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Adapting to general quadratic loss
via singular value shrinkage

Takeru Matsuda

Abstract—The Gaussian sequence model is a canonical model
in nonparametric estimation. In this study, we introduce a mul-
tivariate version of the Gaussian sequence model and investigate
adaptive estimation over the multivariate Sobolev ellipsoids,
where adaptation is not only to unknown smoothness but also
to arbitrary quadratic loss. First, we derive an oracle inequality
for the singular value shrinkage estimator by Efron and Morris,
which is a matrix generalization of the James–Stein estimator.
Next, we develop an asymptotically minimax estimator on the
multivariate Sobolev ellipsoid for each quadratic loss, which
can be viewed as a generalization of Pinsker’s theorem. Then,
we show that the blockwise Efron–Morris estimator is exactly
adaptive minimax over the multivariate Sobolev ellipsoids under
the corresponding quadratic loss. It attains sharp adaptive
estimation of any linear combination of the mean sequences
simultaneously.

Index Terms—adaptive estimation, Efron–Morris estimator,
Gaussian sequence model, nonparametric estimation, singular
value

I. INTRODUCTION

Suppose that we observe

yi = θi + εξi, i = 1, 2, · · · ,

where ε > 0 and ξi ∼ Np(0, Ip) are independent p-
dimensional Gaussian random vectors. This is a multivariate
version of the Gaussian sequence model, which is a canonical
model in nonparametric estimation [28, 42, 43]. We consider
estimation of θ = (θi) under the quadratic loss specified by a
p× p positive definite symmetric matrix Q:

LQ(θ, θ̂) =

∞∑
i=1

(θ̂i − θi)
⊤Q(θ̂i − θi).

Let RQ(θ, θ̂) = Eθ[LQ(θ, θ̂)] be the risk function. For a
parameter space Θ, an estimator θ̂∗ is said to be asymptotically
minimax on Θ if

sup
θ∈Θ

RQ(θ, θ̂∗) ∼ inf
θ̂

sup
θ∈Θ

RQ(θ, θ̂)

as ε → 0, where a ∼ b denotes a/b → 1 and inf is taken
over all estimators. For a class of parameter spaces C = {Θ},
an estimator θ̂∗ is said to be adaptive minimax over C if it
is asymptotically minimax on every Θ in C. Note that we
focus on exact minimaxity in this study, which is stronger
than minimaxity in terms of the rate of convergence.
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The above problem has been well studied in the case of
p = 1 [6, 28], where we can fix Q = 1 without loss of
generality. It is asymptotically equivalent to various problems
such as nonparametric regression [4] and density estimation
[34]. In these settings, each θi corresponds to the coefficient
in basis expansion of an unknown function f , and smoothness
constraints on f are translated to domain constraints on θ =
(θi). Among them, the Sobolev class is represented by infinite-
dimensional ellipsoids under the Fourier expansion. For such
ellipsoids, Pinsker [36] showed that a linear estimator attains
asymptotic minimaxity and derived its concrete form. Pinsker’s
estimator for the Sobolev ellipsoid depends on its smoothness
and scale parameters, which are generally unknown. Thus, es-
timators that are adaptive minimax over the Sobolev ellipsoids
have been developed. Among them, the blockwise Jame–Stein
estimator [15] partitions the observations into blocks and apply
the James–Stein shrinkage to each block. Adaptive minimaxity
of this estimator is proved by using an oracle inequality for
the James–Stein estimator, which indicates that the James–
Stein estimator attains almost the same risk with the best linear
estimator. More details will be given in Section II.

In this study, we generalize the above results to p ≥ 2,
which corresponds to multivariate versions of nonparametic
problems such as nonparametric regression with vector re-
sponse. Unlike the case of p = 1, there is an arbitrariness in the
choice of the positive definite matrix Q in the quadratic loss.
We introduce a multivariate version of the Sobolev ellipsoid,
and develop an estimator that attains adaptive minimaxity over
the multivariate Sobolev ellipsoids under any choice of Q
simultaneously. In this sense, our estimator is adaptive not
only to smoothness but also to arbitrary quadratic loss. Note
that, while minimax estimation under arbitrary quadratic loss
has been studied in the finite-dimensional (parametric) setting
as well [2, 39], these previous studies proposed minimax
estimators that depend on Q. In contrast, we develop an
estimator that attains adaptive minimaxity under any quadratic
loss simultaneously. Note that applying the blockwise James–
Stein estimator for each of the p components only attains
adaptive minimaxity for diagonal Q.

Our estimator is based on the Efron–Morris estimator [16],
which was originally developed as an empirical Bayes estima-
tor of a normal mean matrix. Efron and Morris [16] showed
that this estimator is minimax and dominates the maximum
likelihood estimator under the Frobenius loss. The Efron–
Morris estimator shrinks the singular values towards zero and
can be viewed as a matrix generalization of the James–Stein
estimator. It attains large risk reduction when the truth is close
to low rank. Recently, the Efron–Morris estimator has been
shown to dominate the maximum likelihood estimator even0000–0000/00$00.00 © 2021 IEEE
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under the matrix quadratic loss, which is a matrix-valued loss
function suitable for matrix estimation [33]. This result implies
that the Efron–Morris estimator attains improved estimation of
any linear combination of the column vectors simultaneously.
In other words, it is adaptive to arbitrary quadratic loss. More
details will be given in Section III.

This paper is organized as follows. In Section II, we briefly
review existing results on adaptive estimation in the Gaussian
sequence model. In Section III, we introduce the Efron–
Morris estimator and derive its oracle inequality. In Section IV,
we define the multivariate Gaussian sequence model and
multivariate Sobolev ellipsoid. In Section V, we derive an
asymptotically minimax estimator on the multivariate Sobolev
ellipsoid. In Section VI, we prove the adaptive minimaxity of
the blockwise Efron–Morris estimator over the multivariate
Sobolev ellipsoids. In Section VII, we present simulation
results. In Section VIII, we give concluding remarks.

Our primary contribution is threefold: (1) We introduce
a multivariate version of the Gaussian sequence model and
Soboloev ellipsoid, (2) We derive an oracle inequality for
the Efron–Morris estimator, (3) We show that the blockwise
Efron–Morris estimator attains adaptive minimaxity over the
multivariate Sobolev ellipsoids. To the best of our knowledge,
adaptive estimation in the multivariate Gaussian sequence
model has not been investigated so far.

Throughout the paper, we write a ∼ b when a/b → 1.
For a real number a, we define (a)+ = max(0, a). For a
symmetric matrix S ∈ Rp×p that has a spectral decomposition
S = U⊤ΛU with U ∈ O(p) and Λ = diag(λ1, . . . , λp),
we write its projection onto the positive semidefinite cone by
S+ = U⊤Λ+U ⪰ O, where Λ+ = diag((λ1)+, . . . , (λp)+).
For two symmetric matrices A ∈ Rp×p and B ∈ Rp×p, we
write A ⪯ B when B − A is positive semidefinite (Löwner
order). For a vector-valued function f : [0, 1] → Rp, we write
each component of f as fj : [0, 1] → R for j = 1, . . . , p.
For β ∈ {1, 2, · · · }, we define f (β) : [0, 1] → Rp by
f (β)(x) = (f

(β)
1 (x), . . . , f

(β)
p (x))⊤ where f

(β)
j is the β-th

derivative of fj .

II. PRELIMINARIES

A. Gaussian sequence model

The Gaussian sequence model [28, 42] is defined as

yi = θi + εξi, i = 1, 2, · · · , (1)

where ε > 0 and ξi ∼ N(0, 1) are independent standard
Gaussian random variables. This model is equivalent to the
Gaussian white noise model, which is defined by the stochastic
differential equation

dY (t) = f(t)dt+ εdW (t), t ∈ [0, 1],

where f(t) is a drift function to be estimated and W (t) is
the standard Wiener process. By using an orthonormal basis

ϕ = (ϕi) of L2[0, 1] such as the Fourier basis, let

yi =

∫ 1

0

ϕi(t)dY (t),

θi =

∫ 1

0

ϕi(t)f(t)dt,

ξi =

∫ 1

0

ϕi(t)dW (t).

Then, y = (yi) follows the Gaussian sequence model (1). In
addition, the Gaussian nonparametric regression model

yi = f(ti) + ξi, i = 1, . . . , n,

where f : [0, 1] → R, ti = i/n and ξi ∼ N(0, 1) are
independent, is asymptotically equivalent to the Gaussian
sequence model (1) with ε = n−1/2 as n → ∞ [4] in the
sense of Le Cam’s limits of experiments [21]. Asymptotic
equivalence to other problems such as density estimation and
Poisson processes has been also established [5, 34]. Thus,
the Gaussian sequence model (1) is a canonical model in
nonparametric statistics and many studies have investigated
the problem of estimating θ = (θi) from y = (yi) [6, 28, 42].

B. Sobolev ellipsoid and Pinsker’s theorem

In nonparametric statistics, unknown functions are often
assumed to belong to some smoothness class. Among them,
the periodic Sobolev class on [0, 1] is defined as

W (β, L) := {f ∈ L2[0, 1] | f (β−1) : absolutely continuous;

f (k)(0) = f (k)(1), k = 0, · · · , β − 1;

∫ 1

0

(f (β)(x))2dx ≤ L2

}
,

where β ∈ {1, 2, · · · }, L > 0, L2[0, 1] is the space of real-
valued square-integrable functions on [0, 1] and f (k) denotes
the k-th order derivative of f . It has a useful representation
using the Fourier coefficients as follows [28, 42].

Lemma II.1. For θ = (θi), let

f(x) =

∞∑
i=1

θiϕi(x),

where ϕ = (ϕi) is the Fourier basis of L2[0, 1] given by
ϕ1(x) ≡ 1 and

ϕ2k(x) =
√
2 cos(2πkx), ϕ2k+1(x) =

√
2 sin(2πkx), (2)

for k = 1, 2, . . . . Then, f ∈W (β, L) if and only if

θ ∈ Θ(β,R) :=

{
θ = (θ1, θ2, . . . )

∣∣∣∣∣
∞∑
i=1

a2β,iθ
2
i ≤ R

}
, (3)

where R := L2/π2β and

aβ,i :=

{
iβ , i : even,

(i− 1)β , i : odd.
(4)

From Lemma II.1, the infinite-dimensional ellipsoid
Θ(β,R) in (3) is called the Sobolev ellipsoid for β > 0 and
R > 0.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3344649

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Now, consider the problem of estimating θ = (θi) from y =
(yi) in the Gaussian sequence model (1) under the quadratic
loss

L(θ, θ̂) = ∥θ̂ − θ∥2 =

∞∑
i=1

(θ̂i − θi)
2, (5)

and assume that θ is restricted to the Sobolev ellipsoid Θ(β,R)
in (3). Pinsker [36] studied this problem under the asymptotics
ε → 0 and derived an asymptotically minimax estimator as
follows.

