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New One Shot Quantum Protocols With
Application to Communication Complexity

Anurag Anshu, Rahul Jain, Priyanka Mukhopadhyay, Ala Shayeghi, and Penghui Yao

Abstract— In this paper, we present the following quantum
compression protocol ‘P ’: Let ρ, σ be quantum states, such that

S (ρ‖σ)
def= Tr(ρ log ρ − ρ log σ), the relative entropy between

ρ and σ , is finite. Alice gets to know the eigendecomposition
of ρ. Bob gets to know the eigendecomposition of σ . Both
Alice and Bob know S (ρ‖σ) and an error parameter ε. Alice
and Bob use shared entanglement and after communication
of O((S(ρ‖σ) + 1)/ε4) bits from Alice to Bob, Bob ends up with
a quantum state ρ̃, such that F(ρ, ρ̃) ≥ 1−5ε, where F(·) repre-
sents fidelity. This result can be considered as a non-commutative
generalization of a result due to Braverman and Rao where
they considered the special case when ρ and σ are classical
probability distributions (or commute with each other) and use
shared randomness instead of shared entanglement. We use P to
obtain an alternate proof of a direct-sum result for entanglement
assisted quantum one-way communication complexity for all
relations, which was first shown by Jain et al.. We also present
a variant of protocol P in which Bob has some side information
about the state with Alice. We show that in such a case, the
amount of communication can be further reduced, based on the
side information that Bob has. Our second result provides a
quantum analog of the widely used classical correlated-sampling
protocol. For example, Holenstein used the classical correlated-
sampling protocol in his proof of a parallel-repetition theorem
for two-player one-round games.

Index Terms— Quantum information theory, quantum
communication complexity, compression protocols, correlated
sampling, direct sum results.

I. INTRODUCTION

RELATIVE entropy is a widely used quantity of cen-
tral importance in both classical and quantum informa-

tion theory. In this paper we consider the following task. The
notations used below are described in section II.
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P : Given a register A, Alice gets to know the
eigen-decomposition of a quantum state ρ ∈ D(A). Bob gets
to know the eigen-decomposition of a quantum state σ ∈ D(A)
such that supp(ρ) ⊂ supp(σ ). Both Alice and Bob know

S(ρ‖σ) def= Trρ logρ − ρ log σ , the relative entropy between
ρ and σ and an error parameter ε. Alice and Bob use shared
entanglement and after communication of O((S(ρ‖σ)+1)/ε4)
bits from Alice to Bob, Bob ends up with a quantum state ρ̃
such that F(ρ, ρ̃) ≥ 1− ε, where F(·, ·) represents fidelity.

This result can be considered as a non-commutative gen-
eralization of a result due to Braverman and Rao [1] where
they considered the special case when ρ and σ are classical
probability distributions and the two parties only share public
random coins. Their protocol, and slightly modified versions
of it, were widely used to show several direct sum and direct
product results in communication complexity, for example a
direct sum theorem for all relations in the bounded-round
public-coin communication model [1], direct product theorems
for all relations in the public-coin one-way and public-coin
bounded-round communication models [2]–[4]. A direct sum
result for a relation f in a model of communication (roughly)
states that in order to compute k independent instances of f
simultaneously, if we provide communication less than k times
the communication required to compute f with the constant
success probability p < 1, then the success probability for
computing all the k instances of f correctly is at most a
constant q < 1. A direct product result, which is a stronger
result, states that in such a situation the success probabil-
ity for computing all the k instances of f correctly is at
most p−�(k).

Protocol P allows for compressing the communication in
one-way entanglement-assisted quantum communication pro-
tocols to the internal information about the inputs carried by
the message. Using this we obtain a direct-sum result for
distributional entanglement assisted quantum one-way com-
munication complexity for all relations. This direct-sum result
was shown previously by Jain et al. [5] and they obtained
this result via a protocol that allowed them compression to
external information carried in the message.1 Their arguments
are quite specific to one-way protocols and do not seem
to generalize to multi-round communication protocols. Our
proof however, is along the lines of a proof which has
been generalized to bounded-round classical protocols [1] and
hence it presents hope that our direct-sum result can also be

1Compression to external and internal information can be thought of as
one-shot communication analogues of the celebrated results by Shannon [6]
and Slepian and Wolf [7] exhibiting compression of source to entropy and
conditional entropy respectively.
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generalized to bounded-round quantum protocols. The proto-
col of Braverman and Rao [1] was also used by Jain [2] to
obtain a direct-product for all relations in the model of one-
way public-coin classical communication and later extended to
multiple round public-coin classical communication [3], [4].
Hence protocol P also presents a hope of obtaining similar
results for quantum communication protocols.

We also present a variant of protocol P , with Bob possess-
ing some side information about Alice’s input. In such a case,
the communication can be further reduced.
P ′: Given two registers A and B , Alice and Bob know

the description of a quantum channel E : L(A) → L(B).
Alice is given the eigen-decomposition of a state ρ ∈ D(A).
Bob is given the eigen-decomposition of a state σ ∈ D(A)
(such that supp(ρ) ⊂ supp(σ )) and the state ρ′ = E(ρ).
Let S (ρ‖σ) − S (E(ρ)‖E(σ )) and ε > 0 be known to
Alice and Bob. There exists a protocol, in which Alice and
Bob use shared entanglement and Alice sends O((S(ρ‖σ) −
S(E(ρ)‖E(σ )) + 1)/ε4) bits of communication to Bob, such
that with probability at least 1− 4ε, the state ρ̃ that Bob gets
at the end of the protocol satisfies F(ρ, ρ̃) ≥ 1 − ε, where
F(·, ·) represents fidelity .

In the second part of our paper, we present the following
protocol, which can be considered as a quantum analogue
of the widely used classical correlated sampling protocol.
For example, Holenstein [8] has used the classical correlated
sampling protocol in his proof of a parallel-repetition theorem
for two-player one-round games.
P1 : Given a register A1, Alice gets to know the

eigen-decomposition of a quantum state ρ ∈ D(A1).
Bob gets to know the eigen-decomposition of a quantum
state σ ∈ D(A1). Alice and Bob use shared entanglement,
do local measurements (no communication) and at the end
Alice outputs registers A1 A2 and Bob outputs registers B1 B2
such that the following holds:

1) B1 ≡ A1 and B2 ≡ A2.
2) The marginal state in register A1 is ρ and the marginal

state in register B1 is σ .
3) For any projective measurement M = {M1, . . . ,Mw}

such that Mi ∈ L(A1 A2), the following holds. Let Alice
perform M on A1 A2 and Bob perform M on B1 B2 and
obtain outcomes I ∈ [w], J ∈ [w] respectively. Then,

Pr[I = J ] ≥
(

1−
√
‖ρ − σ‖1 −

1

4
‖ρ − σ‖21

)3

.

Recently, Dinur et al. [9] have shown another version of
a quantum correlated sampling protocol different from ours,
and used it in their proof of a parallel-repetition theorem for
two-prover one-round entangled projection games.

Our Techniques

Our protocol P is inspired by the protocol of Braver-
man and Rao [1], which as we mentioned, applies to the
special case when inputs to Alice and Bob are classical
probability distributions P, Q respectively. Let us first assume

the case when Alice and Bob know c = S∞ (P‖Q) def=
min{λ| P ≤ 2λQ}, the relative max-entropy between P and Q.

