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Quaternion Reproducing Kernel Hilbert Spaces:
Existence and Uniqueness Conditions
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Abstract— The existence and uniqueness conditions of quater-
nion reproducing kernel Hilbert spaces (QRKHS) are established
in order to provide a mathematical foundation for the develop-
ment of quaternion-valued kernel learning algorithms. This is
achieved through a rigorous account of left quaternion Hilbert
spaces, which makes it possible to generalise standard RKHS
to quaternion RKHS. Quaternion versions of the Riesz repre-
sentation and Moore–Aronszajn theorems are next introduced,
thus underpinning kernel estimation algorithms operating on
quaternion-valued feature spaces. The difference between the
proposed quaternion kernel concept and the existing real and
vector approaches is also established in terms of both theoretical
advantages and computational complexity. The enhanced estima-
tion ability of the so-introduced quaternion-valued kernels over
their real- and vector-valued counterparts is validated through
kernel ridge regression applications. Simulations on real world
3D inertial body sensor data and nonlinear channel equalisation
using novel quaternion cubic and Gaussian kernels support the
approach.

Index Terms— Quaternion RKHS, support vector regression,
quaternion kernel ridge regression, high-dimensional kernels,
vector kernels, multikernel.

I. INTRODUCTION

S INCE their introduction in the early 1980s [1],
support vector machines (SVM) have become a de facto

standard for classification and regression with application in
areas including semantic analysis [2], gene selection [3], and
financial prediction [4]. An extension of the original SVM
algorithm to nonlinear classification [5] employs the so-called
kernel trick [6], which enables operation in higher dimensional
spaces through the evaluation of a kernel function. The kernel
trick has also made it possible to efficiently implement support
vector regression (SVR) algorithms [7], whereby the output of
a system is modelled as an inner product between a nonlinear
transformation of the input and an optimal (fixed) weighting
structure, in the so-called feature space [8], [9].

The theoretical justification for the use of the kernel trick
is the reproducing property of the feature space. This is
guaranteed by the Riesz representation theorem [10, Th. 6.2.4],
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which replaces the inner product of feature samples with ker-
nel evaluations. Moreover, the Moore-Aronszajn theorem [11]
ensures the existence and uniqueness of RKHS for posi-
tive definite (real or complex) kernels, thus replacing the
cumbersome design of feature maps by a simple choice of
kernels and combination parameters (weights). Dictated by
the cost function, this class of algorithms includes kernel ridge
regression (KRR) [12], kernel least mean square (KLMS) [13],
kernel affine projection algorithm (KAPA) [14] and kernel
recursive least squares (KRLS) [15].

Opportunities provided by the existing complex-valued
RKHS framework [11] are manifold, however, for practical
reasons related to the ease of tuning and the associated
physical meaning, only real-valued Gaussian and polynomial
kernels are typically considered. Kernel algorithms operating
in complex-valued feature spaces are mostly of a complex
kernel least mean square type [16]–[18]. Furthermore, higher-
dimensional extensions of RKHS (in real vector-valued feature
spaces [19], [20]) have also been developed and form the basis
for both the multikernel least squares and multikernel least
mean square [21], [22].

Recent developments in sensor technology have enabled
routine recordings of 3D and 4D data (inertial body sensors,
3D wind modelling), this has been followed by the advances
in linear estimation in the quaternion domain [23]–[28]. These
have highlighted the usefulness of quaternion-valued algo-
rithms to represent quadrivariate data. Quaternions [29] have
already shown advantages over real-valued vectors within sig-
nal processing, computer graphics, and robotics communities,
owing to their enhanced modelling of rotation, orientation,
and cross-information between multichannel data. In addition,
differential operators that enable gradient-based optimisation
in the quaternion ring H have just been developed based on
the HR calculus [30]. However, quaternion kernel estimation is
still an emerging field [31], [32] and its development requires
rigorous existence and uniqueness conditions for quaternion
reproducing kernel Hilbert spaces, as these are pre-requisites
to provide a theoretical basis for kernel algorithms operating
in quaternion-valued feature spaces.

The aim of this work is to introduce the background theory
and provide a proof-of-concept for quaternion-valued kernel
estimation by establishing: (i) the existence and uniqueness
properties of reproducing kernel Hilbert spaces of quaternion-
valued functions, (ii) the notion of positive definiteness and
reproducing property of quaternion RKHS, and (iii) the the-
oretical and practical differences between real, vector and
quaternion RKHS. To this end, we first revisit the quaternion
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ring and quaternion left Hilbert spaces in order to define the
quaternion RKHS (QRKHS). Quaternion versions of the Riesz
representation [10] and Moore-Aronszajn [11] theorems are
next presented (and compared to their real-valued counter-
parts) to introduce a unique relationship between QRKHSs and
positive definite kernels. This equips us with a theoretical basis
for quaternion kernel estimation, whereby the feature space has
a corresponding quaternion-valued reproducing kernel.

We also show that the so-introduced QRKHS serves as a
feature space of kernel regression algorithms within the kernel
ridge regression setting. Applications in 3D body sensor track-
ing and nonlinear channel equalisation support the approach.

II. QUATERNION VECTOR SPACES

A. The Quaternion Division Ring

The quaternion set H is a four-dimensional vector space
over the real field R spanned by the linearly independent
basis {1, i, j, k} [29]. Accordingly, any element q ∈ H can
be written as a linear combination q = a1 + bi + cj + dk,
where a, b, c, d ∈ R.

The sum and the scalar multiplication are defined in an
element-wise fashion as in R

4, that is⎛
⎜⎜⎝

a1
b1
c1
d1

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

a2
b2
c2
d2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a1 + a2
b1 + b2
c1 + c2
d1 + d2

⎞
⎟⎟⎠

α(a, b, c, d) = (αa, αb, αc, αd), α ∈ R (1)

where the notation (a, b, c, d) = (a, b, c, d)T = a1 + bi +
cj + dk ∈ H is used for convenience of presentation.

Remark 1: The pair (H,+) is an Abelian group [10], for
which the addition operation is defined in (1) and the additive
identity is 0 = (0, 0, 0, 0) ∈ H.

The quaternion multiplication (or Hamilton product) is a
bilinear mapping H × H → H, (p, q) �→ pq , defined by

pq =

⎛
⎜⎜⎝

a1
b1
c1
d1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a2
b2
c2
d2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a1a2 − b1b2 − c1c2 − d1d2
a1b2 + b1a2 + c1d2 − d1c2
a1c2 − b1d2 + c1a2 + d1b2
a1d2 + b1c2 − c1b2 + d1a2

⎞
⎟⎟⎠. (2)

Remark 2: The quaternion product defined in (2) distributes
over the sum, i.e. ∀p, q, r ∈ H

p(q + r) = pq + pr

(p + q)r = pr + qr.

It is also possible to express the quaternion multiplication
using the basis expansion representation, that is, (a11 +
b1i + c1 j + d1k)(a21 + b2i + c2 j + d2k), and applying the
multiplication rule

i2 = j2 = k2 = i jk = −1.

Note that the basis element 1 = (1, 0, 0, 0) ∈ H is the
multiplicative identity, meaning that q1 = 1q = q,∀q ∈ H,
and is therefore omitted in the basis representation, q = a +
bi + cj + dk. We refer to the factor of (1, 0, 0, 0) as real part
of q , denoted by �{q} = a, and to the remaining factors as
the imaginary part of q , denoted by �{q} = (0, b, c, d).

For any given element q ∈ H, q �= 0, its multiplicative
inverse q−1 ∈ H \ {0} is given by

q−1 = q∗

‖q‖2 ,

where q∗ = (a,−b,−c,−d) denotes the conjugate of q ,
and ‖q‖ = √

q∗q = √
qq∗ = √

a2 + b2 + c2 + d2 denotes
the norm in H defined as the Euclidean norm in R

4; as a
consequence, qq−1 = q−1q = 1,∀q �= 0. By using the
conjugate operator, the real and imaginary parts of q ∈ H

can be written respectively as

�{q} = q + q∗

2
, �{q} = q − q∗

2
.

