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Abstract— This semi-tutorial paper introduces the partial-
inverse problem for polynomials and develops its application
to decoding Reed–Solomon codes and some related codes. The
most natural algorithm to solve the partial-inverse problem is
very similar to, but more general than, the Berlekamp–Massey
algorithm. Two additional algorithms are obtained as easy
variations of the basic algorithm: the first variation is entirely
new, while the second variation may be viewed as a version of the
Euclidean algorithm. Decoding Reed–Solomon codes (and some
related codes) can be reduced to the partial-inverse problem,
both via the standard key equation and, more naturally, via
an alternative key equation with a new converse. Shortened and
singly-extended Reed–Solomon codes are automatically included.
Using the properties of the partial-inverse problem, two further
key equations with attractive properties are obtained. The paper
also points out a variety of options for interpolation.

Index Terms— Reed–Solomon codes, polynomial remainder
codes, key equation, partial-inverse problem, partial-inverse
algorithm, Euclidean algorithm, Berlekamp–Massey algorithm.

I. INTRODUCTION

IN THIS paper, we consider the following problem and its
application to decoding Reed–Solomon codes and some

related codes.
Partial-Inverse Problem in F[x]/m(x): Let b(x) and m(x)

be nonzero polynomials over some field F , with deg b(x) <
deg m(x). For fixed d ∈ Z with 0 ≤ d ≤ deg m(x), find a
nonzero polynomial �(x) ∈ F[x] of the smallest degree such
that

deg
(

b(x)�(x) mod m(x)
)
< d. (1)

�
We will see that this problem has always a unique solution
(up to a scale factor), and the solution satisfies

deg�(x) ≤ deg m(x)− d. (2)

In the special case where d = 1 and gcd
(
b(x),m(x)

) = 1, the
solution �(x) is the inverse of b(x) in F[x]/m(x).

The partial-inverse problem is strongly reminiscent of
various “key equations” in the literature of Reed–Solomon
codes [2]–[8] and similar codes, and it is essentially equivalent
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to a modified Padé approximation problem due to McEliece
and Shearer, which can be solved by the Euclidean algo-
rithm [9], (see also [10, Sec. 5.7] and Appendix A). However,
the exact problem statement is new.

This paper is semi-tutorial in the following sense: much of
the material looks almost standard, but is not quite so; by
developing the theory from a new starting point—the partial
inverse problem—we gain generality and clarity, we unify
results from different approaches in the literature, and we
obtain many novelties in detail.

To set the stage, recall the two classical algorithms to
decode Reed–Solomon codes and some related codes: the
Berlekamp–Massey algorithm [3], [4] and the Euclidean algo-
rithm (due to Sugiyama [5]). The Euclidean algorithm is
considered to be more versatile (but perhaps slightly less
efficient) than the Berlekamp–Massey algorithm; for example,
the popular Shiozaki–Gao decoder [11], [12] is also based
on the Euclidean algorithm, see also [13] and Section V-D.
The Berlekamp–Massey algorithm and the Euclidean decoding
algorithm are actually related: explicit (and nontrivial) trans-
lations were given in [14]–[17], and further connections were
established in [18] and [19].

In order to clarify Berlekamp’s algorithm [3], Massey [4]
introduced the linear-feedback shift-register synthe-
sis (LFSRS) problem: this is the problem that the
Berlekamp–Massey algorithm solves intrinsically, and
from which its application to decoding is developed most
naturally. The LFSRS problem is similar, but not identical, to
the partial-inverse problem for m(x) = xν ; in particular, the
LFSRS problem does not always have a unique solution.

Likewise, in order to clarify Sugiyama’s algorithm (the
Euclidean algorithm), McEliece and Shearer [9] introduced a
modified Padé approximation problem that is essentially equiv-
alent to the partial-inverse problem (cf. Appendix A). Essen-
tially the same problem is also discussed in [10, Sec. 5.7].
In this prior literature, the properties of the problem (as far
as they are investigated) are all derived from the Euclidean
algorithm.

In this paper, we develop another perspective. First, we
investigate the partial-inverse problem without regard to any
algorithm, and we find many new properties of it that will
be helpful for decoding later on (cf. Sections II and III).
In particular, we prove (2), we give a characterization of the
solutions in terms of a gcd (Theorem 1), we discuss irrelevant
coefficients in b(x) and m(x) (and how to get rid of them),
and we show that the partial-inverse problem for general
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m(x) can be transformed into a partial-inverse problem with
m(x) = xν .

Second, we find that the most natural algorithm for solving
the partial-inverse problem is not the Euclidean algorithm,
but a new algorithm that resembles the Berlekamp–Massey
algorithm. In some special cases (including m(x) = xν − 1,
m(x) = xν , and m(x) = xν − x), the algorithm looks indeed
very much like, and is as efficient as, the Berlekamp–Massey
algorithm (but the input b(x) is processed in the reverse order).
We then note that this new algorithm is easily translated into
two further algorithms, one of which is entirely new and the
other may be viewed as a version of the Euclidean algorithm.
We thus obtain a transparent unification of the Berlekamp–
Massey approach with the Sugiyama approach, an additional
new algorithm, and a derivation of the Euclidean algorithm
that begins with the partial-inverse problem rather than with
the computation of a gcd.

Third, we show that decoding Reed–Solomon codes
(and some related codes) can be reduced to the partial-inverse
problem, not only via the standard key equation, but also (and
more naturally) via an alternative key equation with a new con-
verse. Shortened and singly-extended Reed–Solomon codes
(with an evaluation point at zero) are automatically included,
and the approach is easily adapted to polynomial remainder
codes [12], [20]–[23], which have not been amenable to
Berlekamp–Massey decoding. Using our earlier results on the
partial-inverse problem, we obtain two further key equations
with attractive properties.

Fourth, we address the interpolation problem, i.e., the
problem of recovering the codeword from the error locator
polynomial. We give two general transform-domain inter-
polation formulas, one of which has implicitly been used
in the Shiozaki–Gao decoder [11], [12] while the other
appears to be entirely new. In addition, we adapt Horiguchi–
Koetter interpolation [7], [24], which has been tied to
Berlekamp–Massey decoding, to our more general setting.

In the appendices, we discuss extensions of the partial-
inverse approach: first, to errors-and-erasures decoding, and
second, to polynomial remainder codes (which have not been
amenable to Berlekamp–Massey decoding).

We also note here that the partial-inverse approach can
be extended to decode interleaved Reed–Solomon codes and
similar codes beyond half the minimum distance [25], [26].
However, this extension is beyond the scope of the present
paper and will be fully developed in a companion paper.

This paper is structured as follows. The most basic prop-
erties of the partial-inverse problem are given in Section II.
Many additional new properties of the partial-inverse problem
are discussed in Section III. The new basic partial-inverse
algorithm and its two variations are given in Section IV.
Decoding Reed–Solomon codes is addressed in Section V.
The generalization to polynomial remainder codes is given
in Section VI, and Section VII concludes the main part of the
paper.

Additional pertinent material is given in the appendices.
Appendix A addresses the relations between the partial-
inverse problem and variations of Padé approximation prob-
lems. Appendix C shows how the standard key equation of

Reed–Solomon codes can be formulated as a partial-inverse
problem and solved by the algorithms of this paper.
Appendix D addresses an extended partial-inverse problem
where �(x) is required to have a given factor. Errors-and-
erasures decoding of Reed–Solomon codes and of polyno-
mial remainder codes is addressed in Appendix E and in
Appendix F, respectively.

The following notation will be used. The coefficient of x�

of a polynomial b(x) ∈ F[x] will be denoted by b�. The
leading coefficient (i.e., the coefficient of xdeg b(x)) of a
nonzero polynomial b(x) will be denoted by lcf b(x), and
we also define lcf(0)

�= 0. We will use “mod” both as in
r(x) = b(x) mod m(x) (the remainder of a division) and
as in b(x) ≡ r(x) mod m(x) (a congruence modulo m(x)).
We will also use “div” for polynomial division: if

a(x) = q(x)m(x)+ r(x) (3)

with deg r(x) < deg m(x), then q(x) = a(x) div m(x) and
r(x) = a(x) mod m(x).

The Hamming weight of e ∈ Fn will be denoted by wH(e).
For x ∈ R, �x� is the smallest integer not smaller than x , and
�x	 is the largest integer not larger than x .

II. BASIC PROPERTIES OF THE

PARTIAL-INVERSE PROBLEM

The partial-inverse problem as defined in Section I has the
following properties.

1) The stated assumptions imply deg m(x) ≥ 1.
2) For d = deg m(x), the problem is solved by �(x) = 1.

Smaller values of d will normally require a polynomial
�(x) of higher degree.

3) In the special case where d = 0, the solution is

�(x)
�= m(x)/ gcd

(
b(x),m(x)

)
. (4)

Proposition 1: The partial-inverse problem has always a
solution. �

Proof: The existence of a solution for d = 0 implies the
existence of a solution for any d ≥ 0. �

Proposition 2: The solution �(x) of a partial-inverse prob-
lem is unique up to a scale factor in F . �

Proof: Let �(1)(x) and �(2)(x) be two solutions of the
problem, which implies deg�(1)(x) = deg�(2)(x) ≥ 0.
Define

r (1)(x)
�= b(x)�(1)(x) mod m(x) (5)

r (2)(x)
�= b(x)�(2)(x) mod m(x) (6)

and consider

�(x)
�=

(
lcf �(2)(x)

)
�(1)(x)−

(
lcf �(1)(x)

)
�(2)(x). (7)

Then

r(x)
�= b(x)�(x) mod m(x) (8)

=
(

lcf �(2)(x)
)

r (1)(x)−
(

lcf �(1)(x)
)

r (2)(x) (9)

by the natural ring homomorphism F[x] → F[x]/m(x).
Clearly, (9) implies that �(x) also satisfies (1). But (7) implies
deg�(x) < deg�(1)(x), which is a contradiction unless
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�(x) = 0. Thus �(x) = 0, which means that �(1)(x) and
�(2)(x) are equal up to a scale factor. �

Proposition 3 (Degree Bound): If �(x) solves the partial-
inverse problem, then

deg�(x) ≤ deg m(x)− d. (10)

�
Proof: The case d = deg m(x) is obvious. Otherwise, let

ν
�= deg m(x)− d > 0, and consider the mapping

Fν+1 → Fν (11)

given by

(�0, . . . ,�ν) �→ �(x)
�= �0 +�1x + . . .+�νxν (12)

�→ r(x)
�= b(x)�(x) mod m(x) (13)

�→ (r0, . . . , rdeg m(x)−1) (14)

�→ (rd , . . . , rdeg m(x)−1). (15)

Clearly, this mapping is linear (over F), and its kernel is
nontrivial by (11). But any nonzero element in the kernel
corresponds (by (12)) to a nonzero polynomial �(x) that
satisfies (1). �

A sort of converse to Proposition 3 is given as Theorem 1
below. Another converse is Lemma 4 in Appendix C.

III. MORE ABOUT THE PARTIAL-INVERSE PROBLEM

The partial-inverse problem is not exhausted by
Propositions 2 and 3. In this section, we address a number
of additional aspects of this problem, which the reader may
prefer to skip on first reading this paper.

A. Minimal Partial Inverses

The following notion is closely related to the partial-inverse
problem and will play a prominent role in the proof of the
algorithm of Section IV.

