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Universal Source Coding for Monotonic and Fast
Decaying Monotonic Distributions

Gil I. Shamir

Abstract—We study universal compression of sequences gener-
ated by monotonic distributions. We show that for a monotonic
distribution over an alphabet of size , each probability parameter
costs essentially bits, where is the coded sequence
length, as long as . Otherwise, for , the total
average sequence redundancy is bits overall. We then
show that there exists a sub-class of monotonic distributions over
infinite alphabets for which redundancy of bits overall
is still achievable. This class contains fast decaying distributions,
including many distributions over the integers such as the family
of Zipf distributions and geometric distributions. For some slower
decays, including other distributions over the integers, redundancy
of bits overall is achievable. A method to compute specific re-
dundancy rates for such distributions is derived. The results are
specifically true for finite entropy monotonic distributions. Finally,
we study individual sequence redundancy behavior assuming a se-
quence is governed by a monotonic distribution. We show that for
sequences whose empirical distributions are monotonic, individual
redundancy bounds even tighter than those in the average case can
be obtained. The relation of universal compression with monotonic
distributions to universal compression of patterns of sequences is
demonstrated.

Index Terms—Average redundancy, individual redundancy,
large alphabets, monotonic distributions, patterns, universal
compression.

I. INTRODUCTION

T HE classical setting of the universal lossless compres-
sion problem [6], [9], [10] assumes that a sequence of

length that was generated by a source is to be compressed
without knowledge of the particular that generated but
with knowledge of the class of all possible sources . The
average performance of any given code, that assigns a length
function , is judged on the basis of the redundancy func-
tion , which is defined as the difference between the
expected code length of with respect to (w.r.t.) the given
source probability mass function and the th-order entropy
of normalized by the length of the uncoded sequence. A
class of sources is said to be universally compressible in some
worst sense if the redundancy function diminishes for this worst
setting. Another approach to universal coding [37] considers the
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individual sequence redundancy , defined as the nor-
malized difference between the code length obtained by for
and the negative logarithm of the maximum likelihood (ML)

probability of the sequence , where the ML probability is
within the class . We thereafter refer to this negative logarithm
as theML description length of . The individual sequence re-
dundancy is defined for each sequence that can be generated by
a source in the given class .
Classical literature on universal compression [6], [9], [10],

[25], [37] considered compression of sequences generated by
sources over finite alphabets. In fact, it was shown by Kieffer
[17] (see also [15]) that there are no universal codes (in the
sense of diminishing redundancy) for sources over infinite
alphabets. Later work (see, e.g., [23], [30], [38]), however,
bounded the achievable redundancies for i.i.d. sequences gen-
erated by sources over large and infinite alphabets. Specifically,
while it was shown that the redundancy does not decay if the
alphabet size is of the same order of magnitude as the sequence
length or greater, it was also shown that the redundancy does
decay for alphabets of size .1

While there is no universal code for infinite alphabets, recent
work [22] demonstrated that if one considers the pattern of a se-
quence instead of the sequence itself, universal codes do exist in
the sense of diminishing redundancy. A pattern of a sequence,
first considered, to the best of our knowledge, in [1], is a se-
quence of indices, where the index at time represents the
order of first occurrence of letter in the sequence . Fur-
ther study of universal compression of patterns [13], [22], [23],
[31], [35] (and subsequently to the work in this paper in [2])
provided various lower and upper bounds to various forms of
redundancy in universal compression of patterns. Another re-
lated study is that of compression of data, where the order of
the occurring data symbols is not important, but their types and
empirical counts are [39], [40].
This paper considers universal compression of data se-

quences generated by distributions that are known a priori to
be monotonic. The order of probabilities of the source symbols
is known in advance to both encoder and decoder and can be
utilized as side information. Monotonic distributions, such as
the Zipf (see, e.g., [42], [43]) and the geometric distribution
over the integers, are common in applications such as language
modeling, and image compression where residual signals are
compressed (see, e.g., [20], [21]). One can also consider com-
pression of the list of last or first names in a given city of a
given population. Usually, there exists some monotonicity for

1For two functions and , if , , such that
, ; if , , such that ,

; if , , , such that ,
.
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such a distribution in the given population, which both encoder
and decoder may be aware of a priori. For example, the last
name “Smith” can be expected to be much more common than
the last name “Shannon.” Another example is the compression
of a sequence of observations of different species, where one
has prior knowledge which species are more common, and
which are rare. Finally, one can consider compressing data for
which side information given to the decoder through a different
channel gives the monotonicity order.
Monotonic distributions were studied by Elias [8], Rissanen

[24], and Ryabko [26]. In [8] and [24], the study focused on rela-
tive redundancy, computing the ratio between average assigned
code length and the source entropy. Ryabko in [26] studied
codes for monotonic distributions and used the connection be-
tween redundancy and channel capacity (i.e., the redundancy-
capacity theorem) to lower bound minimax redundancy. Much
newer work by Foster et al. showed in [11] that (unlike the com-
pression of patterns) there are no universal block codes in the
standard sense for the complete class of monotonic distribu-
tions. The main reason is that there exist such distributions, for
which much of the statistical weight lies in the long tail of the
distribution in symbols that have very low probability, and most
of which will not occur in a given sequence. Thus, in practice,
even though one has the prior knowledge of the monotonicity of
the distribution, this monotonicity is not necessarily retained in
an observed sequence. Actual coding is, therefore, very similar
to compressing with infinite alphabets, and the additional prior
knowledge of the monotonicity is not very helpful in reducing
redundancy. Despite that, Foster et al. demonstrated codes that
obtained universal per-symbol redundancy of as long as
the source entropy is fixed (i.e., neither increasing with nor
infinite).
The work in [11] studied coding sequences (or blocks) gen-

erated by i.i.d. monotonic distributions, and designed codes for
which the relative block redundancy could be (upper) bounded.
Unlike that work, the focus in [8], [24], and [26] was on de-
signing codes that minimize the redundancy or relative redun-
dancy for a single symbol generated by a monotonic distribu-
tion. Specifically, in [24], minimax codes, which minimize the
relative redundancy for the worst possible monotonic distribu-
tion over a given alphabet size, were derived. In [26], it was
shown that redundancy of , where is the alphabet
size, can be obtained with minimax per-symbol codes. Very re-
cent work [18] considered per-symbol codes that minimize an
average redundancy over the class of monotonic distributions
for a given alphabet size. Unlike [11], all these papers study
per-symbol codes. Therefore, the codes designed always pay
nondiminishing per-symbol redundancy.
A different line of work on monotonic distributions consid-

ered optimizing codes for a known monotonic distribution but
with unknown parameters (see [20], [21] for design of codes for
two-sided geometric distributions). In this line of work, the class
of sources is very limited and consists of only the unknown pa-
rameters of a known distribution.
In this paper, we consider a general class of monotonic distri-

butions that is not restricted to a specific type or a single param-
eter. We study standard block redundancy for coding sequences
generated by i.i.d. monotonic distributions, i.e., a setting sim-

ilar to the work in [11]. We do, however, restrict ourselves to
smaller subsets of the complete class of monotonic distribu-
tions. First, we consider monotonic distributions over alphabets
of size , where is either small w.r.t. , or of . Then,
we extend the analysis to show that under minimal restrictions
of the monotonic distribution class, there exist universal codes
in the standard sense, i.e., with diminishing per-symbol redun-
dancy. In fact, not only do universal codes exist, but under mild
restrictions, they achieve the same redundancy as obtained for
alphabets of size . The restrictions on this subclass imply
that some types of fast decaying monotonic distributions are in-
cluded in it, and therefore, sequences generated by these distri-
butions (without prior knowledge of either the distribution or of
its parameters) can still be compressed universally in the class
of monotonic distributions.
The main contributions of this paper are the development of

codes and derivation of their upper bounds on the redundancies
for coding i.i.d. sequences generated by monotonic distribu-
tions. Specifically, this paper gives complete characterization
of the redundancy in coding with monotonic distributions
over “small” alphabets and “large” alphabets

