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Abstract—Quantum teleportation is a quantum communica-
tion primitive that allows a long-distance quantum channel to
be built using pre-shared entanglement and one-way classical
communication. However, the quality of the established channel
crucially depends on the quality of the pre-shared entanglement.
In this work, we revisit the problem of using noisy entanglement
for the task of teleportation. We first show how this problem can
be rephrased as a state discrimination problem. In this picture,
a quantitative duality between teleportation and dense coding
emerges in which every Alice-to-Bob teleportation protocol can
be repurposed as a Bob-to-Alice dense coding protocol, and
the quality of each protocol can be measured by the success
probability in the same state discrimination problem. One of our
main results provides a complete characterization of the states
that offer no advantage in one-way teleportation protocols over
classical states, thereby offering a new and intriguing perspective
on the long-standing open problem of identifying such states.
This also yields a new proof of the known fact that bound
entangled states cannot exceed the classical teleportation thresh-
old. Moreover, our established duality between teleportation and
dense coding can be used to show that the exact same states are
unable to provide a non-classical advantage for dense coding as
well. We also discuss the duality from a communication capacity
point of view, deriving upper and lower bounds on the accessible
information of a dense coding protocol in terms of the fidelity of
its associated teleportation protocol. A corollary of this discussion
is a simple proof of the previously established fact that bound
entangled states do not provide any advantage in dense coding.

I. INTRODUCTION

Quantum teleportation [4] is one of the most important
protocols in quantum information theory. It provides the
backbone for a number of applications such as quantum
communication [5], long-distance entanglement distribution
via repeaters [7], and quantum computation [12]. From a fun-
damental perspective, teleportation beautifully demonstrates
the interplay between different quantum resources: one com-
munication primitive, a qubit channel, can be simulated using
two other communication primitives, pre-shared entanglement
and a two-bit classical channel. Consequently, universal dis-
tributed quantum computation can be achieved using pre-
shared entanglement along with local operations and classical
communication (LOCC). The rich study of entanglement and
LOCC within quantum information science was largely due to
this realization [19].
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The discovery of quantum teleportation was preceded by
the dense coding protocol of Bennett and Wiesner [6]. In
this task, Alice and Bob use pre-shared entanglement and a
noiseless qubit channel to simulate a two-bit classical channel.
Thus teleportation and dense coding are dual to one another
in terms of their resource consumption and communication
objectives, an observation already made in [4]. However, the
duality extends even to the level of protocols. As explained
further in Sec. II, a general teleportation protocol (from Alice
to Bob) consists of an entangled state shared between Alice
and Bob, along with an encoding measurement performed by
Alice and decoding state transformations applied by Bob. As
discussed in Sec. IV, these exact same elements (entangled
state, measurement, state transformations) can also be used to
define a dense coding protocol (from Bob to Alice), where
now the state transformations serve as encoders of classical
information while the measurement aims to decode this infor-
mation.

In the so-called “tight” setting (see Sec. IV for an ex-
planation of this terminology) Werner [30] showed that this
duality leads to matching conditions of optimality: a tele-
portation protocol achieves perfect transmission of quantum
information if and only if the associated dense coding protocol
achieves perfect transmission of “dense” classical information.
However, beyond this case of perfect transmission, a clear
relation between figures of merit for these tasks has so far
been missing. As one of our main results in this paper, we
prove such a quantitative relationship in the general setting,
recovering some of Werner’s result along the way.

The foundational work of Horodecki et al. [16] established a
direct relation between two quantities: the (average) fidelity of
a teleportation protocol operating on bipartite states of equal
local dimension, and the maximal “singlet fraction” of the
entangled resource state. The latter can be understood as a
static version of the well-known entanglement fidelity of a
quantum channel (see Sec. II for a definition). The results
of [16] reduce the optimization of the average fidelity in
teleportation to the potentially simpler optimization of the
singlet fraction. However, it obscures the duality between each
teleportation protocol and its associated dense coding protocol,
which we fully explore in this paper.

