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Compressed Sensing With Prior Information:
Strategies, Geometry, and Bounds
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Abstract— We address the problem of compressed sensing (CS)
with prior information: reconstruct a target CS signal with the
aid of a similar signal that is known beforehand, our prior
information. We integrate the additional knowledge of the similar
signal into CS via �1-�1 and �1-�2 minimization. We then
establish bounds on the number of measurements required by
these problems to successfully reconstruct the original signal.
Our bounds and geometrical interpretations reveal that if the
prior information has good enough quality, �1-�1 minimization
improves the performance of CS dramatically. In contrast,
�1-�2 minimization has a performance very similar to classi-
cal CS, and brings no significant benefits. In addition, we use
the insight provided by our bounds to design practical schemes
to improve prior information. All our findings are illustrated
with experimental results.

Index Terms— Compressed sensing, prior information, basis
pursuit, �1-�1 and �1-�2 minimization, Gaussian width.

I. INTRODUCTION

NEARLY a decade ago, compressed sensing (CS) emerged
as a new paradigm for signal acquisition [2], [3].

By assuming that signals are compressible rather than ban-
dlimited, CS enables signal acquisition using far less mea-
surements than classical acquisition schemes [4], [5]. Since
most signals of interest are indeed compressible, CS has found
many applications, including medical imaging [6], radar [7],
camera design [8], and sensor networks [9].

We show that whenever a signal similar to the signal to
reconstruct is available, the number of measurements can

Manuscript received August 20, 2014; revised October 16, 2015; accepted
March 22, 2017. Date of publication April 19, 2017; date of current ver-
sion June 14, 2017. This work was supported in part by EPSRC under
Grant EP/K033166/1, in part by the VUB Research Programme under
Grant M3D2, in part by the FWO under Grant G0A2617N, in part by the
VUB-UGent-UCL-Duke International Joint Research Group, and in part by
Heriot-Watt University. This paper was presented at the 2014 GlobalSIP
Conference [1]. (Corresponding author: João F. C. Mota.)

J. F. C. Mota was with the Department of Electronic and Electrical
Engineering, University College London, London WC1E 6BT, U.K. He is now
with the Institute of Sensors, Signals, and Systems, Heriot-Watt University,
Edinburgh EH14 4AS, U.K. (e-mail: j.mota@hw.ac.uk).

N. Deligiannis was with the Department of Electronic and Electrical
Engineering, University College London, London WC1E 6BT, U.K. He is now
with the Department of Electronics and Informatics (ETRO), Vrije Universiteit
Brussel (VUB), B1050 Brussels, Belgium, and with imec, Kapeldreef 75,
B3001, Leuven, Belgium.

M. R. D. Rodrigues is with the Electronic and Electrical Engineering
Department, University College London, London WC1E 6BT, U.K. (e-mail:
m.rodrigues@ucl.ac.uk).

Communicated by A. Montanari, Associate Editor for Statistical Learning.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2017.2695614

be reduced even further. Such additional knowledge is often
called prior [10]–[20] or side [21]–[23] information.

Compressed Sensing (CS): Let x� ∈ R
n be an unknown

s-sparse signal, i.e., with at most s nonzero entries. Assume
we have m linear measurements y = Ax�, where the matrix
A ∈ R

m×n is known. CS answers two fundamental questions:
How to reconstruct the signal x� from the measurements y?
And how many measurements m are required for successful
reconstruction? A remarkable result states that if A satisfies
a restricted isometry [24]–[26] or nullspace [27] property,
then x� can be reconstructed perfectly by solving Basis
Pursuit (BP) [28]:

minimize
x

‖x‖1

subject to Ax = y, (BP)

where ‖x‖1 := ∑n
i=1 |xi | is the �1-norm of x ; see [24]–[27].

For example, if m > 2s log(n/s) + (7/5)s, and the entries
of A ∈ R

m×n are drawn independently and identically distrib-
uted (i.i.d.) from the Gaussian distribution, then A satisfies
a nullspace property (and thus BP recovers x�) with high
probability [27]. See [2], [3], [29]–[36] for related results.

CS With Prior Information: Consider that, in addition to
the set of measurements y = Ax�, we also have access to
prior information, that is, to a signal w ∈ R

n similar to the
original signal x�. This occurs in many scenarios: for example,
in video acquisition [21], [37]–[41], tracking [42], [43], and
medical imaging [6], [11], [20], [44], past signals can be used
to create an estimate of the target signal; concretely, if x� is
a sparse representation of the target signal, then w can be a
sparse representation of an estimate of x�, created from past
reconstructed signals, e.g., via extrapolation. Similarly, signals
captured by nearby sensors in sensor networks [45] and images
in multiview camera systems [46] are (or can be made) similar
and, hence, used as prior information. The goal of this paper
is to answer the following two key questions:

• How to reconstruct the signal x� from the measurements
y = Ax� and the prior information w?

• And how many measurements m are required for success-
ful reconstruction?

A. Overview of Our Approach and Main Results

We address CS with prior information by solving an appro-
priate modification of BP. Suppose g : R

n −→ R is a
function that measures the similarity between x� and the prior
information w, in the sense that g(x� − w) is expected to
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be small. Then, given y = Ax� and w, we solve

minimize
x

‖x‖1 + β g(x − w)

subject to Ax = y, (1)

where β > 0 establishes a tradeoff between signal sparsity and
fidelity to prior information. We consider two specific, convex
models for g: g1 := ‖ · ‖1 and g2 := 1

2‖ · ‖2
2, where ‖z‖2 :=√

z�z is the �2-norm. Then, problem (1) becomes

minimize
x

‖x‖1 + β‖x − w‖1

subject to Ax = y (2)

minimize
x

‖x‖1 + β

2
‖x − w‖2

2

subject to Ax = y, (3)

which we will refer to as �1-�1 and �1-�2 minimization,
respectively. The use of the constraints Ax = y implicitly
assumes that y was acquired without noise. However, our
results also apply to the noisy scenario, i.e., when the con-
straints are ‖Ax − y‖2 ≤ σ instead of Ax = y.

1) Overview of Results: Problems (2) and (3), as well as
their Lagrangian versions, have rarely appeared in the literature
(see Section II). For instance, [11], [20] (resp. [12]) considered
problems very similar to (2) (resp. (3)). Yet, to the best of our
knowledge, no CS-type results have ever been provided for
either (2), (3), their variations in [11], [12], and [20], or their
Lagrangian versions.

Our goal is to establish bounds on the number of measure-
ments that guarantee that (2) and (3) reconstruct x� with high
probability, when A has i.i.d. Gaussian entries. Our bounds
are a function of the prior information “quality” and the
tradeoff parameter β. Hence, they not only help us understand
what “good” prior information is, but also to select a β that
minimizes the number of measurements. The main elements
of our contribution can be summarized as follows:

• Our bound for (2) is minimized when β = 1, a value
independent of w, x�, or any other problem parameter.
We will see that the best β in practice is indeed very
close to 1. In contrast, the optimal β for (3) depends on
several parameters, including the unknown entries of x�.

• We also establish sharper versions of our bounds, which
have to be computed numerically, but precisely describe
the experimental performance of (2) and (3). Our analy-
ses of the bounds, sharp and non-sharp, reveal that,
typically, (2) requires much fewer measurements than
both BP (classical CS) and (3). This superior performance
is also observed experimentally, and we interpret it in
terms of the underlying geometry of the problem.

• Based on the measures for the quality of prior information
revealed by our bounds, we propose schemes that modify
prior information in order to improve its quality. The
schemes are validated with simulations, which also show
that (2) outperforms Modified-CS [12], another strategy
for integrating prior information.

2) A Representative Result: To give an example of our
results, we state a simplified version of Theorem 12 from
Section IV-B, which establishes bounds on the number of
measurements for successful �1-�1 reconstruction. Here, we

rewrite it for β = 1, which gives not only the simplest result,
but also the best bound. Define

h := ∣
∣{i : x�

i > 0, x�
i > wi } ∪ {i : x�

i < 0, x�
i < wi }

∣
∣

ξ := ∣
∣{i : wi 	= x�

i = 0}∣∣− ∣∣{i : wi = x�
i 	= 0}∣∣ ,

where | · | denotes the cardinality of a set. Note that h
is defined on the support I := {i : x�

i 	= 0} of x�.

Recall that s = |I |. Later, we will call h the number of bad
components of w. For example, if x� = (0, 3,−2, 0, 1, 0, 4)
and w = (0, 4, 3, 1, 1, 0, 0), then h = 2 (due to 3rd and last
components) and ξ = 1 − 1 = 0 (4th and 5th components).

Theorem 1 (�1-�1 Minimization: Simplified): Let x� ∈ R
n

be the vector to reconstruct and let w ∈ R
n be the prior

information. Assume h > 0 and that there exists at least one
index i for which x�

i = wi = 0. Let the entries of A ∈ R
m×n

be i.i.d. Gaussian with zero mean and variance 1/m. If

m ≥ 2h log
( n

s + ξ/2

)
+ 7

5

(
s + ξ

2

)
+ 1 , (4)

then, with probability greater than 1 − exp
(− 1

2 (m − √
m)2
)
,

x� is the unique solution of (2) with β = 1.
Recall that, with a similar probability, classical CS requires

m ≥ 2s log
(n

s

)
+ 7

5
s + 1 (5)

measurements to reconstruct x� [27]; see also Theorem 4 and
Proposition 6 in Section III below. These bounds say that,
for large n, (2) requires O(2h log n) measurements whereas
classical CS requires O(2s log n). Recall that, by definition,
h ≤ s. Equality holds, i.e., h = s, only when the supports
of x� and w are disjoint. This means �1-�1 minimization
is robust to inaccurate prior information; yet, if h is small,
(4) can be much smaller than (5). For �1-�2 minimization (3),
we establish a similar bound: O(vβ log n), where

vβ �
∑

i∈I

(
1 + β sign(x�

i )(x�
i − wi )

)2
, (6)

and sign(·) returns the sign of a number. The approximation
is due to neglecting a term that depends on the disjointness of
the supports of x� and w; thus, (6) is accurate when x� and
w have similar supports. Notice that while h is independent
from β and is determined only by the signs of the entries of x�

and x� − w, vβ depends on β and also on the actual values
of x� and w. Furthermore, as shown by our experiments, in
practice, it is much easier to obtain smaller values for h than
it is for vβ .

3) A Numerical Example: We provide a numerical exam-
ple to illustrate further our results. We generated x� with
1000 entries, 70 of which were nonzero, i.e., n = 1000
and s = 70. The nonzero components of x� were drawn from
a standard Gaussian distribution. The prior information w was
created as w = x� + z, where z is a 28-sparse vector whose
nonzero entries were drawn from a zero-mean Gaussian distri-
bution with standard deviation 0.8. The supports of x� and z
coincided in 22 positions and differed in 6. This pair of x�

and w yielded h = 11 and ξ = −42. Plugging the previous
values into (4) and (5), we see that �1-�1 minimization and
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Fig. 1. Experimental rate of reconstruction of classical CS (1), �1-�1
minimization, and �1-�2 minimization, both with β = 1. The vertical lines
are the bounds for classical CS, and �1-�1 and �1-�2 minimization.

classical CS require 136 and 472 measurements for perfect
reconstruction with high probability, respectively.

Fig. 1 shows the experimental performance of classical
CS and �1-�1 and �1-�2 minimization, i.e., problems (1),
(2) and (3), respectively. More specifically, it depicts the rate
of success of each problem versus the number of measure-
ments m. For a fixed m, the success rate is the number of
times a given problem recovered x� with an error smaller
than 1% divided by the total number of 50 trials (each trial
considered different pairs of A and b). The plot shows that
�1-�1 minimization required less measurements to recon-
struct x� successfully than both CS and �1-�2 minimization.
The curves of the last two, in fact, almost coincide, with
�1-�2 minimization (line with triangles) having a slightly
sharper phase transition. The vertical lines show the
bounds (4), (5), and the bound for �1-�2 minimization, pro-
vided in Section IV. We see that, for this particular example,
the bound (4) is quite sharp, while the bound for �1-�2
minimization is quite loose (the sharpness of our bounds
is discussed in Sections IV and VI). More importantly, this
example shows that using prior information properly can
improve the performance of CS dramatically.

Our bounds have been used to design an adaptive-rate
scheme for state estimation with applications in compressive
video background subtraction [40], [41], a reweighted �1-�1
minimization scheme [47], [48], and also to design measure-
ments in CS-based communication systems [49].

B. Outline

In Section II, we discuss related work, including the use of
other types of “prior information” in CS. Section III introduces
fundamental tools in our analysis, which are also used to pro-
vide geometrical interpretations of �1-�1 and �1-�2 minimiza-
tion. The main results are stated and discussed in Section IV.
There, we also provide guidelines on how to improve the
prior information in practice. Section V describes experimental
results. The main results are proven in Section VI, and the
appendix is used for auxiliary results.

II. RELATED WORK

There is a clear analogy of CS with prior information and
the distributed source coding problem. Namely, we can view

the number of measurements and the reconstruction quality in
CS as the information rate and the incurred distortion in coding
theory, respectively. As such, CS with prior information at the
reconstruction side is reminiscent of the problem of coding
with side/prior information at the decoder, a field founded by
Slepian and Wolf [50], and Wyner and Ziv [51].

The concept of prior information has appeared in CS under
many guises [11], [12], [20], [23], [42]. The work in [11]
was apparently the first to consider (1), in particular �1-�1
minimization. Specifically, [11] considers dynamic computed
tomography, where a prior image helps reconstructing the
current one, which is accomplished by solving (2). That work,
however, neither provides any kind of analysis nor highlights
the benefits of solving (2) with respect to classical CS,
i.e., BP. Very recently, [20] considered a variation of (2)
where the second term of the objective penalizes differences
between x and w, rather than in the sparse domain, in the sig-
nals’ original domain. Specifically, [20] solves (a Lagrangian
version of)

minimize
x

‖x‖1 + β‖�(x − w)‖1

subject to ��x = y , (7)

where A was decomposed as the product of a sensing matrix �
and a transform matrix � that sparsifies both x� and w.
Although [20] shows experimentally that (7) requires less mea-
surements than conventional CS to reconstruct MRI images,
no analysis or reconstruction guarantees are given for (7).

In [12], prior information refers to an estimate T ⊆
{1, . . . , n} of the support of x� (see [10], [16], [18] for related
approaches). Using the restricted isometry constants of A,
[12] provides exact recovery conditions for BP when its objec-
tive is modified to ‖xT c‖1, where xT denotes the components
of x indexed by the set T , and T c is the complement of T
in {1, . . . , n}. The resulting problem is called Modified-CS
(Mod-CS), against which we benchmark the performance
of (2) and (3) in Section V. When T is a reasonable esti-
mate of the support of x�, those conditions are shown to
be milder than the ones in [24] and [25] for standard BP.
Then, [12] considers prior information as we do: there is
an estimate of the support of x� as well as of the value
of the respective nonzero components. However, it solves a
problem slightly different from (3). Namely, the objective
of (3) is replaced with ‖xT c‖1 +β‖xT −wT ‖2

2. Although some
experimental results are presented, no analysis is given for that
problem.

A popular modification of BP, of which Mod-CS is a
particular instance, considers the weighted �1-norm ‖x‖r :=∑n

i=1 ri |xi |, where ri ≥ 0 is a known weight. This norm penal-
izes each component of x according to the magnitude of the
corresponding weight and, thus, requires “prior information”
about x . The weight ri associated to the component xi can, for
example, be proportional to the probability of x�

i = 0. Several
works studied weighted �1-norm minimization [13]–[17], and
some [19] used tools similar to ours.