Remark 3: The pair (H, ·) equipped with the identity ele-
ment is a monoid under multiplication, while the inclusion of
the multiplicative inverse makes (H\{0}, ·) a group [33], [34].

Remark 4: Since (H,+) is an Abelian group (Remark 1),
(H, ·) is a group (Remark 3), and the quaternion product
distributes over the sum (Remark 2), the triplet (H,+, ·) is
a non-commutative division ring [34].

Despite the lack of commutativity in H, its division ring
properties establish the basis for the design of estimation
algorithms. Furthermore, H is one of the four normed division
algebras over the real field, the other three being the real
field R, the complex field C, and the non-associative unitary
octonion ring O (see the Frobenius theorem [35]).

B. Quaternion-Valued Hilbert Spaces

To introduce the concept of quaternion Hilbert space, we
first need to define quaternion vector spaces and their algebraic
properties.

Since (H,+, ·) is a division ring and not a field (it lacks the
commutativity property), strictly speaking it is not possible to
construct a general vector space over H; however, we can still
construct a left-module. A module [36], [37] is a generalisation
of vector space which allows for the scalar set to be a ring
(rather than a field). We refer to a left-module H over H

as vector space [10] in which the non-commutative scalar
multiplication H × H → H is defined on the left-hand side
by (q, x) �→ qx.

We next set out to restate the concepts of inner product
and left Hilbert space for quaternions, as these are required to
define quaternion-valued RKHSs.

Definition 1 (Quaternion Left Hilbert Space): A nonempty
set H is called a quaternion left Hilbert space if it is a
quaternion left module (i.e. built over H) and there exists
a quaternion-valued function 〈·, ·〉 : H × H → H with the
following properties:

1) Conjugate symmetry: 〈x, y〉 = 〈y, x〉∗.
2) Linearity: 〈px + qy, z〉 = p 〈x, z〉 + q 〈y, z〉.
3) Conjugate linearity: 〈x, py + qz〉 = 〈x, y〉 p∗+〈x, z〉 q∗.
4) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0.
5) Completeness: If {xn} ⊂ H is a Cauchy sequence, then

x = limn→∞ xn ∈ H.
We refer to the function 〈·, ·〉 as inner product and denote

its induced norm by ‖x‖ = √〈x, x〉.
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Observation 1: The space H
n, with the inner product

〈p, q〉 = pT q∗ is a quaternion left Hilbert space.
Observation 2: The space of quaternion-valued square-

integrable functions L2 = { f : X ∈ H
n → H, s.t .∫

X ‖ f (x)‖2 dx < ∞} with the inner product 〈 f, g〉 =∫
X f (x)g∗(x)dx is a quaternion left Hilbert space.1

Standard properties of real and complex Hilbert spaces such
as the Cauchy-Schwarz inequality and the concept of orthog-
onality also extend to quaternion Hilbert spaces. In particular,
we highlight two properties that will be helpful in the next
section:

• The elements x, y ∈ H are orthogonal, denoted by x ⊥ y,
if and only if 〈x, y〉 = 0.

• Two sets A, B ∈ H are orthogonal if and only if x ⊥ y,
∀x ∈ A, y ∈ B . We denote by A⊥ the set of all elements
that are orthogonal to x ∈ A.

For the properties of complex Hilbert spaces which also apply
to the introduced left quaternion Hilbert space see [10].

III. QUATERNION REPRODUCING KERNEL

HILBERT SPACES

We now introduce quaternion reproducing kernel Hilbert
spaces to provide both theoretical support and physical insight
for the design and implementation of quaternion-valued kernel
estimation algorithms.

Definition 2 (QuaternionReproducingKernelHilbert Space):
Let X be an arbitrary set and H a left quaternion Hilbert
space of functions from X to H. We say that H is a quaternion
reproducing kernel Hilbert space (QRKHS) if the (linear)
evaluation map

Lx : H −→ H (3)

f �−→ f (x)

is bounded ∀x ∈ X.

A. Riesz Representation Theorem

We can now introduce the following theorem in order to
guarantee the existence of a reproducing kernel for any given
QRKHS.

Theorem 1 (Quaternion Riesz Representation Theorem):
For every bounded linear functional L defined over a
quaternion left Hilbert space H, there exists a unique element
g ∈ H such that L( f ) = 〈 f, g〉 ,∀ f ∈ H.

Proof: The proof follows from [10, Th. 6.2.4] and the
properties of the inner product in quaternion left Hilbert spaces
stated in Definition 1.

Denote by A = { f ∈ H : L( f ) = 0} the null space of L.
By continuity2 of L, A is a closed linear subspace of H. If A =
H, then L = 0 and L( f ) = 〈 f, 0〉. If A �= H, then there exists
at least one element g0 ∈ H, such that g0 �= 0 and g0 ∈ A⊥
[10, Corollary 6.2.3]. By definition of g0, L(g0) �= 0, and for

1We considered the quaternion norm ‖q‖ = √
q∗q and the Lebesgue

measure dx in H
n defined in analogy to the Lebesgue measure in R

4n (for
instance for n = 1, dx = dxr dxi dx j dxk ).

2A bounded linear operator between normed spaces is always continuous,
see [10, Th. 4.4.2].

any f ∈ H the element f − L( f )
(
L(g0)

)−1
g0 ∈ A. As a

consequence,
〈
f − L( f )

(
L(g0)

)−1
g0, g0

〉 = 0.

Applying the properties of the inner product space we have

L( f )
(
L(g0)

)−1 〈g0, g0〉 = 〈 f, g0〉 ,
then, replacing 〈g0, g0〉 = ‖g0‖2 and right-multiplying both
sides by L(g0)

‖g0‖2 yields

L( f ) = 〈 f, g0〉 L(g0)

‖g0‖2 . (4)

Now, by denoting g = L∗(g0)g0/ ‖g0‖2 we arrive at the
desired L( f ) = 〈 f, g〉.

To prove uniqueness, assume g1, g2 ∈ H such that L( f ) =
〈 f, g1〉 = 〈 f, g2〉. Therefore, 〈 f, g1 − g2〉 = 0 for all f ∈ H;
in particular, by taking f = g1 − g2 we have ‖g1 − g2‖2 =
0 ⇒ g1 = g2. �

Remark 5: Observe that the right-multiplication by L(g0)

‖g0‖2 ,
which yields Eq. (4), holds the key to differentiate the proof
for Thm. 1 from that of the complex and real cases. Due to the
non-commutative property of the quaternion ring, the element
g = L∗(g0)g0/ ‖g0‖2 is different from ḡ = g0L∗(g0)/ ‖g0‖2,
which is used in the proof for the real/complex cases in
[10, Theorem 6.2.4].

Corollary 1 (Reproducing Property): For any f ∈ H, there
exists a unique element Kx ∈ H such that the evaluation map
Lx = f (x) in (3) can be expressed as Lx = 〈 f, Kx〉.

Proof: As Lx is itself a bounded linear operator, based on
the quaternion Riesz representation theorem there exists an
element g ∈ H such that Lx( f ) = 〈 f, g〉. The element g =
g(x) is unique for a given functional Lx, or equivalently, for
a given x ∈ X . Therefore, we can define Kx � g and write
Lx = 〈 f, Kx〉. �

Since Kx(·) ∈ H, it can be evaluated for any y ∈ X . This
allows us to define

K : X × X −→ H

(x, y) �−→ K (x, y) = Kx(y),

whereby the function K is referred to as the reproducing kernel
of the QRKHS H. Its existence and uniqueness properties are
a direct consequence of the quaternion Riesz representation
theorem (Theorem 1). Similarly to the standard real- and
complex-valued cases, the reproducing property of K can be
expressed as

∀ f ∈ H and x ∈ X, f (x) = 〈 f, Kx〉 .
The following relationships are readily obtained by applying

the reproducing property on the functions Kx = K (x, ·) ∈ H
and Ky = K (y, ·) ∈ H:

• K (x, y) = 〈
Kx, Ky

〉 = 〈
Ky, Kx

〉∗ = K ∗(x, y).
• K (x, x) = 〈Kx, Kx〉 = ‖Kx‖2 ≥ 0.
• Kx = 0 ⇐⇒ f (x) = 〈 f, Kx〉 = 0, ∀ f ∈ H.