Definition (Minimal Partial Inverse): For fixed nonzero
b(x) and m(x) ∈ F[x] with deg b(x) < deg m(x), a nonzero
polynomial �(x) ∈ F[x] is a minimal partial inverse of b(x)
mod m(x) if every nonzero �(1)(x) ∈ F[x] with

deg
(

b(x)�(1)(x) mod m(x)
)

≤ deg
(

b(x)�(x) mod m(x)
)

(16)

satisfies deg�(1)(x) ≥ deg�(x). �
Both �(x) = 1 and �(x) as in (4) are minimal partial

inverses of any b(x).
Proposition 4 (Minimal Partial Inverses Solve Partial-

Inverse Problems): The solution �(x) of the partial-inverse
problem is a minimal partial inverse of b(x) mod m(x).

Conversely,�(x) as in (4) solves the partial-inverse problem
with d = 0; every other minimal partial inverse �(x) of b(x)
mod m(x) solves the partial-inverse problem with

d = deg
(

b(x)�(x) mod m(x)
)

+ 1. (17)

�
Proof: Let �(x) be the solution of the partial-inverse

problem. If �(x) is not a minimal partial inverse, then there

exists �(1)(x) that satisfies (16) but deg�(1)(x) < deg�(x),
which is a contradiction. The converse is obvious. �

Proposition 5 (Minimal Partial Inverses of the Same Degree
Are Unique): For fixed nonzero b(x) and m(x) ∈ F[x] with
deg b(x) < deg m(x), let �(1)(x) and �(2)(x) be two minimal
partial inverses of b(x) with deg�(1)(x) = deg�(2)(x). Then
�(1)(x) = α�(2)(x) for some nonzero α ∈ F . �

Proof: Define r (1)(x) and r (2)(x) as in (5) and (6),
respectively, and assume (without loss of generality) that
deg r (1)(x) ≥ deg r (2)(x). By Proposition 4, �(1)(x) solves
the partial-inverse problem with

d = deg
(

b(x)�(1)(x) mod m(x)
)

+ 1. (18)

But �(2)(x) solves the same partial inverse problem. Thus
�(1)(x) = α�(2)(x) by Proposition 2. �

For any b(x) and any m(x), �(x) = 1 is a minimal
partial inverse of the smallest degree, and �(x) as in (4) is a
minimal partial inverse of the largest degree. The algorithms of
Section IV can be used to compute all minimal partial inverses
(for fixed b(x) and m(x)) in a single run (cf. Theorem 4) .

Theorem 1 (Degree Bound With a Converse): For fixed
nonzero b(x) and m(x) ∈ F[x] with deg b(x) < deg m(x), a
nonzero �(x) ∈ F[x] is a minimal partial inverse of b(x) if
and only if both

deg�(x)+ deg
(

b(x)�(x) mod m(x)
)
< deg m(x) (19)

and

gcd
(
�(x), q(x)

) = 1, (20)

where q(x)
�= b(x)�(x) div m(x). �

In the special case where q(x) = 0, (20) requires �(x) to
be a nonzero constant.

Proof of Theorem 1: Let

r(x)
�= b(x)�(x) mod m(x) (21)

= b(x)�(x)− q(x)m(x). (22)

For the direct part, assume that �(x) is a minimal
partial inverse of b(x). Then (19) is immediate from
Propositions 4 and 3. As for (20), assume that
gcd

(
�(x), q(x)

) = g(x) with deg g(x) > 0. From (22),
we then have

r(x) = g(x)
(
�′(x)b(x)− q ′(x)m(x)

)
(23)

with �′(x) �= �(x)/g(x) and q ′(x) �= q(x)/g(x). It follows
that g(x) divides r(x), and thus

r ′(x) = �′(x)b(x)− q ′(x)m(x) (24)

= �′(x)b(x) mod m(x) (25)

with r ′(x) �= r(x)/g(x). But deg�′(x) < deg�(x) and
deg r ′(x) ≤ deg r(x), which is impossible because �(x) is
a minimal partial inverse.

For the converse part, assume that some nonzero �(x)
satisfies both (19) and (20). Let �(1)(x) be any nonzero
polynomial such that

r (1)(x)
�= b(x)�(1)(x) mod m(x) (26)
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satisfies

deg r (1)(x) ≤ deg r(x). (27)

We have to prove that deg�(1)(x) ≥ deg�(x). To this end,
we now assume

deg�(1)(x) < deg�(x) (28)

and derive a contradiction. Let q(1)(x) be defined by

b(x)�(1)(x) = q(1)(x)m(x)+ r (1)(x) (29)

and consider

b(x)�(x)�(1)(x) = �(1)(x)q(x)m(x)+�(1)(x)r(x) (30)

= �(x)q(1)(x)m(x)+�(x)r (1)(x) (31)

from (22) and (29), respectively. But we also have

deg�(1)(x)+ deg r(x) < deg�(x)+ deg r(x) (32)

< deg m(x), (33)

where the second inequality is (19), as well as

deg�(x)+ deg r (1)(x) ≤ deg�(x)+ deg r(x) (34)

< deg m(x). (35)

With (33) and (35), we see that (30) and (31) imply both
�(1)(x)r(x) = �(x)r (1)(x) and

�(1)(x)q(x) = �(x)q(1)(x). (36)

If q(x) �= 0, then �(x) divides �(1)(x)q(x), and (20) implies
that �(x) divides�(1)(x), which contradicts (28). If q(x) = 0,
then (20) requires �(x) to be a nonzero constant, which again
contradicts (28). �

The following lemma is a (stronger) counterpart of
[4, Th. 1], but the proof is entirely different.

Lemma 1 (Degree Change Lemma): For fixed nonzero
b(x) and m(x) ∈ F[x] with deg b(x) < deg m(x), let �(2)(x)
be a minimal partial inverse of b(x) and let

r (2)(x)
�= b(x)�(2)(x) mod m(x). (37)

Let �(1)(x) ∈ F[x] be a nonzero polynomial of the smallest
degree such that

deg
(
b(x)�(1)(x) mod m(x)

)
< deg r (2)(x). (38)

Then

deg�(1)(x) = deg m(x)− deg r (2)(x). (39)

�
Proof: From Proposition 3, we have

deg�(1)(x) ≤ deg m(x)− deg r (2)(x). (40)

For the converse, assume that �(1)(x) is a nonzero polynomial
(of any degree) that satisfies (38), i.e., the degree of

r (1)(x)
�= b(x)�(1)(x) mod m(x) (41)

satisfies

deg r (1)(x) < deg r (2)(x). (42)

Multiplying (37) by �(1)(x) and (41) by �(2)(x) yields

�(1)(x)r (2)(x) ≡ �(2)(x)r (1)(x) mod m(x). (43)

Note that

deg�(1)(x) ≥ deg�(2)(x) (44)

because �(2)(x) is a minimal partial inverse and (38). We thus
have

deg�(1)(x)+ deg r (2)(x) > deg�(2)(x)+ deg r (1)(x). (45)

If

deg�(1)(x) < deg m(x)− deg r (2)(x), (46)

then (43) reduces to

�(1)(x)r (2)(x) = �(2)(x)r (1)(x), (47)

which contradicts (45). Thus (46) is not tenable and

deg�(1)(x) ≥ deg m(x)− deg r (2)(x). (48)

�
Corollary 1: For b(x), m(x), �(2)(x), and r (2)(x) as in

Lemma 1, let �(1)(x) be a nonzero polynomial (of any degree)
such that (38) holds and

deg�(1)(x) = deg m(x)− deg r (2)(x). (49)

Then �(1)(x) is (also) a minimal partial inverse of b(x). �
Lemma 1 and Corollary 1 will be used in Section IV to

prove the correctness of the partial-inverse algorithm, and they
will also be used in Appendix B.

B. Irrelevant Coefficients

Proposition 6 (Irrelevant Coefficients): In the partial-
inverse problem, coefficients b� of b(x) with

� < 2d − deg m(x) (50)

and coefficients ms of m(x) with

s ≤ 2d − deg m(x) (51)

have no effect on the solution �(x). �
Proof: From (50) and (10), we obtain

�+ deg�(x) < d, (52)

which proves the first claim. As for the second claim, we begin
by writing

b(x)�(x) mod m(x) = b(x)�(x)− m(x)q(x) (53)

for some q(x) ∈ F[x] with

deg q(x) < deg�(x). (54)

(If q(x) �= 0, (54) follows from considering the leading
coefficient of the right-hand side of (53) with deg b(x) <
deg m(x)). From (51), (54), and (10), we then obtain

s + deg q(x) < d. (55)

The second claim then follows from (53) and (55). �



YU AND LOELIGER: PARTIAL INVERSES MOD M(X ) AND REVERSE BERLEKAMP–MASSEY DECODING 6741

Irrelevant coefficients according to Proposition 6 may be
set to zero without affecting the solution �(x). In fact, such
coefficients can be stripped off as follows.

Proposition 7 (Reduced Partial-Inverse Problem): Consider
a partial-inverse problem with

s
�= 2d − deg m(x) > 0. (56)

Define the polynomials b̃(x) and m̃(x) with

b̃�
�= b�+s (57)

and

m̃�
�= m�+s (58)

for � ≥ 0. Then the modified partial-inverse problem with
b(x), m(x), and d replaced by b̃(x), m̃(x), and d̃

�= d − s,
respectively, has the same solution �(x) as the original partial-
inverse problem. In addition, we have

b(x)�(x) div m(x) = b̃(x)�(x) div m̃(x). (59)

�
Note that the reduced partial-inverse problem satisfies

deg m̃(x) = 2d̃. (60)

Proof of Proposition 7: Consider an auxiliary partial-inverse
problem with b(x) replaced by xsb̃(x) and m(x) replaced
by xsm̃(x) (and d unchanged). This auxiliary problem has
the same solution as the original problem by Proposition 6.
The equivalence of this auxiliary problem with the modified
problem is obvious from (53). �

C. Monomialized Partial-Inverse Problem

The partial-inverse problem with general m(x) (as stated
in Section I) can be transformed into another partial-inverse
problem where (1) is replaced by

deg
(

b̃(x)�(x) mod x2τ
)
< τ (61)

with τ
�= deg m(x)− d and with b̃(x) as defined below. The

precise statement is given as Theorem 2 below. Note that we
need the additional condition

d < deg m(x). (62)

Note also that the transformed partial-inverse problem (61) is
reduced in the sense of Proposition 7.

The polynomial b̃(x) in (61) is defined as follows. Let

n
�= deg m(x) (63)

and thus τ = n − d > 0, and define

b(x)
�= xn−1b(x−1). (64)

Moreover, define m(x)
�= xnm(x−1), and let w(x) be the

inverse of m(x) mod x2τ in F[x]/x2τ ; this inverse exists
because m(0) �= 0, which implies that m(x) is relatively prime
to x2τ .

Further, let

a(x)
�= b(x)w(x) (65)

and

s(x)
�= a(x) mod x2τ =

2τ−1∑
�=0

a� x� (66)

and finally

b̃(x)
�= x2τ−1s(x−1). (67)

Theorem 2 (Monomialized Partial-Inverse Problem): Con-
sider the partial-inverse problem as stated in Section I with the
additional condition (62), and let τ

�= deg m(x)− d . Then the
modified partial-inverse problem where b(x), m(x), and d are
replaced by b̃(x) (as defined above), x2τ , and τ , respectively,
has the same solution �(x) as the original partial-inverse
problem. In addition, we have

b(x)�(x) div m(x) = b̃(x)�(x) div x2τ . (68)

�
The computation of b̃(x) requires the computation of

the polynomial w(x) (= the inverse of m(x) mod x2τ in
F[x]/x2τ , as defined above), which can be computed either
by the extended Euclidean algorithm or by the algorithms
of Section IV.

