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Distributed Iterative Thresholding for
�0/�1-Regularized Linear Inverse Problems

Chiara Ravazzi, Sophie Marie Fosson, and Enrico Magli

Abstract— The �0/�1-regularized least-squares approach is
used to deal with linear inverse problems under sparsity
constraints, which arise in mathematical and engineering fields.
In particular, multiagent models have recently emerged in this
context to describe diverse kinds of networked systems, ranging
from medical databases to wireless sensor networks. In this
paper, we study methods for solving �0/�1-regularized least-
squares problems in such multiagent systems. We propose a novel
class of distributed protocols based on iterative thresholding and
input driven consensus techniques, which are well-suited to work
in-network when the communication to a central processing unit
is not allowed. Estimation is performed by the agents themselves,
which typically consist of devices with limited computational
capabilities. This motivates us to develop low-complexity and
low-memory algorithms that are feasible in real applications.
Our main result is a rigorous proof of the convergence of these
methods in regular networks. We introduce a suitable distributed,
regularized, least-squares functional, and we prove that our
algorithms reach their minima using results from dynamical
systems theory. Furthermore, we propose numerical compar-
isons with the alternating direction method of multipliers and
the distributed subgradient methods, in terms of performance,
complexity, and memory usage. We conclude that our techniques
are preferable for their good memory-accuracy tradeoff.

Index Terms— Distributed optimization, input driven consen-
sus algorithms, multi-agent systems, regularized linear inverse
problems, sparse estimation.

I. INTRODUCTION

L INEAR inverse problems arise in several areas of
engineering and mathematical sciences. A standard linear

inverse problem considers an affine system of the form

Ax̃ = y (1)

where A ∈ R
m×n and y ∈ R

m are known, while x̃ ∈ R
n is

the unknown vector to be estimated. The goal is to provide
an estimate of x̃ starting from the data (y, A). For this
purpose, a widely used methodology is the least-squares (LS)
approach [1]. However, in most applications, the problem
in (1) is ill-conditioned or under-determined, namely the
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number of available measurements is smaller than the
dimension of the model to be estimated; for this motivation,
regularizing constraints are often added in order to obtain
stable solutions.

In many practical situations, models are constrained
structurally so that only few degrees of freedom compared to
their ambient dimension are significant [2]. In the last decades,
inverse problems under sparsity constraints have attracted an
increasing attention, especially in statistics, signal processing,
machine learning, and coding theory. Examples include sparse
linear regressions [3], [4], approximation of functions [5],
signal recovery in compressed sensing [6], [7], image
denoising and restoration [8], and channel decoding [9]. The
reader can refer to [10] and references therein for an overview
of possible applications. Methods that seek approximate solu-
tions to linear systems of the form (1) in which only the most
relevant variables are chosen, have been developed in different
areas. One of the most popular techniques is the Tikhonov
regularization [11] in which a quadratic penalty is added to
the LS function. However, this method leads to a solution
which is generally nonsparse.

In this paper we consider two methods capable of providing
a parsimonious estimate of solutions to (1): the �0 and the
�1 regularized estimators [4]. The �0-regularized estimator [12]
is defined as the minimizer of the cost function

J0(x) = ‖y − Ax‖2
2 + 2λ

τ
‖x‖0 (2)

where λ, τ > 0, and ‖x‖0 = |{i ∈ {1, . . . , n}|xi �= 0}|
counts the number of nonzero entries of x . It should be
noted that the function in (2) is not convex and standard
algorithms for convex optimization cannot be used [5]. The
�1-regularized optimization problem relaxes the �0 penalty
and replace ‖x‖0 with its convex envelope ‖x‖1 = ∑n

i=1 |xi |.
The �1-regularized estimator is the minimizer of the following
nonsmooth convex function

J1(x) = ‖y − Ax‖2
2 + 2λ

τ
‖x‖1 (3)

where λ, τ > 0 is a parameter that controls the amount
of sparsity. The minimizer of problem (3) is also known as
the least-absolute shrinkage and selection operator (LASSO)
estimator [13].

The literature describes a large number of approaches to
estimate the minimizers of (2) and (3). Examples include
quadratic programming methods [5], including interior-point
methods [5], projected gradient methods [14], and itera-
tive hard thresholding algorithms (IHTA, [15], [16]) and
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iterative soft thresholding algorithms (ISTA, [17]). Iterative
thresholding algorithms have lower computational complexity
per iteration and lower storage requirements than interior-
point methods. Notice that these types of recursions are a
modification of the gradient method to solve a linear system:
the only difference consists in the application of a (hard or
soft) shrinkage operator, which promotes the sparsity of the
estimate at each iteration.

In the inverse problems, the observed data are typically
assumed to be centrally available, so that they can be jointly
processed to minimize functions in (2) or (3). However,
distributed inverse problems commonly arise in many
applications, where data are inherently scattered across a
large geographical area [18]. This scenario applies, for
example, to sparse event detection in wireless networks [19],
distributed indoor localization [20], and distributed tracking
in sensor networks [21]. These problems consider a network
with N nodes that individually store data (yi , Ai ), with
i ∈ {1, . . . , N}. In this setting, the most used paradigm can be
summarized as follows: agents transmit (yi , Ai )

N
i=1 to a central

processing unit that performs joint estimation minimizing
(2) or (3) with A = (AT

1 , . . . , AT
N )T and y = (yT

1 , . . . , yT
N )T.

A drawback of this model is that, particularly in large-scale
networks, gathering all data to a central processing unit may
be inefficient, as a large number of hops have to be taken,
requiring a significant amount of energy for communication
over the wireless channel. Moreover, this may also introduce
delays, severely reducing the sensor network performance.
In other applications, agents providing private data may not be
willing to share them, but only to build the learning results.
This occurs, for example, in classification [22], one of the
fundamental problems in machine learning, or in data fitting
in statistics [23], where the training data consists of sensitive
information of agents (such as medical data, or data flow
across the Internet). We also notice that parallel computing
can be recast in this distributed context. Let us consider,
for example, the implementation of the algorithms that
minimize (2) and (3) on GPUs [24], [25]. Even if the data are
centrally available, in this situation we aim at decentralizing
them on the GPU cores and threads in order to distribute the
computational load and accelerate the estimation procedure.

A common element to many distributed applications is the
necessity of limiting computations and memory usage, as the
nodes generally consist of devices with scarce capabilities in
this sense. An evident example is given by sensor networks:
computations may require a lot of energy while sensors are
generally endowed with small memories of the order of a
few kB. Also in parallel computing this issue is crucial,
as the memory is known to be a bottleneck to the system
performance.

So far the distributed minimization of (2) and (3) has
received less attention than the centralized problem and the
literature is very recent [18], [22], [26]–[28]. These first con-
tributions propose natural ways to distribute known centralized
methods, and obtain interesting results in terms of convergence
and estimation performance. However they do not consider
the problem of the insufficient computation and memory
resources. In particular, in [26] a distributed pursuit recovery

algorithm is proposed, assuming that every node i knows the
matrix Ai of every other agent. This estimation scheme is
clearly impractical in large-scale networks, since individual
agents do not have the capacity to store and process a large
number of these matrices. Distributed basis pursuit algorithms
for sparse approximations when the measurement matrices are
not globally known have been studied in [18], [27], and [28].
In these algorithms, sensors collaborate to estimate the
original vector, and, at each iteration, they update this estimate
based on communication with its neighbors in the network.
These methods are based on Distributed Subgradient
Methods (DSM, [29]) or Alternating Direction Method of
Multipliers (ADMM, [30]). DSM have low memory
requirements but are extremely slow and, consequently, many
transmission between nodes are needed in order to obtain
a good estimate. ADMM is fast but requires the inversion
of n × n matrices at each unit. Although the inversion of the
matrices in ADMM can be performed off-line, the storage of
an n × n matrix may be critical.

It is worth mentioning that efficient methods have been
proposed recently to minimize an objective function com-
posed of local convex and differentiable functions and a
common nondifferentiable function as in (3). In particular,
in [31] a distributed algorithm based on Nesterov acceleration
techniques is developed and analyzed, under the assumption
that the gradient of the differentiable component is bounded
(see [31, Assumption 1.b]). This assumption is not satisfied
for (3). Moreover, in [32] a modified function of (3) is
considered, adding an �2 regularization which makes the
problem solvable by the linearized Bregman algorithm. In [32],
a decentralized version of the Bregman algorithm is studied
and proved to reach a neighborhood of the unknown desired
signal [32, Th. 1]; nevertheless, no point convergence is
guaranteed. Numerical results [32, Sec. V] show that a
Nesterov accelerated variant of the analyzed algorithm is faster
than ADMM based techniques.

In this paper, we propose distributed, consensus-based ver-
sions of (2) and (3) and we derive new algorithms to reach
their minima. Our purpose is to develop low complexity
techniques that require very little memory, in order to fill
the feasibility gap left open by the previous works, while
achieving performance as close as possible to that of the
ADMM estimation [18].

As mentioned before, in the centralized case a good tradeoff
between complexity and performance is obtained by iterative
thresholding methods, which has motivated us to investigate
a similar paradigm in the distributed scenario. In particular,
we present a class of distributed iterative thresholding
algorithms for �0/�1 regularized optimization problems. Our
approach builds on the seminal work of Daubechies et al. [17]
and of Blumensath et al. (see [15], [16]), who developed
iterative thresholding methods for solving regularized
optimization problems. Moreover, our work is related to
the literature on distributed computation and estimation,
which has attracted recent interest in the scientific
community [29], [33], [34], and whose main goal is to design
distributed iterative algorithms to cooperatively minimize a
common cost function. The techniques that we introduce,



RAVAZZI et al.: DISTRIBUTED ITERATIVE THRESHOLDING FOR �0/�1-REGULARIZED LINEAR INVERSE PROBLEMS 2083

in fact, work in virtue of their cooperative characteristics.
We propose two different algorithms: distributed iterative hard
thresholding algorithm (DIHTA) and distributed iterative soft
thresholding algorithm (DISTA). They consist of a gradient
step that seek to minimize the LS functional, a (hard or
soft) thresholding step that promotes sparsity and, as a key
ingredient, a consensus step to share information among
neighboring sensors.

Besides the design of the algorithms, our main contributions
include (1) a rigorous proof of their convergence for regular
networks, (2) the numerical evaluation of their performance,
and (3) an analysis in terms of complexity and memory
requirements. Our intuition is that these hypotheses on the
network regularity, that are useful to prove the convergence of
the proposed algorithms, are not really necessary.

