
1440 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 3, MARCH 2016

Non-Signaling Parallel Repetition Using
de Finetti Reductions

Rotem Arnon-Friedman, Renato Renner, and Thomas Vidick

Abstract— In the context of multiplayer games, the parallel
repetition problem can be phrased as follows: given a game G
with optimal winning probability 1 − α and its repeated
version Gn (in which n games are played together, in parallel),
can the players use strategies that are substantially better than
ones in which each game is played independently? This question
is relevant in physics for the study of correlations and plays
an important role in computer science in the context of com-
plexity and cryptography. In this paper, the case of multiplayer
non-signaling games is considered, i.e., the only restriction on
the players is that they are not allowed to communicate during
the game. For complete-support games (games where all possible
combinations of questions have non-zero probability to be asked)
with any number of players, we prove a threshold theorem stating
that the probability that non-signaling players win more than a
fraction 1−α+β of the n games is exponentially small in nβ2 for
every 0 ≤ β ≤ α. For games with incomplete support, we derive
a similar statement for a slightly modified form of repetition.
The result is proved using a new technique based on a recent
de Finetti theorem, which allows us to avoid central technical
difficulties that arise in standard proofs of parallel repetition
theorems.

Index Terms— Parallel repetition, threshold theorem,
multiplayer games, non-signalling players, de Finetti theorems,
non-locality, correlations, probability theory, quantum
entanglement.

I. INTRODUCTION

A. Multiplayer Games and Parallel Repetition

MULTIPLAYER games are relevant in many areas
of both theoretical physics and theoretical computer

science. In physics, multiplayer games give an intuitive way
to study the role and implications of entanglement and cor-
relations, e.g., in the setting of Bell inequalities [1], [2].
In computer science such games arise in the context of
complexity theory [3]–[5] and cryptography [6], [7].
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In a game G, a referee asks each of the cooperating players
a question chosen according to a given probability distribution.
The players then need to supply answers which fulfil a pre-
defined requirement according to which the referee accepts
or rejects the answers. In order to do so, they can agree on a
strategy beforehand, but once the game begins communication
between the players is not allowed. If the referee accepts their
answers the players win. The goal of the players is, of course,
to maximise their winning probability in the game.

According to the field of interest, one can analyse any
game under different restrictions on the players (in addition
to not being allowed to communicate). In classical computer
science the players are usually assumed to have only classical
resources, or strategies. That is, they can use only local opera-
tions and shared randomness. In contrast, one can also consider
quantum strategies: before the game starts the players create
a multipartite quantum state that can be shared among them.
When the game begins each player locally measures their own
part of the state and bases the answer on their measurement
result. It is well-known that sharing quantum entanglement
can significantly increase the winning probability in some
games [2], [8].

Another, more general, type of strategies are those where
the players can use any type of correlations that do not allow
them to communicate, also called non-signalling correlations.
That is, the only restriction on the players is that they are not
allowed to communicate (as will be defined formally
later).

Considering the non-signalling case is interesting for several
reasons. A first reason is to minimise the set of assumptions
to the mere necessary one. Indeed, if the players are allowed
to communicate by sending signals they can win any game.
Minimising the set of assumptions can be useful in cryptog-
raphy when one wishes to get the strongest result possible,
i.e., one where the attack strategies of malicious parties
are only restricted minimally (as in [9]–[11] for example).
In theoretical physics, non-signalling correlations enable the
study of generalised theories possibly beyond quantum theory.
It is also important to mention that, due to their linearity,
the non-signalling constraints are often easier to analyse than
the quantum or the classical constraints. Therefore, even if
additional constraints hold, focusing on the non-signalling
ones serves as a way to get first insights into a given problem.

One of the most interesting questions regarding multiplayer
games is the question of parallel repetition. Given a game G
with optimal winning probability 1−α (using either classical,
quantum, or non-signalling strategies), we are interested in
analysing the winning probability in the repeated game Gn .
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In Gn the referee gives the players n independent tuples of
questions at once, to which the players should reply. The most
natural winning criterion is that the players answer a certain
fraction 1 − α + β of the n game instances correctly, and one
can then ask what is the probability that the players succeed
as a function of β, as the number of repetitions n increases.

The players can always use the trivial independent and
identically distributed (i.i.d.) strategy: they just answer each of
the n questions independently according to the optimal one-
game strategy. In this case the fraction of successful answers is
highly concentrated around 1−α (alternatively, the probability
to win all games simultaneously is (1 − α)n). But can they do
significantly better?

If correlated strategies for Gn are not substantially better
than independent ones, even in an asymptotic manner, we
learn that “one cannot fight independence with correlations”.
As long as the questions are asked, and the answers are
verified, in an independent way, creating correlations between
the different answers using a correlated strategy cannot help
much. The resulting threshold theorem can then be used, for
example, when considering a series of Bell violation exper-
iments performed in parallel, or for hardness amplification
in complexity theory and security amplification in classical,
quantum and non-signalling cryptography.

B. Related Work

Raz was the first to show in [12] an exponential parallel
repetition theorem for classical two-player games. That is,
he showed that if the classical optimal winning probability
in a game G is smaller than 1, then the probability to win
all the games in the repeated game Gn , using a classical
strategy, decreases exponentially with the number of repeti-
tions n. Raz’s result was then improved and adapted to the
non-signalling case by Holenstein [13]. Another improvement
was made by Rao in [14], where a threshold theorem for the
classical two-player case was proven: Rao showed that the
probability to win more than a fraction 1−α+β of the games
for any β > 0 is exponentially small in the number of
repetitions.

Following the same proof technique as [12]–[14],
Buhrman, Fehr and Schaffner recently proved in [15] a thresh-
old theorem for multiplayer non-signalling complete-support
games (as formally defined in Definition 7). Their threshold
theorem was the first result where more than two players were
considered.

The question of parallel repetition in the quantum case
is less well understood than its classical and non-signalling
versions. All currently known results deal with limited classes
of two-player games and no general proof is known. The latest
results are given in [16]–[18], where different assumptions on
the probability distribution over the questions of the game are
considered.

C. de Finetti Theorems in the Context of Parallel Repetition

The main difficulty in proving a parallel repetition result
comes from the, almost arbitrary, correlations between the dif-
ferent questions-answers pairs in the players’ strategy for Gn:
as the players get all the n tuples of questions together they

can answer them in a correlated way. In most of the known
parallel repetition results (e.g., [12]–[15]) the main idea of
the proof is to bound the winning probability for some of
the questions, conditioned on winning the previous questions.
However, as the strategy itself introduces correlations between
the different tuples of questions, a large amount of technical
work is devoted to dealing with the effect of conditioning on
the event of winning the previous questions.

When considering the correlations in a strategy for the
repeated game there is one type of symmetry which one can
take advantage of, but which is usually virtually ignored –
permutation invariance. As the game Gn itself is invariant
under joint permutation of the tuples of questions and answers,
we can restrict our attention to permutation-invariant strategies
without loss of generality. Permutation-invariant strategies are
strategies which are indifferent to the ordering of the questions
given by the referee. That is, the probability of answering a
specific set of tuples of questions correctly does not depend
on the ordering of the tuples.

Once we restrict our attention to permutation-invariant
strategies, de Finetti theorems seem like a natural tool to
leverage for the analysis. A de Finetti theorem is any type
of theorem which relates permutation-invariant states1 to a
more structured state, having the form of a convex combination
of i.i.d. states, called a de Finetti state. The specific relation
between the states depends on the type of theorem. The first de
Finetti theorem [19] established that the collection of infinitely
exchangeable sequences, in other words those distributions on
infinite strings that are invariant under all permutations, exactly
coincides with the collection of all convex combinations of
i.i.d distributions. Subsequent results establish quantitative
bounds on the distance of any permutation-invariant state,
or subsystems thereof, from some de Finetti state or an
approximation of a de Finetti state [20]–[25]. A different
form of statement, also called a de Finetti reduction, relates
any permutation-invariant state to an explicit de Finetti state
by an inequality relation [26], [27]. The common feature of
all de Finetti theorems is that they enable a substantially
simplified analysis of information-processing tasks by exploit-
ing permutation invariance symmetry. Indeed, quantum de
Finetti theorems play a significant role in many quantum infor-
mation problems such as quantum cryptography [26], [28],
tomography [29], channel capacities [30] and complexity [25].

In the context of games and strategies, de Finetti theorems
suggest one may be able to reduce the analysis of general
permutation-invariant strategies to the analysis of a de Finetti
strategy, i.e., a convex combination of i.i.d. strategies. As the
behaviour of i.i.d. strategies is trivial under parallel repetition,
a reduction of this type could simplify the analysis of parallel
repetition theorems and threshold theorems.

Yet, de Finetti theorems were not used in the past in this
context, and for a good reason. The many versions of quantum
de Finetti theorems (e.g., [23], [26]) could not have been used
as they depend on the dimension of the underlying quantum
strategies, while in the quantum multiplayer game setting one

1Depending on the context, a state can be a probability distribution,
a quantum density operator or a conditional probability distribution.
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does not wish to restrict the dimension. Non-signalling de
Finetti theorems, as in [31] and [32], were also not applicable
for non-signalling parallel repetition theorems, as they restrict
almost completely the type of allowed correlations in the
strategies for the repeated game by assuming very strict
non-signalling constraints between the different repetitions,
i.e., between the different questions-answers pairs.

In this work we use the recent de Finetti theorem of [27],
which imposes no assumptions at all regarding the structure
of the strategies (apart from permutation invariance), and is
therefore applicable in the context of parallel repetition. This
allows us to devise a proof technique which is completely
different from the known proofs of parallel repetition results.
In particular, at least in the non-signalling case presented here,
the conditioning problem described at the beginning of this
section disappears completely and the number of players does
not play a role in the proof structure.

D. Results and Contributions

The main result presented in this work is a thresh-
old theorem (also called a concentration bound) for the
n-fold repetition of any m-player complete-support game
(see Definition 7), in which the players are allowed to share
any non-signalling strategy. Denote by wns the optimal non-
signalling winning probability in a game G. We prove the
following theorem.

Theorem 1: For any complete-support game G with
wns = 1 − α there exist C1(G, n) and C2(G), where C1(G, n)
is polynomial in the number of repetitions n, such that for
every 0 < β ≤ α and large enough n, the probability that
non-signalling players win more than a fraction 1 − α + β
of the n questions in the repeated game Gn is at most
C1(G, n) exp

[−C2(G)nβ2
]
.

That is, for sufficiently many repetitions the probability
to win more than a fraction 1 − α + β of the n games
is exponentially small. The constant C1(G, n) is such that
C1(G, n) < 6m|Q||A| (n + 1)|Q||A|−1 where m is the number
of players, and |Q| and |A| are the number of possible
questions and answers, respectively, in G. C2(G) is a finite
constant that can be computed by solving the polynomial-size
linear program given in Equation (5). A sufficient condition on
the number of repetitions for the bound in the theorem to hold

is n = �
(|Q||A| C2

β2 ln2(|Q||A|C2
β )

)
. We refer to Equation (12),

and the choice of constants made around Equation (24), for a
more precise bound.