Proof of Theorem 2: Consider the original partial-inverse
problem and let �(x) be its solution (which is unique up to a
nonzero scale factor). Let

r(x)
�= b(x)�(x) mod m(x), (69)

where deg r(x) < d . We then write

r(x) = b(x)�(x)− q(x)m(x) (70)

for some (unique) q(x) with

deg q(x) < deg�(x) ≤ τ, (71)

where the second inequality follows from Proposition 3.
Note also that gcd

(
�(x), q(x)

) = 1 by Theorem 1 and
Proposition 4. Now let

�(x)
�= xτ�(x−1) (72)

q(x)
�= xτ−1q(x−1) (73)

r(x)
�= xd−1r(x−1). (74)

Noting that 2τ + d − 1 = n + τ − 1, reversing (70) yields first

x2τ+d−1r(x−1) = xn+τ−1(b(x−1)�(x−1)− q(x−1)m(x−1)
)

(75)

and then

x2τr(x) = b(x)�(x)− q(x)m(x). (76)

We thus obtain

b(x)�(x) ≡ q(x)m(x) mod x2τ (77)

and further

w(x)b(x)�(x) ≡ q(x) mod x2τ (78)
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where w(x) (as defined above) is the inverse of m(x) mod x2τ .
With (66), we then have

s(x)�(x) ≡ q(x) mod x2τ. (79)

Note that (71) implies both deg�(x) ≤ τ and deg q(x) < τ .
We now write (79) as

s(x)�(x) = p(x)x2τ + q(x) (80)

for some (unique) p(x) with deg p(x) < deg�(x) ≤ τ , and
let

p(x)
�= xτ−1 p(x−1). (81)

By substituting x−1 for x in (80) and multiplying both sides
by x3τ−1, we obtain

b̃(x)�(x) = x2τq(x)+ p(x), (82)

from which we have

deg
(

b̃(x)�(x) mod x2τ
)
< τ. (83)

It then follows from Theorem 1 that �(x) is a minimal partial
inverse of b̃(x) (with respect to x2τ ).

We still have to show that �(x) is the solution of the partial-
inverse problem (61). Let �(1)(x) be any nonzero polynomial
such that

r (1)(x)
�= b̃(x)�(1)(x) mod x2τ (84)

satisfies deg r (1)(x) < τ . Multiplying p(x) = b̃(x)�(x) mod
x2τ by �(1)(x) and (84) by �(x) yields

p(x)�(1)(x) ≡ r (1)(x)�(x) mod x2τ. (85)

Note that deg r (1)(x)�(x) < 2τ by (71). If deg�(1)(x) <
deg�(x), then (85) becomes

p(x)�(1)(x) = r (1)(x)�(x) (86)

and deg r (1)(x) < deg p(x), contradicting the fact that �(x)
is a minimal partial inverse of b̃(x).

Finally, we note that (68) is obvious from (82). �

IV. PARTIAL-INVERSE ALGORITHMS

We now consider algorithms to solve the partial-inverse
problem as stated in Section I. We give both a (new) basic
algorithm, which resembles the Berlekamp–Massey algorithm,
and two variations of it; the first variation is entirely new
and the second variation may be viewed as a version of the
Euclidean algorithm.

A. Basic Algorithm (Reverse Berlekamp–Massey Algorithm)

The basic algorithm is stated as Algorithm 1 in the framed
box. Note that lines 14–16 simply swap �(1)(x) with �(2)(x),
d1 with d2, and κ1 with κ2. The only actual computations are
in lines 7 and 8.

The heart of the algorithm is line 7, which is explained by
the following lemma.

Lemma 2 (Remainder Decreasing Lemma): Let m(x) be a
polynomial over F with deg m(x) ≥ 1. For further
polynomials b(x),�(1)(x),�(2)(x) ∈ F[x], let

r (1)(x)
�= b(x)�(1)(x) mod m(x), (87)

r (2)(x)
�= b(x)�(2)(x) mod m(x), (88)

Algorithm 1: Basic Partial-Inverse Algorithm
(reverse Berlekamp–Massey algorithm)
Input: b(x), m(x), and d as in the problem statement.
Output: �(x) as in the problem statement.

1 if deg b(x) < d begin
2 return �(x) := 1
3 end
4 �(1)(x) := 0, d1 := deg m(x), κ1 := lcf m(x)
5 �(2)(x) := 1, d2 := deg b(x), κ2 := lcf b(x)
6 loop begin
7 �(1)(x) := κ2�

(1)(x)− κ1xd1−d2�(2)(x)

8 d1 := deg
(
b(x)�(1)(x) mod m(x)

)
9 if d1 < d begin

10 return �(x) := �(1)(x)
11 end
12 κ1 := lcf

(
b(x)�(1)(x) mod m(x)

)

13 if d1 < d2 begin
14 (�(1)(x),�(2)(x)) := (�(2)(x),�(1)(x))
15 (d1, d2) := (d2, d1)
16 (κ1, κ2) := (κ2, κ1)
17 end
18 end

See also the refinements (Algorithms 1.A and 1.B) below.

Algorithm 1.A: Lines 8–12 of Algorithm 1 can be
implemented as follows:

21 repeat
22 d1 := d1 − 1
23 if d1 < d begin
24 return �(x) := �(1)(x)
25 end
26 κ1 := coefficient of xd1 in

b(x)�(1)(x) mod m(x)
27 until κ1 �= 0

Algorithm 1.B: In the special case where m(x) = xν ,
line 26 of Algorithm 1.A amounts to

31 κ1 := bd1�
(1)
0 + bd1−1�

(1)
1 + . . .+ bd1−τ�

(1)
τ

with τ
�= deg�(1)(x) and where b�

�= 0 for � < 0.
In another special case where m(x) = xn − 1, line 26
becomes

51 κ1 := bd1�
(1)
0 + b[d1−1]�(1)1 + . . .+ b[d1−τ ]�

(1)
τ

with b[�]
�= b� mod n .

d1
�= deg r (1)(x), κ1

�= lcf r (1)(x), d2
�= deg r (2)(x), κ2

�=
lcf r (2)(x), and assume d1 ≥ d2 ≥ 0. Then

�(x)
�= κ2�

(1)(x)− κ1xd1−d2�(2)(x) (89)
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satisfies

deg
(

b(x)�(x) mod m(x)
)
< d1. (90)

�
Proof: From (89), we obtain

r(x)
�= b(x)�(x) mod m(x) (91)

= κ2r (1)(x)− κ1xd1−d2r (2)(x) (92)

by the natural ring homomorphism F[x] → F[x]/m(x). It is
then obvious from (92) that deg r(x) < deg r (1)(x) = d1. �

In consequence, the value of d1 is reduced in every execu-
tion of line 8 (cf. Section IV-F).

Note that lines 8 and 12 do not require the computa-
tion of the entire polynomial b(x)�(1)(x) mod m(x). Indeed,
lines 8–12 can be replaced by Algorithm 1.A (see box).

The specialization to m(x) = xν and to m(x) = xn − 1 (as
in (109), see Section V) is given in Algorithm 1.B (see box).
In these special cases, Algorithm 1 looks very much like, and
is as efficient as, the Berlekamp–Massey algorithm [4] (but
the polynomial b(x) is processed in the reverse order).

Theorem 3 (Partial-Inverse Algorithm): Algorithm 1
returns the solution of the partial inverse problem. �

The proof will be given in Section IV-F. More generally,
we have

Theorem 4 (All Minimal Partial Inverses): For fixed
nonzero b(x) and m(x) ∈ F[x] with deg b(x) < deg m(x),
run the algorithm with d = 0. Then �(1)(x) between
lines 13 and 14 runs through all minimal partial inverses of
b(x) of degree larger than zero except the final output �(x)
as in (4). �

The proof will be given in Section IV-F. (In consequence,
the algorithm can also be used to compute all Padé approxi-
mants of b(x), cf. Appendix A.)

The complexity of the algorithm is determined by
Theorem 5 (Complexity): The number Nit of executions of

line 26 in Algorithm 1.A is bounded by

Nit ≤ deg m(x)− d + deg�(x) (93)

≤ 2(deg m(x)− d), (94)

where �(x) is the solution of the partial-inverse problem. �
The bound (93) is proved in Section IV-F. The bound (94)

then follows from Proposition 3.
In the special case of Algorithm 1.B, we thus obtain

the complexity O(
(ν − d)2

)
. In the general case, the same

complexity is obtained with the algorithm of the next section.

B. Quotient Saving Algorithm

Algorithm 2 (see box) is a variation of Algorithm 1 that
achieves a generalization of Algorithm 1.B to general m(x).
To this end, we store and update also the quotients Q(1)(x)
and Q(2)(x) defined by

b(x)�(�)(x) = Q(�)(x)m(x)+ r (�)(x) (95)

with r (�)(x)
�= b(x)�(�)(x) mod m(x). The coefficient of xd1

of r (1)(x) (line 26) can then be computed as

κ1 :=
τ∑
�=0

bd1−��
(1)
� −

ν∑
�=0

md1−�Q(1)
� (96)

Algorithm 2: Quotient Saving Partial-Inverse Algorithm
Input: b(x), m(x), and d as in the problem statement.
Output: �(x) as in the problem statement.

1 if deg b(x) < d begin
2 return �(x) := 1
3 end
4 �(1)(x) := 0, d1 := deg m(x), κ1 := lcf m(x)
5 �(2)(x) := 1, d2 := deg b(x), κ2 := lcf b(x)
6 Q(1)(x) := −1, Q(2)(x) := 0
7 loop begin
8 �(1)(x) := κ2�

(1)(x)− κ1xd1−d2�(2)(x)
9 Q(1)(x) := κ2 Q(1)(x)− κ1xd1−d2 Q(2)(x)

10 repeat
11 d1 := d1 − 1
12 if d1 < d begin
13 return �(x) := �(1)(x)
14 end
15 κ1 := ∑τ

�=0 bd1−��
(1)
� − ∑ν

�=0 md1−�Q(1)
�

16 until κ1 �= 0

17 if d1 < d2 begin
18 (�(1)(x),�(2)(x)) := (�(2)(x),�(1)(x))
19 (Q(1)(x), Q(2)(x)) := (Q(2)(x), Q(1)(x))
20 (d1, d2) := (d2, d1)
21 (κ1, κ2) := (κ2, κ1)
22 end
23 end

with τ
�= deg�(1)(x) and ν

�= deg Q(1)(x), and where both
b�

�= 0 and m�
�= 0 for � < 0.

All other quantities in the algorithm remain unchanged.
From (95), we have

deg Q(�)(x) < deg�(�)(x). (97)

The complexity of the algorithm is O(
(ν − d)2

)
with

ν
�= deg m(x).

C. Remainder Saving Algorithm

Another variation of the basic partial-inverse algorithm
is Algorithm 3 (see box), where we store and update the
remainders r (1)(x) and r (2)(x) in (95). In consequence, the
computation of line 26 is unnecessary. All other quantities
in the algorithm remain unchanged. The complexity of the
algorithm is O(

ν(ν − d)
)

with ν
�= deg m(x).

D. Recovering the Euclidean Algorithm

Algorithm 3 may be viewed as a version of the extended
Euclidean algorithm. To see this, the extended Euclidean
algorithm is stated as Algorithm 4 (see box). Lines 8 and 9 of
Algorithm 3 may be viewed as implementating the polynomial
operations in lines 4–6 of Algorithm 4 (up to a scale factor).

As stated, Algorithm 4 solves the partial-inverse problem.
The standard gcd algorithm is recovered by running the
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Algorithm 3: Remainder Saving Partial-Inverse Alg.
(a variation of a gcd algorithm)

Input: b(x), m(x), and d as in the problem statement.
Output: �(x) as in the problem statement.

