
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013 7525

Dynamic Index Coding for Wireless
Broadcast Networks

Michael J. Neely, Arash Saber Tehrani, and Zhen Zhang

Abstract—We consider a wireless broadcast station that trans-
mits packets to multiple users. The packet requests for each user
may overlap, and some users may already have certain packets.
This presents a problem of broadcasting in the presence of side
information, and is a generalization of the well-known (and un-
solved) index coding problem of information theory. We repre-
sent the problem by a bipartite demand graph. Uncoded trans-
mission is optimal if and only if this graph is acyclic. Next, we de-
fine a code-constrained capacity region that restricts attention to
any prespecified set of coding actions. A dynamic max-weight al-
gorithm that acts over variable length frames is developed. The al-
gorithm allows for randompacket arrivals and supports any traffic
inside the code-constrained capacity region. A simple set of codes
that exploit cycles in the demand graph are shown to be optimal
for a class of broadcast relay problems.

Index Terms—Network coding, optimization, queuing analysis.

I. INTRODUCTION

C ONSIDER a wireless broadcast station that transmits
packets to wireless users. Packets randomly arrive

to the broadcast station. Each packet is desired by one or
more users in the set . Further, there may be one or
more users that already have the packet stored in their cache.
The broadcast station must efficiently transmit all packets to
their desired users. We assume time is slotted with unit slots

, and that a single packet can be transmitted
by the broadcast station on every slot. This packet is received
error-free at all users. We assume that only the broadcast station
can transmit, so that users cannot transmit to each other.
If the broadcast station has packets at time 0, and no more

packets arrive, then the mission can easily be completed in
slots by transmitting the packets one at a time. However, this
approach ignores the side-information available at each user. In-
deed, it is often possible to complete the mission in fewer than
slots if packets are allowed to be mixed before transmission. A
simple and well-known example for two users is the following:
suppose user 1 has packet but wants packet , while user 2

Manuscript received December 06, 2011; revised August 24, 2012; accepted
August 01, 2013. Date of publication August 27, 2013; date of current version
October 16, 2013. This work was supported in part by the NSF Career under
Grant CCF-0747525, in part by NSF Grant 0964479, and in part by the Net-
work Science Collaborative Technology Alliance sponsored by the U.S. Army
Research Laboratory W911NF-09-2-0053. This paper was presented in part at
the IEEE INFOCOM conference, Orlando, FL, USA, 2012.
The authors are with the Electrical Engineering Department, University of

Southern California, Los Angeles, CA 90089 USA (e-mail: mjneely@usc.edu;
arash.saber.tehrani@gmail.com; zhzhang@usc.edu).
Communicated by F. Baccelli, Associate Editor for Communication

Networks.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2013.2279876

has packet but wants packet . Sending each packet individ-
ually would take 2 slots, but these demands can be met in just
one slot by transmitting the mixed packet , the bitwise
XOR of and . Such examples are introduced in [2]–[4] in
the context of wireless network coding.
The general problem, where each packet is contained as side

information in an arbitrary subset of the users, is much more
complex. This problem is introduced by Birk and Kol in [5] and
[6], and is known as the index coding problem. Methods for
completing a general index coding mission in minimum time
are unknown. However, the recent work [7] shows that if one re-
stricts to a class of linear codes, then the minimum time is equal
to the rank of the minimum rank matrix that solves a certain ma-
trix completion problem. Unfortunately, the matrix completion
problem is NP-hard in general. NP-hardness results for index
coding over binary fields are shown in [8]. Work in [9] shows
that linear index coding is equivalent to certain difficult prob-
lems in matroid theory as well as to linear network coding for
multihop networks. However, such network coding problems
are known to be difficult even to approximate [10].
Overall, optimal (linear or nonlinear) index coding seems to

be intractable. Nevertheless, it is important to develop system-
atic approaches to these problems. That is because current wire-
less cellular systems cannot handle the huge traffic demands that
are expected in the near future. This is largely due to the consis-
tent growth of wireless video traffic. Fortunately, much of the
traffic is for popular content. That is, users often download the
same information. Thus, it is quite likely that a system of
users will have many instances of side information, where some
users already have packets that others want. This naturally cre-
ates an index coding situation. Thus, index coding is both rich
in its mathematical complexity and useful for supporting future
wireless traffic.
The problem considered in this paper is even more complex

because packets can arrive randomly over time. This is a prac-
tical scenario and creates the need for a dynamic approach to
index coding. We assume there are traffic types, where a type
is defined by the subset of users that desire the packets and the
subset that already has the packets. Let be the arrival rate,
in packets/slot, for type traffic. We approach this problem by
restricting coding actions to an abstract set . We then show
how to achieve the code constrained capacity region , being
the set of all rate vectors that can be supported
using coding actions in the set . The set is typically a strict
subset of the capacity region , which does not restrict the type
of coding action. Our work can be applied to any set . Hence,
it can be used with any desired codes, including scalar linear
[7], vector linear [11], nonlinear [12], and heuristics based on
set clusterings and graph colorings (see, for example, [8], [13]).

0018-9448 © 2013 IEEE

7526 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

However, we focus attention on a simple class of codes that only
use bitwise XOR operations and that exploit cycles in a demand
graph. In special cases of broadcast relay problems, we show
these codes can achieve the full capacity region . We also con-
sider a class of Reed–Solomon erasure codes [14] for extended
problems.
Prior work in [15] develops an achievable rate region for

index coding under a restricted class of linear pollution-free
coding schemes. The solution is a linear program with known
traffic rates, and does not consider a dynamic setting where data
arrives randomly with unknown rates. Our framework can be
applied to dynamic versions of the problem in [15] by defining
the set to be those coding actions that satisfy the pollution-free
requirement. However, one can achieve a larger region simply
by adding more coding actions to . For example, the simple
three-cycle XOR coding action, described in Section II-C, does
not meet the pollution-free requirement but is important for
achieving capacity in a large class of broadcast relay networks.
The capacity region is directly related to the conceptually

simpler static problem of clearing a fixed batch of packets in
minimum time. Further, index coding concepts are most easily
developed in terms of the static problem. Thus, this paper is di-
vided into two parts: we first introduce the index coding problem
in the static case, and we describe example coding actions in that
case. Section III extends to the dynamic case and develops two
max-weight index coding techniques, one that requires knowl-
edge of the arrival rates , and one that does not.
The max-weight algorithms developed in this paper are new and
contribute to the general theory of dynamic scheduling. They
can be used in other types of networks where controllers make
sequences of actions, each action taking a different number of
slots and delivering a different vector of packets.
While the static index coding problem has been studied be-

fore [5]–[7], our work provides new insight even in the static
case. We introduce a new directed bipartite demand graph that
allows for arbitrary demand subsets and possibly “multiple mul-
ticast” situations, where some packets are desired by more than
one user. We also form a useful weighted compressed graph that
facilitates the solution to the minimum clearance time problem
in certain cases. This extends the graph models in [7], which
do not consider the possibility of multiple multicast sessions.
Work in [7] develops a maximum acyclic subgraph bound on
clearance time for problemswithoutmultiplemulticast sessions.
We extend this bound to our general problem using a different
and independent proof technique. Further, we consider a class of
broadcast relay problems for which the bound can be achieved
with equality.
The next section introduces index coding in the static case,

shows its relation to a bipartite demand graph, and presents the
acyclic subgraph bound. Section III introduces the general dy-
namic formulation and develops our max-weight algorithms.
Section IV considers an important class of broadcast relay net-
works for which a simple set of codes are optimal.