There are two main differences between the exponential
bound given in the threshold theorem of [15] (Theorem 15
therein) and the bound we give here. First, while our bound
suffers from the polynomial dependency on the number of
repetitions in C1(G, n) (which is inherent to the use of a
de Finetti reduction), there is no such dependency in [15].
As the number of repetitions goes to infinity, however, the
exponential factor quickly dominates. Both our constant C2(G)
and the constant μ in [15, Th. 15] depend on the size of
the game through a certain linear program (see the proof of
Lemma 27 and the discussion that follows it in this paper, and
[15, Proof of Proposition 18]), making a direct comparison

difficult. Another point of comparison between the bounds is
the dependency on β: we obtain the optimal (as follows from
optimal formulations of the Chernoff bound) dependency β2,
as compared to β4 in [15]. As far as we are aware, this is
the first threshold theorem where optimal dependency on β is
achieved (see also [14]).

Theorem 1 applies to complete-support games. The result
is extended in two different directions. First, based on ideas
from [33], we show in Appendix A-A that when considering
two-player games without complete-support Theorem 1 still
holds. Second, for general multiplayer games we consider in
Appendix A-B a small modification of the repetition proce-
dure. Instead of the usual parallel repetition procedure, in
which n tuples of questions are chosen according to the game
distribution Q, we change the distribution of questions in the
repeated game by sometimes (with small positive probabil-
ity η) asking the players a tuple of questions q which does not
appear in the original game G. We call such questions “dummy
questions”; for these questions any answer from the players is
accepted. The remaining questions, for which Q(q) > 0, are
called the “real questions” and the modified game is denoted
by G̃n . We prove the following threshold theorem:

Theorem 2: For any game G with wns = 1 − α there exist
C1(G, n) and C2(G), where C1(G, n) is polynomial in the num-
ber of repetitions n, such that for every 0 < β ≤ α and large
enough n, the probability that non-signalling players win more
than a fraction 1 −α +β of the real questions in the modified
repeated game G̃n is at most C1(G, n) exp

[−C2(G)nβ2
]
.

The constants C1(G, n) and C2(G) have the same form as
in Theorem 1, but they now depend also on the perturba-
tion η of the original questions distribution. For more details
on the definition of G̃n and the proof of Theorem 2 see
Appendix A-B.

A similar modification was previously considered in both
classical [34] and quantum [35] parallel repetition theorems,
where the repetitions in which dummy questions are selected
were called “confusion rounds”. For many applications this
modification is harmless, especially as the success probability
of “honest” players is not affected by it. However, it is
important to note that Theorem 2 only holds for the modified
form of repetition of the original game.

In addition to the bounds themselves our, perhaps most
important, contribution in this work is the, arguably simpler,
proof technique. While most of the known parallel repetition
results build on the proof technique of [12] we give a
completely different proof, with ideas based on de Finetti
theorems and tomography (as explained in the next section).
Our proof technique allows us to avoid the usual difficulties
which arise in proofs of parallel repetition theorems, such
as conditioning on some of the questions and answers or
considering an arbitrary number of players. In this sense our
proof can be seen as more natural than previous proofs, and
therefore more likely to be extendable to the classical and
quantum multiplayer cases as well.

E. Proof Idea and Techniques

The goal of this section is to give the reader an intuitive
understanding of the proof idea and techniques. The formal



ARNON-FRIEDMAN et al.: NON-SIGNALING PARALLEL REPETITION USING de FINETTI REDUCTIONS 1443

and more technical implementations of these ideas are given
in the following sections. Nevertheless, the following two
definitions are needed.

Definition 3 (Multiplayer Game): An m-player game
G = (Q,A, Q, R) is defined by a set of possible tuples
of questions Q together with a probability distribution
Q : Q → [0, 1] (according to which the referee choses the
questions) over it, a set of possible tuples of answers A and
a winning condition R : Q × A → {0, 1}. An m-tuple of
questions q = (q1, q2, . . . , qm) ∈ Q describes the questions
given to the different players. Similarly an m-tuple of answers
a = (a1, a2, . . . , am) ∈ A describes the answers given by the
different players.

Definition 4 (Strategy): A strategy for an m-player game
G = (Q,A, Q, R) is a conditional probability distribution
OA|Q : A×Q → [0, 1], i.e.,

∑
a OA|Q (a|q) = 1 for all q ∈ Q.

Similarly, a strategy for a repeated game Gn is a conditional
probability distribution denoted by P �A| �Q : An × Qn → [0, 1].

Throughout the proof strategies for the game G are denoted
by OA|Q and strategies for the repeated game Gn are denoted
by P �A| �Q .

1) Permutation Invariance and de Finetti Theorems: The
first trivial, but crucial, observation made is that when con-
sidering strategies for the repeated game, one can concentrate
without loss of generality on permutation-invariant strategies.
Permutation-invariant strategies are indifferent to the ordering
of the tuples of questions given by the referee. That is, the ref-
eree can ask the players to answer q1, q2, q3 or q2, q3, q1 (each
qi is an m-tuple); in both cases the winning probability will
be the same if the players are using a permutation-invariant
strategy. Note that the permutation changes only the order of
the tuples of questions. In particular, the players themselves
are not being permuted and the questions of all players are
permuted in exactly the same way (see Definition 21 and
Lemma 22 for the formal argument).

Considering only permutation-invariant strategies allows us
to use the de Finetti theorem of [27] which relates any
permutation-invariant strategy to a de Finetti strategy. The
exact statement of the de Finetti theorem will only be relevant
later. For now, using just the intuition of de Finetti theorems,
one can think of any permutation-invariant strategy as being
a convex combination of i.i.d. strategies. That is,2

P �A| �Q ≈
∫

O⊗n
A|QdOA|Q (1)

where dOA|Q is some measure on the space of one-game
strategies and O⊗n

A|Q is a product of n identical strategies OA|Q .

Unfortunately, the convex combination itself (meaning, the
measure dOA|Q ) is unknown. Moreover, even though we
assume that the strategy P �A| �Q does not allow the m players
to communicate, i.e., it is non-signalling, the convex com-
bination might still include signalling parts, i.e., signalling
OA|Q . Indeed, in general, a convex combination of signalling
strategies can still be non-signalling.

2We emphasise once again that this is not a quantitive statement that we
claim to be correct. This is just useful as an intuitive way of understanding
the proof idea.

For the non-signalling parts of the convex combina-
tion one can easily prove a strong parallel repetition or
threshold theorem. These parts are just i.i.d. non-signalling
strategies. The only thing which is left to prove is therefore that
the signalling part of the convex combination of Equation (1)
has an exponentially small weight.3 We find this question
interesting by itself, and of course, the same question can be
asked in the classical and quantum case – given a classical or
quantum strategy P �A| �Q , what is the weight of the non-classical

or non-quantum i.i.d. parts in the convex combination?
2) Bounding the Signalling Part: As the convex combi-

nation itself in Equation (1) is unknown, one cannot just
calculate the weight of the signalling part. We therefore take
a more operational approach, following ideas from quantum
tomography [29].

Consider a particular (unknown) part O⊗n
A|Q of the convex

combination and divide the n copies of the strategy OA|Q into
two groups – a test group consisting of n/2 out of the n copies,
and a game group of n/2 copies. The general idea is to use
the test copies to get an estimation OEST

A|Q of the strategy OA|Q ,
which will then help us in proving our claims.

More specifically, we are interested in knowing whether
OA|Q is signalling or not (if it is non-signalling then its
winning probability in G is obviously bounded by the optimal
non-signalling winning probability 1−α). For this we define a
signalling measure and an operational (and hypothetical) sig-
nalling test. Given questions and answers which are distributed
according to the n/2 copies of OA|Q and Q, the signalling
test will create an estimation OEST

A|Q and calculate its signalling

value. If the signalling value is above a certain threshold the
test will accept, and otherwise it will reject.

In order to bound the weight of the signalling part in
Equation (1) one can bound the probability that the signalling
test accepts. To prove that the acceptance probability is expo-
nentially small we use a combination of two lemmas, which
we call the weak and the strong lemma. These lemmas are
based on a special guessing game that we construct and on
applications of the de Finetti theorem. Both lemmas together
show that if the probability of the test accepting is too high,
then the original strategy P �A| �Q must have been signalling – a
contradiction.

3) From Intuition to Practice: In practice, the de
Finetti theorem [27] is an inequality relation between any
permutation-invariant strategy and a given de Finetti strategy
(see Lemma 23) which does not imply Equation (1). As a
consequence, considering the test copies and game copies as
above does not directly make sense. Nevertheless, we can
follow similar ideas by considering the questions-answers pairs
in a specific instance of the repeated game. That is, every
time the game is played using a strategy P �A| �Q , we divide
the data, the questions and answers, of this specific run into
two groups – test data and game data, consisting of n/2 tuples
of questions-answers pairs each. Our goal is then to bound

3As mentioned above, this statement does not hold for an arbitrary decompo-
sition of a non-signalling strategy as a convex combination of other strategies.
We will crucially use the fact that each term in the convex combination has
an i.i.d. structure.
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TABLE I

CONSTANTS, PARAMETERS AND THEIR RELATIONS. (g) NEXT TO THE SYMBOL DENOTES THAT THIS IS A CONSTANT WHICH DEPENDS
ON THE CONSIDERED GAME AND (t) DENOTES A PARAMETER OF THE THRESHOLD THEOREM. ALL OTHER CONSTANTS SHOULD

BE CHOSEN SUCH THAT ALL THE REQUIREMENTS IN THE LAST COLUMN OF THE TABLE ARE FULFILLED

Fig. 1. Division to test and game data.

TABLE II

SYMBOLS OF EVENTS USED THROUGHOUT THE PAPER

the winning frequency in the game data, while the test data is
relevant for the hypothetical signalling tests (see also Figure 1
in the following section).

The rest of the paper is organised as follows. We start
with some preliminaries in Section II. In Section III we first
consider and explain the concept of non-signalling strategies,
then define our signalling measures and signalling tests in a
formal way and present their important properties. Section IV
is devoted to de Finetti and permutation-invariant strategies.
Finally, in Section V we connect all the relevant tools together
using the weak and the strong lemmas, and prove our main
theorem, Theorem 1 (the extension of the theorem to games
with incomplete support is relatively straightforward and is
given in Appendix A). We conclude in Section VI with
open questions and a discussion of possible extensions to the
classical and quantum case.

II. PRELIMINARIES

Throughout the proof many constants and parameters are
used. For convenience, apart from introducing them when
necessary, we list all of them together with their role in Table I.
Similarly, a list of relevant events and their symbols appears
in Table II.

We use the letters q, r and s to denote tuples of questions
and a and b to denote tuples of answers. In the following we

define the notation using only q and a. Furthermore, ∧ denotes
‘logical-and’, ∨ ‘logical-or’, and ¬ ‘logical-not’.