We have therefore shown, through the quaternion Riesz
representation theorem, that for an arbitrary QRKHS there
exists a unique reproducing kernel. This makes it possible to
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compute inner products in a quaternion-valued feature space
using the kernel trick.

Observe that although Theorem 1 gives theoretical support
for quaternion kernel estimation, it is far from being useful
in practice on its own, since the design of a QRKHS suited
for a specific task can be rather difficult. To this end, we next
complement the Riesz representation theorem with the Moore-
Aronszajn theorem, in order to show that any quaternion kernel
(within a certain class of kernels) generates a unique QRKHS.

B. Moore-Aronszajn Theorem

In the real-valued case, the existence of a unique QRKHS
generated by a positive definite kernel is ensured via either
(i) the Mercer theorem [38], where the feature Hilbert space
is spanned by the eigenfunctions of the kernel K , or (ii) the
Moore-Aronszajn theorem, in which the feature Hilbert space
is spanned by the functions Kx = K (x, ·).

We now state two equivalent definitions of positive def-
initeness in order to introduce a key result in quaternion
reproducing kernel Hilbert spaces: the quaternion Moore-
Aronszajn theorem.

Definition 3 (Positive Definiteness - Integral Form): A
Hermitian kernel K (x, y) = K ∗(y, x) is positive definite on
the set X iff for any integrable function θ : X → H, θ �= 0,
it obeys ∫

X

∫
X
θ∗(x)K (x, y)θ(y)dxdy > 0.

Definition 4 (Positive Definiteness - Matrix Form): A Her-
mitian kernel K (x, y) = K ∗(y, x) is positive definite on the
set X iff the kernel matrix Ki j = K (xi , x j ) is positive definite
for any choice of the set Sx = {x1, . . . , xm} ⊂ X, m ∈ N.

Theorem 2 (Quaternion Moore-Aronszajn Theorem): For
any positive definite quaternion-valued kernel K defined over
a set X, there exists a unique (up to an isomorphism) left
quaternion Hilbert space of functions H for which K is a
reproducing kernel.

Proof: The proof first generalises the idea behind the real-
valued Moore-Aronszajn theorem [11], to show that the span
of Kx is a QRKHS, and then presents the uniqueness proof.
(i) The span of Kx is a QRKHS. Define the set

H0 =
{

f ∈ F : f =
n∑

i=0

αi K (xi , ·), xi ∈ X, αi ∈ H, n ∈ N

}

and the inner product between f = ∑n
i=0 αi K (xi , ·) and g =∑m

i=0 βi K (yi , ·) as

〈 f, g〉 =
n∑

i=1

m∑
j=1

αi K (xi , y j )β
∗
j . (5)

Note that the inner product 〈·, ·〉 satisfies the properties in
Definition 1 and the set H0 is a left inner product space. Its
closure, denoted by H = H0, equips H0 with the limits of
all its Cauchy sequences { fn} ⊂ H0. As the elements added
to form the closure are also bounded (Cauchy sequences are
convergent), the elements of H can be written in the form
f = ∑∞

i=0 αi K (xi , ·).

Observe that the evaluation functional (3) over the
so-defined set H is bounded. Indeed, using the Cauchy-
Schwartz inequality and the quaternion Riesz theorem
(Thm. 1) we have

| f (x)|H = | 〈 f, Kx〉 |H ≤ ‖ f ‖H ‖Kx‖H
= ‖ f ‖H

√
K (x, x) < ∞.

(ii) Uniqueness. Consider two spaces H and G for which K
is a reproducing kernel, and recall that the equation

〈
Kx, Ky

〉
H = K (x, y) = 〈

Kx, Ky
〉
G

holds over the span of {Kx, x ∈ X}. As the closure of the span
is unique and the inner product is linear, we have H = G.

We have therefore shown that given an arbitrary positive
definite quaternion kernel K , there is a (unique) complete
quaternion inner product space (i.e. a left Hilbert space), for
which the evaluation functional is bounded, conditions for a
QRKHS. �

Remark 6: Due to the non-commutativity of H, the inner
product constructed in the proof of Thm. 2, Eq. (5), differs
from the real/complex case in that it requires a particular
form in order to fulfil the requirements of Definition 1.

The so-constructed inner product supports the reproducing
property of the QRKHS, that is,

f (x) =
∞∑

i=0

αi K (xi , x)
(a)=
〈 ∞∑

i=0

αi Kxi , Kx

〉
= 〈 f (·), Kx〉 ,

where the symbol
(a)= refers to the definition of the inner

product in (5).
Theorems 1 and 2 provide the existence and uniqueness

conditions underpinning quaternion-valued kernel algorithms:
the Riesz representation theorem allows us to simplify fea-
ture space operations into kernel evaluations and the Moore-
Aronzsajn theorem ensures that for any (positive definite)
kernel there is a unique QRKHS.

Remark 7: Since the QRKHS is built upon a left-module,
and not a field as the standard RKHS, the derivation of
Theorems 1 and 2 confirms that commutativity is not a
requirement for constructing feature spaces over division rings
and also paves the way for the study of relationships between
QRKHS built over left- and right-modules. We would also like
to emphasise that the aim of the proofs provided is not claim
a radical difference between Theorems 1 and 2, and their real
versions, but to show that although the corresponding proofs
follow the same criteria, the quaternion case requires more
attention due to the lack of commutativity.

IV. COMPARISON TO OTHER

HIGH-DIMENSIONAL KERNELS

We shall now revisit existing approaches to high-
dimensional kernels in order to highlight the differences
between our proposed quaternion kernel framework and those
based upon existing high-dimensional kernels. We address
these differences in both theoretical and computational-
complexity terms.
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A. Vector-Valued RKHS (Matrix-Valued Kernels)

Unlike the original RKHS theory, where the elements
of the feature space are (scalar) real-valued functions,
the feature space can be constructed using the basis
{�(x) : X −→ R

n, x ∈ X}, therefore yielding a vector-valued
RKHS (VRKHS) with matrix-valued reproducing kernels
K (x, y) = �H (x)�(y) ∈ R

n×n . The VRKHS theory was
introduced in [39] and [40], and recent results exploiting this
concept includes multi-category classification and multivariate
regression [19], [20].

The matrix-valued kernel concept is particularly useful in
multivariate regression, whereby the desired output is vector-
valued. For illustration, consider the problem of learning the
mapping y = f (x) ∈ R

n , using3 ŷ = �H (x)M where �(·)
forms the basis of the VRKHS HV . Following the classic
kernel regression paradigm, M can be approximated accord-
ing to the signal subspace principle [41], and the available
measurements {(xi , yi )}i=1:N , by M̂ = ∑N

i=1 �(xi )Ai , where
the (vector) weights {Ai }i=1:N ⊂ R

n are set according to the
chosen optimisation criteria. Consequently, the estimate can
be expressed as

ŷ =
N∑

i=1

�H (x)�(xi)Ai =
N∑

i=1

K (x, xi)Ai

where (·)H denotes the conjugate transpose (Hermitian) oper-
ator and K (x, xi ) ∈ R

n×n and Ai ∈ R
n×1.