As will be seen, the proposed methods achieve extremely
good performance and there is no significant loss compared
to the centralized implementations [15], [35]. Extensive
simulations show that DIHTA and DISTA are satisfactory
in the following sense: when the product of the number of
agents in the network times the number of data for each unit
exceeds a given threshold, accurate estimation is achieved.
Moreover, the total number of available data required for the
estimation is comparable to that required by joint estimation.
This implies that decentralization is not a drawback. We assess
their performance on the basis of a number of numerical
results, comparing with that of existing methods, such as
DSM [36] and consensus ADMM [30]: compared to DSM,
DISTA requires equal memory storage and communication
cost but is extremely faster. This implies that the total number
of communications is minimized. Indeed, DISTA is only
slightly suboptimal with respect to consensus ADMM. On the
other hand, it features a much lower memory usage, making
it suitable also for low-energy environments such as wireless
sensor networks. For what concerns communication, we will
show that our methods are comparable with the existing
ones. However, we mention that different variants on the
proposed protocols are possible in order to further minimize
the communications between agents. For example, asynchro-
nous and randomized adaptations are subject of our current
research. Theoretical contributions consist of the convergence
proof of DIHTA and DISTA to the consensus-based estimator
of (2) and (3), respectively. These results are obtained for
regular networks. For both DIHTA and DISTA, we show
that they reach the fixed points of the maps that rule their
dynamics, which coincide with the minima of the consensus-
based reformulated cost functions. Even if the algorithms’
patterns are similar, the convergence proof is based on different
mathematical tools: for DIHTA we use the LaSalle invariance
principle, while for DISTA the Opial’s Theorem. We notice
that the mathematical tools used in the proof provide also a
general framework in analyzing new distributed algorithms for
linear inverse problems.

A. Outline of the Paper

The paper is organized as follows. In Section II, the general
linear inverse problem and the classical iterative thresholding

algorithms for �0/�1-regularized LS problems are described.
Section III addresses the problem of distributed estimation.
In particular, the optimization problem is formulated in a
separable form based on consensus techniques. In this way, the
distributed iterative thresholding algorithms are developed and
compared with related literature in Section IV. In Section V
theoretical results on convergence are stated and proved.
Numerical experiments with simulated and real data are pre-
sented in Section VI. Some concluding remarks (Section VII)
and an Appendix collecting the most technical steps of the
proof complete the paper.

B. Notation

Throughout this paper, we use the following notation.
We denote column vectors with small letters, and matrices with
capital letters. Given a matrix X , XT denotes its transpose,
(X)v (or xv ) denotes the v-th column of X , and (X jv) j,v∈V
(or (x jv) j,v∈V ) are its entries. We consider R

n as a Euclidean
space endowed with the following norms:

‖x‖p =
(

n
∑

i=1

|xi |p

)1/p

with p = 1, 2. Given x ∈ R
n , we denote with

‖x‖0 =
n
∑

i=1

|xi |0,

where we use the convention 00 = 0. For a rectangular matrix
M ∈ R

m×n , we consider the Frobenius norm, which is defined
as follows

‖M‖F =
√

√

√

√

m
∑

i=1

n
∑

j=1

M2
i j =

√

√

√

√

n
∑

j=1

∥

∥(M) j
∥

∥

2
2,

and the operator norm

‖M‖2 = sup
z �=0

‖Mz‖2

‖z‖2
.

We denote the sign function as

sgn(x) =

⎧

⎪

⎨

⎪

⎩

1 if x > 0

0 if x = 0

−1 otherwise.

If x is a vector in R
n , sgn(x) is intended as a function to

be applied elementwise. If f : � → R is a real-valued
convex function defined on a convex open set in the Euclidean
space R

n , a vector v in that space is called a subgradient at a
point x0 in � if for any x ∈ � the following inequality holds:

f (x) ≥ f (x0) + v · (x − x0).

An undirected graph is a pair G = (V, E) where V is the
set of vertices (or nodes), and E ⊆ V × V is the set of edges
with the property (i, j) ∈ E implies ( j, i) ∈ E . In this paper,
we use the convention that (i, i) ∈ E for all i ∈ V . A path in
a graph is a sequence of edges which connect a sequence of
vertices. In an undirected graph G, two vertices u and v are
called connected if there exists a path from u to v. A graph is
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said to be connected if every pair of vertexes in the graph is
connected. A graph is said to be regular when each vertex is
connected to the same number of nodes. Using the convention
that each node has a self-loop, we call d-regular a graph in
which each vertex is connected to exactly d−1 nodes different
from itself. A matrix with non-negative elements P is said to
be stochastic if

∑

j∈V Pij = 1 for every i ∈ V . Equivalently,
P is stochastic if P1 = 1. The matrix P is said to be adapted
to a graph G = (V, E) if Pvw = 0 for all (w, v) /∈ E . We finally
define the neighborhood of v as the set Nv that contains all
w ∈ V such that Pvw �= 0. According to our notation, v ∈ Nv

as (v, v) ∈ E .

II. PRELIMINARIES

A. Linear Inverse Problems Under Sparsity Constraints

In our model, we consider a network represented by an
undirected graph G = (V, E). The set V is the set of nodes
and E ⊆ V×V is the set of available communication links. We
assume that each node v ∈ V has available local data yv ∈ R

m

and matrix Av ∈ R
m×n . Nodes seek to find the vector x̃ ∈ R

n

such that

yv = Av x̃, (4)

where the model parameters vector x̃ is sparse (i.e., it consists
of a small number of nonzero elements). (yv , Av ) are assumed
to be available only at the v-th node and not shareable with
other nodes. We remark that x̃ couples all the nodes in the
network.

If the data stored by the network were available at once in
a single central processing unit that performs joint estimation,
an approximation of x̃ could be obtained solving the following
�p-regularized optimization problem:

min
x∈Rn

Jp(x) := min
x∈Rn

∑

v∈V
‖yv − Av x‖2

2 + 2λ

τ
‖x‖p, (5)

with p = 0 or p = 1 for some λ, τ > 0. It should be
noted that for problems in which the number of variables n
exceeds the number of observations m the function J1(x)
is not strictly convex, and hence it may not have a unique
minimum. Sufficient conditions guaranteeing the uniqueness
of the solution of (5) are derived for p = 1 in [37] and for
p = 0 in [38]. We make the following assumption throughout
the paper.

Assumption 1: The problems in (5) with p ∈ {0, 1} admit a
unique solution.

The solutions of the problems in (5) provide an approxima-
tion of the model parameters with a bounded error, which is
controlled by λ (see [7], [39]). We now review the iterative
thresholding algorithms, that have been recently proposed to
solve (5), see [15]–[17].

B. Iterative Thresholding Algorithms

Popular approaches to solve the optimization problem in (5)
are IHTA when p = 0 and ISTA for p = 1. These methods
are based on moving at each iteration in the direction of the
steepest descent and thresholding to promote sparsity [17].

Let us collect the training data in the vector
y = (yT

1 , . . . , yT
V )T and A = (AT

1 , . . . , AT
V )T. Given an

initial estimate x(0), the iterate for t ∈ N can be written as

x(t + 1) = ηp,λ[x(t) + τ AT(y − Ax)]
where τ > 0 is the step-size in the direction of the steepest
descent. The operator η is a thresholding function to be applied
elementwise, i.e.

η0,λ[x] =
{

x if |x | >
√

2λ

0 otherwise
(6)

and

η1,λ[x] =
{

sgn(x)(|x | − λ) if |x | > λ

0 otherwise.
(7)

The convergence of these algorithms was proved under
the assumption that ‖A‖2

2 < 1/τ in [17] (for ISTA) and
[16] (for IHTA). A dissertation about the convergence results
can be found in [40].

III. CONSENSUS-BASED REFORMULATION OF THE

�p-REGULARIZED LS PROBLEM

In this work, we design iterative algorithms to solve (5), in
which the nodes only exchange information with their nearest
neighbors at each iteration, without any central coordination.
Before presenting the proposed protocols, we recast the opti-
mization problem in (5) into a separable form, that facilitates
distributed implementation. The goal is to split the problem
into simpler subtasks that can be executed locally at each node.

From now on, we adopt the following assumption.
Assumption 2: G = (V, E) is connected and d-regular.
Let us replace the global variable x in (5) with local

variables {xv}v∈V , representing estimates of the model
parameters x̃ , provided by each node. We rewrite the
distributed problem as follows

min
x1,...,x|V|∈Rn

∑

v∈V

[

‖yv − Av xv‖2
2 + 2λ

τ |V|‖xv‖p

]

,

s.t. xv = xw,∀w ∈ Nv ,∀v ∈ V, (8)

where

xw =
∑

u∈V
Pwu xu

and P is adapted to the graph with Pu,v = 1/d if (u, v) ∈ E
and zero otherwise. Since P is adapted to the graph, it should
be noted that

xw =
∑

u∈Nw

Pwu xu.

The following should be easily guessed.
Proposition 1: If G is a connected graph, then the

optimization problems in (5) and (8) are equivalent, in the
sense that any solution of (5) is a minimizer for (8) and
vice versa.

Proof: Since v ∈ Nv , from the constraints in (8) we have
xv = xv and xw = xv for all w ∈ Nv . This implies by
transitivity that xv = xw for all w ∈ Nv . If the graph is
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connected, then there exists a path connecting every pair of
vertexes. We can conclude that xv = x for any v ∈ Nv ,
in which case the cost function (8) reduces to the
one in (5). �

We now relax the problem in (8). Let us consider the
minimization of the functional Fp : R

n×|V | 
−→ R
+ defined

as follows

Fp(x1, . . . , x|V |) :=
∑

v∈V

[

q‖yv − Av xv‖2
2 + 2qλ

τ |V|‖xv‖p

+ 1 − q

τ

∑

w∈V
Pvw‖xw − xv‖2

2

]

(9)

for some q ∈ (0, 1). By minimizing Fp , each node seeks to
estimate the sparse vector x̃ and to enforce agreement with the
estimates calculated by other nodes in the network. It should
also be noted that Fp(x, . . . , x) = qJp(x).

The following theorem ensures that, under certain condi-
tions on the parameter τ , the problem of minimizing the
functions in (9) is well-posed. We derive necessary optimality
conditions of (9) and discuss the relationships with the original
problem (5).