II. STATIC MINIMUM CLEARANCE TIME PROBLEM

This section introduces the index coding problem in the static
case, where we want to clear a fixed batch of packets in min-
imum time. Consider a wireless systemwith users, packets,

Fig. 1. Example directed bipartite demand graph with three users and five
packets.

and a single broadcast station. We assume and are positive
integers. Let and represent the set of users and packets,
respectively,

The broadcast station has all packets in the set . Each user
has an arbitrary subset of packets , and wants to

receive an arbitrary subset of packets . Assume
, where represents the empty set. Assume that all

packets consist of bits, all packets are independent of each
other, and the -bit binary string for each packet is uniformly
distributed over each of the possibilities.
We can represent this system by a directed bipartite demand

graph defined as follows (see Fig. 1):
1) User nodes are on the left.
2) Packet nodes are on the right.
3) A directed link from a user node to a packet
node exists if and only if user has packet . That
is, if and only if .

4) A directed link from a packet node to a user
node exists if and only if user wants to receive
packet . That is, if and only if .

As an example for the three-user, five-packet graph of Fig. 1,
the have and receive sets for nodes 1 and 2 are

We restrict attention to packets that at least one node wants.
Thus, without loss of generality, throughout we assume the
graph is such that all packet nodes contain at least one
outgoing link. Thus,

(1)

In this static problem, the broadcast station has all packets in
the set at time 0, and no more packets ever arrive. Every slot

the broadcast station can transmit one -bit
message over the broadcast channel. This message is received
without error at all of the user nodes in the set . The goal is
for the broadcast station to send messages until all nodes receive
the packets they desire.

NEELY et al.: DYNAMIC INDEX CODING FOR WIRELESS BROADCAST NETWORKS 7527

Define a mission-completing coding action with slots to
be a sequence of messages that the broadcast station transmits
over the course of slots, such that all users are able to decode
their desired packets at the end of the slots. We restrict at-
tention to deterministic zero-error codes that enable correct de-
coding with probability 1. The initial information held by each
user is given by the set of packets (possibly empty).
Let represent the messages transmitted
by the broadcast station over the course of the slot coding ac-
tion. At the end of this action, each node has information

. Because the coding action is assumed to complete
the mission, this information is enough for each node to de-
code its desired packets . That is, we can write

(2)

where the above represents equivalence in the information set,
meaning that the information on the left-hand side can be per-
fectly reconstructed from the information on the right-hand side,
and vice versa. Clearly the information on the left in (2) is a
subset of the information on the right, and hence can trivially
be reconstructed. The information on the right in (2) can be re-
constructed from that on the left because the code is mission-
completing.
For a given graph with packet nodes, define as

the minimum clearance time of the graph, being the minimum
number of slots required to complete the mission, considering
all possible coding techniques (including nonlinear codes).
Clearly, . Our goal is to understand .
For a directed graph, we say that a simple directed cycle of

length is a sequence of nodes such that
is a link in the graph for all ,
is a link in the graph, and all nodes in-

volved in the cycle are distinct. For simplicity, throughout this
paper we use the term cycle to represent a simple directed cycle.
We say that the graph is acyclic if it contains no cycles. Note
that directed acyclic graphs have a much different structure than
undirected acyclic graphs. Indeed, the graph in Fig. 1 is acyclic
even though its undirected counterpart (formed by replacing all
directed links with undirected links) has cycles.
Our first result is to prove that if the directed bipartite de-

mand graph is acyclic, then coding cannot reduce the min-
imum clearance time. A related result was proven in [7] using
a different graph structure for the special case without “mul-
tiple multicasts,” so that each packet is desired by at most one
user. That result uses an argument based on machinery of the
mutual information function. It also treats a more general case
where codes can have errors. Further, it is developed as a con-
sequence of a more general and more complex result. Our paper
restricts to zero-error codes, but allows the possibility of mul-
tiple-multicast sessions.We also use a different proof technique,
developed independently, which emphasizes the logical conse-
quences of users being able to decode their information. Our
proof uses only the following two facts.
Fact 1: Every directed acyclic graph with a finite number of

nodes has at least one node with no outgoing links. Such a node
is called a “leaf” node.

Fact 2: If the graph contains only one user node, then
, where is the number of packets that this user

desires.
Fact 1 follows simply by starting at any node in the graph and

traversing a path from node to node, using any outgoing link,
until we find a leaf node (such a path cannot continue forever
because the graph is finite and has no cycles). Fact 2 is a basic
information theory observation about the capacity of a single
error-free link.
Theorem 1: If the graph is acyclic, then ,

where is the total number of packets in the graph.
Proof: See Appendix A.

As an example, because the graph in Fig. 1 is acyclic, we
have . Theorem 1 shows that coding cannot help if
is acyclic, so that the best one can do is just transmit all packets

one at a time. Therefore, any type of coding must exploit cycles
on the demand graph.

A. Lower Bounds From Acyclic Subgraphs

Theorem 1 provides a simple lower bound on for
any graph . Consider a graph , and form a subgraph by
performing one or more of the following pruning operations:
1) Remove a packet node, and all of its incoming and out-
going links.

2) Remove a user node, and all of its incoming and outgoing
links.

3) Remove a packet-to-user link .
After performing these operations, we must also delete any
residual packets that have no outgoing links. Any sequence of
messages that completes the mission for the original graph
will also complete the mission for the subgraph . This leads
to the following simple lemma.
Lemma 1: For any subgraph formed from a graph by

one or more of the above pruning operations, we have

Combining this lemma with Theorem 1, we see that we can
take a general graph with cycles, and then perform the above
pruning operations to reduce to an acyclic subgraph . Then,

is lower bounded by the number of packets in this sub-
graph. Thus, the best lower bound corresponds to the acyclic
subgraph generated from the above operations, and that has
the largest number of remaining packets. Note that the above
pruning operations do not include the removal of a user-to-
packet link (without removing either the entire user or
the entire packet), because such links represent side informa-
tion that can be helpful to the mission.

B. Cyclic Code Actions

Because the general index coding problem is difficult, it is
useful to restrict the solution space to consider only sequences of
simple types of coding actions. Recall that coding actions must
exploit cycles. One natural action is the following: suppose there
is a cycle in that involves a subset of users. For simplicity,
label the users . In the cycle, user 2 wants to receive
a packet that user 1 has, user 3 wants to receive a packet

7528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

that user 2 has, and so on. Finally, user 1 wants to receive a
packet that user has. The structure can be represented by

(3)

where an arrow from one user to another means the left user has
a packet the right user wants. Of course, the users in this cycle
may want many other packets, but we are restricting attention
only to the packets . Assume these packets are all
distinct.
In such a case, we can satisfy all users in the cycle with the

following transmissions: for each ,
the broadcast station transmits a message ,
where addition represents the mod-2 summation of the bits in
the packets. Each user receives its desired in-
formation by adding to its side information

Finally, user 1 performs the following computation (using the
fact that it already has packet):

Thus, such an operation can deliver packets in only
transmissions. We call such an action a -cycle coding ac-
tion. We define a 1-cycle coding action to be a direct transmis-
sion. Note that 2-cycle coding actions are the most “efficient,”
having a packet/transmission efficiency ratio of , compared
to for , which approaches 1 (the efficiency of
a direct transmission) as . While it is generally subop-
timal to restrict to such cyclic coding actions, doing so can still
provide significant gains in comparison to direct transmission.
Further, we show in Section IV that such actions are optimal for
certain classes of broadcast relay problems.

