T ;

end for

We define the oracle model (OM) fk∗ , where k∗ =
argmin j MSE( f j ). The model fk∗ is clearly not a valid esti-
mator because it depends on the unobserved η, however it
can be used as a performance benchmark. The performance
difference between an estimator η̂ and the oracle model fk∗ is
measured by the regret defined as:

R(η̂) = MSE(η̂)− MSE( fk∗). (42)

Since the target is η = f1 + 0.5�, and f1 and � are random
Gaussian vectors, the oracle model is likely f1 (but it may
not be f1 due to the misspecification vector �). The noise
σ = 2 is relatively large, which implies a situation where the
best convex aggregation does not outperform the oracle model.
This is the scenario we considered here. For simplicity, all
algorithms use a flat prior π j = 1/M for all j . The experiment
is performed with 100 replications.

One method compared is the STAR algorithm of [5], which
is optimal both in expectation and in deviation under the
uniform prior. Mathematically, suppose fk1 is the empirical

risk minimizer among functions in H, where

k1 = argmin
j

�MSE( f j ), (43)

the STAR estimator f ∗ is defined as

f ∗ = (1 − α∗) fk1 + α∗ fk2 , (44)

where

(α∗, k2)=argmin
α, j

�MSE
!
(1−α) fk1 + α f j

"
, α ∈ (0, 1). (45)

Another natural solution to solve the model averaging
problem is to take the vector of weights λPROJ defined by

λPROJ ∈ argmin
λ∈�M

�MSE(fλ), (46)

which minimizes the empirical risk. We call λPROJ the vector
of projection weights since the aggregate estimator fλPROJ is the
projection of Y onto the convex hull of the f j ’s.

We compare the exponential weighted model averaging
method denoted as EWMA. Q-aggregation with linear entropy
(when ρ(t) = 1) is also compared and will be solved by
GMA-0 from [1] (see Algorithm 5 below).

Algorithm 5 GMA-0 Algorithm
Input: Noisy observation Y , dictionary H = { f1, . . . , fM },

prior μ ∈ �M , parameters ν, β.
Output: Aggregate estimator fλ(k) .

Let λ(0) = 0, fλ(0) = 0;

for k = 1, 2, . . . do
Set αk = 2

k+1 ;
J (k) = argmin j Q(λ(k−1) + αk(e( j ) − λ(k−1)));

λ(k) = λ(k−1) + αk(e(J
(k)) − λ(k−1));

end for

We adopt flat priors π = 1/M ( j = 1, . . . ,M) for
simplicity. From the definition of Q(λ) (18), it is easy to
see that, the minimizer of Q(λ) (when ρ(t) = 1 with flat
prior) becomes λPROJ in (46) by setting ν = 0, so λPROJ is
approximated by GMA-0 with ν = 0 and 200 iterations, and
the projection algorithm is denoted by PROJ.

We evaluate two versions of the GD-BMAX algorithm that
one is exactly the algorithm depicted in Algorithm 2 and
the other is to approximate fλ(k−1) in Algorithm 2 with the
MH sampler in Algorithm 3. We denote the latter variant as
the GD-MH-BMAX algorithm. For the MH sampler, we use
Gaussian distribution for q(·|·) and set T0 = T = 500.
The GMA-BMAX, GD-BMAX GD-MH-BMAX and GMA-0
algorithms are run for K iterations up to K = 150,
with ν = 1/2. Parameter ω for GMA-BMAX, GD-BMAX,
GD-MH-BMAX and EWMA is tuned by 10-fold cross-
validation. Regrets of all algorithms defined in (42) are
reported for comparisons.

In the following, we consider two scenarios. The first
situation is when the bases are not very correlated; in such case
GMA-0 can perform better than GMA-BMAX, GD-BMAX
and GD-MH-BMAX because the former (which employs
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TABLE I

PERFORMANCE COMPARISON (s = 1 AND M1 = 50)

TABLE II

CUMULATIVE FREQUENCY OF REGRET (s = 1, M1 = 50 AND k = 150)

linear entropy) produces sparser estimators. The second sit-
uation is when the bases are highly correlated; in such case
GMA-BMAX, GD-BMAX and GD-MH-BMAX are superior
than GMA-0 because the former algorithms (which employ
strongly convex KL-entropy) give the clustered basis functions
similar weights while the GMA-0 tends to select one from the
clustered basis functions, which may lead to model selection
error. The correlated bases situation occurs in the continuous
dictionary setting.