. Then, it shows that these redundancy bounds
carry over (in first order) to fast decaying distributions. Next, a
code that achieves good redundancy rates for even slower de-
caying monotonic distributions is derived, and is used to study
achievable redundancy rates for such distributions. Finally,
even tighter upper bounds relative to the ML description length
are obtained for individual sequences for which the monotonic
order of the probabilities is known. The codes derived are
two part codes, based on a description of any sequence using
a quantized distribution describing the ML distribution of a
given sequence. The redundancy consists of the distribution
description cost and quantization penalty.
Lower bounds are also presented (in both average and indi-

vidual sequence cases) to complete the characterization, and are
shown to meet the upper bounds in the first three cases (small
alphabets, large alphabets, and fast decaying distributions). The
lower bounds turn out to relate to those obtained for coding pat-
terns. The relationship to patterns is demonstrated in the proofs
of the lower bounds. The main components of the average case
proofs are, in fact, identical to those in [31], and the reader is
referred to more details in [31]. The main steps of the proofs are
still presented in appendixes here for the sake of completeness.
The universal compression problem over monotonic distribu-

tions is very related to that of patterns. For small and large alpha-
bets, the redundancy rates attained appear to be the same. This is
because in both problems the richness of the class (yielding the
universal coding redundancy) is decreased by the same factor
from that of the original i.i.d. class, although for different rea-
sons. In the pattern case, sequences which are label permuta-
tions of the others are governed by the same pattern ML distri-
bution. Here, such sequences are constrained to a distribution
whose probabilities are ordered by the monotonicity constraint.
However, a monotonic ML distribution requires given labels to
appear in the required order, and may not equal the actual i.i.d.
ML distribution. This restriction is not imposed when coding
patterns, and makes this part of the analysis more difficult for
monotonic distributions. Overall, in both cases, we observe a
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cost of essentially bits per each unknown param-
eter for smaller alphabets and a cost of essentially bits
overall for larger alphabets. The technique that is used to prove
the upper bounds of the main theorems in this paper follows
the original work in [35] for upper bounding the redundancy
for coding patterns. Tight upper bounds on the redundancy for
coding patterns were not attained when the work presented in
this paper, published originally in [36] and [34], was done. Sev-
eral years subsequently to the work presented here, the general
construction in [35] was followed in [2] to show an
upper bound for coding patterns. An upper bound for small al-
phabets of bits per parameter is yet to
have been derived for patterns, to the best of our knowledge.
The constructions used in this paper can be applied to the pat-
tern problem. The description costs of these constructions apply
to patterns, but the computation of quantization costs is much
more difficult for patterns. Specifically, the construction used in
the individual sequence case for monotonic distributions can be
applied to patterns.
The outline of this paper is as follows. Section II describes

the notation and basic definitions. Then, in Section III, lower
bounds on the redundancy for monotonic distributions are de-
rived. Next, in Section IV, we propose codes and upper bound
their redundancy for coding monotonic distributions over small
and large alphabets. These upper bounds match the rates of the
lower bounds. They are then extended to fast decaying mono-
tonic distributions in Section V, which also demonstrates the
use of the bounds on some standard monotonic distributions.
Finally, in Section VI, we consider individual sequences.

II. NOTATION AND DEFINITIONS

Let denote a sequence of symbols
over the alphabet of size , where can go to infinity.Without
loss of generality, we assume that , i.e., it is
the set of positive integers from 1 to . The sequence is gen-
erated by an i.i.d. distribution of some source, determined by
the parameter vector , where is the prob-
ability of taking value . The components of are nonneg-
ative and sum to 1. The distributions we consider in this paper
are monotonic. Therefore, . The class of
all monotonic distributions will be denoted by . The class of
monotonic distributions over an alphabet of size is denoted by

. It is assumed that prior to coding both encoder and de-
coder know that or , and also know the order of
the probabilities in . In the more restrictive setting, is known
in advance and it is known that . We do not restrict
ourselves to this setting. In general, boldface letters will denote
vectors, whose components will be denoted by their indices in
the vector. Capital letters will denote random variables. We will
denote an estimator by the hat sign. In particular, will denote
the ML estimator of which is obtained from .
The probability of generated by is given by

. The average per-symbol2 th-order redundancy
obtained by a code that assigns length function for is

2In this paper, redundancy is defined per-symbol (normalized by the sequence
length ). However, when we refer to redundancy in overall bits, we address the
block redundancy cost for a sequence.

(1)

where denotes expectation w.r.t. , and is the
(per-symbol) entropy (rate) of the source ( is the
th-order sequence entropy of , and for i.i.d. sources,

). With entropy coding techniques, as-
signing a universal probability is identical to designing
a universal code for coding where, up to negligible integer
length constraints that will be ignored, the negative logarithm
to the base of 2 of the assigned probability is considered as the
code length.
The individual sequence redundancy (see, e.g., [37]) of a code

with length function per sequence over class is

(2)

where the logarithm function is taken to the base of 2, here and
elsewhere, and is the probability of given by the
ML estimator of the governing parameter vector . The
negative logarithm of this probability is, up to integer length
constraints, the shortest possible code length assigned to in
. It will be referred to as the ML description length of in
. In the general case, one considers the i.i.d. ML. However,
since we only consider , i.e., restrict the sequence to one
governed by a monotonic distribution, we define as
the monotonic ML estimator. Its associated shortest code length
will be referred to as the monotonic ML description length. The
estimator may differ from the i.i.d. ML , in particular,
if the empirical distribution of is not monotonic. The in-
dividual sequence redundancy in is thus defined w.r.t. the
monotonic ML description length, which is the negative loga-

rithm of .
The average minimax redundancy of some class is defined

as
(3)

Similarly, the individual minimax redundancy is that of the best
code for the worst sequence ,

(4)

The maximin redundancy of is

(5)

where is a prior on . In [6], it was shown by Davisson that
. Davisson also tied the maximin redundancy

to the capacity of the channel induced by the conditional prob-
ability . It was then shown independently by Gallager [12]
and Ryabko [26] first, and then by Davisson and Leon-Garcia
[7], that the minimax and maximin redundancies are essentially
equal, hence, making the connection between the minimax re-
dundancy and the capacity of the channel induced by . Fi-
nally, Merhav and Feder [19] tied between the capacity of this
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channel and redundancy for almost all sources in a class proving
a strong version of the theorem. The redundancy-capacity the-
orem is used to prove lower bounds in the minimax (maximin)
and “almost all sources” senses for the monotonic distribution
class.

III. LOWER BOUNDS

Lower bounds on various forms of the redundancy for the
class of monotonic distributions can be obtained with slight
modifications of the proofs for the lower bounds on the re-
dundancy of coding patterns in [16], [22], [23], and [31]. The
bounds are presented in the following three theorems. For the
sake of completeness, the main steps of the proofs of the first
two theorems are presented in appendixes, and the proof of the
third theorem is presented below. The reader is referred to [16],
[22], [23], [30] and [31] for more details.
Theorem 1: Fix an arbitrarily small , and let .