Proposition II.1. (Pinsker’s theorem for Sobolev ellipsoid)
Let CP,i = (1 − aβ,iκR)+ for i = 1, 2, . . . , where (a)+ =
max(0, a) and κ > 0 is the unique solution of

ε2κ−1
∞∑
i=1

aβ,i(1− aβ,iκR
−1)+ = 1.

Then, the linear estimator θ̂P = (θ̂P,i) with θ̂P,i = CP,iyi is
asymptotically minimax on the Sobolev ellipsoid Θ(β,R):

sup
θ∈Θ(β,R)

Eθ[∥θ̂P − θ∥2] ∼ inf
θ̂

sup
θ∈Θ(β,R)

Eθ[∥θ̂ − θ∥2]

∼ P (β,R)ε4β/(2β+1)

as ε→ 0, where inf is taken over all estimators and

P (β,R) := (R(2β + 1))1/(2β+1)

(
β

β + 1

)2β/(2β+1)

.

C. Blockwise James–Stein estimator

Pinsker’s estimator in Proposition II.1 depends on the
smoothness parameter β and scale parameter R of the Sobolev
ellipsoid Θ(β,R) in (3), which are difficult to specify in
general. Thus, adaptive minimax estimators over the Sobolev
ellipsoids have been developed, which are asymptotically min-
imax on Θ(β,R) for every β and R simultaneously. Among
them, here we focus on the blockwise James–Stein estimator
[15, 42].

In estimation of µ from X ∼ Nn(µ, In) under the quadratic
loss, the maximum likelihood estimator µ̂ML = x is minimax
[31]. However, Stein [38] showed that it is inadmissible when
n ≥ 3 and James and Stein [27] proved that the shrinkage
estimator

µ̂JS(x) =

(
1− n− 2

∥x∥2

)
x

is minimax and dominates the maximum likelihood estimator:

Eµ[∥µ̂JS − µ∥2] ≤ Eµ[∥µ̂ML − µ∥2] = n.

The James–Stein estimator also satisfies the following oracle
inequality [28, 42].

Lemma II.2. Let µ̂C = Cx be the linear estimator of µ for
C ∈ R. Then,

min
C

Eµ[∥µ̂C − µ∥2] ≤ Eµ[∥µ̂JS − µ∥2]

≤ min
C

Eµ[∥µ̂C − µ∥2] + 2, (6)

for every µ.

The oracle inequality (6) indicates that the James–Stein
estimator attains almost the same risk with the best linear
estimator. Then, since Pinsker’s estimator in Proposition II.1
is a linear estimator, it is expected that an estimator that is
asymptotically minimax on every Sobolev ellipsoid can be
constructed by using the James–Stein shrinkage. This idea
leads to the blockwise James–Stein estimator for the Gaussian
sequence model (1) as follows.

Consider a partition of {1, 2, . . . , N} with blocks

Bj := {lj−1 + 1, lj−1 + 2, . . . , lj}, j = 1, . . . , J,

where 0 = l0 < l1 < · · · < lJ = N . The blockwise James–
Stein estimator is defined as

(θ̂BJS(y))i =


yi, i ∈ Bj , |Bj | < 3,(
1− (|Bj |−2)ε2

∥y(j)∥2

)
yi, i ∈ Bj , |Bj | ≥ 3,

0, i > N,

(7)

where ∥y(j)∥2 :=
∑

i∈Bj
y2i . This estimator applies the

James–Stein shrinkage to each block Bj . In this study, we
focus on the weakly geometric blocks defined by N := ⌊ε−2⌋
and

lj := ⌊ρ−1
ε (1 + ρε)

j⌋, j = 1, . . . , J − 1,

where ρε := (log(1/ε))−1 and J := min{j | ρ−1
ε (1 + ρε)

j ≥
ε−2}. The blockwise James–Stein estimator with the weakly
geometric blocks attains adaptive minimaxity as follows [15,
42].

Proposition II.2. For every β and R, the blockwise James–
Stein estimator θ̂BJS with the weakly geometric blocks is
asymptotically minimax on the Sobolev ellipsoid Θ(β,R):

sup
θ∈Θ(β,R)

Eθ[∥θ̂BJS − θ∥2] ∼ inf
θ̂

sup
θ∈Θ(β,R)

Eθ[∥θ̂ − θ∥2]

∼ P (β,R)ε4β/(2β+1)

as ε→ 0, where inf is taken over all estimators.

III. EFRON–MORRIS ESTIMATOR AND ITS ORACLE
INEQUALITY

A. Efron–Morris estimator

Suppose that we have a matrix observation X ∈ Rn×p

whose entries are independent Gaussian random variables
Xij ∼ N(Mij , 1), where n − p − 1 > 0 and M ∈ Rn×p

is an unknown mean matrix. In this setting, Efron and Morris
[16] considered estimation of M under the Frobenius loss

l(M,M̂) = ∥M̂ −M∥2F =

n∑
i=1

p∑
j=1

(M̂ij −Mij)
2,

and proposed an estimator

M̂EM = X(Ip − (n− p− 1)(X⊤X)−1). (8)

It coincides with the James–Stein estimator when p = 1. They
showed that M̂EM is minimax and dominates the maximum
likelihood estimator M̂ML = X under the Frobenius loss:

EM [∥M̂EM −M∥2F] ≤ EM [∥M̂ML −M∥2F] = np.
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The Efron–Morris estimator M̂EM can be interpreted as an
empirical Bayes estimator, in which an independent prior
Np(0,Σ) is put on each row of M and the hyperparameter
Σ is estimated from X .

Stein [38] pointed out that M̂EM does not change the
singular vectors but shrinks the singular values of X to-
wards zero. Namely, let X = UΣV ⊤ be the singular value
decomposition of X , where U⊤U = V ⊤V = Ip and
Σ = diag(σ1(X), . . . , σp(X)). Then, the singular value de-
composition of M̂EM is given by M̂EM = U Σ̃V ⊤, where
Σ̃ = diag(σ1(M̂EM), . . . , σp(M̂EM)) and

σj(M̂EM) =

(
1− n− p− 1

σj(X)2

)
σj(X), j = 1, . . . , p.

From this property, M̂EM attains large risk reduction when
M has small singular values. In particular, M̂EM works well
when M is close to low rank.

Figure 1 compares the Frobenius risk of M̂EM with that
of M̂JS(X) = (1 − (np − 2)/∥X∥2F)X , which applies the
James–Stein shrinkage to the vectorization of X . It indicates
that M̂EM attains constant risk reduction when some singular
values of M are small, regardless of the magnitude of the other
singular values. Thus, M̂EM works well for low rank matrices
and this advantage is more pronounced in higher dimensions
[33]. On the other hand, M̂JS works well only when ∥M∥2F =∑p

j=1 σj(M)2 is small.

B. Matrix quadratic loss

Instead of the Frobenius loss, it is insightful to investigate
estimation of M under the matrix quadratic loss

L(M,M̂) = (M̂ −M)⊤(M̂ −M), (9)

which takes a value in the set of p × p positive semidefinite
matrices [33]. Under this loss, an estimator M̂1 is said to
dominate another estimator M̂2 if

EM [(M̂1 −M)⊤(M̂1 −M)] ⪯ EM [(M̂2 −M)⊤(M̂2 −M)]

for every M , where ⪯ is the Löwner order: A ⪯ B means
that B − A is positive semidefinite. Thus, if M̂1 dominates
M̂2 under the matrix quadratic loss, then

EM [∥(M̂1 −M)u∥2] ≤ EM [∥(M̂2 −M)u∥2]

for every M and u ∈ Rp. In other words, M̂1 dominates M̂2

in estimating any linear combination of the columns of M
under the quadratic loss. In particular, each column of M̂1

dominates that of M̂2 as an estimator of the corresponding
column of M under the quadratic loss. Domination under the
matrix quadratic loss is stronger than domination under the
Frobenius loss, because the Frobenius loss is equal to the trace
of the matrix quadratic loss: l(M, M̂) = tr(L(M, M̂)).

The Efron–Morris estimator dominates the maximum likeli-
hood estimator even under the matrix quadratic loss as follows
[33].
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Fig. 1. Frobenius risk of the Efron–Morris estimator (solid) and the James–
Stein estimator (dashed) for n = 10 and p = 3. Left: σ1(M) = 20,
σ3(M) = 0. Right: σ2(M) = σ3(M) = 0

Lemma III.1. When n− p− 1 > 0, the matrix quadratic risk
of the Efron–Morris estimator M̂EM in (8) is

EM [(M̂EM −M)⊤(M̂EM −M)]

= nIp − (n− p− 1)2EM [(X⊤X)−1]

⪯ nIp. (10)

Thus, the Efron–Morris estimator dominates the maximum
likelihood estimator under the matrix quadratic loss.

The matrix quadratic risk (10) of M̂EM at M = O is (p+
1)Ip [33]. Here, we extend this result by using the recent
result by [25] on the expectation of the inverse of a noncentral
Wishart matrix.

Proposition III.1. The matrix quadratic risk of the Efron–
Morris estimator M̂EM in (8) has the same eigenvectors with
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M⊤M . If M⊤M has a zero eigenvalue, then the correspond-
ing eigenvalue of the matrix quadratic risk is p+ 1.

Proof. The matrix X⊤X follows the noncentral Wishart
distribution Wp(n, Ip,M

⊤M) [23]. Let M⊤M = U⊤ΛU
be a spectral decomposition of M⊤M , where U ∈ O(p)
and Λ = diag(σ1(M)2, . . . , σp(M)2). Then, from Theo-
rem 1 of [25], EM [(X⊤X)−1] = U⊤ΨU ,where Ψ =
diag(ψ1(M), . . . , ψp(M)) and each ψj(M) is given by an in-
finite sum involving matrix-variate hypergeometric functions.
Therefore, the matrix quadratic risk (10) of M̂EM is given by

EM [(M̂EM −M)⊤(M̂EM −M)]

= U⊤(nIp − (n− p− 1)2Ψ)U, (11)

which has the same eigenvectors with M⊤M = U⊤ΛU . If the
j-th eigenvalue of M⊤M is zero, then ψj(M) = (n−p−1)−1

from Corollary 3 of [25], which means that the corresponding
eigenvalue of (11) is n− (n− p− 1) = p+ 1.