A. Games and Strategies

In this work we consider a general m-player game
G = (Q,A, Q, R) as defined in Definition 3 in the previous
section. A strategy for a game G is described by a conditional
probability distribution OA|Q : A × Q → [0, 1] as defined in
Definition 4. For the joint questions-answers distribution we
use OAQ = Q × OA|Q .

Definition 5 (Winning Probability): The winning probabil-
ity of a strategy OA|Q in game G = (Q,A, Q, R) is given by
w

(
OA|Q

) = ∑
q,a Q(q)R(q, a)OA|Q(a|q).

We use the following definition to measure the distance
between two one-game strategies.

Definition 6 (Distance Measure): The distance between
KA|Q and RA|Q is defined as

∣
∣KA|Q − RA|Q

∣
∣
1 = Eq∈Q

∑

a∈A

∣
∣KA|Q (a|q) − RA|Q (a|q)

∣
∣

where the m-tuples of questions q ∈ Q are distributed
according to Q defined by the game G.

Note that this is not the standard definition – instead of
a maximisation over the tuples of questions as in the usual
definition of the trace distance we consider the average over
the tuples according to the game distribution. Therefore, the
distance between the strategies depends on the specific game G
considered.

In the repeated game Gn the referee asks each of the
players n questions, all at once. The questions are chosen
according to the distribution Q⊗n , i.e., independently using Q.
The answers are then checked independently according to the
winning condition R. A strategy for the repeated game Gn is
denoted by P �A| �Q : An ×Qn → [0, 1] and the joint questions-
answers distribution is then P �A �Q = Q⊗n × P �A| �Q . When the

distributions are clear from the context we sometimes omit the
subscripts and write just O and P.

When considering many questions-answers pairs in the
repeated game we denote all the questions and answers as
vectors �q, �a. We use a subscript index as in �q j to denote the
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j ’th tuple of questions given to the players. We denote by
O⊗n

A|Q a product of n identical strategies OA|Q . That is, O⊗n
A|Q

is defined according to O⊗n
A|Q (�a|�q) = ∏n

j=1 OA|Q(a j |q j ) for
all �a, �q .

For any m-tuple of questions q = (q1, . . . , qm) ∈ Q and any
i ∈ [m] = {1, · · · , m} we denote by qi , using a superscript
index, the question given to the i ’th player by the referee,
and by qī = (q1, . . . qi−1, qi+1, · · · , qm) the (m − 1)-tuple of
questions given to all the players but i . Similarly, for a subset
I ⊂ [m], q I denotes the questions given to all the players
i ∈ I and q Ī denotes the complementary set of questions,
i.e., the questions given to all the players i /∈ I . An analogous
notation is used for the answers. Similarly, when considering
many questions-answers paris, �qi denotes all the questions
given to the i ’th player, and so on.

A tuple of questions q = (q1, . . . qi−1, qi , qi+1, · · · , qm)

can then be also written as (qi , qī ) where it is understood
which player gets which question. Therefore in this notation

Q(qi , qī ) = Q(q) and similarly O(ai , aī |qi , qī ) = O(a|q).

Moreover, Q(qi |qī) = Q(qi ,qī )
∑

ri Q(ri ,qī )
denotes the probability that

the i ’th player receives question qi given that the other players
receive qī .

In the following we prove Theorem 1, which applies to
games with complete-support. A game has complete-support
if every possible combination of questions to the players has
some non-zero probability according to the question distribu-
tion Q. Formally,

Definition 7 (Complete-Support Game): An m-player
game has complete-support if for every possible combination
of questions to the players q1, . . . , qm (i.e., q1, . . . , qm

such that for all i ∈ [m] there exist sī for which
Q

(
(s1, . . . , si−1, qi , si+1, . . . , sm)

)
> 0), Q(q) > 0.

B. Estimated Strategies

The specific questions and answers in one run of the
repeated game �q, �a are also called the data of the game.
As mentioned in the previous section, the data �q, �a is divided
into two disjoint sets which we call the test data and the
game data. We denote the n/2 tuples of test questions and
answers by �qt , �at respectively and the n/2 tuples of game
questions and answers by �qg, �ag respectively. Using this
notation �q is the concatenation of �qt and �qg and �a is the
concatenation of �at and �ag . Note that although we denote
here the test questions as appearing before the game questions,
they are indistinguishable from one another, as they are chosen
according to the exact same distribution Q. Had this not been
the case, the permutation invariance symmetry would have
been broken.

Given the test data �qt , �at we create an estimation OEST1
A|Q

of a one-game strategy in the following way. For every
tuple of questions q ∈ Q and answers a ∈ A let f q

a be
the frequency of the tuple of answers a in �at restricted to
the indices j ∈ [n/2] for which �qt

j = q (if q did not
appear at all set f q

a = 0). Then define OEST1
A|Q such that

OEST1
A|Q (a|q) = f q

a .

Similarly OEST2
A|Q is created in the same way, using the game

data �qg, �ag (see Figure 1). Note that since P �A| �Q might be
signalling between the different n tuples of questions, both
OEST1

A|Q and OEST2
A|Q can depend also on the other questions which

are not considered in the estimation process.
To evaluate the accuracy of the estimation process described

above we will use the following lemma – an application of
Sanov’s theorem (see, e.g., [36] Section 11.4) to our scenario.

Lemma 8: Let δ(l, ε) = (l + 1)|A|·|Q|−1e−lε2/2. Then for

every i.i.d. strategy O⊗l
A|Q ,

Pr�a,�q∼O⊗l
AQ

[
|OEST

A|Q − OA|Q |1 > ε
]

≤ δ(l, ε)

where OEST
A|Q is estimated as above from the data �a, �q.

C. Linear Programs

Linear programs (see, e.g., [37]) are a useful tool when
considering non-signalling games, as the non-signalling con-
straints are linear. The following results regarding the sensi-
tivity of linear programs will be of use for us.

Lemma 9 (Sensitivity Analysis of Linear Programs, [37]
Section 10.4): Let max{cT x |Ax ≤ b} be a primal linear
program and min{bT y|AT y = c, y ≥ 0} its dual. Denote
the optimal value of the programs by w and the optimal
dual solution by y�. Then the optimal value of the perturbed
program we = max{cT x |Ax ≤ b + e} for some perturbation
e is bounded by we ≤ w + eT y�.

Lemma 10 (Dual Optimal Solution Bound, [37]
Section 10.4): Let A be an r1 × r2-matrix and let 	
be such that for each non-singular sub-matrix B of A all
entries of B−1 are at most 	 in absolute value. Let c be a
row vector of dimension r2 and let y� be the optimal dual
solution of min{bT y|AT y = c, y ≥ 0}. Then

κ =
r1∑

j=1

|y�
j | ≤ r2	

r2∑

j=1

|c j |.

III. DETECTING SIGNALLING

A. The Non-Signalling Constraints

We start by defining a non-signalling strategy. To simplify
notation we define it using one-game strategies OA|Q . The
definition is identical for the strategies P �A| �Q .

Definition 11 (Non-Signalling Strategy): An m-player
strategy OA|Q is called non-signalling if for any set of players
I ⊂ [m], for all a Ī , q Ī , q I , and r I ,

OA|Q (◦, a Ī |q I , q Ī ) = OA|Q (◦, a Ī |r I , q Ī )

where ◦ denotes a marginal, e.g., OA|Q (◦, a Ī |q I , q Ī ) =∑
ai |i∈I OA|Q (a|q I , q Ī ).
Alternatively, one can define a non-signalling strategy using

a set of linearly independent non-signalling constraints from
which all the constraints in the above definition follow.

Lemma 12 ([38, Lemma 2.7]): An m-player strategy OA|Q
is non-signalling if and only if for any player i ∈ [m], for all
aī , qī , qi , and r i ,

OA|Q (◦, aī |qi , qī ) = OA|Q(◦, aī |r i , qī ). (2)
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From Equation (2) it is clear that for every i and qī

the marginal states OA|Q (◦, aī |qi , qī ) are all equivalent and
independent of qi . Therefore another equivalent formulation
of the non-signalling constraints is given by

OA|Q(◦, aī |qi , qī ) =
∑

ri

Q(r i |qī )OA|Q(◦, aī |r i , qī )

For all aī , qī and qi . Here we defined the marginal, which
is independent of r i , as an average over the different
OA|Q (◦, aī |r i , qī ), where the average is taken according to
the distribution of the game question Q. It is easy to verify
that this condition is equivalent to Equation (2).

We can now write the optimisation problem of finding the
optimal winning probability in a complete-support game G
using a non-signalling strategy as the following linear program
over the variables O(a|q):

max
∑

q,a

Q(q)R(q, a)O(a|q) (3a)

s.t. Q(qi , qī )
[
O(◦, aī |qi , qī )

−
∑

ri

Q(r i |qī )O(◦, aī |r i , qī )
]

= 0

∀i, qi , qī , aī (3b)
∑

a

O(a|q) = 1 ∀q (3c)

O(a|q) ≥ 0 ∀a, q (3d)

The objective function, Equation (3a), is exactly the winning
probability of the game using strategy O(a|q) as defined in
Definition 5. Equations (3c) and (3d) are the normalisation
and positivity constraints on the strategy O(a|q).

In Equation (3b) all the non-signalling constraints are
listed, up to a factor of Q(q) which does not change the
constraints when considering complete-support games, but will
be important later in the following section. We note that the
only place in the proof where the complete-support property
of the game is used is for writing down the linear program
above. In Appendix A we explain the implications of the linear
program (3) to games with incomplete support. In particular,
in Appendix A-A we show how to modify program (3) for the
case of two-player games with incomplete support such that
our result still holds. In Appendix A-B we show how one can
slightly modify the parallel repetition procedure to derive a
general (although modified) threshold theorem for any game.

Next, one can relax the linear program (3) to the
following:

max
∑

q,a

Q(q)R(q, a)O(a|q)

s.t. Q(qi , qī )
[
O(◦, aī |qi , qī )

−
∑

ri

Q(r i |qī)O(◦, aī |r i , qī )
]

≤ 0

∀i, qi , qī , aī (4a)
∑

a

O(a|q) = 1 ∀q

O(a|q) ≥ 0 ∀a, q

To see that the relaxation of the non-signalling
constraints (3b) to the constraints (4a) does not change
the program, i.e., does not change the value of the optimal
solution, assume there exists i, qi , qī , aī for which

Q(qi , qī )
[
O(◦, aī |qi , qī ) −

∑

ri

Q(r i |qī )O(◦, aī |r i , qī )
]

< 0.