Then, the th-order average maximin and minimax universal
coding redundancies for i.i.d. sequences generated by a mono-
tonic distribution with alphabet size are lower bounded by

(6)

where

(7)

Theorem 2: Fix an arbitrarily small , and let .
Let be the uniform prior over points in . Then, the
th-order average universal coding redundancy for coding i.i.d.
sequences generated by monotonic distributions with alphabet
size is lower bounded by

(8)

where

(9)

for every code and almost every i.i.d. source ,
except for a set of sources whose relative volume

in goes to 0 as .
Theorems 1 and 2 give lower bounds on redundancies of

coding over monotonic distributions for the class . How-
ever, the bounds are more general, and the second region applies
to the whole class of monotonic distributions . By plugging
the boundary values of into the first regions of both Theo-
rems, the bounds of the second regions are obtained, demon-
strating the threshold phenomenon of the transition between the
regions. Subsequent work in [2] to the work presented in this

paper slightly tightened the second region of the bound of The-
orem 1 for patterns. This was done by applying a general tech-
nique that uses bounds on error correcting codes, as that de-
scribed in earlier work in [27]–[29], to patterns on top of the
bounding methods used in [31]. The tighter bound for that re-
gion can also be applied to monotonic distributions. As in the
case of patterns [22], [31], the bounds in (6)–(8) show that each
parameter costs at least bits for small alphabets,
and the total universality cost is at least bits overall
for larger alphabets. We show in Section IV that for
these bounds are asymptotically achievable for monotonic dis-
tributions. The bounds in (6)–(8) focus on large values of
that can increase with . For small fixed , the second-order
terms of existing bounds for coding unconstrained i.i.d. sources
are tighter. However, as increases, the bounds above become
tighter through their first dominant term, and second-order terms
become negligible. The proofs of Theorems 1 and 2 are pre-
sented in Appendixes A and B, respectively.
Theorem 3: 3 Let . Then, the th-order individual

minimax redundancy for i.i.d. sequences with maximal letter
w.r.t. the monotonic ML description length with alphabet size
is lower bounded by

.
(10)

Theorem 3 lower bounds the individual minimax redun-
dancy for coding a sequence believed to have an empirical
monotonic distribution. The alphabet size is determined
by the maximal letter that occurs in the sequence, i.e.,

. (If is unknown, one can use
Elias’ code for the integers [8] using bits to describe
. However, this is not reflected in the lower bound.) The
ML probability estimate is taken over the class of monotonic
distributions. Namely, the empirical probability (standard ML)
estimate is not in case does not satisfy the monotonicity
that defines the class . While the average case maximin
and minimax bounds of Theorem 1 also apply to ,
the bounds of Theorem 3 are tighter for the individual redun-
dancy and are obtained using individual sequence redundancy
techniques.

Proof [Theorem 3]: Using Shtarkov’s normalized max-
imum likelihood (NML) approach [37], one can assign
probability

(11)

to sequence . This approach minimizes the individual min-
imax redundancy, giving individual redundancy of

(12)

3The original submission of this paper derived a looser bound for the first
region of (10). A tighter bound was obtained using results that appeared subse-
quently to the submission of this paper in [38].
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to every , specifically achieving the individual minimax
redundancy.
It is now left to bound the logarithm of the sum in (12).

We follow the approach used in [23, Th. 2] for bounding the
redundancy for standard compression of i.i.d. sequences over
large alphabets and use the results in [38] (as well as the ap-
proximation in [1]) for a precise expression of this component.
We then adjust the result to monotonic distributions. Let

denote the occurrence counts of the
first letters of the alphabet in . Assuming is the largest
letter in , . Now, following (12),

(13)

where follows from including only sequences that have a
monotonic empirical (i.i.d. ML) distribution in Shtarkov’s sum.
Inequality follows from partitioning the sequences into
types as done in [23], first by the number of occurring symbols
, and then by the empirical distribution. Unlike standard i.i.d.
distributions though, monotonicity implies that only the first
symbols in occur, and thus the choice of out of in the
proof in [23] is replaced by 1. Like in coding patterns, we also
divide by because each type with occurring symbols can be
ordered in at most ways, where only some retain the mono-
tonicity. (Note that this step is the reason that step produces
an inequality, because more than one of the orderings may be
monotonic if equal occurrence counts occur.) Retaining only the
term yields . Then, follows from applying (15) in
[38] (see also the approximation of (13) in [1]). Finally, fol-
lows from Stirling’s approximation

(14)

The first region in (10) results directly from (13). The value
that maximizes the summand can be retained in step

instead of , for every , yielding the second region of
the bound. This concludes the proof of Theorem 3.

IV. UPPER BOUNDS FOR SMALL AND LARGE ALPHABETS

In this section, we demonstrate codes that asymptotically
achieve the lower bounds for and . We
begin with a theorem and a corollary that show the achievable
redundancies. The theorem shows a simpler bound, and the
corollary (that follows the proof of the theorem) shows a tighter,

more complex bound. The remainder of the section is devoted
to proving both theorem and corollary, by describing codes,
for which the redundancy bounds provide general bounds on
the redundancy, and bounding their redundancies. The theorem
is stated assuming no initial knowledge of . The proof first
considers the setting where is known, and then shows how
the same bounds are achieved even when is unknown in
advance, but as long as it satisfies the conditions.
Theorem 4: Fix an arbitrarily small , and let
. Then, there exists a code with length function that

achieves redundancy

(15)

,

for i.i.d. sequences generated by any source .
The bounds presented are asymptotic. Second-order terms are

absorbed in . The second region contains the first, and the last
contains the third. The first and third regions, however, have
tighter bounds for the smaller values of . The code designed
to code a sequence is a two part code [25]. First, a distribu-
tion is described, and then it is used to code . The redundancy
consists of the cost of describing the distribution and a quantiza-
tion cost. Quantization is performed to reduce description cost,
but yields the quantization cost. To achieve the lower bound,
the larger the probability parameter is, the coarser its quantiza-
tion. This approach was used in [30] and [31] to obtain upper
bounds on the redundancy for coding over large alphabets and
for coding patterns, respectively. The method in [30] and [31],
however, is insufficient here, because it still results in too many
quantization points due to the polynomial growth in quantiza-
tion spacing. Here, we use an exponential growth as the param-
eters increase. This general idea was used in [35] to improve an
upper bound on the redundancy of coding patterns. Since both
encoder and decoder know the order of the probabilities a priori,
this order need not be coded. It is thus sufficient to encode the
quantized probabilities of the monotonic distribution, and the
decoder can identify which probability is associated with which
symbol using the monotonicity of the distribution. This point,
in fact, complicates the proof, because the actual ML distribu-
tion of a given sequence may not be monotonic even if the
sequence was generated by a monotonic distribution. Since the
labels are not coded, we must quantize instead. There is no
such complication when coding patterns or sequences that obey
distribution monotonicity side information as in Section VI.
Branching several steps from the proof of Theorem 4 below

leads to the following tighter bounds on the upper regions,
which are proved following the proof of Theorem 4.
Corollary 1: Fix an arbitrarily small , and let .

Then, for , there exists a code with length function
that achieves redundancy

(16)
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for i.i.d. sequences generated by any source .
Proof [Theorem 4]: The proof treats the regions

and separately. For each region, we construct a grid
of points to which a two part code can quantize the probability
parameters. The main idea is that spacing between adjacent grid
points is “semi”-exponentially increasing. To achieve that, the
probability space is partitioned into intervals, whose length in-
creases exponentially, and within each interval a fixed number
of equally separated grid points are generated. Next, the ML
probability vector of each sequence is quantized into the points
of the grid. In the lower region, a differential code is used to
describe the number of points in the grid between two adjacent
probability parameters, starting with the smallest one. In the
upper region, the number of probability parameters quantized
to that grid point is described for every grid point. Then, the de-
scription cost, and the quantization cost are upper bounded. The
sum of these two costs constitutes the description length. The
redundancy is computed by subtracting the description length
with the true probability parameters from the description length
used. The quantized version of the true probability vector is used
as an auxiliary vector to aid in upper bounding this difference.
We start with assuming is known. Let

be a parameter (we can also choose other values). Par-
tition the probability space into intervals

(17)

Note that
. Let denote the number of prob-

abilities in that are in interval . In interval , take a grid of
points with spacing

(18)

Note that to complete all points in an interval, the spacing be-
tween two points at the boundary of an interval may be smaller.
There are intervals. Ignoring negligible integer length
constraints (here and elsewhere), in each interval, the number
of points is bounded by

(19)

where denotes the cardinality of a set. Let the grid

(20)

be a vector that takes all the points from all intervals, with
cardinality

(21)