Alternative work has considered

minimize
x

‖x‖1 + β g(x − w) + λ‖Ax − y‖2
2 , (8)
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with λ > 0, which can be viewed as a Lagrangian version of

minimize
x

‖x‖1 + β g(x − w)

subject to ‖Ax − y‖2 ≤ σ . (9)

Problem (9) is a generalization of (1) for noisy scenarios, and
we will provide bounds on the number of measurements that
it requires for successful reconstruction with g = ‖ · ‖1 and
g = 1

2‖ · ‖2
2. Problem (8) has appeared before in [42], in

the context of dynamical system estimation. Specifically, the
state xt of a system at time t evolves as xt+1 = ft (xt ) + εt ,
where ft models the system’s dynamics at time t , and εt

accounts for modeling errors. Observations of the state xt

are taken as yt = At x t + ηt , where At is the observation
matrix and ηt is noise. The goal is to estimate the state xt

given the observations yt . The state of the system in the
previous instant, xt−1, can be used as prior information by
making wt = ft−1(xt−1). If the modeling error εt is Gaussian
and the state xt is assumed sparse, then xt can be estimated
by solving (8) with g = ‖ · ‖2

2; if the modeling noise is
Laplacian, we set g = ‖ · ‖1 instead. Although [42] does
not provide any analysis, their experimental results show
that, among several strategies for state estimation, including
Kalman filtering, (8) with g = ‖ · ‖1 yields the best results.
If we take into account the relation between (8) and (9), our
theoretical analysis can be used to provide an explanation.
Applying the KKT conditions to problem (9) reveals that it
has the same solution x as (8) if ‖Ax − y‖2 = σ and λ is
the optimal dual variable of (9). Note that obtaining such λ
without first solving (9) is nearly impossible. In contrast, in
several applications, it is relatively easy to obtain accurate
bounds σ on the magnitude of the acquisition noise. For related
approaches, see [23], [52].

Finally, we mention that the phase transition phe-
nomenon in sparse recovery problems was first studied
in [33], [53], and [54], and that alternative reconstruction prob-
lems, such as message passing [55], also have precise phase
transitions [55]–[57].

III. GEOMETRY OF �1-�1 AND �1-�2 MINIMIZATION

This section introduces concepts and results in CS used in
our analysis. We follow the approach of [27], since it leads to
the current best CS bounds for Gaussian measurements, and
provides the means to understand some of our definitions.

A. Known Results and Tools

The concept of Gaussian width plays a key role in [27].
Originally proposed in [58] to quantify the probability of a
randomly oriented subspace intersecting a cone, the Gaussian
width has been used in several CS-related results [27],
[32], [34], [36]. Before defining it, we analyze the opti-
mality conditions of linearly constrained convex optimization
problems.

1) The Nullspace Property: Consider a real-valued convex
function f : R

n −→ R and the following optimization problem:

minimize
x

f (x)

subject to Ax = y . (10)

Fig. 2. Visualization of the nullspace property in Proposition 2 for BP.

Assume Ax = y has at least one solution, say, x�. The set
of all solutions of Ax = y, i.e., the feasible set of (10), is
A := x� + null(A), where null(A) := {x : Ax = 0} is the
nullspace of A. To determine if a given x� ∈ A is a solution
of (10), we use the concept of tangent cone of f at x�:

T f (x�) := cone
(
S f (x�) − x�

)
, (11)

where cone C := {αc : α ≥ 0, c ∈ C} is the cone generated
by the set C , and S f (x�) := {x : f (x) ≤ f (x�)} is the
sublevel set of f at x�. See [59, Proposition 5.2.1, Th. 1.3.4].

Proposition 2 ([27, Proposition 2.1]): x� is the unique
optimal solution of (10) if and only if T f (x�)∩null(A) = {0}.
Although this proposition was stated in [27, Proposition 2.1]
for f equal to an atomic norm, its proof holds for any real-
valued convex function. Fig. 2 illustrates it for f (x) = ‖x‖1,
i.e., for BP. It shows the respective sublevel set S‖·‖1(x�) and
tangent cone T‖·‖1(x�) at a “sparse” point x�. In the figure,
A = x� + null(A) intersects T‖·‖1(x�) at x� only, that is,
T‖·‖1(x�)∩(x�+null(A)) = {x�}. Subtracting x� to both sides,
we obtain the condition in Proposition 2.

2) Gaussian Width: When A is generated randomly, its
nullspace has a random orientation, and the condition in
Proposition 2 holds or not with a given probability. The
smaller the width (or aperture) of T f (x�), the more likely
that condition will hold. Such a statement was formalized for
Gaussian matrices A by Gordon in [58]. To measure the width
of a set S ∈ R

n , Gordon defined the Gaussian width:

w(S) := Eg

[
sup
z∈S

g�z
]
, (12)

where g ∼ N (0, In) is a vector of n independent, zero-mean,
and unit-variance Gaussian random variables, and Eg[·] is the
expected value with respect to g. When the set is a cone C ,
i.e., x ∈ C ⇒ α x ∈ C for all α ≥ 0, we have to intersect
C with the unit �2-norm sphere in R

n : Sn(0, 1) := {x ∈ R
n :

‖x‖2 = 1}. To simplify notation, we define

w(C) := w(C ∩ Sn(0, 1)) = Eg

[
sup

z∈C ∩ Sn(0,1)

g�z
]
. (13)

It turns out that w(C ∩ Sn(0, 1)) = w(C ∩ Bn(0, 1)),
where Bn(0, 1) := {x ∈ R

n : ‖x‖2 ≤ 1} is the unit
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Fig. 3. Illustration of how the Gaussian width measures the width of a cone,
according to Proposition 3.

�2-norm ball in R
n .1 As a result, the Gaussian width of a

cone C is the expected distance of a Gaussian vector g to the
polar cone of C , defined as C° := {y : y�z ≤ 0 ,∀ z ∈ C}:

Proposition 3 ([59, Example 2.3.1, 27, Proposition 3.6]):
The Gaussian width of a cone C can be written as

w(C) = Eg

[
dist(g, C°)

]
, (14)

where dist(x, S) := min{‖z−x‖2 : z ∈ S} denotes the distance
of the point x to the set S.2

This follows from the fact that the support function
of a “truncated” cone is the distance to its polar cone
[59, Example 2.3.1]; and can be proved by computing the
dual of the optimization problem in (13) [27, Proposition 3.6].
Proposition 3 provides not only a way easier than (12) to
compute Gaussian widths of cones, but also a geometrical
explanation of why the Gaussian width measures the width of
a cone. The wider the cone C , the smaller its polar cone C°.
Therefore, the expected distance of a Gaussian vector g to C°

increases as C° gets smaller or, equivalently, as C gets wider;
see Fig. 3.

3) From Geometry to CS Bounds: In [58], Gordon used the
concept of Gaussian width to compute bounds on the proba-
bility of a cone intersecting a subspace whose orientation is
uniformly distributed, e.g., the nullspace of a Gaussian matrix.
More recently, [60] showed that those bounds are sharp. Based
on Gordon’s result, on Proposition 2 (and its generalization for
the case where the constraints of (10) are ‖Ax − y‖2 ≤ σ ),
and a concentration of measure result, [27] establishes:

Theorem 4 ([27, Corollary 3.3]): Let A ∈ R
m×n be a

matrix whose entries are i.i.d., zero-mean Gaussian random
variables with variance 1/m. Assume f : R

n −→ R is convex,
and let λm := Eg[‖g‖2] denote the expected length of a zero-
mean, unit-variance Gaussian vector g ∼ N (0, Im) in R

m.

1) Suppose y = Ax� and let

x̂ = arg min
x

f (x)

s.t. Ax = y , (15)

1That is because the maximizer of the problem in (13) is always in Sn(0, 1).
To see that, suppose it is not, i.e., for a fixed g, zg := sup{g�z : z ∈
C ∩ Bn (0, 1)} and zg 	∈ Sn(0, 1). This means ‖zg‖2 < 1. Since C is a cone,
ẑg := zg/‖zg‖2 ∈ C ∩ Sn(0, 1). And g� ẑg = (1/‖ẑg‖2)g�zg > g�zg ,
contradicting the fact that zg is optimal.

2This result is stated in [27] as an inequality, i.e., with ≤ in place of =.
Because of the previous footnote, the result is in fact an equality.

and

m ≥ w(T f (x�))2 + 1 . (16)

Then, x̂ = x� is the unique solution of (15) with
probability greater than 1−exp

(− 1
2

[
λm −w(T f (x�))

]2)
.

2) Suppose y = Ax� + η, where ‖η‖2 ≤ σ and let

x̂ ∈ arg min
x

f (x)

s.t. ‖Ax − y‖2 ≤ σ . (17)

Define 0 < ε < 1 and let

m ≥ w(T f (x�))2 + 3/2

(1 − ε)2 . (18)

Then, ‖x̂ − x�‖2 ≤ 2σ/ε with probability greater than
1 − exp

(− 1
2

[
λm − w(T f (x�)) − ε

√
m
]2)

.
Theorem 4 was stated in [27] for f equal to an atomic
norm. Its proof, however, remains valid when f is any
convex function. Note, in particular, that (15) becomes (BP),

(2), and (3) when f (x) is ‖x‖1, ‖x‖1 + β‖x − w‖1, and
‖x‖1 + β

2 ‖x − w‖2
2, respectively; and (17) becomes the noise-

robust version of these problems. In this paper, we focus on
the noise-free versions of (2) and (3). However, we remark
that the bounds we derive also apply to their noise-robust
versions because of part 2) of Theorem 4. The quantity λm

can be sharply bounded as m/
√

m + 1 ≤ λm ≤ √
m [27].

One of the steps of the proof of Theorem 4 shows that (16)
implies w(T f (x�)) ≤ λm and (18) implies w(T f (x�)) +
ε
√

m ≤ λm . Roughly, the theorem says that, given the
noiseless (resp. noisy) measurements y = Ax� (resp. y =
Ax� + η), we can recover x� exactly (resp. with an error
of 2σ/ε), provided the number of measurements is larger than
a function of the Gaussian width of T f (x�). It is rare, how-
ever, to be able to compute Gaussian widths in closed-form;
instead, one usually upper bounds it. As proposed in [27],
a useful tool to obtain such bounds is Jensen’s inequality
[59, Th. B.1.1.8], Proposition 3, and the following proposition.
Recall that the normal cone N f (x) of a function f at a point x
is the polar of its tangent cone: N f (x) := T f (x)°. Also,
∂ f (x) := {d : f (y) ≥ f (x) + d�(y − x), for all y} is the
subgradient of f at a point x [59].

Proposition 5 ([59, Th. 1.3.5, Ch. D]): Let f : R
n −→ R be

a convex function and suppose 0 	∈ ∂ f (x) for a given x ∈ R
n.

Then, N f (x) = cone ∂ f (x).
Using Propositions 3 and 5, [27] proves3:

Proposition 6 ([27, Proposition 3.10]): Let x� 	= 0 be an
s-sparse vector in R

n. Then,

w
(
T‖·‖1(x�)

)2 ≤ 2s log
(n

s

)
+ 7

5
s . (19)

Together with Theorem 4, this means that if m ≥ 2s log(n/s)+
(7/5)s + 1, then BP recovers x� from m noiseless Gaussian
measurements with high probability. A similar result holds for
noisy measurements.

3We noticed an extra factor of
√

π in [27, eq. (73)] (proof of
Proposition 3.10). Namely, π in (73) should be replaced by

√
π . As a

consequence, equation (74) in that paper can be replaced, for exam-
ple, by our equation (59). In that case, the number of measurements in
[27, Proposition 3.10] should be corrected from 2s log(n/s) + (5/4)s to
2s log(n/s) + (7/5)s.
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Fig. 4. Sublevel sets of functions f1 and f2 with β = 1 for x� = (0, 1). In both (a) and (b), the prior information is w(1) = (0, 1.6) and w(2) = (0, 1.3),
while in (c) and (d) it is w(3) = (0, 0.5), and w(4) = (0,−0.5). For reference, the sublevel set S‖·‖1 of the �1-norm at x� is also shown in all figures.

B. The Geometry of �1-�1 and �1-�2 Minimization

Theorem 4 applies to CS by making f (x) = ‖x‖1. Since
it is applicable to any convex function f , we will use it
to characterize problems (2) and (3), that is, when f is
f1(x) := ‖x‖1 +β‖x −w‖1 and f2(x) := ‖x‖1 + β

2 ‖x −w‖2
2,

respectively. In particular, we want to understand the relation
between the Gaussian widths of the tangent cones associated
with these functions and the one associated with the �1-norm.
If the former are smaller, we may obtain reconstruction bounds
for (2) and (3) smaller than the one in (19). In the same way
that Proposition 6 bounded the squared Gaussian width of the
�1-norm in terms of the key parameters n and s, we seek to
do the same for f1 and f2. To find out the key parameters in
this case and also to gain some intuition about the problem,
Fig. 4 shows the sublevel sets of f1 and f2 with β = 1 and in
two dimensions, i.e., for n = 2. Recall that, according to (11),
one can estimate tangent cones by observing the sublevel sets
that generate them. We set x� = (0, 1) in all plots of Fig. 4
and consider four different vectors as prior information w:
w(1) = (0, 1.6) and w(2) = (0, 1.3) in Figs. 4(a) and 4(b); and
w(3) = (0, 0.5) and w(4) = (0,−0.5) in Figs. 4(c) and 4(d).
The sublevel sets are denoted with

S( j )
fi

:= {x : ‖x‖1 + gi(x − w( j )) ≤ ‖x�‖1 + gi (x� − w( j ))} ,

where i = 1, 2, j = 1, 2, 3, 4, and g1 = ‖ · ‖1 and g2 =
1
2‖ · ‖2

2. For reference, we also show the sublevel set S‖·‖1

associated with BP. The sublevel sets of f1 are shown in
Figs. 4(a) and 4(c), whereas the sublevel sets of f2 are shown
in Figs. 4(b) and 4(d). For example, the sublevel set S(1)

f1
in

Fig. 4(a) can be computed in closed-form as S(1)
f1

= {(0, x2) :
0 ≤ x2 ≤ 1.6}. The cone generated by this set is the
axis x1 = 0. In the same figure, S(2)

f1
= {(0, x2) : 0 ≤

x2 ≤ 1.3} and it generates the same cone. Hence, both S(1)
f1

and S(2)
f1

generate the tangent cone {(0, x2) : x2 ∈ R}, which
has Gaussian width smaller than w(T‖·‖1(x�)).4 When we
consider f2 and the same prior information vectors, as in

4Using (13) and denoting g = (g1, g2) ∼ N (0, I2), it can be shown that

w(T f1 (x�)) = Eg [supz{g�z : z = (0,±1)}] = Eg [|g2 |] = 2/
√

2π � 0.8.
In contrast, noting that T‖·‖1 (x�) is a rotation of the nonnegative orthant
and using [60, §3], we have w(T‖·‖1 (x�)) = n/2 = 1 > 0.8. Note that the
difference between the Gaussian widths increases with the ambient dimension.