A. Main results
We first show in Lem. 1 that the entanglement fidelity of

a general teleportation protocol is proportional to the suc-
cess probability in an associated state discrimination problem
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defined in terms of the same data. This generalizes the cor-
responding equivalence for port-based teleportation protocols
[21, 22, 3] to completely general teleportation protocols.

Immediate corollaries of this result are a general bound on
the fidelity in terms of the system dimensions (Cor. 2) and
a short new proof of the known result [16] that teleportation
protocols operating on bound entangled states cannot exceed
the classical fidelity achievable by any separable state (Cor. 3).

The latter statement is strengthened in Thm. 4, in which
we show that a bipartite state ρAB can give rise to a non-
classical teleportation fidelity if and only if there is a locally
processed version of ρAB violating the reduction criterion for
separability.

We then use the operational connection between teleporta-
tion and state discrimination from Lem. 1 to prove a quanti-
tative version of the duality between teleportation and dense
coding. This is achieved using two figures of merit for dense
coding protocols: a classical analogue of the entanglement
fidelity called classical correlation fidelity, and the accessible
information of a quantum state ensemble. We prove in Thm. 5
an exact relationship between the classical correlation fidelity
of a dense coding protocol and the entanglement fidelity of
the associated teleportation protocol. This result is used to
show in Thm. 6 that a bipartite state gives rise to non-
classical dense coding fidelity if and only if there is a locally
processed version of the state violating the reduction criterion,
in complete analogy to Thm. 4. Finally, in Thm. 7 we prove
lower and upper bounds on the accessible information in terms
of the fidelity of the corresponding teleportation protocol. This
result provides a new proof of some of the exact duality
results of Werner [30], as well as a new proof of the result
by Horodecki et al. [18] that bound entangled states do not
provide an advantage in dense coding.

B. Definitions and conventions

Throughout the paper quantum systems are denoted by
letters A, B, C, etc., and associated with finite-dimensional
Hilbert spaces HA, HB , HC , etc., whereas classical systems
are denoted by letters X , Y , Z, etc. The Hilbert space
associated to a multipartite system AB is defined as HAB :=
HA ⊗ HB . We use the notation |A| := dimHA for the
dimension of a system A. Two systems differing only by
primes are assumed to be of the same dimension and hence
isomorphic, e.g., |C| = |C ′| = |C ′′|. This also means that,
given an operator XC acting on C, the operator XC′ acting
on C ′ is also defined. The space of linear operators acting
on HA is denoted by B(HA). The identity operator on HA is
denoted by IA, whereas the identity map on B(HA) is denoted
by idA. We denote by XTB

AB the partial transpose of a bipartite
operator. A quantum state or density operator ρA ∈ B(HA)
is a positive semidefinite operator of trace 1. For a pure state
|ψ⟩A ∈ HA we often write ψA ≡ |ψ⟩⟨ψ|A for the associated
density operator. A quantum channel E : A → B is a linear,
completely positive, trace-preserving map from B(HA) to
B(HB). We also use the alternative notation EA→B . A positive
operator-valued measure (POVM) on A is a collection {Πi

A}i
of positive semidefinite operators satisfying

∑
i Π

i
A = IA.

II. TELEPORTATION AND STATE DISCRIMINATION

We start our discussion by showing that any teleportation
protocol is equivalent to a quantum state discrimination prob-
lem: the fidelity in the former is proportional to the success
probability in the latter. This result generalizes the known
relationship between fidelity and a state discrimination success
probability for port-based teleportation, which was proved in
[21, 22, 3], and applied to generalized port-based teleportation
protocols in [23, 28].