Now, let be a monotonic probability
vector, such that , , and also
the smaller components of are either 0 or from , i.e.,

, . One can code using a two
part code, assuming the distribution governing is given by

the parameter . The code length required (up to integer length
constraints) is

(22)

where bits are needed to describe how many letter prob-
abilities are greater than 0 in , is the number of bits
required to describe the quantized points of , and the last term
is needed to encode assuming it is governed by .
The vector can be described by a code as follows. Let

be the number of nonzero letter probabilities hypothesized by .
Let denote the index of in , i.e., . Then, we will
use the following differential code. For we need at most

bits to code its index in using
Elias’ coding for the integers [8]. For , we need at most

bits
to code the index displacement from the index of the previous
parameter, where an additional 1 is added to the difference in
case the two parameters share the same index. Summing up all
components of , and taking ,

(23)

Inequality is obtained by applying Jensen’s inequality once
on the first sum, twice on the second sum utilizing the mono-
tonicity of the logarithm function, and by bounding by , and
absorbing second-order terms in the resulting term. Then,
second-order terms are absorbed in , and (21) is used to obtain
.
To code , we choose which minimizes the expression in

(22) over all , i.e.,

(24)
The pointwise redundancy for is given by

(25)

Note that the pointwise redundancy differs from the individual
one, since it is defined w.r.t. the true probability of . Thus, for
a given it may also be negative.
To bound the third term of (25), let be a monotonic version

of quantized onto , i.e., , ,
where if as well. This implies that all positive

are quantized to . Define the quantization
error,
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(26)

The quantization is performed from the smallest parameter
to the largest, where monotonicity is maintained, as well as min-
imal absolute cumulative quantization error. Thus, unless there
is cumulative error formed by many parameters ,
will be quantized to one of the two nearest grid points (one
smaller and one greater than it). It also guarantees that

, where and are the indices of the intervals in
which and are contained, respectively, i.e., and

. However, if there exists a cumulative error
due to quantization of parameters to

, this error is offset by decreasing every for by
, where is some constant, and quantizing

the value to the nearest grid point maintaining monotonicity and
minimal cumulative error. By construction, ,
and thus

(27)

where is a constant derived from .
Now, since is included in the minimization of (24), we

have, for every ,

(28)

and also

(29)

Averaging over all possible , the average redundancy is
bounded by

(30)

The second term of (30) is bounded with the bound of (23), and
we proceed with the third term

(31)

Equality is since the expectation is performed on the number
of occurrences of letter for each letter. Representing
yields equation . We use to obtain .

Equality is obtained since all the quantization displacements

must sum to 0. The first term of inequality in (31) is obtained
under a worst case assumption that for . Thus,
it is quantized to , and the bound is used.
In a different worst case scenario, we have from (27) and since
in interval , ,

(32)

where is used to derive the equation. Since ,
the second term above is absorbed in the first, leading to the
second term of inequality of (31) after aggregating elements
of the sum into intervals. The sum over of the last term of (32)
is since . This sum is absorbed into the first term
of inequality of (31). Inequality of (31) is obtained since

(33)

Inequality (33) follows since , ,
, and so on, until

(34)

The reason for these relations are the lower limits of the in-
tervals that restrict the number of parameters inside the interval.
The restriction is done in order of intervals, so that the used
probabilities are subtracted, leading to the series of equations.
Plugging the bounds of (23) and (31) into (30), we obtain

(35)

where we absorb second-order terms in . Replacing by
normalizing the redundancy per symbol by , the bound of the
second region of (15) is proved. Since can also be ab-
sorbed in , the first region is also proved. The code proposed,
however, will lead to redundancy whose second order is larger
than obtained for standard i.i.d. optimal codes that do not ex-
ploit the distribution monotonicity for fixed . This is because
the grid used here is too dense for the fixed case. One can
use the standard i.i.d. codes for tighter second-order bounds for
fixed .
We now consider the larger values of , i.e.,
. The idea of the proof is the same. However, we need to

partition the probability space to different intervals, the spacing
within an interval must be optimized, and the parameters’ de-
scription cost must be bounded differently, because now there
are more parameters quantized than points in the quantization
grid. Define the th interval as

(36)

where . Again, let de-
note the number of probabilities in that are in interval . It
could be possible to use the intervals as defined in (17), but this
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would not guarantee bounded redundancy in the rate we require
if there are very small probabilities . Note that the
smallest nonzero component of is . However, this is not
necessarily the case for . The latter may consist of smaller
nonzero probabilities for sequences that do not obey the mono-
tonicity of the distribution. Therefore, the interval definition in
(17) can be used for larger alphabets only if the probabilities of
the symbols are known to be bounded. Define the spacing in in-
terval as

(37)

where is a parameter to be optimized. Similarly to (19),
the interval cardinality here is

(38)

In a similar manner to the definition of in (20), we define

(39)

The cardinality of is

(40)

We now perform the encoding similarly to the small case,
where we allow quantization to nonzero values to the compo-
nents of up to . (This is more than needed but is pos-
sible since .) Encoding is performed similarly to the
small case. Thus, similarly to (30), we have

(41)

where the first term is due to allowing up to . Since
usually in this region (except the low end), the descrip-
tion of vectors and is done by coding the cardinality of

and , respectively, i.e., for each grid point
the code describes how many letters have probability quantized
to this point. This idea resembles coding profiles of patterns, as
done in [22]. However, unlike the method in [22], here, many
probability parameters of symbols with different occurrences
are mapped to the same grid point by quantization. The number
of parameters mapped to a grid point of is coded using Elias’
representation of the integers. Hence, in a similar manner to
(23),

(42)

.

The additional 1 term in the logarithm in is for 0 occur-
rences, is obtained similarly to step of (23), absorbing
all second-order terms in the last term. To obtain , we first

assume, for the first region, that (an assumption
that must be later validated with the choice of ). Then, second-
order terms are absorbed in . The extra factor is unnecessary
if . The second region is obtained by upper bounding
without this factor. It is possible to separate the first region into
two regions, eliminate this factor in the lower region, and obtain
a more complicated, yet tighter, expression in the upper region,
where .
Now, similarly to (31), we obtain

(43)

The first term of inequality is obtained under the assumption
that , , and . Similarly to
the last two terms of (32), we obtain an additional term
for extra offset costs of the larger probability symbols due to
many small probability symbols if they exist. For the second
term , and . Inequality is
obtained in a similar manner to inequality of (31), where the
sum is shown similarly to be .
Summing up the contributions of (42) and (43) in (41),
is shown to minimize the total cost (to first order). This

choice of also satisfies the assumption of step in (42).
Using , absorbing all second-order terms in and nor-
malizing by , we obtain the remaining two regions of the bound
in (15). It should be noted that the proof here would give a bound
of up to . If the intervals in (17) were
used for bounded distributions, the coefficients of the last two
regions will be reduced by a factor of 2.
The proof up to this point assumes that is known in ad-

vance. This is important for the code resulting in the bounds for
the first two regions because the quantization grid depends on
. Specifically, if in building the grid, is underestimated, the
description cost of increases. If is overestimated, the quan-
tization cost will increase. Also, if the code of larger ’s is used
for a smaller , a larger bound than necessary results. To solve
this, the optimization that chooses is done over all pos-
sible values of (greater than or equal to the maximal symbol
occurring in ), i.e., every greater in the first construction,
and the construction of the code for the top regions. For fixed
, a standard optimal code for nonmonotonic distributions can
also be constructed. For every small , a different construction
is done, using the appropriate to determine the spacing in each
interval. The value of yielding the shortest code word is then
used. Elias’ coding for the integers can be used to designate
with prefix bits. The analysis continues as before. This
does not change the redundancy to first order, giving all four re-
gions of the bound in (15), even if is unknown in advance.
This concludes the proof of Theorem 4.