1 if deg b(x) < d begin
2 return �(x) := 1
3 end
4 �(1)(x) := 0, d1 := deg m(x), κ1 := lcf m(x)
5 �(2)(x) := 1, d2 := deg b(x), κ2 := lcf b(x)
6 r (1)(x) := m(x), r (2)(x) := b(x)
7 loop begin
8 �(1)(x) := κ2�

(1)(x)− κ1xd1−d2�(2)(x)
9 r (1)(x) := κ2r (1)(x)− κ1xd1−d2r (2)(x)

10 d1 := deg r (1)(x)
11 if d1 < d begin
12 return �(x) := �(1)(x)
13 end
14 κ1 := lcf r (1)(x)

15 if d1 < d2 begin
16 (�(1)(x),�(2)(x)) := (�(2)(x),�(1)(x))
17 (r (1)(x), r (2)(x)) := (r (2)(x), r (1)(x))
18 (d1, d2) := (d2, d1)
19 (κ1, κ2) := (κ2, κ1)
20 end
21 end

Algorithm 4: Extended Euclidean Algorithm
(with notation corresponding to Algorithm 3)

Input: b(x), m(x), and d as in the problem statement.
Output: �(x) as in the problem statement.

1 r (1)(x) = m(x), �(1)(x) = 0, Q(1)(x) = −1
2 r (2)(x) = b(x), �(2)(x) = 1, Q(2)(x) = 0
3 while deg r (2)(x) ≥ d begin
4 q(x) := r (1)(x) div r (2)(x)
5 r (1)(x) := r (1)(x)− q(x) r (2)(x)
6 �(1)(x) := �(1)(x)− q(x)�(2)(x)
7 Q(1)(x) := Q(1)(x)− q(x)Q(2)(x)

8 (r (1), r (2)) := (r (2), r (1))
9 (�(1),�(2)) := (�(2),�(1))

10 (Q(1), Q(2)) := (Q(2), Q(1))
11 end
12 return �(x) := �(2)(x)

algorithm with d = 0; when the algorithm stops, we have

r (1)(x) = gcd
(
m(x), b(x)

)
. (98)

The polynomials Q(1)(x) and Q(2)(x) in Algorithm 4
are not actually needed for the partial-inverse problem (but
they do correspond to the polynomials Q(1)(x) and Q(2)(x)
in Algorithm 2).

Note that, in contrast to Algorithm 4, Algorithm 3 requires
no division (neither polynomial nor scalar).

As mentioned in the Introduction, McEliece and Shearer [9]
showed that the Euclidean algorithm (Algorithm 4) solves
a modified Padé approximation problem that is equivalent
to the partial-inverse problem, see also [10, Sec. 5.7] and
Appendix A. With hindsight, Algorithms 1–2 can thus be
derived also from the Euclidean algorithm.

E. An Example

We illustrate Algorithms 1–3 with an example from [9].
Let F3

�= {0, 1,−1} be the field of integers modulo 3, b(x)
�=

−x6 + x5 − x3 + x2 + x + 1, and m(x)
�= x7. For simplicity,

we set d = 6.
We first use Algorithm 1, with lines 8–12 as in

Algorithm 1.A. In line 4, we have �(1)(x) = 0, d1 = 7, and
κ1 = 1; in line 5, we have �(2)(x) = 1, d2 = 6, and κ2 = −1.

1) In the first loop iteration, we obtain �(1)(x) = −x after
line 7, d1 = 6 after line 22, and κ1 = −b5 = −1 after
line 26. Note that we compute line 26 via line 31; note
also that �(2)(x), d2, and κ2 remain unchanged, i.e.,
�(2)(x) = 1, d2 = 6, and κ2 = −1.

2) In the second loop iteration, we obtain �(1)(x) = x + 1
after line 7, and d1 = 5 after line 22. The condition in
line 23 then holds, and Algorithm 1 returns�(x) = x+1
in line 24.

We next use Algorithm 2. Both lines 4 and 5 are the same
as in Algorithm 1; in line 6, we have Q(1)(x) = −1 and
Q(2)(x) = 0.

1) In the first loop iteration, we have �(1)(x) = −x after
line 8, Q(1)(x) = 1 after line 9, d1 = 6 after line 11,
and κ1 = −b5 − m6 = −b5 = −1 after line 15. Note
that �(2)(x), d2, κ2, and Q(2)(x) remain unchanged, i.e.,
�(2)(x) = 1, d2 = 6, and κ2 = −1, and Q(2)(x) = 0.

2) In the second loop iteration, we obtain �(1)(x) = x + 1
after line 8, Q(1)(x) = −1 after line 9, d1 = 5
after line 11. The condition in line 12 then holds, and
Algorithm 2 returns �(x) = x + 1 in line 13.

Finally, we use Algorithm 3. Both lines 4 and 5 are the
same as in Algorithm 1; in line 6, we have r (1)(x) = x7 and
r (2)(x) = −x6 + x5 − x3 + x2 + x + 1.

1) In the first loop iteration, we have �(1)(x) = −x after
line 8, r (1)(x) = −x6 + x4 − x3 − x2 − x after line 9,
d1 = 6 after line 10, and κ1 = −1 after line 14. Note
that �(2)(x), d2, κ2, and r (2)(x) remain unchanged, i.e.,
�(2)(x) = 1, d2 = 6, and κ2 = −1, and r (2)(x) =
−x6 + x5 − x3 + x2 + x + 1.

2) In the second loop iteration, we obtain �(1)(x) = x + 1
after line 8, r (1)(x) = x5 − x4 − x2 − x + 1 after line 9,
d1 = 5 after line 10. The condition in line 11 then holds,
and Algorithm 3 returns �(x) = x + 1 in line 12.

F. Proofs

We now proceed to prove Theorems 3–5. (Algorithms 2
and 3 are easy modifications of Algorithm 1 and do not require
an extra proof.)

Proof of Theorems 3 and 4: We begin by restating
Algorithm 1 with added assertions as Algorithm 5 (see box).
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Algorithm 5: Basic Partial-Inverse Algorithm Restated

1 if deg b(x) < d begin
2 return �(x) := 1
3 end
4 �(1)(x) := 0, d1 := deg m(x), κ1 := lcf m(x)
5 �(2)(x) := 1, d2 := deg b(x), κ2 := lcf b(x)
6 loop begin

Assertions:
d1 > d2 ≥ d (A.1)
deg�(2)(x) = deg m(x)− d1 (A.2)

> deg�(1)(x) (A.3)
�(2)(x) is a minimal partial inverse (A.4)

7 repeat
8 �(1)(x) := κ2�

(1)(x)− κ1xd1−d2�(2)(x)

Assertions:
deg(b(x)�(1)(x) mod m(x)) < d1 (A.5)
deg�(1)(x) = deg m(x)− d2 (A.6)

> deg�(2)(x) (A.7)

9 d1 := deg
(
b(x)�(1)(x) mod m(x)

)
10 if d1 < d begin

Assertion:
�(1)(x) is a min. partial inverse (A.8)

11 return �(x) := �(1)(x)
12 end
13 κ1 := lcf

(
b(x)�(1)(x) mod m(x)

)
14 until d1 < d2

Assertion:
�(1)(x) is a minimal partial inverse (A.9)

15 (�(1)(x),�(2)(x)) := (�(2)(x),�(1)(x))
16 (d1, d2) := (d2, d1)
17 (κ1, κ2) := (κ2, κ1)
18 end

Note the added inner repeat loop (lines 7–14), which does
not change the algorithm but helps with the proof.

Throughout the algorithm (except at the very beginning,
before the first execution of lines 9 and 13), d1, d2, κ1,
and κ2 are defined as in Lemma 2, i.e., d1 = deg r (1)(x),
κ1 = lcf r (1)(x), d2 = deg r (2)(x), and κ2 = lcf r (2)(x) for
r (1)(x) and r (2)(x) as in (87) and (88).

Assertions (A.1)–(A.4) are easily verified, both from the
initialization and from (A.6), (A.7), and (A.9).

As for (A.5), after the very first execution of line 8, we
still have d1 = deg m(x) (from line 4), which makes (A.5)
obvious. For all later executions of line 8, (A.5) follows
from Lemma 2.

As for (A.6) and (A.7), we note that line 8 changes the
degree of �(1)(x) as follows:

• Upon entering the repeat loop, line 8 increases the degree
of �(1) to

deg�(2)(x)+ d1 − d2 = deg m(x)− d2 (99)

> deg�(2)(x), (100)

which follows from (A.1)–(A.3).

• Subsequent executions of line 8 without leaving the
repeat loop (i.e., without executing lines 15–17) do not
change the degree of �(1)(x). (This follows from the fact
that d1 is smaller than in the first execution while �(2)(x),
d2, and κ2 �= 0 remain unchanged.)

Assertion (A.9) follows from Corollary 1, which applies
because d1 < d2 and (A.6). Because of (A.1), the same
argument applies also to (A.8).

We have thus proved Theorem 3, and Theorem 4 is obvious
from this discussion. �

Proof of Theorem 5: We refer to Algorithm 1 with
lines 8–12 replaced by Algorithm 1.A, and we assume
deg b(x) ≥ d .

For the proof, we augment the algorithm with the two
additional variables N (1)

it and N (2)
it , which are both initialized

to zero and swapped whenever �(1) and �(2) are swapped.
Moreover, N (1)

it is incremented in every execution of line 26.
When the algorithm stops, we have

Nit = N (1)
it + N (2)

it (101)

as well as

N (1)
it ≤ deg m(x)− d (102)

and

N (2)
it ≤ deg m(x)− d̃2 (103)

= deg�(1)(x), (104)

where d̃2 is the value of d1 before the last swap, and where
the second step follows from Lemma 1. �

G. Concluding Remarks for Section IV

We have proposed three partial-inverse algorithms: a new
basic version (the reverse Berlekamp–Massey algorithm) and
two variations of it. The first variation (the quotient saving
algorithm) is entirely new while the second variation (the
remainder saving algorithm) may be viewed as a variation of
the Euclidean gcd algorithm. The relative attractivity of these
algorithms depends on the particulars of the application.

The easy transition between Algorithm 1 and Algo-
rithm 3 is a new contribution to the substantial body
of literature connecting the Euclidean algorithm with the
Berlekamp–Massey algorithm [14]–[19].

Finally, we remark that any of the proposed algorithms
can be made asymptotically faster by standard techniques for
asymptotically fast polynomial multiplication and division as
in [10]. However, such techniques are outside the scope of this
paper.

V. DECODING REED–SOLOMON CODES

Decoding Reed–Solomon codes (up to half the minimum
distance) can be reduced in several ways to the partial-inverse
problem of Section I. (The extension to decoding interleaved
Reed–Solomon codes beyond half the minimum distance as
in [25] and [26] is beyond the scope of this paper.) We will
also point out several interpolation methods, some of which
are (partly or entirely) new as well.
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A. Reed–Solomon Codes

Let F be a finite field and let β0, . . . , βn−1 be n different
elements of F . Let

m(x)
�=

n−1∏
�=0

(x − β�), (105)

let F[x]/m(x) be the ring of polynomials modulo m(x), and
let ψ be the evaluation mapping

ψ : F[x]/m(x)→ Fn : a(x) �→ (
a(β0), . . . , a(βn−1)

)
,

(106)

which is a ring isomorphism. A Reed–Solomon code with
blocklength n and dimension k may be defined as

{c = (c0, . . . , cn−1) ∈ Fn : degψ−1(c) < k}. (107)

The standard definition of Reed–Solomon codes requires,
in addition, that

β� = α� for � = 0, . . . , n − 1, (108)

where α ∈ F is a primitive n-th root of unity. This additional
condition implies

m(x) = xn − 1 (109)

and turns ψ into a discrete Fourier transform [6]. However,
(108) and (109) will not be required below. In particular, the
set {β0, . . . , βn−1} will be permitted to contain 0.