Let �p : R
n×|V | 
−→ R

n×|V | be the operator defined as

(�p X)v = ηp,α

[

(1 − q)(X (PT)2)v

+ q(xv + τ AT
v (yv − Av xv ))

]

(10)

where v ∈ V , α = qλ/|V| and ηp,α is defined in (6) and (7).
Theorem 1 (Characterization of Minima): If τ < ‖Av‖−2

2
for all v ∈ V , the sets of minimizers of the functions Fp,
defined in (9), are not empty and coincide with the sets

Fix(�p) := {Z ∈ R
n×V : �p Z = Z}

where p ∈ {0, 1}.
Theorem 1 is proved in Section III-A through variational

techniques. The more technical points are postponed
to Appendix A.

Theorem 2: Let us denote as {̂x q
v }v∈V the minimizing

value of Fp(x1, . . . , x|V |) in (9). If G is connected, then
limq→0 x̂ q

v = x̂ , ∀v ∈ V , where x̂ is the minimizing value
of Jp(x) in (5).

Theorem 2 states that q can be interpreted as a temperature;
as q decreases, estimates xv’s associated with adjacent nodes
become increasingly correlated. This fact suggests that if q
is sufficiently small, then each vector x̂ q

v can be used as an
estimate of the model parameters x̃ . The proof of Theorem 2
is reported in Section III-B.

A. Proof of Theorem 1

We now prove rigorously Theorem 1 through
intermediate steps. Since for the most part of the proof
computations are the same for p = 0 and p = 1, we will
distinguish the two cases only when necessary, and just
use p otherwise.

Instead of optimizing Fp , let us introduce a surrogate
objective function [41]:

FS
p (X, C, B)

:=
∑

v∈V

⎛

⎝q ‖Av xv −yv‖2
2 + 2α

τ
‖xv‖p

+ 1 − q

dτ

∑

w∈Nv

‖xv − cw‖2
2

+ q

τ
‖xv − bv‖2

2 − q ‖Av (xv − bv )‖2
2

⎞

⎠ (11)

where C = (c1, . . . , c|V |) ∈ R
n×|V |, B = (b1, . . . , b|V |) ∈

R
n×|V |. It should be noted that, defining X = X PT ,

FS
p (X, X , X) = Fp(X)

and that if τ < ‖Av‖−2
2 for all v ∈ V then this surrogate

objective function is a majorization of Fp [42]. The
optimization of (11) can be computed by minimizing with
respect to each xv separately.

Proposition 2: The following fact holds

arg min
xv∈Rn

FS
p (X, C, B)

= ηp,α

[

(1 − q)cv + qbv + qτ AT
v (yv − Avbv)

]

where cv = 1
d

∑

w∈Nv
cw .

Proof: We can write

FS
p (X, C, B)

= 1

τ

∥

∥

∥xv −
[

(1 − q)cv + q(bv + τ AT
v (yv − Avbv ))

]∥

∥

∥

2

2

+ 2α

τ
‖xv‖p + K (12)

where K ∈ R is a term independent of xv . The statement
follows from the fact that ηp,α[z] = arg minx ‖x − z‖2

2 +
2α ‖x‖p . �

Proposition 3: If τ < ‖Av‖−2 for all v ∈ V the following
facts hold:

arg min
cv∈Rn

FS
p (X, C, B) = 1

d

∑

w∈Nv

xw, (13)

arg min
bv∈Rn

FS
p (X, C, B) = xv . (14)

Proof: Since the graph is regular, the first statement
follows from the fact that

FS
p (X, C, B)

=
∑

v∈V

1 − q

dτ

∑

w∈Nv

‖xv − cw‖2
2 + K

=
∑

w∈V

1 − q

dτ

∑

v∈Nw

‖xv − cw‖2
2 + K

where K is independent of cv . The proof of the second
statement is immediate, assuming that τ < ‖Av‖−2. �
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Proposition 4: There exists α̂ ∈ R such that if the
parameter α < α̂, then the set of fixed points Fix(�0) is not
empty.

Proof: If α < α̂ := mini∈supp(̃x) |̃xi | then η0,α(̃x) = x̃ .
We observe that X0 = x̃1T ∈ Fix(�0). In fact

�0 X0 = (1 − q)X0 PT + q X0

= (1 − q )̃x1T PT + qx̃1T = X0

where the last inequality follows from the fact that P is
row-stochastic. �

Proposition 5: The set of minimizers of F1(X) is not empty.
Proof: In order to prove that F1(X) admits minimizers,

it is sufficient to notice that, for any K > 0, the
set {X ∈ R

n×|V | : F1(X) ≤ K } is closed set (as it is
counterimage of a closed through a continuous function) and
bounded (as

∑

v∈V 2α
τ

‖xv‖1 ≤ F1(X) ≤ K ). The compact-
ness guarantees that F1(X) has at least one minimizer. �

Lemma 1: The following facts hold

1) If U 	 ∈ Fix(�p), there exists ε > 0 such that, for
H = (h1, . . . , h|V |) ∈ R

n×|V |, |h jv | < ε, v ∈ V ,
j = 1, . . . , n, then

FS
p (U 	 + H, U 	, U 	) ≥ Fp(U

	) + 1

τ
‖H‖2

F .

2) If U 	 ∈ Fix(�p), there exists ε > 0 such that, for
H = (h1, . . . , h|V |) ∈ R

n×|V |, |h jv | < ε, v ∈ V ,
j = 1, . . . , n, then

FS
p (U 	 + H, U 	, U 	) ≤ Fp(U

	 + H ) + 1

τ
‖H‖2

F .

The proof is rather technical and for this reason is postponed
to Appendix A.

We conclude the proof of Theorem 1 by showing that the
minimizers of Fp(X) coincide with the fixed points of �p .
Merging assertions 1) and 2) in Lemma 1, we obtain that if
U 	 ∈ Fix(�p) for a sufficiently small increment H holds

Fp(U
	 + H ) ≥ Fp(U

	)

which means that U 	 is a minimum for Fp(·). If U 	 is a
minimizer of Fp(·), then

Fp(U
	) = FS

p (U 	, U 	, U 	)≤FS
p (U 	+H, U 	 + H , U 	+H )

≤ FS
p (U 	+H, U 	, U 	+H ) ≤ FS

p (U 	+H, U 	, U 	)

Therefore, U 	 is a minimizer for FS
p (·, U 	, U 	). This implies

that

u	
v = ηp,α

(

(1 − q)u	
v + q(u	

v + τ AT
v (yv − Avu	

v )
)

where u	
v = 1

d

∑

w∈Nv
u	

w which means that U 	 ∈ Fix(�p).
The thesis is then obtained using Proposition 4
and Proposition 5. �

B. Proof of Theorem 2

Let

̂Xq = [̂xq
1 , . . . , x̂ q

|V |] = arg min
x1,...,x|V|

1

q
F1(x1, . . . , x|V |).

We prove the assertion by showing the following facts:

i. first, the convergence to a consensus, i.e.

lim
q→0

‖x̂ q
v − x̂ q

w‖ = 0 ∀v,w ∈ V;

ii. second, the convergence to a common value

∀v ∈ V lim
q→0

x̂ q
v = x̂,

which is the minimum of function Jp(x), i.e.
Jp (̂x) ≤ Jp(x),∀x ∈ R

n .

We start with point i.: suppose ad absurdum that there
exist (v,w) ∈ E , a sequence {q�}�∈N converging to zero,
and ε > 0 such that there exist infinitely many � ∈ N :
‖xq�

v − xq�
w ‖ > ε and, consequently,

1

q�
Fp(̂X

q�) >
(1 − q�)Pvwε

τq�
.

Since Pvw > 0, then limq→0
(1−q)Pvwε

qτ = +∞ or, equivalently
by definition, for any χ > 0 there exists �0 > 0 such that
if � > �0 then

(1 − q�)Pvwε

q�τ
> χ.

Let us fix the constant χ = ∑

v∈V ‖yv‖2
2, then

1

q�
Fp(̂X

q� ) >
(1 − q�)Pvwε

q�τ
> χ = 1

q�
F1(0)

and we obtain the contradiction that ̂Xq� is not the minimizing
value of (9). Since the graph is connected and applying similar
arguments used for Proposition 1, we deduce that

lim
q→0

‖x̂ q
v − x̂ q

w‖ = 0 ∀w ∈ Nv .

We now prove point ii.. Suppose ad absurdum that there
exist v ∈ V and two sequences {q�}�∈N and {m�}�∈N

converging to zero such that

lim
�→∞ x̂ q�

v = ξ1, lim
�→∞ x̂m�

v = ξ2.

From point i. we deduce that

lim
�→∞ x̂ q�

w = ξ1, lim
�→∞ x̂m�

w = ξ2.

for all w ∈ V . Then,

F1(̂Xq)

q
≥
∑

v∈V

[

‖yv − Av x̂ q
v ‖2

2 + 2λ

τ |V|‖x̂ q
v‖1

]

.

By definition of ̂Xq we also have for all X ∈ R
n×|V |

F1(̂Xq )

q
≤
∑

v∈V

[

‖yv − Av xv‖2
2 + 2λ

τ |V|‖xv‖1

+ 1 − q

qτ

∑

w∈V
Pvw‖xw − xv‖2

2

]

and, in particular,

F1(̂Xq )

q
≤ ∑

v∈V
[

‖yv − Av x‖2
2 + 2λ

τ |V | ‖x‖1

]

, ∀x ∈ R
n
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We now distinguish the cases p = 1 and p = 0.

1) If p = 1, by letting � → ∞ and considering that
lim�→∞ ̂Xq� = ξ11


 and F1 is a continuous function,
then

J1(ξ1) = lim
�→∞

∑

v∈V

[

‖yv − Av x̂ q�
v ‖2

2 + 2λ

τ |V|‖x̂ q�
v ‖1

]

≤ lim
�→∞

F1(̂Xq� )

q�

≤
∑

v∈V

[

‖yv − Av x‖2
2 + 2λ

τ |V|‖x‖1

]

= J1(x), ∀x ∈ R
n

and, analogously,

J1(ξ2) ≤ J1(x), ∀x ∈ R
n.

From Assumption 1 we conclude that x̂ = ξ1 = ξ2.
2) If p = 0, from theorem of sign permanence we have

that if ξ1,i �= 0 then there exists �0 ∈ N such that also
x̂ q�

i,v �= 0, ∀� > �0. This implies that ‖ξ1‖0 ≤ ‖xq�
v ‖0

∀� > �0 and

J0(ξ1) ≤ lim
�→∞

∑

v∈V

[

‖yv − Av x̂ q�
v ‖2

2 + 2λ

τ |V|‖x̂ q�
v ‖0

]

≤ lim
�→∞

F0(̂Xq�)

q�

≤
∑

v∈V

[

‖yv − Av x‖2
2 + 2λ

τ |V|‖x‖0

]

= J0(x), ∀x ∈ R
n .