In the protocol of [1], Alice and Bob share (as public coins)
{(Mi , Ri )| i ∈ N}, where each (Mi , Ri ) is independently and
identically distributed uniformly over U × [0, 1], U being the
support of P and Q. Alice accepts index i iff Ri ≤ P(Mi )
and Bob accepts index i iff Ri ≤ 2c Q(Mi ). It is easily argued
that for the first index j accepted by Alice, M j is distributed
according to P . Braverman and Rao argue that Alice can
communicate this index j to Bob, with high probability, using
communication of O(c) bits (for constant ε), using crucially
the fact that P ≤ 2c Q. In our protocol, Alice and Bob share
infinite copies of the following quantum state

|ψ〉 def= 1√
N K

N∑
i=1

|i〉A |i〉B ⊗
(

K∑
m=1

|m〉A1 |m〉B1

)
,

where registers A, B serve to sample a maximally mixed
state in the support of ρ, σ and the registers A1, B1 serve
to sample uniform distribution in the interval [0, 1] (in the
limit K →∞). Again let us first assume the case when

Alice and Bob know c = S∞ (ρ‖σ) def= min{λ| ρ ≤
2λσ } (here ≤ represents the Löwner order), the relative
max-entropy between ρ and σ . Let eigen-decomposition of

ρ be
∑N

i=1 ai |ai 〉 〈ai | and eigen-decomposition of σ be∑N
i=1 bi |bi 〉 〈bi |. Consider a projection PAA1 as defined below

and IAA1 the identity operator on registers A, A1. Alice
performs a measurement {PAA1 , IAA1 − PAA1 }, on the regis-
ter AA1 of each copy of |ψ〉 and accepts the index of a copy
iff outcome of measurement corresponds to PAA1 (which we
refer to as a success for Alice).

PAA1 =
N∑

i=1

|ai〉〈ai |A ⊗
⎛
⎝�K ai�∑

m=1

|m〉〈m|A1

⎞
⎠.

Similarly, consider a projection PB B1 as defined below (for an
appropriately chosen δ) and IB B1 the identity operator on reg-
ister B B1. Bob performs a measurement {PB B1, IB B1 − PB B1}
on registers B B1 on each copy of |ψ〉 and accepts the index of
a copy iff the outcome of measurement corresponds to PB B1

(which we refer to as a success for Bob).

PB B1 =
N∑

i=1

|bi 〉〈bi |B ⊗
⎛
⎝min{�2c K bi/δ�,K }∑

m=1

|m〉〈m|B1

⎞
⎠.

Again it is easily argued that (in the limit K → ∞) the
marginal state in B (and also in A), in the first copy of |ψ〉
on which Alice succeeds, is ρ. Using crucially the fact that
ρ ≤ 2cσ , we argue that after Alice’s measurement succeeds
in a copy, Bob’s measurement also succeeds with high prob-
ability. Hence, by gentle measurement lemma ( [10], [11]),
the marginal state in register B is not disturbed much, condi-
tioned on success of both Alice and Bob. We also argue that
Alice can communicate the index of this copy to Bob with
communication of O(c) bits (for constant ε).

As can be seen, our protocol is a natural quantum analogue
of the protocol of Braverman and Rao [1]. However, since
ρ and σ may not commute, our analysis deviates significantly
from the analysis of [1]. We are required to show several new
facts related to the non-commuting case while arguing that the
protocol still works correctly.
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We then consider the case in which S (ρ‖σ) (instead of
S∞(ρ‖σ)) is known to Alice and Bob. The quantum substate
theorem [12], [13] implies that there exists a quantum state ρ′,
having high fidelity with ρ such that S∞

(
ρ′
∥∥σ ) = O(S(ρ‖σ)).

We argue that our protocol is robust with respect to small
perturbations in Alice’s input and hence works well for the
pair (ρ′, σ ) as well, and uses communication O(S (ρ‖σ))
bits. Again this requires us to show new facts related to the
non-commuting case.

Related Work

Much progress has been made in the last decade towards
proving direct sum and direct product conjectures in various
models of communication complexity and information theory
has played a crucial role in these works. Most of the proofs
have build upon elegant one-shot protocols for interesting
information theoretic tasks. For example, consider the follow-
ing task which is a special case of the task we consider in the
protocol P .

T1: Alice gets to know the eigen-decomposition of a
quantum state ρ. Alice and Bob get to know the eigen-
decomposition of a quantum state σ , such that supp(ρ) ⊂
supp(σ ). They also know c

def= S(ρ‖σ), the relative entropy
between ρ and σ and an error parameter ε. They use shared
entanglement and communication and at the end of the
protocol, Bob ends up with a quantum state ρ̃ such that
F(ρ, ρ̃) ≥ 1− ε.

Jain et al. [5], showed that this task (for constant ε)
can be achieved with communication O(S (ρ‖σ) + 1) bits,
and this led to direct sum theorems for all relations in
entanglement-assisted quantum one-way and entanglement-
assisted quantum simultaneous message-passing communica-
tion models. They also considered the special case when the
inputs to Alice and Bob are probability distributions P, Q
respectively and showed that sharing public random coins and
O(S(P‖Q)+ 1)) bits of communication can achieve this task
(for constant ε). Later an improved result was obtained by
Harsha et al. [14], where they presented a protocol in which
Bob is able to sample exactly from P with expected commu-
nication S(P‖Q) + 2 log S(P‖Q) + O(1). This led to direct
sum theorems for all relations in the public-coin random-
ized one-way, public-coin simultaneous message passing [5]
and public-coin randomized bounded-round communication
models [14].

Our work strengthens their results by showing that
O(S (ρ‖σ)) bits of communication is enough even if σ is
not known to Alice.

Very recently, Touchette [15] introduced the notion of
quantum information cost which generalizes the internal infor-
mation cost in the classical communication to the quantum
setting. Moreover, he showed that in bounded-round entangle-
ment assisted quantum communication tasks, the communica-
tion can be compressed to the quantum information cost based
on the state redistribution protocol [16], [17]. Using such a
compression protocol, he showed a direct sum theorem for
bounded round entanglement assisted quantum communication
model.

Organization

In section II, we discuss our notations and relevant notions
needed for our proofs. In Section III we describe our one
shot quantum protocol P . The direct sum result follows in
Section IV. In Section V we present quantum correlated
sampling. We conclude in Section VI.

II. PRELIMINARIES

In this section we present some notations, definitions, facts
and lemmas that we will use later in our proofs.

Information Theory

For integer n ≥ 1, let [n] represent the set {1, 2, . . . , n}.
We let log represent logarithm to the base 2 and ln represent
logarithm to the base e. Let X and Y be finite sets. X × Y
represents the cross product of X and Y . For a natural
number k, we let X k denote the set X × · · · × X , the cross
product of X , k times. Let μ be a probability distribution on X .
We let μ(x) represent the probability of x ∈ X according
to μ. We use the same symbol to represent a random variable
and its distribution whenever it is clear from the context.
The expectation value of function f on X is defined as

Ex←X[ f (x)]
def= ∑

x∈X Pr[X = x]· f (x), where x ← X means
that x is drawn according to distribution X .

Consider a Hilbert space H endowed with an inner prod-

uct 〈·, ·〉. The 	1 norm of an operator X on H is ‖X‖1 def=
Tr
√

X† X and 	2 norm is ‖X‖2 def= √TrX X†. A quantum state
(or a density matrix or just a state) is a positive semi-definite
matrix with trace equal to 1. It is called pure if and only if the
rank is 1. A sub-normalized state is a positive semi-definite
matrix with trace less than or equal to 1. Let |ψ〉 be a unit
vector on H, that is 〈ψ,ψ〉 = 1. With some abuse of notation,
we use ψ to represent the state and also the density matrix
|ψ〉〈ψ|, associated with |ψ〉.

Fix an orthonormal basis on H, referred to as computational
basis. Let |ψ〉 represent the complex conjugation of |ψ〉, taken
in the computational basis. A classical distribution μ can be
viewed as a quantum state with non-diagonal entries 0. Given
a quantum state ρ on H, support of ρ, called supp(ρ) is the
subspace of H spanned by all eigen-vectors of ρ with non-zero
eigenvalues.

A quantum register A is associated with some Hilbert

space HA. Define |A| def= dim(HA). Let L(A) represent the
set of all linear operators on HA. We denote by D(A), the set
of quantum states on the Hilbert space HA . State ρ with
subscript A indicates ρA ∈ D(A). If two registers A, B are
associated with the same Hilbert space, we shall represent
the relation by A ≡ B . Composition of two registers A and
B , denoted AB , is associated with Hilbert space HA ⊗ HB .
For two quantum states ρ ∈ D(A) and σ ∈ D(B), ρ ⊗ σ ∈
D(AB) represents the tensor product (Kronecker product)
of ρ and σ . The identity operator on HA (and associated
register A) is denoted IA .