That is, O(◦, aī |qi , qī ) is smaller than the average∑
ri Q(r i |qī )O(◦, aī |r i , qī ), and therefore there must be

some si for which O(◦, aī |si , qī ) is larger than the average,
meaning,

Q(si , qī )
[
O(◦, aī |si , qī ) −

∑

ri

Q(r i |qī )O(◦, aī |r i , qī )
]

> 0,

but this contradicts the constraints in (4a).
The dual program of the primal (4) is given below.

min
∑

q

z(q)

s.t. z(q) +
∑

i

yi (q, aī)Q(q)

−
∑

i

∑

r |
r ī =qī

yi (r, aī )Q(r)Q(qi |qī)

≥ Q(q)R(q, a) ∀a, q (5a)

yi (q, aī ) ≥ 0 ∀i, q, aī

B. Signalling Measure

Given a general strategy OA|Q we would like to measure
the amount of signalling from every player i ∈ [m] to all the
other players together. Following the linear program (4), we
quantify signalling using Definition 13 below.

In the definition we derive all the relevant conditional
and marginal distributions from OAQ . Concretely we use the
following notation: O(◦, bī |si , sī ) = ∑

bi O(bi , bī |si , sī ) as

before, O(◦, bī , ◦, sī ) = ∑
bi ,si O(bi , bī , si , sī ), and

O(◦, si |bī , sī ) =
∑

bi

O(bi , si |bī , sī ) =
∑

bi

O(bi , bī , si , sī )

O(◦, bī , ◦, sī )
.

Definition 13 (Signalling Measure): The signalling of
strategy OA|Q in direction i → ī using outputs bī and inputs
si , sī is defined as

Sig
(i,bī ,si ,sī ) (O)

= Q(si , sī )
[
O(◦, bī |si , sī ) −

∑

ri

Q(r i |sī )O(◦, bī |r i , sī )
]

(6)

= O(◦, bī , ◦, sī )
[
O(◦, si |bī , sī ) − Q(si |sī )

]
. (7)

That is, we have a signalling measure for every (i, bī , si , sī ).
If Sig

(i,bī ,si ,sī )
(O) > 0 we say that the strategy is sig-

nalling in direction (i, bī , si , sī ). A negative signalling value,
Sig

(i,bī ,si ,sī ) (O) < 0, is not relevant due to the inequality

in Equation (4a).
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Fig. 2. The different forms of signalling: every i and every bī , si , sī define a line as in the figure. The value of Sig
(i,bī ,si ,sī )

(O) tells us exactly where we
are on the line.

The two forms of Sig
(i,bī ,si ,sī )

(O) given in equa-

tions (6) and (7) are equivalent according to Bayes’ rule
and they will be useful in different places in the proof.
Equation (7) for example allows us to quantify the amount by
which input si is more or less probable given bī , compared
to the prior Q(si |sī ) (this will be useful in the proof of
Lemma 25).

The following lemma shows that our measure of signalling
is continuous. That is, if two strategies are close to one another
according to Definition 6 then their signalling values are also
close. The proof is given in Appendix B.

Lemma 14 (Continuity of Sig): Let O1 and O2 be two one-
game strategies such that

∣
∣O1 −O2

∣
∣
1 ≤ ε. Then for all i, bī , si

and sī ,
∣
∣Sig

(i,bī ,si ,sī )
(O1) − Sig

(i,bī ,si ,sī )
(O2)

∣
∣ ≤ 2ε.

C. Signalling Tests

In the following we will need an operational way of testing
whether a one-game strategy OA|Q is signalling. This can be
done by using many copies of OA|Q – given data �q, �a which
is distributed according to many independent copies of OAQ

it is possible to create an estimation of OA|Q , OEST1
A|Q , and then

evaluate Sig
(i,bī ,si ,sī )

(
OEST1

)
.

To formulate this process we first define an indicator func-
tion which will be used in the test. More precisely, for every
tuple (i, bī , si , sī ) we define a function T

(i,bī ,si ,sī )
: Qt ×At →

{0, 1}:

T
(i,bī ,si ,sī )

( �qt , �at ) =
{

1 if Sig
(i,bī ,si ,sī )

(
OEST1

) ≥ ζ − 2ε

0 otherwise

(8)

where OEST1 is estimated from �qt , �at and ζ, ε > 0
are parameters satisfying ζ ≥ 7ε and ε ≤ minq Q(q).
See Figure 2 for a visualisation of the different signalling
forms (i, bī , si , sī ) and the signalling values considered in the
test.

The following observation will be crucial later on:
Remark 15: According to Definition 13, in order to evaluate

Sig
(i,bī ,si ,sī )

(
OEST1

)
there is no need to know OEST1 com-

pletely; only the marginals OEST1(◦, bī |r i , sī ) for all r i are
needed.

For every (i, bī , si , sī ) we can now consider a signalling
test. Given a strategy P �A| �Q for the repeated game Gn we
sample n tuples of questions �q using the game distribution
Q⊗n and use them to get n tuples of answers �a which are
distributed according to P �A| �Q . Finally, if T

(i,bī ,si ,sī )
( �qt , �at ) = 1

the test accepts, and otherwise rejects.4 Throughout the paper
we denote by T the event of the test accepting (where the
index (i, bī , si , sī ) is clear from the context). Note that if a
question s does not appear in the test data �qt the test T

(i,bī ,si ,sī )
rejects by definition.

The following lemma shows that the test is reliable
when applied to an i.i.d. strategy O⊗n

A|Q . That is, if

Sig
(i,bī ,si ,sī )

(O) ≥ ζ the test will detect it with high probabil-

ity, i.e. the test will accept with high probability, and if OA|Q
is non-signalling then the test will reject with high probability.
The proof can be found in Appendix B.

Lemma 16 (Reliable Signalling Test): Assume the players

share an i.i.d. strategy O⊗n
A|Q . For every (i, bī , si , sī ),

1) If Sig
(i,bī ,si ,sī ) (O) ≥ ζ then Pr�a,�q∼O⊗n

AQ
[T] > 1 − δ.

2) If Sig
(i,bī ,si ,sī )

(O) = 0 then Pr�a,�q∼O⊗n
AQ

[¬T] > 1 − δ.

where δ = δ
( n

2 , ε
) = ( n

2 + 1
)|A|·|Q|−1

e−nε2/4.
Given a specific signalling test T

(i,bī ,si ,sī )
we define two

relevant sets of one-game strategies:

σ
(i,bī ,si ,sī )

=
{

O
∣
∣∀Ō s.t. |O − Ō|1 ≤ ε,

Ō is ζ signalling or more in (i, bī , si , sī )
}

(9)



(i,bī ,si ,sī )

=
{

O
∣
∣∃Ō s.t. |O − Ō|1 ≤ ε

∧ Pr�a,�q∼Ō⊗n
AQ

[T] > δ
}

(10)

The following two lemmas allow us to address these sets
also according to the signalling values of the relevant strategies
(see also Figure 3).

Lemma 17: For all O /∈ σ
(i,bī ,si ,sī )

, Sig
(i,bī ,si ,sī ) (O) <

ζ + 2ε.
Lemma 18: Let ν > 0 be any parameter such that ν <

ζ − 6ε. Then

∀O ∈ 

(i,bī ,si ,sī )

, Sig
(i,bī ,si ,sī ) (O) > ν.

Lemma 17 follows right away from Lemma 14 and the
definition of σ

(i,bī ,si ,sī )
. Lemma 18 is proven in Appendix B.

IV. USING de FINETTI STRATEGIES

In this section we start analysing the relation between

the test questions-answers �qt , �at and the game questions-
answers �qg, �ag in one instance of the repeated game Gn

4Note that as P �A| �Q can be signalling between the different n tuples of
questions-answers one has to input all the questions before getting the test
answers. That is, even though the test considers only the test data, the test
questions themselves are not sufficient to get all the necessary information.
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Fig. 3. Visualization of the signalling values which are relevant for Lemma 18 and the sets σ
(i,bī ,si ,sī )

, 

(i,bī ,si ,sī )

.

using a strategy P �A| �Q . More precisely, we denote the
one-game strategy which is estimated from �qg, �ag by OEST2

A|Q ,
and we are interested in knowing what is the probability that
OEST2

A|Q ∈ 

(i,bī ,si ,sī )

or OEST2
A|Q ∈ σ

(i,bī ,si ,sī )
given the result of

T
(i,bī ,si ,sī )

( �qt , �at ). We denote the event OEST2
A|Q ∈ 


(i,bī ,si ,sī )
by

in
 and similarly the event OEST2
A|Q ∈ σ

(i,bī ,si ,sī )
by inσ , where

the indices of the sets are clear from the context.
We first do this for any i.i.d. strategy and then extend the

results to any permutation-invariant strategy using a de Finetti
reduction [27].

A. de Finetti Strategies

As mentioned in Section I, de Finetti strategies are strategies
that can be written as a convex combination of i.i.d. strategies.
Formally,

Definition 19 (de Finetti Strategy): A de Finetti strategy
τ �A| �Q is a strategy of the form

τ �A| �Q =
∫

O⊗n
A|QdOA|Q ,

where dOA|Q is some measure on the space of one-game
strategies.

In the following lemma we are interested in the rela-
tion between the test questions-answers �qt , �at and the game
questions-answers �qg, �ag in one instance of the repeated
game Gn . For i.i.d. strategies (and therefore also for de Finetti
strategies) this is simple: �qt , �at and �qg, �ag are independent of
each other and conditioning on a property of one of them does
not affect the other.

Lemma 20: For a de Finetti strategy τ �A| �Q and every

(i, bī , si , sī )

1) Pr�a,�q∼τ �A �Q
[
T ∧ ¬in


] ≤ δ

2) Pr�a,�q∼τ �A �Q [¬T ∧ inσ ] ≤ δ

where τ �A �Q = Q⊗n × τ �A| �Q .
The proof of this lemma (given in Appendix C) follows

from Sanov’s theorem stated in Lemma 8. Intuitively, if the
event T holds then OEST1 is signalling and therefore so should
OEST2 be, and vice versa.

B. de Finetti Reductions

Of course, considering just de Finetti strategies is not
interesting by itself. Luckily, we can now use a de Finetti
reduction to extend the results of the previous section to
any permutation-invariant strategy, where the permutation is
performed on the questions-answers pairs (we do not permute

the players). As the repeated game Gn is by itself permutation
invariant we can restrict the strategies of the players to be
permutation invariant without loss of generality.

Definition 21 (Permutation Invariance): Given a strategy
P �A| �Q and a permutation π of the questions and answers we
denote by P �A| �Q ◦ π the strategy which is defined by

∀�a, �q
(

P �A| �Q ◦ π
)

(�a|�q) = P �A| �Q(π(�a)|π(�q)).

P �A| �Q is permutation invariant if for any permutation π ,
P �A| �Q = P �A| �Q ◦ π .

The following lemma shows that we can restrict our analysis
to permutation-invariant strategies without loss of generality.

Lemma 22: For every strategy P �A| �Q for the repeated game

Gn there exists a permutation-invariant strategy P̃ �A| �Q such that

w
(

P �A| �Q
)

= w
(

P̃ �A| �Q
)

.
Proof: Given P �A| �Q define its permutation-invariant version

to be

P̃ �A| �Q = 1

n!
∑

π

P �A| �Q ◦ π.