From Theorem 1 it can be deduced that the first
inequality is actually an equality ∀� > �0. Using similar
arguments for the sequence x̂m�

v and Assumption 1 we
conclude that ξ1 = ξ2. �

IV. PROPOSED DISTRIBUTED ESTIMATION ALGORITHMS

In this section we introduce two distributed iterative
algorithms to solve (5), in which the nodes only exchange
information with their nearest neighbors at each iteration,
without any central coordination. In particular, we describe a
family of low-complexity subgradient thresholding methods.

A. Algorithms Description

Distributed iterative thresholding algorithms seek to
minimize (9) in an iterative, distributed way. The key idea
is as follows.

The algorithm is parameterized by a stochastic transition
matrix P which is adapted to the graph. All nodes v store two
messages at each time t ∈ N, xv (t) and xv (t). Starting from
xv (0) = 0 for all v ∈ V , the update is performed in an alter-
nating fashion. More specifically, the update consists of two
stages; for convenience, the first stage is identified with even
times t ∈ 2N, and the second stage with odd times t ∈ 2N+1,
so that one complete iteration spans two time units. At even
time t ∈ 2N, each node v ∈ V receives the estimates xw(t) for
each w ∈ Nv , which is communicating with v, and xv (t +1) is
obtained by a convex combination of these estimates. At odd
time t ∈ 2N + 1, each node receives the vectors xw(t) from

Algorithm 1 DIHTA
Given a row-stochastic matrix P adapted to the graph,
α = qλ/|V| > 0, τ > 0, xv(0) = 0, yv = Av x̃ for any
v ∈ V , iterate

• t ∈ 2N, v ∈ V ,

xv (t + 1) =
∑

w∈V
Pvwxw(t)

xv (t + 1) = xv (t)

• t ∈ 2N + 1, v ∈ V ,

xv (t + 1) = xv (t)

xv (t + 1) = η0,α

[

(1 − q)
∑

w∈V
Pvwxw(t)

+ q
(

xv (t) + τ AT
v (yv − Av xv (t))

)

]

.

their neighbors, the estimate xv(t+1) is then obtained applying
the thresholding operator to a convex combination of the
received messages and of the subgradient step.

The coefficients of the convex combination are obtained
through the matrix P and the temperature parameter
q ∈ (0, 1). In a simple case the nodes compute simply the
average of the received messages, giving equal weight to each
of them and setting q = 1/2. Other solutions are also possible,
in which the weights are computed in an optimal manner
according to some cost function. E.g., in sensor networks,
nodes may be affected by different noise, or some sensors may
be partially damaged. The coefficients in P could take into
account the noise by adjusting the weights. Noise may also
be present on the wireless channel communication, in which
case its variance is proportional to the distance. The design
parameter q ∈ (0, 1) balances, instead, cooperation and the
gradient descent, and can be suitably tuned to optimize dif-
ferent performance parameters (mean-squared error, detection
error on support and so on).

The thresholding operation can be hard or soft as described
in (6) and (7). We refer to DIHTA in the case of (6) and
DISTA if the thresholding operator is (7).

More precisely, the patterns are described in Algorithm 1
and Algorithm 2.

The proposed methods define a distributed protocol: each
node only needs to be aware of its neighbors and no further
information about the network topology is required. It should
be noted that if |V| = 1, DIHTA and DISTA coincide with
IHTA and ISTA, respectively.

B. Discussion on Related Literature

Algorithms for distributed sparse recovery (with no central
processing unit) in sensor networks have been proposed in the
literature in the last few years. We distinguish two classes:

1) algorithms based on the decentralization of
subgradient methods for convex optimization
(DSM, [29], [33], [34]);

2) consensus and distributed ADMM ([30], [43], [44]);
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Algorithm 2 DISTA
Given a row-stochastic matrix P adapted to the graph,
α = qλ/|V| > 0, τ > 0, xv (0) = 0, yv = Av x̃ for any
v ∈ V , iterate

• t ∈ 2N, v ∈ V ,

xv (t + 1) =
∑

w∈V
Pvwxw(t)

xv (t + 1) = xv (t)

• t ∈ 2N + 1, v ∈ V ,

xv (t + 1) = xv (t)

xv (t + 1) = η1,α

[

(1 − q)
∑

w∈V
Pvwxw(t)

+ q
(

xv (t) + τ AT
v (yv − Av xv (t))

)

]

.

1) DSM: As has been said, our proposed approach leverages
distributed algorithms for multi-agent optimization that have
been proposed in the literature in the last few years [29], [33].
The main goal of these algorithms is to minimize over a
convex set the sum of cost functions that are convex and differ-
entiable almost everywhere. Formally, the following problem
is considered:

min
x∈Rn

∑

v∈V
fv (x) (15)

where fv : R
n → R are convex functions. The main

idea behind distributed algorithms is to use consensus as a
mechanism for spreading information through the network.
In particular, each agent, starting from an initial estimate,
updates it by first combining the estimates received from its
neighbors, then taking a subgradient step, in order to minimize
its objective function. More formally,

xv (t + 1) =
∑

w∈V
Pvwxw

xv (t + 1) = xv (t + 1) − r∂ fv (xv (t)) (16)

where P is a stochastic matrix, r ∈ (0, 1), and ∂ fv (xv (t)) is
a subgradient of the function fv , evaluated at xv (t).

It should be noted that these subgradient methods can be
applied to the Lasso functional in (3) but not to solve the
�0-regularized LS problem in (2), which is not a convex
function.

As has been said, DIHTA and DISTA leverage the projected
subgradient methods for multi-agent optimization. The
memory storage requirements and the computational complex-
ity are similar, as it does not require to solve linear systems,
to invert matrices, or to operate on the matrices Av . However,
we emphasize some substantial differences.

The protocol in (16) is not guaranteed to converge while
both DIHTA and DISTA will be proved to converge to a
minimum of (9). The convergence of (16) can be achieved
by considering the related “stopped” model (see [45, p. 56]),
whereby the nodes stop computing the subgradient

at some time, but they keep exchanging their information and
averaging their estimates only with neighboring messages for
subsequent time. However, the tricky point of such techniques
is the optimal choice of the number of iterations to stop the
computation of the subgradient. Moreover, the limit point can
not be variationally characterized and depends on the time
we stop the model.

In the analysis of the algorithm in [29], the functions fv
are assumed polyhedral and the subgradient sets of each
fv bounded over the set �. This is not true for Lasso cost
in general linear inverse problems [6].

In [34] a version of DSM is proposed for optimization
of (15) over a convex set, which in general is not the case of
LS problems under sparsity constraints, whose feasible sets are
not convex. Moreover, the thresholding operators defined in (2)
are not projections on convex sets, i.e. η0,α is not nonexpansive
and η1,α(x) �= x for all x �= 0.

In [45], the stepsize r in (16) decreases to zero along the
iterations. This choice, however, requires to fix an initial time
and is not be feasible in case of time-variant input: introducing
a new input would require some resynchronization. For this
reason the parameters q, τ in distributed iterative thresholding
algorithms are kept fixed and will be compared with (16)
with r fixed.

2) Consensus ADMM: The consensus ADMM [18], [30]
is a method for solving problems in which the objective and
the constraints are distributed across multiple processors. The
problem in (5) is tackled by introducing dual variables ωv

and minimizing the augmented Lagrangian in a iterative way
with respect to the primal and dual variables. The algorithm
entails the following steps for each t ∈ N: node v receives the
local estimates from its neighbors, uses them to evaluate the
dual price vector and calculate the new estimate via coordi-
nate descent and thresholding operations. Formally, choosing
some ρ > 1, the update equations would be typically be
performed according to the following rules:

xv (t + 1) = (AT
v Av + ρ I )−1(AT

v y + ρz(t) − ωv(t))

z(t + 1) = ηλ/ρ

(

1

|V|
∑

v∈N
xv (t + 1) + ωv(t)/ρ

)

ωv(t + 1) = ωv(t) + ρ(xv (t + 1) − z(t + 1)). (17)

More recently, distributed versions of ADMM that just
require local communications have been proposed in the
literature [43], [44]. These methods however address problems
slightly different from ours, and in particular they require
stronger convexity assumptions on the cost functional to
guarantee the convergence.

C. Complexity and Memory Analysis

The bottleneck of the consensus ADMM is the inversion
of the n × n matrices (AT

v Av + ρ I ). Even assuming that
such inversion can performed off-line and does not affect
the procedure, the storage of the inverse matrix may still
be prohibitive for a node with a small amount of available
memory. Specifically, for the consensus ADMM each node has
to store O(n2) real values. DIHTA and DISTA, instead, require



RAVAZZI et al.: DISTRIBUTED ITERATIVE THRESHOLDING FOR �0/�1-REGULARIZED LINEAR INVERSE PROBLEMS 2089

only O(n) real values. Just to do a practical example, nodes
with 16kB of RAM are widely used for wireless sensor net-
works, e.g. as STM32 F3-series microcontrollers with Contiki
operating system. As the static memory occupied by
ADMM and DISTA is almost the same, we neglect it along
with the memory used by the operating system (the total is
of the order of hundreds of byte). Using a single-precision
floating-point format, 212 real values can be stored in 16 kB.
Therefore, even assuming just one measurement per node
(m = 1), ADMM can handle signals with length of some
tens, while DISTA up to thousands. This illustrates the greater
efficiency of DISTA in low memory devices.

V. CONVERGENCE ANALYSIS

In Section IV we have derived DIHTA and DISTA to
minimize the cost function Fp(x1, . . . , x|V |) defined in (9)
with p = 0 and p = 1, respectively. Theorem 1 guarantees
that, under suitable conditions, the minima of the cost
functions F0 and F1 defined in (9) coincide with the
fixed points of the map that rule the dynamics of
DIHTA and DISTA, respectively. In this section, we present
our theoretical results regarding the convergence of the pro-
posed algorithms, conveniently organized into two theorems:
Theorem 3 and Theorem 4 define sufficient conditions to guar-
antee the convergence of DIHTA and DISTA to a fixed point.
It follows that DIHTA and DISTA converge to a minimum of
F0 and F1, respectively. It is worth mentioning that F0 is not
convex, then DIHTA is actually proved to converge to a local
minimum.

In order to state our results in formal way, it is convenient to
rewrite the dynamics of the proposed algorithms. In particular,
we express the iterations as follows. Let

X (t) = (x1(t), . . . , x|V |(t))
X(t) = X (t)PT, t ∈ N.