A. Experiment 1: When s = 1 and M1 = 50, Bases Are
Not Very Correlated

Table I compares the commonly used estimators, i.e., STAR,
PROJ and EWMA, with GMA-BMAX, GD-BMAX,
GD-MH-BMAX, and GMA-0. The regrets are reported using
the format of “mean ± standard deviation”. Table II reports
the cumulative frequency of GMA-BMAX, GD-BMAX,
GD-MH-BMAX, GMA-0 and EWMA with 100 replicates
and fixed iteration k. For each entry, we summarize the number
of replicates with regrets which are smaller than or equal to
the upper boundary value.

The results in Table I indicate that GMA-0 achieves the
best performance as iteration k increases. GMA-0 outperforms
STAR, EWMA and PROJ after as small as k = 15 iterations,
which still gives a relatively sparse averaged model. This
is consistent with [1, Ths. 4.1 and 4.2] which shows that
GMA-0 has optimal bounds for small k (k ≥ 2).

GMA-BMAX, GD-BMAX and GD-MH-BMAX prefer
dense model that assigns similar weights to similar candidates.
It is easy to verify that ψ X (ω

2, ν) = fλ with λ ∈ �M defined
as

λ j ∝ π j exp

�
− 1

2ω2 �f j − Y�2
2 + 1 − ν

2ω2 �ψ X (ω
2, ν)− f j�2

2

�
,

and thus two similar candidates fi and f j will have similar
weights.

In contrast, GMA-0 prefers sparse model by selecting
candidates less related to the estimator from previous iteration.
Specifically, with flat prior μ , the choice of J (k) in GMA-0

algorithm can be further simplified to

J (k) = argmin
j

�
�f j − Y�2

2 − (1 − ν)(1 − αk)�fλ(k−1) − f j�2
2

�
,

(47)

and thus at each iteration k in the GMA-0 algorithm, the esti-
mator f j is preferred if it is close to Y while it is less
correlated to the current aggregate estimator fλ(k−1) (because
the minimization requires �fλ(k−1) − f j�2

2 to be large while
�f j − Y�2

2 being small).
In Experiment 1, the first 50 candidates {f1, . . . , fM } are

closer to the truth η = f1 + 0.5� than other candidate f j for
j > 50, yet they are not very correlated when s = 1. Sparsity
is preferred when correlations are not strong among the
predicting features (in our experiment, the first 50 candidates),
and GMA-0 is to output sparser estimator than GMA-BMAX,
GD-BMAX and GD-MH-BMAX. Therefore, we would
expect GMA-0 achieving smaller regret than GMA-BMAX,
GD-BMAX and GD-MH-BMAX under this situation.
Although GMA-BMAX, GD-BMAX and GD-MH-BMAX are
worse than GMA-0 when the bases are not very correlated,
they beat EWMA, STAR and PROJ when the iteration k is
large enough.

Figure 1 compares the regrets of GMA-BMAX,
GD-BMAX, GD-MH-BMAX, GMA-0 and EWMA.
(a-e) illustrate the histograms of the regrets with 100 replicates.
The corresponding cumulative frequencies are presented
in Table II. Since Proposition 3 indicates that the optimal
deviation bound is obtained by k → ∞, we pick k = 150 for
GMA-BMAX, GD-BMAX, GD-MH-BMAX and GMA-0 in
order to make fair comparison. As the histograms show,
although EWMA has the most replicates in which the regrets
are close to zero, the distribution of the EWMA estimator is
the most dispersive with many extreme values compared to
other methods. The performance is consistent with [1], [9],
and [10] which state that the EWMA estimator is optimal
in expectation but sub-optimal in deviation. Therefore,
we would expect GMA-BMAX, GD-BMAX, GD-MH-
BMAX and GMA-0 enjoy more concentrated distribution
than EWMA because they are also optimal in deviation.
(f) shows the convergence of GMA-BMAX, GD-BMAX,
GD-MH-BMAX and GMA-0. We observe that GD-BMAX
and GD-MH-BMAX show faster convergence compared
to GMA-BMAX, which is consistent with Proposition 5.
Moreover, the GD-MH-BMAX algorithm approximates
GD-BMAX well with small perturbations, which is consistent
with Proposition 6.
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Fig. 1. (a-e) show the histograms of regrets for GMA-BMAX, GD-BMAX, GD-MH-BMAX, GMA-0 (with k = 150) and EWMA; (f) reports the results of
regrets R(ψ(k)) versus iterations k under the case s = 1 and M1 = 50.