The winning probability of the game is linear in the strategy,
therefore we have

w
(

P̃ �A| �Q
)

= w

(
1

n!
∑

π

P �A| �Q ◦ π

)

= 1

n!
∑

π

w
(

P �A| �Q ◦ π
)

.

(11)

Since the tuples of questions in the repeated game are
chosen in an i.i.d. manner and the winning condition is
checked for each tuple separately, the winning probability
is indifferent to the ordering of the questions-answers pairs.
As π permutes the tuples of questions and answers together
we have w

(
P �A| �Q ◦ π

)
= w

(
P �A| �Q

)
.

Combining this with Equation (11) we get w
(

P̃ �A| �Q
)

=
w

(
P �A| �Q

)
. �

Lemma 23 (de Finetti Reduction for Conditional Probabil-
ity Distributions [27]): Let c = (n + 1)|Q|(|A|−1). There exists
a de Finetti strategy τ �A| �Q such that for every permutation-
invariant strategy P �A| �Q

∀�a, �q P �A| �Q(�a|�q) ≤ c · τ �A| �Q(�a|�q).

The de Finetti strategy τ �A| �Q is constructed explicitly in [27]
but the specific construction is not relevant for our purposes.
In some special cases the constant c in Lemma 23 can also
be made smaller by taking into account symmetries of the
game G itself. For further details see [27].
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We now use the de Finetti reduction to show that the
properties proven in Lemma 20 for the de Finetti strategy
also hold true for permutation-invariant strategies, although
with slightly weaker parameters. Concretely, the bound of 2δ
in Lemma 20 is replaced by 2cδ in the following lemma.
Nevertheless, the bound still decreases exponentially fast with
the number of repetitions.5

Lemma 24 (Reduction): For every permutation-invariant
strategy P �A| �Q and every (i, bī , si , sī )

1) Pr�a,�q∼P �A �Q
[
T ∧ ¬in


] ≤ cδ .
2) Pr�a,�q∼P �A �Q [¬T ∧ inσ ] ≤ cδ .

Proof: We prove both of the claims together. Denote the
relevant event by E(�a, �q) and note that for both events we can
write

Pr�a,�q∼P �A �Q
[
E(�a, �q) = 1

] =
∑

�a,�q|
E(�a,�q)=1

P �A �Q(�a, �q).

From Lemma 23 we get P �A �Q(�a, �q) ≤ c · τ �A �Q(�a, �q) and
therefore

Pr�a,�q∼P �A �Q
[
E(�a, �q) = 1

]

=
∑

�a,�q|
E(�a,�q)=1

P �A �Q(�a, �q)

≤ c ·
∑

�a,�q|
E(�a,�q)=1

τ �A �Q(�a, �q)

= c · Pr�a,�q∼τ �A �Q
[
E(�a, �q) = 1

]
.

Combining this with Lemma 20 proves the lemma. �

V. THRESHOLD THEOREM

In this section we prove our threshold theorem, Theorem 1.
Before going into the details of the proof, let us explain the
high-level idea.

First, to see the connection between what was done so far
and a threshold theorem note that the winning probability of
OEST2

A|Q in the game G, w(OEST2
A|Q ), is exactly the fraction of

coordinates in which the game data �qg, �ag satisfies the winning
condition R. Therefore, in order to prove a threshold theorem
it is sufficient to prove an upper bound on w(OEST2

A|Q ) which
holds with high probability.

To do so we use the following sequence of lemmas. The
first two lemmas bound the probability that the estimate
OEST2

A|Q is significantly signalling6 in any direction (i, bī , si , sī )

for which Pr�a,�q∼P �A �Q
[
T
] �= 0. Lemma 25, which we also

call the weak lemma, establishes that even conditioned on
the test T

(i,bī ,si ,sī )
( �qt , �at ) detecting signalling the distribution

OEST2
A|Q itself cannot be signalling with very high probability.

5One would have liked to apply a similar argument to the winning
probability of the repeated game right away. That is, w(P �A| �Q) ≤ cw(τ �A| �Q).

This claim is indeed correct, but not useful. A look at the explicit construction
of τ �A| �Q itself in [27] will reveal that it is a signalling strategy, hence no

non-trivial bound on w(τ �A| �Q) holds a priori. For a further discussion see
Section VI-B.

6In the words of the explanation given in Section I-E, this is where we
prove that the signalling weight is exponentially small.

The proof of the lemma is based on a reduction to a certain
guessing game which is used to derive a contradiction between
the conclusion that OEST2

A|Q would be signalling and the assump-
tion that the overall distribution P �A| �Q is not. Lemma 26, called
the strong lemma, amplifies the conclusion of the weak lemma
to show that OEST2

A|Q cannot display too much signalling, even
only with small probability. The amplification is obtained by
using the properties of permutation-invariant strategies which
were proven in Lemma 24 in the previous section.

Having shown that with high probability OEST2
A|Q cannot be

too signalling, Lemma 27 derives an upper bound on the win-
ning probability w(OEST2

A|Q ). Intuitively, if the strategy OEST2
A|Q

does not display strong signalling in any direction it should
not lead to a large advantage over strictly non-signalling
strategies in the game G. The quantitative argument is based
on performing a sensitivity analysis of the appropriate linear
program. The three lemmas are brought together in Lemma 28,
from which Theorem 1 follows.

In the following lemmas we consider for simplicity the
scenarios conditioned on the event in which all tuples of
questions appear in the game data, denoted by agq, and hence
OEST2

A|Q is a strategy. The probability that this event does not

hold is exponentially small and will be taken into account in
the final bound in Lemma 28. (See Table II to recall all other
events which are used in the lemmas of this section).

We are now ready to prove the following lemmas and the
threshold theorem.

Lemma 25 (Weak Lemma): Let n be such that

n

ln(n)
> 20|Q||A| ln(2/ε)

ε2 , (12)

and P �A| �Q a non-signalling strategy for Gn. For any

(i, bī , si , sī ) denote by P �A �Q|T =1 the probability distribution

P �A �Q conditioned on the event T
(i,bī ,si ,sī )

( �qt , �at
)

= 1, when-
ever such a conditional probability distribution is defined.
Then,

Pr �ag, �qg∼P �A �Q|T =1

[
in
 |agq

]
< 1 − √

cδ. (13)

Proof: In the proof all the probabilities are conditioned
on the event agq, i.e., all tuples of questions appear in the
game data. To ease notation we do not explicitly write it.

For every signalling test T
(i,bī ,si ,sī )

and game questions for

players ī �qgī
such that Pr �ag, �qg∼P �A �Q

[
T| �qgī

]
�= 0 we construct

a guessing game. Our goal is to derive a contradiction by
showing that if Equation (13) is not true, then the guessing
game can be won with probability higher than the optimal
non-signalling winning probability.

The guessing game is defined as follows. A referee gives
the players n/2 independent m-tuples of game questions:

players ī get the questions �qgī
and player i gets �qgi

distributed
according to the prior Q(qi |qī ) (i.e., in �qg each tuple is
distributed according to the questions distribution Q of the
original game G). Players ī are then allowed to communicate
and their goal is to guess and output an index j ∈ [n/2] such
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that �qg
j = (si , sī ) (there is always such an index since we

condition on agq).
If the players share a non-signalling strategy P �A| �Q then the

marginals of players ī are the same for all �qgi
. Therefore,

their outputs �aī do not give them any information about the
question that the i ’th player got from the referee (even when
players ī are allowed to communicate among themselves,
but not with player i ). The best non-signalling strategy is
therefore to choose, uniformly at random, an index j for which
�qgī

j = sī . The winning probability is then given by Wns =
Q(si |sī ) < 1 (note that while the questions of players ī are
fixed in a specific instance of the guessing game, the questions
of player i are still distributed according to the prior Q(qi |qī )).

We now show that if the players share P �A| �Q for which

Pr �ag, �qg∼P �A �Q|T =1

[
in
 | �qgī

]
≥ 1 − √

cδ (14)

then they can win the above guessing game with
probability higher than the optimal non-signalling winning
probability Wns.

The idea is as follows. The players share many identical
copies of P �A| �Q . They use the questions given by the referee
as the game questions �qg in all of the copies and choose,
using shared randomness, the test questions �qt in each copy
(i.e., there are different test questions for each copy). They
input the questions into the copies of P �A| �Q . Players ī then look
for the first copy of P �A| �Q in which the event T holds – such a

copy exists as long as7 Pr�a,�q∼P �A �Q

[
T| �qgī

]
�= 0; they can find it

since they are allowed to communicate among themselves and
they know all the inputs for the test questions of player i (as
they were chosen using shared randomness which is available
to all the players). Recalling Remark 15, they have all the
information they need. Player i does not need to know in
which copy the test holds.

Using the chosen copy, the players choose a random index

j ∈ [n/2] such that �qgī
j = sī and �agī

j = bī .

Let us show that, as long as Pr�a,�q∼P �A �Q

[
T| �qgī

]
�= 0,

this strategy achieves a winning probability which is higher
than Wns. For the chosen copy the event T holds and hence
�qg, �ag can be seen as data which is distributed according to

n/2 identical copies of OEST2, which is with high probability
in 


(i,bī ,si ,sī )
according to Equation (14). From Lemma 18

this implies

Pr �ag, �qg∼P �A �Q|T =1

[
Sig

(i,bī ,si ,sī )
(OEST2) > ν| �qgī

]
≥ 1 − √

cδ,

(15)

where ν > 0 is any parameter satisfying ν < ζ − 6ε (recall
Lemma 18).

7To see this note that since the strategy is non-signalling between player i
and players ī , players ī can check in which copy the test passes even before
player i inputs his question. Therefore, the probability to pass the test is
independent of the game questions of player i and hence must be non-zero
for any of them.

Using the definition of Sig in Equation (7) we know that if

indeed Sig
(i,bī ,si ,sī )

(OEST2) > ν then OEST2(◦, bī , ◦, sī ) > 0
and

OEST2(◦, si |bī , sī ) >
ν

OEST2(◦, bī , ◦, sī )
+ Q(si |sī )

= ν

OEST2(◦, bī , ◦, sī )
+ Wns. (16)

That is, by choosing an index for which aī = bī players ī
increase the winning probability.

On the other hand, if Sig
(i,bī ,si ,sī )

(OEST2) ≤ ν, which can

happen with probability
√

cδ, then the players might decrease
their winning probability. In the worst case the winning
probability is 0.

Therefore, for the chosen copy (for which
T

(i,bī ,si ,sī )
( �qt , �at ) = 1) we get the following winning

probability

W ≥ (1− √
cδ)

(
ν

OEST2(◦, bī , ◦, sī )
+ Wns

)
+ √

cδ · 0. (17)

Thus, W > Wns for

ν >

√
cδ

1 − √
cδ

Wns ≥
√

cδ

1 − √
cδ

Wns · OEST2(◦, bī , ◦, sī ).

(18)

Using Wns · OEST2(◦, bī , ◦, sī ) ≤ 1 and
√

cδ ≤
(n + 1)|Q||A|e−nε2/8 (see Table I), we see that as
long as n/ ln(n) > 20|Q||A|ε−2 ln(2/ε) the quantity√

cδWnsOEST2(◦, bī , ◦, sī )/(1 − √
cδ) is strictly less than ε.