Proof [Corollary 1]: The proof branches off the proof of
Theorem 4 by improving on several steps, and mainly on the
choice of . First, like the partitioning of the probability space
into three intervals in [35], we can partition the probability space
into two intervals here, and . (Since we can
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have probabilities smaller than , we cannot use a bottom in-
terval of here.) In the top interval, we need at most

bits to describe the monotonic ML probabili-
ties of at most symbols whose probabilities are in this in-
terval. Quantizing all these probabilities with resolution
yields additional quantization cost. (This can be shown fol-
lowing similar steps as (43) with a choice of .)
Using as the upper limit on the total number of intervals
in (36) instead of 1 now yields . It then fol-
lows, similarly to (40), that . Next,
the description costs in (42) reduce by the factor .
Combining the costs in (41), using the new description cost, the
quantization cost of (43), and absorbing the cost of the proba-
bility parameter top interval and other second-order terms in
yields

(44)

for . (Similarly, a more complex expression can be
written for .) A choice of

(45)

for some parameter minimizes (44) yielding

(46)

Taking minimizes (46), yielding
a coefficient of less than 2.3 in (46). Letting , absorbing
all second-order terms in the gap of the coefficient to 2.3 proves
the second region of (16). Using the same value of for the
resulting terms for the first region in a similar manner, proves
the first region. A slightly tighter bound can be obtained for the
first region if the value of is optimized for the specific value
of .

V. UPPER BOUNDS FOR FAST DECAYING DISTRIBUTIONS

This section shows that with some mild conditions on
the source distribution, the same redundancy upper bounds
achieved for finite monotonic distributions can be achieved
even if the monotonic distribution is over an infinite alphabet.
The key observation that leads to this result is that a distribution
that decays fast enough will result in only a small number of
occurrences of letters from its tail in . Occurrences of these
letters will likely not retain the monotonicity. Since there are
few such occurrences, they can be handled without increasing
the asymptotic behavior of the coding cost. More precisely,
fast decaying monotonic distributions can be viewed as if they
have some effective bounded alphabet size. Occurrences of
symbols outside this limited alphabet are rare. We present two
theorems and a corollary that upper bound the redundancy
when coding with such unknown monotonic distributions.
The first theorem also provides a slightly stronger bound (with
smaller coefficient) for . For slower decays with more
occurring symbols from the distribution tail, the redundancy
order does increase due to the penalty of identifying these
symbols in a sequence. However, we show, consistently with
the results in [11], that as long as the entropy of the source is

finite, a universal code, in the sense of diminishing redundancy
per symbol, still exists. We begin with stating the two theorems
and the corollary, then the proofs are presented. The section is
concluded with three examples of typical monotonic distribu-
tions over the integers, that demonstrate both cases of fast and
slow decays.

A. Upper Bounds

We begin with some notation. Fix an arbitrary small ,
and let . Define as the effective alphabet
size, where . (Note that .) Let

(47)

o.w.

Theorem 5:
I. Fix an arbitrarily small , and let . Let be
generated by an i.i.d. monotonic distribution . If
there exists , such that

(48)

then, there exists a code with length function , such
that

(49)

for the monotonic distribution .
II. If there exists for which , such

that

(50)

then, there exists a universal code with length function
, such that

(51)

Theorem 5 shows that redundancy bounds of the same
order as those obtained for finite alphabets are achievable for
monotonic distributions that decay fast enough (with effective
alphabet that does not exceed symbols for a fixed ).
Specifically, very fast decaying distributions, although over in-
finite alphabets, may even behave like monotonic distributions
with symbols. The condition in (48) merely means
that the cost that a code would incur in order to code very
rare symbols, that are larger than the effective alphabet size, is
negligible w.r.t. the total cost obtained from other, more likely,
symbols. Note that for , the bound is tighter than that
of the last region of Theorem 4, and a constant of 4/9 replaces
2/3. The second part of the theorem states that if the decay is
slow, but the cost of coding rare symbols is still diminishing
per symbol, a universal code still exists for such distributions.
However, in this case the redundancy will be dominated by
coding the rare (out of order) symbols.
Applying the additional steps used to prove Corollary 1 to the

proof of the first part of Theorem 5 yields a tighter expression
for the second region of in (47), which for fixed is
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. While Theorem 5 bounds the redundancy
decay rate for two extremes, a more general theorem can pro-
vide the redundancy rates for coding an unknown monotonic
distribution whose decay rate is between these extremes. As the
examples at the end of this section show, the next theorem is
very useful for slower decaying distributions. It also encapsu-
late the derivation of a tighter bound as that in Corollary 1 for
the more general case.
Theorem 6: Fix an arbitrarily small , and let .

Let be generated by an i.i.d. monotonic distribution
. Then, there exists a code with length function , that

achieves redundancy

(52)

for coding sequences generated by the source .
The theorems above lead to the following corollary.
Corollary 2: As , sequences generated by monotonic

distributions with are universally compressible
in the average sense.
Corollary 2 shows that sequences generated by finite entropy

monotonic distributions can be compressed in the average with
diminishing per symbol redundancy. This result is consistent
with the results shown in [11].
We continue with proving the two theorems and the corollary.
Proof: The proof of both theorems is constructive in a sim-

ilar manner to the proof of Theorem 4. This time, however, the
main idea is first separating the more likely symbols from the
unlikely ones. The code first determines the point of this sepa-
ration . (Note that can be greater than 1.) All symbols

are considered likely and are quantized and described in
a similar manner as in the codes for smaller alphabets. Unlike
bounded alphabets, though, a more robust grid is used here to
allow larger values of . The unlikely symbols are coded hierar-
chically. They are first merged into a single innovation symbol.
Then, they are encoded within this symbol by coding their ac-
tual values. As long as the decay is fast enough, the average cost
of conveying these symbols becomes negligible w.r.t. the cost
of coding the likely symbols. If the decay is slower, but still fast
enough, as the case described in condition (50), the coding cost
of the rare symbols dominates the redundancy, which is still di-
minishing. The description length of likely symbols is bounded
as in the proof of Theorem 4, consisting of description of the
probability grid points and the quantization cost. In order to de-
termine the best value of for a given sequence, all values are
tried and the one yielding the shortest description is used for
coding a specific . The steps described prove both Theorems
5 and 6.
Let determine the number of likely symbols in the

alphabet. For a given , define

(53)

as the total probability of the remaining symbols. Given ,
and , a probability

(54)

can be computed for , where counts occurrences of
symbol in , and is the count of all symbols
greater than in . This probability mass function clusters
all symbols greater than into one innovation symbol. Then, it
uses the ML estimate of each to distinguish among them in the
clustered symbol.
For every , we can define a quantization grid , in a sim-

ilar manner to the proof of Theorem 4, for the first compo-
nents of . If , we use , where is the
grid defined in (20) with replacing . Otherwise, we can use
the definition of in (39). However, to obtain tighter bounds
for large , we define a different grid for the larger values of
following similar steps to those in (36)–(40). First, define the
th interval as

(55)

where as defined above, is a pa-
rameter, and as before. Within the th interval,
we define the spacing in the grid by

(56)

As in (38),

(57)

and the total number of intervals to describe probabilities less
up to is

(58)

As in the proof of Corollary 1, we use bits to de-
scribe and quantize probabilities greater than . Similarly
to (39), is defined as

(59)

The cardinality of is thus

(60)
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An th order quantized version of is obtained by quan-
tizing , onto , such that
for these values of . Then, the remaining cluster probability
is quantized into . The parameter is
constrained by the quantization of the other parameters. Quanti-
zation is performed again in a manner that minimizes the cumu-
lative error but retains monotonicity, and probabilities smaller
than are offset by larger symbols as before.
Now, for any , let be any monotonic probability

vector of cardinality whose last components are
quantized into (or coded separately in the upper interval

if such values exist), and let
be a quantized value of the innovation symbol, such that