C. Edge-Disjoint Cycles

Consider any bipartite demand graph with users and
packets. Define a multicast packet as a packet node that
has more than one outgoing edge (so that this packet must be
delivered to more than one user). Define a unicast packet as
a packet node that has only one outgoing edge. Con-
sider any collection of distinct edge-disjoint cycles in that in-
volve only unicast packets. Define the size of the collection as
the number of cycles in the collection. Note that no two cycles
in this collection can share a packet node. That is because any
unicast packet has exactly one outgoing edge, so two cycles that
share the packet must also share that edge (and hence cannot be
edge-disjoint). Define as the size of the largest collection
of edge-disjoint cycles in that involve only unicast packets.
Lemma 2: Cyclic coding actions can be used to achieve a

clearance time of , and hence

Proof: Identify a collection of edge-disjoint cycles
that do not involve any multicast packets. Define as the
number of packets in the th cycle of this collection. For each
cycle , use a -cycle coding action to deliver all packets of
this cycle using slots. This takes slots.
Since none of these packets is a multicast packet, none have to
be delivered to any additional users. There are
remaining packets, and these can be delivered sequentially
using direct (uncoded) transmission. This completes the mis-
sion in the following time:

Lemma 3: If all distinct cycles of are edge-disjoint and
involve only unicast packets, then

Proof: Lemma 2 shows that . It re-
mains to show the reverse inequality. If , then is
acyclic and by Theorem 1. Otherwise, prune
to form an acyclic graph as follows: there are cy-
cles. For each cycle, choose a single packet that participates
in the cycle. All of these chosen packets are distinct.
Delete all of these packets (and their corresponding incoming
and outgoing links) to form a pruned graph . This pruned
graph is acyclic and has exactly packets, and so

by Theorem 1. However, these pruning
operations ensure by Lemma 1.
Appendix E presents additional clearance time results in

terms of a weighted compressed graph that involves
only user nodes.

D. Simple Coding Gain Analysis

Here, we present a coding gain analysis for a randomly
formed graph . Consider a system where each user desires a
single unicast packet, and independently has each other packet
in its cache with probability . Let represent the
set of users and let represent the set of packets.
Assume each user desires only packet ,
and has packet in its cache with probability (indepen-
dently for each). Assume is even, and consider the
following -step method for greedily finding a collection
of edge-disjoint 2-cycles:
1) Step 1: Define as the set of all users . Define

. Greedily select any 2-cycle that involves user
and exactly one other user . If such a 2-cycle
exists, define and define .
Else, define and define .

2) Step : Define as the lowest index user
in the set . Greedily select any 2-cycle that involves user
and another user . If such a 2-cycle exists,

define and define . Else,
define and define .

At each step , the set consists of users
that have not been pairwise tested for a 2-cycle on any previous
step. This algorithm finds a collection of distinct 2-cycles,

NEELY et al.: DYNAMIC INDEX CODING FOR WIRELESS BROADCAST NETWORKS 7529

Fig. 2. Expected reduction ratio bound for greedy 2-cycle coding.

where . All 2-cycles involve distinct user nodes
and hence they are edge-disjoint. This method does not neces-
sarily produce the largest collection of edge-disjoint cycles, and
so . Taking expectations gives

Two particular users and can be used to form a 2-cycle if
the graph has edges and . The probability of
this is , and this event is independent over different user pairs.
Then, . Further, at each step

, the set has at least users
(including user), and so for each we have

Thus,

Since we have edge-disjoint 2-cycles, we can use 2-cycle
coding actions to reduce the number of required transmissions
from to . This gives a reduction ratio of

. Thus, the expected value of this ratio satisfies the
following upper bound:

For any , the upper bound converges to as .
Fig. 2 plots this upper bound as a function of for different
values of . For example, if , the upper bound is 0.8930
for (ensuring at least a 10.7% improvement for this
case), and is 0.5497when (ensuring at least a 45.03%
improvement for this case).

E. Examples of Stronger Coding Actions

Improvements beyond a factor of 2 can be achieved by con-
sidering stronger coding actions. Here is a simple but important
example: suppose user 1 wants packet and has packets and
, user 2 wants packet and has packets and , and user 3

wants packet and has packets and . These demands can
be fulfilled with the single transmission , being a
binary XOR of packets , , . The efficiency ratio of this ac-
tion is , which is larger than the efficiency of any -cycle
coding action.
A more general class of actions involve multicasting to

a cluster of users: let be a set of distinct packets.
Let be the set of users who desire at least one packet
in the set . For each user , define as the
number of packets in that user already has as side
information, so that . Define

. Reed–Solomon erasure coding
over finite fields can be used to correctly deliver all packets
to all users in the cluster with slots [14]. This
can also be done using random codes with a success probability
that can be made arbitrarily close to 1 by choosing a suitably
large field size [16]. This type of coding is used in the partition
multicast index coding heuristic in [17].

III. DYNAMIC INDEX CODING

Now consider a dynamic setting where the broadcast sta-
tion randomly receives packets from traffic flows. Each flow

contains fixed-length packets that must be de-
livered to a subset of the users, and these packets are con-
tained as side-information in a subset of the users. Assume

, since a user who wants a particular
packet clearly does not already have this packet as side informa-
tion. In the general case, can be the number of all possible
disjoint subset pair combinations. However, typically the value
of will be much smaller than this, such as when each traffic
flow represents a stream of packets from a very large file, and
there are only active file requests.
Assume time is slotted with unit slots , and

let be the number of packets that
arrive from each flow on slot . For simplicity of exposition,
assume the vector is i.i.d. over slots with expectation

where is the arrival rate of packets from flow , in units
of packets/slot. Assume that second moments of are
bounded for each flow . Packets of each flow are stored
in a separate queue kept at the broadcast station, and exit the
queue upon delivery to their intended users.
We now segment the timeline into variable length frames,

each frame consisting of an integer number of slots. At the
beginning of each frame , the network controller chooses
a coding action within an abstract set of possible
actions. For each , there is a frame size and a
clearance vector . The frame size is the number of
slots required to implement action , and is assumed to be a

7530 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

positive integer. The clearance vector has components
, where is the number of type

packets delivered as a result of action . We assume is a
nonnegative integer. When frame ends, a new frame starts and
the controller chooses a (possibly new) action . We
assume each coding action only uses packets that are delivered
as a result of that action, so that there is no “partial information”
that can be exploited on future frames. We further assume there
are a finite (but arbitrarily large) number of coding actions in
the set , and that there are positive numbers and
such that and for all

.
Assume that frame 0 starts at time 0. Define , and for

define as the slot that starts frame . Let
be the queue backlog vector at the

beginning of each frame . Then,
for all , and

(4)

where is the number of type arrivals during
frame :

(5)

The operator in the queue update (4) in principle al-
lows actions to be chosen independently of the queue
backlog at the beginning of a frame. In this case, if the action

attempts to deliver one or more packets from queues that
are empty, null packets are created and delivered. In practice,
these null packets do not need to be delivered.
Our focus is on index coding problems with action sets

defined by a specific set of coding options, such as the set of all
cyclic coding actions. For example, an action that is a 2-cycle
coding action that uses packets of type and has
and being a binary vector with 1s in entries and and
zeros elsewhere. However, the above model is general and can
also apply to other types of problems, such asmultihop networks
where actions represent some sequence of multihop
network coding.