Fig. 4(b), the tangent cones have larger widths, which are still
smaller than the width of T‖·‖1(x�). Since small widths are
desirable, we say that the nonzero components of the w’s in
Figs. 4(a) and 4(b) are good components. On the other hand,
the cones generated by the sublevel sets of Fig. 4(c) coincide
with T‖·‖1(x�), and the cones generated by the sublevel sets of
Fig. 4(d) have widths larger than T‖·‖1(x�). Therefore, we say
that the nonzero components of the w’s in Figs. 4(c) and 4(d)
are bad components. Fig. 4 illustrates the concepts of good
and bad components only for x�

i > 0. For x�
i < 0,

there is geometric symmetry. This motivates the following
definition.

Definition 7 (Good and Bad Components): Let x� ∈ R
n

be the vector to reconstruct and let w ∈ R
n be the prior

information. For i = 1, . . . , n, a component wi is considered
good if

x�
i > 0 and x�

i < wi or x�
i < 0 and x�

i > wi ,

and wi is considered bad if

x�
i > 0 and x�

i > wi or x�
i < 0 and x�

i < wi .

Note that good and bad components are defined only on
the support of x� and that the inequalities in the definition
are strict. Although good and bad components were moti-
vated geometrically, they arise naturally in our proofs. Notice
that Definition 7 (and Fig. 4) consider only components wi

such that wi 	= x�
i and for which x�

i 	= 0. The other
components, of course, also influence the Gaussian width; note
the role of ξ in Theorem 1. This will be clear when we present
our main results in the next section.

IV. MAIN RESULTS

In this section we present our main results, namely recon-
struction guarantees for �1-�1 and �1-�2 minimization. After
some definitions and preliminary results, we present the results
for �1-�1 minimization first, and the results for �1-�2 mini-
mization next. All proofs are relegated to Section VI.

A. Definitions and Preliminary Results

Definition 8 (Support Sets): Let x� ∈ R
n be the vector

to reconstruct and let w ∈ R
n be the prior information.
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We define

I := {
i : x�

i 	= 0
}

J := { j : x�
j 	= w j

}

I c := {
i : x�

i = 0
}

J c := { j : x�
j = w j

}

I+ := {
i : x�

i > 0
}

J+ := { j : x�
j > w j

}

I− := {
i : x�

i < 0
}

J− := { j : x�
j < w j

}
.

To simplify notation, we denote the intersection of two
sets A and B with the product AB := A ∩ B . Then, the set
of good components can be written as I+ J− ∪ I− J+, and the
set of bad components can be written as I+ J+ ∪ I− J−.

Definition 9 (Cardinality of Sets): The number of good
components, the number of bad components, the sparsity of x�,
the sparsity of x� − w, and the cardinality of the union of the
supports of x� and x� − w are represented, respectively, by

h := ∣
∣I+ J−

∣
∣+ ∣∣I− J+

∣
∣

h := ∣
∣I+ J+

∣
∣+ ∣∣I− J−

∣
∣

s := |I |
l := |J |
q := ∣

∣I ∪ J
∣
∣ .

All these quantities are nonnegative. Before moving to our
main results, we present the following useful lemma:

Lemma 10: For x� and w as in Definition 8,
∣
∣I J
∣
∣ = h + h (20)

|I J c| = s − (h + h) . (21)

|I c J | = q − s (22)
∣
∣I c J c

∣
∣ = n − q (23)

Proof: Identity (20) is proven by noticing that I+ and I−
partition I , and J+ and J− partition J . Then,

∣
∣I J
∣
∣ = ∣

∣I+ J
∣
∣+ ∣∣I− J

∣
∣

= ∣
∣I+ J+

∣
∣+ ∣∣I+ J−

∣
∣+ ∣∣I− J+

∣
∣+ ∣∣I− J−

∣
∣

= h + h .

To prove (21), we use (20) and the fact that J and J c are a
partition of {1, . . . , n}:

s = ∣∣I ∣∣ = ∣∣I J
∣
∣+ ∣∣I J c

∣
∣ = (h + h) + ∣∣I J c

∣
∣ ,

from which (21) follows. To prove (22), we use the identity
I ∪ J = (

I c J
) ∪ (I J

) ∪ (I J c
)
, where I c J , I J and I J c are

pairwise disjoint. Then, using (20) and (21),

q = ∣∣I ∪ J
∣
∣ = ∣∣I c J

∣
∣+ ∣∣I J

∣
∣+ ∣∣I J c

∣
∣ = ∣∣I c J

∣
∣+ s .

Finally, (23) holds because

n = ∣∣I ∣∣+ ∣∣I c
∣
∣= ∣∣I J

∣
∣+ ∣∣I J c

∣
∣+∣∣I c J

∣
∣+∣∣I c J c

∣
∣ = q + ∣∣I c J c

∣
∣ ,

where we used (20), (21), and (22). �
From Lemma 10, we can easily obtain the following identities,
which will be frequently used:

∣
∣I c J

∣
∣+ ∣∣I J c

∣
∣ = q − (h + h) (24)

∣
∣I c J

∣
∣+ ∣∣I J c

∣
∣+ 2

∣
∣I c J c

∣
∣ = 2n − (q + h + h) (25)

∣
∣I c J

∣
∣− ∣∣I J c

∣
∣ = q + h + h − 2s . (26)

Finally, note that (23) allows interpreting q as the size of the
union of the supports of x� and w: since both x� and w are
zero in I c J c, q is the number of components in which at least
one of them is not zero.

B. �1-�1 Minimization

We now state our results for �1-�1 minimization, which
come into two forms of bounds for w(T f1(x�))2: sharp
but uninformative bounds, and not so sharp but informative
bounds. We start with the latter. To simplify the presentation,
we first enumerate some conditions used for β 	= 1:

Definition 11 (Conditions for β 	= 1):

q − s

2n − (q + h + h)
≤ 1 − β

1 + β

(
q + h + h

2n

) 4β

(β+1)2

(C1)

q − s

2n − (q + h + h)
≥ 1 − β

1 + β

(
s

q

) 4β

(1−β)2

(C2)

s − (h + h)

2n − (q + h + h)
≤ β − 1

β + 1

(
q + h + h

2n

) 4β

(β+1)2

(C3)

s − (h + h)

2n − (q + h + h)
≥ β − 1

β + 1

(
h + h

s

) 4β

(β−1)2

. (C4)

Theorem 12 (�1-�1 Minimization): Let x� ∈ R
n be the

vector to reconstruct and let w ∈ R
n be the prior information.

Let f1(x) = ‖x‖1+β‖x−w‖1 with β > 0, and assume x� 	= 0,
w 	= x�, and q < n.

1) Let β = 1, and assume there exists at least one bad
component, i.e., h > 0. Then,

w
(
T f1(x�)

)2 ≤ 2h log
( 2n

q + h + h

)
+ 7

10
(q + h + h) .

(27)

2) Let β < 1.

a) If (C1) holds, then

w
(
T f1(x�)

)2 ≤ 2

[

h + (s − h)
(1 − β)2

(1 + β)2

]

× log
( 2n

q + h + h

)
+ s

+ 2

5
(q + h + h) . (28)

b) If q > s and (C2) holds, then

w
(
T f1(x�)

)2 ≤ 2

[

h
(1 + β)2

(1 − β)2 + s − h

]

log
(q

s

)

+ 7

5
s . (29)

3) Let β > 1.

a) If (C3) holds, then

w
(
T f1(x�)

)2 ≤ 2

[

h + (q + h − s)
(β − 1)2

(β + 1)2

]

× log
( 2n

q + h + h

)
+ l

+ 2

5
(q + h + h) . (30)
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b) If s > h + h > 0 and (C4) holds, then

w
(
T f1(x�)

)2 ≤ 2

[

h
(β + 1)2

(β − 1)2 + q + h − s

]

× log
( s

h + h

)
+ l + 2

5
(h + h) .

(31)
The proof can be found in Section VI-B. Similarly to Propo-

sition 6, the previous theorem establishes upper bounds
on w(T f1(x�))2 that depend only on the key parameters n, s, β,
q , h, and h. Together with Theorem 4, it then provides (useful)
bounds on the number of measurements that guarantee �1-�1
reconstruction with high probability. The assumption q < n
means that the union of the supports of x� and w differs from
the full set {1, . . . , n} or, equivalently, there is at least one
index i for which x�

i = wi = 0. Assuming w 	= x� and x� 	= 0
is equivalent to assuming that the sets J and I are nonempty,
respectively.5

The theorem is divided into three cases: 1) β = 1, 2) β < 1,
and 3) β > 1. We will see that, although rare in practice, the
theorem may not cover all possible values of β, due to the
conditions imposed in cases 2) and 3). Recall that Theorem 1
in Section I instantiates case 1), i.e., β = 1, but in a slightly
different format. Namely, to obtain (4) from (27), notice that
ξ = |I c J |−|I J c| and that (26) implies (q+h+h)/2 = s+ξ/2.
Therefore, the observations made for Theorem 1 apply to
case 1) of the previous theorem. We add to those observations
that the assumption that there is at least one bad component,
i.e., h > 0, is necessary to guarantee 0 	∈ ∂ f1(x�) and, hence,
that we can use Proposition 5. In fact, it will be shown in
part 1) of Lemma 19 that 0 	∈ ∂ f1(x�) if and only if h > 0
or β 	= 1. Thus, the assumption h > 0 can be dropped in
cases 2) and 3), where β 	= 1. Note that the quantities on
the right-hand side of (27) are well defined and positive: the
assumption that x� 	= 0 implies q = |I ∪ J | > 0; and the
assumption that q < n, i.e., |I c J c| > 0, and (25) imply
2n > q + h + h.

In case 2), β < 1 and we have two subcases: when
condition (C1) holds, w(T f1(x�))2 is bounded as in (28);
when condition (C2) holds, it is bounded as in (29). These
subcases are not necessarily disjointed nor are they guaranteed
to cover the entire interval 0 < β < 1.6 Fig. 5 shows how
conditions (C1) and (C2) vary with β for the example in Fig. 1.
There, we had n = 1000, s = 70, h = 11, h = 11, and q = 76.
The right-hand side of conditions (C1) and (C2) varies with β
as shown in the figure, and the dashed line represents the left-
hand side of (C1) and (C2), which does not vary with β.
We can see that (C1) holds for 0 < β � 0.88, and (C2) holds
for 0.75 � β < 1. Therefore, both conditions are valid in the
interval 0.75 < β < 0.88. For instance, if β = 0.8, the bounds
in (28) and (29) give 180 and 255 (rounding up), respectively.
Both values are larger than the one for β = 1, which is given

5Assuming x� 	= w is necessary to guarantee 0 	∈ ∂ f1(x�), as shown in
Lemma 19. Of course, taking w = x� works well in practice; our theory,
however, does not cover that specific case.

6If, for example, n = 20, s = 15, q = 16, h = 10, and h = 5, neither (C1)
nor (C2) hold for β = 0.9. In this case, however, x� is not “sparse,” as 75%
of its entries are nonzero. Increasing n to, e.g., 40, makes (C1) hold.

Fig. 5. Values of the right-hand side (RHS) of conditions (C1) and (C2)
from case 2) of Theorem 12, for the example of Fig. 1.

by (27) and is equal to 135. Indeed, the bound in (27) is almost
always smaller than the one in (28): using (26), it can be shown
that the linear, non-dominant terms in (27) are smaller than
the linear terms in (28) whenever

ξ <
2

5
(q + h + h) . (32)

Furthermore, the dominant term in (27), namely the one
involving the log, is always smaller than the dominant term
in (28). So, even if (32) does not hold, (27) is in general
smaller than (28). Curiously, the bound in (28) is minimized
for β = 1 but, in that case, condition (C1) will not hold
unless q = s [according to (22), that would mean that x�

and w have exactly the same support]. The bound in (29),
valid only if q > s, can be much larger than both (27) and (28)
when β is close to 1: this is due to the term (1+β)2/(1−β)2

and to the fact that (29) is valid only for values of β near 1
[cf. (C2) and Fig. 5]. From this analysis, we conclude that
the bounds given in case 2) will not be sharp near 1. Yet,
the bound for β = 1, i.e., (27), is the sharpest one in the
theorem since, as we will see in its proof, is the one with
the fewest number of approximations. Case 3) in the theorem
is similar to case 2): the expression for both the conditions
and the bounds are very similar. The observations made to
case 2) then also apply to case 3). Note, for example, that in
case 3b) it is assumed s > h + h > 0. According to (20)
and (21), this is equivalent to saying that there is at least
one index i for which x�

i 	= 0 and wi 	= x�
i and another

index j for which x�
j 	= 0 and w j = x�

j . The most striking
fact about Theorem 12 is that its expressions depend only on
the quantities given in Definition 9, which depend on the signs
of x�

i and x�
i −wi , but not on their magnitude. As we will see

shortly, that is no longer the case for �1-�2 minimization.
A sharper bound. We now present a bound for �1-�1

minimization that is sharper than the ones in Theorem 12.
However, it is not as informative and has to be computed
numerically. We use the following notation for intervals in the
real line: for b ≥ 0, I(a, b) := [a − b, a + b].

Theorem 13 (�1-�1 Minimization: Shaper Bound): Let x�,
w ∈ R

n be as in Theorem 12. Assume x� 	= 0, w 	= x�,
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and that either h > 0 or β 	= 1. Then,

w(T f1(x�))2 ≤ h + h + min
t≥0

{[
h(β + 1)2 + h(β − 1)2

]
t2

+
∑

i∈I J c

Egi

[
dist
(

gi , I(t sign(x�
i ), tβ)

)2]

+
∑

i∈I c J

Egi

[
dist
(

gi , I(−t β sign(wi ), t)
)2]

+
∑

i∈I c J c

Egi

[
dist
(

gi , I(0, t (β + 1))
)2]
}

.

(33)
The proof can be found in Section VI-C. The expected distance
of a Gaussian scalar random variable to an interval can be
computed exactly, as a function of the Q-function; see (52)
in Lemma 17, Section VI. Therefore, the right-hand side
of (33) can also be computed exactly, although it requires
a numerical procedure to solve the optimization problem in t .
The bound in (33) is reminiscent of the bounds in [60, Th. 4.3]
and [36, Proposition 2], which have sharpness guarantees, i.e.,
there are polynomial expressions on the Gaussian width that
upper bound the respective bound. Unfortunately, the proof
techniques used in those sharpness results cannot be used in
our case, since they only apply to norms and f1(x) = ‖x‖1 +
β‖x − w‖1 is not a norm. Yet, as we will see in Section V,
(33) describes precisely the experimental performance of �1-�1
minimization.