, where is the th component of .
If , , and are known, a given can be coded using

as defined in (54), with replacing ,
and the components of replacing the first components
of . However, in the universal setting, none of these parameters
are known in advance. Furthermore, neither the symbols greater
than nor their conditional ML probabilities are known in
advance. Therefore, the total cost of coding using these
parameters requires universality costs for describing them.
The additional universality cost of coding with probability

thus consists of the following five compo-
nents: 1) should be described using Elias’ representation
with at most bits. 2) The value
of in its quantization grid should be coded using bits.
3) The components of require bits. 4) The
number of distinct letters in greater than is
coded using bits. 5) Each letter in is coded.
Elias’ coding for the integers using
bits can be used, but to simplify the derivation we can also use
the code, also presented in [8], that uses no more than
bits to describe . In addition, at most bits are required
for describing in . For , , and
arbitrarily small, this yields a total cost of

(61)

where we assume is large enough to bound the cost of de-
scribing by .
The description cost of for is bounded by

(62)

using (23) with replacing . The factor in (23) can be
absorbed in since we limit to , unlike the derivation

in (23). For larger values of , we describe symbol probabilities
of in the grid in a similar manner to the description of

symbol probabilities in the grid in the proof of Corollary
1. Similarly to (42), we have

(63)

where the term absorbs the cost of probabilities larger
than . To obtain inequality , we first multiply by
in the numerator of the argument of the logarithm. This is only
necessary for to guarantee that . Substituting
the bound on from (60), absorbing second-order terms in the
leading yields the bound.
A sequence can now be coded using the universal param-

eters that minimize the sequence description length, i.e.,

(64)

where the minimization over also includes values larger than
, using their designated description. The values and
are the true source parameters quantized in the manner de-

scribed above, and the inequality holds for every . The min-
imization on should be performed only up to the maximal
symbol that occurs in .
Following (61)–(64), up to negligible integer length con-

straints, the average redundancy using is bounded, for
every , by

(65)

where follows from (64), and follows from averaging
on (61) with , and with the average on

absorbed in the leading .
Expressing as

(66)
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and defining , the first term of (65) is bounded,
for the upper region of , by

(67)

where is since for the third term, the conditional ML proba-
bility used for coding is greater than the actual conditional prob-
ability assigned to all letters greater than for every . Hence,
the third term is bounded by 0. Expectation is performed for the
other terms. Inequality is obtained similarly to (31) where
quantization includes the first components of and the pa-
rameter . Then, inequality follows the same reasoning as
step of (43). The first term bounds the worst case in which
all symbols are quantized to with .
The second term is obtained where and

for , and as be-
fore. Offsetting of probabilities smaller than , if required, re-
sults, similarly to (27), in where

is some constant, and adds negligibly to both terms. The
last term of is since and . Finally,

is obtained similarly to step of (43), where as in (33),
. For , the same initial steps

up to step in (67) are applied. The remaining steps in (31)
are then applied with replacing , yielding a total quantiza-
tion cost of .
To bound the third and fourth terms of (65),

(68)
Similarly,

(69)

Combining the dominant terms of the third and fourth terms of
(65), we have

(70)

where is because ,
is because for , , and follows

from (68). Given for an arbitrary fixed , the resulting
coefficient above is upper bounded by some constant .
Summing up the contributions of the terms of (65) from (31),

(62), and (70), absorbing second-order terms in a leading , we
obtain that for ,

(71)
For the second region, substituting , and summing
up the contributions of (67), (63), and (70) to (65), absorbing
second-order terms in , we obtain

(72)

Using the value of in (45) instead would yield a tighter ex-
pression of for the first term, and then the
value of can be optimized to minimize the leading coefficient.
Since (71) and (72) hold for every , there exists for
which the minimal bound is obtained. To bound the redundancy,
we choose this . Now, if the condition in (48) holds, then the
second term in (71) and (72) is negligible w.r.t. the first term.
Absorbing it in a leading , normalizing by , yields the upper
bound of (49), and concludes the proof of the Part I of Theorem
5.
For Part II of Theorem 5, we consider the bound of the second

region in (72). If there exists for which
the condition in (50) holds, then both terms of (72) are of ,
yielding a total redundancy per symbol of . The proof of
Theorem 5 is concluded.
Now, consider the upper region in (65) with parameters

and taking any valid value. (The code leading to the bound
of the upper region can be applied even if the actual effective
alphabet size is in the lower region.) We can sum up the contri-
butions of (67), (63), and (70) to (65), absorbing second-order
terms in . Equation (63) is valid without the middle term as
long as . Since, in the upper region of , is
large enough, Elias’ code for the integers can be used costing

to code , with which can be made ar-
bitrarily small. Hence, the leading coefficient of the bound in
(70) can be replaced by . This yields the ex-
pression bounding the redundancy in (52). This expression ap-
plies to every valid choice of and , including the choice
that minimizes the expression. Thus, the proof of Theorem 6
is concluded.
To prove Corollary 2, we use Wyner’s inequality [41], which

implies that for a finite entropy monotonic distribution

(73)

Fix an arbitrarily small . Since the sum on the left-hand
side of (73) is finite if is finite, there must exist some
such that . Let , then for
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and , using Theorem 6 with any , we obtain
for some fixed constant . The proof of

Corollary 2 is concluded.

B. Examples

We demonstrate the use of the bounds of Theorems 5 and
6 with three typical distributions over the integers. We specifi-
cally show that the redundancy rate of bits overall
is achievable when coding sequences generated by many of the
typical monotonic distributions, and, in fact, for many distri-
butions faster convergence rates are achievable with the codes
proposed. The examples render the assumption reflected in con-
ditions (48) and (50), that very few large symbols appear in ,
very practical. Specifically, in the phone book example, there
may be many rare names, but only very few of them may occur
in a certain city. The more common names can constitute most
of a possible phone book sequence.
1) Zipf Distribution: Consider the monotonic distributions

over the integers [42], [43] of the form

(74)

where , and is a normalization coefficient that guaran-
tees that the probabilities over all integers sum to 1. Approxi-
mating summation by integration, we can show that

(75)

(76)

where the last equality holds for with some fixed
. For and fixed , the sum in (48) is thus

, which is (and even
if the tighter form of the bound is con-

sidered) for every , thus satisfying the negligibility
condition (48) at least relative to the second region of (47).
As long as (slow decay), the minimal value of re-
quired to guarantee negligibility of the sum in (48) is greater
than 1/3. Using Theorem 5, this implies that for , the
second (upper) region of the upper bound in (49) holds with
the minimal choice of . Plugging in this value
in the second region of (47) [i.e., in (49)] yields the upper
bound shown below for this region. For , .
Hence, (48) holds for . This means that for the
distribution in (74) with , the effective alphabet size is

, and thus the achievable redundancy is in the first re-
gion of the bound of (49). Thus, even though the distribution is
over an infinite alphabet, its compressibility behavior is similar
to a distribution over a relatively small alphabet. To find the
exact redundancy rate, we balance between the contributions
of (62) and (70) in (65). As long as , condition (48)
holds, and the contribution of rare letters in (70) is negligible
w.r.t. the other terms of the redundancy. Equality, implying

, achieves the minimal redundancy rate. Thus,
for ,

(77)

where the first term in follows from the bounds in (70) and
(76), with , and the second term from that in (62), and
follows from . Note that for a fixed , the

factor 3 in the first term can be reduced to 2 with Elias’ coding
for the integers. The results described are summarized in the
following corollary.
Corollary 3: Let be defined in (74). Then, there

exists a universal code with length function that has only
prior knowledge that , that can achieve universal coding
redundancy

(78)

Corollary 3 gives the redundancy rates for all distributions
defined in (74). With a tighter form of the bound (choosing
as in (45) and applying to Theorem 6), a tighter bound of

can be obtained for the first region.
Using the looser bound of Corollary 3, if, for example, ,
the redundancy is bits overall with coefficient
1/6. For , bits are required. For faster de-
cays (greater ) even smaller redundancy rates are achievable.
2) Geometric Distributions: Geometric distributions given

by

(79)

where , decay even faster than the Zipf distribution in
(74). Thus, their effective alphabet sizes are even smaller. This
implies that a universal code can have even smaller redundancy
than that presented in Corollary 3, when coding sequences gen-
erated by a geometric distribution (even if this is unknown in ad-
vance, and the only prior knowledge is that ). Choosing