A. Code-Constrained Capacity Region

We say that queue is rate stable if

It is not difficult to show that is rate stable if and only if
the arrival rate is equal to the delivery rate of type traffic
[18]. The code-constrained capacity region is the set of all
(nonnegative) rate vectors for which there exists
an algorithm for selecting over frames that makes all
queues rate stable.

Theorem 2: A (nonnegative) rate vector is in the code-con-
strained capacity region if and only if there exist probabili-
ties such that and

(6)

Proof: The proof that such probabilities necessarily
exist whenever is given in Appendix B. Below we
prove sufficiency. Suppose such probabilities exist that
satisfy (6). We want to show that . To do so, we design
an algorithm that makes all queues in (4) rate stable. By
rate stability theory in [18], it suffices to design an algorithm
that has a frame average arrival rate to each queue that
is less than or equal to the frame average service rate (both in
units of packets/frame).
Consider the algorithm that, every frame , indepen-

dently chooses action with probability . Let
represent this random action chosen on frame . Then,

is an i.i.d. sequence, as is for
each . By the law of large numbers, the frame
average arrival rate and the frame average service

(both in packets/frame) are equal to the following with
probability 1:

We thus have for each :

where the final inequality follows by (6).

B. Max-Weight Queuing Protocols

Theorem 2 shows that all traffic can be supported by a sta-
tionary and randomized algorithm that independently chooses
actions with probability distribution . This does
not require knowledge of the queue backlogs. However, com-
puting probabilities that satisfy (6) would require knowl-
edge of the arrival rates , and is a difficult computational
task even if these rates are known. We provide two dynamic al-
gorithms that use queue backlog information. These can also be
viewed as online computation algorithms for computing prob-
abilities . Both are similar in spirit to the max-weight ap-
proach to dynamic scheduling in [19], but the variable frame
lengths require a new approach that contributes to the general
theory of dynamic scheduling.
Our first algorithm assumes knowledge of the arrival

rates .
Max-Weight Code Selection Algorithm 1 (Known): At the

beginning of each frame , observe the queue backlogs
and perform the following:
1) Choose coding action as the maximizer of

(7)

where ties are broken arbitrarily.

NEELY et al.: DYNAMIC INDEX CODING FOR WIRELESS BROADCAST NETWORKS 7531

2) Update the queue equation via (4).
The next algorithm uses a ratio rule, and does not require

knowledge of the rates :
Max-Weight Code Selection Algorithm 2 (Unknown): At

the beginning of each frame , observe the queue backlogs
and perform the following:

1) Choose coding action as the maximizer of

(8)

where ties are broken arbitrarily.
2) Update the queue equation via (4).
Theorem 3: Suppose that . Then, all queues are rate

stable under either of the two algorithms above.
Proof: See Appendix C.

It can further be shown that if there is a value such that
, and if , being a -scaled version of , then

both algorithms give average queue size . Thus, the
average backlog bound increases to infinity as the arrival rates
are pushed closer to the boundary of the capacity region. This
is proven in Appendix D.
A related situation of variable frame lengths is treated in [20]

for selecting variable-size coding schemes for transmission over
a single point-to-point channel. It uses semi-Markov decision
theory to develop a delay-optimal threshold rule. The threshold
is approximated by truncating the state space of the queue and
using knowledge of the arrival probability distribution to per-
form value iterations. That method cannot be extended to mul-
tiqueue systems without a curse of dimensionality. However,
Algorithm 2 above can be applied to a multiqueue version of
the problem in [20] to yield stability with average
queue bounds, without requiring precomputations or knowledge
of the arrival rates. Of course, Algorithm 2 does not necessarily
optimize average delay.

C. Implementation for Cyclic Coding

Consider using the above algorithms in the special case when
all packets are unicast packets and the set consists of di-
rect transmissions and cyclic coding actions. Fix . A
-cycle coding action must specify both the cycle of users

involved and the particular packet that each user sends. Con-
sider a -cycle of users given by

Let be the packets chosen. Then, is contained
as side information at user 1 and desired by user 2, is
contained as side information at user 2 and desired by user 3,
and so on. All packets are unicast and are desired
by different users, and hence are from distinct sessions. Let

be the corresponding sessions. Define as the
set of sessions in that involve packets contained
as side information at user 1 and desired by user 2. Define

as the set of sessions in that involve packets
contained as side information at user 2 and desired by user 3,
and so on. Then, we must choose sessions so that

for all . The value of (8) for this
-cycle coding action is

Given the particular cycle of users, the above value is max-
imized over all possible session choices by greedily choosing

for each . The
value is then compared across different cycles of users and
different choices of . A similar greedy selection can be done
for maximizing the expression (7).

D. Implementation for Cluster Multicast Coding

Consider the cluster multicast coding actions described in
Section II-F, which use Reed–Solomon erasure coding [14].1

From the queues, choose a cluster of queues and label
this set . We can send a single packet from each queue in the
set using slots. This is a max-weight varia-
tion on the partition multicast method for index coding in [17].
The max-weight expression of Algorithm 2 for this cluster on
frame is

(9)

E. Example Simulation for 3 Users

Define as the action space that restricts to direct transmis-
sions, 2-cycle coding actions, 3-cycle coding actions, and the
1-slot coding action described in Section II-F. Fig. 3
presents simulation results for this action space and for a system
with . We simulate algorithms 1 and 2 and com-
pare against uncoded transmissions. All packets are intended
for at most one user. Packets intended for user
arrive as independent Bernoulli processes with identical rates
. We assume each packet is independently in the cache of the
other two users with probability . Thus, there are four
types of packets intended for user 1: Packets not contained as
side information anywhere, packets contained as side informa-
tion at user 2 only, packets contained as side information at user
3 only, and packets contained as side information at both users 2
and 3. Users 2 and 3 similarly have four traffic types, for a total
of traffic types.
Each data point in Fig. 3 represents a simulation over 5 mil-

lion frames at a given value of . The figure plots the resulting
total average number of packets in the system (summed over
all 12 queues). The case of direct (uncoded) transmission is
also shown. Uncoded transmission can support a maximum rate
of (for a total traffic rate of 1). It is seen that algo-
rithms 1 and 2 can significantly outperform uncoded transmis-
sion, achieving stability at rates up to (for a total traffic
rate of 1.71). Remarkably, Algorithm 2 yields slightly less av-
erage backlog than Algorithm 1, even though it does not use
traffic arrival rates . While not shown in the figure, it is in-
teresting to note that when the coding option was

1Alternatively, we could use random coding as in [16] if the system can tol-
erate a small but nonzero error probability.

7532 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

Fig. 3. Simulation of dynamic index coding for a three user system. Average
system backlog is in units of packets and includes all queues in the system.

Fig. 4. Sample path of total backlog for Algorithm 2 over 50 000 frames. Sta-
tistics change halfway through the simulation. The dashed horizontal lines are
the average backlogs associated with the two different sets of statistics.

removed from the set , the vertical asymptote for algorithms
1 and 2 was at rather than .
Because Algorithm 2 does not require arrival rate informa-

tion, it is highly adaptive to unexpected changes. Fig. 4 illus-
trates a sample path of total average backlog under Algorithm
2 in a scenario where the traffic changes halfway through the
simulation. The simulation is over 50 frames. In the first
half of the simulation, the arrival rate is and the
cache probability is the same as before (). In the second
half, the arrival rate increases to and the cache proba-
bility for packets intended for user 1 decreases to (the
cache probabilities for traffic intended for the other users do not
change). The algorithm quickly adapts and the average backlog
settles into the larger value associated with the new statistics.