TABLE III

PERFORMANCE COMPARISON(s = σ/�ζ j � AND M1 = M )

Note that GMA-BMAX and GMA-0 produce different esti-
mators after the first iteration (k = 1). GMA-BMAX selects
j ∈ {1, . . . ,M} that minimizes log J (f j ), while GMA-0
selects j ∈ {1, . . . ,M} that minimizes Q(f j ) and the output
of the first stage is actually the empirical risk minimizer fk1

where k1 = argmin j
�MSE( f j ). Moreover, since sparse model

is preferred in this scenario, GMA-0 has smaller regret than
GMA-BMAX, GD-BMAX and GD-MH-BMAX, and all of
them converge fast within a few iterations.

B. Experiment 2: When s = σ/�ζ j� and M1 = M, Bases
Are All Highly Correlated

In Experiment 2, we define regression function as
η = �+ 0.5� which is slightly different from Experiment 1.

The results in Table III indicate that GMA-BMAX,
GD-BMAX and GD-MH-BMAX perform better than
GMA-0 as iteration k increases, and GMA-BMAX, GD-
BMAX and GD-MH-BMAX also beat STAR, PROJ and
EWMA when k is large enough.

In this experiment, all of the candidates {f1, . . . , fM } are
close to the truth η = � + 0.5�, and they are highly
correlated when s is small. GMA-BMAX, GD-BMAX and
GD-MH-BMAX tend to assign similar weights to similar
candidates, while GMA-0 tends to exclude other correlated
candidates once one has been selected. Therefore, GMA-
BMAX, GD-BMAX and GD-MH-BMAX will average over
those candidates with similar weights resulting less variance
(also less bias due to the design), while GMA-0 will have
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Fig. 2. (a-e) show the histograms of regrets for GMA-BMAX, GD-BMAX, GD-MH-BMAX, GMA-0 (with k = 150) and EWMA; (f) reports the result of
regrets R(ψ(k)) versus iterations k under the case s = σ/�ζ j � and M1 = M.

high variance because it only selects one of the candidates.
Moreover, similar to GMA-BMAX, GD-BMAX and GD-MH-
BMAX, EWMA also prefer dense model by assigning similar
weights to similar candidates. However, the EWMA estimator
assigns weights defined as

λ j ∝ π j exp

�
− 1

2ω2 �f j − Y�2
2

�
,

while the weights in GMA-BMAX, GD-BMAX and GD-MH-
BMAX are defined as

λ j ∝ π j exp

�
− 1

2ω2 �f j − Y�2
2 + 1 − ν

2ω2 �ψ X (ω
2, ν)− f j�2

2

�
,

where ψ X (ω
2, ν) = fλ with λ ∈ �M . Note that for all

j , �f j − Y�2
2 are roughly equal to each other under this

scenario. That is, the EWMA estimator becomes the average
of all candidates. However, the GMA-BMAX, GD-BMAX
and GD-MH-BMAX estimators are still weighed averages of
all bases, and the weights are adjusted by the extra term
�ψ X (ω

2, ν)− f j�2
2. Therefore, we would hope GMA-BMAX,

GD-BMAX and GD-MH-BMAX have smaller variances than
EWMA.

Figure 2 compares the regrets of GMA-BMAX,
GD-BMAX, GD-MH-BMAX, GMA-0 and EWMA.

TABLE IV

CUMULATIVE FREQUENCY OF REGRET (s = σ/�ζ j �,
M1 = M AND k = 150)

(a-e) summarize the histograms of the regrets, and the
corresponding cumulative frequencies are represented
in Table IV. GMA-BMAX, GD-BMAX and GD-MH-BMAX
have the most concentrated distributions, because they are
optimal both in expectation and in deviation. (f) illustrates the
convergence of GMA-BMAX, GD-BMAX, GD-MH-BMAX
and GMA-0. All these methods converge within a few
iterations. As expected, GMA-BMAX, GD-BMAX and
GD-MH-BMAX achieve lower regret than GMA-0 when the
basis functions are correlated.