The updates of DIHTA and DISTA can thus be rewritten as

X (t + 1) = �p X (t) (18)

with p = 0 and p = 1, respectively. Notice that this
recursive formula joins in one step the operations that in the
algorithms 1 and 2 are splitted into two steps, but the dynamics
is actually the same. X (0) can be arbitrarily initialized.

In our analysis, in addition to Assumption 2, we adopt the
following.

Assumption 3: The nodes of the graph G = (V, E) use
uniform weights, i.e., Puv = 1/d if (u, v) ∈ E and zero
otherwise.

Theorem 1 ensures that, under certain conditions on the
stepsize τ , the problem of minimizing the functions in (9) is
well-posed. Moreover, it states the equivalence between the
minima and the fixed points of �p .

Moreover, the sequences {X (t)}t∈N given by (18) for both
p = 0 and p = 1 are guaranteed to be bounded and to
converge to a finite limit point.

Theorem 3 (DIHTA Convergence): There exists α̂ ∈ R such
that if α < α̂ and τ < ‖Av‖−2

2 for all v ∈ V , DIHTA produces

a sequence {X (t)}t∈N (defined by (18) with p = 0) such that

lim
t→∞ inf

Z∈Fix(�0)
‖X (t) − Z‖F = 0.

Moreover, defined A = [AT
1 , AT

2 , . . . , AT
|V |]T, if AT A is

positive definite then

lim
t→∞

∥

∥X (t) − X	
∥

∥

F = 0

where X	 ∈ Fix(�0).
Theorem 4 (DISTA Convergence): If τ < ‖Av‖−2

2 for all
v ∈ V , DISTA produces a sequence {X (t)}t∈N (defined by (18)
with p = 1) such that

lim
t→∞

∥

∥X (t) − X	
∥

∥

F = 0

where X	 ∈ Fix(�1).
These theorems guarantee that both DIHTA and DISTA

produce sequences of estimates converging to minima of
F0 and F1, respectively.

It is worth mentioning that Theorem 3 and 4 do not imply
necessarily the convergence of the algorithm to a consensus.
If p = 0 the nodes in the graph achieve a consensus in
the estimate of the original model parameters; this is not
theoretically proved and is left for future research. On the
other hand, if p = 1 local estimates do not necessary coincide
at convergence. However, the disagreement among the nodes
is controlled by temperature parameter q . The consensus can
be achieved by letting q go to zero as suggested by Theorem 2
or considering the related “stopped” model [29], whereby
the nodes stop computing the subgradient at some time, but
they keep exchanging their information and averaging their
estimates only with neighboring messages for subsequent time.
It should be noted that in the literature several consensus-based
estimation algorithms have been proposed, which do not reach
consensus but where the agreement can be induced by using
a temperature parameter, see [34], [46].

Theorem 3 and 4 instead are proved through the
intermediate steps:

• first, we show that DIHTA and DISTA produce sequences
that do not increase Fp, respectively for p = 0 and
p = 1, which leads to numerical convergence
(see Section V-A);

• once numerical convergence is achieved, convergence is
shown in two different ways for DIHTA and DISTA,
respectively using the LaSalle invariance principle and
the Opial’s Theorem (Section V-B and Section V-C,
respectively). The more technical lemmas are postponed
to Appendix B.

A. Numerical Convergence

This section gives strong hints that both DIHTA and DISTA
converge to a limit point. In particular, we now prove that
two successive iterations of both algorithms become closer
and closer, which implies the numerical convergence when
the number of iterations goes to infinity. More technical
work is further needed in order to prove that the full
sequence converges to a minimizer of the cost function Fp

(see Sections V-B and V-C).
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Our starting point is to show that �p is asymptotically
regular, i.e. X (t + 1) − X (t) → 0 for t → ∞. In particular,
this property guarantees the numerical convergence of
the algorithm.

Lemma 2: If τ < ‖Av‖−2
2 for all v ∈ V , then the sequence

{Fp(X (t))}t∈N is non increasing and admits the limit.
Proof: The function is lower bounded (F(X) ≥ 0) and the

sequence {Fp(X (t)}t∈N is decreasing and therefore admits the
limit.

From Proposition 2 and Proposition 3 we obtain the
following inequalities:

Fp(X (t + 1)) ≤ FS
p (X (t + 1), X(t + 1), X (t))

≤ FS
p (X (t + 1), X(t), X (t))

≤ FS
p (X (t), X(t), X (t)) = Fp(X (t)). �

At this point, we can conclude the asymptotic regularity
of �p:

Proposition 6: For any τ ≤ minv∈V ‖Av‖−2
2 the sequence

{X (t)}t∈N is bounded and

lim
t→+∞ ‖X (t + 1) − X (t)‖2

F = 0.

Proof: By Proposition 2 we obtain

F(X (t)) − F(X (t + 1))

= FS
p (X (t), X (t), X (t))

−FS
p (X (t + 1), X(t + 1), X (t + 1))

≥ FS
p (X (t + 1), X(t), X (t))

−FS
p (X (t + 1), X(t + 1), X (t + 1))

≥ FS
p (X (t + 1), X(t + 1), X (t))

−FS
p (X (t + 1), X(t + 1), X (t + 1))

≥ q

τ

∑

v∈V
(xv (t + 1) − xv (t))

T Mv (xv (t + 1) − xv (t)) ≥ 0.

Notice that the last expression is nonnegative as
Mv = I − τ AT

v Av are positive definite for all v ∈ V .
As FS

p (X (t)) − FS
p (X (t + 1) → 0 we thus conclude that

‖xv (t + 1) − xv(t)‖2
2 → 0 for any v ∈ V and

lim
t→+∞ ‖X (t + 1) − X (t)‖2

F = 0. �

B. Convergence of DIHTA (Proof of Theorem 3)

In the previous section we have proved that two successive
iterations of DIHTA become closer and closer. We now prove
that the full sequence converges to a minimizer of the cost
function F0. This part concludes the proof of Theorem 3.

More precisely, the proof of the convergence is obtained
through intermediate steps:

• the support of each estimate xv (t) stabilizes at a finite
time (Corollary 1);

• the sequence {xv (t)}t∈N is bounded (Lemma 3);
• the conclusion is obtained applying the LaSalle invariance

principle (Theorem 5) and the fact that the minima of cost
function F are isolated (Lemma 4).

We start proving the stabilization of the support for each
estimate xv(t).

Corollary 1: There exists t0 ∈ N such that
supp(xv(t)) = xv (t0), for all t ≥ t0.

Proof: This is a direct consequence of the asymptotic
regularity: for all v ∈ V ,

lim
t→+∞ ‖xv (t) − xv (t + 1)‖2 = 0.

Let us fix ε ∈ (0, α), then there exists t0 ∈ N such that for
all t > t0 holds

‖xv (t) − xv (t + 1)‖2 < ε.

This implies that ∀v ∈ V and ∀ j ∈ {1, . . . , n}
|x jv(t) − x jv(t + 1)| ≤ ‖xv (t) − xv (t + 1)‖2 < α.

It should be noted that if x jv(t0) = 0 at the time t0 ∈ N,
then |x jv(t)| < α for any t > t0 and because of the effect of
thresholding then x jv(t0 + 1) = 0 and the same is repeated
at any following step. Vice versa, if |x jv(t0 + 1)| < α,
then |x jv(t0)| < α; this means that if |x jv(t0)| > α, then
|x jv(t0 + 1)| > α and the same is repeated at any following
step. �

In the next, we will refer to T 	 as a time after which all
the sensors have stabilized:

T 	 = min
{

˜t ∈ N|supp(xv (t)) = supp(xv (˜t )),

∀t ≥˜t and ∀v ∈ V}.
Lemma 3: The sequence {X (t)}t∈N is bounded.

Proof: As has already been noticed, the support of each
column in X (t) does not change for t ≥ T 	. Let us denote
Sv = supp(xv (T 	)) for all v ∈ V and let x̃ Sv

v be such

x̃ Sv
v = arg minz∈RSv ‖Av z − yv‖2

2 ∀v ∈ V .

Then the update of the non-zero components of v-th column
in X (t) (which is denoted with xv (t +1)|Sv ) becomes a convex
combination between some of the columns in X (t) restricted
to the indexes in Sv (denoted with xv (t)|Sv ) and x̃ Sv

v . We can
therefore write that

xv (t + 1)|Sv ∈ co

⎛

⎝{̃x Sv
v }

⋃

w∈Nv

{

xw(t)|Sv

}

⎞

⎠

and

xv (t + 1)|SC
v

= 0,

where co(�) is the convex hull of the set �, i.e. the smallest
convex set that contains points in �. If we iterate the argument
for v ∈ V then we conclude that {xv (t)}t∈N is bounded for all
v ∈ V and so is {X (t)}t∈N. �

An important consequence of Corollary 1 is that the term
∑

v∈V ‖xv (t)‖0 in the functional F(X (t)) remains constant for
all t ≥ T 	. Then we can define a new function

G(X) =
∑

v∈V

⎡

⎣q‖Av xv − yv‖2
2 + 1 − q

dτ

∑

w∈Nv

‖xw − xv‖2
2

⎤

⎦

(19)
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and a constant χ such that

χ + G(X (t)) = F(X (t)) ∀t ≥ T 	. (20)

In an analogous way we can define a new map � which
act element-wise on X :

[�(X)]i,v = (1 − q)
∑

w∈Ni

(P2)vwxi,w(t) + qxi,v (t)

+ qτ AT
v,i(yv − Av xv ). (21)

It should be noticed that � is a continuous map and
� X (t) = �X (t) for all t ≥ T 	.

If we consider the system after time T 	, we can thus apply
the LaSalle invariance principle for discrete-time dynamical
systems:

Theorem 5 (LaSalle Invariance Principle, [47]): Let � be
a discrete-time dynamical system on a space �. Assume that

(i) there exists a closed set W ⊂ � such that any evolution
of the system with initial condition in W remains in W
for all subsequent time;

(ii) there exists a function G : � → R from which is
nonincreasing along � in W;

(iii) the evolution of � in W is bounded;
(iv) � and G are continuous functions.

Then any evolution of the system in W tends to a subset of
{w ∈ W |G(�w) = G(w)}.

This is a formulation of the principle which is sufficient for
our purposes; for more details, see [47, Th. 1.19].

Before providing the proof of Theorem 3 for hard
thresholding, we present the following technical lemma, which
is proved in Appendix B.