The vector-valued RKHS is physically meaningful in that it
assumes that the dimensionality of the feature space is given
by the dimensionality of the output of the regression problem.
However, the matrix-valued nature of the resulting kernels hin-
ders the implementation of multichannel regression, because
both the number of kernel evaluations and multiplications grow
quadratically with the size of the output vector. Indeed, as
the kernel K (xi , x) is symmetric, it contains (n2+n)

2 different
entries and the product K (xi , x)Ai involves n2 multiplications.
The fact that, within matrix-valued kernel regression, the
dimension of the feature space is dictated by the dimension of
the output contradicts the fundamental concept of using feature
spaces (of a different dimension) to explain the observed
relationship in the data. See Table I for the computational
complexity of other higher-dimensional kernel algorithms.

We next review another real-valued higher dimensional
approach for kernel regression, referred to as multikernel or
vector kernel, which allows for the use of multiple kernels.
As desired, the dimensionality of the vector kernel is set as a
design parameter, and does not depend on the the number of
channels of the input/output data.

B. Multikernel Learning

The multikernel concept also uses a VRKHS as feature
space and redefines the inner product [21] so as to only

3For x ∈ X , �(x) ∈ R
|X |×n , and the coefficient M ∈ R

|X |×1, where |X | is
the (possibly infinite) cardinality of X . Observe that R

|X |×1 is the space of lin-
ear mappings between the empirical feature space

{
�(x) ∈ R

|X |×n , x ∈ X
}

and R
n .

preserve the diagonal elements of the matrix-valued prod-
uct �H� . This yields a vector-valued kernel

−→
K (x, y) =

diag
(
�H (x)�(y)

) ∈ R
L , where L is the number of sub-

kernels. The regression estimate corresponding to this vector-
valued kernel can be expressed by

ŷ =
N∑

i=1

AT
i
−→
K (x, xi ),

where Ai ∈ R
L×n , ŷ ∈ R

n . Additionally, by denot-
ing the entries of the vector-valued kernel (subkernels)
as

−→
K = [K1, K2, . . . , KL ]T , and the coefficients Ai =

[ai,1, ai,2, . . . , ai,L ]T , it is possible to express the vector
product as a summation, giving the estimate in the explicit
multiple-kernel (multikernel) format

ŷ =
L∑

j=1

N∑
i=1

ai j K j (x, xi ),

where ai j ∈ R
n and K j (x, xi) ∈ R.

The structure of the multikernel concept is intuitive
and its ability to capture different types of nonlinear
behaviour from the input data has been documented
in [21], [22], [42], and [43]. Furthermore, the approach is
flexible, since the number of subkernels does not depend on
the dimension of the input or output data (L is not necessarily
equal to n), but is only set as a design parameter based on
the observed nonlinear features of the data and the available
computational power.

The following lemma gives a sufficient condition designing
for vector-kernels.

Lemma 1:
−→
K = [K1, K2, . . . , KL ]T is a valid vector-

valued kernel if all its subkernels are positive definite scalar
kernels.

Proof: The proof follows from the construction of the
vector-kernel. If every subkernel Ki is positive definite, then
there exists a mapping ψi such that Ki (x, y) = ψH

i (x)ψi (y).
As a consequence, by denoting � = [ψ1, . . . , ψL ] the array
of the mappings ψi , we have

−→
K (x, y) = diag

(
�H (x)�(y)

)
,

that is, a vector-valued kernel. �
Lemma 1 represents the backbone of the multikernel con-

cept: in multiple kernel learning [42], the output is approxi-
mated by a sum of partial approximations using subkernels,
hence, the estimate can be seen as an ensemble of estimators
in which each stage (subkernel) is responsible of estimating
one type of nonlinearity. An example of multikernel regression
which employs an LMS update strategy to predict wind can
be found in [21], where each subkernel within the multikernel
approach accounts for different dynamical properties of the
3D wind. For additional insight into multikernel learning
see [22], [42], [44].

C. Quaternion Kernels

The introduced quaternion-valued feature spaces allow us
to adopt the standard regression formulation, that is,

ŷ =
N∑

i=1

ai K (x, xi ), ai ∈ H.
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The following lemma states properties of quaternion posi-
tive definite kernels.

Lemma 2: Let K = Kr + i Ki + j K j +kKk be a quaternion
kernel, then

(a) K is Hermitian iff Kr is symmetric positive definite and
Ki = −K T

i , K j = −K T
j and Kk = −K T

k .
(b) If K is Hermitian, K is positive definite iff the

real-valued matrix representation4 of its Gram matrix is
positive definite.

Proof: (a) The Hermitian condition of the quaternion
kernel K = K H can be expressed in terms of its real an
imaginary parts as

Kr + i Ki + j K j + kKk = K T
r − i K T

i − j K T
j − kK T

k .

Therefore, since {1, i, j, k} is a linearly-independent basis
of H, the above relationship is true if and only if the cor-
responding terms are equal coordinate-wise, that is:

Kr = K T
r , Ki = −K T

i , K j = −K T
j , Kk = −K T

k .

(b) Let us now re-state the matrix definition (Definition 3)
of positive definiteness vH Kv > 0,∀v ∈ H

m \ {0} as

�{vH Kv} > 0 (6)

�{vH Kv} = 0. (7)

where K ∈ H
m×m is the Gram matrix corresponding to an

arbitrary collection of m points {x1, . . . , xm} ⊂ X . Observe
that Eq. (6) is a necessary and sufficient condition for a
Hermitian quaternion kernel K to be positive definite, since (7)
always holds due to the Hermitian property of the kernel:

2�{vH Kv} = vH Kv − (vH Kv)H = vH Kv − (vH Kv) = 0.

To analyse (6) in terms of real and imaginary parts of the
quaternion kernel, we expand the vector v = vr + ivi + jv j +
kvk and the kernel matrix K = Kr + iKi + jK j + kKk using
their real and imaginary parts and rewrite Eq. (6) as

�{vH Kv} = vT
r Kr vr + vT

i Kr vi + vT
j Kr v j + vT

k Kr vk

+2vT
i Ki vr + 2vT

j K j vr + 2vT
k Kkvr

+2vT
i K j vk + 2vT

j Kkvi + 2vT
k Ki v j > 0. (8)

Observe that Eq. (8) can be written as a quadratic positive-
definite form rT

v Qrv ≥ 0, where

rv =

⎛
⎜⎜⎝

vr

vi

v j

vk

⎞
⎟⎟⎠ , Q =

⎛
⎜⎜⎝

Kr −Ki −K j −Kk

Ki Kr −Kk K j

K j Kk Kr −Ki

Kk −K j Ki Kr

⎞
⎟⎟⎠

are respectively an R
4m representation of v and the real-valued

matrix representation of the Gram matrix of K .
We have therefore proved that the positive definiteness

condition of a quaternion kernel can be verified through the
positive definiteness of its real-valued matrix representation
and vice versa.

4See [45, p. 91] for the real matrix representation of quaternions.

D. Connections Between High-Dimensional Kernels

We next show that the matrix-valued, vector-valued, and
quaternion-valued kernels are not alternative representations
of the same mapping; they are different classes of kernels
and generate different feature spaces. For the matrix-valued
kernel this follows from its dimension, which is given by the
number of data channels of the output. Consequently, a matrix
kernel cannot be designed to have an arbitrary dimension as
its quaternion- and vector-valued counterparts.

We now discuss whether a quaternion kernel and the par-
ticular case of a 4D vector kernel are two representations of
the same mapping. Although these share the same number of
degrees of freedom (four) and computational complexity, we
show that these are different mappings through the following
theorem.

Theorem 3: Let K and
−→
K be arbitrary quaternion- and

vector-kernels given by

K = Kr + i Ki + j K j + kKk ∈ H

−→
K = [K1 K2 K3 K4]T ∈ R

4,

where the real and imaginary parts of K , and the subkernels
of

−→
K are scalar, real-valued, functions.