F. Example Simulation for 50 Users

Fig. 5 shows a simulation for 50 users using the cluster mul-
ticasting technique with Reed–Solomon erasure codes (as de-
scribed in Section III-D). Specifically, the coding action space
restricts to using erasure codes on clusters of size 1, 2, 3, and

4. There are 50 sessions. Packets arrive from each session ac-
cording to independent Bernoulli processes with rate . Each
user wants packets from a distinct session. At time 0, the side
information at each user is drawn randomly and independently
with probability for each of the other sessions that it

Fig. 5. Simulation over frames of cluster multicast coding for 50 users and
side information probability .

Fig. 6. Illustration of a 2-user broadcast relay system, with the three possible
transmission modes shown. In mode 3, packet is received at both users.

does not desire. Results are plotted for the case . The
case of uncoded transmission is also plotted. The simulation
shows that erasure coding increases throughput by roughly 80%
in this example.

IV. BROADCAST RELAY NETWORKS

Consider now the following related problem: there are again
users and a single broadcast station. However, the broadcast

station initially has no information, and acts as a relay to transfer
independent unicast data between the users. Further, the users
only know their own data, and initially have no knowledge of
data sourced at other users. Time is again slotted, and every slot
we can choose from one of modes of transmission. The
first transmission modes involve an error-free packet trans-
mission from a single user to the relay. The th transmis-
sion mode is where the relay broadcasts a single packet that is
received error-free at each of the users. Fig. 6 illustrates an
example system with two users, where the three possible trans-
mission modes are shown. For simplicity, we assume the user
transmissions cannot be overheard by other users, and the users
first send all packets to the relay. The relay then canmake coding
decisions for its downlink transmissions.

A. Minimum Clearance Time Relay Problem

First consider a static problem where a batch of packets must
be delivered in minimum time. Let represent the number
of packets that user wants to send to user , where

. All packets are independent, and the total number
of packets is , where

NEELY et al.: DYNAMIC INDEX CODING FOR WIRELESS BROADCAST NETWORKS 7533

Fig. 7. (a) Graph with three edge-disjoint cycles, and (b) its pruned
graph .

This problem is related to the index coding problem as follows:
suppose on the first slots, all users send their packets to the
relay on the uplink channels. It remains for the relay to send all
users the desired data, and these users have side information.
The resulting side information graph is the same as in the
general index coding problem. However, it has the following
special structure: the only user that has side information about
a packet is the source user of the packet. Specifically,
1) Each packet is contained as side information in exactly one
user. Thus, each packet node of has a single incoming
link from some user that is its source.

2) Each packet has exactly one user as its destination. Thus,
each packet node of has a single outgoing link to some
user that is its destination.

This special structure leads to a simplified graphical model
for demands, which we call the weighted compressed graph

of . The graph is formed from as follows: it
is a directed graph defined on the user nodes only, and con-
tains a link if and only if the original graph specifies that
user node has a packet that user node wants. Further, each
link is given a positive integer weight , the number
of packets user wants to send to user . It is easy to show
that is acyclic if and only if is acyclic. Hence, coding
can only help if contains cycles, and so
whenever is acyclic.
We say the weighted compressed graph has edge-

disjoint cycles if each of its links participates in at most one
simple cycle. An example is shown in Fig. 7. Consider such a
graph that has edge-disjoint cycles. Let be the min-
weight link on each edge-disjoint cycle .
Theorem 4: If the broadcast relay problem has a weighted

compressed graph with edge-disjoint cycles, then

(10)

and so the full clearance time (including the uplink transmis-
sions) is the above number plus . Further, optimality can be
achieved over the class of cyclic coding actions, as described in
Section II-C.
As an example, the graph in Fig. 7(a) has ,

three edge-disjoint cycles with , ,
, and so .
Proof (Theorem 4): First prune the graph by re-

moving the min-weight link on each of the edge-disjoint cycles

(breaking ties arbitrarily). This removes the corresponding
packets from the original graph to produce a new graph
with exactly packets. The weighted com-
pressed graph is the subgraph of with the
min-weight links on each edge-disjoint cycle removed [see
Fig. 7(a) and (b)]. Both and are acyclic, and so

It remains only to construct a coding algorithm that achieves this
lower bound. This can be done easily by using separate
cyclic coding actions for each of the edge-disjoint cycles (using
a -cycle coding action for any cycle of length), and then
directly transmitting the remaining packets.
A subgraph of is a graph on the same nodes but

with some link weights set to 0. The following lemma shows
that the number of packets in any acyclic subgraph of
is a lower bound on the minimum clearance time.
Lemma 4: Let be the weighted compressed graph for

a broadcast relay problem with demand graph . If an acyclic
subgraph of contains packets, then .

Proof: The proof is similar to that of Theorem 4 and
omitted for brevity.

B. Traffic Structure and Optimality of Cyclic Coding

Suppose we have a broadcast relay problem with users,
packet matrix , and with the following additional struc-
ture: each user wants to send data to only one
other user. That is, the matrix has at most one nonzero entry
in each row . We now prove the resulting graph

has edge-disjoint cycles. To see this, suppose it is not
true. Then, there are two different cycles that share a link
that leads to a link for cycle 1 and for cycle 2, where

. This means node has two outgoing links, a contradic-
tion because matrix has at most one nonzero entry in row
, and hence at most one outgoing link from node . We con-
clude that has edge-disjoint cycles, and so cyclic coding
is optimal via Theorem 4.
A similar argument holds if each user wants to receive from

at most one other user, so that has at most one nonzero entry
in every column. Again, has edge-disjoint cycles, and
so cyclic coding is optimal.

C. Optimality for

This section proves that cyclic coding is optimal for broad-
cast relay networks when there are only two or three users, re-
gardless of the number of packets and the side information con-
figurations. Assume there are users (the case
follows as a special case when link weights into and out of node
3 are set to 0). The first panel of Fig. 8 illustrates the general
graph for the case . The link weights are for

(), where are nonnegative integers.
The number of packets is . We construct
a clearance time procedure that involves only direct transmis-
sion, 2-cycle coding actions, and 3-cycle coding actions. If the
3-node graph has edge-disjoint cycles, we are done (re-
call Theorem 4).

7534 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

Fig. 8. Illustration of the general broadcast relay graph with
users, and the two cases required for the proof.

Consider now the general case where cycles might share
edges. Define , , as the weight of the
min-weight link for each of the three possible 2-cycles

Now prune the graph by removing the min-weight link
for each 2-cycle. This results in a graph with three
nodes and (at most) three links, and with a total number of
packets equal to , as shown in
Cases 1 and 2 in the figure. We have two cases.
Case 1: The resulting graph is acyclic. An example

of this case is shown as case 1 in Fig. 8. Thus, we know
. This

clearance time bound can be achieved by using 2-cycle coding
actions on each of the three 2-cycles, and then transmitting the
remaining packets uncoded.
Case 2: The resulting graph consists of a single

3-cycle. The cycle must either be clockwise or counter-clock-
wise. Without loss of generality, assume clockwise (see Fig. 8,
case 2 part 1). Note that

(11)

This is because we have formed by removing the min-
weight link on each of the three 2-cycles.
Let , so that is a

nonnegative integer. Without loss of generality, assume the min
value for is achieved by link , so that .
To , add back the link (with weight), and
remove the link , to yield a graph that is an
acyclic subgraph of the original graph , as shown in case
2 part 2 of Fig. 8. The acyclic subgraph contains ex-
actly packets. Thus, the minimum clearance
time of the original graph is at least .
However, this can easily be achieved. Do the following: Per-
form 2-cycle coding actions on each of the three 2-cycles of the

original graph , to remove a number of packets on each
cycle equal to the min weight link of that cycle. This removes

packets in slots (recall
the three min weights are given by (11)). Then perform 3-cycle
coding actions to remove packets in slots. Then, perform
direct transmission to remove the remaining packets, being a
total of . The total number
of transmissions is

and so the above scheme is optimal.