Therefore, the Efron–Morris estimator works well when
M is close to low-rank. Specifically, if M⊤M has a zero
eigenvalue, then the ratio of the corresponding eigenvalues of
the matrix quadratic risks of the Efron–Morris estimator and
the maximum likelihood estimator is (p+1)/n, which goes to
zero as n increases. Thus, the advantage of the Efron–Morris
estimator over the maximum likelihood estimator for low-rank
matrices is pronounced when the number of row is much larger
than the number of columns.

C. Oracle inequality

Now, we derive an oracle inequality for the Efron–Morris
estimator, which will be used to show the adaptive minimaxity
of the blockwise Efron–Morris estimator.

The matrix quadratic risk of the linear estimator M̂C = XC
is

EM [(M̂C −M)⊤(M̂C −M)]

= C⊤(M⊤M + nIp)C − 2M⊤MC +M⊤M.

For a fixed M , it is uniquely minimized by C∗ = C∗(M) =
(M⊤M + nIp)

−1M⊤M :

EM [(M̂C∗ −M)⊤(M̂C∗ −M)]

= nIp − n2(M⊤M + nIp)
−1

⪯ EM [(M̂C −M)⊤(M̂C −M)]

for every C. Thus, M̂C∗(M) can be viewed as the linear oracle
estimator. The Efron–Morris estimator M̂EM attains almost the
same matrix quadratic risk with this oracle as follows.

Theorem III.1. The matrix quadratic risk of the Efron–Morris
estimator M̂EM satisfies

EM [(M̂EM −M)⊤(M̂EM −M)]

⪯ EM [(M̂C∗ −M)⊤(M̂C∗ −M)] + 2(p+ 1)Ip (12)

for every M , where C∗ = C∗(M) = (M⊤M+nIp)
−1M⊤M .

Proof. From (10),

EM [(M̂EM −M)⊤(M̂EM −M)]

= nIp − (n− p− 1)2EM [(X⊤X)−1]

⪯ nIp − (n− p− 1)2EM [X⊤X]−1

= nIp − (n− p− 1)2(M⊤M + nIp)
−1,

where we used the operator convexity of the inverse function
[22, 24]. Then, from (n − p − 1)2 ≥ n2 − 2n(p + 1) and
(M⊤M + nIp)

−1 ⪯ n−1Ip, we obtain (12).

Consider the quadratic loss specified by a p × p positive
definite matrix Q: lQ(M, M̂) = tr((M̂ −M)Q(M̂ −M)⊤).
Since this quadratic loss is related to the matrix quadratic loss
by lQ(M,M̂) = tr(L(M, M̂)Q), Theorem III.1 is translated
to an oracle inequality under this loss as follows.

Corollary III.1. The Q-quadratic risk of the Efron–Morris
estimator M̂EM satisfies

EM [tr((M̂EM −M)Q(M̂EM −M)⊤)]

≤EM [tr((M̂C∗ −M)Q(M̂C∗ −M)⊤)] + 2(p+ 1)tr(Q).
(13)

We conjecture that the constant term 2(p + 1)Ip in (12)
can be improved to (p + 1)Ip, although the current form is
enough for the present purpose. When p = 1, this conjecture
is true from (6), which is proved by using the Poisson mixture
representation of the noncentral chi-square distribution [28,
Proposition 2.8]. The latter half of Proposition III.1 also
supports this conjecture when M has low rank. Figure 2
compares the Frobenius risk of the Efron–Morris estimator
with the trace of the right hand side of (12) and its conjectured
modification. It implies that the improved oracle inequality
holds tightly when n is large, which is consistent with the
finding in [28, Figure 2.6] for p = 1. It is an interesting future
work to prove this conjecture.

IV. MULTIVARIATE GAUSSIAN SEQUENCE MODEL AND
SOBOLEV ELLIPSOID

A. Multivariate Gaussian sequence model
For p > 1, we consider the multivariate version of the

Gaussian sequence model defined by

yi = θi + εξi, i = 1, 2, · · · , (14)

where ε > 0 and ξi ∼ Np(0, Ip) are independent Gaussian
random vectors. This model is equivalent to the multivariate
version of the Gaussian white noise model

dYj(t) = fj(t)dt+ εdWj(t), j = 1, · · · , p,
where t ∈ [0, 1], f1(t), · · · , fp(t) are drift functions to be esti-
mated and W1(t), · · · ,Wp(t) are independent standard Wiener
processes. Specifically, for an orthonormal basis ϕ = (ϕi) of
L2[0, 1], let

yij =

∫
ϕi(t)dYj(t),

θij =

∫
ϕi(t)fj(t)dt,

ξij =

∫
ϕi(t)dWj(t).
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Fig. 2. Frobenius risk of the Efron–Morris estimator (solid), trace of the
right hand side of (12) (dashed) and its conjectured modification (dotted)
when σ1(M) = · · · = σp(M) = σ. Left: n = 10, p = 5. Right: n = 100,
p = 5

Then, by putting yi = (yi1, . . . , yip), θi = (θi1, . . . , θip)
and ξi = (ξi1, . . . , ξip), the multivariate Gaussian sequence
model (14) is obtained. Also, from a similar argument to [4],
nonparametric regression with vector response

yi = f(ti) + ξi, i = 1, . . . , n,

where f : [0, 1] → Rp, ti = i/n and ξi ∼ Np(0, Ip) are
independent, is asymptotically equivalent to the multivariate
Gaussian sequence model (14) with ε = n−1/2 as n→ ∞.

In the following, we consider estimation of θ = (θi) from
y = (yi) under the quadratic loss specified by a p×p positive
definite matrix Q:

LQ(θ, θ̂) :=

∞∑
i=1

(θ̂i − θi)
⊤Q(θ̂i − θi). (15)

In the multivariate Gaussian white noise model setting, this
quadratic loss corresponds to the weighted L2 loss given by

LQ(θ, θ̂) =

∫ 1

0

(Ŷ (t)− Y (t))⊤Q(Ŷ (t)− Y (t))dt.

The current setting is motivated from practical applications
of nonparameteric estimation. For example, consider brain
time series data such as EEG, which is a multichannel record-
ing of brain activity. Due to the multidimensionality, denoising
of such data corresponds to nonparametric regression with
vector response. In brain-machine interface, some spatial filters
are commonly applied to EEG in order to obtain relevant
features for decoding brain activity [3]. Namely, a linear
transformation g(t) = Af(t) of EEG f(t) with some matrix
A is considered for later use. Since ∥ĝ(t)− g(t)∥2 = (f̂(t)−
f(t))⊤Q(f̂(t)− f(t)) with Q = A⊤A, mean squared error of
an estimate of g(t) corresponds to the quadratic loss with Q
of an estimate of f(t).

The multivariate Gaussian sequence model is closely related
to the matrix denoising model, in which a low-rank matrix is
observed with noise. For the matrix denoising model, several
methods for estimating the signal matrix have been developed
and their theoretical properties have been investigated. Among
them, Gavish and Donoho [17] and Donoho and Gavish
[13] studied singular value thresholding estimators in a high-
dimensional asymptotic framework. They derived the optimal
thresholds in closed form, by which the estimator can adapt
to unknown rank and unknown noise level optimally in terms
of mean squared error. Later, Gavish and Donoho [18] also
derived the optimal singular value shrinkage rules (nonlinear-
ities) for various loss functions. Recently, these results have
been extended to correlated noise [14, 19]. Other studies on the
matrix denoising model include data-driven rank selection in
the context of PCA [10] and nuclear norm penalization [9, 30].
The multivariate Gaussian sequence model can be viewed as
an infinite-dimensional version of the matrix denosing model.
Thus, some generalization of the above results for the matrix
denoising model may be possible, which is an interesting
future problem.

B. Multivariate Sobolev ellipsoid

For β > 0 and a p×p positive definite matrix R, we define
the multivariate Sobolev ellipsoid as

Θ(β,R) :=

{
θ = (θ1, θ2, · · · )

∣∣∣∣∣
∞∑
i=1

a2β,iθ
⊤
i R

−1θi ≤ 1

}
,

(16)

where aβ,i is given by (4). When p = 1, it reduces to the
original Sobolev ellipsoid (3).

The multivariate Sobolev ellipsoid is related to a multivari-
ate version of the periodic Sobolev class. For a vector-valued
function f : [0, 1] → Rp, we write each component of f as
fj : [0, 1] → R for j = 1, . . . , p. For β ∈ {1, 2, · · · }, we define
f (β) : [0, 1] → Rp by f (β)(x) = (f

(β)
1 (x), . . . , f

(β)
p (x))⊤

where f (β)j is the β-th derivative of fj . For β ∈ {1, 2, · · · }
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and a p × p positive semidefinite matrix L, we define the
multivariate periodic Sobolev class as

W (β, L)

:= {f : [0, 1] → Rp | fj ∈ L2[0, 1];

f
(l)
j (0) = f

(l)
j (1), j = 1, . . . , p, l = 0, 1, · · · , β − 1;

f
(β−1)
1 , · · · , f (β−1)

p : absolutely continuous;∫ 1

0

f (β)(x)⊤L−2f (β)(x)dx ≤ 1

}
.

Then, Lemma II.1 is extended as follows. Its proof is deferred
to the Appendix.

Proposition IV.1. For θ = (θij), let

fj(x) =

∞∑
i=1

θijϕi(x), j = 1, . . . , p, (17)

where ϕ = (ϕi) is the Fourier basis of L2[0, 1] in (2). Then,
f ∈ W (β, L) if and only if θ ∈ Θ(β,R) in (16) where R =
L2/π2β .

Figure 3 plots a function in W (β, L) with p = 2 for
several settings of β and L. Like the usual Sobolev space,
the parameter β represents the smoothness of f . On the other
hand, the matrix parameter L specifies not only the scale
but also the correlations between f1, . . . , fp. The functions in
Figure 3 were obtained by using a similar method to Figure 6.3
of [28]. Specifically, we sampled θi ∼ Np(0, 12π

−2p−1b2β,iR)
independently for i = 1, . . . , 2N+1 and substituted them into
(17), where N = 104, R = L2/π2β , bβ,1 = 0 and

bβ,i =

{
i−β−1, i : even,

(i− 1)−β−1, i : odd,

for i ≥ 2. From Lemma B.3,
2N+1∑
i=1

a2β,iθ
⊤
i R

−1θi ≈
2N+1∑
i=1

a2β,itr(R
−1 · 12π−2p−1b2β,iR)

=
12

π2

N∑
m=1

2

(2m)2

≈ 1

as N → ∞. Thus, the sampled θ is considered to lie around
the boundary of Θ(β,R).