The following statements about the R
4 representation of K

and the quaternion representation of
−→
K are true:

(a) K ′ = [Kr Ki K j Kk]T ∈ R
4 is not a vector-kernel,

(b)
−→
K ′ = K1 + i K2 + j K3 + kK4 ∈ H is not a Hermitian
positive definite quaternion-kernel.

Proof: The proof follows from the properties of vector and
quaternion kernels stated in Lemmas 1 and 2.

(a) Quaternion kernels are Hermitian and positive definite;
consequently, according to Lemma 2(a) the imaginary parts
of K given by Ki , K j , Kk are not symmetric. Therefore, based
on Lemma 1, the array K ′ = [Kr Ki K j Kk] is not a vector-
kernel (since its subkernels are not symmetric and positive
definite).

(b) As
−→
K is a vector-kernel, Lemma 1 states that

K1, K2, K3 are symmetric and positive definite. Therefore,−→
K ′ = K1 + i K2 + j K3 + kK4 is not Hermitian due to
Lemma 2(b). �

We now state the main consequence of Theorem 3.
Although the R

4 representation of the QRKHS generated by
a quaternion kernel K of the form

HR =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

� f (x)
�i f (x)
� j f (x)
�k f (x)

⎞
⎟⎟⎠ ∈ R

4, s.t. f (x) =
∞∑

n=1

an K (xn, x)

⎫⎪⎪⎬
⎪⎪⎭

(9)

where an ∈ H, x ∈ X, is indeed an RKHS (its evaluation
functional is bounded), its real vector-valued reproducing
kernel is not given by the R

4 representation of the quaternion
kernel K ′ = [Kr Ki K j Kk ] of K ∈ H, because K ′ is not a
vector kernel in R

4.
Remark 8: The vector-valued representation of a QRKHS

in Eq. (9) is a VRKHS, however, finding its associated vector-
valued kernel is not trivial.
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TABLE I

NUMBER OF OPERATIONS REQUIRED TO EVALUATE THE TERM AK (xs , x) FOR AN n-DIMENSIONAL OUTPUT AND A SINGLE SUPPORT VECTOR xs .

THE COMPARISON IS PRESENTED FOR REAL-VALUED (SCALAR), QUATERNION-VALUED (SCALAR), VECTOR-VALUED (R4-VALUED), AND

MATRIX-VALUED (Rn×n – ACCORDING TO THE OUTPUT) KERNELS. THE TERMS κR, κQ DENOTE RESPECTIVELY REAL AND QUATERNION KERNEL

EVALUATIONS WHILE μR, μQ DENOTE SCALAR MULTIPLICATIONS. THE COMPUTATIONAL COMPLEXITY DUE TO SUMMATIONS IS OMITTED AS IT IS

NEGLIGIBLE COMPARED TO MULTIPLICATIONS AND KERNEL EVALUATIONS

E. Computational Complexity

Table I illustrates the computational complexity of kernel
regression algorithms for scalar, quaternion, multikernel and
matrix-kernel approaches. Observe that scalar kernels are
simplest, whereas the complexity of matrix kernels grows
quadratically with the dimension of the signal.

In order to compare the complexity associated to vector- and
quaternion-valued kernels, observe that (i) μR involves four
pure real multiplications (real kernels, quaternion weights)
while μQ involves 16 (quaternion valued kernels and weights),
and (ii) the quaternion kernel evaluation can be seen as the
evaluation of four real functions. Consequently, by assuming
κQ ∼ 4κR, μQ ∼ 4μR , Table I shows that the computational
complexities of both kernel and quaternion kernel algorithms
are of the same order.

Therefore, the implementation of both vector and quaternion
kernels can benefit from exploiting the similarity among sub-
kernels, as well as from an efficient framework to perform
quaternion operations [46].

V. DESIGN OF QUATERNION-VALUED MERCER KERNELS

Theorem 2 gives the justification for the design and imple-
mentation of nonlinear kernel algorithms operating in QRKHS
to simplify into the choice of a positive-semidefinite kernel.
We next introduce and analyse the properties of some specific
kernels of quaternion variable and justify their use within
quaternion SVR algorithms.

A. Polynomial Kernel: The Quaternion Cubic Example

The polynomial kernel is standard in kernel-based estima-
tion due to its robustness and ease of implementation. For real-
and complex-valued samples xr , yr , the polynomial kernel is
given by

K P(xr , yr ) = (
1 + xT

r yr
)p

where p ∈ N is referred to as the order of the kernel. On the
other hand, the real-valued polynomial kernel of quaternion
samples x, y K R P : X2 → R, that is, the polynomial kernel of
the real-valued representations of x and y, can be expressed as

K R P(x, y) = (
1 + 〈x, y〉�

)p = (
1 + �{xH y})p (10)

where 〈x, y〉� is the inner product in R
n and �{q} denotes the

real part of the quaternion q .

The extension to quaternion-valued polynomial kernels is
not straightforward, as for the quaternion vectors x and y the
factorisation (

1 + xH y
)p = φH (x)φ(y)

may not be possible due to the noncommutativity of the
quaternion ring, and therefore the positive definiteness of such
kernel cannot be guaranteed in this manner.

For p = 3, we next propose a quaternion polynomial kernel
which admits factorisation as an inner product, thus ensuring
the required positive definiteness.

Consider the quaternion cubic kernel KQ P : X2 → H

given by

KQ P(x, y) = (
1 + xH x

)(
1 + xH y

)(
1 + yH y

)
. (11)

To show that KQ P is positive semidefinite, we shall first
consider its factorisation of the form KQ P(x, y) = φH (x)φ(y).
Indeed,

KQ P(x, y) = (
1 + xH x

)(
1 + yH y

)

+ (
1 + xH x

)
xH y

(
1 + yH y

)

= (
1 + xH x

)H (1 + yH y
)

+ (
x
(
1 + xH x

))H (y(1 + yH y
))

= φH
1 (x)φ1(y)+ φH

2 (x)φ2(y),

where φ1(x) = 1 + xH x and φ2(x) = x
(
1 + xH x

)
. Therefore,

by setting φ(x) = [φT
1 (x) φ

T
2 (x)]T we arrive at

KQ P(x, y) = φH (x)φ(y). (12)

Finally, by combining (12) and Definition 3 we have∫
X2
θ∗(x)KQ P(x, y)θ(y)dxdy

=
∫

X2
θ∗(x)φH (x)φ(y)θ(y)dxdy

(a)=
∫

X
θ∗(x)φH (x)dx

∫
X
φ(y)θ(y)dy

=
(∫

X
φ(x)θ(x)dx

)H ∫
X
φ(y)θ(y)dy

=
∥∥∥∥
∫

X
φ(x)θ(x)dx

∥∥∥∥
2

≥ 0,

where θ(·) is assumed to be Lebesgue integrable and bounded

on the compact set X � H
n , while the identity

(a)= is a
consequence of Fubini’s theorem [10].
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Fig. 1. Real (left) and i-imaginary (right) parts of KQ P . The colourmap is
dark blue for −13 · 103, white for the interval [−10, 10], and red for 13 · 103

with a logarithmic RGB interpolation.

Remark 9: Note from Eqs. (10) and (11) that, owing to
its imaginary part, the quaternion cubic kernel KQ P pro-
vides enhanced data representation over the real-valued cubic
kernel K R P. Therefore, KQ P has the ability to learn the
relationship between input variables, while preserving the
mathematical simplicity of polynomial kernels.

Fig. 1 visualises KQ P for the scalar case x = 1, y = yr +
iyi + j y j + kyk ∈ H, which gives KQ P(1, y) = 2(1 + y)
(1 + ‖y‖2). As KQ P(1, y) is symmetric, we only plot the
region (yr , yi , y j , yk) ∈ [−15, 15] × [−15, 15] × {0} × {0}.

