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Corrections to “Hash Property and Coding Theorems for
Sparse Matrices and Maximum-Likelihood Coding”

Jun Muramatsu, Senior Member, IEEE, and
Shigeki Miyake, Member, IEEE

There is a flaw in the statement of [2, Lemma 5], which is used in the
proof of [2, Ths. 4, 6, and 7]. More precisely, it might be impossible to
construct satisfying the assumption of the lemma when there is

such that . To correct
the flaw, we have to revise the statement of [2, Lemma 5] and a part of
the proof of [2, Ths. 4, 6, and 7].
First, we revise [2, Lemma 5]. For a given , let

as defined in [2, p. 2147].
Lemma 5: We define a maximum-likelihood (ML) coding function
with the constraint as

Let be defined as

Then, we have

Assume that a set satisfies
1) is not empty, and
2) if and satisfy

then .
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In fact, we can construct such a set by taking elements from
in descending order of probability. If an ensemble

of a set of functions satisfies [2, eq. (H4)], then

for any satisfying .
Proof: First, we prove that . Assume

that . Then, we have

From [2, Lemma 21], we have

(1)

This implies that . Therefore, we have the fact that
.

Next, we prove that implies that
or , where is defined as

If , then there is a such that
satisfies

We have or from the second
assumption of . On the other hand, we have

(2)

where the second inequality comes from the fact that
. Then, we have the fact that implies

which is equivalent to . Since , we
have the fact that implies . Then,
we have the fact that implies or

, which is equivalent to the fact that
implies or .
For a conditional type for given , let a set of typical

sequences defined as
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Similarly to the proof of [3, Lemma 6], we have

(3)

where the first inequality comes from [1, Lemma 2.5] [3, Lemma 4],
and the third inequality comes from [1, Lemma 2.2] [3, Lemma 3].
Then, from [2, Lemma 2 and eq. (27)] and (3), we have

(4)

Next, we show the fact that

(5)

by assuming and

(6)

Assume that . From [2, Lemma 24], we have

(7)

On the other hand, from [2, Lemma 21] and the fact that
we have

(8)

where the last inequality comes from the relation and
(6). Then, we have (5).
Next, we revise the proof of [2, Th. 4]. The condition

which implies [2, eqs. (75) and (76)] for all sufficiently large , should
be assumed. The left-hand side of [2, eq. (77)] should be replaced by

, where the first inequality of [2, eq. (77)] comes from (5).
The term

which appears in the derivation of [2, eq. (82)], should be replaced by

which vanishes as .
Similarly, we revise the proof of [2, Th. 6]. The condition

which implies [2, eq. (85)] for all sufficiently large , should be
assumed. The left-hand side of [2, eq. (93)] should be replaced by

, where the first inequality of [2, eq. (93)] comes
from (5). The term

which appears in the derivation of [2, eq. (95)], should be replaced by

which vanishes as .
Next, we revise the proof of [2, Th. 7]. The condition

which implies [2, eq. (99)] for all sufficiently large , should be
assumed.
Finally, we revise some minor points. In the statement of [2, Lemma

6], the word “descending” should be replaced by “ascending.” In the
statement of [2, Lemma 10], “ ” should be
replaced by “ .”
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