Assuming ζ ≥ 7ε, there is a choice of ν that satisfies both (18)
and the earlier condition that ν < ζ − 6ε.

We get that Equation (14) must not hold for any �qgī
and

hence cannot hold also when we omit the conditioning on �qgī
.

The lemma therefore follows. �
The bound given in Equation (13) is weak for two reasons.

First, the game data �qg, �ag is distributed according to the
conditional distribution P �A �Q|T =1 and not according to P �A �Q
itself. Second, it only tells us that Pr �ag, �qg∼P �A �Q|T =1

[
OEST2

A|Q /∈



(i,bī ,si ,sī )

] ≥ √
cδ, i.e., the probability that OEST2

A|Q has a small

value of signalling is higher than
√

cδ. We show how the
statement in the weak lemma can be amplified using the de
Finetti reduction from Lemma 24.

Lemma 26 (Strong Lemma): Let P �A| �Q be a permutation-
invariant non-signalling strategy for Gn and n such that
Equation (18) is satisfied. Then for any (i, bī , si , sī ) such that
Q(si , sī ) �= 0 and Q(si |sī ) �= 1,

Pr�a,�q∼P �A �Q
[
inσ |agq

] ≤ 2
√

cδ.

Proof: In the proof all the probabilities are conditioned on
the event agq, i.e., all tuples of questions appear in the game
data. To ease notation we do not explicitly write it. Note that
while Lemma 24 is stated without conditioning on agq, the
proof is easily adapted to show that the same statement holds
while conditioning on it.
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From Lemma 24 part 1 we get

Pr�a,�q∼P �A �Q [T] >
√

cδ

⇒ Pr�a,�q∼P �A �Q|T =1

[¬in

] ≤ √

cδ

and this can be rewritten as

Pr�a,�q∼P �A �Q [T] >
√

cδ

⇒ Pr�a,�q∼P �A �Q|T =1

[
in


] ≥ 1 − √
cδ.

According to Lemma 25, this implies

Pr�a,�q∼P �A �Q [T] >
√

cδ ⇒ P �A| �Q is signalling.

Therefore it must be that

Pr�a,�q∼P �A �Q [T] ≤ √
cδ (19)

or alternatively,

Pr�a,�q∼P �A �Q [¬T] ≥ 1 − √
cδ (20)

Next, combining Lemma 24 part 2 with Equation (20) we
get

Pr�a,�q∼PAQ|T =0

[
inσ

] ≤ √
cδ.

Using Equation (19) we get

Pr�a,�q∼P �A �Q
[
inσ

] ≤ 2
√

cδ. �

Lemma 26 tells us that if P �A| �Q is a permutation-invariant
non-signalling strategy then the probability that OEST2

A|Q is in a
given set σ

(i,bī ,si ,sī )
is exponentially small in the number of

games. In the next lemma we use this property to get a bound
on the winning probability of OEST2

A|Q in the game G.

Lemma 27: Let κ = ∑d
j=1 |y�

j | where d is the number of
signalling tests and y� is an optimal solution of the dual
program (5). Let OEST2

A|Q be a strategy (i.e., we assume that

the event agq holds) such that for all (i, bī , si , sī ), OEST2
A|Q /∈

σ
(i,bī ,si ,sī )

. Then w(OEST2
A|Q ) ≤ 1 − α + (ζ + 2ε) κ .

Proof: According to Lemma 17, if OEST2
A|Q /∈ σ

(i,bī ,si ,sī )
for

every σ
(i,bī ,si ,sī )

then

Sig
(i,aī ,qi ,qī )

(OEST2) < ζ + 2ε (21)

for every i and every bī , si , sī . That is, OEST2
A|Q is not “too

signalling” in any direction. This can be used to bound the
winning probability of OEST2

A|Q in the game G.
The following linear program describes the optimal winning

probability of a strategy OA|Q which fulfils Equation (21):

max
∑

q,a

Q(q)R(q, a)O(a|q)

s.t. Q(qi , qī )
[
O(◦, aī |qi , qī )

−
∑

ri

Q(r i |qī)O(◦, aī |r i , qī )
]

≤ ζ + 2ε

∀i, qi , qī , aī
∑

a

O(a|q) = 1 ∀q

O(a|q) ≥ 0 ∀a, q (22)

As OEST2
A|Q is a strategy we have

∑
a OEST2(a|q) = 1 for

all q . Hence OEST2
A|Q satisfies all the constraints of the above

program and therefore its winning probability in G is bounded
by the optimal value of the program. Program (22) can be seen
as a perturbation of the linear program (4), we can therefore
bound its optimal value by using known tools for sensitivity
analysis of linear programs, stated in Lemmas 9 and 10.

Denote by y� an optimal solution of the dual program8 (5)
and let κ = ∑d

j=1 |y�
j | where d is the number of signalling

tests. That is, κ is the sum of all the dual variables which are
associated to the non-signalling constraints.

According to Lemma 9 the perturbed winning probability
is then bounded by

we ≤ 1 − α + (ζ + 2ε) κ. �

To get κ in the above lemma, one can use any of the
following:

1) Given a description of a game one can easily get κ by
solving the dual program (5).9

2) If the game involves only 2 players, then following [33]
one can get κ ≤ d where d is the number of different
signalling tests (d < m|Q||A|).

3) Otherwise, the general bound of Lemma 10 can be used.
In our case the bound reads κ ≤ |A|2|Q|	, where 	
depends only on the game.10

Finally we are ready to prove the last lemma:
Lemma 28 (Main Lemma): Let w(G) = 1 − α be the

optimal winning probability of a non-signalling strategy in G.
Let 0 < β ≤ α be some constant and n the number of
repetitions such that Equation (18) is satisfied. Then for any
non-signalling strategy P �A| �Q of the repeated game,

Pr�a,�q∼P �A �Q

[
w(OEST2

A|Q ) > 1 − α + β
]

≤ 3d
√

cδ.

Proof: Let ζ, ε > 0 be such that ζ +2ε ≤ β
κ , ε ≤ minq Q(q)

and 7ε ≤ ζ ≤ 1.
If all tuples of questions s appear at least once in the game

data, i.e., the event agq holds, then we can apply Lemma 27
in combination with Lemma 26 and get

Pr�a,�q∼P �A �Q

[
w(OEST2

A|Q ) > 1 − α + β
∣
∣agq

]

≤ Pr�a,�q∼P �A �Q

[
∃σ

(i,bī ,si ,sī )
s.t. inσ

∣
∣agq

]

≤ d · 2
√

cδ.

The probability that some tuple of questions does not appear
in the game data (i.e., agq does not hold) is upper bounded
by

|Q|
(

1 − min
s

Q(s)
)n/2 ≤ |Q|e− mins Q(s)n/2

≤ |Q|e−εn/2 ≤ dδ

8We are only interested in the value of y� as z� will not affect the bound.
9Solving the linear program is anyhow usually necessary for knowing the

optimal non-signalling value 1 − α.
10A similar bound was also used in [15].
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and therefore all together we have

Pr�a,�q∼P �A �Q

[
w(OEST2

A|Q ) > 1 − α + β
]

≤ 3d
√

cδ. �

Our threshold theorem, Theorem 1, follows from
Lemma 28:

Proof of Theorem 1: Let f g, f t and f denote the win-
ning frequency in the game data, test data and the entire
data respectively (i.e., the fraction of coordinates in which
the players win the game). From Lemma 28 we know that
Pr�a,�q∼P �A �Q

[
f g > 1 − α + β

] ≤ 3d
√

cδ, as the winning fre-

quency in the game questions is exactly w(OEST2
A|Q ). As the

game data and test data are symmetric (i.e., there is no differ-
ence between them except for the name we gave them), the
same result also holds for f t , Pr�a,�q∼P �A �Q

[
f t > 1 − α + β

] ≤
3d

√
cδ.

Finally, as the winning frequency in the entire data is given
by f = 1

2

(
f t + f g

)
we have

Pr�a,�q∼P �A �Q [ f > 1 − α + β]

≤ Pr�a,�q∼P �A �Q
[ (

f t > 1 − α + β
) ∨ (

f g > 1 − α + β
) ]

≤ 6d
√

cδ. (23)

�
The relations between all the constants and parameters of

the theorem and the proofs are listed in Table I. Note that
for any game and choice of parameters the bound 6d

√
cδ is

exponentially decreasing with the number of repetitions n.
To get a better feeling of the result, without trying to

optimise it, one can make the following choices. Let ε = β
10κ ,

ζ = 8ε and ν = ε (assuming minq Q(q) > β
10κ ). Using these

choices, our proof holds for n and β such that

n

ln(n)
> 20|Q||A| ln(20κ/β)

(β/10κ)2 (24)

with the following constants in Theorem 1:

C1(G, n) = 6m|Q||A| (n + 1)|Q||A|−1 ,

C2(G) = (30κ)−2. (25)

The theorem then reads

Pr�a,�q∼P �A �Q [ f > 1 − α + β]

≤ 6m|Q||A| (n + 1)|Q||A|−1 e
−n

(
β

30κ

)2

. (26)

A different choice of parameters can improve the dependency
of the constants on the game G.

VI. CONCLUSIONS AND OPEN QUESTIONS

A. Current Work and Possible Extensions

In this work a threshold theorem for multiplayer non-
signalling games was proven. The threshold theorem given
in Theorem 1 is applicable to any multiplayer complete-
support game and for every two-player game (not necessarily
with complete-support, as proven in Appendix A-A). Hence,
all cases for which parallel repetition was already known
prior to our work [13], [15] are covered by our proof.
For multiplayer-games with incomplete support we considered

a small modification of the parallel repetition procedure which
results in Theorem 2. We believe a similar modification can
be considered to extend the result of [15].

In both theorems it might be possible to improve the
dependency of the result on the parameters of the considered
game, i.e., improve the constants C1(G, n) and C2(G). The
polynomial dependency of C1(G, n) on the number of repe-
titions, on the other hand, is inherent to the use of the de
Finetti theorem. Moreover, further investigation of the dual
program (5) could lead to an explicit bound on C2(G). This
could then be used to extend Theorem 1 to games with
incomplete support, as done for two-player games.

The most important contribution of this work is a new proof
technique for parallel repetition theorems, based on ideas of
de Finetti theorems and tomography. de Finetti theorems seem
like a natural tool for parallel repetition theorems, yet, this is
the first time that such a result is proven using a de Finetti
theorem.

Apart from allowing a different point of view on parallel
repetition questions, and the study of correlations in general,
the new proof technique has several advantages over the
previous proofs.