Lemma 4: The minima of F(X) are isolated.
We now conclude the proof of Theorem 3. First, let us notice

that our system X (t) fulfills the hypotheses of the LaSalle
invariance principle: X (t) is bounded by Lemma 3, hence
we can define a compact set W from which it never exits;
{G(X (t))}t∈N is nonincreasing by (19), (20) and Lemma 2;
� and G are continuous. Therefore, X (t) converges to a set
� such that, for any ω ∈ �, G(�ω) = G(ω).

Now, let us show that G(X (t)) > G(X (t + 1)) unless
X (t) = X (t + 1). First, we notice that X (t) is the unique
minimizer of

∑

v∈V

(

1

τ
‖xv (t) − bv‖2

2 − ‖Av (xv (t) − bv )‖2
2

)

with respect to variable B ∈ R
n×|V |. In fact, each term in the

summation is nonnegative, and is equal to zero if and only if
bv = xv (t). As a consequence, if X (t) �= X (t + 1), then

G(X (t)) ≥ G(X (t + 1), X(t + 1), X (t))

> G(X (t + 1), X(t + 1), X (t + 1))

= G(X (t)).

In conclusion, G(X (t + 1)) = G(X (t)) if and only if
X (t + 1) = X (t). Then, X (t) converges to the set (or to
a subset) of the fixed points of �. This does not imply the
convergence of X (t), as X (t) might approach the set without
never entering it.

However, fixed points are isolated, thus X (t) necessarily
tends to a single point. In fact, as the fixed points correspond to
the minima of F(X) (see Theorem 1) and the minima of F(X)
are isolated (see Lemma 4), i.e., if U 	 ∈ R

n×|V | is a minimum
for F , then F(U 	 + H ) > F(U 	) for a sufficiently small
increment H ∈ R

n×|V | �= 0. In other terms, each minimum
has a neighborhood in which no other minima occur.

C. Convergence of DISTA (Proof of Theorem 4)

In Section V-A we have proved that two successive iter-
ations of DISTA become closer and closer. We now prove
that the full sequence converges to a minimizer of the cost
function F1. This part concludes the proof of Theorem 4.

More precisely, the proof of the convergence is obtained
through intermediate steps:

• the sequence {xv (t)}t∈N is bounded (Lemma 5);
• the map � is nonexpansive (Lemma 6);
• the proof is concluded by applying the Opial’s Theorem

(see Theorem 6).
Lemma 5: The sequence {X (t)}t∈N is bounded.

Proof: It is easy to show that

F(X (0)) ≥ F(X (t)) ≥
∑

v

‖xv (t)‖1 = ‖X (t)‖∞.

Therefore, {X (t)}t∈N is bounded. �
We prove that the sequence of the {X (t)}t∈N converges

to a fixed point of �, applying the Opial’s Theorem to the
operator �;

Theorem 6 (Opial’s Theorem [48]): Let T be an operator
from a finite-dimensional space S to itself that satisfies the
following conditions:

1) T is asymptotically regular (i.e., for any x ∈ S, and for
t ∈ N,

∥

∥T t+1x − T t x
∥

∥→ 0 as t → ∞);
2) T is non expansive (i.e., ‖T x − T z‖ ≤ ‖x − z‖ for any

x, z ∈ S);
3) Fix(T ) �= ∅, Fix(T ) being the set of fixed point of T .

Then, for any x ∈ S, the sequence {T t (x)}t∈N converges
weakly to a fixed point of T .

It should be noticed that in R
n the weak convergence

coincides with the strong convergence.
Let us now prove that � satisfies the Opial’s conditions.

It should be noted that the asymptotic regularity of � has
already been proved in Section V-A. We now prove that � is
nonexpansive.

Lemma 6: For any τ ≤ minv∈V ‖Av‖−2
2 , �1 defined in (10)

is nonexpansive.
Proof: Since ηα is nonexpansive, for any X, Z ∈ R

n×|V |,

‖(�X)v − (�Z)v‖2
2

≤
∥

∥

∥(1 − q)(xv − zv ) + q(I − τ AT
v Av )(xv − zv )

∥

∥

∥

2

2

≤
[

(1 − q)
∥

∥xv − zv

∥

∥

2 + q
∥

∥

∥I − τ AT
v Av

∥

∥

∥

2
‖xv − zv‖2

]2
.

Notice that I − τ AT
v Av always has the eigenvalue 1 with

algebraic multiplicity n−m, as the rank of Av is m. Moreover,
if τ < ‖Av‖−2

2 , I − τ AT
v Av is positive definite and its spectral

radius is 1. Since I − τ AT
v Av is a symmetric matrix, we then
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have
∥

∥I − τ AT
v Av

∥

∥

2 = 1. Thus, applying the triangular
inequality,

‖(�X)v − (�Z)v‖2
2

≤ [

(1 − q)
∥

∥(xv − zv )
∥

∥

2 + q ‖xv − zv‖2
]2

≤
⎡

⎣

1 − q

d2

∑

w∈Nv

∑

w′∈Nw

‖xw′ − zw′ ‖2 + q ‖xv − zv‖2

⎤

⎦

2

≤ (1 − q)2

d4

⎛

⎝

∑

w∈Nv

∑

w′∈Nw

‖xw′ − zw′ ‖2

⎞

⎠

2

+ q2 ‖xv − zv‖2
2

+ 2(1 − q)q

d2

∑

w∈Nv

∑

w′∈Nw

‖xw′ − zw′ ‖2 ‖xv − zv‖2 .

Applying the Cauchy-Schwarz inequality
(

N
∑

i=1

βi

)2

= 〈β,1N 〉2 ≤ ‖β‖2
2 ‖1N ‖2

2 = N
N
∑

i=1

β2
i (22)

which holds for any β = (β1, . . . , βN ) ∈ R
N , we obtain

‖(�X)v − (�Z)v‖2
2

≤ (1 − q)2

d2

∑

w∈Nv

∑

w′∈Nw

‖xw′ − zw′ ‖2
2 + q2 ‖xv − zv‖2

2

+ 2(1 − q)q

d2

∑

w∈Nv

∑

w′∈Nw

‖xw′ − zw′ ‖2 ‖xv − zv‖2 .

Finally, summing over all v ∈ V and considering that
2 ‖xw′ − zw′ ‖2 ‖xv − zv‖2 ≤ ‖xw′ − zw′ ‖2

2 + ‖xv − zv‖2
2,

‖(�X) − (�Z)‖2
F =

∑

v∈V
‖(�X)v − (�Z)v‖2

2

≤ (1 − q)2 ‖X − Z‖2
F + q2 ‖X − Z‖2

F

+ 2(1 − q)q ‖X − Z‖2
F

≤ ‖X − Z‖2
F . �

We now conclude the proof of Theorem 4. The
assertion follows by a direct application of Opial’s Theorem,
the numerical convergence (proved in Section V-A),
Theorem 1 and Lemma 6. �

VI. APPLICATIONS AND NUMERICAL EXPERIMENTS

In this section, we describe two applications in which the
performance of DIHTA and DISTA can be assessed. In the first
example, we perform linear regression analysis on a prostate
cancer dataset proposed in [4] and studied also in [18]; in the
second one, we consider a sparse signal recovery problem
using compressed sensing.

A. Analysis of a Medical Dataset

In [4], a real set of prostate cancer medical data is used
to perform linear regression and infer the values of some
parameters given some predictors. More precisely, p = 8
predictors are considered: the log cancer volume (lcavol),
the log prostate weight (lweight), the age, the log of the
amount of benign prostatic hyperplasia (lbph), the seminal

vesicle invasion (svi), the log of capsular penetration (lcp),
the Gleason score (gleason), and the percent of Gleason
scores 4 or 5 (pgg45). The purpose is to get the correlation
between these predictors, measured in 97 patients who were
going to receive a prostatectomy, and the level of prostate-
specific antigen. The dataset is randomly split in a training
subset of 67 patients and 30 test patients. The objective is to
use the 67 training data in order to fit a sparse linear model
after standardizing the predictors. The non-zero coefficients of
the linear regression suggest which factors are more relevant
in the generation of the antigen.

In [18], the problem is tackled in a distributed way, by
subdividing the training data into 7 groups and performing
distributed Lasso on them. The distributed setting is
motivated as follows. Each group of data may be owned by
a laboratory or hospital that does not want to share them
for privacy or secrecy reasons. Nevertheless, each laboratory
aims at improving its analysis by sharing its partial linear
regression results with other laboratories. A network is then
raised up, in which the estimated linear regression coefficients
are repeatedly transmitted among laboratories and updated
using its own measured data and coefficients estimated by the
others. In this way, there is no sharing of the personal data
of the patients, but only of the coefficients that describe the
correlation between predictors and antigen.

As in [18], we assume that the network is composed by
7 laboratories, 6 of which have a dataset of 10 patients, and one
with a dataset of 7 patients. We then apply DIHTA and DISTA
to recover the linear regression coefficients, assuming the
network can be modelled as a complete graph (but analogous
results can be obtained with less connected network).

Tables I and II show the coefficients estimated by a number
of different centralized and distributed methods. Both DISTA
and DIHTA are run with q = 1/2, 1/10, 1/100. For the soft
algorithms, we set λ/τ = 8.53, using the cross validation
strategy [18], while for the hard thresholding, λ/τ = 1. The
values of τ are optimized according to the values of q .

A test set of P = 30 patients is used to judge the
performance of the selected model, in terms of Test Error
and Standard Error, respectively defined as ‖y − ŷ‖2

2/P and
‖y − ŷ‖2/(P − p), where y is the vector of measured antigen
values and ŷ its estimate according to the computed coeffi-
cients. DIHTA is compared (see Table I) with LS methods
and iterative hard thresholding algorithm (IHTA, [16]), while
DISTA (Table II) is set against LS, iterative soft thresholding
algorithm (ISTA, [17]), ADMM and DSM. As explained in
paragraph IV-B1, we implement a version of DSM which is
not stopped [29] and with constant stepsize r [45], in order to
perform a fair comparison with DISTA. However, such DSM
is not proved to converge and actually numerical experiments
show it oscillates after some time. We then choose a value
of r sufficiently small to avoid oscillations in the considered
time range.