B. Real-Valued Gaussian Kernel

Together with the polynomial kernel, the Gaussian kernel
is extensively used in machine learning and signal processing
applications. It serves as a deviation measure between samples,
hence, providing reliable estimates for known regions of the
input space (dictionary), while vanishing for inputs that deviate
from the dictionary. The Gaussian kernel can be extended
to operate on quaternion samples by accommodating the
quaternion norm in its argument. Recall that ‖q‖ = √

q H q,
so that the real-valued Gaussian kernel K RG can be defined as

K RG(x, y) = exp
(
−AR (x − y)H (x − y)

)
, (13)

where AR > 0 is the kernel parameter.
We next use Definition 4 to show that K RG is positive

definite in the quaternion domain. First, observe that for an
arbitrary, non-zero, vector x ∈ H

n the quadratic form xH Kx
is real. Indeed, due to the symmetry of the real matrix K we
have

2�{xH Kx} = xH Kx − (xH Kx)H = xH Kx − (xH Kx) = 0.

Now, by expanding the vector x = xr + ixi + jx j + kxk

within �{xH Kx} using its real and imaginary parts, we can
write

�{xH Kx} = xT
r Kxr + xT

i Kxi + xT
j Kx j + xT

k Kxk .

Since K is positive definite in the real domain, the arbitrary
components xR, xi , x j , xk are real-valued, and the quadratic
form xH Kx is positive, we have xH Kx = �{xH Kx} > 0,
proving the positive definiteness of the real Gaussian kernel
K RG in H.

Fig. 2. Real (left) and i-imaginary (right) parts of KQG . The colourmap is
dark blue for −7 · 10−4, white for 0, and red for 7 · 104, with a logarithmic
RGB interpolation.

C. Quaternion-Valued Gaussian Kernel

Recent complex-valued extensions of kernel estimation
algorithms [17], [18] consider a complex-valued positive def-
inite version of the real Gaussian kernel [47]. A quaternion
version of such a kernel is

KQG(x, y) = exp
(
−AQ

(
x − y∗)T (x − y∗)) , (14)

where AQ > 0 is the kernel parameter.
Observe that the differences between KQG and K RG are in

that KQG is a function of x − y∗ (rather than x − y, hence
allowing for the positive definiteness of the kernel), while
the transpose (instead of the Hermitian) operator allows its
argument to be a full quaternion.

By denoting ẽR = �{x − y∗} and ẽI = �{x − y∗}, we write
x − y∗ = ẽR + ẽI and expand KQG according to

KQG(x, y) = exp
(
−AQ (ẽR + ẽI )

T (ẽR + ẽI )
)

= exp
(
−AQ

(
ẽT

R ẽR + ẽT
I ẽR + ẽT

R ẽI + ẽT
I ẽI

))

= exp
(
−AQ

(
‖ẽR‖2 − ‖ẽI ‖2 + 2ẽT

R ẽI

))

= eδ
(

cos ‖
‖ + 


‖
‖ sin ‖
‖
)
,

where δ = −AQ

(
‖ẽR‖2 − ‖ẽI ‖2

)
and 
 = −2AQ ẽT

R ẽI .
Unlike the real Gaussian kernel K RG , KQG is not globally

bounded since its norm grows exponentially with ‖ẽI ‖2 =
‖�{x} + �{y}‖2 (as AQ > 0). This highlights both advantages
and disadvantages regarding the implementation of kernel
estimation algorithms: KQG has the ability to model data with
large dynamics and to boost the speed of learning due to its
exponential growth; however, an incorrect choice of parame-
ters will lead to unbounded estimates. From the point of view
of a physically-meaningful representation, the real Gaussian
kernel K RG is better suited for interpolation applications as it
can be regarded as a measure of similarity of samples (like the
triangular kernel in similarity-based modelling [48]), whereas
the quaternion Gaussian kernel KQG is useful for extrapolating
nonlinear features.

Fig. 2 shows KQG for the scalar case y = 0, x = xr + i xi +
j x j + kxk ∈ H, which gives δ = −AQ(x2

r − x2
i − x2

j − x2
k ),


 = −2AQ xr (i xi + j x j + kxk). As KQG(x, 0) is symmetric,
we only plot the region (xr , xi , x j , xk) ∈ [−15, 15] ×
[−15, 15] × {0} × {0} where AQ = 0.05.
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VI. KERNEL RIDGE REGRESSION IN QUATERNION RKHS

We validated the proposed QRKHS, together with the intro-
duced quaternion kernels, in the kernel ridge regression (KRR)
setting presented in Section VI-A against both scalar and
vector-valued real kernels; these results complement previous
quaternion kernel applications which considered linear (quater-
nion) kernels only [31]. Section VI-B illustrates the prediction
of body sensor signals and shows that the introduced quater-
nion cubic kernel outperforms the real vector-kernel (ensemble
of four real cubic kernels), while having the same degrees of
freedom and similar computational complexity. Section VI-C
considers the nonlinear channel equalisation problem using
real Gaussian and quaternion Gaussian kernels, and both linear
and widely-linear estimators, in order to validate the quater-
nion Gaussian kernel generalisation (extrapolation) properties
and robustness to overfitting. This second experiment also
explains how to choose the parameters of the quaternion
Gaussian kernel using available measurements.

A. Introduction to Kernel Ridge Regression

Consider the collection of available measurement pairs
CN = {(xi , yi )}i=1:N ∈ X × Y corresponding to the input and
output of a nonlinear system. The aim of KRR is to model
the relationship between the input x and the output y of such
a system by

ŷ = 〈ω, φx〉 , (15)

whereby both the (fixed) element ω and the transformation φx
lie on a QRKHS H0 with inner product 〈·, ·〉. To avoid the
need for the optimisation in the high-dimensional space H0,
we restrict the search for the optimal weight to a reduced-
dimensional QRKHS H = span{φxi , i = 1, . . . , N} � H0,
referred to to as the empirical feature space [41]. In this way,
the optimal ω ∈ H can be expressed as

ω =
N∑

i=1

aiφxi ,

and therefore the estimate (15) takes the form

ŷ =
N∑

i=1

ai
〈
φxi , φx

〉 =
N∑

i=1

ai K (xi , x),

where K is the generating kernel of the QRKHS H for
which existence and uniqueness is guaranteed by the Riesz
representation theorem (Thm. 1). As a consequence, the search
for the optimal weights ω is simplified into the problem of
finding the coefficients a = [a1, . . . , aN ] ∈ H

N .
Using the regularised least-squares criterion for finding

the optimal vector a given the observations CN , and the
regularisation parameter ρ ∈ R+, we arrive at the optimisation
problem

a = arg min
a∈HN

N∑
j=1

∥∥∥∥∥y j −
N∑

i=1

ai K (xi , x j )

∥∥∥∥∥
2

+ ρ ‖a‖2 ,

for which the solution can be found in a closed form using
the HR calculus [30], and is given by

a = (KH K + ρI)−1KH Y, (16)

Fig. 3. Inertial body sensor setting. [Left] Fixed coordinate system (red),
sensor coordinate system (blue) and Euler angles (green). [Right] A 3D
inertial body sensor at the right wrist.

where Y = [y1, . . . , yN ]T , I is the identity matrix, and K is
the Gram matrix evaluated over the set of training samples
given by Ki j = K (xi , x j ).

We next present two applications of KRR operating in a
QRKHS with the kernels presented in Section V, and refer to
the input samples of the training set CN as support vectors.
The algorithms were implemented in MATLAB® using the
Quaternion Toolbox for MATLAB® [46].

B. Multivariate Body Motion Tracking: Cubic Kernels

We implemented KRR algorithms using real, vector and
quaternion cubic kernels to perform a one-step-ahead predic-
tion of the trajectory of limbs in Tai Chi sequences. Data sets
for training and validation of the algorithms corresponded to
different realisations of Tai Chi movements.