VII. CONCLUSION

This paper introduces a new formulation for deviation
optimal model averaging which we refer to as BMAX. It is
motivated by Bayesian theoretical considerations with an
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appropriately defined exponentiated least squares loss. More-
over we established a primal-dual relationship of this estimator
and the Q-aggregation scheme (with KL entropy) by [1].
This relationship not only establishes a natural Bayesian inter-
pretation for Q-aggregation but also leads to new numerical
algorithms for model aggregation that are suitable for the
continuous dictionary setting where some basis functions are
highly correlated. The new formulation and its relationship
to Q-aggregation provides deeper understanding of deviation
optimal model averaging procedures.

APPENDIX

PROOFS

A. Proof of Lemma 1

Define λ ∈ �M as

λ j ∝ π j exp

�
− 1

2ω2 �f j − Y�2
2 + 1 − ν

2ω2 �ψ − f j�2
2

�
.

It follows that

∇ J (ψ)

J (ψ)
= 1 − ν

ω2 (ψ − fλ),

and

∇2 J (ψ)

J (ψ)

=
M�

j=1

λ j

��
1 − ν

ω2

�2

(ψ − f j )(ψ − f j )
� +

�
1 − ν

ω2

�
In

�
.

Then we have

∇2 log J (ψ)

= (∇2 J (ψ))J (ψ)− (∇ J (ψ))(∇ J (ψ))�

J 2(ψ)

=
M�

j=1

λ j

��
1 − ν

ω2

�2

(ψ − f j )(ψ − f j )
� +

�
1 − ν

ω2

�
In

�

−
�

1 − ν

ω2

�2

(ψ − fλ)(ψ − fλ)�

=
�

1 − ν

ω2

�
In +

M�

j=1

λ j

�
1 − ν

ω2

�2

(fλ − f j )(fλ − f j )
�.

Therefore, ∇2 log J (ψ) ≥
�

1−ν
ω2

�
In .

With the assumption that �f j �2 ≤ L for all j , we have

M�

j=1

λ j (fλ − f j )(fλ − f j )
� =

M�

j=1

λ j f j f�j − fλf�λ

≤
M�

j=1

λ j f j f�j ≤
M�

j=1

λ j L2 In = L2 In .

It follows that ∇2 log J (ψ) ≤
��

1−ν
ω2

�
+
�

1−ν
ω2

�2
L2
�

In .

B. Proof of Lemma 2

Lemma 3: For any λ ∈ �M , real numbers {x j }M
j=1 and

some constant a > 0, we have

M�

j=1

λ j x j − aK(λ,μ) ≤ a log

⎛

⎝
M�

j=1

π j e
x j/a

⎞

⎠,

where the equality is obtained when (x j/a)− log(λ j/π j ) is a
constant for 1 ≤ j ≤ M.

Proof: The result follows directly from Jensen’s Inequality
as

exp

⎛

⎝
M�

j=1

λ j ((x j/a)− log(λ j/π j ))

⎞

⎠

≤
M�

j=1

λ j exp
!
(x j/a)− log(λ j/π j )

" =
M�

j=1

π j e
x j /a.

Now by setting x j = −ν�f j −h�2
2 and a = 2ω2 in Lemma 3,

we obtain

min
λ∈�M

⎛

⎝ν
M�

j=1

λ j�f j − h�2
2 + 2ω2K(λ,μ)

⎞

⎠− ν

1−ν �h − Y�2
2

= − ν

1 − ν
�h − Y�2

2 − 2ω2 log

⎛

⎝
M�

j=1

π j e
−ν�f j−h�2

2/2ω
2

⎞

⎠,

which implies that

T (h) = min
λ∈�M

S(λ, h).

In addition, it is easy to verify that

Q(λ) = max
h∈Rn

S(λ, h),

where the minimum is achieved at h = fλ.
Now let ĥ be the maximizer of T (h) in (21), then by setting

the derivative of (21) to zero, it is easy to observe that there
exists a corresponding λ̂ so that (λ̂, ĥ) ∈ A ∩ B . This means
that A ∩ B �= ∅.

Now consider any (λ0, h0) ∈ A ∩ B . We have

Q(λ0) ≥ min
λ∈�M

Q(λ) = min
λ∈�M

max
h∈Rn

S(λ, h)

≥ max
h∈Rn

min
λ∈�M

S(λ, h).

The third inequality is the well-known weak duality (e.g., [16,
Lemma 36.1]).

Also we have

max
h∈Rn

min
λ∈�M

S(λ, h) = max
h∈Rn

T (h) = T (ĥ) ≥ T (h0).