To prove our result, we first define general teleportation
protocols, referring to Fig. 1 for a graphical depiction: Alice
and Bob share a bipartite state ρAB , and in addition Alice
controls a quantum system C ′ in a state σC′ that she wants to
teleport to Bob. Note that the systems A,B,C ′ are completely
arbitrary and not assumed to be of equal dimension. Alice
performs a measurement on C ′A given by a POVM Π =
{Πi

C′A}Ni=1 for some N ∈ N, and communicates the outcome
i ∈ [N ] := {1, . . . , N} to Bob over an N -message (noiseless)
classical channel). Finally, depending on the classical message
i, Bob applies a decoding operation given by a quantum
channel Di : B → C to his system B. This defines a |C|-
dimensional teleportation protocol (ρAB , {Πi}Ni=1, {Di}Ni=1)
implementing the following quantum channel Λ: C ′ → C,
usually called teleportation channel:

Λ(σC′) =

N∑
i=1

(trC′A ⊗Di)
[(
Πi

C′A ⊗ IB
)
(σC′ ⊗ ρAB)

]
=

N∑
i=1

trC′A

[(
Πi

C′A ⊗ IC
)
(σC′ ⊗ ωi

AC)
]
, (1)

where in the second line we defined the quantum states

ωi
AC = (idA ⊗Di)(ρAB) for i = 1, . . . , N . (2)

The noise in a quantum channel is typically measured using
the entanglement fidelity

F ≡ F (Λ) := tr
[
Φ+

C′′C(idC′′ ⊗Λ)(Φ+
C′′C′)

]
, (3)

where |Φ+⟩C′′C = |C|−1/2
∑|C|

i=1 |i⟩C′′ |i⟩C for some or-
thonormal basis {|i⟩C}|C|

i=1 is a maximally entangled state on
C ′′C, and similarly for C ′′C ′. For simplicity, we will call
F = F (Λ) in (3) simply the fidelity of a given teleportation
protocol (ρAB , {Πi}Ni=1, {Di}Ni=1).

Our main result in this section relates this fidelity to the
success probability of discriminating the N states ωi

AC defined
in (2) with uniform prior probability using Π = {Πi}Ni=1.

Lemma 1. Let (ρAB , {Πi}Ni=1, {Di}Ni=1) be a |C|-
dimensional teleportation protocol as described above,
giving rise to the teleportation channel Λ defined in (1). Then
the following relation holds:

F (Λ) =
1

|C|2
N∑
i=1

tr
(
Πi

ACω
i
AC

)
=

N

|C|2
psucc, (4)

where psucc =
1

N

N∑
i=1

tr
(
Πi

ACω
i
AC

)
is the success probability

of the POVM Π = {Πi
AC}Ni=1 discriminating the states ωi

AC

drawn uniformly at random.
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Fig. 1. A graphical depiction of the operational duality of teleportation and dense coding, both operating on a given bipartite state ρAB (wiggly line). Read
from left to right, the bottom half of the figure depicts a teleportation protocol, defined in terms of a measurement Π = {Πi}Ni=1 (purple box) and decoding
operations {Di

B→C}Ni=1 (purple arrow). Classical communication (lower green double arrow) goes from Alice (left) to Bob (right). The protocol implements
a quantum channel C′ → C (lower blue arrow), indicated by the symbol ≥. Read from right to left, the upper half of the figure depicts a dense coding
protocol in terms of the same data, the decoding operations {Di

B→C} and measurement Π. The quantum channel (upper blue arrow) maps C (Bob) to C′

(Alice). It implements a dense classical channel X → X′ (upper double green arrow), indicated by the symbol ≥.

Proof. The proof is a direct generalization of the one given
in [3] for port-based teleportation, and uses the transpose
trick: Let C ′′ be a copy of the system C with dimension
|C|, and consider a maximally entangled state |Φ+⟩C′′C′ =

|C|−1/2
∑|C|

i=1 |i⟩C′′ |i⟩C′ on C ′′C ′. For any X ∈ L(HC′) we
have

(IC′′ ⊗XC′)Φ+
C′′C′ = (XT

C′′ ⊗ IC′)Φ+
C′′C′

Φ+
C′′C′(IC′′ ⊗XC′) = Φ+

C′′C′(X
T
C′′ ⊗ IC′).