In general, the inverse mapping ψ−1 can be computed by
Lagrange interpolation or according to the Chinese remainder
theorem. (For the latter, see also Section VI and [22].)

B. Error Locator Polynomial and Interpolation

The standard decoding problem can be stated as follows.
Let y = (y0, . . . , yn−1) ∈ Fn be the received word, which we
wish to decompose into

y = c + e (110)

where c is a codeword and where the Hamming weight of
e = (e0, . . . , en−1) ∈ Fn is as small as possible.

Let C(x)
�= ψ−1(c), and analogously E(x)

�= ψ−1(e)
and Y (x)

�= ψ−1(y). Clearly, we have deg C(x) < k and
deg E(x) < deg m(x) = n.

For any e ∈ Fn , we define the error locator polynomial

�e(x)
�=

∏
�∈{0,...,n−1}

e� �=0

(x − β�). (111)

Clearly, deg�e(x) = wH(e) and

E(x)�e(x) = Qe(x)m(x) (112)

for some nonzero Qe(x) ∈ F[x].
(In the literature, the error locator polynomial is usually

defined with (x − β�) in (111) replaced by (1 − β�x), which
requires β� �= 0, cf. Appendix C.)

The heart of many decoding methods is an algorithm
for computing an estimate of the error locator polynomial.
If�e(x) is known, the polynomial C(x) and/or the codeword c

can be recovered in many different ways; in particular, we can
use Propositions 8, 9, or 11 below. Proposition 11 is standard;
the idea of Proposition 8 was implicitly used in [12] and [11],
but explicitly stated only in [21] and [22]; Proposition 9
appears to be entirely new.

Proposition 8 (Multiply-Divide Interpolation): If �(x) =

(x)�e(x) for some nonzero 
(x) ∈ F[x] and deg�(x) ≤
n − k, then

Y (x)�(x) mod m(x) = C(x)�(x) (113)

and thus

C(x) = Y (x)�(x) mod m(x)

�(x)
(114)

�
Proof: Assume that �(x) has the stated properties. Then

Y (x)�(x) mod m(x)

= C(x)�(x) mod m(x)+ E(x)�(x) mod m(x) (115)

= C(x)�(x), (116)

where the second term in (115) vanishes because of (112). �
In the special case where m(x) = xn − 1, computing the

numerator in (114) amounts to a cyclic convolution.
Proposition 9 (Div-Mod Interpolation): Let �(x) =


(x)�e(x) for some nonzero 
(x) ∈ F[x] such that �(x)
divides m(x) and deg�(x) ≤ n − k. Then

C(x) = Y (x) mod
(
m(x)/�(x)

)
. (117)

�
Note that �(x) = γ�e(x) (with γ �= 0) qualifies, but

�(x) is allowed to have additional single roots in the set
{β0, . . . , βn−1}.

Proof of Proposition 9: The polynomial

m̃(x)
�= m(x)/�(x) (118)

is a product of linear factors (x − β�) (up to a
nonzero scale factor) with β� ∈ {β0, . . . , βn−1} such that
e� = E(β�) = 0. Thus m̃(x) divides E(x). Moreover, it is
obvious that deg m̃(x) ≥ k > deg C(x), and thus

Y (x) mod m̃(x) = (
C(x)+ E(x)

)
mod m̃(x) (119)

= C(x). (120)

�
If we need to recover the actual codeword c (rather than just

the polynomial C(x)), interpolation according to Propositions
8 or 9 requires the additional computation of c = ψ

(
C(x)

)
.

Alternatively, it may be attractive to compute the error pattern
e (= y − c) by Forney’s formula [6], [8] or by the Horiguchi–
Koetter formula [7], [24]. The latter will be adapted to
our setting in Section V-D.4. For the former, we need the
polynomial Qe(x) from (112), or a generalization of it, which
can be computed as follows.

Proposition 10 (Generalized Error Locator Equation):
Let �(x) = 
(x)�e(x) for some nonzero 
(x) ∈ F[x].
If deg�(x) ≤ n − k, then

E(x)�(x) = Q(x)m(x) (121)
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with

Q(x)
�= Y (x)�(x) div m(x). (122)

�
Proof: From (122) and (113), we have

Y (x)�(x) = Q(x)m(x)+ C(x)�(x) (123)

and thus Q(x)m(x) = E(x)�(x). �
The components of e = (e0, . . . , en−1) can be computed

from (112) or from (121) using L’Hôpital’s rule, which is
known as Forney’s Formula [6], [8]. Specifically:

Proposition 11 (Forney’s Formula): Let �(x) =

(x)�e(x) for some nonzero 
(x) ∈ F[x]. Assume
deg�(x) ≤ n − k and assume that �(x) has no repeated
roots in the set {β0, . . . , βn−1}. Then,

e�
�=

⎧
⎨
⎩

0 if �(β�) �= 0
Q(β�)m′(β�)
�′(β�)

if �(β�) = 0
(124)

for � = 0, 1, . . . , n − 1, with Q(x) as in (122), and where
�′(x) and m′(x) denote the formal derivatives of �(x) and
m(x), respectively. �

Note that (124) works for general m(x), and m′(β�) can
be pre-computed. For example, for m(x) = x |F | − x , we
have m′(β�) = −1; for the standard case (108) with m(x) =
xn − 1, we have m′(β�) = (n mod p)β−1

� , where p is the
characteristic of F .

The quantity Q(β�) in (124) can be obtained without
explicit computation of Q(x), cf. Theorem 9 below.

Any of the Propositions 8, 9, or 11 can be used for
erasures-only decoding where �(x) is given a priori. For this
application, it is essential that �(β�) = 0 does not imply
e� �= 0, i.e., �(x) may be a nontrivial multiple of �e(x).

We now turn to the standard decoding problem (110).
Joint errors-and-erasures decoding will be addressed
in Appendix E.

C. Key Equations

An estimate of the error locator polynomial can be found
via the standard key equation, which will be addressed in
Appendix C. However, in the context of this paper, it is more
natural to begin with the following alternative key equation.
The direct part is well known from [12], but the converse part
is new.

Theorem 6 (Alternative Key Equation): If wH(e) ≤ n−k
2 ,

then the error locator polynomial �e(x) satisfies

deg
(
Y (x)�e(x) mod m(x)

)
< k + deg�e(x) (125)

≤ n − (n − k)/2. (126)

Conversely, for any y and e ∈ Fn and t ∈ R with

wH(e) ≤ t ≤ (n − k)/2, (127)

if some nonzero �(x) ∈ F[x] with deg�(x) ≤ t satisfies

deg
(

Y (x)�(x) mod m(x)
)
< n − t, (128)

then �(x) is a multiple of �e(x). �

The proof is given below. In particular, for t = (n−k)/2, we
obtain the following corollary, which was implicitly assumed
in [12], but does not seem to be actually proved in the
literature.

Corollary 2: If wH(e) ≤ n−k
2 , then �e(x) is the nonzero

polynomial of the smallest degree (unique up to a scale factor)
that satisfies

deg
(

Y (x)�(x) mod m(x)
)
<

n + k

2
(129)

�
Finding �e(x) from (129) is obviously a partial-inverse
problem.

Proof of Theorem 6: (125) is immediate from (113), and
(126) follows from k + wH(e) ≤ k + n−k

2 = n+k
2 .

As for the converse, assume (127), (128), and deg�(x) ≤ t
and consider

Y (x)�(x) mod m(x) = C(x)�(x)+ E(x)�(x) mod m(x).

(130)

Under the stated assumptions, the degree of the left-hand side
of (130) is smaller than n − t and also

deg
(
C(x)�(x)

)
< k + t ≤ n − t . (131)

It follows that

deg
(

E(x)�(x) mod m(x)
)
< n − t . (132)

Now write

E(x)�(x) = Q(x)m(x)+ E(x)�(x) mod m(x) (133)

according to the polynomial division theorem. But E(x) (and
thus E(x)�(x)) has at least n −wH(e) ≥ n − t zeros in the set
{β0, β1, . . . , βn−1}. It follows that E(x)�(x) mod m(x) has
also at least n − t zeros (in this set), which contradicts (132)
unless

E(x)�(x) mod m(x) = 0. (134)

But any nonzero polynomial �(x) that satisfies (134) is a
multiple of the error locator polynomial (111). �

We have established that finding the error locator poly-
nomial is a partial-inverse problem. It then follows from
Proposition 6 that coefficients Y� of Y (x) with � < k are
irrelevant and can be set to zero; the remaining coefficients Y�
are syndromes since C� = 0 and Y� = E� for � ≥ k.

Theorem 7 (Reduced Key Equation): Let

b̃(x)
�= Yk + Yk+1x + . . .+ Yn−1xn−k−1 (135)

m̃(x)
�= mk + mk+1x + . . .+ mn xn−k . (136)

If wH(e) ≤ (n − k)/2, then �(x) = �e(x) is a nonzero
polynomial of the smallest degree (unique up to a scale factor)
that satisfies

deg
(

b̃(x)�(x) mod m̃(x)
)
<

n − k

2
(137)

Moreover,

b̃(x)�e(x) div m̃(x) = Y (x)�e(x) div m(x). (138)

�
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Proof: The proof is immediate from Corollary 2 and
Proposition 7 with d = (n + k)/2 and s = k. �

Eq. (138) can be used, e.g., in Forney’s formula (124) with
Q(x) as in (138).

In the important special cases where m(x) = xn − 1 (as
in (109)) or m(x) = xn − x (for singly extended Reed–
Solomon codes), we have m̃(x) = xn−k , and (137) looks like
a standard key equation. The same effect can be achieved for
general m(x) by the following theorem.

Theorem 8 (Monomialized Key Equation): Let b̃(x) be the
polynomial (67) for b(x) = Y (x) and τ = (n − k)/2.
If wH(e) ≤ τ , then �(x) = �e(x) is a nonzero polynomial of
the smallest degree that satisfies

deg
(

b̃(x)�(x) mod xn−k
)
<

n − k

2
. (139)

Moreover,

b̃(x)�e(x) div xn−k = Y (x)�e(x) div m(x). (140)

�
Proof: From Corollary 2 and Theorem 2 with d = n − t .

�
Theorem 8 is similar in effect, but slightly more general

than, the procedure described in [8, Sec. 6.3]. In particular, it
works also for singly extended Reed–Solomon codes.

D. Decoding Algorithms

Determining the error locator �e(x) from any of the key
equations (129), (137), or (139) is a partial-inverse problem.
We thus arrive at the following general decoding procedure:

1) Compute Y (x) = ψ−1(y).
2) Solve any of the key equations (129), (137), or (139)

by any of the algorithms of Section IV. If wH(e) ≤
n−k

2 , then the polynomial�(x) returned by the algorithm
equals �e(x), up to a scale factor.

3) Complete decoding, e.g., by means of Propositions 8, 9
or 11, or by other means as described below.

Obviously, this general procedure encompasses a variety of
specific algorithms, some of which will be discussed below.

In addition, there are many opportunities for detecting
violations of the assumption wH(e) ≤ (n − k)/2. In particular,
condition (125) can be checked. Alternatively, if (137) is used,
then the condition

deg
(

b̃(x)�(x) mod m̃(x)
)
< deg�(x) (141)

can be checked. If (114) is used for interpolation, it should be
checked whether �(x) indeed divides Y (x)�(x) mod m(x); if
Forney’s formula (Proposition 11) is used, it should be checked
whether wH(e) = deg�(x); etc.