Let ρAB ∈ D(AB). We define

ρB
def= TrA (ρAB )

def=
∑

i

(〈i | ⊗ IB)ρAB (|i〉 ⊗ IB),



ANSHU et al.: NEW ONE SHOT QUANTUM PROTOCOLS WITH APPLICATION TO COMMUNICATION COMPLEXITY 7569

where {|i〉}i is an orthonormal basis for the Hilbert space HA.
The state ρB ∈ D(B) is referred to as the marginal state
of ρAB . Unless otherwise stated, a missing register from
subscript in a state will represent partial trace over that register.
Given a ρA ∈ D(A), a purification of ρA is a pure state
ρAB ∈ D(AB) such that TrB (ρAB ) = ρA. A purification of a
quantum state is not unique.

A quantum map E : L(A)→ L(B) is a completely positive
and trace preserving (CPTP) linear map (mapping states in
D(A) to states in D(B)). A unitary operator UA : HA → HA

is such that U†
AUA = UAU†

A = IA . An isometry V : HA →
HB is such that V †V = IA and V V † = IB . The set of all
unitary operations on register A is denoted by U(A).

Definition 1: We shall consider the following information
theoretic quantities. Let A be a quantum register. Let ε ≥ 0.

1) Fidelity: For ρ, σ ∈ D(A),
F(ρ, σ )

def= ∥∥√ρ√σ∥∥1 .

For classical probability distributions P = {pi },
Q = {qi },

F(P, Q)
def=
∑

i

√
pi · qi .

2) Entropy: For ρ ∈ D(A),
S(ρ)

def= −Tr(ρ logρ).

3) Relative entropy: For ρ, σ ∈ D(A) such that supp(ρ) ⊂
supp(σ ),

S(ρ‖σ) def= Tr(ρ logρ)− Tr(ρ log σ).

4) Relative max-entropy: For ρ, σ ∈ D(A) such that
supp(ρ) ⊂ supp(σ ),

S∞(ρ‖σ) def= inf{λ ∈ R : 2λσ ≥ ρ}.
5) Mutual information: For ρAB ∈ D(AB),

I(A : B)ρ
def= S(ρA)+ S(ρB)− S(ρAB )

= S(ρAB‖ρA ⊗ ρB) .

6) Conditional mutual information: For ρABC ∈ D(ABC),

I(A : B |C)ρ def= I(A : BC)ρ − I(A : C)ρ .

We will use the following facts.
Fact 2 ([19, p. 416]): For quantum states ρ, σ ∈ D(A),

it holds that

2(1− F(ρ, σ )) ≤ ‖ρ − σ‖1 ≤ 2
√

1− F(ρ, σ )2.

For two pure states |φ〉 and |ψ〉, we have

‖φ − ψ‖1 = 2
√

1− F(φ,ψ)2 = 2
√

1− |〈φ|ψ〉|2.
Fact 3 [19]: (Stinespring Representation) Let E(·) :

L(A)→ L(B) be a quantum operation. There exists a Hilbert
space C and an unitary U : A ⊗ B ⊗ C → A ⊗ B ⊗ C
such that E(ω) = TrA,C

(
U(ω ⊗ |0〉〈0|B,C)U†

)
. Stinespring

representation for a channel is not unique.

Fact 4 [20], [21]: For states ρ, σ ∈ D(A), and quantum
operation E(·) : L(A)→ L(B), it holds that

‖E(ρ)− E(σ )‖1 ≤ ‖ρ − σ‖1 ,
F(E(ρ), E(σ )) ≥ F(ρ, σ ),

S(ρ‖σ) ≥ S(E(ρ)‖E(σ )) .
In particular, for bipartite states ρAB , σ AB ∈ D(AB), it holds
that ∥∥∥ρAB − σ AB

∥∥∥
1
≥
∥∥∥ρA − σ A

∥∥∥
1

F(ρAB , σ AB) ≤ F(ρA, σ A),

S(ρAB‖σAB ) ≥ S(ρA‖σA) .
Fact 5 ([23, Lemma 4.41.]): Let A, B be two positive

semidefinite operators on Hilbert space H. Then

‖A − B‖1 ≥
∥∥∥√A −√B

∥∥∥2

2
.

Fact 6: Given two quantum states ρ and σ ,

Tr
√
ρ
√
σ ≥ 1− 1

2
‖ρ − σ‖1 ≥ 1−

√
1− F(ρ, σ )2.

Proof: By Facts 5 and 2,

2
√

1− F(ρ, σ )2 ≥ ‖ρ − σ‖1 ≥
∥∥√ρ −√σ∥∥2

2

= 2− 2 · Tr
(√
ρ
√
σ
)
.

�
Fact 7 (Joint concavity of fidelity [23, Proposition 4.7]):

Given states ρ1, ρ2 . . . ρk, σ1, σ2 . . . σk and positive numbers
p1, p2 . . . pk such that

∑
i pi = 1. Then

F(
∑

i

piρi ,
∑

i

piσi ) ≥
∑

i

piF(ρi , σi ).

Fact 8 ( [13], [23]): (Quantum Substate Theorem)
Given ρ, σ ∈ D(A), such that supp(ρ) ⊂ supp(σ ). For any
ε > 0, there exists ρ′ ∈ D(A) such that

F(ρ, ρ′) ≥ 1− ε and S∞
(
ρ′
∥∥σ )≤ S(ρ‖σ)+1

ε
+log

1

1−ε .
Fact 9 [10], [11]: (Gentle Measurement Lemma) Let

ρ ∈ D(A) and � be a projector. Then,

F(ρ,
�ρ�

Tr�ρ
) ≥ √Tr�ρ.

Proof: Introduce a register B , such that |B| ≥ |A|. Let φ ∈
D(AB) be a purification of ρ. Then (� ⊗ IB)φ(� ⊗ IB) is
a purification of �ρ�. Hence (using monotonicity of fidelity
under quantum operation, Fact 4)

F(ρ,
�ρ�

Tr�ρ
)F (φ, (�⊗ IB)φ(�⊗ IB))

= |〈φ| (�⊗ I ) |φ〉|
‖(�⊗ I ) |φ〉‖ =

√
Tr(�ρ).

�
Fact 10: Given quantum states σAB ∈ D(AB), ρA ∈ D(A),

such that supp(ρA) ⊂ supp(σA), it holds that

Tr(elog(σAB )−log(σA⊗IB )+log(ρA⊗IB )) < 1.
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Proof: Consider,

Tr(elog(σAB )−log(σA⊗IB )+log(ρA⊗IB ))

<

∫ ∞
0

duTr(σAB
1

σA + u IA
ρA

1

σA + u IA
)

(Theorem5, [25])
=
∫ ∞

0
duTr(

1

σA + u IA
σA

1

σA + u IA
ρA)

= Tr(σA

∫ ∞
0

du
1

(σA + u IA)2
ρA)

= Tr(σAσ
−1
A ρA) = 1.

�
Fact 11: [25], [26](Strong Subadditivity Theorem) For

any tripartite quantum state ρ ∈ D(ABC), it holds that
I(A : C |B)ρ ≥ 0.

Fact 12 [19, p. 515], [27]: For a quantum state ρAB ∈
D(AB), it holds that |S(ρA)− S(ρB)| ≤ S(ρAB ) ≤ S(ρA) +
S(ρB). Furthermore,

I(A : B)ρ = S(ρA)+ S(ρB)− S(ρAB ) ≤ 2S(ρA).
Fact 13: Let ρA1 A2...Ak BC ∈ D(A1 · · · Ak BC) such that

ρA1 A2 ...Ak = ρA1 ⊗ ρA2 ⊗ . . . ρAk . Then,

I(A1 A2 . . . Ak : B |C)ρ ≥
k∑

i=1

I(Ai : B |C)ρ .
Proof: Consider,

I(A1 A2 . . . Ak : B |C)ρ
= I(A1 : B |C)ρ + I(A2 A3 . . . Ak : B |A1C)ρ
= I(A1 : B |C)ρ + I(A2 A3 . . . Ak : A1 BC)ρ
− I(A1 : A2 A3 . . . Ak)ρ

= I(A1 : B |C)ρ + I(A2 A3 . . . Ak : A1 BC)ρ
≥ I(A1 : B |C)ρ + I(A2 A3 . . . Ak : B |C)ρ

The first and second equalities follow from the definition
of the conditional mutual information. The third equality is
from the independence between A1 and A2 A3 . . . Ak . The last
inequality is from strong subadditivity (Fact 11). Proof follows
by induction. �

For the facts appearing below, the proofs can be
obtained by direct calculations and hence have been
skipped.