(5)

We then use the expression (1) of the teleportation channel
Λ to compute the entanglement fidelity in (3). We suppress
identity operators, identity maps, and certain tensor product
symbols for better readability.

F = tr
[
Φ+

C′′CΛ(Φ
+
C′′C′)

]
(6)

=

N∑
i=1

tr
[
Φ+

C′′C trC′A

(
Πi

C′A

(
Φ+

C′′C′ ⊗ ωi
AC

))]
(7)

=

N∑
i=1

tr
[(
Φ+

C′′C ⊗Πi
C′A

)(
Φ+

C′′C′ ⊗ ωi
AC

)]
(8)

=

N∑
i=1

tr
[
Φ+

C′′C(Π
i
C′′A)

TC′′
(
Φ+

C′′C′ ⊗ ωi
AC

)]
(9)

=

N∑
i=1

tr
[
Φ+

C′′CΠ
i
AC

(
Φ+

C′′C′ ⊗ ωi
AC

)]
(10)

=
1

|C|2
N∑
i=1

tr
(
Πi

ACω
i
AC

)
. (11)

In (8) we used the identity tr(XAYA) = tr((XA ⊗ IB)YAB),
and in (9) and (10) we used the transpose trick (5) with respect
to the C ′ and C ′′ systems, respectively. Finally, (11) follows
from taking partial traces first over C ′ and then over C ′′, each
time using the fact that trC′ Φ+

C′′C′ = 1
|C| IC′′ , and similarly

for Φ+
C′′C . Using p = 1

N

∑N
i=1 tr

(
Πi

ACω
i
AC

)
establishes the

second identity in (4).

The relation between fidelity and success probability in
Lem. 1 is suggestive of the operational equivalence between
teleportation and dense coding (see Fig. 1): the states ωi

AC

result from Bob encoding classical information (the label i) in
his system via the quantum operations Di : B → C. Sending
the C system through the noiseless quantum channel to Alice,
she aims to decode the message by performing a measurement

Π = {Πi
AC}. We will prove a quantitative version of this

operational equivalence in Sec. IV below.
A simple consequence of Lem. 1 is the following general

upper bound on the fidelity of any teleportation protocol:

Corollary 2. For any |C|-dimensional teleportation protocol
with associated teleportation channel Λ: C ′ → C, its entan-
glement fidelity F ≡ F (Λ) is bounded from above as

F ≤ |A|
|C|

. (12)

This bound is saturated, F = |A|/|C|, if and only if ωi
AC is

pure and proportional to Πi
AC for all i = 1, . . . , N .

Proof. The quantum states ωi
AC = (idA ⊗Di)(ρAB) satisfy

ωi
AC ≤ IAC for all i = 1, . . . , N . Using this in the fidelity

expression (4) gives

F =
1

|C|2
N∑
i=1

tr
(
Πi

ACω
i
AC

)
≤ 1

|C|2
N∑
i=1

tr
(
Πi

AC

)
=

tr IAC

|C|2
=

|A|
|C|

, (13)

where we used the completeness relation for the POVM
{Πi

AC}Ni=1 in the second-to-last equality.
Assume now that we have equality in eq. (13),∑N
i=1 tr(Π

i
ACω

i
AC) =

∑N
i=1 tr(Π

i
AC), which can be rear-

ranged to

0 =

N∑
i=1

tr
(
Πi

AC −Πi
ACω

i
AC

)
=

N∑
i=1

tr
(
Πi

AC − (Πi
AC)

1/2 ωi
AC (Πi

AC)
1/2

)
. (14)

The operators Πi
AC − (Πi

AC)
1/2 ωi

AC (Πi
AC)

1/2 are posi-
tive semidefinite since ωi

AC ≤ IAC , so that all traces
in (14) are non-negative. Hence, the sum is zero iff
tr
(
Πi

AC − (Πi
AC)