V. ASYMPTOTICALLY MINIMAX ESTIMATOR ON
MULTIVARIATE SOBOLEV ELLIPSOID

Now, we derive an asymptotically minimax estimator on the
multivariate Sobolev ellipsoid (16), which can be viewed as
an extension of Pinsker’s theorem (Proposition II.1). Several
technical lemmas are given in the Appendix. For completeness,
we also extended the finite-dimensional version of Pinsker’s
theorem [35, 43] to multivariate setting. Its detail is given in
the Appendix.

For a symmetric matrix S ∈ Rp×p that has a spectral
decomposition S = U⊤ΛU with U ∈ O(p) and Λ =
diag(λ1, . . . , λp), let S+ be its projection onto the positive

semidefinite cone defined by S+ = U⊤Λ+U ⪰ O, where
Λ+ = diag((λ1)+, . . . , (λp)+).

Lemma V.1. Let a = (ai) be a non-decreasing sequence such
that ai ≥ 0 and ai → ∞ as i→ ∞, and Q be a p×p positive
definite matrix with eigenvalues λ1 ≥ · · · ≥ λp > 0. Then, the
equation

ε2κ−1
∞∑
i=1

aitr(Ip − aiκQ
−1)+ = 1 (18)

has a unique solution of κ > 0 for every ε > 0, which satisfies

κ = ε2

1 + ε2
p∑

j=1

λ−1
j

Nj(κ)∑
i=1

a2i

−1
p∑

j=1

Nj(κ)∑
i=1

ai, (19)

where Nj(κ) = max{i | 1− aiκλ
−1
j > 0} for j = 1, . . . , p.

Proof. Let

g(κ) := ε2
∞∑
i=1

aitr(Ip − aiκQ
−1)+

= ε2
p∑

j=1

Nj(κ)∑
i=1

ai(1− aiκλ
−1
j ).

Clearly, g is continuous and piecewise linear. For κ1 < κ2, we
have 1− aiκ1λ

−1
j > 1− aiκ2λ

−1
j and Nj(κ1) ≥ Nj(κ2) for

every j, which leads to g(κ1) > g(κ2). Thus, g(κ) is strictly
monotone decreasing. Also, g(κ) → ∞ as κ→ 0 and g(κ) →
0 as κ → ∞. Therefore, κ−1g(κ) is also strictly monotone
decreasing, κ−1g(κ) → ∞ as κ → 0 and κ−1g(κ) → 0 as
κ → ∞. Hence, the equation (18), which is equivalent to
κ−1g(κ) = 1, has a unique solution of κ > 0. From

κ−1g(κ) = ε2

 p∑
j=1

Nj(κ)∑
i=1

ai

κ−1 − ε2
p∑

j=1

λ−1
j

Nj(κ)∑
i=1

a2i ,

the solution of κ−1g(κ) = 1 satisfies (19).

Lemma V.2. Let ai = aβ,i be the coefficients of the multi-
variate Sobolev ellipsoid (4). Then, the equation (18) has a
unique solution that satisfies κ = κ∗(1 + o(1)) as ε → 0,
where

κ∗ :=

(
βtr(Q(β+1)/β)

(β + 1)(2β + 1)

)β/(2β+1)

ε2β/(2β+1).

Proof. Since aβ,i ≥ 0 is non-decreasing and aβ,i → ∞
as i → ∞, the equation (18) has a unique solution from
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Fig. 3. Sample functions from W (β, L). solid: f1, dashed: f2

Lemma V.1. By putting Mj = max{i | 1− aβ,iκλ
−1
j > 0} =

⌊(κλ−1
j )−1/β/2⌋, the left hand side of (18) is rewritten as

ε2κ−1

p∑
j=1

∞∑
i=1

aβ,i(1− aβ,iκλ
−1
j )+

= 2ε2κ−1

p∑
j=1

Mj∑
m=1

(2m)β(1− (2m)βκλ−1
j )

= 2ε2κ−1

p∑
j=1

(
2βMβ+1

j

β + 1
−

4βM2β+1
j

2β + 1
κλ−1

j

)

=
βε2

(β + 1)(2β + 1)

 p∑
j=1

λ−1
j (κλ−1

j )−(2β+1)/β

 (1 + o(1))

=
βε2

(β + 1)(2β + 1)
tr(Q(β+1)/β)κ−(2β+1)/β(1 + o(1))

=
(κ∗
κ

)(2β+1)/β

(1 + o(1))

as ε→ 0, where we used

M∑
m=1

ma =
Ma+1

a+ 1
(1 + o(1)) (20)

as M → ∞. Therefore, κ = κ∗(1 + o(1)) as ε→ 0.

Consider estimation of θ = (θi) in the multivariate Gaussian
sequence model (14) under the quadratic loss LQ in (15). The
risk function of an estimator θ̂ is

RQ(θ, θ̂) = Eθ

[ ∞∑
i=1

(θ̂i − θi)
⊤Q(θ̂i − θi)

]
.

Suppose that θ is restricted to the multivariate Sobolev ellip-
soid Θ(β,Q) in (16). From Lemma V.2, the equation (18) with
ai = aβ,i has a unique solution of κ > 0. By using this κ, we
define a linear estimator θ̂P = (θ̂P,i) by

θ̂P,i = CP,iyi, CP,i = (Ip − aβ,iκQ
−1)+, (21)
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where (·)+ denotes the projection onto the positive semidefi-
nite cone introduced above. This estimator can be viewed as
a generalization of Pinsker’s estimator (Proposition II.1).

Lemma V.3. For CP = (CP,i) in (21),

ε2
∞∑
i=1

tr(CP,iQ) = P (β,Q)ε4β/(2β+1)(1 + o(1)) (22)

as ε→ 0, where

P (β,Q) := (2β + 1)1/(2β+1)

(
βtr(Q(β+1)/β)

β + 1

)2β/(2β+1)

.

(23)

Proof. Let λ1 ≥ · · · ≥ λp > 0 be the eigenvalues of Q and
Mj = max{i | 1 − aβ,iκλ

−1
j > 0} = ⌊(κλj)−1/β/2⌋ for

j = 1, . . . , p. Then,

ε2
∞∑
i=1

tr(CP,iQ)

= 2ε2
p∑

j=1

Mj∑
m=1

(1− (2m)βκλ−1
j )λj

= 2ε2
p∑

j=1

(
Mj − 2β

Mβ+1
j

β + 1
κλ−1

j

)
λj(1 + o(1))

= ε2
β

β + 1
κ−1/βtr(Q(β+1)/β)(1 + o(1))

as ε → 0, where we used (20). Therefore, from Lemma V.2,
we obtain (22).

Theorem V.1. The estimator θ̂P in (21) is asymptotically min-
imax under LQ in (15) on the multivariate Sobolev ellipsoid
Θ(β,Q) in (16):

sup
θ∈Θ(β,Q)

RQ(θ, θ̂P) ∼ inf
θ̂

sup
θ∈Θ(β,Q)

RQ(θ, θ̂)

∼ P (β,Q)ε4β/(2β+1)

as ε→ 0, where inf is taken over all estimators and P (β,Q)
is given by (23).

Proof. We write ai = aβ,i for convenience. Let Q = U⊤ΛU
be a spectral decomposition of Q with Λ = diag(λ1, . . . , λp).
Then, CP,i = U⊤(Ip−aiκΛ−1)+U . Therefore, by using (1−
(1− l)+)

2 ≤ l2,

(Ip − CP,i)Q(Ip − CP,i) = U⊤(Ip − (Ip − aiκΛ
−1)+)

2ΛU

⪯ U⊤ · a2iκ2Λ−2 · Λ · U
= a2iκ

2Q−1. (24)

Also, by using aiκλ
−1
j + (1 − aiκλ

−1
j )+ = 1 when (1 −

aiκλ
−1
j )+ > 0,

∞∑
i=1

tr(CP,iQ(aiκQ
−1 + CP,i)) (25)

=

∞∑
i=1

p∑
j=1

(1− aiκλ
−1
j )+λj(aiκλ

−1
j + (1− aiκλ

−1
j )+)

=

∞∑
i=1

p∑
j=1

(1− aiκλ
−1
j )+λj =

∞∑
i=1

tr(CP,iQ). (26)

Similarly,
∞∑
i=1

tr(CP,iQ(aiκQ
−1 + CP,i)

−1) =

∞∑
i=1

tr(CP,iQ). (27)

Now, from

Eθ

[
(θ̂P,i − θi)(θ̂P,i − θi)

⊤
]

= (Ip − CP,i)θiθ
⊤
i (Ip − CP,i) + ε2C2

P,i

and (24), we obtain

RQ(θ, θ̂P)

=

∞∑
i=1

θ⊤i (Ip − CP,i)Q(Ip − CP,i)θi + ε2
∞∑
i=1

tr(C2
P,iQ)

≤ κ2
∞∑
i=1

a2i θ
⊤
i Q

−1θi + ε2
∞∑
i=1

tr(C2
P,iQ)

≤ κ2 + ε2
∞∑
i=1

tr(C2
P,iQ)

for θ ∈ Θ(β,Q). By using (18) and (25),

κ2 + ε2
∞∑
i=1

tr(C2
P,iQ)

= ε2κ

∞∑
i=1

aitr(Ip − aiκQ
−1)+ + ε2

∞∑
i=1

tr(C2
P,iQ)

= ε2
∞∑
i=1

tr(CP,iQ(aiκQ
−1 + CP,i))

= ε2
∞∑
i=1

tr(CP,iQ).