, the contribution of low probability symbols in
(70) to (65) can be upper bounded by

(80)

where follows from computing using geometric series,
and bounding the second term, and follows from substituting

and representing as . As
long as , the expression in (80) is ,
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thus negligible w.r.t. the redundancy upper bound of (49) with
. Substituting this

in (49), we obtain the following corollary.
Corollary 4: Let be a geometric distribution defined

in (79). Then, there exists a universal code with length func-
tion that has only prior knowledge that , that can
achieve universal coding redundancy

(81)

Corollary 4 shows that if parameterizes a geometric distri-
bution, sequences governed by can be coded with average
universal coding redundancy of bits. Their effec-
tive alphabet size is , implying that larger symbols are
very unlikely to occur. For example, for , the effec-
tive alphabet size is , and bits are required for
a universal code. For , the effective alphabet size is

, and bits are required by a universal code.
3) Slow Decaying Distributions Over the Integers: Up

to now, we considered fast decaying distributions, which all
achieved the redundancy rate. We now consider
a slowly decaying monotonic distribution over the integers,
given by

(82)

where and is a normalizing factor (see, e.g., [14], [32],
[33]). This distribution has finite entropy only if (but
is a valid infinite entropy distribution for ). Unlike the
previous distributions, we need to use Theorem 6 to bound the
redundancy for coding sequences generated by this distribution.
Approximating the sum with an integral, the order of the third
term of (52) is

(83)

In order to minimize the redundancy bound of (52), we define
. For the minimum rate, all terms of (52) must be bal-

anced. To achieve that, we must have

(84)

The solution is and . Substituting
these values in the expression of (52), with , results in the
first term in (52) dominating, and yields the following corollary.
Corollary 5: Let be defined in (82) with . Then,

there exists a universal code with length function that has
only prior knowledge that , that can achieve universal
coding redundancy

(85)

In a similar manner to the Zipf distribution, the tighter form
of the general upper bound can be used, reducing the
term to (with a different leading coefficient).

Due to the slow decay rate of the distribution in (82), the ef-
fective alphabet size is much greater here. For , for ex-
ample, it is . This implies that very large symbols are
likely to appear in . As increases though, the effective al-
phabet size decreases, and as , . The redun-
dancy rate increases due to the slow decay. For , it is

. As , since the distribution tends to
decay faster, the redundancy rate tends to the finite alphabet rate
of . However, as the decay rate is slower

, a nondiminishing redundancy rate is approached. Note
that the proof of Theorem 6 does not limit the distribution to a
finite entropy one. Therefore, the bound of (85) applies, in fact,
also to . However, for , the per-symbol re-
dundancy is no longer diminishing.

VI. INDIVIDUAL SEQUENCES

In this section, we show that if we have side information of
the monotonicity of the distribution governing an individual
sequence (i.e., its ML distribution), we can universally com-
press the individual sequence as well as (and even better than)
the average case. We next show that in this case the lower
bound of Theorem 3 is asymptotically achieved. Moreover,
the upper bound derived here for the upper region is tighter
than the bounds obtained in Theorem 4 and Corollary 1 for
the average case. The reason is that, with the additional side
information that , we restrict the smallest nonzero
symbol probability to . This is not the case in the average
case, where symbols from a long tail of the distribution can
have unordered occurrences in a given sequence. For a specific
sequence, we can have , but we still need to describe

for that sequence. The distributions may have
probability parameters smaller than for symbols
and , where (recalling the assumption that for

, we must have ).
The side information assumed restricts the set of allowable

sequences to those which obey the monotonicity, omitting all
sequences for which from the set considered. This
means that the class considered is smaller than the class con-
sidered for the lower bound in Theorem 3. However, in proving
Theorem 3, all sequences that do not obey the monotonicity are
excluded from the Shtarkov sum [step of (13)], essentially
rendering the bound also as a bound on the class containing only
sequences that obey the monotonicity requirement.
If one assumes some monotonicity on the symbol probabili-

ties, but the observed sequence diverges from this assumption,
the code proposed can still be used to describe the probabilities
of the symbols that obey the monotonicity. An additional de-
scription is added as a prefix to the code to describe the number
of symbols that do not obey themonotonicity, and then
bits are used for each such symbol to describe its occurrence
count. If the maximal symbol in is , as long as sym-
bols are out of order for or symbols are out
of order for greater , the additional cost of coding the sym-
bols violating the monotonicity is negligible. The method de-
scribed below can thus still be used. Moreover, it can be shown
(see, e.g., [34]) that as long as the largest symbol is polynomial
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in and there are not too many symbols larger than , dimin-
ishing redundancy w.r.t. the monotonic ML probability can
be achieved coding any such . However, this result does not
imply cheaper total description length than the one using the
true ML of , as the loss in using instead of may dom-
inate over the redundancy savings.
Finally, the class of the distributions of all sequences with
symbols that obey the monotonicity is identical to the class

of the distributions of all patterns with indices for a given .
The Shtarkov sum on theML sequence probabilities is not equal
in these cases because the pattern ML sequence probability is
the sum over the probabilities of all permutations of these se-
quences. However, the method used for describing the ML i.i.d.
distribution within this class can be used to derive tight bounds
for coding patterns. (Bounding the quantization cost for pat-
terns, on the other hand, is more complicated.) This was not the
case when addressing the average case, as the description cost
in the average case for monotonic distributions is more compli-
cated due to the use of the monotonic ML over all sequences,
including those not obeying the monotonicity. This section is
concluded with the theorem that upper bounds the individual
sequence redundancy and its proof.
Theorem 7: Fix an arbitrarily small , and let .

Let be a sequence for which , i.e., . Let
be the number of letters occurring in . Then, there ex-

ists a code that achieves individual sequence redundancy
w.r.t. for which is upper bounded by

(86)

.

Note that by the monotonicity constraint, the number of sym-
bols occurring in also equals to the maximal symbol in
. Since, in the individual sequence case, this maximal symbol

defines the class considered and also to be consistent with The-
orem 3, we use to characterize the alphabet size of a given
sequence. Since is monotonic, .

Proof [Theorem 7]: The proof enhances on that of The-
orem 4 and Corollary 1. Both regions of the proof apply here,
where instead of quantizing to , we quantize to in a
similar manner, and do not need to average over all sequences.
Instead of using any general to code , we can use without
any additional optimizations, where bits describe . The
first two regions of (86) are then proved similarly to these re-
gions in Theorem 4.
To prove the bounds of the upper regions, which are tighter

than those of Corollary 1, we make several modifications based
on now using three major intervals (as in [35]) instead of two.
To describe , using parameter , describe the components of
separately for three intervals , , and

. For the bottom interval, use bits to describe
all probability parameters in this interval. For each of the

points in this interval use at most bits to describe the mul-
tiplicity of these values in . The top interval consists of at most
probability parameters. Use at most bits to describe the

value of each. For both intervals, no quantization is necessary,
and the components of are identical to those of .
As in [35], the middle interval is the one in which the pa-

rameters need to be quantized. Partition this interval into
smaller intervals, in a similar manner to (17)

(87)

where and coincide with the end points of the large
middle interval. This results in . Partition
each interval into grid points with the spacing

(88)

Similarly to (40), this yields

(89)

grid points. Following a similar derivation to that in (42), the
description cost of is bounded by

(90)

where the description cost of the upper and lower large intervals
is absorbed in second-order terms, and the second factor
in the upper region results from due to the lower
limit of the middle large interval.
The number of symbols with parameters in small interval

is upper bounded by , then,
, and so on. Similarly to (33), we have

(91)

Thus, following (43) and using (87) and (88), the quantization
cost can be upper bounded by

(92)

There is thus a factor of 2 reduction over (43) because of the
increased lower limit of the first point of quantized parameters.
Combining (90) and (92) for the second region of (90)

(93)
Choosing from (45) yields

(94)
for this region. Taking minimizes (94),
resulting in coefficient of less than 0.4 in (94). Letting ,
absorbing all second-order terms in the gap of the coefficient to
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0.4 proves the last region of (86). Using the same value of
for the resulting terms for the third region in a similar manner,
proves the third region. A slightly tighter bound can be obtained
for the third region if the value of is optimized for the specific
value of .