Notice that LS does not seek a sparse solution, but is
considered as well as optimal method when it is not necessary
to identify only the most significant coefficients. From the
presented results, we can infer that sparsification leads to
a smaller error and that our distributed methods achieve
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TABLE I

PROSTATE CANCER DATASET: ESTIMATED COEFFICIENTS

AND ERRORS FOR �0-ESTIMATION

TABLE II

PROSTATE CANCER DATASET: ESTIMATED COEFFICIENTS AND ERRORS FOR �1-ESTIMATION

Fig. 1. Prostate cancer dataset: evolution of the mean-squared error from
the �1-estimator as a function of the iterations.

performance analogous to that of centralized procedures, not
only when q is very small and then expected to approximate
the �0/�1 estimators as proved in Theorem 1. In particular, we
notice that better results are obtained by the hard thresholding
procedures.

Let us also analyze the speed of convergence. In Figure 1
the mean-squared error from the LASSO solution of ADMM,
ISTA, and DISTA are depicted as a function of the iterations.

Fig. 2. Prostate cancer dataset: evolution of the mean-squared error from
the �0-estimator as a function of the iterations.

The decreasing curves confirm that all local estimates of
DISTA approach the LASSO coefficients and converge to them
when q → 0 as stated in Theorem 1. This figure confirms
that DISTA is a faster alternative to DSM, whose speed of
convergence is shown to be slow [18].

In Figure 2, the evolution of the mean-squared error
from the �0-estimator of DIHTA is depicted along time.
As expected, increasing q we speed of the convergence,
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Fig. 3. Prostate cancer dataset: evolution of the coefficients estimated by
DISTA with q = 0.5. The black circles are the LASSO coefficients.

Fig. 4. Prostate cancer dataset: evolution of the coefficients estimated by
DISTA with q = 0.1. The black circles are the LASSO coefficients.

and by a suitable choice of the parameters the final accuracy
is comparable to that of IHTA for any choice of q . We finally
remark that DIHTA turns out to be faster than DISTA, and
as already noticed, the Test and Standard Errors are smaller.
In this setting, we can then conclude than DIHTA works better
than DISTA, at the price of a more sophisticated parameters’
calibration. Finally, Figures 3 and 4 illustrate the evolution of
the coefficients estimated by each laboratory in the network
with q = 1/2 and q = 1/10, respectively, and τ = 10−3.
It should be noted that the local estimates approach common
values which are equal to LASSO coefficients (see black
circles) and that disagreement is reduced when q is sufficiently
small, as stated in Theorem 1. In other terms, at the end of
the experiment, each laboratory will get approximately the
same coefficients. The more consensus is needed, the more
q has to be kept small, which may affects the convergence
time. A suitable tradeoff may then be found according to the
experiment requirements.

B. Sparse Signal Recovery

Let us consider a network of interconnected sensors mod-
eled as a graph G = (V, E). Each sensor acquires a sparse
signal, represented in vector form as x̃ . The sampling is

performed at a rate below the Nyquist rate, using random linear
projections as suggested by the compressed sensing theory [6].
One can represent the measurements yv ∈ R

m (with m � n) as

yv = Av x̃ + ξv .

Under certain conditions [39], it is possible to recover
x̃ by solving (2) or (3) with AT = (AT

1 , . . . , AT
|V |) and

yT = (yT
1 , . . . , yT

|V |); further details about the properties
of (y, A) can be found in [6]. For purpose of illustration,
the signal to be recovered is generated choosing k nonzero
components uniformly at random among the n = 150 elements
and drawing the amplitude of each nonzero component from a
Gaussian distribution N(0, 1). The sensing matrices (Av )v∈V
are sampled from the Gaussian ensemble with m rows,
n columns, zero mean and variance 1

m . This is known to be
a suitable choice from compressed sensing theory [6].

We now conduct a series of experiments for different archi-
tectures and for a variety of total number of measurements.
Here, we are interested in the performance of the algorithms
as a function of the number of data to store in the memory,
which we try to minimize, and of the size of the graph.
As already said, the available memory of wireless sensors
is often very limited, typically few kB. We then recover the
original signal employing DIHTA and DISTA. For each n,
we vary the number of measurements m per node and the
number of nodes in the network. For each (n, m, |V|) 3-tuple,
we repeat the following procedures 50 times.

The measurements are then taken according to the model
in (4). We use the so-called Metropolis random walk
construction for P (see [49]) which amounts to the following:
if i �= j ,

Pij =
{

0 if (i, j) �∈ E
(max{deg(i), deg( j)})−1 if (i, j) ∈ E

where deg(i) denotes the degree (the number of neighbors) of
unit i in the graph G.

In particular, we consider the following topologies:
1) Complete graph: Pij = 1

|V | for every i, j = 1, . . . , |V|.
2) Ring graph: |V| sensors are disposed on a circle, and

each node communicates with its first neighbor on
each side (left and right). The corresponding circulant
symmetric matrix P is given by Pij = 1

3 for every
i = 2, . . . , |V| − 1 and j ∈ {i − 1, i, i + 1}; P11 =
P12 = P1|V | = 1

3 ; P|V |1 = P|V ||V |−1 = P|V ||V | = 1
3 ;

Pij = 0 elsewhere.
3) Random geometric graph: sensors are assumed to be

deployed uniformly at random in a square [0, 1]×[0, 1],
and communication is allowed between sensors with
distance below a certain radius (here we fix the
radius to 0.75).

We show different numerical experiments to illustrate DI-
HTA and DISTA performance. For both, we define a success
the case when there is a time t such that

∑

v∈V
‖x̃ − xv (t)‖2

2

/

(n|V|) < 10−4

where x̃ is the original signal to be recovered and xv (t) is the
estimate at time t given by our algorithms.
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Fig. 5. DIHTA performance (noise-free case, n = 150, k ∈ {5, 10, 15}):
phase transition points in the (m,V) plane. For the couples (m,V) above the
curves, the probability of success overcomes 1

2 .

1) DIHTA Performance: In the first experiment, we evaluate
the performance of DIHTA in a noise-free setting, in terms of
probability of success as a function of the number of sensors
and of the measurements. We assess the probability of success
by counting the number of successful events over 200 different
runs. We consider ring and random geometric (radius 0.75)
topologies; the used parameters are α ≈ 0.005 and τ ≈ 1/|V|.

In Figure 5 we depict in the (m, |V|) plane the phase
transition points for the probability of success, that is, the
combination of m and |V| for which the probability of suc-
cess overcomes 1

2 . The results are obtained over 100 runs.
The signals to be reconstructed have sparsity degree
k ∈ {5, 10, 15}; their supports are generated uniformly at ran-
dom. Observing Figure 5, we evince that the phase transitions
occur at m|V| ≈ 80, 110, 140 on average for k = 5, 10, 15,
respectively. No significant difference is visible for ring and
random geometric graphs: the topology does not dramatically
affect the probability of success. In particular, we remark that
using a non regular graph as the random geometric we always
get convergence (which is not guaranteed by the theoretical
analysis in Section V-B). We finally observe that for a fixed
sparsity degree the total number m|V| of data required is
approximately constant, and can be achieved equivalently by
few sensors that train many data, or by many sensors that train
few data. In other terms, the algorithm scales nicely to very
large networks without suffering a performance loss.

The good scaling properties are further appreciable
in Figure 6, where the probability of success is depicted as a
function of the sparsity degree k (in the interval from 2 to 30).
We consider different network sizes |V| and keep constant the
total number of measurements m|V| = 120. In Figure 6 we
can see that a larger number of sensors does not affect the
probability of success, that is, a larger decentralization is not a
drawback. Similar results are obtained with different, even non
regular, topologies (specifically, ring and random geometric
with radius 0.75).

In conclusion, our experiments suggest that decentralization
is not a drawback for the performance of the iterative hard
thresholding, if the reconstruction is performed with DIHTA.

Fig. 6. DIHTA performance (noise-free case, n = 150, m|V | = 120):
probability of success in function of the sparsity degree k.

Fig. 7. DISTA performance (noise-free case, n = 150, k = 15): probability
of success over a complete graph.

2) DISTA Performance: In the compressed sensing setting,
we now present the performance of DISTA, which behaves
significantly better than DIHTA in terms of estimation accu-
racy. We show experiments in the noise-free and noisy cases,
and we compare DISTA with DSM and consensus ADMM.

We first consider a noise-free scenario, and we illustrate
the probability of success as a function of the number of
measurements over complete, ring, and random geometric
(radius 0.75) topologies (respectively, Figures 7, 8, and 9).
The color of the cell in the figures reflects the empirical
success rate: white denotes perfect reconstruction in all
the experiments, while black represents no success occur-
rence. It should be noted that the number of total measure-
ments m|V| which are sufficient for successful estimation is
constant: the red curve collects the points (m, |V|) such that
m|V| = 70, which turns out to be a sufficient value to obtain
good estimation (probability greater then 0.95). We observe
that the performance of DISTA is not strongly affected by
the graph topology. One could expect worse results with less
connected graphs, since low connectivity may cause prob-
lems of scarce communication and slowness. However, our
results show that only a slight degradation affects DISTA over
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Fig. 8. DISTA performance (noise-free case, n = 150, k = 15): probability
of success over a ring graph.

Fig. 9. DISTA performance (noise-free case, n = 150, k = 15): probability
of success over a random geometric graph (radius 0.75).

Fig. 10. Noise-free case: DISTA vs ADMM vs DSM, complete graph,
n = 150, k = 15.

the ring, while the behavior is very similar for the complete
and random geometric graph. This also highlights that no loss
occurs due to non-regularity of the graph.

In Figure 10 the probability of success of DISTA, ADMM,
and DSM are compared as a function of the number of

Fig. 11. Noise case: DISTA vs ADMM vs DSM, complete graph, n = 150,
k = 15, |V | = 10.

measurements per node. The curves are depicted for different
numbers of sensors.

Finally, let us consider the noisy case. In Figure 11, the
mean-squared error

MSE =
∑

v∈V ‖x̃ − x	
v‖2

2

n|V| ,

averaged over 50 runs is plotted as a function of the signal-
to-noise ratio

SNR = E
[∑

v∈V ‖yv‖2
2

]

E
[∑

v∈V ‖ξv‖2
2

] .

The number of sensors is |V| = 10. The graph shows that
DISTA performs better then DSM, even at larger compression
level: taking m = 8 is sufficient for DISTA to obtain a MSE
lower than that obtained by DSM with m = 12 measurements.
Notice that this is the best performance that can be obtained
by DSM in this setting, that is, even without compression we
do not see any improvement. On the other hand, DISTA with
m = 12 is worse than ADMM with same m or with m = 8, but
it is better than ADMM with m = 6 for sufficiently large SNR.
In conclusion, DISTA can achieve the optimal performance of
ADMM at the price of a smaller compression level, which is
not achievable by DSM.