Therefore,

inf
θ̂

sup
θ∈Θ(β,Q)

RQ(θ, θ̂) ≤ sup
θ∈Θ(β,Q)

RQ(θ, θ̂P)

≤ ε2
∞∑
i=1

tr(CP,iQ). (28)

Now, we consider the minimax lower bound. Let N =
N1(κ) = max{i | 1− aiκλ

−1
1 > 0} and

ΘN (β,Q) := {θ = (θ1, θ2, . . . ) |θ1 = 0; θi = 0, i > N ;
N∑
i=2

a2i θ
⊤
i Q

−1θi ≤ 1

}
,

where θ1 = 0 comes from a1 = 0. Then, from ΘN (β,Q) ⊂
Θ(β,Q),

inf
θ̂

sup
θ∈Θ(β,Q)

RQ(θ, θ̂)

≥ inf
θ̂

sup
θ∈ΘN (β,Q)

RQ(θ, θ̂)

= inf
θ̂

sup
θ∈ΘN (β,Q)

Eθ

[
N∑
i=2

(θ̂i − θi)
⊤Q(θ̂i − θi)

]
, (29)

where the equality follows because the infimum is attained by
an estimator such that θ̂i = 0 for i = 1 and i > N . Thus, we
restrict our attention to estimation of θN = (θ2, . . . , θN ) in the
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following. Let δ ∈ (0, 1) and π be the prior on RN such that
θi ∼ Np(0, δ

2Vi) independently with Vi = ε2a−1
i κ−1Q(Ip −

aiκQ
−1)+ for i = 2, . . . , N . From Lemma B.1, the Bayes

estimator with respect to this prior (posterior mean) is

θ̂πi = Cπ
i xi, Cπ

i = δ2Vi(δ
2Vi + ε2Ip)

−1,

for i = 2, . . . , N , and its Bayes risk is

r(π) = δ2ε2
N∑
i=2

tr(QVi(δ
2Vi + ε2Ip)

−1)

≥ δ2ε2
N∑
i=2

tr(QVi(Vi + ε2Ip)
−1)

= δ2ε2
∞∑
i=1

tr(CP,iQ(aiκQ
−1 + CP,i)

−1)

= δ2ε2
∞∑
i=1

tr(CP,iQ), (30)

where we used (27). Let

Φ :=

{
θN = (θ2, . . . , θN )

∣∣∣∣∣
N∑
i=2

a2i θ
⊤
i Q

−1θi ≤ 1

}
⊂ Rp(N−1)

be the truncation of ΘN (a,Q) and E be the class of estimators
θ̂N of θN = (θ2, . . . , θN ) that take values in Φ. Since Φ is
closed and convex, we can restrict our attention to estimators
in E in considering the lower bound for the minimax risk over
Φ. Let

RN,Q(θ
N , θ̂N ) := EθN

[
N∑
i=2

(θ̂i − θi)
⊤Q(θ̂i − θi)

]
.

Then, for any estimator θ̂N ∈ E, from the definition of the
Bayes risk,

r(π) ≤
∫
RN,Q(θ

N , θ̂N )π(θN )dθN

≤ sup
θN∈Φ

RN,Q(θ
N , θ̂N ) + sup

θ̂N∈E

∫
Φc

RN,Q(θ
N , θ̂N )π(θN )dθN ,

where Φc = Rp(N−1) \ Φ. Taking the infimum over all
estimators in E,

r(π) ≤ inf
θ̂N∈E

sup
θN∈Φ

RN,Q(θ
N , θ̂N )

+ sup
θ̂N∈E

∫
Φc

RN,Q(θ
N , θ̂N )π(θN )dθN ,

which yields

inf
θ̂N∈E

sup
θN∈Φ

RN,Q(θ
N , θ̂N )

≥ r(π)− sup
θ̂N∈E

∫
Φc

RN,Q(θ
N , θ̂N )π(θN )dθN . (31)

Now, from (a+ b)⊤Q(a+ b) ≤ 2(a⊤Qa+ b⊤Qb) and the
Cauchy-Schwarz inequality,

sup
θ̂N∈E

∫
Φc

RN,Q(θ
N , θ̂N )π(θN )dθN

≤2

∫
Φc

(
N∑
i=2

θ⊤i Qθi

)
π(θN )dθN

+ 2 sup
θ̂N∈E

∫
Φc

EθN

[
N∑
i=2

θ̂⊤i Qθ̂i

]
π(θN )dθN

≤2(π(Φc))1/2Eπ

( N∑
i=1

θ⊤i Qθi

)2
1/2

+ 2Mπ(Φc), (32)

where

M := max
θN∈Φ

N∑
i=2

θ⊤i Qθi = λ21a
−2
2 = O(1).

Let ξi = δ−1V
−1/2
i θi ∼ Np(0, Ip) and V

1/2
i Q−1V

1/2
i =

U⊤ΛiU with Λi = diag(λi1, . . . , λip) be a spectral decompo-
sition of V 1/2

i Q−1V
1/2
i . Then,

θ⊤i Q
−1θi = δ2ξ⊤i V

1/2
i Q−1V

1/2
i ξi

= δ2(Uξi)
⊤Λi(Uξi)

= δ2
p∑

j=1

λij(Uξi)
2
j .

Therefore, by putting b2ij = δ2a2iλij = δ2ε2κ−1ai(1 −
aiκλ

−1
j )+,

π(Φc) = Pr

[
N∑
i=2

a2i θ
⊤
i Q

−1θi > 1

]

= Pr

 N∑
i=2

p∑
j=1

b2ij((Uξi)
2
j − 1) >

1− δ2

δ2

N∑
i=2

p∑
j=1

b2ij

 ,
where we used

∑
i,j b

2
ij = δ2. Since Uξi ∼ Np(0, Ip)

independently for i = 1, . . . , N , from Lemma B.2,

π(Φc) = O

(
exp

(
− (1− δ2)2

8δ4

∑
i,j b

2
ij

maxi,j{b2ij | b2ij > 0}

))
= O

(
exp

(
−Cε−2/(2β+1)

))
(33)

for δ ∈ (1/
√
2, 1) with some constant C > 0, where we

used b2ij ≤ δ2ε2κ−1aNj(κ) ≤ δ2ε2κ−2λj = O(ε2/(2β+1)) for
i ≤ Nj(κ) and b2ij = 0 for i > Nj(κ). Also, by putting
V

1/2
i QV

1/2
i = U⊤DU with D = diag(µi1, . . . , µip),

θ⊤i Qθi = δ2ξ⊤i V
1/2
i QV

1/2
i ξi

= δ2(Uξi)
⊤D(Uξi)

= δ2
p∑

j=1

µij(Uξi)
2
j .
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Thus, from Lemma B.3,

Eπ

( N∑
i=2

θ⊤i Qθi

)2
 ≤ 3δ4

 N∑
i=2

p∑
j=1

µij

2

= 3δ4

(
N∑
i=2

tr(QVi)

)2

≤ 3δ4a−4
2

(
N∑
i=2

a2i tr(QVi)

)2

= 3δ4a−4
2

(
ε2κ−1

N∑
i=2

aitr(CP,iQ
2)

)2

≤ 3δ4λ41a
−4
2

(
ε2κ−1

N∑
i=2

aitr(CP,i)

)2

= 3δ4λ41a
−4
2

= O(1). (34)

Substituting (33) and (34) into (32) yields

sup
θ̂N∈E

∫
Φc

R(θN , θ̂N )π(θN )dθN = O
(
exp

(
−Cε−2/(2β+1)

))
.

Combining it with (29), (30) and (31) and using Lemma V.3,
we obtain

inf
θ̂

sup
θ∈Θ(β,Q)

RQ(θ, θ̂) ≥ δ2ε2
∞∑
i=1

tr(CP,iQ)(1 + o(1)).

By taking δ → 1,

inf
θ̂

sup
θ∈Θ(β,Q)

RQ(θ, θ̂) ≥ ε2
∞∑
i=1

tr(CP,iQ)(1 + o(1)). (35)

From (28), (35) and Lemma V.3, we obtain the theorem.

Theorem V.1 implies that the multivariate Sobolev ellipsoid
Θ(β, cQ) with β > 0 and c > 0 is a canonical parameter
space when the quadratic loss LQ is adopted, in the sense that
a linear estimator attains the asymptotic minimaxity. Note that
the (asymptotic) minimaxity under LQ is equivalent to the
(asymptotic) minimaxity under LaQ for every a > 0 since
LaQ = aLQ. For the parameter space

∑∞
i=1 a

2
β,iθ

⊤
i Q

−1θi ≤
K, the asymptotic minimax risk for the loss LQ is given by

R−1P (β,KQ)ε4β/(2β+1) = K1/(2β+1)P (β,Q)ε4β/(2β+1),

where we used LKQ = KLQ. For example, the multichannel
signal detection problem studied by [20, 26] naturally corre-
sponds to K = p.

Whereas we gave a detailed proof of Theorem V.1 for
completeness, it can be viewed as a special case of a general
version of Pinsker’s theorem (e.g. Theorem 5.1 in [28]). In
fact, from this viewpoint, Theorem V.1 can be extended to
estimation of θ ∈ Θ(β,R) under LQ where Q and R are
simultaneously diagonalizable (thus commutable) as follows1.
Let R = U⊤ΛU be a spectral decomposition of R. Since

1We thank the referee for pointing out this.

Q and R are simultaneously diagonalizable, we have Q =
U⊤DU with a diagonal matrix D. Let ξi := D1/2Uθi. Since

∞∑
i=1

a2i θ
⊤
i R

−1θi =

∞∑
i=1

a2i ξ
⊤
i (ΛD)−1ξi,

we have θ ∈ Θ(β,R) if and only if ξ ∈ Θ(β,ΛD). Also,
LQ(θ, θ̂) =

∑
i ∥ξ̂i − ξi∥2. Rewrite
∞∑
i=1

a2i ξ
⊤
i (ΛD)−1ξi =

∞∑
k=1

b2ks
2
k,

where b = (bk) is a non-decreasing reordering of

a21((ΛD)−1)11, . . . , a
2
1((ΛD)−1)pp,

a22((ΛD)−1)11, . . . , a
2
2((ΛD)−1)pp, . . . ,

and s = (sk) is the same reordering of
ξ11, . . . , ξ1p, ξ21, . . . , ξ2p, . . . . Let zk be the same reordering
of

(D1/2Ux1)1, . . . , (D
1/2Ux1)p,

(D1/2Ux2)1, . . . , (D
1/2Ux2)p, . . . .

Then, zk ∼ N(sk, ε
2
k) where ε2k is either of D11, . . . , Dpp. In

this way, the problem is reduced to estimation of the mean se-
quence under the usual quadratic loss in the original Gaussian
sequence model (p = 1) with heteroscedastic variance and an
ellipsoid constraint. Therefore, from Pinsker’s theorem (e.g.
Theorem 5.1 in [28]), a linear estimator attains asymptotic
minimaxity.

From the proof of Theorem V.1, the independent Gaussian
prior θi ∼ Np(0, δ

2Vi) with Vi = ε2a−1
i κ−1Q(Ip−aiκQ−1)+

and δ ≈ 1 is considered to be nearly least favorable in that its
Bayes risk is comparable to the minimax risk [28]. Intuitively,
the probability mass of this prior concentrates around the
boundary of Θ(β,Q) as ε → 0. We can visualize this least
favorable prior like Figure 6.3 of [28] (see Figure 3).