We thus have

Q(λ0) ≥ min
λ∈�M

Q(λ) = min
λ∈�M

max
h∈Rn

S(λ, h)

≥ max
h∈Rn

min
λ∈�M

S(λ, h) = max
h∈Rn

T (h) ≥ T (h0).
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Our target is now to prove Q(λ0) = T (h0). Since (λ0, h0) ∈
A ∩ B , we have

⎧
⎪⎨

⎪⎩

h0 = 1
νY − 1−ν

ν fλ0 ,

λ0
j = exp

�
− ν

2ω2 �f j −h0�2
2

�
π j

�M
i=1 exp

�
− ν

2ω2 �fi −h0�2
2

�
πi
.

It follows that for all j :

M�

i=1

exp
�
− ν

2ω2 �fi − h0�2
2

�
πi =

exp
�
− ν

2ω2 �f j − h0�2
2

�
π j

λ0
j

,

which implies that

log

�
M�

i=1

exp
�
− ν

2ω2 �fi − h0�2
2

�
πi

�

= − ν

2ω2 �f j − h0�2
2 − log(λ0

j/π j )

=
M�

i=1

λ0
i

�
− ν

2ω2 �fi − h0�2
2 − log(λ0

i /πi )
�
,

where the second equation is from summing up two sides of
the first equation with weight λ0

i over i = 1, . . . ,M .
Plug back into T (h0), we obtain

T (h0)

= − ν

1 − ν
�h0 − Y�2

2

− 2ω2
$ M�

i=1

λ0
i

�
− ν

2ω2 �fi − h0�2
2 − log(λ0

i /πi )
�%

= − ν

1 − ν
�h0 − Y�2

2 + ν

M�

i=1

λ0
i �fi − h0�2

2 + 2ω2K(λ0,μ)

= �fλ0 − Y�2
2 + ν

M�

i=1

λ0
i �fi − fλ0�2

2 + 2ω2K(λ0,μ)

= Q(λ0),

where the third equality is obtained by plugging in h0 = 1
νY −

1−ν
ν fλ0 . Therefore,

Q(λ0) = min
λ∈�M

Q(λ) = min
λ∈�M

max
h∈Rn

S(λ, h)

= max
h∈Rn

min
λ∈�M

S(λ, h) = max
h∈Rn

T (h) = T (h0).

Since Q(·) is strictly convex and T (·) is strictly concave,
we have h0 = ĥ is the unique solution of maxh T (h), and
λ0 = λ is the unique solution of minλ Q(λ). Using h0 =
1
νY − 1−ν

ν fλ0 , we have

ĥ = 1

ν
Y − 1 − ν

ν
fλQ .

This proves that A ∩ B contains the unique point (λQ , ĥ).

C. Proof of Proposition 1

The strong convexity of log J (·) in (14) implies that

�ψ̂ − ψ X (ω
2, ν)�2

2 ≤ 2

A1

�
log J (ψ̂)− log J (ψ X (ω

2, ν))
�

≤ 2�/A1.

Now plug the above inequality into the following equation

�ψ̂ − η�2
2 = �ψ X (ω

2, ν)− η�2
2 + 2�ψ̂ − ψ X (ω

2, ν)�2

×�ψ X (ω
2, ν)− η�2 + �ψ̂ − ψ X (ω

2, ν)�2
2,

we obtain the desired bound.

D. Proof of Proposition 2

From definition, ψ X (ω
2, ν) = fλ with λ ∈ �M defined as

λ j ∝ π j exp

�
− 1

2ω2 �f j − Y�2
2 + 1 − ν

2ω2 �ψ X (ω
2, ν)− f j�2

2

�
.

For any j = 1, . . . ,M ,

log J (ψ(k))

= log J
�
ψ(k−1) + αk(fJ (k) − ψ (k−1))

�

≤ log J
�
ψ(k−1) + αk(f j − ψ (k−1))

�

≤ log J (ψ(k−1))+ αk(f j − ψ (k−1))� ∇ J (ψ(k−1))

J (ψ(k−1))
+ 2α2

k A3,

where the first inequality comes from definition, the second
inequality is from Taylor expansion at ψ(k−1) and (15) in
Lemma 1 with the fact that �f j − ψ(k−1)�2

2 ≤ 4L2.
We multiply the above inequality by λ j and sum over j to

obtain

log J (ψ (k)) ≤ log J (ψ(k−1))+ αk

M�

j=1

λ j (f j − ψ(k−1))�

×∇ J (ψ(k−1))

J (ψ(k−1))
+ 2α2

k A3

= log J (ψ(k−1))+ αk(ψ X (ω
2, ν)− ψ(k−1))�

×∇ J (ψ(k−1))

J (ψ(k−1))
+ 2α2

k A3

≤ log J (ψ(k−1))+ αk(log J (ψ X (ω
2, ν))

× − log J (ψ(k−1)))+ 2α2
k A3,

where the last inequality follows from the convexity of
log J (ψ).