VII. CONCLUDING REMARKS

In this paper, we presented distributed algorithms for
�0/�1-regularized linear inverse problems in multi-agent
systems with limited communication capability. In this class
of algorithms, each agent maintains an approximation of
the model parameters. These estimates are communicated
to the neighbors synchronously over a fixed connectivity
structure. Each agent updates its own current estimate based
on local information and its training data using an iterative
thresholding method. This algorithm has low complexity and
memory requirements, making it suitable for low-energy sce-
narios such as wireless sensor networks. Numerical results
show that the proposed algorithm outperforms existing dis-
tributed schemes in terms of memory and complexity, and is
almost as good as the ADMM method, but has much lower
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memory requirements, making it more suitable for the target
application. The main theoretical contribution includes the
proof of convergence of the algorithm to a local minimum
of the distributed regularized LS estimator.

The algorithms we considered assume that nodes can
send and process signals synchronously. This is a restrictive
assumption in many applications. The development of
randomized algorithms for sparse approximations is the
focus of our current work. Because of the randomization and
the non-linearity of the updates, the proof will necessitate
different lines of analysis.

APPENDIX

A. Proof of Lemma 1

We provide the proof of statements 1) and 2) in Lemma 1
for DIHTA (p = 0). The validity of the statements can be
verified for DISTA (p = 1) with similar arguments.

1) Let U = (u1, . . . , u|V |) be a minimizer of FS
0 (·, C, B)

for fixed C, B ∈ R
n×|V |, that is

uv = ηα

[

(1 − q)cv + q(bv + τ AT
v (yv − Avbv ))

]

.

For any H = (h1, . . . , h|V |) ∈ R
n×|V |,

FS
0 (U + H, C, B) − FS

0 (U, C, B)

= 1

τ
‖H‖2

F +
∑

v∈V

[

2α

τ
‖uv + hv‖0 − 2α

τ
‖uv‖0

+ 2〈hv , q AT
v (Avbv − yv ) − 1 − q

τ
cv

+ 1

τ
uv − q

τ
bv〉
]

. (23)

Now, let I1,v = supp(uv ) and I0,v = {1, . . . , n} \ I1,v . Then,

FS
0 (U + H, C, B) − FS

0 (U, C, B)

= 1

τ
‖H‖2

F +
∑

v∈V

∑

j∈I0,v

2α

τ
|h jv |0

+
∑

v∈V

∑

j∈I1,v

2α

τ

(

|u jv + h jv |0 − |u jv |0
)

+
∑

v∈V

⎧

⎨

⎩

∑

j∈I0,v

2h jv

(

q AT
v (Avbv − yv )− 1 − q

τ
cv − q

τ
bv

)

j

+
∑

j∈I1,v

2h jv

(

q AT
v (Avbv −yv )− 1 − q

τ
cv + 1

τ
uv − q

τ
bv

)

j

⎫

⎬

⎭

Since uv = η0,α

[

(1 − q)cv + q
(

bv + τ AT
v (yv − Avbv )

)]

, if
u jv = 0, then

∣

∣

∣

∣

∣

(

q AT
v (Avbv − yv ) − 1 − q

τ
cv − q

τ
bv

)

j

∣

∣

∣

∣

∣

≤
√

2α

τ
.

Thus,
∑

j∈I0,v

2h jv

(

q AT
v (Avbv − yv ) − 1 − q

τ
cv − q

τ
bv

)

j
+ 2α

τ

∣

∣h jv
∣

∣

0

≥
∑

j∈I0,v

−2

√
2α

τ
|h jv | + 2α

τ

∣

∣h jv
∣

∣

0 ≥ 0

whenever |h jv | ≤
√

2α
2 . Otherwise, if u jv �= 0,

u jv =
(

(1 − q)cv + q
(

bv + τ AT
v (yv − Avbv )

))

j
,

hence

2h jv

(

q AT
v (Avbv − yv ) − 1 − q

τ
cv + 1

τ
uv − q

τ
bv

)

j

+ 2α

τ

∣

∣u jv + h jv
∣

∣

0 − 2α

τ

∣

∣u jv
∣

∣

0

= 2α

τ

∣

∣u jv + h jv
∣

∣

0 − 2α

τ

∣

∣u jv
∣

∣

0 = 0

whenever |h jv | < |u jv |. In conclusion, for any v ∈ V , the
sums over I0,v and I1,v are both non negative. Therefore,

FS
0 (U + H, C, B) ≥ FS

0 (U, C, B) + 1

τ
‖H‖2

F . (24)

Let us now consider a fixed point U 	 of �, that is,

u	
v = ηα

[

(1 − q)u	
v + q

(

u	
v + AT

v (yv − Avu	
v )
)]

,

where u	
v = [U 	(PT)2]v . We know that U 	 is a minimizer

of FS
0 (·, U 	, U 	) and by (24)

FS
0 (U 	 + H, U 	, U 	)

≥ FS
0 (U 	, U 	, U 	) + 1

τ
‖H‖2

F

= F(U 	) + 1

τ
‖H‖2

F . (25)

2) Let U 	 ∈ Fix(�) and hv = 1
d

∑

w∈Nv
hw.

FS
0 (U 	 + H, U 	, U 	) − FS

0 (U 	 + H, U 	 + H , U 	 + H )

=
∑

v∈V

⎡

⎣

1 − q

dτ

∑

w∈Nv

∥

∥u	
v + hv − u	

w

∥

∥

2
2 + q

τ
‖hv‖2

2

− q ‖Avhv‖2
2− 1 − q

dτ

∑

w∈Nv

∥

∥u	
v + hv − u	

w − hw

∥

∥

2
2

⎤

⎦

=
∑

v∈V

⎡

⎣2
1 − q

dτ

∑

w∈Nv

〈hw, u	
v + hv − u	

w〉

− 1 − q

dτ

∑

w∈Nv

∥

∥hw

∥

∥

2
2 + q

τ
‖hv‖2

2 − q ‖Avhv‖2
2

⎤

⎦

≤ 1 − q

dτ

∑

v∈V

∑

w∈Nv

[

− ∥∥hw

∥

∥

2
2 + 2〈hw, u	

v + hv − u	
w〉
]

+ q

τ

∑

v∈V
‖hv‖2

2 . (26)

Now, notice that, being the graph regular
∑

v∈V

∑

w∈Nv

〈hw, u	
v − u	

w〉

=
∑

v∈V

∑

w∈Nv

〈hw, u	
v〉 −

∑

v∈V

∑

w∈Nv

〈hw, u	
w〉

=
∑

v∈V
〈hv ,

∑

w∈Nv

u	
w〉 −

∑

v∈V

∑

w∈Nv

〈hw, u	
w〉

=
∑

v∈V
〈hv ,

∑

w∈Nv

u	
w〉 − d

∑

v∈V
〈hv , u	

v 〉 = 0. (27)
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Hence by the last expression of (26) we have:

FS
0 (U 	 + H, U 	, U 	) − FS

0 (U 	 + H, U 	 + H , U 	 + H )

×
∑

v∈V

⎡

⎣

1 − q

dτ

∑

w∈Nv

(

− ∥∥hw

∥

∥

2
2 + 2〈hw, hv 〉

)

+ q

τ
‖hv‖2

2

⎤

⎦
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⎡
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2
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+ q
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2

⎤
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⎡
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1 − q

dτ

∑
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(
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2
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)

+ q

τ
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2

⎤
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≤ 1

τ

∑

v∈V
‖hv‖2

2 = 1

τ
‖H‖2

F

which concludes the proof. �
B Proof of Lemma 4

F(U 	 + H ) − F(U 	)

=
∑

v∈V

[

2α

τ

∥

∥u	
v + hv

∥

∥

0 − 2α

τ

∥

∥u	
v

∥

∥

0

+ q
∥

∥Av (u
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∥

∥

2
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∥

∥Avu	
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∥

∥

2
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∥

2
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=
∑
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[

2α

τ

∥

∥u	
v + hv

∥

∥
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τ

∥
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v

∥

∥
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∥

2
2

+ 2
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dτ

∑
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]

.

From (27),
∑

v∈V
∑

w∈Nv
〈hw, u	

v − u	
w〉 = 0. Hence,

F(U 	 + H ) − F(U 	)

=
∑

v∈V

[

2α

τ

∥

∥u	
v + hv

∥

∥

0− 2α

τ

∥

∥u	
v

∥

∥

0 + q ‖Avhv‖2
2

+ 1−q
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+ 2〈hv , q AT
v (Avu	

v − yv )〉
]

. (29)

Recalling that U 	 is also a fixed point for � and considering
the sets I1,v = supp(u	

v ) and I0,v = {1, . . . , n}\ I1,v we obtain:

F(U 	 + H ) − F(U 	)

=
∑

v∈V

⎧

⎨

⎩

q ‖Avhv‖2
2 + 1 − q
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v
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∣

∣
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τ

∣

∣u jv
∣

∣

0
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(

1 − q

τ
(u	

v − u	
v ) + q AT

v (Avu	
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)

j
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(30)

≥
∑
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⎧

⎨

⎩

q ‖Avhv‖2
2 + 1 − q

dτ

∑

w∈Nv

∥

∥hv − hw

∥

∥

2
2

+
∑

j∈I0,v

[

2α

τ

∣

∣h jv
∣

∣

0 − 2|h jv |
√

2α

τ

]

+
∑

j∈I1,v

[

2α

τ

∣

∣u jv + h jv
∣

∣

0 − 2α

τ

∣
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∣

∣

0
]

⎫

⎬

⎭

.

If each |h jv | ≤ min j∈I1,v

{√
2α
2 , |u jv |

}

F(U 	 + H ) − F(U 	)

≥
∑

v∈V

⎡

⎣q ‖Avhv‖2
2 + 1 − q

dτ

∑

w∈Nv

∥

∥hv − hw

∥

∥

2
2

⎤

⎦.

Since AT A = ∑

v∈V AT
v Av is positive definite then

∑

v∈V
[

q ‖Avhv‖2
2 + 1−q

dτ

∑

w∈Nv

∥

∥hv − hw

∥

∥

2
2

]

= 0 if and

only if H = 0. In fact, we should otherwise have
hv = h for each v ∈ V in order to obtain
∑

v∈V
[

1−q
dτ

∑

w∈Nv

∥

∥hv − hw

∥

∥

2
2

]

= 0, but
∑

v∈V ‖Avh‖2
2 =0

has only the zero solution. We conclude that if H is
sufficiently small then F(U 	 + H ) − F(U 	) > 0. �
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