For instance, note that in the standard proofs of parallel
repetition theorems, i.e., proofs following the approach of [12]
such as [13]–[15], most of the difficulties arise due to the effect
of conditioning on the event of winning some of the game
repetitions. As this event is one that depends on the structure
of the game and we have no control over it, it can introduce
arbitrary correlations between the questions used in different
repetitions of the game, a major source of difficulty for the
remainder of the argument. In our proof we also need to
analyse the effect of conditioning on a certain event, the
event of the non-signalling test accepting, and this is done
in Lemma 25, the weak lemma. However, the key advantage
of our approach is that the test has a very specific structure,
and in particular conditioning on the test passing can be
done locally by the players in a way that respects the non-
signalling constraints. As a result it is almost trivial to deal
with the conditioning in the remainder of the proof. This shift
from conditioning on an uncontrolled event, success in the
game, to a highly controlled one, a non-signalling test that
we design ourselves, is a key simplification that we expect
to play an important role in any extension of our method
to other scenario such as classical or quantum strategies.
More specifically, by finding appropriate “non-classicality”
and “non-quantumness” measures which can replace our sig-
nalling measure in Definition 13 one may be able to adapt the
proof to the multiplayer classical and quantum cases as well.
The results of Sections III and IV should follow easily for
most “non-classicality” and “non-quantumness” measures of
one-game strategies. The main difficulty, however, is finding
a measure for which Lemma 25 can be proven.

B. What Parallel Repetition Tells us About
de Finetti Theorems

In the light of the de Finetti reduction stated in Lemma 23,
it is tempting to try and prove a parallel repetition theorem by
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claiming that for every permutation-invariant strategy P �A| �Q ,

w
(

P �A| �Q
)

≤ c · w
(
τ �A| �Q

)
. (27)

This claim is correct but, unfortunately, not very useful as τ �A| �Q
itself is signalling according to the explicit construction given
in [27], hence, no non-trivial bound holds on w

(
τ �A| �Q

)
.

One might hope that this is just a technical problem; perhaps
a different de Finetti reduction can be proven, where both P �A| �Q
and τ �A| �Q can be taken to be non-signalling (or analogously,
quantum or classical). Such a de Finetti reduction, if it existed,
would have implied a strong parallel repetition theorem (up
to the polynomial factor c) for any game right away using
Equation (27). This however will stand in contradiction to
known impossibility results, such as the result of [39].

We therefore learn an interesting fact about de Finetti
reductions by considering parallel repetition theorems: in order
to prove a general de Finetti reduction as in Lemma 23, the de
Finetti strategy must have some signalling parts. Fortunately,
as shown by our result, this does not render a proof for the
non-signalling case impossible.

APPENDIX A
EXTENDING THE RESULT TO GENERAL GAMES

Before we show how to extend the threshold theorem to
games with incomplete support, let us explain why the proof
given for Theorem 1 holds only for complete-support games.

As mentioned in the main text, the reason lies in the
linear program (3), and more specifically, in the non-signalling
constraints given in Equation (3b). Indeed, if for some q we
have Q(q) = 0 then the relevant constraint in Equation (3b)
is vacuous. It is therefore clear that in this case the constraints
given in Equation (3b) are in fact relaxations of the standard
non-signalling constraints given in Equation (2).

For some games, this relaxation of the non-signalling con-
straints is strict. For example,11 consider a game of 3 players
where the questions are uniformly distributed over
Q = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and the winning condition
is given by the following predicate:

R(q, a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if q = (0, 0, 1) and a1 = a2

1 if q = (0, 1, 0) and a1 = a3

1 if q = (1, 0, 0) and a2 �= a3

0 otherwise

The optimal non-signalling winning probability in this game
is 2

3 (as can be shown by solving a linear program). However,
in the linear program (3) there are no non-trivial constraints
(i.e., all the constraints in Equation (3b) are of the form 0 = 0).
Hence, the optimal solution of the program (3) is 1, which
is strictly larger than 2

3 . Thus even though the non-signalling
conditions are enforced over all “relevant” questions, this does
not suffice to guarantee that there exists a strategy achieving
the resulting optimum success probability 1 and that can be
extended to a non-signalling strategy defined on all questions.

For games with incomplete support in which the optimal
value of program (3) is not trivial (i.e., it is smaller than 1),

11This example was communicated to us by Christian Schaffner.

it follows that our proof can be applied as is to derive a
non-trivial threshold theorem. Irrespectively of whether this is
the case or not one might also elect to work with the weaker
definition of non-signalling strategies that is implied by the
constraints in (3b), where the behaviour of the strategy is
not required to be well-defined for questions which do not
appear in the game. In this case the linear program (3) exactly
describes the optimal winning probability of such strategies
and Theorem 1 holds without any modification.

In other cases, on the other hand, we have to slightly
modify the linear program in order to derive a correct threshold
theorem. In the following sections we show how to do this.

A. Two-Player Games

For two-player games we consider the modification of the
linear program (3) described in (28), as shown at the top of
next page, where η > 0 is some small constant that will be
chosen later.

Following the analysis proposed in [33] (Section 4 therein),
one can show that the program (28) can be relaxed to the
program described in (29).

Moreover, following [33] it can also be shown that the dual
variables y� which are associated with the primal constraints
of Equations (29a) and (29b), as shown at the top of next page,
are all upper bounded by 1, independently of the value of η.
This implies that κ = ∑d

j=1 |y�
j | ≤ d is also independent

of η (where d is now the total number of constraints in
Equations (29a) and (29b) together).

When applying our proof using the linear program (29) we
get the perturbed linear program (30) in Lemma 27 (instead
of the one given in Equation (22)).

The estimated strategy OEST2
A|Q fulfils the constraints of

Equation (30a), as shown at the top of next page, as in the
proof in the main text. Moreover, it fulfils Equation (30c), as
shown at the top of next page, by definition (see Section II-B).
Therefore, in order to ensure that the winning probability of
OEST2

A|Q is bounded by the optimal value of the program (30)
we only need to choose η ≤ ζ + 2ε such that the constraints
of Equation (30b), as shown at the top of next page, will hold
as well.

To see that this is possible, recall that the values of ζ and ε
are chosen such that ζ + 2ε ≤ β

κ . As both β and κ are
independent of η we can just choose η ≤ ζ + 2ε. The rest
of the proof then follows in the same way as in the main text
and Theorem 1 is derived (without any dependence on η).

B. General Games

As the technique of the previous section is relevant only
for two-player games,12 the aim of this section is to explain
how our proof can be adapted to derive a useful result for
multiplayer games which do not have complete-support, as
stated in Theorem 2. To do so we slightly modify the parallel
repetition procedure.

Instead of considering the usual parallel repetition, in which
n tuples of questions are chosen according to the game

12To be more precise, it holds for any game where κ can be bounded by
a constant independent of the questions distribution Q.
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max
∑

q,a

Q(q)R(q, a)O(a|q)

s.t. Q(qi , qī )

⎡

⎣O(◦, aī |qi , qī ) −
∑

ri

Q(r i |qī)O(◦, aī |r i , qī )

⎤

⎦ = 0 ∀i, aī ,∀qi , qī s.t. Q(q) �= 0

η

⎡

⎣O(◦, aī |qi , qī ) −
∑

ri

Q(r i |qī )O(◦, aī |r i , qī )

⎤

⎦ = 0 ∀i, aī ,∀qi , qī s.t. Q(q) = 0

∑

a

O(a|q) = 1 ∀q

O(a|q) ≥ 0 ∀a, q (28)

max
∑

q,a

Q(q)R(q, a)O(a|q)

s.t. Q(qi , qī )

⎡

⎣O(◦, aī |qi , qī ) −
∑

ri

Q(r i |qī)O(◦, aī |r i , qī )

⎤

⎦ ≤ 0 ∀i, aī ,∀qi , qī s.t. Q(q) �= 0 (29a)

η

⎡

⎣O(◦, aī |qi , qī ) −
∑

ri

Q(r i |qī)O(◦, aī |r i , qī )

⎤

⎦ ≤ 0 ∀i, aī ,∀qi , qī s.t. Q(q) = 0 (29b)

∑

a

O(a|q) ≤ 1 ∀q

O(a|q) ≥ 0 ∀a, q

max
∑

q,a

Q(q)R(q, a)O(a|q)

s.t. Q(qi , qī )

⎡

⎣O(◦, aī |qi , qī ) −
∑

ri

Q(r i |qī )O(◦, aī |r i , qī )

⎤

⎦ ≤ ζ + 2ε ∀i, aī ,∀qi , qī s.t. Q(q) �= 0 (30a)

η

⎡

⎣O(◦, aī |qi , qī ) −
∑

ri

Q(r i |qī )O(◦, aī |r i , qī )

⎤

⎦ ≤ ζ + 2ε ∀i, aī ,∀qi , qī s.t. Q(q) = 0 (30b)

∑

a

O(a|q) ≤ 1 ∀q (30c)

O(a|q) ≥ 0 ∀a, q

distribution Q, we change the distribution of questions in the
repeated game by sometimes (with small positive probability)
asking the players a tuple of questions q for which Q(q) = 0.
We call such questions “dummy questions”; for these ques-
tions any answer from the players is accepted. The remaining
questions, for which Q(q) > 0, are called the “real questions”.
We denote the modified repeated game by G̃n .

It is important to note that the standard definition of the non-
signalling constraints implies that a non-signalling strategy
should have a well-defined behaviour for all possible inputs.
As the referee ignores the players’ answers to the additional
questions, the specific behaviour of the strategy on dummy
questions is irrelevant. Therefore, if the optimal non-signalling
winning probability in G is 1, then the winning probability in
both Gn and G̃n is also 1: our modification does not harm the
success probability of “honest” players.

To prove Theorem 2 we proceed in two steps: we make
a small change in the linear program (4) and then apply our
proof using the modified program.

1) Changing the Linear Program: As a first step we define
Q̃ to be a complete-support version of Q in the following
way.13

Let I(q) be the indicator function such that I(q) = 1
if q is a dummy question, i.e., if Q(q) = 0, and 1
otherwise. Denote by D the number of dummy questions
D = |{q|I(q) = 1}|.

Let η > 0 be some small constant (which can be later
chosen to optimise the bound obtained in the final result).
We define the following joint probability distribution of q and
d ∈ {0, 1}:

PQ̃ D(q, d) =

⎧
⎪⎪⎨

⎪⎪⎩

η
D if I(q) = 1 and d = 1

Q(q)(1 − η) if I(q) = 0 and d = 0

0 otherwise

13In [34] and [35] a subset of indices in which dummy, or “confusion”,
questions are asked is chosen. We choose to make a small modification in the
questions distribution instead, such that permutation invariance is maintained.
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Then Q̃(q) = ∑
d∈{0,1} PQ̃ D(q, d) and we have

PQ̃|D=0(q) = PQ̃ D(q, 0)
∑

q PQ̃ D(q, 0)
= PQ̃ D(q, 0)

1 − η
= Q(q).

That is, when conditioning on the event of a question not being
a dummy question we retrieve Q from Q̃.