It is an interesting problem whether Theorem V.1 can be
extended to general LQ and Θ(β,R) with Q ̸= R. To
discuss it, let us consider a simpler problem of estimating
θ ∈ Rd restricted to Θ(R) = {θ | θ⊤R−1θ = 1} from
the observation X ∼ Nd(θ, Id) under the Q-quadratic loss
LQ(θ, θ̂) = (θ̂ − θ)⊤Q(θ̂ − θ), where Q and R are d × d
positive definite matrices. This problem has been well studied
in the case of Q = Id and R = r2Id, which is closely
related to Pinsker’s theorem [1]. In this case, Θ(R) is the
sphere of radius r defined by Sd−1(r) = {θ | ∥θ∥ = r}
and the Bayes estimator with respect to the uniform prior on
Sd−1(r) is exactly minimax. Also, the Bayes estimator with
respect to the Gaussian prior Nd(0, (r

2/d)Id), which is the
linear estimator θ̂(x) = r2/(d + r2) · x, attains asymptotic
minimaxity as d → ∞ [1]. Intuitively, it is understood as the
Gaussian prior being closer to the uniform prior on Sd−1(r)
as d → ∞ by the concentraion of measure. An important
point here is that the risk functions of both estimators are
constant on Sd−1(r) due to the orthogonal invariance2. Note

2If the parameter space is set to the ball Bd−1(r) = {θ | ∥θ∥ ≤ r},
then the risk functions of both estimators are maximized on Sd−1(r):
argmaxθ∈Bd−1(r) R(θ, θ̂) = Sd−1(r).
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that a Bayes estimator is (exactly) minimax if and only if all
maximizers of its risk function belong to the support of the
prior in the current setting [31]. However, for general Q and
R, the risk functions of both estimators are not constant on
Sd−1(r). Thus, it is not clear whether a linear estimator attains
asymptotic minimaxity in such general cases3. Investigation
of this problem would clarify whether Theorem V.1 can be
extended to general Q and R. We leave it for future work.

VI. ADAPTIVE MINIMAXITY OF BLOCKWISE
EFRON–MORRIS ESTIMATOR

A. Monotone and blockwise constant oracles

For the multivariate Gaussian sequence model (14), the
linear estimator with coefficient matrices C = (Ci) where
Ci ∈ Rp×p is defined by

θ̂C = (θ̂C,i), θ̂C,i = Ciyi.

Here, we consider two classes of coefficient matrices that de-
pend on the choice of the quadratic loss LQ. Let Q = U⊤ΛU
be a spectral decomposition of Q and N be a positive integer,
which will be set to ⌊ε−2⌋ in the next subsection.

The first one is the class of monotone coefficient matrices
commutative with Q:

Wmon,Q

:= {C = (Ci) | Ci = U⊤ΛiU, Λi : diagonal, i = 1, . . . , N ;

Ip ⪰ Λ1 ⪰ Λ2 ⪰ · · · ⪰ ΛN ⪰ O; Ci = O, i > N}.

The second one is the class of blockwise constant coefficient
matrices commutative with Q:

WB,Q

= {C = (Ci) | Ci = C(j), i ∈ Bj ; Ci = O, i > N ;

C(j) = U⊤Λ(j)U, Λ(j) : diagonal, O ⪯ Λ(j) ⪯ Ip},

where B = (B1, . . . , BJ) is a partition of {1, 2, . . . , N} that
satisfies maxBj−1 < minBj for j = 2, . . . , J , similar to the
weakly geometric blocks introduced in Section II-C.

For a fixed θ, we can consider two oracle estimators that at-
tain the smallest risk among Wmon,Q and WB,Q, respectively.
The risks of these oracle estimators are related as follows.

Lemma VI.1. If |Bj+1| ≤ (1 + η)|Bj | for j = 1, . . . , J − 1
with η > 0, then

min
C̄∈WB,Q

RQ(θ, θ̂C̄)

≤ (1 + η) min
C∈Wmon,Q

RQ(θ, θ̂C) + ε2|B1|tr(Q). (36)

Proof. For C = (Ci) ∈ Wmon,Q, define C̄ = (C̄1, C̄2, . . . ) ∈
WB,Q by

C̄i :=

{
C̄(j), i ∈ Bj ,

O, i > N,

3In fact, this problem was mentioned in Exercise 5.3 of [28] as “The
situation appears to be less simple if A and Σ do not commute.”

where C̄(j) = CminBj . For convenience, we put Λ(j) =
ΛminBj

so that C̄(j) = U⊤Λ(j)U . Then,

(Ip − C̄i)Q(Ip − C̄i) = U⊤(Ip − Λ(j))Λ(Ip − Λ(j))U

⪯ U⊤(Ip − Λi)Λ(Ip − Λi)U

= (Ip − Ci)Q(Ip − Ci)

for i ∈ Bj , since Λ,Λi,Λ(j) are all diagonal and O ⪯ Λi ⪯
Λ(j) ⪯ Ip. Therefore,

RQ(θ, θ̂C̄) =

∞∑
i=1

(θ⊤i (Ip − C̄i)Q(Ip − C̄i)θi + ε2tr(C̄iQC̄i))

≤
∞∑
i=1

θ⊤i (Ip − Ci)Q(Ip − Ci)θi + ε2tr

( ∞∑
i=1

C̄iQC̄i

)
.

By definition of C̄,

∞∑
i=1

C̄iQC̄i =
J∑

j=1

|Bj |C̄(j)QC̄(j)

⪯ |B1|Q+

J∑
j=2

|Bj |C̄(j)QC̄(j),

where we used C̄(1)QC̄(1) = U⊤Λ2
(1)ΛU ⪯ U⊤ΛU = Q.

From

C̄(j)QC̄(j) = U⊤Λ2
(j)ΛU

⪯ U⊤Λ2
(j−1)ΛU

= C̄(j−1)QC̄(j−1)

and |Bj | ≤ (1 + η)|Bj−1| for j ≥ 2,

J∑
j=2

|Bj |C̄(j)QC̄(j) ⪯ (1 + η)

J∑
j=2

|Bj−1|C̄(j−1)QC̄(j−1)

⪯ (1 + η)

J−1∑
j=1

∑
i∈Bj

CiQCi

⪯ (1 + η)

∞∑
i=1

CiQCi.

Therefore,

RQ(θ, θ̂C̄)

≤
∞∑
i=1

θ⊤i (Ip − Ci)Q(Ip − Ci)θi

+ ε2tr

(
|B1|Q+ (1 + η)

∞∑
i=1

CiQCi

)

≤ (1 + η)

∞∑
i=1

(θ⊤i (Ip − Ci)Q(Ip − Ci)θi

+ ε2tr(CiQCi)) + ε2|B1|tr(Q)

= (1 + η)RQ(θ, θ̂C) + ε2|B1|tr(Q).

Since C ∈ Wmon,Q is arbitrary, (36) is obtained.
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B. Blockwise Efron–Morris estimator

Let N = ⌊ε−2⌋ and B = (B1, . . . , BJ) be a partition
of {1, . . . , N}. For the multivariate Gaussian sequence model
(14), we define the blockwise Efron–Morris estimator θ̂BEM =
(θ̂BEM,i) by

θ̂BEM,i

=


yi (i ∈ Bj , |Bj | < p+ 2)

(Ip − ε2(|Bj | − p− 1)(
∑

i∈Bj
yiy

⊤
i )

−1)yi

(i ∈ Bj , |Bj | ≥ p+ 2)

0 (i > N)

. (37)

This estimator applies the Efron–Morris type singular value
shrinkage to each block Bj . For the weakly geometric blocks
introduced in Section II-C, the blockwise Efron–Morris es-
timator attains the adaptive minimaxity over the multivariate
Sobolev ellipsoids as follows.

Theorem VI.1. For every β and Q, the blockwise Efron–
Morris estimator θ̂BEM with the weakly geometric blocks is
asymptotically minimax under LQ on the multivariate Sobolev
ellipsoid Θ(β,Q):

sup
θ∈Θ(β,Q)

RQ(θ, θ̂BEM) ∼ inf
θ̂

sup
θ∈Θ(β,Q)

RQ(θ, θ̂)

∼ P (β,Q)ε4β/(2β+1)

as ε→ 0, where inf is taken over all estimators and P (β,Q)
is given by (23).

Proof. From the definition of the weakly geometric blocks and
Lemma 3.12 of [42],

|B1| = log2(1/ε),

J ≤ C log2(1/ε),

max
1≤j≤J−1

|Bj+1|
|Bj |

= 1 + 3ρε, (38)

for sufficiently small ε, where C > 0 is some constant and
ρε = (log(1/ε))−1. We take ε to be sufficiently small so that
|Bj | > p+ 1 for every j.

For each block Bj , the oracle inequality in Corollary III.1
yields

∑
i∈Bj

Eθ((θ̂BEM)i − θi)
⊤Q((θ̂BEM)i − θi)

≤ min
C

∑
i∈Bj

Eθ((θ̂C)i − θi)
⊤Q((θ̂C)i − θi)

+ 2(p+ 1)tr(Q)ε2.

Thus,

RQ(θ, θ̂BEM)

=

J∑
j=1

∑
i∈Bj

Eθ((θ̂BEM)i − θi)
⊤Q((θ̂BEM)i − θi)

+

∞∑
i=N+1

θ⊤i Qθi

≤
J∑

j=1

min
C

∑
i∈Bj

Eθ((θ̂C)i − θi)
⊤Q((θ̂C)i − θi)

+ 2(p+ 1)Jtr(Q)ε2 +

∞∑
i=N+1

θ⊤i Qθi

= min
C̄∈WB,Q

RQ(θ, θ̂C̄) + 2(p+ 1)Jtr(Q)ε2. (39)

Also, from Lemma VI.1,

min
C̄∈WB,Q

RQ(θ, θ̂C̄)

≤ (1 + 3ρε) min
C∈Wmon,Q

RQ(θ, θ̂C) + |B1|tr(Q)ε2. (40)

Finally, consider the linear estimator θ̂P in (21), which
is asymptotically minimax on Θ(β,Q). By definition, the
coefficient matrix CP,i of θ̂P is zero for i > N1(κ) =
⌊(κ−1λ1)

1/β⌋. From Lemma V.2, N1(κ) = O(ε−2/(2β+1)) =
o(ε−2) as ε → 0. Therefore, for sufficiently small ε, CP ∈
Wmon,Q and

min
C∈Wmon,Q

RQ(θ, θ̂C) ≤ RQ(θ, θ̂P). (41)

Combining (39), (40) and (41) and using (38), we obtain

RQ(θ, θ̂BEM) ≤ (1 + 3ρε)RQ(θ, θ̂P) + C ′ε2 log2(1/ε)

for sufficiently small ε, where C ′ is a constant independent of
θ. Therefore,

sup
θ∈Θ(β,Q)

RQ(θ, θ̂BEM)

≤ (1 + 3ρε) sup
θ∈Θ(β,Q)

RQ(θ, θ̂P) + C ′ε2 log2(1/ε)

∼ inf
θ̂

sup
θ∈Θ(β,Q)

RQ(θ, θ̂)

as ε → 0, where we used Theorem V.1. Hence, θ̂BEM is
asymptotically minimax on Θ(β,Q).