D. Dynamic Broadcast Relay Scheduling

Now consider the dynamic case where packets from source
user and destination user arrive with rate packets/slot.
Suppose we have an abstract set of coding actions , where
each action involves a subset of packets, and first transmits these
packets to the relay before any coding at the relay. Let
be the number of slots to complete the action, and be
the matrix of packets delivered by the action. It can be shown
that capacity can be approached arbitrarily closely by repetitions
of minimum-clearance time scheduling on large blocks of the
incoming data (similar to the capacity treatment in [12] for a
limit of large packet size). Hence, if can be optimally
solved using only cyclic-coding actions, then capacity is also
achieved in the max-weight algorithms when is restricted to
cyclic-coding actions. It follows that such actions are optimal
for rate matrices with at most one nonzero entry per row,
and for rate matrices with at most one nonzero entry per
column.
Similarly, it follows that cyclic coding is optimal for the case

of or . Thus, Theorem 2 establishes the full
capacity region in those cases. The case yields a
2-D capacity region (being the set of all supportable 2 2 rate
matrices with zeros on the diagonal). The case yields a
6-D capacity region (being the set of all supportable 3 3 rate
matrices with zeros on the diagonal).

E. Counterexamples

Can we minimize clearance time by grabbing any available
2-cycle, then any available 3-cycle if no 2-cycle is available,
and so on? Not necessarily. A simple counterexample is
shown in Fig. 9(a). The graph has five users and seven packets

, where each link has a single packet. Using the
middle 3-cycle by transmitting and

leaves a remaining acyclic graph with four packets,
and hence would take four more transmissions, for a total
of six slots. However, using the two side cycles (with two
transmissions each) and then transmitting the remaining packet
clears everything in five slots, which is optimal because the

NEELY et al.: DYNAMIC INDEX CODING FOR WIRELESS BROADCAST NETWORKS 7535

Fig. 9. Two example graphs for broadcast relay problems.

maximum acyclic subgraph has five packets (just remove links
and).
One may wonder if all broadcast relay graphs can be opti-

mally cleared with cyclic coding. Section IV-C shows this is
true for and . However, this is not true in gen-
eral. Fig. 9(b) shows a counterexample with . Suppose
each link has a single packet, so that we have nine packets

. It can be shown that the maximum acyclic sub-
graph has seven packets, and so , but the best
cyclic coding method uses eight slots. Here is a way to achieve
seven slots: send messages , ,

, , , ,
. The decodings at users are

straightforward by combining their side information with just
a single message. The decoding at user 1 is done as follows:

. Since user 1 knows ,
it can decode . , since user 1
knows it can get .

V. CONCLUSION

This paper presents a dynamic approach to index coding. This
problem is important for future wireless communication where
instances of side information can be exploited. While optimal
index coding for general problems seems to be intractable, this
paper develops a code-constrained capacity region that restricts
actions to a prespecified set of codes. Two max-weight algo-
rithms were developed that support randomly arriving traffic
whenever the arrival rate vector is inside the code-constrained
capacity region. The first algorithm requires knowledge of the
rate vector, and the second does not. Simulations verify network
stability up to the boundary of the code-constrained capacity re-
gion and illustrate improvements in both throughput and delay
over uncoded transmission.
It was shown that, for coding to provide gains in compar-

ison to direct transmission, it must exploit cycles in the demand
graph. A simple set of codes based on cycles was considered
and shown to be optimal (so that the code-constrained capacity
region is equal to the unconstrained capacity region) for certain
classes of problems. This was proven by providing coding tech-
niques that match a fundamental acyclic subgraph bound. These
results add to the theory of information networks, and can be
used to improve efficiency in communication systems.

APPENDIX A
PROOF OF THEOREM 1

Proof (Theorem 1): We already know that
. It suffices to show that . Consider any mis-

sion-completing coding action that takes slots. We show that
. Let be the sequence of messages transmitted. Then,

every node is able to decode its desired packets, being
packets in the set , from the information , being
the information it has at the end of the coding action. That is,
we have

(12)

Because the graph is acyclic, there must be at least one node
with no outgoing links (by Fact 1). Choose such a node, and
label this node . The node cannot be a packet node, be-
cause we have assumed that all packet nodes have outgoing
links. Thus, . Because node has no outgoing links,
it has and thus has no initial side information about
any of the packets. Thus, it is able to decode all packets in the
set by the messages alone. That is

(13)

We want to show that this node can decode all packets in the
set , so that

(14)

If we can show that (14) holds, then the sequence of messages
is also sufficient to deliver independent packets to node
, and node did not have any initial side information about

these packets. Thus, the number of slots used in the coding
action must be at least by Fact 2, proving the result. Thus, it
suffices to prove (14).
We prove (14) by induction on , for :

assume that there is a labeling of distinct user nodes
such that

(15)

This property holds for the base case by (13). We now as-
sume that (15) holds for a general , and prove
it must also hold for . Take the graph , and delete the user
nodes , also deleting all links outgoing from and
incoming to these nodes. This may create packet nodes with no
outgoing links: delete all such packet nodes. Note that all deleted
packet nodes (if any) must be in the set , being
the set of packets desired by the users that are deleted. The re-
sulting subgraph must still be acyclic, and hence it must have a
node with no outgoing links. This node must be a user
node, as we have deleted all packet nodes with no outgoing
links.
Because the user node has no outgoing links, it either

had (so that it never had any outgoing links), or all
of its outgoing links were pointing to packet nodes that we have
deleted, and so those packets were in the set .
That is, we must have . Therefore,

(16)

7536 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

However, at the end of the coding action, node has exactly
the information on the left-hand side of (16), and hence this
information is sufficient to decode all packets in the set .
Thus, the information on the right-hand side of (16) must also
be sufficient to decode , so that

But this together with (15) yields

which completes the induction step.
By induction over , it follows that

(17)

However, by relabeling we have

(18)

where the final equality holds by (1). Combining (17) and (18)
proves (14).

APPENDIX B
PROOF OF NECESSITY FOR THEOREM 2

Let be a sequence of actions, chosen over frames,
that makes all queues rate stable. We show there must
exist probabilities that satisfy (6). For each positive integer
and each , define and as the

following averages over the first frames:

where is defined in (5). Now define
as the set of frames that use action ,
and define as the number of these frames, so that

. We then have

(19)

(20)

The set is finite. Thus, the values can
be viewed as an infinite sequence of bounded vectors (with en-
tries indexed by and dimension equal to the size of set)
defined on the index , and hence must have
a convergent subsequence. Let represent the sequence of
frames on this subsequence, so that there are values for
all such that

Further, by (20) we have for all :

(21)

Likewise, from (19) and the law of large numbers (used
over each for which , and
noting that is i.i.d. with mean for all

) we have with probability 1:

(22)

Because for all and all , and
for all , the same holds for the

limiting values . That is, for all , and
. Because each queue is rate stable, we

have with probability 1 that for all :

(23)

However, from the queue update (4) we have for all
:

Summing the above over and dividing
by yields

Taking a limit as and using (21)–(23) yields

(24)

This proves the result.