Next, we use Q̃ to write the non-signalling constraints (but
keep Q in the objective function):

max
∑

q,a

Q(q)R(q, a)O(a|q)

s.t. Q̃(qi , qī )
[
O(◦, aī |qi , qī )

−
∑

ri

Q̃(r i |qī)O(◦, aī |r i , qī )
]

≤ 0

∀i, qi , qī , aī
∑

a

O(a|q) = 1 ∀q

O(a|q) ≥ 0 ∀a, q (31)

This linear program replaces the program (4). The dis-
tance measure in Definition 6 and the signalling measure in
Definition 13 should now be defined with respect to Q̃ as well.

2) Deriving Theorem 2: Following the proof of Theorem 1
with the above changes we get the following statement in the
main Lemma, Lemma 28:

Pr�a,�q∼P �A �̃Q

[
w(OEST2

A|Q ) > 1 − α + β
]

≤ 3d
√

cδ. (32)

where the data �a, �q is now distributed according to P �A �̃Q =
Q̃⊗n × P �A| �Q and the parameter δ now depends on the change

we did in the question distribution Q̃ (through κ which
depends on the solution of the dual program of program (31),
and thus has an implicit dependence on η).

As the objective function of program (31) is given using Q
and not Q̃, w(OEST2

A|Q ) in Equation (32) is the winning proba-
bility with respect to the original question distribution Q. It is
therefore equal to the winning frequency in the real questions
(i.e. it does not take the indices where dummy questions
were asked into account). Hence, it leads to the desired
statement:

Pr�a,�q∼P �A �̃Q
[ f > 1 − α + β] ≤ 6d

√
cδ,

where f is the winning frequency in the real questions. This
proves Theorem 2.

The parameter η can be optimised in different ways, depend-
ing on the application. If one is interested in the bound itself
and is not concerned by the modification of the repeated game
the precise value of η should be chosen in order to optimise
the constants C1(G, n) and C2(G) appearing in the bound.
Alternatively, if one does not wish to change the game by
too much, small values for η will ensure that G̃n is relatively
close to Gn (due to the definition of Q̃ above). A smaller η
will lead to a smaller fraction of dummy questions, but could
result in worse constants C2(G).

APPENDIX B
PROOFS OF SECTION III

In this section we present all the proofs which are relevant
to the signalling measures and signalling tests.

The first proof is a proof of Lemma 14 which shows that
the signalling measure given in Definition 13 is continuous.
We repeat Lemma 14 here:

Lemma 14: Let O1 and O2 be two one-game strategies such
that

∣
∣O1 − O2

∣
∣
1 ≤ ε. Then for all i, aī , qi and qī ,

∣∣Sig
(i,aī ,qi ,qī )

(O1) − Sig
(i,aī ,qi ,qī )

(O2)
∣∣ ≤ 2ε.

Proof: We prove a stronger result from which the lemma
follows. We prove that for all i ,

∑

aī ,q

∣
∣Sig

(i,aī ,qi ,qī )
(O1) − Sig

(i,aī ,qi ,qī )
(O2)

∣
∣ ≤ 2ε.

To do so first note the following,
∣
∣O1 − O2

∣
∣
1 = Eq

∑

a

∣
∣O1(a|q) − O2(a|q)

∣
∣

≥ Eq

∑

aī

∣
∣
∣
∑

ai

(
O1(a

i , aī |q) − O2(a
i , aī |q)

) ∣
∣
∣

= Eq

∑

aī

∣
∣O1(◦, aī |q) − O2(◦, aī |q)

∣
∣

=
∑

aī ,q

Q(q)
∣
∣O1(◦, aī |q) − O2(◦, aī |q)

∣
∣,

therefore if
∣
∣O1 − O2

∣
∣
1 ≤ ε then

∑

aī ,q

Q(q)
∣
∣O1(◦, aī |q) − O2(◦, aī |q)

∣
∣ ≤ ε. (33)

Next, using Equation (6) we get the derivation (34), as
shown at the top of next page.

where the last inequality follows from Equation (33). �
Next we give the proof of Lemma 16:
Lemma 16: Assume the players share an i.i.d. strategy

O⊗n
A|Q and let ζ, ε > 0 be the the parameters defined as in

Equation (8). For every (i, bī , si , sī ),

1) If Sig
(i,bī ,si ,sī ) (O) ≥ ζ then

Pr�a,�q∼O⊗n
AQ

[T] > 1 − δ (35)

2) If Sig
(i,bī ,si ,sī ) (O) = 0 then

Pr�a,�q∼O⊗n
AQ

[¬T] > 1 − δ (36)

where δ = δ
( n

2 , ε
) = ( n

2 + 1
)|A|·|Q|−1

e−nε2/4.
Proof: For the first part of the lemma assume that

Sig
(i,bī ,si ,sī ) (O) ≥ ζ . Then

Pr�a,�q∼O⊗n
AQ

[¬T]

= Pr�a,�q∼O⊗n
AQ

[
Sig

(i,bī ,si ,sī )

(
OEST1

)
< ζ − 2ε

]

≤ Pr�a,�q∼O⊗n
AQ

[
|OEST1 − O|1 > ε

]

≤ δ
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∑

aī ,q

∣∣Sig
(i,aī ,qi ,qī )

(O1) − Sig
(i,aī ,qi ,qī )

(O2)
∣∣

=
∑

aī ,q

Q(qi , qī )
∣
∣
∣O1(◦, aī |qi , qī ) −

∑

ri

Q(r i |qī )O1(◦, aī |r i , qī ) − O2(◦, aī |qi , qī ) +
∑

ri

Q(r i |qī)O2(◦, aī |r i , qī )
∣
∣
∣

=
∑

aī ,q

Q(qi , qī )
∣
∣
∣O1(◦, aī |qi , qī ) − O2(◦, aī |qi , qī ) +

∑

ri

Q(r i |qī)
(

O2(◦, aī |r i , qī ) − O1(◦, aī |r i , qī )
) ∣

∣
∣

≤
∑

aī ,q

Q(qi , qī )
∣
∣∣O1(◦, aī |qi , qī ) − O2(◦, aī |qi , qī )

∣
∣∣ +

∑

aī ,q

Q(qi , qī )
∣
∣∣
∑

ri

Q(r i |qī)
(

O2(◦, aī |r i , qī ) − O1(◦, aī |r i , qī )
) ∣

∣∣

≤
∑

aī ,q

Q(qi , qī )
∣∣
∣O1(◦, aī |qi , qī ) − O2(◦, aī |qi , qī )

∣∣
∣ +

∑

aī ,q

∑

ri

Q(r i |qī)Q(qi , qī )
∣∣
∣O2(◦, aī |r i , qī ) − O1(◦, aī |r i , qī )

∣∣
∣

=
∑

aī ,q

Q(qi , qī )
∣
∣
∣O1(◦, aī |qi , qī ) − O2(◦, aī |qi , qī )

∣
∣
∣ +

∑

aī ,qī

∑

ri

Q(r i |qī)Q(qī )
∣
∣
∣O2(◦, aī |r i , qī ) − O1(◦, aī |r i , qī )

∣
∣
∣

=
∑

aī ,q

Q(qi , qī )
∣
∣
∣O1(◦, aī |qi , qī ) − O2(◦, aī |qi , qī )

∣
∣
∣ +

∑

aī ,q

Q(qi , qī )
∣
∣
∣O2(◦, aī |qi , qī ) − O1(◦, aī |qi , qī )

∣
∣
∣

≤ 2ε (34)

where the first inequality is due to Lemma 14 and the second
due to Lemma 8. This implies Equation (35). Equation (36)
can be proven in an analogous way. �

Next, we give the proof of Lemma 18:
Lemma 18: Let ν > 0 be any parameter such that ν <

ζ − 6ε. Then for every (i, bī , si , sī ),

∀O ∈ 

(i,bī ,si ,sī )

, Sig
(i,bī ,si ,sī ) (O) > ν.

Proof: Assume by contradiction that there exists
O ∈ 


(i,bī ,si ,sī )
such that Sig

(i,bī ,si ,sī )
(O) ≤ ν. Since O ∈



(i,bī ,si ,sī )

there exists Ō such that |O − Ō|1 ≤ ε and

Pr�a,�q∼Ō⊗n
AQ

[T] > δ. (37)

Using Lemma 14 we get Sig
(i,bī ,si ,sī )

(
Ō

) ≤ ν + 2ε.
From Lemma 8 we know that

Pr�a,�q∼Ō⊗n
AQ

[|ŌEST1 − Ō|1 > ε
] ≤ δ and therefore, using

Lemma 14 again,

Pr�a,�q∼Ō⊗n
AQ

[
Sig

(i,bī ,si ,sī )

(
ŌEST1

)
> ν + 4ε

]
≤ δ.

Since ν < ζ − 6ε this implies

Pr�a,�q∼Ō⊗n
AQ

[
Sig

(i,bī ,si ,sī )

(
ŌEST1

)
> ζ − 2ε

]
≤ δ

and therefore, according to the definition of the test,

Pr�a,�q∼Ō⊗n
AQ

[T] ≤ δ,

which contradicts Equation (37). �

APPENDIX C
PROOFS OF SECTION IV

In this section we prove the relevant properties of the de
Finetti strategy. We prove Lemma 20:

Lemma 20: For a de Finetti strategy τ �A| �Q and every

(i, bī , si , sī )

1) Pr�a,�q∼τ �A �Q
[
T ∧ ¬in


] ≤ δ

2) Pr�a,�q∼τ �A �Q [¬T ∧ inσ ] ≤ δ

Proof: Since a de Finetti strategy is a convex combination of
i.i.d. strategies, it is sufficient to prove this for i.i.d. strategies
O⊗n

A|Q and the lemma will follow. We start by proving the first
part of the lemma.

If Pr�a,�q∼O⊗n
AQ

[T] ≤ δ then we are done. Consider therefore
states OA|Q such that

Pr�a,�q∼O⊗n
AQ

[T] > δ.

For such states

Pr�a,�q∼O⊗n
AQ

[¬in

]

≤ Pr�a,�q∼O⊗n
AQ

[
|OEST2

A|Q − OA|Q |1 > ε
]

≤ δ

where the first inequality follows from the definition of



(i,bī ,si ,sī )
and the second from Lemma 8.

All together we get Pr�a,�q∼O⊗n
AQ

[
T ∧ ¬in


] ≤ δ as required
for the first part of the lemma.

We now proceed to the second part of the lemma.
If Pr�a,�q∼O⊗n

AQ
[inσ ] ≤ δ then we are done. Consider therefore

states OA|Q such that

Pr�a,�q∼O⊗n
AQ

[
inσ

]
> δ.

Using Lemma 8 we know that there exists a state
OEST2

A|Q ∈ σ
(i,bī ,si ,sī )

such that |OEST2
A|Q − OA|Q |1 ≤ ε and

according to the definition of σ
(i,bī ,si ,sī )

this implies that OA|Q
is ζ signalling or more. Therefore, according to Lemma 16,
Pr�a,�q∼O⊗n

AQ
[¬T] ≤ δ. All together we get

Pr�a,�q∼O⊗n
AQ

[¬T ∧ inσ
] ≤ δ. �
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