Fact 14: Given ρAB , σAB ∈ D(AB), such that
supp(σAB ) ⊂ supp(ρAB ), ρAB = ∑

a μ(a) |a〉〈a|A ⊗ ρa
B

and σAB = ∑
a μ
′(a) |a〉〈a|A ⊗ σ a

B , where ρa
B , σ

a
B ∈ D(B),

μ(a), μ′(a) ≥ 0 and
∑

a μ(a) = 1,
∑

a μ
′(a) = 1. It holds

from the definition of relative entropy that

S(σAB‖ρAB) = S
(
μ
∥∥μ′)+ E

a←μ′
[
S
(
σ a

B

∥∥ρa
B

)]
.

Fact 15: Given a classical-quantum state ρAB ∈ D(AB) of
the form ρAB = ∑

a μ(a) |a〉〈a|A ⊗ ρa
B , where ρa

B ∈ D(B)
and

∑
a μ(a) = 1, μ(a) ≥ 0, we have

I(A : B)ρ = S

(∑
a

μ(a)ρa

)
−
∑

a

μ(a)S (ρa) ,

Fact 16: Let ρABC be a state of the form ρABC =∑
c μ(c) |c〉〈c|C ⊗ ρc

AB , where ρc
AB ∈ D(AB) and∑

c μ(c) = 1, μ(c) ≥ 0. Then

I(A : B |C)ρ =
∑

c

μ(c)I(A : B)ρc .

Communication Complexity

In this section we briefly describe entanglement assisted
quantum one-way communication complexity. A mathemati-
cally detailed definition has been given by Touchette in [28].
Let f ⊆ X × Y × Z be a relation. Alice holds input
x ∈ X and Bob holds input y ∈ Y . They may share prior
quantum states independent of the inputs. Alice makes a
unitary transformation on her qubits, based on her input x ,
and sends part of her qubits to Bob. Bob makes a unitary
operation, based on his input y, and measures the last few
qubits (answer registers) in the computational basis to get the
answer z ∈ Z . The answer is declared correct if (x, y, z) ∈ f .
Let Qent,A→B

ε ( f ) represent the quantum one-way commu-
nication complexity of f with worst case error ε, that is
minimum number of qubits Alice needs to send to Bob,
over all protocols computing f with error at most ε on any
input (x, y).

We let Qent,A→B,μ
ε ( f ) represent distributional quantum

one-way communication complexity of f under distribution μ
over X × Y with distributional error at most ε. This is the
communication cost of the best protocol computing f with
maximum error ε averaged over distribution μ. Following is
Yao’s min-max theorem connecting the worst case error and
the distributional error settings.

Fact 17: [29] Qent,A→B
ε ( f ) = maxμ Qent,A→B,μ

ε ( f ).

III. A QUANTUM COMPRESSION PROTOCOL

Following is our main result in this section.
Theorem 18: Given quantum states ρ, σ on a Hilbert

space H with dimension N, such that supp(ρ) ⊂ supp(σ ).
Alice is given the eigen-decomposition of ρ and Bob is given
the eigen-decomposition of σ . Let S (ρ‖σ) and ε > 0 be
known to Alice and Bob. There exists an entanglement assisted
quantum one-way communication protocol, with Alice sending
O(S(ρ‖σ)+ 1)/ε4) bits of communication to Bob, such that
the state ρ̃ that Bob outputs at the end of the protocol satisfies
F(ρ, ρ̃) ≥ 1− 5ε.

Proof: Let the eigen-decomposition of ρ be∑N
i=1 ai |ai 〉〈ai | and that of σ be

∑N
i=1 bi |bi〉〈bi |. Define

c
def= S (ρ‖σ), δ def= (ε/3)4 and c′ def= (c + 2)/δ. Without

loss of generality, assume a1, a2 . . . aN ,
2c′
δ b1,

2c′
δ b2 . . .

2c′
δ bN

to be rational numbers, and define K be the least common
multiple of their denominators. The error due to this
assumption can be made arbitrarily close to 0, for large
enough K .

Let {|1〉 , |2〉 . . . |N〉} be an orthonormal basis for H. Intro-
duce registers A1, B1 associated to H and registers A2, B2
associated to some Hilbert space H′ with an orthonormal basis
{|1〉 , |2〉 . . . |K 〉}.
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Consider the following state on A1, A2, B1, B2.

|S〉A1 A2 B1 B2

def= 1√
K N

N∑
i=1

|i, i〉A1 B1
⊗
(

K∑
m=1

|m,m〉A2 B2

)
(1)

For brevity, define registers A, B such that A
def= A1 A2 and

B
def= B1 B2.
The protocol is described below.

Input: Alice is given ρ = ∑N
i=1 ai |ai 〉〈ai |. Bob is

given σ =∑N
i=1 bi |bi 〉〈bi |.

Shared resources: Alice and Bob hold �N log( 1
δ )�

registers Ai
1 Ai

2 Bi
1 Bi

2 (i ∈ [�N log( 1
δ )�]), such that Ai

1 ≡
A1, Ai

2 ≡ A2, Bi
1 ≡ B1, Bi

2 ≡ B2. The shared state
in register Ai

1 Ai
2 Bi

1 Bi
2 is |S〉Ai

1 Ai
2 Bi

1 Bi
2
. Let i refer to the

‘index’ of corresponding registers.
They also share infinitely many random hash functions

h1, h2, · · · , where each hl : {0, · · · , N − 1} → {0, 1}.
1) For i = 1 to �N log( 1

δ )�,
a) Alice performs the measurement
{PA, IA − PA} on each register Ai

1 Ai
2 where,

PA
def=
∑

i

|ai 〉〈ai |A1
⊗
⎛
⎝ K ai∑

m=1

|m〉〈m|A2

⎞
⎠ (2)

On each index i , she declares success if her
outcome corresponds to PA .

b) Bob performs the measurement
{PB , IB − PB} on each register Bi

1 Bi
2 where,

PB
def=

∑
i

|bi 〉〈bi |B1

⊗
⎛
⎜⎝

min{ K
δ 2c′bi ,K }∑
m=1

|m〉〈m|B2

⎞
⎟⎠ (3)

On each index i , he declares success if his
outcome corresponds to PB .

Endfor
2) If Alice does not succeed on any index, she aborts.
3) Else, Alice selects the first index m where she

succeeds and sends to Bob the binary encoding of
k = �m/N� using �log log 1

δ � bits.
4) Alice sends {hl(m mod N)| l ∈ [�c′ + log( 1

δ ) +
2 log 1

ε �]} to Bob.

5) Define SB
def= {t| Bob succeeds on index t} ∩

{(k-1)N, · · · , k N − 1}. If SB is empty, he outputs
|0〉〈0|. Bob selects the first index n in SB such that
∀l ∈ [�c′ + log( 1

δ ) + 2 log 1
ε �] : hl(n mod N) =

hl(m mod N) and outputs the state in Bn
1 (if no

such index exists, he outputs |0〉〈0|).

We analyze the protocol through a series of claims. Fol-
lowing claim computes the probability of success for Alice
and Bob.

Claim 19: For each index i , Pr [Alice succeeds] = 1
N ;

Pr[Bob succeeds] ≤ 2c′
δN

Proof: Follows from direct calculation. �
From quantum substate theorem (Fact 8), there exists a

state ρ′ which satisfies F(ρ, ρ′) ≥ 1− δ and

S∞
(
ρ′
∥∥σ ) ≤ S(ρ‖σ)+ 1

δ
+ log

1

1− δ
≤ S(ρ‖σ)+ 2

δ
= c′.