1) Data Acquisition and Preprocessing: Four accelerome-
ters (placed at wrists and ankles) recorded the three Euler
angles (Fig. 3), giving a total of 12 signals {θs}s=1,..,12
taking values in the range [−π, π]. The recorded signals
were discontinuous in {−π, π} and thus unsuitable for the
application of continuous kernels, hence the angles data were
conditioned through the mapping θs �→ (sin θs, cos θs). These
new features also made it possible for the data to be resampled
if needed.

Each of the scalar mappings θs �→ sin θs , θs �→ cos θs

is non-injective (and non-invertible) and therefore does not
allow for the angle signal θs to be recovered. However, the
considered 2D map θs �→ (sin θs, cos θs) ∈ R

2 is bijective and
therefore invertible, hence, allowing us to recover the original
angle signal θs . Additionally, the proposed map also allows
us to preserve the dynamics of the signal. As illustrated in
Fig. 4, sine and cosine preserve data variation successfully
only when they behave in a linear-like fashion5; however,
as such trigonometric functions are shifted versions of one
another, by considering them together the signals dynamics
are well preserved.

The data corresponding to the so-mapped 12 angles were
then represented by a 24-dimensional real signal, or equiv-
alently, a six-dimensional quaternion signal. Therefore, by
considering two delayed samples as regressors, the input and
output pairs were respectively elements of H

12 and H
6.

5Recall that for θ ≈ 0, sin(θ) ≈ θ and cos(1.5π + θ) ≈ θ .
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Fig. 4. Raw angle measurements and considered features. [Top] Original
discontinuous angle recording and [Bottom] the corresponding continuous
sine and cosine mapping. Observe that in the right (left) circle only cosine
(sine) preserves the dynamics of the angle signal accurately.

Fig. 5. Body sensor signal tracking: Angle features (sin θ, cos θ) and KRR
estimates.

2) Choice of Cubic Kernels: The kernel ridge regression
algorithms were implemented featuring real-, vector-, and
quaternion-valued cubic kernels. The real kernel used was
the standard cubic kernel in Eq. (10) for p = 3, that is,6

K R P(x, y) = (
1+〈x, y〉�

)3, whereas the vector-kernel chosen
was

KM (x, y) =

⎛
⎜⎜⎜⎝

〈x, y〉3�(
1 + 〈x, y〉�

)3
(
10 + 〈x, y〉�

)3
(
100 + 〈x, y〉�

)3

⎞
⎟⎟⎟⎠

since its subkernels are a basis of the space of cubic poly-
nomials on 〈x, y〉� and performed better that other basis
considered (see Appendix A for comments on the choice of
these subkernels).

Finally, we chose the quaternion kernel KQ P(x, y) =(
1+xH x

)(
1+xH y

)(
1+yH y

)
introduced in Eq. (11) to validate

the quaternion kernel regression concept.
3) Results: We chose a regularisation parameter ρ = 5

as this suited all three algorithms and in particular allowed

6Recall that 〈x, y〉� = �{〈x, y〉}.

Fig. 6. Performance of KRR algorithms for body sensor signal tracking as
a function of the number of support vectors.

Fig. 7. Computation time of KRR algorithms for body sensor signal tracking.

the multikernel not to suffer from overfitting. Fig. 5 shows
the cosine and sine of one coordinate θ and their kernel
estimates for 90 randomly chosen support vectors. Fig. 6
shows the averaged prediction mean square error (MSE) over
30 independent realisations, as a function of the number of
support vectors for the same regularisation parameter. The
support vectors and the validation set (50 samples) were
randomly chosen, without repetition, for all realisations.

Observe that the scalar real kernel algorithm is outperformed
by both the multikernel and quaternion ones due to their higher
degrees of freedom. Moreover, note that the performance of
the quaternion cubic kernel became progressively better than
that of its real-valued counterpart as the number of support
vectors (and therefore training samples) increased. The better
performance of KQ P for a larger number of support vectors
can be explained by the inability of K R P to model cross-
coupling between data components and the cross-coordinate
terms, for which the quaternion cubic kernel is perfectly well
suited (see Remark 9).

Finally, Fig. 7 shows the computation time for all three
algorithms. In line with Table I, the complexities of the vector
and quaternion kernels were found to be similar and greater
than that of the real kernel.

C. Nonlinear Channel Equalisation: Real and Quaternion
Gaussian Kernels

We next validated the real and quaternion Gaussian kernels
for the problem of nonlinear channel equalisation.
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1) Channel Model: The transmission channel was modelled
as a linear (moving average) filter with a memoryless nonlin-
earity stage corrupted by noise:

yn = a1xn + a2xn−1

sn = yn + a3y2
n + εn,

where {xn}n∈N is the transmitted message (input to the
channel), {yn}n∈N is an unobserved latent process, {εn}n∈N

is a noise process, and {sn}n∈N is the received signal (output
of the channel). This model has been previously considered
for the validation of kernel learning algorithms including
KRR [49], kernel LMS [13], and its complex-valued exten-
sions [16], [17]. The aim of channel equalisation is to identify
the original message {xn}n∈N from the noisy measurements
{sn}n∈N.

We focused on the quadrivariate case, that is, xn, yn, εn,
sn ∈ R

4, and assumed that the components of the input
vector (message) xn are jointly Gaussian, i.e. xn ∼ N (0,�),
and uncorrelated with the (also Gaussian) noise εn ∼
N (0,�2). The quadriavariate real signals xn, sn ∈ R

4 were
then expressed as univariate quaternion sequences xn, sn ∈ H.

The model parameters were randomly chosen and had the
values

� =

⎡
⎢⎢⎣

1.2624 −0.3541 −0.1457 −0.5030
−0.3541 0.8487 −0.1730 0.0402
−0.1457 −0.1730 0.4553 −0.3892
−0.5030 0.0402 −0.3892 1.4336

⎤
⎥⎥⎦ ,

a1 = 0.7466 + i0.3733 − j0.28 + k0.1867

a2 = 0.4564 + i0.1521 − j0.6085 + k0.4564

a3 = 0.5341 + i0.3204 + j0.1068 − k0.6409.

With this choice of parameters, both the original mes-
sage and the received signals were noncircular quaternion
sequences [24], [26].

2) Kernel Parameter Design: Within the KRR setting, once
the optimal weights a are computed via Eq. (16), the estimate
is linear in the kernel evaluations. Accordingly, empirical
criteria for kernel design were used to set the kernel parameters
so that the kernel evaluations (entries of the kernel evaluation
matrix K) remained bounded, while at the same time captured
enough data variance. We set the parameters of the Gaussian
kernels to be AR = 6 · 10−3 (real) and AQ = 10−4

(quaternion) by analysing the second moment of the kernel
evaluations over a 200-sample realisation of the process st ,
thus ensuring boundedness and sufficient variability. Fig. 8
analyses the features used for setting kernel parameters and
shows the histogram of the kernel evaluations corresponding
to the choice of parameters.

3) Validation: The ability of the different kernels to both
(i) learn the relationship between the available input-output
samples and (ii) generalise the estimates to new datasets of
similar dynamics, was next assessed. Both kernels were also
compared to the strictly- and widely-linear quaternion ridge
regression. See Appendices B and C for an introduction to
quaternion widely-linear estimation and the models used for
this experiment.

Fig. 8. Choice of kernel parameters (red) AR and AQ based on the second
moment of the kernel evaluations and histograms corresponding to the chosen
parameters.

Fig. 9. Training MSE of ridge regression algorithms for channel equalisation.

Fig. 9 shows the training MSE averaged over 30 realisations
as a function of the number of support vectors. The train-
ing MSE was computed from the estimate of a 200-sample
sequence which contained the support (training) vectors.
Observe that for more than 50 support vectors, the widely-
linear ridge regression algorithm outperformed its strictly
linear counterpart. Also note that the training performance
of the quaternion Gaussian kernel was similar to that of
the widely-linear ridge regression algorithm [24]. The real
Gaussian KRR offered the best training performance, which
improved monotonically with the number of support vectors.