APPENDIX C
PROOF OF THEOREM 3

We first prove rate stability for Algorithm 2, which uses a
ratio rule. The proof for Algorithm 1 is simpler and is given
after. We have the following preliminary lemma.

Lemma 5 (Sufficient Condition for Rate Stability [21]): Let
be a nonnegative stochastic process defined over the inte-

gers . Suppose there are constants , ,
such that for all frames we have

(25)

(26)

Then, with probability 1.
The condition (25) is immediately satisfied in our system be-

cause second moments of queue changes over any frame are
bounded. Thus, to prove rate stability, it suffices to show that
(26) holds for all queues and all frames. That is, it suffices
to prove the second moment of queue backlog grows at most
linearly.

NEELY et al.: DYNAMIC INDEX CODING FOR WIRELESS BROADCAST NETWORKS 7537

For each frame , define the following
quadratic function , called a Lyapunov function:

Define the Lyapunov drift .
Lemma 6: Under any (possibly randomized) decision for

that is causal (i.e., that does not know the future values
of arrivals over the frame), we have for each frame :

where is a finite constant that satisfies

Such a finite constant exists because second moments of ar-
rivals and service over a frame are bounded.

Proof: For simplicity of notation, define
, and . The queue update

equation is thus

For any nonnegative values we have

Using this and squaring the queue update equation yields

Summing over all , dividing by 2, and taking conditional ex-
pectations yields

(27)
Now note that2

(28)

Plugging this identity into (27) proves the result.
We now prove that Algorithm 2 yields rate stability.
Proof (Theorem 3—Stability Under Algorithm 2): Suppose

that Algorithm 2 is used, so that we choose in every frame
via (8). We first claim that for each frame and for all possible
we have

(29)

2Equality (28) uses causality and the i.i.d. nature of the arrival process. It is
formally proven by conditioning on and using iterated expectations.

where is any other (possibly randomized) coding action
that could be chosen over the options in the set . This can be
shown as follows: suppose we want to choose via a
possibly randomized decision, to maximize the ratio of expecta-
tions in the left-hand side of (29). Such a decision would satisfy
(29) by definition, since it would maximize the ratio of expec-
tations over all alternative policies . However, it is known
that such a maximum is achieved via a pure policy that chooses
a particular with probability 1 (see [18, Ch. 7]). The
best pure policy is thus the one that observes the queue back-
logs and chooses to maximize the deterministic
ratio, which is exactly how Algorithm 2 chooses its action [see
(8)].
Thus, (29) holds. We can rewrite (29) as follows:

(30)

We can thus plug any alternative (possibly randomized) decision
into the right-hand side of (30). Consider the randomized

algorithm that independently selects every frame, inde-
pendent of queue backlogs, according to the distribution in
Theorem 2. Let represent the randomized decision under
this policy. Then, from (6) we have for all :

(31)

where the last equality holds because is chosen indepen-
dently of . Using this in (30) yields

Rearranging terms above yields

(32)

Plugging (32) into the drift bound of Lemma 6 yields

Taking expectations and using the definition of yields:

Summing the above over yields

and hence for all :

Thus, the second moments of all queues grow at most linearly,
from which we guarantee rate stability by Lemma 5.
We now prove that Algorithm 1 yields rate stability.

7538 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

Proof (Theorem 3—Stability Under Algorithm 1): Note
that Algorithm 1 is designed to observe queue backlogs
every frame , and take a control action to minimize
the right-hand side of the drift bound in Lemma 6. Therefore,
we have

where is any other (possibly randomized) decision. If
makes a decision independent of we have

(33)

Consider again randomized algorithm that independently
and randomly selects an action in every frame, independent of
queue backlogs, according to the distribution in Theorem
2. Then (31) again holds, so that for all :

Substituting the above into the right-hand side of (33) gives

from which we then obtain rate stability in the same way as in
the proof for Algorithm 2.

APPENDIX D
PROOF OF THE QUEUE SIZE BOUND

Here we show that if , where , then
both Algorithms 1 and 2 yield finite average backlog of size

.
Proof (Queue Bound for Algorithm 1): Because ,

we have

Thus, from Theorem 2 there is a randomized algorithm
that makes decisions independent of queue backlogs to yield the
following for all :

(34)

Define . Using this and rearranging the above
gives

Substituting the above into (33) gives

Taking expectations and using the definition of gives

Summing over (for any integer)
gives

Using the fact that and , dividing by
, and rearranging terms gives

Because , the above bound can be simplified to
. The above holds for all , and so the expected queue backlog

is . Further, from [21] we can derive that the fol-
lowing holds with probability 1:

1) Proof (Queue Bound for Algorithm 2): Recall that (30)
holds for every frame and all possible for Algorithm 2.
Using as an algorithm that makes randomized decisions
on frame that are independent of gives

(35)

where we have removed the conditional expectations on the
right-hand side. Because , we know that there is
an algorithm that makes independent and randomized decisions
to yield (34). Plugging (34) into the right-hand side of (35) gives

Rearranging gives

Using this in the drift bound of Lemma 6 gives

NEELY et al.: DYNAMIC INDEX CODING FOR WIRELESS BROADCAST NETWORKS 7539

Fig. 10. Example graph and its weighted compressed graph .

That is,

where we have used the fact that , and
. We thus have by the same argument as in the

previous proof that for any :

and with probability 1:

APPENDIX E
GENERAL COMPRESSED GRAPHS

The weighted compressed graph was introduced in
Section IV for the special case of broadcast relay networks. Such
a graph is also useful for general index coding problems. Con-
sider any directed bipartite demand graph with user nodes
and packet nodes . Define as a weighted graph on user
nodes with link weights defined as the (integer) number
of distinct packets that user has as side information that are
wanted by user . We say the graph has a link if and only
if . This general definition of is consistent with
the definition given for broadcast relay graphs in Section IV.
An example of a graph and its weighted compressed graph

is given in Fig. 10.
In the special case when is the graph of a broadcast relay

problem, and contain the same information. This is
not true for general demand graphs . Indeed, the weight
in the graph tells us that node has distinct packets
that are wanted by node , but does not specify which packets

these are, or if these packets also take part in the weight count
on other links of . In the example of Fig. 10, packet
affects the link weight for both links and . Also, un-
like broadcast relay problems, the sum of the weights of
is not necessarily equal to the number of packets in .

Lemma 7: The original demand graph is acyclic if and
only if is acyclic.

Proof: This is simple and omitted for brevity.
Suppose that has edge-disjoint cycles, and let be

the number of such cycles. For each cycle , let
represent the weight of the minimum weight link within

the set of links in the cycle.
Theorem 5: Let be a demand graph with nodes and

packets. Suppose that has edge-disjoint cycles, that
there are such cycles, and that all packets of these cycles are
distinct and are unicast packets. Then,

(36)

Furthermore, the minimum clearance time can be achieved
by performing cyclic coding times for each cycle

, and then transmitting all the remaining packets
without coding.

Proof: For each cycle , select a link with a
link weight equal to (breaking ties arbitrarily). Let
be the set of all packets associated with this link. All packets in

are distinct (by assumption), and the total number of
these packets is

Now consider the subgraph formed from by removing all
packet nodes in the set . The number of packets in
this graph is

Further, we have . Note that is
formed from by removing the min-weight link on each
of the cycles. Thus, is acyclic, so that is acyclic,
and so by Theorem 1. It follows that

Thus, any algorithm for clearing all packets in the graph
must use at least slots. However, a clearance time of can
be achieved by cyclic coding over each of the edge-disjoint
cycles (noting that these packets are all distinct and unicast) and
using direct transmission for the remaining packets.