We prove the following claim which is of independent interest
as well.

Claim 20: Let ρ′ have the eigen-decomposition ρ′ =∑
i gi |gi〉 〈gi |. For any p > 0 and every |gi〉 〈gi |, we have∑
j | b j≤p·gi

∣∣〈b j |gi〉
∣∣2 ≤ 2c′ · p.

Proof: Since ρ′ ≤ 2c′σ , it implies gi |gi〉 〈gi | ≤ 2c′σ .
Let � be the projection onto the eigen-space of σ with
eigenvalues less than or equal to p · gi . We have �σ� ≤
p · gi · �. After applying � on both sides of the equation
gi |gi〉 〈gi | ≤ 2c′σ and taking operator norm on both sides,
we get gi

∑
j : b j≤p·gi

∣∣〈b j |gi〉
∣∣2 ≤ 2c′ · p · gi . This implies the

lemma. �
Define

|SA(ρ)〉 def= 1√
K

N∑
i=1

|ai 〉 |ai 〉 ⊗
⎛
⎝ K ai∑

m=1

|m,m〉
⎞
⎠ ;

∣∣SA(ρ
′)
〉 def= 1√

K

N∑
i=1

|gi 〉 |gi〉 ⊗
⎛
⎝�K gi�∑

m=1

|m,m〉
⎞
⎠ .

Here |ai 〉 (similarly |gi〉) is the state obtained by taking
complex conjugate of |ai 〉 (|gi 〉), with respect to the basis
{|1〉 , |2〉 . . . |N〉} in H.

The following claim asserts that |SA(ρ)〉 and
∣∣SA(ρ

′)
〉

are
close if ρ and ρ′ are close.

Claim 21:
∣∣〈SA(ρ)|SA(ρ

′)〉∣∣ ≥ 1− 2(1− F(ρ, ρ′))1/4.
Proof: Define Rij

def= ai
∣∣〈ai |g j 〉

∣∣2 and R′i j
def=

gi
∣∣〈ai |g j 〉

∣∣2. Note that both R
def= {Rij } and R′ def= {R′i j } form

probability distributions over [N2]. Also note that F(R, R′) =
Tr(
√
ρ
√
ρ′). Consider∣∣〈SA(ρ)|SA(ρ

′)〉∣∣ =∑
i, j

min(Rij , R′i, j )

= 1− 1

2

∥∥R − R′
∥∥

1

≥ 1−
√

1− F(R, R′)2

= 1−
√

1− (Tr
√
ρ
√
ρ′)2

≥ 1−
√

2(1− Tr
√
ρ
√
ρ′)

≥ 1−
√

2
√

1− F(ρ, ρ′)2

≥ 1− 2(1− F(ρ, ρ′))1/4.

where the first equality is from the definitions of |SA(ρ)〉
and

∣∣SA(ρ
′)
〉
; the second equality is from the definition of 	1

distance; the first inequality is from 2; the second inequality
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is from the fact that Tr
√
ρ
√
ρ′ ≤ 1; the third inequality is

from Facts 6. �
We use these claims to prove the following.
Claim 22: For each index i ,

Pr[Bob succeeds| Alice succeeds] ≥ 1− δ − 2δ1/4 ≥ 1− ε.
Proof: Consider,

(IA ⊗ PB)
∣∣SA(ρ

′)
〉

= 1√
K

N∑
i, j=1

∣∣g j
〉 |bi 〉 〈bi |g j 〉

⎛
⎜⎝

min{�K g j �, K
δ 2c′bi }∑

m=1

|m,m〉
⎞
⎟⎠ .

Therefore,

∥∥(IA ⊗ PB)
∣∣SA(ρ

′)
〉∥∥2 ≥

N∑
i, j=1

∣∣〈bi |g j 〉
∣∣2 min{g j ,

1

δ
2c′bi }

≥
N∑

j=1

g j

⎛
⎜⎝ ∑

i| bi≥δ2−c′g j

∣∣〈bi |g j 〉
∣∣2
⎞
⎟⎠

≥
N∑

j=1

g j (1− δ)

= 1− δ. (using Claim 20) (4)

Using the above,

Pr[Bob succeeds| Alice succeeds]

= Tr(IA ⊗ PB) |SA(ρ)〉〈SA(ρ)|
≥ Tr(IA ⊗ PB)

∣∣SA(ρ
′)
〉〈

SA(ρ
′)
∣∣

− 1

2

∥∥SA(ρ)− SA(ρ
′)
∥∥

1

= Tr(IA ⊗ PB)
∣∣SA(ρ

′)
〉〈

SA(ρ
′)
∣∣

−
√

1− |〈SA(ρ)|SA(ρ′)〉|2 (Fact 2)

≥ 1− δ − 2
√
(1− F(ρ, ρ′))1/2

(Claim 21 and Eq. (4))

�
Finally, we show that if Alice and Bob succeed together on

an index, the state in register B with Bob is close to ρ.
Claim 23: Given that both Alice and Bob succeed, fidelity

between ρ and the state of the register B is at least√
1− δ − 2δ1/4 ≥ 1− ε .

Proof: From gentle measurement lemma (Fact 9),

F(SA(ρ),
(IA ⊗ PB) |SA(ρ)〉〈SA(ρ)| (IA ⊗ PB)

Tr(IA ⊗ PB) |SA(ρ)〉〈SA(ρ)| )

≥ √Tr(IA ⊗ PB) |SA(ρ)〉〈SA(ρ)|.
Since the marginal of |SA(ρ)〉 on register B is ρ and partial
trace does not decrease fidelity (Fact 4), using item 2. above,
the desired result follows.

�
Let j be the first index where Alice and Bob both succeed.

As described in the protocol, m is the first index where Alice
succeeds and n is the index such that Bob outputs the state in
Bn

1 . We have the following claim,
Claim 24: With probability at least 1− 4ε, m = n = j .

Before proving Claim 24, let us define the following “bad”
events.

Definition 25: • T1 is the event that Alice does not
succeed on any of the indices.

• T2 is the event that m /∈ SB conditioned on ¬T1 .
• T3 represents the event that n �= m conditioned on ¬T1.
Notice that if none of above events occur, then both Alice

and Bob output the same index n = m, and since m is the
first index at which Alice succeeds, n = m = j .

We have the following claim.
Claim 26: It holds that: 1. Pr [T1] ≤ ε;

2. Pr[T2] ≤ ε; 3. Pr[T3] ≤ 3 ε.
Proof:

1) Pr[T1] ≤ (1− 1
N

)�N ·log 1
ε � ≤ exp−�log 1

ε � ≤ ε.
2) Follows from Claim 22.
3) For this argument we condition on ¬T1 for all events

below. From Claim 19 and the fact that Bob inde-
pendently measures each index, we have E [|SB |] =
N · Pr[Bob succeeds] ≤ 2c′

δ . Using Markov’s inequality,

Pr

[
|SB | ≥ 2c′

δε

]
≤ δε

2c′ · E[|SB |] ≤ ε. (5)

Thus

Pr[T3] ≤ Pr

[
|SB | ≥ 2c′

δε
or m /∈ SB

]

+ Pr

[
T3 | m ∈ SB and |SB | ≤ 2c′

δε

]

≤ Pr

[
|SB | ≥ 2c′

δε

]
+ Pr[T2]

+ Pr

[
T3 | m ∈ SB and |SB | ≤ 2c′

δε

]

≤ 2ε + Pr

[
T3 | m ∈ SB and |SB | ≤ 2c′

δε

]

(Eq. (5) and item 2. of this claim)

≤ 2ε + 2−�c′+log 1
δ+2 log 1

ε � · 2c′

δε
≤ 3ε.

�
We bound the probability that m �= n. If m = n, then m

being the first index on which Alice succeeds, we have m =
n = j .