In Step 2, the number of iterations in the partial-inverse
algorithm is upper bounded by (n − k)/2 + wH(e) by
Theorem 5; this is smaller than the number of iterations in the
Berlekamp–Massey algorithm, especially if wH(e) is small.

We now briefly discuss a number of specific decoding
algorithms, i.e., specific choices in Steps 2 and 3. First, we
consider algorithms that recover the polynomial C(x) or E(x);
then we consider algorithms that recover the codeword c (or
the error pattern e) directly.

1) Shiozaki–Gao Decoding: Use Algorithm 3 to
solve (129). Step 3 is then naturally carried out via

C(x) = r (1)(x)/�(x), (142)

which is immediate from r (1)(x) = Y (x)�(x) mod m(x)
and Proposition 8. The resulting decoding algorithm essen-
tially coincides with the (essentially identical) algorithms by
Gao [11] and Shiozaki [12], except that [11] and [12] both
use Algorithm 4 instead of Algorithm 3.

(Shiozaki [12] and Gao [11] propose the same algorithm,
but very different proofs. Yet another proof of this algorithm
is given in [22] and [13].)

2) Reverse Berlekamp–Massey Decoding for Cyclic
Reed–Solomon Codes: Let m(x) = xn − 1 and use
Algorithm 1 (with the refinements in Algorithms 1.A
and 1.B) to solve any of the key equations (129), (137),
or (139).

Two natural methods for Step 3 are as follows. The
first method is to use Proposition 8. Computing r(x)

�=
Y (x)�(x) mod (xn − 1) (the numerator in (114)) amounts to
the cyclic convolution

r� =
τ∑

i=0

Y[�−i]�i (143)

with τ
�= deg�(x). (The computation (143) may be

viewed as continuing line 26 of Algorithm 1.A with frozen
�(1)(x) = �(x).)

A second method for Step 3 begins with

�(x)E(x) mod (xn − 1) = 0 (144)

from (112). Note that E� = Y� for � ≥ k, and Ek−1, . . . , E0
can be computed from (144) by the recursion

E�−τ = − 1

�τ

τ−1∑
i=0

E�−i�i (145)

for � = k + τ − 1, k + τ − 2, . . . , τ , where τ
�= deg�(x).

We then obtain C(x) = Y (x)− E(x). (Analogous recursions
for standard Berlekamp–Massey decoding are given, e.g.,
in [6] and [13].)

3) Using Algorithm 2: For general m(x), it may be attrac-
tive to use Algorithm 2 to solve (137), and to ask the algorithm
to return also Q(x)

�= Q(1)(x). Two natural methods for Step 3
are as follows. The first method is to use Proposition 8 and to
compute the numerator r(x) in (114) from

r(x) = Y (x)�(x)− Q(x)m(x). (146)

(This computation may be viewed as continuing line 15 of
Algorithm 2 with frozen �(1)(x) and Q(1)(x).)

A second method for Step 3 begins with

E(x)�(x) = Q(x)m(x) (147)

from (138) and Proposition 10, from which we obtain the
recursion

E�−τ = − 1

�τ

(
τ−1∑
i=0

E�−i�i −
ν∑

i=0

m�−i Qi

)
(148)
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for � = k + τ − 1, k + τ − 2, . . . , τ , where τ and ν are the
degrees of �(x) and m(x), respectively.

4) Using Forney’s Formula and Horiguchi–Koetter Interpo-
lation: Assume now that we wish to recover not C(x), but the
codeword c ∈ Fn (or, equivalently, the error pattern e = y−c).
In this case, the following methods are often more attractive
than first finding C(x) and then computing c = ψ

(
C(x)

)
.

Recall that we can use any of the algorithms of Section IV
to solve any of the key equations (129), (137), or (139).
If Algorithm 2 is used, then the polynomial Q(x) from (122) is
already available (as Q(1)(x)), so Forney’s formula (124) can
be applied directly. (This works for all three key equations due
to (138) and (140).)

If Algorithms 1 or 3 are used, Forney’s formula (124) can
be used without explicitly computing Q(x), as follows.

Theorem 9 (Generalized Horiguchi–Koetter Interpolation):
If wH(e) ≤ n−k

2 and �(β�) = 0, then

Q(β�) = γ

�(2)(β�)
(149)

with

γ
�= κ2 · lcf �(x)

lcf m(x)
(150)

where �(x) = �(1)(x), �(2)(x), and κ2 are obtained from the
partial-inverse algorithm (when it terminates). �

Theorem 9 is a nontrivial adaptation and generaliza-
tion (with an entirely different proof) of the original idea
by Horiguchi, which is restricted to Berlekamp–Massey
decoding [7], [24]; see also Appendix C.

Proof of Theorem 9: We assume wH(e) ≤ (n − k)/2, so
that �(1)(x) = �(x) = �e(x) (up to a scale factor) when the
partial-inverse algorithm terminates. Also, both �(1)(x) and
�(2)(x) are minimal partial inverses and

deg�(1)(x) = deg m(x)− deg
(
b(x)�(2)(x) mod m(x)

)

(151)

by Lemma 1. From Lemma 3 (eq. (191)) in Appendix B, we
then have

�(x)Q(2)(x)−�(2)(x)Q(x) = −γ, (152)

and the theorem follows. �

VI. APPLICATION TO POLYNOMIAL REMAINDER CODES

Polynomial remainder codes [12], [20]–[22] are a class of
codes that include Reed–Solomon codes as a special case.
It is well known that polynomial remainder codes can be
decoded by the Euclidean algorithm, but these codes have
not been amenable to Berlekamp–Massey decoding. In this
section, we briefly outline how decoding via the alternative
key equation (Theorem 6 in Section V-C) generalizes to
polynomial remainder codes, which can thus be decoded by
all the algorithms of Section IV.

Let m0(x), . . . ,mn−1(x) ∈ F[x] be relatively prime poly-
nomials and let m(x)

�= ∏n−1
�=0 m�(x). Let Rm

�= F[x]/m(x)
denote the ring of polynomials modulo m(x) and let

Rm�

�= F[x]/m�(x). The mapping (106) is generalized to the
ring isomorphism

ψ : Rm → Rm0 × . . .× Rmn−1 :
a(x) �→ ψ(a)

�= (
ψ0(a), . . . , ψn−1(a)

)
(153)

with ψ�(a)
�= a(x) mod m�(x). Following [22], a polynomial

remainder code may be defined as

{c = (c0, . . . , cn−1) ∈ Rm0 × . . .× Rmn−1 : degψ−1(c) < K }
(154)

where

K
�=

k−1∑
�=0

deg m�(x) (155)

for some fixed k, 0 < k < n. We also define

N
�= deg m(x) =

n−1∑
�=0

deg m�(x). (156)

As in Section V, let y = c + e be the received word with
codeword c and error e, and let C(x)

�= ψ−1(c), E(x)
�=

ψ−1(e), and Y (x)
�= ψ−1(y). Clearly, deg C(x) < K and

deg E(x) < N .
For such codes, the error locator polynomial

�e(x)
�=

∏
�∈{0,...,n−1}

e� �=0

m�(x) (157)

and the error factor polynomial [22]

�E (x)
�= m(x)/ gcd

(
E(x),m(x)

)
(158)

do not, in general, coincide. Note that �E (x) is a nonzero
polynomial of the smallest degree such that

E(x)�E (x) mod m(x) = 0. (159)

If all moduli m�(x) are irreducible, then �E (x) = γ�e(x) for
some nonzero γ ∈ F . In any case, deg�E (x) ≤ deg�e(x).

We then have the following generalizations of
Propositions 8 and 9. (The former was first stated
in [21] and [22].)

Proposition 12 (Multiply-Divide Interpolation): If �(x) is
a nonzero polynomial multiple of �E (x) with deg�(x) ≤
N − K , then

C(x) = Y (x)�(x) mod m(x)

�(x)
(160)

�
The proof agrees with the proof of Proposition 8.
Proposition 13 (Div-Mod Interpolation): Let �(x) =


(x)�E (x) for some nonzero 
(x) ∈ F[x] such that �(x)
divides m(x) and deg�(x) ≤ N − K . Then

C(x) = Y (x) mod
(
m(x)/�(x)

)
. (161)

�
The proof is an obvious adaptation of the proof of

Proposition 9.
We also have the following generalization of Theorem 6:
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Theorem 10 (Key Equation for Polynomial Remainder
Codes): For given y and e with deg�E (x) ≤ t ≤ N−K

2 ,
assume that some nonzero polynomial�(x) with deg�(x) ≤ t
satisfies

deg
(
Y (x)�(x) mod m(x)

)
< N − t . (162)

Then�(x) is a multiple of�E (x). Conversely,�(x) = �E (x)
is a polynomial of the smallest degree that satisfies (162). �

It follows that the decoding procedure of Section V works
also for polynomial remainder codes, except that n, k, and
�e(x) are replaced by N , K , and �E (x), respectively.

Proof of Theorem 10: We have Y (x) = ψ−1(y) = C(x)+
E(x) with deg C(x) < K , and deg E(x) ≥ N − deg�E (x) ≥
N − t if E(x) �= 0. Consider

Y (x)�(x) mod m(x) = C(x)�(x)+ E(x)�(x) mod m(x).

(163)

Under the stated assumptions, the degree of the left-hand side
of (163) is less than N − t , and also

deg
(

C(x)�(x)
)
< K + t ≤ N − t . (164)

It follows that

deg
(

E(x)�(x) mod m(x)
)
< N − t . (165)

Now write

E(x)�(x) = Q(x)m(x)+ Ẽ(x) (166)

with

Ẽ(x)
�= E(x)�(x) mod m(x) (167)

according to the polynomial division theorem, and let

mE (x)
�= m(x)/�E (x) = gcd

(
E(x),m(x)

)
. (168)

Since deg�E (x) ≤ t , we have deg mE (x) ≥ N − t .
Taking (166) modulo mE (x) yields

Ẽ(x) mod mE (x) = 0 (169)

since E(x) mod mE (x) = 0. It follows that Ẽ(x) = 0 since
deg Ẽ(x) < N − t ≤ deg mE (x). Finally, from Ẽ(x) = 0
and (167), we obtain

E(x)�(x) mod m(x) = 0. (170)

But any nonzero polynomial �(x) that satisfies (170) is a
multiple of the error factor polynomial (158). �

VII. CONCLUSION

We have introduced the partial-inverse problem for polyno-
mials mod m(x), which is closely related to many classical
concepts and algorithms in coding theory. In contrast to
the LFSRS problem, which underlies the Berlekamp–Massey
algorithm, the partial-inverse problem has always a unique
solution (up to a scale factor) and comes with a nontrivial
upper bound on the degree of the solution. We also derived
many new properties of the partial-inverse problem that are
useful for its application to decoding.

We presented several versions of a new algorithm for
solving the partial-inverse problem, which can be applied
to decoding Reed–Solomon codes and generalizations of
Reed–Solomon codes (including polynomial remainder codes).
The basic partial-inverse algorithm strongly resembles the
Berlekamp–Massey algorithm, and an easy variation of it may
be viewed as a version of the Euclidean algorithm. These
algorithms can be used to solve the standard key equation
(cf. Appendix C), but they are more naturally applied to an
alternative key equation with a new converse. We also pointed
out a variety of options for interpolation including adaptations
of Horiguchi–Koetter interpolation.

In the appendices, we address Padé approximations,
rational-function reconstruction, and joint errors-and-erasures
decoding.