C. �1-�2 Minimization

Stating our results for �1-�2 minimization requires addi-
tional notation. Namely, we use the following subsets of I c J :

K = :=
{

i ∈ I c J : |wi | = 1

β

}
(34)

K 	= :=
{

i ∈ I c J : |wi | >
1

β

}
, (35)

where we omit their dependency on β for notational simplicity.
The most important parameter in our bounds will be

vβ :=
∑

i∈I

(
1 + β sign(x�

i )(x�
i − wi )

)2 +
∑

i∈K 	=
(β|wi | − 1)2 ,

(36)

which is the complete version of (6). We also define
w := |wk |, where

k := arg min
i∈I c J

∣
∣
∣|wi | − 1

β

∣
∣
∣ . (37)

In words, w is the absolute value of the component of w
whose absolute value is closest to 1/β, in the set I c J .
We will assume I c J 	= ∅, i.e., s < q [cf. (22)], so that k
and w are well defined.

As in �1-�1 minimization, we state our results in two
forms: sharp but uninformative bounds, and not so sharp but
informative bounds. We start with the latter.

Theorem 14 (�1-�2 Minimization): Let x� ∈ R
n be the vec-

tor to reconstruct, w ∈ R
n the prior information. Let f2(x) =

‖x‖1 + β
2 ‖x − w‖2

2 with β > 0, and assume 0 < s < q < n.

Also, assume that there exists i ∈ I c such that |wi | > 1/β or
that there exists i ∈ I J such that β 	= sign(x�

i )/(wi − x�
i ).

1) If

q − s

n − q
≤ |1 − β w| exp

((
(β w)2 − 2β w

)
log
(n

q

))
,

(38)

then

w
(
T f2(x�)

)2 ≤ 2vβ log
(n

q

)
+s+|K 	=| + 1

2
|K =|+ 4

5
q .

(39)

2) If

q − s

n − q
≥ |1 − β w| exp

(
4
(β w − 2)β w

|1 − βw|2 log
(q

s

))
,

(40)

then

w
(
T f2(x�)

)2 ≤ 2vβ

(1 − β w)2 log
(q

s

)
+ |K 	=| + 1

2
|K =|

+ 9

5
s . (41)

Similarly to Theorem 12 and Proposition 6, this theorem
upper bounds w(T f2(x�))2 with expressions that depend on
key problem parameters, namely n, q , s, β, vβ , w, |K 	=|,
and |K =|. Together with Theorem 4, it then provides a
sufficient number of measurements that guarantee that (3)
reconstructs x� with high probability. The assumption 0 <
s < q < n translates into the sets I , I c J , and I c J c being
nonempty. It will be shown in Lemma 19 that the remaining
assumptions are equivalent to 0 	∈ ∂ f2(x�) and, hence, that
we can use Proposition 5. It is relatively easy to satisfy one
of these assumptions, namely that there exists i ∈ I J such
that β 	= sign(x�

i )/(wi −x�
i ); a sufficient condition is that there

are at least two indices i, j in I such that sign(x�
i )/(wi −x�

i ) 	=
sign(x�

j )/(w j − x�
j ). The alternative is to set β > 1/|wi | for

all i ∈ I c. Setting large values for β, however, will not only
make the bounds in the theorem very large, but also degrade
the performance of �1-�2 minimization significantly, as we will
see in the experimental results section. Note that if there exists
i ∈ I J such that β 	= sign(x�

i )/(wi − x�
i ), the first term of

vβ in (36) has at least one nonzero summand; if, on the other
hand, there exists i ∈ I c such that |wi | > 1/β, the second
term of vβ has a nonzero summand. We thus conclude that
these assumptions are equivalent to vβ > 0.

The theorem is divided into two cases: 1) if condition (38)
is satisfied, the bound in (39) holds; 2) if condition (40) is
satisfied, the bound in (41) holds. As in �1-�1 minimization,
the conditions (38) and (40) are neither necessarily disjointed
nor are they guaranteed to cover all the possible values of β
(although such a case is rare in practice). Case 1) is the most
interesting in practice, since condition (38) holds when n
is large with respect to q . In that case, the bound in (39)
is mostly determined by the dominant term 2vβ log(n/q).
We then see that the role played by the number of bad
components h in �1-�1 minimization is now played by vβ in
�1-�2 minimization. Curiously, the first term of vβ captures
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the notion of good and bad components: consider x�
i > 0;

clearly, a bad component wi < x�
i yields a larger vβ than a

good component wi > x�
i does. The same happens for x�

i < 0.
Finally, note that vβ is the only term in (39) that depends on β.
Therefore, that bound is minimized when vβ is minimized,
which occurs for

β� = ‖wK 	= ‖1 + 1�(x�
I− − wI−) − 1�(x�

I+ − wI+ )

‖x�
I − wI ‖2

2 + ‖wK 	= ‖2
2

, (42)

where zS denotes the subvector of z whose components are
indexed by the set S, and 1 denotes the vector of ones with
appropriate dimensions. Selecting β as in (42) leads to

vβ� = s + |K 	=|

−
[
1�(x�

I+ −wI+)−1�(x�
I− −wI−)−‖wK 	=‖1

]2

‖x�
I − wI ‖2

2+‖wk 	= ‖2
2

. (43)

The numerator of the last term of (43) can be written as
the square of the inner product z� [(x�

I − w�
I )

� w�
K 	=
]
, where

zi = 1 for i ∈ I+, zi = −1 for i ∈ I−, and zi =
−sign(wi ) for i ∈ K 	=. That is, all entries of z are ±1,
and thus ‖z‖2

2 = s + |K 	=|. Applying the Cauchy-Schwarz
inequality to the last term of (43), we obtain vβ� ≥ 0.
Although this is a trivial identity [see (36)], the conditions
under which it is achieved reveal the type of “good” prior
information w for �1-�2 minimization. Concretely, the Cauchy-
Schwarz inequality becomes an equality when z is a multiple
of
[
(x�

I − w�
I )

� w�
K 	=
]

which, in our case, translates into
⎧
⎪⎨

⎪⎩

wi = x�
i + c, i ∈ I+

wi = x�
i − c, i ∈ I−

|wi | = c, i ∈ K 	= ,

(44)

for some positive constant c (positivity is imposed by the
last condition). As we had seen before, Theorem 14 does
not hold for such a w: at least one of the conditions in (44)
must not hold. Yet, asymptotically, the more conditions hold
in (44), the better the performance of �1-�2 minimization
or, in other words, the better the prior information w. To
establish a parallel with �1-�1 minimization, note that h is
the number of components that satisfy the first two conditions
of (44) without the requirement that c is the same in all
equations. In other words, components considered good for
�1-�1 minimization (i.e., contributing to h) may not be “good”
for �1-�2 minimization, since they may not satisfy one of the
first two equations of (44). This shows that conditions for
“good” prior information are much easier to satisfy in �1-�1
minimization than in �1-�2 minimization.

Regarding case 2) of Theorem 14, it holds when n is
comparable to q , and β is close to 1/w. The bound in that
case depends on β through the term vβ/(1−βw)2. Although it
can be minimized in closed-form, its expression is significantly
more complicated than (42).

1) A Sharper Bound: Now we present a bound for �1-�2
minimization that is sharper than the ones in Theorem 14.
Recall the notation I(a, b) := [a − b, a + b], for b ≥ 0.

Theorem 15 (�1-�2 Minimization: Sharper Bound): Let x�,
w ∈ R

n be as in Theorem 14. Assume s := |I | > 0 and also

that there exists i ∈ I c such that |wi | > 1/β or that there
exists i ∈ I J such that β 	= sign(x�

i )/(wi − x�
i ). Then,

w(T f2(x�))2 ≤ s+min
t≥0

{

t2
∑

i∈I

(1+β sign(x�
i )(x�

i − wi ))
2

+
∑

i∈I c

Egi

[
dist
(

gi , I(−tβwi , t)
)2]
}

.

(45)
The proof is in Appendix VI-E. As in the sharper bound for the
�1-�1 case (Theorem 13), computing (45) requires a numerical
procedure. Also, because f2(x) = ‖x‖1 + (β/2)‖x − w‖2

2
is not a norm, the techniques used in [60, Th. 4.3] and
[36, Proposition 2] to prove sharpness of Gaussian width-
type of bounds cannot be used in our case. In Section V,
we will see that (45) precisely describes the performance of
�1-�2 minimization.

D. �1-�1 Minimization Versus �1-�2 Minimization

The bounds in Theorem 12 for �1-�1 minimization are min-
imized when β = 1, a value that leads to excellent results in
practice, as we will see in Section V. In that case and for large
n, �1-�1 minimization requires O(2h log n) measurements
for perfect recovery. Theorem 14, in turn, establishes that
�1-�2 minimization requires O(2vβ log n) measurements. The
optimal value of β in this case depends on x� and w. This
section starts by analyzing how the dominant factors h and vβ

compare under additive modeling noise.7 Then, it establishes
a (deterministic) sufficient condition under which the sharp
bound for �1-�1 minimization in (33) is smaller than the sharp
bound for �1-�2 minimization in (45).

1) Dominant Factors Under Additive Modeling Noise: We
consider w = x� + γ , where γ ∈ R

n is modeling noise.
For simplicity, assume γ and x� have the same support and
each entry of γ is drawn i.i.d. from a distribution symmetric
around the origin with finite expected value (which is 0, due
to the symmetry). The objective functions of (2) and (3) may
lead us to think that �1-�1 minimization (2) performs better
for a Laplacian γ and �1-�2 minimization (3) performs better
for a Gaussian γ . This intuition is actually wrong in terms
of the dominant parameters h and vβ : �1-�1 minimization
performs better in both cases; in fact, it performs better for
any distribution symmetric around the origin. To see why, note
that γ having the same support as x� implies I c J = ∅, and
thus K 	= = ∅. Denote the variance of the entries of γ with σ .
According to our model, both h and vβ are random variables.
For example, h can be written as h =∑i∈I+ Z−

i +∑i∈I− Z+
i ,

where Z−
i (resp. Z+

i ) is the indicator of the event “γi < 0”
(resp. “γi > 0”). We have E[Z−

i ] = P(γi < 0) = 1/2 and
E[Z+

i ] = P(γi > 0) = 1/2, due to the symmetry of the
distribution of γ . The expected values of h and vβ are then

E

[
h
]

=
∑

i∈I+
E[Z−

i ] +
∑

i∈I−
E[Z+

i ] = s

2
(46)

7A more complete analysis for the case of a Laplacian distribution can be
found in [41], which analyzes the �1-�1 minimization bound (4), and not just
its dominant parameter h.
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E[vβ ] =
∑

i∈I+
E[(1 − β γi )

2] +
∑

i∈I−
E[(1 + β γi )

2]

= s(1 + β2σ 2) , (47)

where, in the last step, we used E[γi ] = 0 and E[γ 2
i ] =

σ 2, for all i . Under this model, the assumptions of
Theorems 12 and 14 [in cases 1)] hold with probability 1.8

Due to concentration of measure [61], the larger the support I ,
the more h and vβ concentrate around their expected values
in (46) and (47). This shows that, under the above model,
�1-�1 minimization requires about half of the number of
measurements than classical CS, whereas �1-�2 minimization
actually requires more measurements, by a factor of β2σ 2.

2) Comparing Sharp Bounds: We now establish a sufficient
condition for the �1-�1 sharp bound (33) with β = 1 being
smaller than the �1-�2 sharp bound (45) for any β > 0.

Corollary 16: Let x� ∈ R
n be the signal to reconstruct, w ∈

R
n the prior information. Assume h > 0 and I J c = ∅, i.e.,

x�
i 	= 0, wi 	= 0 ⇒ x�

i 	= wi . Consider �1-�1 minimization
with β1 = 1 and �1-�2 minimization with arbitrary β2 > 0. If

|wi | ≥ 1

β2
, for all i ∈ I c J (48a)

|x�
i − wi | ≥ 1

β2
, for all i ∈ I+ J+ ∪ I− J− , (48b)

where (48b) holds strictly for at least one component, then the
right-hand side of (33) is always smaller than the right-hand
side of (45), i.e., the sharp bound for �1-�1 minimization is
smaller than the one for �1-�2 minimization.

The proof, in Section VI-F, shows that each term in (33) is
smaller than the respective term in (45). This indicates that the
assumptions of the corollary are strong and that its conclusions
also hold under weaker assumptions.

E. Practical Guidelines: Improving the Prior Information

Our results indicate that h and vβ are the key parameters in
�1-�1 and �1-�2 minimization, respectively. We now describe
how to decrease them by modifying the prior information w.

One way to reduce h we find extremely effective in practice
is to amplify w by a moderate factor. To give a concrete
example, consider x� = (−3, 2, 2, 4,−1) and the baseline
prior information wb = (−2, 3, 1,−1, 0). Take w = c · wb,
for some c ≥ 1. If c = 1, w has one good component (the
2nd one) and four bad components (the remaining ones), i.e,
h = 1, h = 4. When 3/2 < c < 2, the first component
becomes good, i.e., h = 2, h = 3. When c > 2, the third
component also becomes good, yielding h = 3 and h = 2.
So, by amplifying the components of the baseline wb we
reduced its number of bad components to half their initial
value. This is the maximum reduction we can get in this
example because of the fourth and fifth components: the signs
of w4 = −1 and x�

4 = 4 are different so, no matter how large
c is, w4 is always a bad component; similarly, w5 = 0 remains

8In reality, the assumption s < q of Theorem 14 does not hold. An inspec-
tion of its proof, however, reveals that the role of s < q is just to make w
well defined. The proof still holds for case 1) if k in (37) is undefined and w
is set to +∞.

unchanged under multiplication. If no such components exist,
i.e., if sign(x�

i ) = sign(wi ) for all x�
i 	= 0, there is a c above

which w has no bad components. In that case, Theorem 12 no
longer applies and the number of measurements might actually
increase. This is why we recommend a moderate value for c,
e.g., 1.3, which should be tuned according to the application.

Applying the same technique to �1-�2 minimization does
not work as well. Recall that improving the quality of w
in this case means satisfying as many conditions in (44)
as possible. The previous technique then does not work if
the magnitudes of x�

i have large variability. So, instead of
amplifying w, we recommend adding a small quantity, say
c, to the positive components of w and subtracting c from
the negative components, i.e., wi = wb

i + c if wb
i > 0, and

wi = wb
i − c if wb

i < 0 [notice the similarity with the first
two equations of (44)]. In vector form, w = wb +c ·sign(wb),
where sign(·) is applied component-wise. Since a w that
satisfies (44) yields β� = 1/c in (42), we also recommend
setting β = 1/c in this case. Finally, we note that this
technique works for �1-�1 minimization as well; of course,
we recommend using β = 1 in that case.

V. EXPERIMENTAL RESULTS

We describe two types of experiments: one that assesses the
sharpness of our bounds for a wide range of β’s, and another
that illustrates the effectiveness of our practical guidelines for
improving the prior information.

A. Sharpness of the Bounds

1) Experimental Setup: The data was generated as in Fig. 1,
but for smaller dimensions. Namely, x� had n = 500 entries,
s = 50 of which were nonzero. The values of these entries
were drawn from a zero-mean Gaussian distribution with unit
variance. We then generated the prior information as w =
x� + z, where z was 20-sparse and whose support coincided
with the one of x� in 16 entries and differed in 4 of them.
The nonzero entries were zero-mean Gaussian with standard
deviation 0.8. This yielded h = 6, h = 11, q = 53, and l = 20.