Proof of Claim24: We conclude the claim since,

Pr[n �= m] ≤ Pr[T1]+ Pr[¬T1] · Pr[T3] ≤ 4ε.

�
From claims 19,22 and 24, the probability that Bob learns

the index j is atleast 1 − 4ε. Conditioned on this event,
Claim 23, implies that the state ρ′ ∈ D(B j ) that Bob outputs
satisfies F(ρ′, ρ) ≥ 1− ε. Conditioned on the event that Bob
learns the wrong index or the protocol is aborted, let the
state output by Bob be μ. Then Bob outputs the state ρ̃ =
αρ′ + (1−α)μ, where α ≥ 1−4ε. Using concavity of fidelity
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(Fact 7), we have F(ρ̃, ρ) ≥ αF(ρ′, ρ) + (1 − α)F(μ, ρ) ≥
(1− 4ε)(1− ε) ≥ 1− 5ε.

The communication cost of above protocol is

�log log
1

δ
� + �c′ + log

1

δ
+ 2 log

1

ε
� ≤ �34 c + 2

ε4 + 7 log
1

ε
�.

This completes the proof of theorem. �
It may be noted that variants of the part of protocol that

uses hash functions, have appeared in many other works such
as [1] and [30].

Remark 27: Note that if Alice and Bob get a real number
r > S(ρ‖σ), instead of S(ρ‖σ) (all other inputs remaining the
same), the protocol above works in the same fashion, with the
communication upper bounded by O((r + 1)/ε4).

A. Compression With Side Information

Here we present a variant of our protocol with side infor-
mation. We start with the following.

Lemma 28: Let A, B be two registers. Alice is given the
eigen-decomposition of a bipartite state ρAB ∈ D(AB). Bob is
given the eigen-decompositions of a bipartite state σAB ∈
D(AB) and the state ρA

def= TrB(ρAB ), such that supp(ρAB) ⊂
supp(σAB ). Define σA

def= TrB(σAB ). Let S (ρAB‖σAB ) −
S(ρA‖σA) and ε > 0 be known to Alice and Bob. There exists
a protocol, in which Alice and Bob use shared entanglement
and Alice sends O((S(ρAB‖σAB )−S(ρA‖σA)+1)/ε4) bits of
communication to Bob such that the state ρ̃AB that Bob outputs
at the end of the protocol satisfies F(ρAB , ρ̃AB ) ≥ 1− 5ε.

Proof: Following equality follows from definitions.

S(ρAB‖σAB )− S(ρA‖σA)

= S
(
ρAB

∥∥∥elog(σAB )−log(σA⊗IB )+log(ρA⊗IB )
)
.

Define,

Z = Tr(elog(σAB )−log(σA⊗IB )+log(ρA⊗IB ));
τAB = elog(σAB )−log(σA⊗IB )+log(ρA⊗IB )/Z .

It holds that Z ≤ 1 (from Fact 10) and hence
S (ρAB‖τAB ) ≤ S (ρAB‖σAB ) − S (ρA‖σA). Bob computes
the eigen-decomposition of τAB using his input. They run the
protocol given by Theorem 18 with the following setting: Alice
knows a state ρAB , Bob knows a state τAB and both know a
number (= S(ρAB‖σAB )−S(ρA‖σA)) greater than S(ρAB‖τAB).
They also know the error parameter ε > 0. By the virtue of
Remark 27, at the end of the protocol, Bob obtains a state ρ̃AB ,
such that F(ρAB , ρ̃AB ) ≥ 1− 5ε. Communication from Alice
is upper bounded by O((S(ρAB‖σAB )− S(ρA‖σA)+ 1) /ε4).

�
We now present the protocol P ′ as mentioned in the

Introduction.
Theorem 29: Let A, B be two registers associated to

Hilbert spaces HA,HB respectively. Alice and Bob know
a Stinespring representation (Fact 3) of a quantum channel
E : L(A) → L(B). Alice is given the eigen-decomposition
of a state ρ ∈ D(A). Bob is given the eigen-decompositions
of a state σ ∈ D(A) (such that supp(ρ) ⊂ supp(σ )) and the
state ρ′ = E(ρ). Let S(ρ‖σ) − S(E(ρ)‖E(σ )) and ε > 0 be

known to Alice and Bob. There exists a protocol, in which
Alice and Bob use shared entanglement and Alice sends
O((S(ρ‖σ)− S(E(ρ)‖E(σ )) + 1)/ε4) bits of communication
to Bob, such that the state ρ̃ that Bob outputs at the end of
the protocol satisfies F(ρ, ρ̃) ≥ 1− 5ε.

Proof: Let a Stinespring representation of E be
E(ω) = TrA,C

(
V (ω |0〉〈0|BC)V

†
)
, where V : HA ⊗ HB ⊗

HC → HA ⊗ HB ⊗ HC is a unitary operation (Fact 3).
Alice and Bob compute the states V (ρ ⊗ |0〉〈0|BC)V † and
V (σ ⊗ |0〉〈0|BC) V † , respectively. From Lemma 28 and
the equality S

(
V (ρ ⊗ |0〉〈0|BC) V †

∥∥V (σ ⊗ |0〉〈0|BC) V †
) =

S (ρ‖σ), there exists a protocol, in which Alice and Bob
use shared entanglement and Alice sends O(S (ρ‖σ) −
S (E(ρ)‖E(σ )) + 1)/ε4 bits of communication to Bob, such
that the state ρ̃ABC that Bob gets at the end of the protocol
satisfies F(V (ρ ⊗ |0〉〈0|BC) V †, ρ̃ABC ) ≥ 1−5ε. Bob outputs
ρ̃ = TrBC V † (ρ̃ABC ) V . From monotonicity of fidelity under
quantum operation (Fact 4), F(ρ, ρ̃) ≥ 1− 5ε. �

IV. A DIRECT SUM THEOREM FOR QUANTUM ONE-WAY

COMMUNICATION COMPLEXITY

As a consequence of Theorem 18 we obtain the fol-
lowing direct sum result for all relations in the model of
entanglement-assisted one-way communication complexity.

Theorem 30: Let X ,Y,Z be finite sets, f ⊆ X × Y × Z
be a relation, 0 < ε, δ be error parameters and k > 1 be an
integer. We have

Qent,A→B
ε

(
f k
)
≥ �

(
k
(
δ9 · Qent,A→B

ε+δ ( f )− 1
))
.

Proof: Let μ be any distribution over X×Y . We show the
following, which combined with Fact 17 implies the desired:

Qent,A→B,μk

ε

(
f k
)
≥ �

(
k
(
δ9 ·Qent,A→B,μ

ε+δ ( f )− 1
))
.

Let Q be a quantum one-way protocol with communication
c · k computing f k with overall probability of success at least
1−ε under distribution μk . Let the inputs to Alice and Bob be
given in registers X1, X2 . . . Xk and Y1,Y2 . . .Yk . For brevity,

we define X
def= X1, X2 . . . Xk and Y

def= Y1,Y2 . . .Yk . Thus,
the state

∑
xy μ

k(x, y) |xy〉〈xy|XY represents the joint input,
where x is drawn from X and y is drawn from Y .

Let σE A,EB be the shared entanglement between Alice and
Bob where register E A is with Alice and EB with Bob. Alice
applies unitary U : HX ⊗ HE A → HX ⊗ HA ⊗ HM , where
E A ≡ AM , sends the message register M to Bob, and then
Bob applies the unitary V : HY ⊗ HM ⊗ HEB → HY ⊗
HB ′ ⊗ HZ , where M EB ≡ B ′Z . Since unitary operations
by Alice and Bob are conditioned on their respective inputs,
the unitaries U, V are of the form U =∑x |x〉〈x |X ⊗Ux and
V = ∑

y |y〉〈y|Y ⊗ Vy , where Ux : HE A → HA ⊗ HM and
Vy : HM⊗HEB → HB ′ ⊗HZ . Let the following be the global
state before Alice applies her unitary:

θXY E A EB =
∑
xy

μk(x, y) |xy〉〈xy|XY ⊗ σE A EB .