VII. SUMMARY AND CONCLUSION

Universal compression of sequences generated by monotonic
distributions was studied. We showed that for finite alphabets,
if one has the prior knowledge of the monotonicity of a distri-
bution, one can reduce the cost of universality. For alphabets
of letters, this cost reduces from bits per
each unknown probability parameter to bits per
each unknown probability parameter. Otherwise, for alphabets
of letters, one can compress such sources with overall re-
dundancy of bits. This is a significant decrease in
redundancy from or bits overall that can be
achieved if no side information is available about the source
distribution. Redundancy of bits overall can also be
achieved for much larger alphabets including infinite alphabets
for fast decaying monotonic distributions. Sequences generated
by slower decaying distributions can also be compressed with
diminishing per-symbol redundancy costs under somemild con-
ditions and specifically if they have finite entropy rates. Exam-
ples for well-known monotonic distributions demonstrated how
the diminishing redundancy decay rates can be computed by ap-
plying the bounds that were derived. The general results were
shown to also apply to individual sequences whose empirical
distributions obey the monotonicity. The techniques used for in-
dividual sequences can also be applied to bounding redundancy
coding patterns.

APPENDIX

A. Proof of Theorem 1

The proof follows the same steps used in [30] and [31] to
lower bound the maximin redundancies for large alphabets
and patterns, respectively, using the weak version of the re-
dundancy-capacity theorem [6]. This version ties between the
maximin universal coding redundancy and the capacity of a
channel defined by the conditional probability . We
define a set of points . Then, show that these
points are distinguishable by observing , i.e., the probability
that generated by appears to have been generated
by another point diminishes with . Then, using
Fano’s inequality [4], the number of such distinguishable points
is a lower bound on . Since ,
it is also a lower bound on the average minimax redundancy.
The two regions in (6) result from a threshold phenomenon,
where there exists a value of that maximizes the lower
bound, and can be applied to all for .
We begin with defining . Let be a vector of grid com-

ponents, such that the last components , ,

of must satisfy . Let be the th point in ,
and define and

(A.1)

Then, for the th point in ,

(A.2)

To count the number of points in , let us first consider the
standard i.i.d. case, where there is no monotonicity requirement,
and count the number of points in , which is defined similarly,
but without the monotonicity requirement (i.e., ). Let
be the index of in , i.e., . Then, from (A.1) and

(A.2) and since the components of are probabilities

(A.3)

It follows that for ,

(A.4)

Hence, since the components are nonnegative integers

(A.5)

where is the volume of a dimensional

sphere with radius , follows from monotonic de-
crease of the function in the integrand for all integration ar-
guments, and follows since its left-hand side computes the
volume of the positive quadrant of this sphere. Note that this
is a different proof from that used in [30] and [31] for this step.
Applying the monotonicity constraint, all permutations of that
are not monotonic must be taken out of the grid. Hence,

(A.6)

where dividing by is a worst-case assumption, yielding a
lower bound and not an equality. This leads to a lower bound
equal to that obtained for patterns in [31] on the number of
points in . Specifically, the bound achieves a maximal

value for and then decreases to eventually
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become smaller than 1. However, for , one can consider
a monotonic distribution for which all components ; ,
of are zero, and use the bound for .
Distinguishability of is a direct result of distin-

guishability of , which is shown in Lemma 3.1 in [30]. The
lemma states the following: there exits an estimator

for which the estimate satisfies

for all . Since this is true for all points in , it is also true
for all points in , where now, . Assuming
all points in are equally probable to generate , we can

define an average error probability

. Using the redundancy-capacity
theorem,

(A.7)

where denotes the capacity of the channel be-
tween and the observation , and is the mu-
tual information induced by the joint distribution

. Inequality follows from the definition of capacity,
equality from the uniform distribution of in , in-
equality from Fano’s inequality, and follows since
. Lower bounding the expression in (A.6) for the two regions
(obtaining the same bounds as in [31]), then using (A.7), nor-
malizing by , and absorbing second-order terms in , yields
the two regions of the bound in (6). The proof of Theorem 1 is
concluded.

B. Proof of Theorem 2

To prove Theorem 2, we use the random-coding strong ver-
sion of the redundancy-capacity theorem [19]. The idea is sim-
ilar to the weak version used in Appendix A. We assume that
grids of points are uniformly distributed over , and
one grid is selected randomly. Then, a point in the selected grid
is randomly selected under a uniform prior to generate . The
random choice of a grid and then of a source in the grid must
uniformly cover the whole space . Showing distinguisha-
bility within a selected grid, for every possible random choice
of , implies that a lower bound on the cardinality of
for every possible choice is essentially a lower bound on the
overall sequence redundancy for most sources in .
The construction of is identical to that used in [31]

to construct a grid of sources that generate patterns. We pack
spheres of radius in the parameter space defining

. The set consists of the center points of the spheres.
To cover the space , we randomly select a random shift of
the whole lattice under a uniform distribution. The cardinality
of is lower bounded by the relation between the volume

of , which equals (as shown in [31]) , and the
volume of a single sphere, with factoring also of a packing den-
sity (see, e.g., [3]). This yields (55) in [31]

(B.1)

where is the volume of a dimensional
sphere with radius (see, e.g., [3] for computation of
this volume).
For distinguishability, it is sufficient to show that

there exists an estimator such that

for every choice of

and for every choice of . This is already shown in
[30, Lemma 4.1] for a larger grid of i.i.d. sources, which
is constructed identically to over the complete
dimensional probability simplex. The lemma states the fol-
lowing: let be a randomly selected point in a grid .
Let a random sequence be governed by . Then,
there exists a decision rule that chooses a point ,

such that . By the mono-

tonicity requirement, for every , there exists an i.i.d. ,
such that . Since [30, Lemma 4.1] holds for , it
then must also hold for the smaller grid . Now, since
all the conditions of the strong random-coding version of the
redundancy-capacity theorem hold, taking the logarithm of
the bound in (B.1), absorbing second-order terms in , and
normalizing by , leads to the first region of the bound in (8).
By [19, Th. 3], since for any fixed arbitrarily small we
have , then, ,
thus completing the proof for the first region of the bound.
The second region of the bound is handled in a manner re-

lated to the second region of the bound of Theorem 1. How-
ever, here, we cannot simply set the probability of all symbols

to zero, because all possible valid sources must be in-
cluded in one of the grids to achieve a complete covering
of . As was done in [31], we include sources with
for in the grids , but do not include them in the
lower bound on the number of grid points. Instead, for ,
we bound the number of points in a -dimensional cut of
for which the remaining components of are very small
(and insignificant). This analysis is valid also for . In
proving distinguishability, however, we must take into account
the effect of the additional sources in the grid, and make sure
that the existence of these sources in does not lead to
nondiminishing error probability. Lemma 6.1 in [31] shows that

for for i.i.d. non-

monotonically restricted grid of sources . The proof is given
in [31, Appendix D]. As before, it carries over to monotonic
distributions, since as before, for each , there exists an un-
restricted corresponding , such that . The choice of

gives the maximal bound w.r.t. . Since,
again, all conditions of the strong version of the redundancy-ca-
pacity theorem are satisfied, the second region of the bound is
obtained. This concludes the proof of Theorem 2.
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