The experiments were conducted as follows. We created a
square matrix A ∈ R

500×500 with entries drawn independently
from the standard Gaussian distribution. We then set y = Ax�.
Next, for a fixed β, we solved problem (2), first by using
only the first row of A and the first entry of y. If the solution
of (2), say x̂1(β), did not satisfy ‖x̂1(β)−x�‖2/‖x�‖2 ≤ 10−2,
we proceeded by solving (2) with the first two rows of A
and the first two entries of y. This procedure was repeated
until ‖x̂m(β) − x�‖2/‖x�‖2 ≤ 10−2, where x̂m(β) denotes
the solution of (2) when A (resp. y) consists of the first m
rows (resp. entries) of A (resp. y). In other words, we stopped
when we found the minimum number of measurements that
�1-�1 minimization requires for successful reconstruction, that
is, min {m : ‖x̂m(β) − x�‖2/‖x�‖2 ≤ 10−2}. The values of β
varied between 0.01 and 100. We then repeated the entire
procedure for 4 other randomly generated pairs (A, y).

2) Results for �1-�1 Minimization: Fig. 6 shows the
results of these experiments. It displays the minimum num-
ber of measurements for successful reconstruction versus β.
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Fig. 6. Experimental performance of �1-�1 minimization for 5 different
Gaussian matrices as a function of β (solid lines). The upper dotted line
depicts the bounds of Theorem 12, which are minimized for β = 1 (vertical
line). Horizontal lines: bound in (19) for CS and its sharp version in [60].

The 5 solid lines give the experimental performance of (2) for
the 5 different pairs (A, y). The upper dotted line shows the
bounds given by Theorem 12. When β 	= 1, the subcases of
cases 2) and 3) of that theorem may give two different bounds,
from which we selected the smallest one. For reference, we
use a vertical line to mark the value that minimizes the bounds
in Theorem 12: β = 1. Another dotted line shows the sharper
bound in Theorem 13, computed numerically: it coincides with
the experimental curves. Two horizontal lines depict values of
two bounds for classical CS: the upper one the simple bound
in (19), the lower one the sharper bound in [60], computed
numerically. We point out that we removed the point of the
�1-�1 bound corresponding to β = 0.9, since it was 576, a
value larger than the signal dimensionality, 500. As we had
seen before, values of β close to 1 in cases 2.b) and 3.b)
yield large bounds in Theorem 12. We had also stated that the
bound for β = 1 is not only the sharpest one in that theorem,
but also the smallest one. Fig. 6 also shows that setting β
to 1 leads to a performance in practice close to the optimal
one. Indeed, three out of the five solid curves in the figure
achieved their minimum at β = 1; the remaining ones achieved
it at β = 2.5. We also observe that the bound for β = 1 is
quite sharp: its value is 97, and the maximum among all of the
solid lines for β = 1 was 75 measurements. The figure also
shows that the bounds are looser for β < 1 and, eventually,
become larger than the bound in (19). For β > 1, the bound
is relatively sharp. Regarding the experimental performance of
�1-�1 minimization, it degrades for small β, towards standard
CS, achieving top performance around β = 1. For large β, the
performance also degrades, however, without becoming worse
than for small β.

3) Results for �1-�2 Minimization: Fig. 7 shows the same
experiments, with the same data, for �1-�2 minimization. The
scale of the vertical axis is different from the one in Fig. 6.
We do not show the bounds for β > 1, because they were
larger than 500 (e.g., the bound for β = 2.5 was 820). The
minimum value of the bound was 315 (β = 0.01), which
is slightly larger than the bound for standard CS in (19). In
fact, for this example, the bounds given by Theorem 14 were

Fig. 7. Same as Fig. 6, but for �1-�2 minimization. The data is the same as
in Fig. 6, but the vertical scales are different. For β > 1, the bounds given
by Theorem 14 are larger than 500 and, hence, are not shown.

always larger than the one for standard CS; as we will see in
the next set of experiments, �1-�2 minimization can generally
outperform standard CS if we improve the prior information as
recommended in Section IV-E. The experimental performance
curves in Fig. 7 behaved differently from the ones for �1-�1
minimization: from β = 0.01 to β = 0.05, they decreased
slightly and remained approximately constant until β = 1.
After that point, their performance degraded sharply. For
instance, for β = 50, (3) was able to reconstruct x� for one
pair (A, y) only; and this required using the full matrix A.
In conclusion, although prior information helped (slightly)
for β between 0.01 and 1, the bounds of Theorem 14 were
not sharp.

B. Improving the Prior Information

These experiments illustrate the gains obtained by following
the guidelines of Section IV-E on how to improve prior
information.

1) Experimental Setup: The vector x� was generated exactly
as before, with n = 1000 and s = 70. To better illustrate
the gains, the prior information was generated differently: the
base prior information was created as wb = x� + z with a
104-sparse z, whose support coincided with the one of x�

in 56 entries and differed in 49. The nonzero components of
z were zero-mean Gaussian with variance 0.3. This yielded
h = 32, h = 25, q = 117, and l = 104.

In these experiments, we modified wb as in Section IV-E:
by a multiplicative factor w = c · wb, with c varying between
1 and 7, and by an additive factor w = wb +c · sign(wb), with
c varying between 0.01 and 20. For �1-�1 minimization, we
set always β = 1. For �1-�2 minimization, we set β = 1 in the
multiplicative factor case and β = 1/c in the additive case.
In contrast with the previous experiments, we generated just
one pair (A, y), where y = Ax�. The experiments consisted of
computing the minimum number of rows of A that guaranteed
a relative error smaller than 1%, for different values of c.

2) Results for a Multiplicative Factor: Fig. 8 shows the
results for a multiplicative factor improvement. The solid lines
represent the experimental performance of �1-�1 and �1-�2
minimization, the dotted line the bound in (4) (the bound for
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Fig. 8. Prior information improvement with a multiplicative factor: w =
c · wb, where wb is the baseline prior information. The vertical axis shows
the minimum number of measurements to achieve 1% error. The horizontal
lines show the CS bound in [60] and the performance of Mod-CS [12].

Fig. 9. Same as Fig. 8, but for an additive factor. The data is the same, but
the prior information is generated as w = wb + c · sign(wb), for c ≥ 0.

�1-�2 was too large to be displayed), and the horizontal lines
the classical CS (sharp) bound in [60] and the performance of
Modified-CS (Mod-CS) [12]. Mod-CS integrates prior infor-
mation in CS via an estimate of the support of x�; naturally,
we used the support of wb for such estimate. The plot shows
that both the experimental performance of �1-�1 and its bound
are nondecreasing with c, confirming the effectiveness of
our strategy to improve the prior information. Both curves
decrease monotonically until around c = 3.5, after which
they reach a plateau: 121 for �1-�1 and 154 for the bound.
Mod-CS requires 148 measurements to solve this particular
problem, a value smaller than the number of measurements
required by �1-�1 minimization for c ≤ 1.2. For any c > 1.2,
�1-�1 minimization required less measurements than Mod-
CS. Regarding �1-�2 minimization, its performance improved
for 1 < c ≤ 2: for example, it required 305 measurements
for c = 1.5. For c > 2, its performance degraded quickly.
In conclusion, as predicted in Section IV-E, improving the
prior information via a multiplicative factor works well for
�1-�1 minimization, but not as well for �1-�2 minimization.

3) Results for an Additive Factor: The results for an addi-
tive factor are shown in Fig. 9. The curves are the same as in
Fig. 8, but now we show the bound for �1-�2 minimization.

The bound was quite sharp for c = 1, but became loose for
larger c. In spite of this, the performance of �1-�2 minimization
improved with increasing c, outperforming classical CS for
c ≥ 1. This improvement was not enough to reach the
148 measurements required by Mod-CS. We can also see that
both the performance of �1-�1 minimization and the respective
bound (4) decreased with c and, in fact, reached the same
plateaus as in Fig. 8.

These experiments confirm that improving side information
with an additive factor works well for �1-�2 minimization,
and improving it with both an additive and a multiplica-
tive factor works well for �1-�1 minimization. They also
show that, in general, �1-�1 minimization performs better
than �1-�2 minimization and, if the prior information has
enough quality, also better than state-of-the-art approaches like
Mod-CS [12].

VI. PROOF OF MAIN RESULTS

In this section, we present the proofs of all results from
Section IV. We start with some auxiliary results.

A. Auxiliary Results

The following lemma plays an important role in our proofs.
Its first part gives an exact expression for the expected squared
distance of a scalar Gaussian random variable to an interval
as a function of the Q-function, defined as

Q(x) := 1√
2π

∫ +∞

x
exp
(

− u2

2

)
du =

∫ +∞

x
ϕ(u) du , (49)

where

ϕ(x) := 1√
2π

exp
(

− x2

2

)
(50)

is the probability density function of a zero-mean, unit vari-
ance scalar Gaussian random variable. To obtain the closed-
form bounds in Theorem 12, we will need to (upper) bound
the exact expression. That is done in the second part of the
lemma. We represent an interval in R as

I(a, b) := {x ∈ R : |x −a| ≤ b
} = [a−b, a+b

]
. (51)

Lemma 17: Let g ∼ N (0, 1) be a scalar, zero-mean
Gaussian random variable with unit variance. Let a, b ∈ R

and b ≥ 0.
a) Part I) Exact expression: There holds

Eg

[
dist
(
g,I(a, b)

)2
]

= (a − b)ϕ(a − b)

− (a + b)ϕ(a + b) + [1 + (a + b)2]Q(a + b)

+ [1 + (a − b)2][1 − Q(a − b)
]
. (52)

b) Part II) Bounds:
1) If b = 0, then I(a, b) = {a} and

Eg
[
dist(g, a)2] = a2 + 1 . (53)

2) If b > 0 and |a| < b, i.e., 0 ∈ I(a, b), then

Eg

[
dist
(
g,I(a, b)

)2
]

≤ ϕ(b − a)

b − a
+ ϕ(a+b)

a+b
. (54)
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3) If b > 0 and a + b < 0, then

Eg

[
dist
(
g,I(a, b)

)2
]

≤ 1+(a+b)2+ ϕ(b − a)

b − a
. (55)

4) If b > 0 and a − b > 0, then

Eg

[
dist
(
g,I(a, b)

)2
]

≤ 1+(a − b)2+ ϕ(a+b)

a+b
. (56)

5) If b > 0 and a + b = 0, then

Eg

[
dist
(
g,I(a, b)

)2
]

≤ ϕ(b − a)

b − a
+ 1

2
. (57)

6) If b > 0 and a − b = 0, then

Eg

[
dist
(
g,I(a, b)

)2
]

≤ ϕ(a + b)

a + b
+ 1

2
. (58)

The proof can be found in Appendix A. In part II),
each case considers a different relative position between the
interval I(a, b) and zero, which is the mean of the random
variable g. In case 1), the interval is simply a point. In case 2),
I(a, b) contains zero. In cases 3) and 4), I(a, b) does not
contain zero. And, finally, in cases 5) and 6), zero is one of the
endpoints of I(a, b). Notice that addressing cases 5) and 6)
separately from cases 4) and 5) leads to sharper bounds on
the former: for example, making a + b −→ 0 in the right-
hand side of (55) gives 1 + ϕ(b − a)/(b − a), which is
larger than the right-hand side of (57). We note that the proof
of [27, Proposition 4] for standard CS uses the bound (54)
with a = 0. The following result will be used frequently.

Lemma 18: There holds

1 − 1
x√

π log x
≤ 1√

2π
≤ 2

5
, (59)

for all x > 1.
The proof can be found in Appendix B. Recall the definitions
of functions f1 and f2:

f1(x) := ‖x‖1 + β‖x − w‖1 (60)

f2(x) := ‖x‖1 + β

2
‖x − w‖2

2 . (61)

To apply Proposition 5 to these functions, i.e., to say that their
normal cones at a given x� are equal to the cone generated
by their subdifferentials at x�, we need to guarantee that their
subdifferentials do not contain the zero vector: 0 	∈ ∂ f j (x�),
j = 1, 2. The next two lemmas give a characterization of this
condition in terms of the problem parameters in Definition 9.
Before that, let us compute ∂ f1(x�) and ∂ f2(x�). A key prop-
erty of functions f1 and f2, and on which our results deeply
rely, is that they admit a component-wise decomposition:

f1(x) =
n∑

i=1

f (i)
1 (xi ) f2(x) =

n∑

i=1

f (i)
2 (xi ) ,

where f (i)
1 = |xi | + β|xi − wi | and f (i)

2 = |xi | + β
2 (xi − wi )

2.
Therefore,

∂ f1(x�) =
(
∂ f (1)

1 (x�
1), ∂ f (2)

1 (x�
2), . . . , ∂ f (n)

1 (x�
n)
)

∂ f2(x�) =
(
∂ f (1)

2 (x�
1), ∂ f (2)

2 (x�
2), . . . , ∂ f (n)

2 (x�
n)
)

.

Recall that ∂|s| = sign(s) for s 	= 0, and ∂|s| = [−1, 1]
for s = 0. The function sign(·) returns the sign of a number,
i.e., sign(a) = 1 if a > 0, and sign(a) = −1 if a < 0.
We then have

∂ f (i)
1 (x�

i ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sign(x�
i ) + β sign(x�

i − wi ), i ∈ I J

sign(x�
i ) + [−β, β], i ∈ I J c

β sign(x�
i − wi ) + [−1, 1], i ∈ I c J

[−β − 1, β + 1
]
, i ∈ I c J c

(62)

and

∂ f (i)
2 (x�

i ) =
{

sign(x�
i ) + β(x�

i − wi ), i ∈ I
[−1, 1

]− βwi , i ∈ I c ,
(63)

for i = 1, . . . , n.
Lemma 19: Assume x� 	= 0 or, equivalently, that I 	= ∅.

Assume also w 	= x� or, equivalently, that J 	= ∅. Consider f1
and f2 in (60) and (61), respectively.

1) 0 	∈ ∂ f1(x�) if and only if h > 0 or β 	= 1.
2) 0 	∈ ∂ f2(x�) if and only if there is i ∈ I J such that

β 	= sign(x�
i )/(wi − x�

i ) or there is i ∈ I c such that
β > 1/|wi |.

The proof is in Appendix C.

B. Proof of Theorem 12

Proposition 3 establishes that w(C) = Eg
[
dist(g, Co)

]
,

for a cone C and its polar cone Co, where g ∼
N (0, I ). Using Jensen’s inequality [59, Th. B.1.1.8],
w(C)2 ≤ Eg

[
dist(g, Co)2

]
. The polar cone of the tangent

cone T f1(x�) is the normal cone N f1 (x�) which, according to
Proposition 5, coincides with the cone generated by the
subdifferential ∂ f1(x�) whenever 0 	∈ ∂ f1(x�). In other words,
if 0 	∈ ∂ f1(x�), then

w
(
T f1(x�)

)2 ≤ Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]
. (64)

Part 1) of Lemma 19 establishes that 0 	∈ ∂ f1(x�) is equivalent
to β 	= 1 or h > 0. So, provided we assume that h > 0 for
part 1) of the theorem, we can always use (64). The proof is
organized as follows. First, we compute a generic upper bound
on (64), using the several cases of Lemma 17. This will give
us three bounds, each one for a specific case of the theorem,
i.e., β = 1, β < 1, and β > 1. These bounds, however, will
be uninformative since they depend on unknown quantities
and on a free variable. We then address each case separately,
selecting a specific value for the free variable and “getting rid”
of the unknown quantities. In this last step, we will use the
bound in Lemma 18 frequently.