Let D = D1 · · · Dk be a random variable uniformly dis-
tributed over {0, 1}k and independent of the input XY . Define
random variables U1,U2 . . .Uk such that Ui = Xi if Di = 0
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and Ui = Yi if Di = 1. Let U = U1,U2 . . .Uk . Consider the
state θXY E A EB DU , with registers D,U as defined above.

Let ρXY AM EB DU
def= UθXY E A EB DU U† be the state after

Alice applies her unitary and sends M to Bob. Since

I(X E A EB : Y |DU)θ = 0,

it holds that

I(X AEB M : Y |DU)ρ = 0.

From the definition of DU , we thus have (below −i represents
the set {1, 2 . . . i − 1, i + 1 . . . k}),

I(X−i AEB M : Y |Xi D−i U−i )ρ

= I(X AEB M : Y−i |Yi D−i U−i )ρ = 0.

Since log |M| ≤ ck and register EB is independent of registers
XY DU in the state ρEB XY DU , we have

I(XY DU : M EB)ρ = I(XY DU : EB)ρ

+ I(XY DU : M |EB)ρ

= I(XY DU : M |EB)ρ

≤ 2 log |M| ≤ 2ck.

where the second last inequality is from Fact 12. Consider

2ck ≥ I(XY DU : M EB)ρ ≥ I(XY : M EB |DU)ρ

≥
k∑

i=1

I(Xi Yi : M EB |DU)ρ (Fact 13)

=
k∑

i=1

I(Xi Yi : M EB |Di Ui D−i U−i )ρ

= 1

2

k∑
i=1

I(Xi : M EB |Yi D−i U−i )ρ

+ I(Yi : M EB |Xi D−i U−i )ρ

≥ 1

2

k∑
i=1

I(Xi : M EB |Yi D−i U−i )ρ .

where the last equality is from the definition of DU and
the last inequality is from Fact 11. Hence there exists j ∈ [k]
such that

I
(
X j : M EB

∣∣Y j D− j U− j
)
ρ
≤ 4c. (6)

Furthermore, we have

I
(
X j Y j : D− j U− j

)
ρ
= I

(
X j Y j : D− j U− j

)
θ
= 0. (7)

since the unitary by Alice does not change the state on registers
DU XY .

For brevity, set B
def= M EB . Define the following states,

which are obtained by conditioning on various classical
registers:

ρ
x j y j d− j u− j
B

def=
〈
x j y j d− j u− j

∣∣ ρB XY DU
∣∣x j y j d− j u− j

〉
〈
x j y j d− j u− j

∣∣ ρXY DU
∣∣x j y j d− j u− j

〉 ,
ρ

x j d− j u− j
B

def=
〈
x j d− j u− j

∣∣ ρB X DU
∣∣x j d− j u− j

〉
〈
x j d− j u− j

∣∣ ρX DU
∣∣x j d− j u− j

〉
ρ

y j d− j u− j
B

def=
〈
y j d− j u− j

∣∣ ρBY DU
∣∣y j d− j u− j

〉
〈
y j d− j u− j

∣∣ ρY DU
∣∣y j d− j u− j

〉

From (6), we have

I
(
Y : B

∣∣X j D− j U− j
)
ρ
= 0.

which is equivalent to, using Fact 16 and the fact that registers
X,Y,U, D are classical in ρB :

E
x j y j d− j u− j

[
S
(
ρ

x j y j d− j u− j
B

∥∥∥ρx j d− j u− j
B

)]
= 0,

where x j y j d− j u− j are drawn from the distribution
X j Y j D− j U− j .

This implies ρ
x j y j d− j u− j
B = ρ

x j d− j u− j
B for all

x j , y j , d− j u− j .
From (6), and Fact 16,

E
x j y j d− j u− j

[
S
(
ρ

x j y j d− j u− j
B

∥∥∥ρ y j d− j u− j
B

)]
≤ 4c,

where x j y j d− j u− j are drawn from the distribution
X j Y j D− j U− j .

Let G
def={

(x j , y j , d− j , u− j ) : S
(
ρ

x j y j d− j u− j
B

∥∥∥ρ y j d− j u− j
B

)
≤ 4c

δ

}
.

By Markov’s inequality,

Pr
[
X j Y j D− j U− j ∈ G

] ≥ 1− δ.
Now, we exhibit an entanglement-assisted one-way proto-

col Q′ for f with communication less than c and distributional
error ε under distribution μ.

1) Alice and Bob share public coins according to
distribution ρD− j U− j , and the shared entanglement
needed to run the protocol P from Theorem 18.

2) Alice and Bob are given the input (x, y) ∼ μ. They
embed the input to the j -th coordinate X j Y j . The
input is independent of shared randomness, from
equation (7).

3) Given input (x j , y j ) ≡ (x, y) and shared
public coins d− j u− j , Alice knows the eigen-

decomposition of the state ρ
x j y j d− j u− j
B , since

ρ
x j y j d− j u− j
B = ρ

x j d− j u− j
B . Bob knows the eigen-

decomposition of state ρ
y j d− j u− j
B .

4) They run the protocol in Theorem 18 with inputs
ρ

x j y j d− j u− j
B , 4c

δ (given to Alice) and ρ
y j d− j u− j
B ,

4c
δ (given to Bob). After communicating O(4c/δ9)

bits to Bob, Bob receives a state σ
x j y j d− j u− j
B

satisfying ‖σ x j y j d− j u− j
B − ρ

x j y j d− j u− j
B ‖1 ≤ δ if

(x j , y j , d− j , u− j ) ∈ G.
5) Bob samples the distribution from ρY− j , since he

has the registers D− j U− j Y j . This is possible from
equation 6, which states that register Y− j is inde-
pendent of registers A, B, X conditioned on regis-
ters D− j U− j Y j .

6) Bob applies the unitary V , as in the protocol Q,
on registers BY ≡ EB MY and then measures the
register Z . He outputs the outcome.
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From the protocol, it is clear that overall distributional error
in Q′ is at most 2δ + ε. The error 2δ occurs since the state
σ

x j y j d− j u− j
B satisfies ‖σ x j y j d− j u− j

B − ρx j y j d− j u− j
B ‖1 ≤ δ and

the probability that (x j , y j , d− j , u− j ) /∈ G is at most δ.
The error ε is due to the original protocol Q. Hence

Qent,A→B,μ
ε+2δ ( f ) ≤ O((c + 1)/δ9),

which implies (changing δ→ δ
2 )

Qent,A→B,μk

ε

(
f k
)

≥ �
(

k
(
δ9 · Qent,A→B,μ

ε+δ ( f )− 1
))
.

�

V. QUANTUM CORRELATED SAMPLING

In this section, we give a quantum analogue to classical
correlated sampling. In our framework, Alice and Bob (given
quantum states ρ and σ respectively as inputs) create a joint
quantum state with marginals ρ and σ on respective sides.
The joint state has the property that same projective mea-
surement performed by Alice and Bob gives very correlated
outcomes, if ρ and σ are close to each other in 	1 distance.
Following theorem makes this sampling task precise.

Theorem 31: Let ρ, σ be quantum states on a Hilbert
space H of dimension N. Alice is given the eigen-
decomposition of ρ and Bob is given the eigen-decomposition
of σ . There exists a zero-communication protocol satisfying
the following.

1) Alice outputs registers A1, A2 and and Bob outputs
registers B1, B2 respectively, such that state in A1 is ρ,
the state in B1 is σ and A1 ≡ B1, A2 ≡ B2.

2) Let M = {M1,M2 . . .Mw} be a projective measurement,
in the support of A1 A2. Let M be performed by Alice
on the joint system A1 A2 with outcome I ∈ [w] and by
Bob on the joint system B1 B2 with outcome J ∈ [w].
Then Pr[I = J ] ≥

(
1−

√
‖ρ − σ‖1 − 1

4 ‖ρ − σ‖21
)3

.

Proof: Let eigen-decomposition of ρ be
∑N

i=1 ai |ai 〉〈ai |
and of σ be

∑N
i=1 bi |bi 〉〈bi |. Let {|1〉 , |2〉 . . . |N〉} be an ortho-

normal basis for H. We assume that a1, . . . , aN , b1, . . . bN are
rational numbers and let K be the least common multiple of
their denominators. The error due to this assumption goes to
0 as K →∞.