We hope to have demonstrated that the partial-inverse
approach is attractive for classical algebraic decoding up
to half the minimum distance. However, the partial-inverse
approach is even more attractive for decoding interleaved
Reed–Solomon codes (and related codes) beyond half the
minimum distance [25], [26], which will be addressed in a
companion paper.

APPENDIX A
RELATIONS TO PADÉ APPROXIMATIONS AND

RATIONAL-FUNCTION RECONSTRUCTION

In this appendix, we discuss the exact relation between
the partial-inverse problem (as defined in Section I) and
some closely related problems in the literature including Padé
approximation and rational-function reconstruction as in [10],
and the McEliece–Shearer problem from [9].

A. McEliece–Shearer Problem

The following problem is paraphrased from [9], see also
[10, Sec. 5.7]:

McEliece–Shearer Problem: Let b(x) and m(x) be
nonzero polynomials over some field F , with deg b(x) <
deg m(x). For fixed d ∈ Z with 0 ≤ d ≤ deg m(x), find a
pair of polynomials r(x) and �(x) �= 0 such that

b(x)�(x) ≡ r(x) mod m(x), (171)

deg r(x) < d, (172)

deg�(x) ≤ deg m(x)− d. (173)

�
In general, this problem may have multiple solutions. In any

solution, r(x) = b(x)�(x) mod m(x) is determined by �(x).
Clearly, the solution �(x) with the smallest degree is

the solution of the corresponding partial-inverse problem,
for which (173) is redundant by Proposition 3. McEliece
and Shearer [9] showed that this particular solution can be
computed by the Euclidean algorithm. Moreover, [9, Th. 1]
implies the following fact:

Theorem 11 (All Solutions): The solutions of the
McEliece–Shearer problem consist of the pairs

�(x) = a(x)�(0)(x) and r(x) = a(x) r (0)(x), (174)
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where �(0)(x) is the solution of the smallest degree (= the
solution of the partial-inverse problem) and where a(x) is any
nonzero polynomial such that (172) and (173) hold. �

The proofs of this fact in [9] and [10, Lemma 5.15]
use properties of the Euclidean algorithm. Below (in
Section VII-C), we give a different proof that is not based
on an algorithm.

B. Padé Approximation and Rational-Function
Approximation

The rational-function approximation problem of
[10, Sec. 5.7] is obtained from the McEliece–Shearer
problem (as defined above) by adding the condition

gcd
(
�(x),m(x)

) = 1. (175)

If (175) holds, �(x) has an inverse in F[x]/m(x), and (171)
is equivalent to

b(x) ≡ r(x)

�(x)
mod m(x). (176)

The Padé approximation problem is then obtained by spe-
cialization to m(x) = xν [10]. Note that, by Theorem 11, all
polynomials �(x) and r(x) that satisfy (171)–(173) yield the
same rational function r(x)/�(x) in (176), and the rational-
function approximation problem has a solution if and only if
the solution of the partial-inverse problem satisfies (175).

A necessary (but not sufficient) condition for the existence
of a solution is

deg gcd
(
b(x),m(x)

)
< d, (177)

which can be seen as follows. Let �(x) and r(x) be a solution,
i.e.,

b(x)�(x) = q(x)m(x)+ r(x) (178)

with deg r(x) < d . Clearly, gcd
(
b(x),m(x)

)
divides r(x);

if deg gcd
(
b(x),m(x)

) ≥ d , then r(x) = 0, which contra-
dicts (176), so (175) cannot hold.

C. Proof of Theorem 11

One direction is trivial: all polynomials (174) obviously
satisfy (171)–(173).

For the other direction, let �(0)(x) (with r (0)(x)
�=

b(x)�(0)(x) mod m(x)) be the solution of the partial inverse
problem and let �(x) (with r(x)

�= b(x)�(x) mod m(x)) be
any other solution of (171)–(173). We thus have

b(x)�(x) = q(x)m(x)+ r(x) (179)

and

b(x)�(0)(x) = q(0)(x)m(x)+ r (0)(x) (180)

with

gcd
(
�(0)(x), q(0)(x)

) = 1 (181)

by Theorem 1. Clearly, we have

b(x)�(x)�(0)(x) = �(x)q(0)(x)m(x)+�(x)r (0)(x) (182)

= �(0)(x)q(x)m(x)+�(0)(x)r(x). (183)

Since both deg�(x) + deg r (0)(x) < deg m(x) and
deg�(0)(x) + deg r(x) < deg m(x), (182) and (183) imply
both that

�(x)r (0)(x) = �(0)(x)r(x) (184)

and

�(x)q(0)(x) = �(0)(x)q(x). (185)

Thus �(0)(x) divides �(x)q(0)(x), and (181) implies that
�(0)(x) divides �(x). We have established that �(x) =
a(x)�(0)(x) for some a(x), and r(x) = a(x)r (0)(x) follows
from (184).

APPENDIX B
HORIGUCHI PROPERTIES

The following (new) lemma is the key to our deriva-
tion of Horiguchi–Koetter interpolation in Section V-D and
Appendix C.

Lemma 3: For fixed nonzero b(x) and m(x) ∈ F[x] with
deg b(x) < deg m(x), let both �(1)(x) and �(2)(x) be minimal
partial inverses of b(x) and let

r (1)(x)
�= b(x)�(1)(x) mod m(x) (186)

q(1)(x)
�= b(x)�(1)(x) div m(x) (187)

r (2)(x)
�= b(x)�(2)(x) mod m(x) (188)

q(2)(x)
�= b(x)�(2)(x) div m(x). (189)

Assume further that

deg�(1)(x) = deg m(x)− deg r (2)(x). (190)

Then we have both

�(1)(x)q(2)(x)−�(2)(x)q(1)(x) = −γ (191)

and

�(1)(x)r (2)(x)−�(2)(x)r (1)(x) = γm(x), (192)

where the nonzero constant γ ∈ F is given by

γ
�= lcf �(1)(x) · lcf r (2)(x)

lcf m(x)
(193)

�
The meaning of (190) derives from Lemma 1: �(1)(x) is the
minimal partial inverse of the smallest degree such that

deg r (1) < deg r (2). (194)

In particular, we have

deg�(1) > deg�(2). (195)

Eq. (191) is used in Section V-D; (192) is used in Appendix C.
Proof of Lemma 3: We begin by writing

b(x)�(1)(x) = q(1)(x)m(x)+ r (1)(x) (196)

and

b(x)�(2)(x) = q(2)(x)m(x)+ r (2)(x), (197)
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from which we obtain

b(x)�(1)(x)�(2)(x)

= �(1)(x)q(2)(x)m(x)+�(1)(x)r (2)(x) (198)

= �(2)(x)q(1)(x)m(x)+�(2)(x)r (1)(x), (199)

and further(
�(1)(x)q(2)(x)−�(2)(x)q(1)(x)

)
m(x)

= �(2)(x)r (1)(x)−�(1)(x)r (2)(x). (200)

We now claim that the degree of the right side of (200) equals
deg m(x). Indeed, from (194) and (195), we have

deg�(2)(x)+ deg r (1)(x)<deg�(1)(x)+degr (2)(x), (201)

and from (190), we have

deg�(1)(x)+ deg r (2)(x) = deg m(x). (202)

Considering now the left side of (200), it is clear that

α
�= �(1)(x)q(2)(x)−�(2)(x)q(1)(x) (203)

is a nonzero constant, which is determined by

α lcf m(x) = − lcf �(1)(x) · lcf r (2)(x), (204)

and (191) follows. Eq. (192) then follows from (200). �

APPENDIX C
DECODING REED–SOLOMON CODES VIA

THE STANDARD KEY EQUATION

As mentioned, the definition of the error locator polynomial
in Section V is not quite standard, and neither are the key
equations (129), (137), and (139). We now show that the stan-
dard key equation (with the standard error locator polynomial)
is also a partial inverse problem and can thus be solved by
any of the algorithms of Section IV. In addition, we adapt
Horiguchi–Koetter interpolation [7], [24] for use with reverse
Berlekamp–Massey decoding (i.e., Algorithm 1 of Section IV).

A. Standard Key Equation as a Partial-Inverse Problem

The standard definition of the error locator polynomial is
not (111), but

�(x)
�=

∏
�∈{0,...,n−1}

e� �=0

(1 − β�x), (205)

which requires 0 �∈ {β0, . . . , βn−1}. Different versions of
the key equation exist in the literature [3]–[8], but they are
equivalent to the standard version [27]

S(x)�(x) ≡ 
(x) mod xn−k, (206)

where n and k are the blocklength and the dimension of the
code, respectively, and where S(x) is a (given) syndrome
polynomial with deg S(x) < n − k. The desired solution
(under the assumption wH(e) ≤ (n − k)/2) is a pair 
(x)
and �(x) �= 0 such that

deg
(x) < deg�(x) ≤ (n − k)/2 (207)

and

gcd
(
�(x), 
(x)

) = 1. (208)

The polynomial 
(x) in (205) is commonly called the error
evaluator polynomial.

Proposition 14: Any solution �(x) of (206)–(208) solves
the partial-inverse problem (as defined in Section I) with
b(x) = S(x), m(x) = xn−k and d = � n−k

2 	. �
In consequence, the standard key equation can be solved

by the algorithms of Section IV. The proof of Proposition 14
follows from the following lemma.

Lemma 4: Let b(x) and m(x) be nonzero polynomials in
F[x] with deg b(x) < deg m(x) and with deg m(x) ≥ 2d for
some positive d ∈ Z. If some nonzero �(x) ∈ F[x] with

r(x)
�= b(x)�(x) mod m(x) (209)

satisfies

deg�(x) ≤ d, (210)

deg r(x) < d, (211)

and

gcd
(
�(x), r(x)

) = 1, (212)

then �(x) is a solution of the partial-inverse problem

deg
(
b(x)�(x) mod m(x)

)
< d. (213)

�
Proof: Assume that �(x) is not a solution of the partial

inverse problem (213), i.e., there exists some nonzero �(1)(x)
with deg�(1)(x) < deg�(x) such that

r (1)(x)
�= b(x)�(1)(x) mod m(x) (214)

satisfies deg r (1)(x) < d . Multiplying (209) by �(1)(x) and
(214) by �(x) yields

r (1)(x)�(x) ≡ r(x)�(1)(x) mod m(x), (215)

from which we obtain

r (1)(x)�(x) = r(x)�(1)(x) (216)

by (210) and (211). It follows that �(x) divides �(1)(x)
because of (212). But this is impossible since deg�(1)(x) <
deg�(x). �

B. Forney’s Formula and Horiguchi–Koetter Interpolation

According to Forney’s Formula [6, Sec. 7.4]) and
[8, Sec. 6.3], the error pattern satisfies

e�
�=

⎧
⎪⎨
⎪⎩

−β� · 
(β−1
� )

�′(β−1
� )

if �(β−1
� ) = 0

0 if �(β−1
� ) �= 0

(217)

for � = 0, 1, . . . , n − 1, where �′(x) denotes the formal
derivative of �(x).