Denote by δk = log J (ψ(k))− log J (ψ X (ω
2, ν)), it follows

that

δk ≤ (1 − αk)δk−1 + 2α2
k A3.

We now bound δ0. If we let μ j ∝ π j exp
�
− 1

2ω2 �f j − Y�2
2

�

such that
�M

j=1 μ j = 1, then

δ0 = log J (ψ(0))− log J (ψ X (ω
2, ν))

= log
�

j

μ j exp

�
1 − ν

2ω2 �ψ (0) − f j�2
2

�

− log
�

j

μ j exp

�
1 − ν

2ω2 �ψ X (ω
2, ν)− f j �2

2

�

≤ log

⎛

⎝
M�

j=1

μ j exp

�
1 − ν

2ω2 �ψ (0) − f j�2
2

�⎞

⎠

≤ 1 − ν

2ω2 L2 ≤ 2A3. (48)
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The claim thus hold for δ0. By mathematical induction,
if δk−1 ≤ 8A3

k+2 , then

δk ≤ (1 − αk)δk−1 + 2α2
k A3

≤ (1 − 2/(k + 1))
8A3

k + 2
+ 2(2/(k + 1))2 A3 ≤ 8A3

k + 3
.

This proves the desired bound.

E. Proof of Proposition 3

We have

�ψ (k)−ψ X (ω
2, ν)�2

2 ≤ 2

A1

�
log J (ψ(k))−log J (ψ X (ω

2, ν))
�

≤ 2

A1

8A3

k + 3
= 16A3

A1(k + 3)
,

where the first inequality comes from Taylor expansion at point
ψ X (ω

2, ν), with using (14) in Lemma 1 and ∇ J (ψ2); and
the second inequality is from Proposition 2. It follows that

�ψ (k) − η�2
2

= �(ψ (k) − ψ X (ω
2, ν))+ (ψ X (ω

2, ν)− η)�2
2

≤ �ψ X (ω
2, ν)− η�2

2 + 2�ψ X (ω
2, ν)− η�2�ψ (k)

−ψ X (ω
2, ν)�2 + �ψ (k) − ψ X (ω

2, ν)�2
2

≤ �ψ X (ω
2, ν)− η�2

2 + 2

�
16A3

A1(k + 3)
�ψ X (ω

2, ν)− η�2

+ 16A3

A1(k + 3)
.

F. Proof of Proposition 4

The update operation implies

ψ(k) = ψ (k−1) − tk∇ log J (ψ(k−1)).

Then,

log J (ψ(k))

= log J (ψ(k−1) − tk∇ log J (ψ (k−1)))

≤ log J (ψ(k−1))− tk�∇ log J (ψ(k−1)))�2
2

+ (A2/2)t2
k �∇ log J (ψ(k−1)))�2

2

= log J (ψ(k−1))− (tk − (A2/2)t2
k )�∇ log J (ψ (k−1)))�2

2,

where the inequality is from (15). By subtracting
log J (ψ X (ω

2, ν)) by each side, we have

log J (ψ(k))− log J (ψ X (ω
2, ν))

≤ log J (ψ(k−1))− log J (ψ X (ω
2, ν))

− (tk − (A2/2)t
2
k )�∇ log J (ψ (k−1)))�2

2. (49)

Also from (15) we have

�∇ log J (ψ(k−1)))�2
2

≥ 2A1

�
log J (ψ(k−1))− log J (ψ X (ω

2, ν))
�
. (50)

Choose fixed step size tk = s ∈ (0, 2/A2) for any k > 0.
Combining (49) and (50) results

log J (ψ(k))− log J (ψ X (ω
2, ν))

≤ [1 − 2A1(s − (A2/2)s2)]
�

log J (ψ (k−1))

− log J (ψ X (ω
2, ν))

�
.