1) Generic Bound: A vector d ∈ R
n belongs to the cone

generated by ∂ f1(x�) if d = ty for some t ≥ 0 and
some y ∈ ∂ f1(x�). According to (62), each component di

satisfies
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

di = t sign(x�
i ) + tβ sign(x�

i − wi ), if i ∈ I J

|di − t sign(x�
i )| ≤ tβ, if i ∈ I J c

|di − tβ sign(x�
i − wi )| ≤ t, if i ∈ I c J

|di | ≤ t (β + 1), if i ∈ I c J c,
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for some t ≥ 0. Thus, the right-hand side of (64) is written as

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

= Eg

[

min
t≥0

{∑

i∈I J

dist
(

gi , t sign(x�
i ) + tβ sign(x�

i − wi )
)2

+
∑

i∈I J c

dist
(

gi , I(t sign(x�
i ), tβ

))2

+
∑

i∈I c J

dist
(

gi , I(− tβ sign(wi ), t
))2

+
∑

i∈I c J c

dist
(

gi , I(0, t (β + 1)
))2
}]

,

where, in the third term, we used sign(x�
i −wi ) = −sign(wi ),

since x�
i = 0 for i ∈ I c J . As in the proof of Proposition 6

(in [27]), we fix t now and select a particular value for it
later. Our choice for t will not necessarily be optimal, but it
will give bounds that can be expressed as a function of the
parameters in Definition 9. In other words, if h is a function
of t and g, we have

Eg

[
min

t
h(g, t)

]
≤ min

t
Eg
[
h(g, t)

] ≤ Eg
[
h(g, t)

]
, ∀t .

(65)

The value we will select for t does not necessarily minimize
the second term in (65), but allows deriving useful bounds.
For a fixed t , we then have:

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤
∑

i∈I J

Egi

[

dist
(

gi , t sign(x�
i )+tβ sign(x�

i −wi )
)2
]

(66a)

+
∑

i∈I J c

Egi

[

dist
(

gi , I(t sign(x�
i ), tβ

))2
]

(66b)

+
∑

i∈I c J

Egi

[

dist
(

gi , I(− tβ sign(wi ), t
))2
]

(66c)

+
∑

i∈I c J c

Egi

[

dist
(

gi , I(0, t (β + 1)
))2
]

. (66d)

Next, we use Lemma 17 to compute (66a) in closed-form and
to upper bound (66b), (66c), and (66d).

a) Expression for (66a): By partitioning the set I J
into I+ J+ ∪ I− J− ∪ I− J+ ∪ I+ J−, we obtain

(66a) =
∑

i∈I+ J+
Egi

[

dist
(

gi , t (β + 1)
)2
]

+
∑

i∈I− J−
Egi

[

dist
(

gi , −t (β + 1)
)2
]

+
∑

i∈I− J+
Egi

[

dist
(

gi , t (β − 1)
)2
]

+
∑

i∈I+ J−
Egi

[

dist
(

gi , t (1 − β)
)2
]

.

And using (53) in Lemma 17 and h and h in Definition 9,

(66a) =
∑

i∈I+ J+

[
t2(β + 1)2 + 1

]
+
∑

i∈I− J−

[
t2(β + 1)2 + 1

]

+
∑

i∈I− J+

[
t2(β − 1)2 + 1

]
+
∑

i∈I+ J−

[
t2(β − 1)2 + 1

]

= ∣
∣I J
∣
∣+
(∣
∣I+ J+

∣
∣+ ∣∣I− J−

∣
∣
)

t2(β + 1)2

+
(∣
∣I− J+

∣
∣+ ∣∣I+ J−

∣
∣
)

t2(β − 1)2

= t2
(

h(β + 1)2 + h(β − 1)2
)

+ ∣∣I J
∣
∣ . (67)

Note that h and h appear here naturally, before selecting any t .
b) Bounding (66b): If we decompose I J c = I+ J c ∪

I− J c, we see that

(66b) =
∑

i∈I+ J c

Egi

[

dist
(

gi , I(t, tβ)
)2
]

+
∑

i∈I− J c

Egi

[

dist
(

gi , I(−t, tβ)
)2
]

. (68)

There are three cases: β = 1, β < 1, and β > 1.
• If β = 1, then I(t, tβ) = [0, 2t] and I(−t, tβ) =

[−2t, 0]. Applying (58) (resp. (57)) to each summand
in the first (resp. second) term of (68) we conclude
that

(66b) ≤ ∣∣I J c
∣
∣
[
ϕ(2t)

2t
+ 1

2

]

. (69)

• If β < 1, then 0 	∈ I(t, tβ) and 0 	∈ I(−t, tβ). If we
apply (56) to the summands in the first term of (68)
and (55) to the summands in the second term, and take
into account that |I+ J c| + |I− J c| = |I J c|,

(66b) ≤ ∣∣I J c
∣
∣
[

1 + t2(1 − β)2 + ϕ(t (β + 1))

t (β + 1)

]

. (70)

• Finally, if β > 1, then 0 ∈ I(t, tβ) and 0 ∈ I(−t, tβ).
Applying (54) to each summand in both terms of (68)
we conclude

(66b) ≤ ∣∣I J c
∣
∣
[
ϕ(t (β − 1))

t (β − 1)
+ ϕ(t (β + 1))

t (β + 1)

]

. (71)

c) Bounding (66c): Decompose I c J = I c J+ ∪ I c J− and
write

(66c) =
∑

i∈I c J+
Egi

[

dist
(

gi , I(tβ, t
))2
]

+
∑

i∈I c J−
Egi

[

dist
(

gi , I( − tβ , t
))2
]

. (72)

As before, we have three cases: β = 1, β < 1, and β > 1.
• If β = 1, then I(tβ, t) = [0, 2t] and I(−tβ, t) =

[−2t, 0]. If we apply (58) (resp. (57)) to each summand
in the first (resp. second) term of (72), we conclude

(66c) ≤ ∣∣I c J
∣
∣
[
ϕ(2t)

2t
+ 1

2

]

. (73)
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• If β < 1, then 0 ∈ I(tβ, t) and 0 ∈ I(−tβ, t). Therefore,
according to (54),

(66c) ≤ ∣∣I c J
∣
∣
[

ϕ(t (1 + β))

t (1 + β)
+ ϕ(t (1 − β))

t (1 − β)

]

. (74)

• If β > 1, then 0 	∈ I(tβ, t) and 0 	∈ I(−tβ, t). If we
apply (56) to each summand in the first term of (72)
and (55) to each summand in the second term, we find

(66c) ≤ ∣∣I c J
∣
∣
[

1 + t2(β − 1)2 + ϕ(t (β + 1))

t (β + 1)

]

. (75)

d) Bounding (66d): The interval I(0, t (β + 1)) contains
the origin, so we can apply (54) directly to each summand
in (66d):

(66d) ≤ 2
∣
∣I c J c

∣
∣ϕ(t (β + 1))

t (β + 1)
. (76)

e) Bounding (66a) + (66b) + (66c) + (66d): Given all
the previous bounds, we can now obtain a generic bound
for (64). Naturally, there are three cases: β = 1, β < 1,
and β > 1.

• For β = 1, we sum (67) (with β = 1), (69), (73), and (76)
(with β = 1):

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ 4ht2 + ∣∣I J
∣
∣

+ 1

2

[|I J c|+|I c J |]+[|I J c|+|I c J |+2|I c J c|]ϕ(2t)

2t
.

(77)

• For β < 1, we sum (67), (70), (74), and (76):

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ t2
[
h(β + 1)2

+ (h + |I J c|)(β − 1)2
]

+ |I | + |I c J |ϕ(t (1 − β))

t (1 − β)

+
[
|I J c| + |I c J | + 2|I c J c|

]ϕ(t (β + 1))

t (β + 1)
. (78)

• For β > 1, we sum (67), (71), (75), and (76):

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ t2
[
h(β + 1)2

+(h + |I c J |)(β − 1)2
]

+ |J | + |I J c|ϕ(t (β − 1))

t (β − 1)

+[|I J c| + |I c J | + 2|I c J c|]ϕ(t (β + 1))

t (β + 1)
. (79)

2) Specification of the Bound for Each Case: We now
address each one of the cases β = 1, β < 1, and β > 1
individually. Before that, recall from (25) that |I c J |+ |I J c|+
2|I c J c| = 2n − (q + h + h), a term that appears in (77), (78),
and (79). That term is always positive due to our assumption
that n − q = |I c J c| > 0.

a) Case 1: β = 1: Notice that, according to (20)
and (24),

∣
∣I J
∣
∣+ 1

2

[|I J c| + |I c J |] = h + h + 1

2
q − 1

2
(h + h)

= 1

2
(q + h + h) .

This allows rewriting (77) as

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ 4ht2 + 1

2
(q + h + h)

+ 1

2

[
2n − (q + h + h)

] 1

t
√

2π
exp(−2t2) , (80)

where we used the definition of ϕ in (50). We now
select t as

t� :=
√

1

2
log
( 2n

q + h + h

)
=
√

1

2
log r ,

where r := 2n/(q + h + h). Notice that t� is well defined
because 2n > q + h + h, i.e., r > 0. It is also finite, as our
assumption that x� 	= 0, or |I | > 0, implies q = |I ∪ J | > 0.
Replacing t� in (80), we obtain

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ 2h log r + 1

2
(q + h + h)

+ 1

2

[
2n − (q + h + h)

] 1√
π log r

1
2n

q+h+h

= 2h log r + 1

2
(q + h + h) + 1

2
(q + h + h)

1 − 1
r√

π log r

≤ 2h log r + 1

2
(q + h + h)

+ 1

5
(q + h + h)

= 2h log
( 2n

q + h + h

)
+ 7

10
(q + h + h) ,

where we used (59) in the second inequality. This is (27).
b) Case 2: β < 1: We rewrite (78) as

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ s + F(β, t) + G(β, t)

× t2
[
h(β + 1)2 + (s − h)(β − 1)2

]
, (81)

where we used s := |I |, |I J c| = s − (h + h) (cf. (21)),
and

F(β, t) := (q − s)
ϕ(t (1 − β))

t (1 − β)

G(β, t) := (2n − (q + h + h))
ϕ(t (β + 1))

t (β + 1)
. (82)

Note that we used (22) and (25) when defining F and G.
We will consider two cases: F(β, t) ≤ G(β, t) and F(β, t) ≥
G(β, t). Note that

F(β, t)

G(β, t)
� 1

⇐⇒ q − s

2n − (q + h + h)
� 1 − β

1 + β
exp
(− 2βt2) . (83)
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• Suppose F(β, t) ≤ G(β, t), i.e., (83) is satisfied with ≤.
The bound in (81) implies

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ t2
[
h(β + 1)2 + (s − h)(β − 1)2

]
+ s + 2G(β, t)

= t2
[
h(β + 1)2 + (s − h)(β − 1)2

]
+ s

+ 2
[
2n − (q + h + h)

]exp
(− t2

2 (β + 1)2
)

√
2π t (β + 1)

, (84)

where we used the definition of ϕ. We now select t as

t� = 1

β + 1

√

2 log
( 2n

q + h + h

)
= 1

β + 1

√
2 log r ,

where r := 2n/(q + h + h) is as before. Replacing t�

in (84) yields

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ 2

[

h + (s − h)
(β − 1)2

(β + 1)2

]

log r + s

+ 2
[
2n − (q + h + h)

] 1√
2 log r

1√
2π

1
2n

q+h+h

= 2

[

h + (s − h)
(β − 1)2

(β + 1)2

]

log r + s

+ (q + h + h)
1 − 1

r√
π log r

≤ 2

[

h + (s − h)
(β − 1)2

(β + 1)2

]

log
( 2n

q + h + h

)
+ s

+ 2

5
(q + h + h) ,

which is (28). We used (59) in the last inequality.
This bound is valid only when (83) with ≤ is satisfied
with t = t�, i.e.,

q − s

2n − (q + h + h)
≤ 1−β

1+β

(
q+h+h

2n

) 4β

(β+1)2 ,

which is condition (C1).
• Suppose now that F(β, t) ≥ G(β, t), i.e., (83) is satisfied

with ≥. Then, (81) becomes

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ t2
[
h(β + 1)2 + (s − h)(β − 1)2

]
+ s + 2F(β, t)

= t2
[
h(β + 1)2 + (s − h)(β − 1)2

]
+ s

+ 2(q − s)
exp
(− t2

2 (1 − β)2
)

√
2π t (1 − β)

. (85)

We select t as

t� = 1

1 − β

√

2 log
(q

s

)
= 1

1 − β

√
2 log r ,

where r is now r := q/s. Since in case 2b) of the
theorem, we assume 0 < |I c J | = q − s, we have t� > 0.

Notice that t� is finite, because s > 0 (given that x� 	= 0).
Replacing t� into (85) yields

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ 2

[

h
(1 + β)2

(1 − β)2 + s − h

]

log r + s

+ 2(q − s)
1√

2 log r

1√
2π

1
q
s

= 2

[

h
(1 + β)2

(1 − β)2 + s − h

]

log r + s + s
1 − 1

r√
π log r

≤ 2

[

h
(1 + β)2

(1 − β)2 + s − h

]

log r + s + 2

5
s

= 2

[

h
(1 + β)2

(1 − β)2 + s − h

]

log
(q

s

)
+ 7

5
s ,

which is (29). Again, we used (59) in the last inequality.
This bound is valid only if (83) with ≥ is satisfied
for t = t�, i.e.,

q − s

2n − (q + h + h)
≥ 1 − β

1 + β

( s

q

) 4β

(1−β)2 ,

which is condition (C2).
c) Case 3: β > 1: We rewrite (79) as

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ t2
[
h(β + 1)2 + (q + h − s)(β − 1)2

]
+ l + H (β, t)

+ G(β, t) , (86)

where we used l := |J |, |I c J | = q − s (cf. (22)), G is defined
in (82), and

H (β, t) := (s − (h + h))
ϕ(t (β − 1))

t (β − 1)
.

Note that we used (21) when defining H . We also consider
two cases: H (β, t) ≤ G(β, t) and H (β, t) ≥ H (β, t). Note
that

H (β, t)

G(β, t)
� 1

⇐⇒ s − (h + h)

2n − (q + h + h)
� β − 1

β + 1
exp
(− 2βt2) . (87)

• Suppose H (β, t) ≤ G(β, t), i.e., (87) is satisfied with ≤.
Then, (86) implies

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ t2
[
h(β + 1)2 + (q + h − s)(β − 1)2

]
+ l + 2G(β, t)

= t2
[
h(β + 1)2 + (q + h − s)(β − 1)2

]
+ l

+ 2(2n − (q + h + h))
exp
(

− t2

2 (β + 1)2
)

√
2π t (β + 1)

. (88)

Now we select

t� = 1

β + 1

√

2 log
( 2n

q + h + h

)
= 1

β + 1

√
2 log r ,
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where r := 2n/(q + h + h). Again, note that our
assumptions imply that t� is well defined and positive.
Replacing t� into (88) yields

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ 2

[

h + (q + h − s)
(β − 1

β + 1

)2
]

log r + l

+ (2n − (q + h + h))
1√

π log r

1
2n

q+h+h

= 2

[

h + (q + h − s)
(β − 1

β + 1

)2
]

log r + l

+ (q + h + h)
1 − 1

r√
π log r

≤ 2

[

h + (q + h − s)
(β − 1

β + 1

)2
]

log
( 2n

q + h + h

)
+ l

+ 2

5
(q + h + h) .