Corollary 1: Suppose all cycles of are vertex-
disjoint and involve only unicast packets. Then,
satisfies (36).

Proof: Vertex-disjoint implies edge-disjoint. Also, vertex-
disjoint cycles that involve only unicast packets must involve
distinct packets. The result then follows from Theorem 5.

7540 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 11, NOVEMBER 2013

Corollary 2: If the demand graph has packets but only
two users (so that), then

Proof: The graph contains only two users and
hence has at most one cycle, which is trivially edge-disjoint and
involves distinct packets. Further, the cycle (if there is one) can
only involve unicast packets. This is because any packet that
participates in the cycle must be contained as side information
at one of the two nodes, and hence is only desired by the single
remaining node. The result then follows by Theorem 5.

REFERENCES
[1] M. J. Neely, A. S. Tehrani, and Z. Zhang, “Dynamic index coding for

wireless broadcast networks,” in Proc. IEEE INFOCOM, , CA, Mar.
2012, pp. 316–324.

[2] Y. Wu, P. A. Chou, and S.-Y. Kung, “Information exchange in wire-
less networks with network coding and physical-layer broadcast,” pre-
sented at the Conf. Inf. Sci. Syst., Mar. 2005.

[3] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Médard, “The importance
of being opportunistic: Practical network coding for wireless environ-
ments,” presented at the 43rd Annu. Allerton Conf. Commun., Control,
Comput., Oct. 2005.

[4] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” in Proc. Conf.
Appl., Technol., Archit. Protocols Comput. Commun., 2006, pp.
243–254.

[5] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD)
over broadcast channels,” in Proc. IEEE 17th Annu. Joint Conf.
Comput. Commun. Soc., 1998, pp. 1257–1264.

[6] Y. Birk and T. Kol, “Coding-on-demand by an informed source
(ISCOD) for efficient broadcast of different supplemental data
to caching clients,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp.
2825–2830, Jun. 2006.

[7] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding
with side information,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp.
1479–1494, Mar. 2011.

[8] S. El Rouayheb, M. A. R. Chaudhry, and A. Sprintson, “On the min-
imum number of transmissions in single-hop wireless coding prob-
lems,” in Proc. IEEE Inf. Theory Workshop, 2007, pp. 120–125.

[9] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the index
coding problem and its relation to network coding and matroid theory,”
IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3187–3195, Jul. 2010.

[10] M. Langberg and A. Sprintson, “On the hardness of approximating the
network coding capacity,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp.
1008–1014, Feb. 2011.

[11] N. Alon, E. Lubetzky, U. Stav, A. Weinstein, and A. Hasidim, “Broad-
casting with side information,” in Proc. IEEE 49th Annu. Symp. Found.
Comput. Sci., Oct. 2008, pp. 823–832.

[12] E. Lubetzky and U. Stav, “Nonlinear index coding outperforming
the linear optimum,” IEEE Trans. Inf. Theory, vol. 55, no. 8, pp.
3544–3551, Aug. 2009.

[13] M. A. R. Chaudhry and A. Sprintson, “Efficient algorithms for index
coding,” in Proc. IEEE INFOCOM Workshops, Apr. 2008, pp. 1–4.

[14] I. S. Reed and X. Chen, Error-Control Coding for Data Networks.
Norwell, MA, USA: Kluwer, 2001.

[15] Y. Wu, J. Padhye, R. Chandra, V. Padmanabhan, and P. A. Chou, “The
local mixing problem,” presented at the Inf. Theory Appl. Workshop,
La Jolla, CA, USA, Feb. 2006.

[16] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B.
Leong, “A random linear network coding approach to multicast,” IEEE
Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[17] A. Saber Tehrani, A. G. Dimakis, and M. J. Neely, “Bipartite index
coding,” in Proc. IEEE Int. Symp. Inf. Theory, 2012, pp. 2246–2250.

[18] M. J. Neely, Stochastic NetworkOptimization with Application to Com-
munication and Queueing Systems. CA, USA: Morgan & Claypool,
2010.

[19] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Inf. Theory,
vol. 39, no. 2, pp. 466–478, Mar. 1993.

[20] B. S. Vineeth and U.Mukherji, “Average-delay optimal policies for the
point-to-point channel,” in Proc. 7th Int. Symp. Model. Optim. Mobile,
Ad Hoc, Wireless Netw., Jun. 2009, pp. 1–10.

[21] M. J. Neely, “Stability and probability 1 convergence for queueing
networks via Lyapunov optimization,” J. Appl. Math., vol. 2012, p.
831909, 2012.

Michael J. Neely received B.S. degrees in both Electrical Engineering and
Mathematics from the University of Maryland, College Park, in 1997. He was
then awarded a 3 year Department of Defense NDSEG Fellowship for graduate
study at the Massachusetts Institute of Technology, where he received an M.S.
degree in 1999 and a Ph.D. in 2003, both in Electrical Engineering. He joined
the faculty of Electrical Engineering at the University of Southern California in
2004, where he is currently an Associate Professor. His research interests are
in the areas of stochastic network optimization and queuing theory, with appli-
cations to wireless networks, mobile ad-hoc networks, and switching systems.
Michael received the NSF Career award in 2008, the Viterbi School of Engi-
neering Junior Research Award in 2009, and the Okawa Foundation Research
Grant Award in 2012. He is a member of Tau Beta Pi and Phi Beta Kappa.

Arash Saber Tehrani received the B.S. degree in electrical engineering from
Amirkabir University of Technology, Tehran, Iran, in 2001 and theM.Sc. degree
in communication systems from the Technical University of Munich (TUM),
Munich, Germany, in 2008. He is currently pursuing the Ph.D. degree in the
Electrical Engineering at the University of Southern California, Los Angeles.
His research interests include index coding, compressed sensing, and network
optimization. Mr. Tehrani received the Viterbi School of Engineering Doctoral
Fellowship award in 2009.

Zhen Zhang received the B.S. and M.S. degrees in mathematics from Nankai
University, Tianjin, China, in 1969 and 1980, respectively, the Ph.D. degree
in applied mathematics from Cornell University, Ithaca, NY, in 1984, and the
Habilitation in mathematics from Bielefeld University, Bielefeld, Germany, in
1988. He served as a Lecturer, Department of Mathematics, Nankai University,
from 1981 to 1982. He was a Postdoctoral Research Associate with the School
of Electrical Engineering, Cornell University, from 1984 to 1985 and with the
Information Systems Laboratory, Stanford University, in fall 1985. From 1986
to 1988, he was with the Mathematics Department, Bielefeld University, Biele-
feld, Germany. He joined the faculty of University of Southern California, Los
Angeles, in 1988, where he is currently a Professor of Electrical Engineering
with the Department of Electrical Engineering-Systems. He has been a Visiting
Professor with the Chinese University of Hong Kong in 1995, Shanghai Jiao-
tong University in 2002, University of Waterloo, Waterloo, Canada in 2008,
and Nankai University in 2009. He holds an Adjunct Professor position with
Shanghai Jiaotong University. His research interests include information theory,
coding theory, data compression, network theory, communication theory, and
applied mathematics. His current research is focused on network coding theory.