If the key equation (206)–(208) is solved by the Euclidean
algorithm (or by Algorithm 3 of Section IV), then both �(x)
and 
(x) are available and (217) can be used directly.
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On the other hand, if the key equation (206)–(208) is solved
by the Berlekamp–Massey algorithm or by Algorithm 1 of
Section IV, then only �(x) is immediately available. In this
case, we can compute 
(x) from


(x) = S(x)�(x) mod xn−k; (218)

alternatively, we can use Horiguchi–Koetter interpolation
as follows. For standard Berlekamp–Massey decoding,
Horiguchi–Koetter interpolation is described in [24] and [7].
For reverse Berlekamp–Massey decoding, i.e., if Algorithm 1
of Section IV is used to solve the standard key equation
according to Proposition 14, we have

Theorem 12 (Horiguchi–Koetter Interpolation for Reverse
Berlekamp–Massey Decoding): If wH(e) ≤ n−k

2 and
�(β−1

� ) = 0, then


(β−1
� ) = −γ · β−(n−k)

�

�(2)(β−1
� )

(219)

with

γ
�= κ2 · lcf �(x)

lcf m(x)
(220)

where �(x) = �(1)(x), �(2)(x), and κ2 are obtained from the
partial-inverse algorithm (when it terminates). �

Proof: Assuming wH(e) ≤ (n − k)/2, we have �(1)(x) =
�(x) = �e(x), up to a scale factor, when the algorithm
terminates. Note that both �(1)(x) and �(2)(x) are minimal
partial inverses by Theorem 4. From Lemma 1, we have

deg�(1)(x) = deg m(x)− deg r (2)(x) (221)

with r (2)(x)
�= b(x)�(2)(x) mod m(x). The theorem then

follows from Lemma 3, eq. (192), in Appendix B with
�(1)(x) = �(x), r (1)(x) = 
(x), and m(x) = xn−k . �

APPENDIX D
SOLVING THE PARTIAL-INVERSE PROBLEM

WITH A MANDATORY FACTOR

In preparation for errors-and-erasures decoding, consider
the partial-inverse problem of Section I with the additional
condition that �(x) is required to be a (nonzero) multiple of
some given nonzero polynomial 
(x) ∈ F[x] i.e.,

�(x) = 
(x)�̃(x); (222)

in other words, (1) is replaced by

deg
(
b(x)
(x)�̃(x) mod m(x)

)
< d. (223)

This problem can be solved as follows. First, we note
that (223) is equivalent to

deg
(

b̃(x)�̃(x) mod m(x)
)
< d (224)

with

b̃(x)
�= b(x)
(x) mod m(x). (225)

We thus have again a standard partial-inverse problem (as
in Section I) with b(x) and �(x) replaced by b̃(x) and

Algorithm 6: Mandatory-Factor Partial-Inverse Algo-
rithm
Input: b(x), m(x), d , 
(x), and leading term of b̃(x) (225).
Output: �(x).

1 if deg b̃(x) < d begin
2 return �(x) := 
(x)
3 end
4 �(1)(x) := 0, d1 := deg m(x), κ1 := lcf m(x)
5 �(2)(x) := 
(x), d2 := deg b̃(x), κ2 := lcf b̃(x)
6 loop begin
7 �(1)(x) := κ2�

(1)(x)− κ1xd1−d2�(2)(x)

8 d1 := deg
(
b(x)�(1)(x) mod m(x)

)
9 if d1 < d begin

10 return �(x) := �(1)(x)
11 end
12 κ1 := lcf

(
b(x)�(1)(x) mod m(x)

)

13 if d1 < d2 begin
14 (�(1)(x),�(2)(x)) := (�(2)(x),�(1)(x))
15 (d1, d2) := (d2, d1)
16 (κ1, κ2) := (κ2, κ1)
17 end
18 end

�̃(x), respectively. In particular, the degree bound (10) applies
to �̃(x), from which we obtain

deg�(x) ≤ deg m(x)− d + deg
(x). (226)

Note that, in general, the degree of the right-hand side of (226)
may exceed the degree of m(x).

It is thus obvious that �(x) can be computed as follows:
1) Compute b̃(x) according to (225).
2) Run any of the algorithms of Section IV (with b̃(x)

instead of b(x)) to obtain �̃(x).
3) Compute �(x) from (222).
Algorithm 6 (see box) is a variation of this procedure where

�(x) is computed directly; �̃(x) does not appear explicitly
and only the leading term of b̃(x) is required. Algorithm 6 is
an easy modification of Algorithm 1 (with input b̃(x)) based
on (222) and the relation

b̃(x)�̃(x) ≡ b(x)�(x) mod m(x). (227)

The translation of Algorithm 6 to corresponding versions of
Algorithms 2 and 3 (Quotient Saving and Remainder Saving,
respectively), is obvious.

APPENDIX E
JOINT ERRORS-AND-ERASURES DECODING

OF REED–SOLOMON CODES

The partial-inverse approach to decoding Reed–Solomon
codes is easily extended to errors-and-erasures decoding. Con-
sider a Reed–Solomon code as in Section V-A, but without
requiring (108) and (109). Let y = (y0, . . . , yn−1) ∈ Fn be
the received word and let Z ⊂ {0, . . . , n − 1} be the set of
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erased positions, which is known to the decoder: for � ∈ Z ,
the decoder assumes that the symbol y� is useless and can be
ignored.

Let c be the transmitted codeword and let y = c + e + z
with error e ∈ Fn defined by

e�
�=

{
y� − c�, � �∈ Z
0, � ∈ Z (228)

for � ∈ {0, . . . , n − 1}, and with z ∈ Fn defined by

z�
�=

{
y� − c�, � ∈ Z
0, � �∈ Z. (229)

Let E ⊂ {0, . . . , n − 1} be the positions of the (non-erased)
errors, i.e., � ∈ E iff e� �= 0. (Note that Z ∩ E = ∅ by this
definition.) We then have both the error locator polynomial

�e(x)
�=

∏
�∈E
(x − β�) (230)

and the erasure locator polynomial

�z(x)
�=

∏
�∈Z

(x − β�), (231)

and the latter is known to the decoder.
As in Section V-B, let Y (x)

�= ψ−1(y), and analogously
C(x)

�= ψ−1(c) and E(x)
�= ψ−1(e) and Z(x)

�= ψ−1(z).
We then have both

E(x)�e(x) mod m(x) = 0 (232)

and

Z(x)�z(x) mod m(x) = 0. (233)

We now propose three different methods for errors-and-
erasures decoding, all of which will correct any combination
of errors and erasures with

2|E | + |Z| ≤ n − k. (234)

Methods I and II below are similar to methods described
in [6], [28] and [29], which use either the Berlekamp–Massey
algorithm or the Euclidean algorithm. Method III does not
seem to have a counterpart in the literature prior to [23].

A. Method I

Assume |Z| ≤ n − k and let

Ŷ (x)
�= Y (x)�z(x) mod m(x) (235)

= Ĉ(x)+ Ê(x) (236)

with Ĉ(x)
�= C(x)�z(x) and

Ê(x)
�= E(x)�z(x) mod m(x). (237)

With k̂
�= k + |Z|, we have deg Ĉ(x) < k̂. We then have the

following generalizations of Theorem 6 and Corollary 2.
Theorem 13: If wH(e) ≤ n−k̂

2 , then

deg
(
Ŷ (x)�e(x) mod m(x)

)
< k̂ + deg�e(x) (238)

≤ n − (n − k̂)/2. (239)

Conversely, for t ∈ R with

wH(e) ≤ t ≤ (n − k̂)/2, (240)

if some nonzero �(x) ∈ F[x] with deg�(x) ≤ t satisfies

deg
(

Ŷ (x)�(x) mod m(x)
)
< n − t, (241)

then �(x) is a multiple of �e(x). �
Corollary 3: If wH(e) ≤ n−k̂

2 , then �e(x) is the nonzero
polynomial of the smallest degree (unique up to a scale factor)
that satisfies (241) with t

�= (n − k̂)/2. �
The proof of Theorem 13 is essentially identical to the proof

of Theorem 6 and is omitted.
We can thus decode essentially as in Section V-D: compute

Ŷ (x) as in (235) and run any of the algorithms of Section IV
with b(x) = Ŷ (x) and d = k̂ + � n−k̂

2 �. Complete decoding,
e.g., by (114) with �(x) = �e(x)�z(x).

B. Method II

This method uses Algorithm 6 of Appendix D and does
not require the computation of (235). We begin by noting that
(241) can be written as

Ŷ (x)�(x) mod m(x) = Y (x)
(
�z(x)�(x)

)
mod m(x), (242)

from which we obtain the following variation of Corollary 3.
Corollary 4: If wH(e) ≤ n−k̂

2 , then �(x) = �z(x)�e(x) is
the nonzero polynomial of the smallest degree (unique up to
a scale factor) that satisfies

deg
(

Y (x)�(x) mod m(x)
)
<

n + k̂

2
(243)

and is a multiple of �z(x). �
We can thus run Algorithm 6 (with b(x) = Y (x) and 
(x) =
�z(x)) to compute �(x) = �z(x)�e(x). Decoding can be
completed as above, e.g., by (114).

C. Method III

This method is particularly obvious in the setting of this
paper. Erased symbols may be viewed as missing evaluation
points, which amounts to omitting the corresponding factors
from (105). Let

m̃(x)
�= m(x)/�z(x), (244)

which has degree ñ
�= n − |Z|, and let

Ỹ (x)
�= Y (x) mod m̃(x). (245)

We can then run any of the algorithms of Section IV with
Ỹ (x), m̃(x) and d = � ñ+k

2 � as input. If wH(e) ≤ (ñ − k)/2,
the partial-inverse algorithm will return �(x) = γ�e(x) for
some nonzero γ ∈ F.

Decoding can be completed by

C(x) = Ỹ (x)�(x) mod m̃(x)

�(x)
(246)

according to Proposition 8 or by

C(x) = Ỹ (x) mod
(
m̃(x)/�(x)

)
(247)

according to Proposition 9.
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APPENDIX F
JOINT ERRORS-AND-ERASURES DECODING

OF POLYNOMIAL REMAINDER CODES

Errors-and-erasures decoding as in Appendix E can be
generalized to polynomial remainder codes as in Section VI.
We focus here on the generalization of Method III of
Appendix E; the corresponding generalization of Method I
and of Method II is straightforward (see also [23]).

As in Appendix E, let Z ⊂ {0, . . . , n−1} be the set of erased
positions. We then define the erasure locator polynomial as

�z(x)
�=

∏
�∈Z

m�(x). (248)

We further define

m̃(x)
�= m(x)/�z(x), (249)

which has degree Ñ
�= N − deg�z(x). We also define the

modified error factor polynomial

�̃E (x)
�= m̃(x)/ gcd

(
E(x), m̃(x)

)
, (250)

which is a nonzero polynomial of the smallest degree that
satisfies

E(x)�̃E (x) mod m̃(x) = 0. (251)

Note that �̃E (x) divides (158), and thus

deg �̃E (x) ≤ deg�E (x). (252)

Now let

Ỹ (x)
�= Y (x) mod m̃(x). (253)

We then have the analog of Theorem 10.
Theorem 14: For given y and e with deg �̃E (x) ≤ t ≤

Ñ−K
2 , assume that some nonzero polynomial �(x) with

deg�(x) ≤ t satisfies

deg
(
Ỹ (x)�(x) mod m̃(x)

)
< Ñ − t . (254)

Then�(x) is a multiple of �̃E (x). Conversely,�(x) = �̃E (x)
is a polynomial of the smallest degree that satisfies (254). �

The proof is easily adapted from the proof of Theorem 10.
We can thus run any of the algorithms of Section IV with

Ỹ (x), m̃(x) and d = � Ñ+k
2 � as input. If

deg �̃E (x) ≤ (Ñ − K )/2 (255)

or, equivalently, if

2 deg �̃E (x)+ deg�z(x) < N − K , (256)

then the partial-inverse algorithm will return �(x) = γ�E (x)
for some nonzero γ ∈ F . Decoding can be completed, e.g.,
by (246) or by (247).
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