The validation MSE, also averaged over 30 realisations, is
shown in Fig. 10 as a function of the number of support
vectors. To compute the validation MSE, the support samples
(together with the training samples) and the estimated signal
corresponded to different realisations of 100 samples each,
this way, the validation MSE assesses the ability of the regres-
sion algorithms to generalise the input-output dependency.
Observe that, on average, the quaternion Gaussian kernel
provided the best estimates, outperforming not only the linear
ridge regression algorithms, but also to the standard, real-
valued, Gaussian kernel.

The unbounded nature of the quaternion-valued Gaussian
kernel allowed for the extrapolation of the nonlinear behaviour
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Fig. 10. Validation MSE of ridge regression algorithms for channel
equalisation.

learned in the training stage. This property is not found in the
real Gaussian kernel, which serves as a similarity measure and
is therefore better suited for data interpolation.

Due to the enhanced modelling ability arising from the
terms in their imaginary parts, the quaternion-valued kernels
were less prone to overfitting than the real-valued kernels,
as shown in both experiments. Furthermore, the superior
performance of the quaternion SVR approach highlights the
advantage of using high-dimensional feature spaces.

VII. CONCLUSIONS

We have investigated the existence of quaternion reproduc-
ing kernel Hilbert spaces (QRKHS), as well as the advan-
tages of quaternion kernels over vector-kernels. This has
been achieved based on (i) a rigorous derivation and analysis
of quaternion versions of the Riesz representation and the
Moore-Aronszajn theorems, and (ii) an account of the dif-
ferences between vector and quaternion kernels in terms of
both positive definiteness requirements and their associated
RKHSs. As a consequence, the design and implementation
of kernel estimation algorithms operating on a novel class of
high-dimensional quaternion-valued feature spaces has been
simplified into the choice of a positive-definite (quaternion)
kernel, in a way analogous to that of the real- and complex-
valued cases. The improved performance of the quaternion-
valued cubic and exponential kernels has been demonstrated
in the kernel ridge regression setting, for the 3D body motion
tracking and nonlinear channel equalisation applications. The
quaternion-valued kernels have been shown to outperform
their real- and vector-valued counterparts in the mean square
sense, and we have demonstrated their ability to capture the
inherent data relationships in a more accurate and physically-
meaningful way, while being robust to overfitting. For rigour,
the existence and uniqueness results have also been provided
with the aim to readily serve as a basis for further quaternion-
valued extensions of existing kernel algorithms.

APPENDIX

A. Basis of Cubic Polynomials in 〈x, y〉�
We show that the polynomials 〈x, y〉3� ,

(
1 + 〈x, y〉�

)3
,(

10 + 〈x, y〉�
)3
,
(
100 + 〈x, y〉�

)3
are a basis of the space

of cubic polynomials in 〈x, y〉�. For simplicity we denote

 = 〈x, y〉�.

For [α, β, γ, δ]T ∈ R
4, we need to find [a, b, c, d]T ∈ R

4

such that

a
3 + b
(
1 +


)3 + c
(
10 +


)3 + d
(
100 +


)3

= α
3 + β
2 + γ
+ δ. (17)

Upon expanding the left-hand side of Eq. (17) and factoris-
ing it with respect to the basis [
3,
2,
, 1], we obtain

a
3 + b
(
1 +


)3 + c
(
10 +


)3 + d
(
100 +


)3
= a
3 + b

(
1 + 3
+ 3
2 +
3)

+ c
(
103 + 300
+ 30
2 +
3)

+ d
(
1003 + 3 × 1002
+ 300
2 +
3)

= 
3(a + b + c + d)+
2(3b + 30c + 300d)
+
(3b+300c+3×1002d)+1(b+103c+1003d) (18)

A comparison of the right-hand sides of Eqs. (17) and (18)
gives the linear equation

⎛
⎜⎜⎝

1 1 1 1
0 3 30 300
0 3 300 3 × 1002

0 1 103 1003

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
α
β
γ
δ

⎞
⎟⎟⎠

with an invertible matrix on the left-hand side.
As a consequence, the proposed basis is a linearly-

independent basis of the set of cubic polynomials in 
 (the
independence property can be verified by [α, β, γ, δ] = 0 ⇒
[a, b, c, d] = 0).

Other linearly-independent bases of real cubic polynomials
on 
 were also considered, including {1,
,
2,
3} and
{(b0 + 
)3, (b1 + 
)3, (b2 + 
)3, (b3 + 
)3} for different
parameters b0, b1, b2, b3 ∈ R

+. We have found that the chosen
basis (subkernels) provided the best results, in the MSE sense,
in the prediction setting considered.

B. Quaternion Widely-Linear Ridge Regression

Strictly-linear models assume that the minimum mean
square estimator (MMSE) E{x|s} of a vector x given an
observation vector s is, regardless of the real or quaternion
nature of the vectors, given by7

x̂ = As, (19)

where A is a coefficient matrix. On the other hand, widely-
linear quaternion models exploit the linear dependency
between the vector x and each of the components of the
regressor s = sr + isi + js j +ksk , yielding an estimator which
is linear in each of these components.

Alternatively, by considering the involutions of s, given
by [50]

si = −isi = sr − isi + js j + ksk

s j = − js j = sr + isi − js j + ksk

sk = −ksk = sr + isi + js j − ksk,

we can express the widely-linear estimator in the form [51]:

x̂ = As + Bsi + Cs j + Dsk = Wsa,

7We have maintained the notation s and x for consistency with the nonlinear
channel equalisation simulation.
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where

W = [A,B,C,D], sa =

⎡
⎢⎢⎣

s
si

s j

sk

⎤
⎥⎥⎦

are the so-called augmented quantities.
This way, the widely-linear estimator is theoretically equiv-

alent to the quadrivariate real-valued estimator and is the
best linear estimator in H [52]. For complex widely-linear
algorithms, see [53], [54].

In the ridge-regression setting, the weights W are computed
in the regularised least-squares sense based on a set of avail-
able observation pairs {(sn, xn), n = 1, . . . , N}, that is

W = (SH S + ρI)−1SH X,

where ρ > 0 is a regularization factor, and S = [s1, . . . , sN ]
and X = [xT

1 , . . . , xT
N ]T are the matrices of available observa-

tions.
The widely-linear ridge regression can also be regarded

as an approximation of the widely-linear Wiener filter [52],
where the correlation matrix and the autocorrelation vector
are approximated using the available data.

C. Model Comparison for Nonlinear Channel Equalisation

In Section VI-C we compared the proposed Gaussian kernel
(real- and quaternion-valued) algorithms against strictly-linear
and widely-linear models. The underlying idea is that a novel
nonlinear estimation algorithm is only justified if it outper-
forms existing (strictly and widely) linear approaches. A com-
pact description of the models implemented in Section VI-C,
together with their optimal least-squares parameters, is given
as follows

• Strictly linear:

x̂L = As
A = (SH S + ρ1I)−1SH X
S = [s1, . . . , sN ],

• Widely linear:

x̂W L = Wsa

W = (
Sa H Sa + ρ2I

)−1Sa H X
Sa = [sa

1, . . . , sa
N ],

• Real Gaussian kernel (Eq. (13)):

x̂RG =
N∑

i=1

ai K RG(si , s)

[a1, . . . , aN ]T = (KH K + ρ3I)−1KH X
Ki, j = K RG(si , s j ),

• Quaternion Gaussian kernel (Eq. (14)):

x̂QG =
N∑

i=1

bi KQG(si , s)

[b1, . . . , bN ]T = (KH K + ρ4I)−1KH X
Ki, j = KQG(si , s j ).

Recall that ρ1, ρ2, ρ3, ρ4 > 0 are regularisation factors, and
X = [xT

1 , . . . , xT
N ]T is the desired output data.
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