Introduce registers A1, B1 associated to H and registers
A2, B2 associated to some Hilbert space H′ with an ortho-
normal basis {|1〉 , |2〉 . . . |K 〉}.

Consider the following state shared in A1, A2, B1, B2.

|S〉A1 B1 A2 B2

def= 1√
K N

N∑
i=1

|i, i〉A1 B1
⊗
(

K∑
m=1

|m,m〉A2 B2

)

For brevity, define the registers A
def= A1 A2 and B

def= B1 B2.
The protocol is described below.

Input: Alice is given ρ = ∑N
i=1 ai |ai 〉〈ai |. Bob is

given σ =∑N
i=1 bi |bi 〉〈bi |.

Shared resources: Alice and Bob hold infinitely many
registers Ai

1 Ai
2 Bi

1 Bi
2 (i > 0), such that Ai

1 ≡ A1, Ai
2 ≡

A2, Bi
1 ≡ B1, Bi

2 ≡ B2. The shared state in register
Ai

1 Ai
2 Bi

1 Bi
2 is |S〉Ai

1 Ai
2 Bi

1 Bi
2
. Let A ≡ A1 A2 and B ≡ B1 B2

be used as output registers. Let i refer to the ‘index’ of
corresponding registers.

1) For each i > 0, Alice performs the measurement
{PA, I − PA} on the registers Ai

1 Ai
2, where

PA
def=
∑

i

|ai〉〈ai |A1
⊗
⎛
⎝ K ai∑

m=1

|m〉〈m|A2

⎞
⎠

She declares success if she obtains outcome
corresponding to PA . She stops once she succeeds
in some register A j , and swaps A j with A.

2) For each i > 0, Bob performs the measurement
{PB, I − PB} on the registers Bi

1 Bi
2, where

PB
def=
∑

i

|bi 〉〈bi |B1
⊗
⎛
⎝ K bi∑

m=1

|m〉〈m|B2

⎞
⎠

He declares success if he obtains outcome corre-
sponding to PB . He stops once he succeeds in some
register B j , and swaps B j with B .

At the end of above protocol, let the joint state in the
register AB be τ . The following claim shows the first part
of the theorem.

Claim 32: TrA2 B1 B2(τ ) = ρ and TrA1 A2 B2(τ ) = σ .
Proof: It is easily seen that the marginal of the state

(PA ⊗ IB) |S〉 in register A is ρ. Similarly the marginal of
the state (IA ⊗ PB) |S〉 in register B in is σ . �

Following series of claims establish second part of the
theorem.

Claim 33:

τ ≥ (PA ⊗ PB) |S〉 〈S| (PA ⊗ PB)

1− 〈S| (IA − PA)⊗ (IB − PB) |S〉 .
Proof: Consider the event that Alice and Bob succeed at

the same index. The resulting state in AA1 B B1 is

(PA ⊗ PB) |S〉 〈S| (PA ⊗ PB)

〈S| (PA ⊗ PB) |S〉 ,

and this event occurs with probability

∞∑
i=0

〈S| (IA − PA)⊗ (IB − PB) |S〉i

· 〈S| (PA ⊗ PB) |S〉
= 〈S| (PA ⊗ PB) |S〉

1− 〈S| (IA − PA)⊗ (IB − PB) |S〉 .

Since the cases of Bob succeeding before Alice and Alice
succeeding before Bob add positive operators to τ , we get the
desired. �
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Claim 34: Let |θ〉 def= (PA⊗PA)|S〉‖(PA⊗PA)|S〉‖ . Then

〈θ | τ |θ〉 ≥

(
1−

√
‖ρ − σ‖1 − 1

4 ‖ρ − σ‖21
)2

1+
√
‖ρ − σ‖1 − 1

4 ‖ρ − σ‖21

≥
(

1−
√
‖ρ − σ‖1 −

1

4
‖ρ − σ‖21

)3

.

Proof: Consider,

〈θ | τ |θ〉 ≥ |〈θ | PA ⊗ PB |S〉|2
1− 〈S| (IA − PA)⊗ (IB − PB) |S〉 (Claim 33)

= |〈θ | PA ⊗ PB |S〉|2
2/N − 〈S| PA ⊗ PB |S〉
(using 〈S| PA ⊗ IB |S〉 = 〈S| IA ⊗ PB |S〉 = 1/N).

By direct calculation, we get

(PA ⊗ PB) |S〉 = 1√
K N

∑
i, j

|ai〉 〈b j |ai 〉
∣∣b j
〉 K min(ai ,b j )∑

m=1

|m,m〉;

X |θ〉 = 1√
K

∑
i

|ai 〉 |ai 〉
K ai∑
m=1

|m,m〉 .

Hence,

〈θ | τ |θ〉 ≥
(∑

i, j min(ai , b j )
∣∣〈ai |b j 〉

∣∣2)2

2 −∑i, j min(ai , b j )
∣∣〈ai |b j 〉

∣∣2 . (8)

Define Rij
def= ai

∣∣〈ai |b j 〉
∣∣2 and R′i j

def= bi
∣∣〈ai |b j 〉

∣∣2.
Note that both {Rij } and {R′i j } form probability distributions
over [N2]. Also note that F(R, R′) = Tr(

√
ρ
√
σ). Consider

(using relation between fidelity and 	1 distance, Facts 6 and 2),∑
i, j

min(Rij , R′i, j ) = 1− 1

2

∥∥R − R′
∥∥

1

≥ 1−
√

1− F(R, R′)2

= 1−
√

1− (Tr
√
ρ
√
σ)2

≥ 1−
√
‖ρ − σ‖1 −

1

4
‖ρ − σ‖21. (9)

Combining Equations (8) and (9) we get the desired. �
Claim 35: Let M = {M1,M2 . . .Mw} be a projective

measurement in the support of A1 A2. Let E =∑w
i=1 Mi⊗Mi .

Then Tr(E |θ〉〈θ |) = 1.
Proof: Since Mi is a projector in the support of A1 A2,

we have (Mi ⊗ Mi ) |θ〉 = (Mi ⊗ I ) |θ〉. Hence,

〈θ | E |θ〉 =
∑

i

〈θ |Mi ⊗ Mi |θ〉 =
∑

i

〈θ |Mi ⊗ I |θ〉 = 1.

�
Finally using monotonicity of fidelity under quantum

operation (Fact 4) and Claim 34 we get the second part of
the theorem as follows.√

Tr(Eτ ) ≥ F(τ, |θ〉〈θ |) = √〈θ | τ |θ〉
≥
(

1−
√
‖ρ − σ‖1 −

1

4
‖ρ − σ‖21

)3/2

.

�

VI. CONCLUSION AND OPEN QUESTIONS

We have described two one shot quantum protocols, one of
which has been applied to direct sum problem in quantum
communication complexity. Our first protocol is a compression
protocol, in which communication of a quantum state ρ (held
by Alice) can be made much smaller than log(|supp(ρ)|),
given a description of an another quantum state σ with Bob.
This protocol is then used to obtain a direct sum result for
one round entanglement assisted communication complexity.
It may be noted that this application has been superseded
by a recent result of Touchette [15] for bounded round
entanglement assisted communication complexity models.

Our second protocol is a quantum generalization of classical
correlated sampling. We show that if Alice and Bob are given
descriptions of quantum states ρ and σ , respectively, then
they can create a joint state with marginals ρ (on Alice’s
side) and σ (on Bob’s side), such that the joint state is
correlated. Any measurement done joint by both parties gives
highly correlated outcomes, if ρ and σ are close to each other
in 	1 distance.

Some interesting open questions related to this work are as
follows.

1) Can we show a direct product result for all relations
in the one-way entanglement assisted communication
model?

2) Can we show a direct product result for all rela-
tions in the bounded-round entanglement assisted
communication model?

3) Can we find other interesting applications of the
protocols appearing in this work?
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