It follows that

log J (ψ(k))− log J (ψ X (ω
2, ν))

≤ [1 − 2A1(s − (A2/2)s2)]k
�

log J (ψ(0))

− log J (ψ X (ω
2, ν))

�
.

G. Proof of Proposition 5

We choose tk = s as in Remark 1. Then,

�ψ (k) − ψ X (ω
2, ν)�2

2

≤ 2

A1

�
log J (ψ(k))− log J (ψ X (ω

2, ν))
�

≤ 2

A1
(1 − A1/A2)

k log J (ψ(0))

≤ 2

A1
(1 − A1/A2)

k 1 − ν

2ω2 L2 = L2(1 − A1/A2)
k,

where the first inequality comes from Taylor expansion
at point ψ X (ω

2, ν), with using (14) in Lemma 1 and
∇ log J (ψ X (ω

2, ν)) = 0; the second inequality is from
Proposition 4; and the third inequality is from assumption (11)
resulting log J (ψ (0)) ≤ 1−ν

2ω2 L2. It follows that

�ψ(k) − η�2
2

= �(ψ (k) − ψ X (ω
2, ν))+ (ψ X (ω

2, ν)− η)�2
2

≤ �ψ X (ω
2, ν)− η�2

2 + 2�ψ X (ω
2, ν)− η�2�ψ (k)

−ψ X (ω
2, ν)�2 + �ψ (k) − ψ X (ω

2, ν)�2
2

≤ �ψ X (ω
2, ν)−η�2

2+2
�

L2(1− A1/A2)k�ψ X (ω
2, ν)−η�2

+ L2(1 − A1/A2)
k .

H. Proof of Proposition 6

Given Y , the expectation is with respect to the randomness
from the MH algorithm. For k > 0, u(k−1)

T from Algorithm 3 is
an estimator of fλ(k−1) = �M

j=1 λ
(k−1)
j f j . Then in Algorithm 2,

we update ψ (k) by

ψ(k) = ψ (k−1) − tk
1 − ν

ω2 (ψ (k−1) − u(k−1)
T ).

Denote v(k−1) = 1−ν
ω2 (ψ

(k−1) − u(k−1)
T ), then we have

E[v(k−1)|ψ(k−1)]= 1 − ν

ω2 (ψ(k−1)−fλ(k−1) )=∇ log J (ψ(k−1)),
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and

�C OV [v(k−1)|ψ (k−1)]�op

=
�

1 − ν

ω2

�2

�C OV [u(k−1)
T |ψ(k−1)]�op

≤
�

1 − ν

ω2

�2

s2.

It follows that

log J (ψ(k)) = log J (ψ(k−1) − tkv
(k−1))

≤ log J (ψ(k−1))− tk∇ log J (ψ(k−1))�v(k−1)

+ (A2/2)t2
k �v(k−1)�2

2,

where the inequality is from (15). Then, by subtracting
log J (ψ X (ω

2, ν)) from each side of the above equation and
taking expectation conditioned on ψ (k−1), we have

E[δk|ψ (k−1)]
≤ δk−1 − tk∇ log J (ψ(k−1))�E[v(k−1)|ψ(k−1)]

+ (A2/2)t2
k E[�v(k−1)�2

2|ψ(k−1)]
≤ δk−1 − tk�∇ log J (ψ (k−1))�2

2

+ (A2/2)t2
k

�
�∇ log J (ψ (k−1))�2

2 + n

�
1 − ν

ω2

�2

s2

�

= δk−1 − 1

2A2
�∇ log J (ψ(k−1))�2

2 + 1

2A2

�
1 − ν

ω2

�2

ns2,

where δk = log J (ψ(k)) − log J (ψ X (ω
2, ν)) and tk = s =

1/A2 as in Remark 1. Combining the above inequality with

�∇ log J (ψ(k−1)))�2
2 ≥ 2A1

�
log J (ψ(k−1))

− log J (ψ X (ω
2, ν))

�
, (51)

which is from (15), we have

E[δk |ψ(k−1)] ≤ δk−1(1 − A1/A2)+ A2
1

2A2
ns2.

Therefore, it follows that

E[δk] ≤ E[δk−1](1 − A1/A2)+ A2
1

2A2
ns2,

and we have

E[δk] ≤ E[δ0](1 − A1/A2)
k + A1

2
ns2.
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