Theorem VI.1 indicates that the blockwise Efron–Morris
estimator is adaptive not only to smoothness of the unknown
function but also to arbitrary quadratic loss. In other words,
it attains sharp adaptive estimation of any linear combinations
of the mean sequences simultaneously. Note that using the
blockwise James–Stein estimator for each j only attains adap-
tive minimaxity for diagonal Q.

Theorem VI.1 considers the quadratic loss LQ and parame-
ter space Θ(β,R) with Q = R. Whereas it would be useful if
the result can be extended to general Q and R, we believe
that the current result is an important special case. Since
LaQ = aLQ, Theorem VI.1 guarantees that the blockwise
Efron–Morris estimator attains asymptotic minimaxity under
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LQ on every Θ(β, aQ) simultaneously, in the same way
as the blockwise James–Stein estimator attains asymptotic
minimaxity under the usual quadratic loss on every Sobolev
ellipsoid [28]. As discussed after Theorem V.1, simultaneous
diagonalizability of Q and R may be essential for the existence
of an asymptotically minimax linear estimator on Θ(β,R)
under LQ. We leave extension of Theorem VI.1 to general
Q and R for future work.

VII. SIMULATION RESULTS

In this section, we present simulation results to compare
the performance of several estimators. We approximated the
Q-quadratic loss by truncation

LQ(θ, θ̂) ≈
n∑

i=1

(θ̂i − θ)⊤Q(θ̂i − θ) (42)

for n large enough (see Figure 4) and computed the Q-
quadratic risk by Monte Carlo with 100 repetitions. We
compare three estimators: the multivariate Pinsker estimator
θ̂P in (21), the blockwise Efron–Morris estimator θ̂BEM in (37)
and the blockwise James–Stein estimator θ̂BJS in (7) applied
to each of the p variables individually. In all experiments, we
confirmed that the standard errors of the Monte Carlo estimates
are less than 1%.

Figure 4 plots the ratio of the Q-quadratic risk to the
minimax risk P (β,Q)ε4β/(2β+1) (see Theorem V.1) as a
function of the truncation point n in (42), where p = 5, β = 1,
ε = 10−6. The matrix Q is set to Q = Ip (full rank) or Q =
uu⊤ + 10−3Ip with u ∼ Np(0, Ip) (approximately rank one).
The parameter θ is fixed to a point on the boundary of Θ(β,Q)
that is obtained by using a sample from the least favorable
prior ξi ∼ Np(0, Vi) with Vi = ε2a−1

i κ−1Q(Ip − aiκQ
−1)+

(see the remark after Theorem V.1) as

θ =

(
n∑

i=1

a2i ξ
⊤
i Q

−1ξi

)−1/2

ξ.

The figure indicates that n ≈ 104 is enough for the approx-
imation (42) in this setting. Since θ was set close to the
least favorable values on Θ(β,Q), the Q-quadratic risk of the
multivariate Pinsker estimator is almost equal to the minimax
risk on Θ(β,Q), which is compatible with Theorem V.1.
Also, the Q-quadratic risk of the blockwise Efron–Morris
estimator is approximately equal to the minimax risk, which
is compatible with Theorem VI.1. On the other hand, the
blockwise Jame–Stein estimator fails to attain the minimax
risk when Q is close to low-rank (Figure 4 right).

Figure 5 plots the ratio of Q-quadratic risk to the minimax
risk P (β,Q)ε4β/(2β+1) as a function of ε, where p = 5,
β = 1 and n = 106. The setting of Q and θ are the same
with Figure 4. It shows the asymptotic minimaxity of the
multivariate Pinsker estimator and the blockwise Efron–Morris
estimator as ε→ 0.

Figure 6 visualizes an example in terms of function denois-
ing by using the Fourier expansion similarly to Figure 3, where
p = 2, ε = 10−6, n = 106, β = 1 and

Q =

(
5 −2
−2 1

)
.
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Fig. 4. Ratio of Q-quadratic risk to the minimax risk as a function of
n. dashed: multivariate Pinsker estimator, solid: blockwise Efron–Morris
estimator, dotted: blockwise James–Stein estimator

The setting of θ is the same with Figure 4. In this case, the
Q-quadratic loss of the blockwise Efron–Morris estimator and
blockwise James–Stein estimator are 9.64× 10−8 and 1.01×
10−7, respectively, and the minimax risk P (β,Q)ε4β/(2β+1)

is 9.53× 10−8.

VIII. CONCLUSION

In this study, we introduced a multivariate version of the
Gaussian sequence model and showed that the blockwise
Efron–Morris estimator attains adaptive minimaxity over the
multivariate Sobolev ellipsoids. Notably, it adapts to arbi-
trary quadratic loss in addition to smoothness of the un-
known function. This adaptivity comes from the singular
value shrinkage in the Efron–Morris estimator, which is dif-
ferent from the scalar shrinkage in the James–Stein estimator
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Fig. 5. Ratio of Q-quadratic risk to the minimax risk as a function of
ε. dashed: multivariate Pinsker estimator, solid: blockwise Efron–Morris
estimator, dotted: blockwise James–Stein estimator

and thresholding-type shrinkage commonly used in sparse
estimation. By shrinking the singular values towards zero
separately, the Efron–Morris estimator successfully captures
the correlations between multiple sequences and utilize them
for adaptive estimation. We expect that the singular value
shrinkage is useful in other estimation problems as well.

In addition to adaptive estimation over the Sobolev ellip-
soids, many results have been obtained for estimation in the
Gaussian sequence model, which corresponds to p = 1 in
our setting [28]. It is an interesting future work to further
investigate generalization of these results to multivariate Gau-
sian sequence models. For example, since a penalized version
of the blockwise James–Stein estimator attains adaptive mini-
maxity over general ellipsoids and hyperrectangles [7], such a
modification may be possible for the blockwise Efron–Morris

estimator as well. Generalization to the linear inverse problem
[8], which corresponds to the Gaussian sequence model where
the observation variance increases with indices, is another
direction for future research. Also, it is an interesting problem
whether existing methods for adaptation to inhomogenous
smoothness in the Besov spaces, such as wavelet thresholding
[11, 12] and deep neural networks [40], can be extended to
attain adaptation to arbitrary quadratic loss. There are several
extensions of the Efron–Morris estimator [41] and they may
be also useful.

Empirical Bayes methods have been found to be effective
in adaptive estimation [29, 44]. The blockwise Efron–Morris
estimator provides another example of this, since the Efron–
Morris estimator is naturally interpreted as an empirical Bayes
estimator [16]. Recently, a superharmonic prior for the normal
mean matrix parameter has been developed [32], which shrinks
the singular values towards zero and can be viewed as a
generalization of Stein’s prior [38]. The generalized Bayes
estimator with respect to this prior is minimax under the matrix
quadratic loss and has qualitatively the same behavior with the
Efron–Morris estimator [33]. It is an interesting future work
to investigate Bayesian inference in multivariate Gaussian
sequence models with respect to such singular value shrinkage
priors, including uncertainty quantification.

APPENDIX A
PROOF OF PROPOSITION IV.1

Let f ∈ W (β, L). Since ϕ′1 ≡ 0, ϕ′2m = −(2πm)ϕ2m+1

and ϕ′2m+1 = (2πm)ϕ2m for m ≥ 1,

f
(l)
j (x)

=

∞∑
m=1

(2πm)l(s2m,j(l)ϕ2m(x) + s2m+1,j(l)ϕ2m+1(x)),

(43)

for l = 0, 1, 2, . . . , where

(s2m,j(l), s2m+1,j(l))

=


(θ2m,j , θ2m+1,j), l ≡ 0 mod 4,

(θ2m+1,j ,−θ2m,j), l ≡ 1 mod 4,

(−θ2m,j ,−θ2m+1,j), l ≡ 2 mod 4,

(−θ2m+1,j , θ2m+1,j), l ≡ 3 mod 4,

for m = 1, 2, . . . . Thus, from the orthonormality of ϕ = (ϕi),∫ 1

0

f
(β)
j (x)f

(β)
k (x)dx

=

∞∑
m=1

(2πm)2β(s2m,js2m,k + s2m+1,js2m+1,k)

= π2β
∞∑
i=1

a2β,iθijθik.
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Therefore,

1 ≥
∫ 1

0

f (β)(x)⊤L−2f (β)(x)dx

=

p∑
j=1

p∑
k=1

(L−2)jk

∫ 1

0

f
(β)
j (x)f

(β)
k (x)dx

= π2β

p∑
j=1

p∑
k=1

(L−2)jk

∞∑
i=1

a2β,iθijθik

= π2β
∞∑
i=1

a2β,iθ
⊤
i L

−2θi.

which indicates that θ ∈ Θ(β, L2/π2β).

Conversely, let θ ∈ Θ
(
β, L2/π2β

)
. Since

∞∑
m=1

ml(|θ2m,j |+ |θ2m+1,j |)

≤
∞∑

m=1

mβ−1(|θ2m,j |+ |θ2m+1,j |)

≤

(
2

∞∑
m=1

m2β(θ22m,j + θ22m+1,j)

)( ∞∑
m=1

m−2

)
<∞,

for j = 1, . . . , p and l = 0, 1, . . . , β − 1, the function f
(l)
j

is expressed by the uniformly convergent series (43) and thus
periodic for j = 1, . . . , p and l = 0, 1, . . . , β − 1. Let

gj(x)

=

∞∑
m=1

(2πm)β(s2m,j(β)ϕ2m(x) + s2m+1,j(β)ϕ2m+1(x))

for j = 1, . . . , p. By using the orthonormality of ϕ = (ϕi)
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similarly to the above,∫ 1

0

g(x)⊤L−2g(x)dx = π2β
∞∑
i=1

a2β,iθ
⊤
i L

−2θi ≤ 1.

It also implies that gj ∈ L2[0, 1] for j = 1, . . . , p. Since the
Fourier series of a function in L2[0, 1] is termwise integrable,∫ b

a

gj(x)dx

=

∞∑
m=1

(2πm)β

(
s2m,j(β)

∫ b

a

ϕ2m(x)dx

+s2m+1,j(β)

∫ b

a

ϕ2m+1(x)dx

)

=

∞∑
m=1

(2πm)β−1 (s2m,j(β − 1)(ϕ2m(b)− ϕ2m(a))

+s2m+1,j(β)(ϕ2m+1(b)− ϕ2m+1(a)))

= f
(β−1)
j (b)− f

(β−1)
j (a),

for 0 ≤ a ≤ b ≤ 1, which indicates that f (β−1)
j is absolutely

continuous and gj = f
(β)
j almost everywhere for j = 1, . . . , p.