This is (30). Again, (59) was used in the last step.
This bound is valid only when (87) with ≤ is satisfied
for t = t�, i.e.,

s − (h + h)

2n − (q + h + h)
≤ β − 1

β + 1

(q + h + h

2n

) 4β

(β+1)2 ,

which is condition (C3).
• Suppose now that H (β, t) ≥ G(β, t). Then, (86) implies

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ t2
[
h(β + 1)2 + (q + h − s)(β − 1)2

]
+ l + 2H (β, t)

= t2
[
h(β + 1)2 + (q + h − s)(β − 1)2

]
+ l

+ 2(s − (h + h))
exp
(

− t2

2 (β − 1)2
)

√
2π t (β − 1)

. (89)

Given our assumption that |I J | = h + h > 0 in case 3b),
we can select t as

t� = 1

β − 1

√

2 log
( s

h + h

)
= 1

β − 1

√
2 log r ,

where r := s/(h + h). We also assume that |I J c| =
s − (h + h) > 0, making t� > 0. Replacing t� into (89)
gives

Eg

[
dist
(
g, cone ∂ f1(x�)

)2
]

≤ 2

[

h
(β + 1

β − 1

)2 + q + h − s

]

log r + l

+ 2(s − (h + h))
1√

2 log r

1√
2π

1
s

h+h

= 2

[

h
(β + 1

β − 1

)2 + q + h − s

]

log r + l

+ (h + h)
1 − 1

r√
π log r

≤ 2

[

h
(β + 1

β − 1

)2 + q + h − s

]

log r + l + 2

5
(h + h) ,

which is (31). Again, (59) was employed in the last
inequality. This bound is valid only when (87) with ≥
holds for t = t�, that is,

s − (h + h)

2n − (q + h + h)
≥ β − 1

β + 1

(h + h

s

) 4β

(β−1)2 ,

which is condition (C4). This concludes the proof. �
d) Remarks: The bound for case 1), i.e., β = 1, is clearly

the sharpest one, since it does not use inequalities like (83)
or (87). Perhaps the “loosest” inequality it uses is (59) in
Lemma 18. According to its proof in Appendix B, that bound
is exact when x = 2, which means 2n/(q + h + h) = 2,
for β = 1. The bounds for β 	= 1 are not as sharp, due to (83)
and (87). Note also that some sharpness is lost by selecting
specific values of t and not the optimal ones (cf. (65)).

C. Proof of Theorem 13

The proof follows from taking the minimum over t in the
right-hand side of (66) and using (67). �

D. Proof of Theorem 14

The steps to prove the theorem are the same steps as the
ones in the proof of Theorem 12. So, we will omit some
details. Whenever 0 	∈ ∂ f2(x�), we can use the bound in (64)
with f1 replaced by f2, i.e.,

w
(
T f2(x�)

)2 ≤ Eg

[
dist
(
g, cone ∂ f2(x�)

)2
]
. (90)

Note that this bound results from the characterization of the
normal cone provided in Proposition 5 and from Jensen’s
inequality. Part 2) of Lemma 19 establishes that our assump-
tions guarantee that 0 	∈ ∂ f2(x�) and, thus, that we can
use (90). Next, we express the right-hand side of (90)
component-wise, and then we establish bounds for each term.

A vector d ∈ R
n belongs to the cone generated by ∂ f2(x�)

if, for some t ≥ 0 and some y ∈ ∂ f2(x�), d = ty. According
to (63), each component di satisfies

⎧
⎨

⎩

di = t sign(x�
i ) + tβ(x�

i − wi ) , i ∈ I

|di + tβwi | ≤ t , i ∈ I c ,

for some t ≥ 0. This allows expanding the right-hand side
of (90) as

Eg

[
dist
(
g, cone ∂ f2(x�)

)2
]

= Eg

[

min
t≥0

{∑

i∈I

dist
(

gi , t sign(x�
i ) + tβ(x�

i − wi )
)2

+
∑

i∈I c

dist
(

gi , I(−tβwi , t)
)2
}]

.

As in the proof of Theorem 12, we fix t and select it later
(cf. (65)). Doing so, gives

Eg

[
dist
(
g, cone ∂ f2(x�)

)2
]

≤
∑

i∈I

Egi

[
dist
(

gi , t sign(x�
i ) + tβ(x�

i − wi )
)2]

(91a)

+
∑

i∈I c

Egi

[
dist
(

gi , I(−tβwi , t)
)2]

. (91b)
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Next, we use Lemma 17 to derive a closed-form expression
for (91a) and establish a bound on (91b).

1) Expression for (91a): Using (53),

(91a) =
∑

i∈I

Egi

[
dist
(

gi , t sign(x�
i ) + tβ(x�

i − wi )
)2]

=
∑

i∈I

[
(t sign(x�

i ) + tβ(x�
i − wi ))

2 + 1
]

= t2
[∑

i∈I+
(1 + β(x�

i − wi ))
2 +

∑

i∈I−
(1 − β(x�

i − wi ))
2
]

+ |I | , (92)

where we decomposed I = I+ ∪ I−.
2) Bounding (91b): We have

(91b) =
∑

i∈I c J

Egi

[
dist
(

gi , I(−tβwi , t)
)2]

+
∑

i∈I c J c

Egi

[
dist
(

gi , I(0, t)
)2]

. (93)

The second term in the right-hand side of (93) can be bounded
according to (54):

∑

i∈I c J c

Egi

[
dist(gi ,I(0, t))2

]
≤ 2|I c J c|ϕ(t)

t
. (94)

The first term, however, is more complicated. Recall that
I c J = {i : wi 	= x�

i = 0}. Let us analyze the several
possible situations for the interval I(−tβwi , t) = [t (−βwi −
1), t (−βwi + 1)]. It does not contain zero whenever

t (−βwi − 1) > 0 ⇐⇒ t 	= 0 and wi < − 1

β
,

or

t (−βwi + 1) < 0 ⇐⇒ t 	= 0 and wi >
1

β
.

In addition to the subsets of I c J defined in (34)-(35), define

K− :=
{

i ∈ I c J : wi < − 1

β

}

K+ :=
{

i ∈ I c J : wi >
1

β

}

K =− :=
{

i ∈ I c J : wi = − 1

β

}

K =+ :=
{

i ∈ I c J : wi = 1

β

}

L :=
{

i ∈ I c J : |wi | <
1

β

}
,

where we omit the dependency of these sets on β for notational
simplicity. Noticing that I c J = K− ∪ K+ ∪ K =− ∪ K =+ ∪ L and
using Lemma 17, we obtain
∑

i∈I c J

Egi

[
dist
(

gi , I(−tβwi , t)
)2]

≤
∑

i∈K−

[

1 + t2(βwi + 1)2 + ϕ(t (1 − βwi ))

t (1 − βwi )

]

+
∑

i∈K+

[

1 + t2(1 − βwi )
2 + ϕ(t (1 + βwi ))

t (1 + βwi )

]

+
∑

i∈K =−

[
1

2
+ ϕ(t (1 − βwi ))

t (1 − βwi )

]

+
∑

i∈K =+

[
1

2
+ ϕ(t (1 + βwi ))

t (1 + βwi )

]

+
∑

i∈L

[
ϕ(t (1 + βwi ))

t (1 + βwi )
+ ϕ(t (1 − βwi ))

t (1 − βwi )

]

= |K 	=(β)| + 1

2
|K =(β)| + t2

[ ∑

i∈K−
(βwi + 1)2

+
∑

i∈K+
(βwi − 1)2

]

+
∑

i∈K−∪K =−

ϕ(t (1 − βwi ))

t (1 − βwi )

+
∑

i∈K+∪K =+

ϕ(t (1 + βwi ))

t (1 + βwi )

+
∑

i∈L

[
ϕ(t (1 + βwi ))

t (1 + βwi )
+ ϕ(t (1 − βwi ))

t (1 − βwi )

]

≤ |K 	=(β)| + 1

2
|K =(β)| + t2

[ ∑

i∈K−
(βwi + 1)2

+
∑

i∈K+
(βwi − 1)2

]

+
[
|K−| + |K =−| + |L|

]ϕ(t (1 − β wp))

t (1 − β wp)

+
[
|K+| + |K =+| + |L|

]ϕ(t (1 + β wm))

t (1 + β wm)
, (95)

where, in the second step, we used the definitions of K =
and K 	= in (34) and (35), respectively. In the last step, we
used w p := |wp| and wm := |wm |, for

p := arg min
i∈K− ∪ K =− ∪ L

1 − βwi

m := arg min
i∈K+ ∪ K =+ ∪ L

1 + βwi .

Note that w = ∣∣ arg minw=w p,wm

{|w|−1/β
}∣
∣, since the union

of the sets K−, K =− , L, K+, and K =+ gives I c J . Therefore,
ϕ(t (1 − β w j ))/(t (1 − β w j )) ≤ ϕ(t (1 − β w))/(t|1 − β w|),
for j = p, m. Using this in the last two terms of (95), and
noticing that

|K−|+|K =−|+|K+|+|K =+| =
{

i ∈ I c J : |wi | ≥ 1

β

}

=: K (β) ,

we obtain
∑

i∈I c J

Egi

[
dist
(

gi , I(−tβwi , t)
)2] ≤ |K 	=(β)| + 1

2
|K =(β)|

+ t2
[ ∑

i∈K−
(βwi + 1)2 +

∑

i∈K+
(βwi − 1)2

]

+
[
|K (β)| + 2|L|

]ϕ(t (1 − β w))

t|1 − β w| . (96)
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3) Bounding (91a) + (91b): Adding up (92), (94), and (96),
we obtain

Eg

[
dist
(
g, cone ∂ f2(x�)

)2
]

≤ |I | + t2
[∑

i∈I+
(1+β(x�

i − wi ))
2 +

∑

i∈I−
(1−β(x�

i − wi ))
2
]

+ 2|I c J c|ϕ(t)

t
+ |K 	=(β)| + 1

2
|K =(β)|

+ t2
[ ∑

i∈K−
(βwi + 1)2 +

∑

i∈K+
(βwi − 1)2

]

+
[
|K (β)| + 2|L|

]ϕ(t (1 − β w))

t|1 − β w|
= vβ t2 + |I | + |K 	=(β)| + 1

2
|K =(β)| +

[
|K (β)| + 2|L|

]

× ϕ(t (1 − β w))

t|1 − β w| + 2|I c J c|ϕ(t)

t

≤ vβ t2+|I |+|K 	=(β)|+ 1

2
|K =(β)|+2F(t, β,w)+2G(t) ,

(97)

where we used |K (β)| + 2|L| ≤ 2|I c J | = 2(q − s) (cf. (22))
in the last inequality. Note that vβ is defined in (36) and that
we defined

F(t, β,w) := (q − s)
ϕ(t (1 − β w))

t|1 − β w|
G(t) := (n − q)

ϕ(t)

t
.

We consider two scenarios: F(t, β,w) ≤ G(t) and
F(t, β,w) ≥ G(t). Note that

F(t, β,w)

G(t)
� 1

⇐⇒ q − s

n − q
� |1 − βw| exp

(
t2βw(

βw

2
− 1)

)
, (98)

• Suppose F(t, β,w) ≤ G(t), i.e., (98) is satisfied with ≤.
The bound in (97) implies

Eg

[
dist
(
g, cone ∂ f2(x�)

)2
]

≤ vβ t2 + s + |K 	=(β)| + 1

2
|K =(β)| + 4G(t)

= vβ t2 + s + |K 	=(β)| + 1

2
|K =(β)|

+ 4(n − q)
1

t

1√
2π

exp
(

− t2

2

)
.

We now select t as

t� =
√

2 log
(n

q

)
= √2 log r ,

where r := n/q . Note that r is well defined, since x� 	= 0
implies q > 0. Also, the assumption q < n implies
t� > 0. Setting t to t� and using (59), we get

Eg

[
dist
(
g, cone ∂ f2(x�)

)2
]

≤ 2vβ log
(n

q

)
+ s + |K 	=(β)| + 1

2
|K =(β)|

+ 4(n − q)
1√

2 log r

1√
2π

1
n
q

= 2vβ log
(n

q

)
+ s + |K 	=(β)| + 1

2
|K =(β)|

+ 2q
1 − 1

r√
π log r

≤ 2vβ log
(n

q

)
+ s + |K 	=(β)| + 1

2
|K =(β)| + 4

5
q ,

which is (39). This bound is valid only if (98) with ≤ is
satisfied for t�, i.e.,

q − s

n − q
≤ |1 − β w| exp

(
2β w log

(n

q

)(β w

2
− 1
))

,

which is condition (38).
• Suppose now that F(t, β,w) ≥ G(t), i.e., (98) is satisfied

with ≥. The bound in (97) implies

Eg

[
dist
(
g, cone ∂ f2(x�)

)2
]

≤ vβ t2 + s + |K 	=(β)| + 1

2
|K =(β)| + 4F(t, β,w)

= vβ t2 + s + |K 	=(β)| + 1

2
|K =(β)|

+ 4(q−s)
1√
2π

1

t|1−β w| exp
(

− t2

2
(1−β w)2

)
.