1/2 ωi
AC (Πi

AC)
1/2

)
= 0 for all i. Since the

trace of a positive semidefinite operator is zero iff the operator
itself is zero, we have Πi

AC − (Πi
AC)

1/2 ωi
AC (Πi

AC)
1/2 = 0,

or in other words

ωi
AC = PΠi . (15)

Here, PX denotes the orthogonal projection onto the support
supp(X) = (kerX)⊥ of a Hermitian operator X . The ωi

AC
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are normalized states, hence they can only be equal to a
projection if their rank equals 1; in other words, ωi

AC is pure
for all i, and Πi

AC = γiω
i
AC for some γi > 0. The sufficiency

of this condition for equality in (13) is straightforward to
check.

The main use of Cor. 2 lies in quantifying the deterioration
of the teleportation fidelity of protocols attempting to teleport
a |C|-dimensional system through an entangled state on AB
with |C| ≫ |A|. We also mention two situations in which
the equality condition is satisfied: First, let |A| = 1 so that the
resource state ρAB is trivially separable. In this case, choosing
decoding operations Di

B→C(XB) = tr(XB)|i⟩⟨i|C where
{|i⟩C}|C|

i=1 is some orthonormal basis gives states ωi
AC =

|i⟩⟨i|C . With the POVM elements Πi
AC = ωi

AC = |i⟩⟨i|C ,
we obtain a teleportation protocol achieving the classical
teleportation fidelity F = 1/|C|; this is discussed in more
detail in Sec. III. Another case of equality can be found when
|A| = |B| = |C| = d and N = d2. For a maximally entangled
pure state ρAB the d2 Heisenberg-Weyl unitaries yield an or-
thonormal basis consisting of maximally entangled pure states
ωi
AC for i = 1, . . . , d2, which can be perfectly distinguished

using the corresponding von Neumann measurement (i.e., we
again have Πi

AC = ωi
AC). This is the d-dimensional version

of the well-known perfect teleportation protocol [4, 30]. It
is an interesting question to determine protocols based on
partially entangled resource states ρAB achieving a fidelity
1/|C| < F = |A|/|C| < 1.

Traditionally, the figure of merit used to assess the quality
of a |C|-dimensional teleportation channel Λ has been the av-
erage transmission fidelity, f(Λ) :=

∫
dψ⟨ψ|Λ(ψ)|ψ⟩, where

dψ denotes the Haar integral over pure states |ψ⟩ on C [27].
In the pioneering work of Horodecki et al. [16], the average
and entanglement fidelities were shown to be related as

f(Λ) =
F (Λ)|C|+ 1

|C|+ 1
. (16)

Hence our results on the teleportation entanglement fidelity
F (Λ) can easily be translated into statements about the average
teleportation fidelity f(Λ). We also note the recent indepen-
dent work [13] that derives an expression similar to eq. (4)
for the worst-case fidelity of a general teleportation protocol.

III. NON-CLASSICAL TELEPORTATION AND THE
REDUCTION CRITERION

In the distributed setting, ρAB is typically considered a fixed
shared resource, while Alice and Bob are free to choose the
encoder {Πi}i and decoders {Di}i in order to optimize the
performance of their teleportation channel. Hence, it is natural
to consider the quantity

F(ρAB ; |C|) = max
Λ

F (Λ), (17)

where the maximization is taken over all teleportation channels
Λ defined in terms of a |C|-dimensional teleportation protocol
(ρAB , {Πi}, {Di}) via Eq. (1). Horodecki et al. [16] showed
that F(ρAB ; |C|) is equivalent to the maximal singlet fraction
of ρAB obtained after processing ρAB by one-way LOCC.
The fidelity expression in Lem. 1 reveals that F(ρAB ; |C|)

involves a simultaneous maximization over encoder and de-
coders leading to a bilinear optimization problem, which is
challenging to solve in general. In a future manuscript we will
explore how upper bounds for F(ρAB ; |C|) can be efficiently
computed, and are tight in some cases. We will also explore
how symmetries of teleportation protocols can naturally be
taken into account using the fidelity expression in (4).