Therefore, f ∈W (β, L).

APPENDIX B
TECHNICAL LEMMA

Lemma B.1. Let Y ∼ Np(θ, ε
2Ip). For the prior θ ∼

Np(0,Σ), the Bayes estimator of θ under the quadratic loss
lQ(θ, θ̂) = (θ̂ − θ)⊤Q(θ̂ − θ) is the posterior mean

θ̂π = Σ(Σ + ε2Ip)
−1y,

which is independent of Q, and its Bayes risk is

EπEθ(θ̂
π − θ)⊤Q(θ̂π − θ) = ε2tr(QΣ(Σ + ε2Ip)

−1).

Proof. Straightforward calculation. See [31].

Lemma B.2. Let Xi ∼ N(0, 1) be independent standard
Gaussian random variables for i = 1, . . . , n. Then, for t > 0,

Pr

[
n∑

i=1

b2i (X
2
i − 1) ≥ t

n∑
i=1

b2i

]
≤ exp

(
−

t2
∑n

i=1 b
2
i

8max1≤i≤n b2i

)
.

Proof. See Lemma 3.5 of [42].

Lemma B.3. Let Xi ∼ N(0, 1) be independent standard
Gaussian random variables for i = 1, . . . , n. Then,

E

( n∑
i=1

b2iX
2
i

)2
 ≤ 3

(
n∑

i=1

b2i

)2

.

Proof. Since E[X4
i ] = 3 and E[X2

iX
2
j ] = 1 for i ̸= j,

E

( n∑
i=1

b2iX
2
i

)2


=

n∑
i=1

b4iE[X
4
i ] +

n∑
i=1

n∑
j=1

I(i ̸= j)b2i b
2
jE[X

2
iX

2
j ]

= 3

n∑
i=1

b4i +

n∑
i=1

n∑
j=1

I(i ̸= j)b2i b
2
j

≤ 3

(
n∑

i=1

b2i

)2

.

APPENDIX C
FINITE-DIMENSIONAL CASE

Here, we extend the finite-dimensional version of Pinsker’s
theorem [35, 43] to multivariate setting.

Suppose yi = θi + εξi for i = 1, . . . , n, where ξi ∼
Np(0, (1/n)Ip) are independent. We consider estimation of
θ = (θ1, . . . , θn) under the quadratic loss specified by a p× p
positive definite matrix Q:

LQ(θ, θ̂) =

n∑
i=1

(θ̂i − θi)
⊤Q(θ̂i − θi).

The risk function is

RQ(θ, θ̂) = Eθ

[
n∑

i=1

(θ̂i − θi)
⊤Q(θ̂i − θi)

]
.

We consider asymptotically minimax estimation on the ellip-
soid

Θn(Q) =

{
θ = (θ1, . . . , θn)

∣∣∣∣∣
n∑

i=1

θ⊤i Q
−1θi ≤ 1

}
⊂ Rnp,

as n→ ∞.
Let g(κ) = ε2κ−1tr(Ip − κQ−1)+ for κ > 0, where

(·)+ denotes the projection onto the positive semidefinite
cone defined in Section V. Since g is monotone decreasing,
g(κ) → ∞ as κ→ 0 and g(κ) → 0 as κ→ ∞, there exists a
unique κ that satisfies g(κ) = 1. By using this κ, we define a
linear estimator θ̂P = (θ̂P,i) by

θ̂P,i = CPyi, CP = (Ip − κQ−1)+.

Theorem C.1. The estimator θ̂P = (θ̂P,i) is asymptotically
minimax on Θn(Q):

sup
θ∈Θn(Q)

RQ(θ, θ̂P) ∼ inf
θ̂

sup
θ∈Θn(Q)

RQ(θ, θ̂)

∼ ε2tr(CPQ)(= O(1)),

as n→ ∞, where inf is taken over all estimators.

Proof. Let Q = U⊤ΛU be a spectral decomposition of Q
with Λ = diag(λ1, . . . , λp). Then, CP = U⊤(Ip −κΛ−1)+U .
Therefore, by using (1− (1− l)+)

2 ≤ l2,

(Ip − CP)Q(Ip − CP) = U⊤(Ip − (Ip − κΛ−1)+)
2ΛU

⪯ U⊤ · κ2Λ−2 · ΛU
= κ2Q−1. (44)
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Also, from κλ−1
j +(1−κλ−1

j )+ = 1 when (1−κλ−1
j )+ > 0,

tr(CPQ(κQ−1 + CP))

=

p∑
j=1

(1− κλ−1
j )+λj(κλ

−1
j + (1− κλ−1

j )+)

=

p∑
j=1

(1− κλ−1
j )+λj = tr(CPQ). (45)

From

Eθ

[
(θ̂P,i − θi)(θ̂P,i − θi)

⊤
]

= (Ip − CP)θiθ
⊤
i (Ip − CP) + n−1ε2C2

P,

we have

RQ(θ, θ̂P) =

n∑
i=1

θ⊤i (Ip − CP)Q(Ip − CP)θi + ε2tr(C2
PQ)

≤ κ2
n∑

i=1

θ⊤i Q
−1θi + ε2tr(C2

PQ)

≤ κ2 · ε2κ−1tr(CP) + ε2tr(C2
PQ)

= ε2tr(CPQ(κQ−1 + CP))

= ε2tr(CPQ)

for θ ∈ Θn(Q), where we used (44), g(κ) = 1 and (45). Thus,

inf
θ̂

sup
θ∈Θn(Q)

Eθ

[
n∑

i=1

(θ̂P,i − θi)
⊤Q(θ̂P,i − θi)

]
≤ ε2tr(CPQ).

(46)

Let δ ∈ (0, 1) and π be the prior θi ∼ N(0, δ2V ) indepen-
dently with V = (ε2/n)κ−1Q(Ip−κQ−1)+ for i = 1, . . . , n.
Then, the Bayes estimator with respect to this prior (posterior
mean) is

θ̂πi = Cπxi, Cπ = δ2V (δ2V + (ε2/n)Ip)
−1,

for i = 1, . . . , n and its Bayes risk is

r(π) = n · δ2(ε2/n)tr(QV (δ2V + (ε2/n)Ip)
−1)

≥ δ2ε2tr(QV (V + (ε2/n)Ip)
−1)

= δ2ε2tr(CPQ).

Let E be the class of estimators θ̂ of θ that take values in
Θn(Q). Since Θn(Q) is closed and convex, we can restrict
our attention to estimators in E in considering the lower bound
for minimax risk over Θn(Q). For any estimator θ̂ ∈ E,

r(π) ≤
∫
RQ(θ, θ̂)π(θ)dθ

≤ sup
θ∈Θn(Q)

RQ(θ, θ̂) + sup
θ̂∈E

∫
Θn(Q)c

RQ(θ, θ̂)π(θ)dθ,

where Θn(Q)c = Rnp \Θn(Q). Taking the infimum over all
estimators in E,

r(π) ≤ inf
θ̂

sup
θ∈Θn(Q)

RQ(θ, θ̂) + sup
θ̂∈E

∫
Θn(Q)c

RQ(θ, θ̂)π(θ)dθ,

which yields

inf
θ̂

sup
θ∈Θn(Q)

RQ(θ, θ̂) ≥ r(π)− sup
θ̂∈E

∫
Θn(Q)c

RQ(θ, θ̂)π(θ)dθ.

Now, from (a + b)⊤Q(a + b) ≤ 2(a⊤Qa + b⊤Qb) and the
Cauchy-Schwarz inequality,

sup
θ̂∈E

∫
Θn(Q)c

RQ(θ, θ̂)π(θ)dθ

≤2

∫
Θn(Q)c

(
n∑

i=1

θ⊤i Qθi

)
π(θ)dθ

+ 2 sup
θ̂∈E

∫
Θn(Q)c

Eθ

[
n∑

i=1

θ̂⊤i Qθ̂i

]
π(θ)dθ

≤2(π(Θn(Q)c))1/2Eπ

( n∑
i=1

θ⊤i Qθi

)2
1/2

+ 2Mπ(Θn(Q)c),

where

M = max
θ∈Θn(Q)

n∑
i=1

θ⊤i Qθi = λ21 = O(1).

Let ξi = δ−1V −1/2θi ∼ Np(0, Ip) and V 1/2Q−1V 1/2 =
U⊤ΨU with Ψ = diag(ψ1, . . . , ψp) be a spectral decomposi-
tion of V 1/2Q−1V 1/2. Then,

θ⊤i Q
−1θi = δ2ξ⊤i V

1/2Q−1V 1/2ξi

= δ2(Uξi)
⊤Ψ(Uξi)

= δ2
p∑

j=1

ψj(Uξi)
2
j .

Therefore, by putting b2j = δ2ψj ,

π(Θn(Q)c)

= Pr

[
n∑

i=1

θ⊤i Q
−1θi > 1

]

= Pr

 n∑
i=1

p∑
j=1

b2j ((Uξi)
2
j − 1) >

1− δ2

δ2

n∑
i=1

p∑
j=1

b2j

 ,
where we used

∑
i,j b

2
j = nδ2tr(V 1/2Q−1V 1/2) = δ2g(κ) =

δ2. Since Uξi ∼ Np(0, Ip) independently for i = 1, . . . , n,
from Lemma A.2,

π(Θn(Q)c) = O

(
exp

(
− (1− δ2)2

8δ4

∑
i,j b

2
j

maxj{b2j | b2j > 0}

))
= O (exp (−Cn))

for δ ∈ (1/
√
2, 1) with some constant C > 0. Also, by putting

V 1/2QV 1/2 = U⊤DU with D = diag(µ1, . . . , µp),

θ⊤i Qθi = δ2ξ⊤i V
1/2QV 1/2ξi

= δ2(Uξi)
⊤D(Uξi)

= δ2
p∑

j=1

µj(Uξi)
2
j .
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Thus, from Lemma A.3,

Eπ

( n∑
i=1

θ⊤i Qθi

)2
 ≤ 3δ4

 n∑
i=1

p∑
j=1

µj

2

= 3δ4n2tr(QV )2

= 3δ4ε4κ−1tr(CPQ
2)

= O(1).

Therefore, from tr(CPQ) = O(1),

inf
θ̂

sup
θ∈Θn(Q)

RQ(θ, θ̂) ≥ δ2ε2tr(CPQ)(1 + o(1)).

By taking δ → 1,

inf
θ̂

sup
θ∈Θn(Q)

RQ(θ, θ̂) ≥ ε2tr(CPQ)(1 + o(1)). (47)

From (46) and (47), we obtain the theorem.
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