And we select t as

t� = 1

|1 − β w|
√

2 log
(q

s

)
= 1

|1 − β w|
√

2 log r ,

where r := q/s. Again, r is well defined because s > 0.
Since we assume q > s, t� > 0. Setting t to t� and
using (59) again, we obtain

Eg

[
dist
(
g, cone ∂ f2(x�)

)2
]

≤ 2vβ

|1 − β w|2 log
(q

s

)
+ s + |K 	=(β)| + 1

2
|K =(β)|

+ 4(q − s)
1√
2π

1√
2 log r

1
q
s

= 2vβ

|1 − β w|2 log
(q

s

)
+ s + |K 	=(β)| + 1

2
|K =(β)|

+ 2s
1 − 1

r√
π log r

≤ 2vβ

|1 − β w|2 log
(q

s

)
+ |K 	=(β)| + 1

2
|K =(β)| + 9

5
s ,

which is (41). This bound is valid only when (98) with ≥
is satisfied for t�, i.e.,

q − s

n − q
≥ |1 − βw| exp

(
4
(β w − 2)β w

|1 − βw|2 log
(q

s

))
,

which is condition (40). �
4) Remarks: Although these bounds were derived using the

same techniques as the ones for �1-�1 minimization, they are
much looser. The main reason is their dependency on the
magnitudes of x�, w, and x� − w. This forced us to consider
a worst-case scenario in the last step of (95).
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E. Proof of Theorem 15

The proof follows from taking the minimum over t in the
right-hand side of (91) and using (92). �

F. Proof of Corollary 16

First note that the corollary’s assumptions imply the
assumptions of both Theorems 13 and 15. In particular,
if (48b) holds strictly for at least one component k, then
k ∈ I J and β2 	= sign(x�

k )/(wk − x�
k ). We write the right-

hand sides of (33) and (45) as mint≥0 φ1(t) and mint≥0 φ2(t),
where

φ1(t) := h + h + 4ht2 +
∑

i∈I c J c

Egi

[
dist
(

gi , I(0, 2t)
)2]

+
∑

i∈I c J

Egi

[
dist
(

gi , I(−t sign(wi ), t)
)2]

φ2(t) := s + t2
∑

i∈I J

[
1 + β2 sign(x�

i )(x�
i − wi )

]2

+
∑

i∈I c J c

Egi

[
dist
(

gi , I(0, t)
)2]

(99)

+
∑

i∈I c J

Egi

[
dist
(

gi , I(−tβ2wi , t)
)2]

. (100)

Note that we used the assumptions β1 = 1 and I J c = ∅.
We now compare (99) and (100) term-by-term. First, note that

4h = 4
(
|I+ J+| + |I− J−|

)

≤
∑

i∈I+ J+

[
1 + β2(x�

i − wi )
]2+

∑

i∈I− J−

[
1 − β2(x�

i − wi )
]2

≤
∑

i∈I J

[
1 + β2 sign(x�

i − wi )
]2

, (101)

where we used (48b) in the first inequality. Furthermore,

h + h = |I J | ≤ |I | = s (102)

Egi

[
dist
(

gi , I(0, 2t)
)2] ≤ Egi

[
dist
(

gi , I(0, t)
)2]

(103)

Egi

[
dist
(

gi , I(−t sign(wi ), t)
)2]

≤ Egi

[
dist
(

gi , I(−tβ2 wi , t)
)2]

, ∀ i ∈ I c J . (104)

In (102), we used (20). To get (103), just notice that I(0, t) ⊂
I(0, 2t). To obtain (104), we used (48a) and the fact that

Egi

[
dist
(

gi , I(t, t)
)2] ≤ Egi

[
dist
(

gi , I(c t, t)
)2]

, (105)

for any |c| ≥ 1. To see why (105) holds, write fb(a) :=
Eg
[
dist(g, I(a, b))2

]
, i.e., with b fixed. Using (52) and the

identities d Q(x)/dx = −ϕ(x), dϕ(x)/dx = −x ϕ(x), and
Q(x) = 1 − Q(−x), it can be shown that

d

da
fb(a) = 2

[
ϕ(a − b) − ϕ(a + b) + (a + b)Q(a + b)

+ (a − b)Q(b − a)
]
. (106)

The density ϕ(x) is nonincreasing for x ≥ 0 and nondecreas-
ing for x ≤ 0. Therefore, all terms of (106) are nonnegative

for a ≥ b ≥ 0, meaning that fb(a) does not decrease with a.
This shows (105) for c ≥ 1. For c ≤ −1, note that all terms
in (106) are nonpositive whenever −a ≥ b ≥ 0, that is, fb(a)
increases with (a negative) a. To conclude the proof, notice
that (101)-(104) show φ1(t) ≤ φ2(t), for all t ≥ 0. Assume t1
(resp. t2) is a minimizer of φ1 (resp. φ2), which exists due to
the continuity and coercivity of φ1 (the same for φ2). Then,
φ1(t1) ≤ φ1(t2) ≤ φ2(t2), concluding the proof. �

VII. CONCLUSIONS

We studied two schemes for integrating prior information
in CS: �1-�1 and �1-�2 minimization. For each scheme, we
established bounds on the number of measurements that
guarantee successful reconstruction with high probability,
under Gaussian measurement matrices. The bounds established
for �1-�1 minimization are quite sharp and are minimized
for β = 1. In contrast, the bounds for �1-�2 minimization
can be quite loose, and the β that minimizes them depends on
several unknown problem parameters. According to our theory,
geometrical interpretations, and experimental results, �1-�1
minimization has strong advantages over both standard CS
and �1-�2 minimization. The insights revealed by our theory
also helped us design schemes that improve the quality of
prior information. Possible future research directions include
extending our bounds to more complex signal structures, for
example, block sparsity and the k-support norm.

APPENDIX A
PROOF OF LEMMA 17

A. Part I) Exact Expression

For any a and b ≥ 0,

Eg

[
dist
(
g,I(a, b)

)2
]

= Eg

[
min

u
(u − g)2

s.t. |u − a| ≤ b

]

= 1√
2π

∫ +∞

a+b

(
g − (a + b)

)2 exp
(
− g2

2

)
dg

+ 1√
2π

∫ a−b

−∞
(
g − (a − b)

)2 exp
(
− g2

2

)
dg

= A(a + b) + B(a − b) , (107)

where

A(x) := 1√
2π

∫ +∞

x
(g − x)2 exp

(
− g2

2

)
dg

= 1√
2π

∫ +∞

x
g2 exp

(
− g2

2

)
dg A1(x)

− 2x√
2π

∫ +∞

x
g exp

(
− g2

2

)
dg (−A2(x))

+ x2

√
2π

∫ +∞

x
exp
(
− g2

2

)
dg (A3(x))

=: A1(x) − A2(x) + A3(x) ,



MOTA et al.: COMPRESSED SENSING WITH PRIOR INFORMATION: STRATEGIES, GEOMETRY, AND BOUNDS 4493

and

B(x) := 1√
2π

∫ x

−∞
(g − x)2 exp

(
− g2

2

)
dg

= 1√
2π

∫ x

−∞
g2 exp

(
− g2

2

)
dg (B1(x))

− 2x√
2π

∫ x

−∞
g exp

(
− g2

2

)
dg (−B2(x))

+ x2

√
2π

∫ x

−∞
exp
(
− g2

2

)
dg (B3(x))

=: B1(x) − B2(x) + B3(x) .

Using symmetry arguments for even and odd functions, it
can be shown that B1(x) = A1(−x), B2(x) = −A2(x), and
B3(x) = A3(−x). Therefore,

A(x) = (
A1(x) + A3(x)

)− A2(x) (108)

B(x) = (
A1(−x) + A3(−x)

)+ A2(x) . (109)

Next, we compute expressions for A1(x) + A3(x) and A2(x).
Integrating A1(x) by parts, we obtain:

A1(x) + A3(x) = x√
2π

exp
(
− x2

2

)

+ (1 + x2)
1√
2π

∫ +∞

x
exp
(
− g2

2

)
dg

︸ ︷︷ ︸
:=Q(x)

,

(110)

where Q(x) is the Q-function, defined in (49). The integral
in A2(x) can be computed in closed-form as

A2(x) = 2x√
2π

exp
(
− x2

2

)
. (111)

From (108), (109), (110), and (111), we obtain

A(x) = − x√
2π

exp
(
− x2

2

)
+ (1 + x2)Q(x) (112)

B(x) = x√
2π

exp
(
− x2

2

)
+ (1 + x2)Q(−x) . (113)

Using (107), (112), and (113), and the property Q(x) = 1 −
Q(−x), for all x , we obtain

Eg

[
dist
(
g,I(a, b)

)2
]

= (a − b)ϕ(a − b)

− (a + b)ϕ(a + b) + [1 + (a + b)2]Q(a + b)

+ [1 + (a − b)2][1 − Q(a − b)
]
,

where we used ϕ(x) = exp
(− x2/2

)
/
√

2π [cf. (50)]. This is
exactly (52).

B. Part II) Bounds

Showing (53) is relatively simple: either set b = 0 in (52),
or just use the linearity of the expected value and the fact
that g has zero mean and unit variance:

Eg
[
dist(g, a)2] = Eg

[
(a − g)2] = Eg

[
a2 − 2ag + g2]

= a2 + 1 .

We will now focus on proving cases 2), 3), and 4), which are
characterized by b > 0 and |a| 	= b. These will follow by
using bounds on the Q-function. The following bounds, valid
for x > 0, are sharp for large x [62, eq. 2.121] 9

x

1 + x2

1√
2π

exp
(
− x2

2

)
≤ Q(x) ≤ 1

x

1√
2π

exp
(
− x2

2

)
.

(114)

Now we compute bounds for A(x) and B(x) based on (114)
and address the cases x < 0 and x > 0 separately. We will
again use the property Q(x) = 1 − Q(−x). Let us start
with A(x). Consider x < 0. Then,

A(x) = −x ϕ(x) + (1 + x2)(1 − Q(−x))

≤ −x ϕ(x) + (1 + x2)

(

1 + x

1 + x2 ϕ(x)

)

= 1 + x2 , (115)

where the inequality is due to the lower bound in (114). Now,
let x > 0. Applying the upper bound in (114) directly, we
obtain

A(x) ≤ −xϕ(x) + (1 + x2)
1

x
ϕ(x) = 1

x
ϕ(x) . (116)

Now consider B(x) with x < 0. Since Q(−x) has a positive
argument, we use the upper bound in (114):

B(x) ≤ x ϕ(x) + (1 + x2)
(
− 1

x
ϕ(x)

)
= 1

|x |ϕ(x) , (117)

where, in the inequality, we used the fact that ϕ(−x) = ϕ(x).
Assume now x > 0. Then,

B(x) = x ϕ(x) + (1 + x2)(1 − Q(x))

≤ x ϕ(x) + (1 + x2)

(

1 − x

1 + x2 ϕ(x)

)

= 1 + x2 , (118)

where we used the lower bound in (114). In sum, (115), (116),
(117), and (118) tell us that

A(x) ≤
{

1 + x2 , x < 0
1
x ϕ(x), x > 0

(119)

B(x) ≤
{

1
|x |ϕ(x), x < 0

1 + x2, x > 0
. (120)

9The lower bound in [62, eq. 2.121] is actually ((x2−1)/x3)ϕ(x). The lower
bound in (114), however, is tighter and stable near the origin. We found this
bound in [63]. Since we were not able to track it to a published reference,
we replicate the proof from [63] here. For x > 0, there holds:
(

1 + 1

x2

)
Q(x) =

∫ ∞
x

(
1 + 1

x2

)
ϕ(u) du ≥

∫ ∞
x

(
1 + 1

u2

)
ϕ(u) du

= −
∫ ∞

x

u dϕ(u)/du − ϕ(u)

u2
du = −

∫ ∞
x

d

du

(ϕ(u)

u

)
du

= ϕ(x)

x
,

from which the bound follows. In the third step, we used the property
dϕ(u)/du = −uϕ(u).
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From (107), (119), and (120),

Eg

[
dist
(
g,I(a, b)

)2
]

= A(a + b) + B(a − b)

≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ(a + b)

a + b
+ ϕ(a − b)

|a − b| , |a| < b

1 + (a + b)2 + ϕ(a − b)

|a − b| , a + b < 0

ϕ(a + b)

a + b
+ 1 + (a − b)2, a − b > 0 .

Taking into account that ϕ(x) = ϕ(−x) for any x , this is
exactly (54), (55), and (56).

We now address cases 5) and 6). Suppose a + b = 0.
Since a − b < 0 (recall that b > 0), (117) applies and tells us
that B(a − b) ≤ ϕ(a − b)/(b − a) . Setting x = 0 in (112),
we obtain A(a + b) = A(0) = Q(0) = 1/2. Therefore,
A(a + b)+ B(a − b) = ϕ(a − b)/(b − a)+ 1/2, which is (57).
The proof of (58) is identical. �
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Denote f (x) := (1 − 1/x)/
√

log x . It can be shown that

d

dx
f (x) = 2 log x + 1 − x

2x2 log3/2 x

d2

dx2 f (x) = 3(x − 1) − 8 log2 x + 2(x − 3) log x

4x3 log5/2 x
.

The stationary points of f are those for which d
dx f (x) = 0,

that is, the points that satisfy the equation 2 log x = x − 1.
This equation has only one solution, say x , for x > 1: log x =
(x − 1)/2. Using this identity, we can conclude that

d2

dx2 f (x) = 3(x − 1) − 2(x − 1)2 + (x − 3)(x − 1)
1√
2

x3(x − 1)5/2

= 2 − x
1√
2

x3(x − 1)3/2
< 0 ,

since x > 2. This is because log 2 > 1/2 and, e.g., log 11 < 5
or, in other words, (x − 1)/2 intersects log x somewhere
in the interval 2 < x < 11, that is, 2 < x < 11. This
means that the only stationary point x is a local maximum.
Since limx↓1 f (x) = 0 and limx−→+∞ f (x) = 0 (using for
example l’Hôpital’s rule), x is actually a global maximum.
Knowing that x satisfies log x = (x − 1)/2, we have

f (x) = x − 1

x
√

log x
= √

2
x − 1

x
√

x − 1
= √

2

√
x − 1

x
.

By equating the derivative of the function
√

x − 1/x to
zero, we know that it achieves its maximum at x = 2.
Therefore, f (x) ≤ √

2/2 = 1/
√

2. Dividing by 1/
√

π , we
obtain (59). �
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A. Proof of 1)

According to (62), 0 ∈ ∂ f (i)
1 (x�

i ) is equivalent to either:

i ∈ I J and sign(x�
i ) + β sign(x�

i − wi ) = 0 , or (121a)

i ∈ I J c and β ≥ 1 , or (121b)

i ∈ I c J and β ≤ 1 , or (121c)

i ∈ I c J c . (121d)

Note that (121a) cannot be satisfied whenever β 	= 1. Hence,
conditions (121a)-(121d) can be rewritten as

• β = 1: sign(x�
i ) + sign(x�

i − wi ) = 0 for i ∈ I J , or
i ∈ I c J , or i ∈ I J c, or i ∈ I c J c.

• β > 1: i ∈ I J c or i ∈ I c J c.
• β < 1: i ∈ I c J or i ∈ I c J c.
We consider two scenarios: I J 	= ∅ and I J = ∅.
• Let I J 	= ∅. When β = 1, 0 	∈ ∂ f1(x�) if and only

if there is an i ∈ I J such that sign(x�
i ) + sign(x�

i −
wi ) 	= 0, i.e., there is at least one bad component: h > 0.
When β 	= 1, there is at least one i ∈ I J for which (121a)
is not satisfied, that is, 0 	∈ ∂ f1(x�). We thus conclude that
part 1) is true whenever I J 	= ∅.

• Let I J = ∅ or, equivalently, x�
i = wi for all i ∈ I . Recall

from (20) that |I J | = h+h. Thus, I J = ∅ implies h = 0.
In this case, if β = 1, then 0 ∈ ∂ f1(x�). On the other
hand, for β > 1, 0 	∈ ∂ f1(x�) if and only if I c J 	= ∅;
similarly, for β < 1, 0 	∈ ∂ f1(x�) if and only if I J c 	= ∅.
We next show that I J = ∅, together with I 	= ∅ and J 	=
∅, implies that both I c J and I J c are nonempty, thus
showing that part 1) is also true whenever I J = ∅. In fact,
I 	= ∅ implies I J c 	= ∅, because I = I J ∪ I J c = I J c.
Also, J 	= ∅, that is, x� 	= w, implies I c J 	= ∅. This
is because I J = ∅ means that x� and w coincide on I ,
and I c J = {i : 0 = x�

i 	= wi } is the set of nonzero
components of w outside I . Since x� and w coincide
on I , they have to differ outside I , i.e., I c J 	= ∅.

B. Proof of 2)

From (63), 0 ∈ ∂ f (i)
2 (x�

i ) is equivalent to either

i ∈ I J and β(wi − x�
i ) = sign(x�

i ) , or

i ∈ I J c , or

i ∈ I c and β ≤ 1/|wi | .
�
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