In the present work, we direct attention to the so-called
classical lower bound on F(ρAB ; |C|). Observe that by letting
Di be the CPTP that prepares the computational basis state
|i⟩⟨i| for i = 1, · · · |C|, i.e., Di(XB) = tr[XB ]|i⟩⟨i| for all
XB , and by letting Πi

AC′ = IA⊗|i⟩⟨i|C′ be the POVM effect
that detects |i⟩⟨i|C′ , we obtain from Lem. 1 a fidelity

F =
1

|C|2

|C|∑
i=1

tr
(
Πi

ACω
i
AC

)
=

1

|C|2

|C|∑
i=1

tr(ρA) =
1

|C|
.

(18)

Therefore, for all ρAB we have

F(ρAB ; |C|) ≥
1

|C|
. (19)

We refer to this as the classical bound since it can be achieved
using only classical resources; moreover, as we will prove
below, it is tight whenever ρAB is at most bound entangled,
which includes all classical states. Any state ρAB for which
F(ρAB ; |C|) > 1

|C| can thus be deemed a legitimate quantum
resource for teleportation, and we refer to any protocol ex-
ceeding the classical bound as an instance of non-classical
teleportation.1 The fundamental question we consider here
is what type of quantum states provide a resource for non-
classical teleportation.

To fully answer this question, let us first recall the reduction
criterion for separability [15], which states that every separable
(i.e., non-entangled) state ρAB satisfies the operator inequality

ρA ⊗ IB − ρAB ≥ 0. (20)

Even more, a violation of (20) is a sufficient condition for
ρAB to be distillable [15]. It turns out that this inequality
is also the key for identifying states supporting non-classical
teleportation.

As a warm-up, observe that Lem. 1 immediately implies that
bound entangled states [17] cannot achieve strict inequality in
the classical bound (19). To see this, let ρAB be a bound
entangled state, which is undistillable by definition. Then the
decoded states ωi

AC = (idA ⊗Di)(ρAB) for i ∈ [N ] arising
from a local quantum operation on the B system are clearly
also undistillable, so that they satisfy the reduction criterion,
ωi
AC ≤ ωi

A ⊗ IC = ρA ⊗ IC . Crucially, the right-hand side of
this operator inequality is independent of i, and so the sum in
the fidelity expression (4) can be bounded as∑

i
tr
(
Πi

ACω
i
AC

)
≤

∑
i
tr
(
Πi

AC(ρA ⊗ IC)
)

= tr(ρA ⊗ IC) = |C|. (21)

1An alternative notion of non-classical teleportation has recently been
proposed in the literature [8]. While this type of non-classicality is well-
motivated from a quantum resource theory perspective, it refers to a task that
is considerably different than simulating a noiseless quantum channel, which
is the standard sense of teleportation and the object of study in this paper.
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We have thus obtained an alternative proof for the well-
known result [16] that any teleportation protocol using a bound
entangled state cannot exceed the classical bound.

Corollary 3 ([16]). Any |C|-dim. teleportation protocol using
a bound entangled state cannot exceed a fidelity of |C|−1.

We now show that Cor. 3 can be strengthened considerably,
providing a complete characterization of states achieving non-
classical teleportation.

Theorem 4. A bipartite state ρAB can attain a (one-way) tele-
portation fidelity F(ρAB ; |C|) exceeding the classical fidelity
|C|−1 if and only if there exists a CPTP map E : B → C such
that ωAC = idA ⊗E(ρAB) violates the reduction criterion.

Proof. (⇒) Suppose that ωAC ≤ ωA ⊗ IC = ρA ⊗ IC for all
ωAC = idA ⊗E(ρAB). Hence for any teleportation protocol
we have

F =
1

|C|2
∑
i

tr[Πiωi] ≤
1

|C|2
∑
i

tr[Πi(ρA ⊗ IC)]

=
1

|C|2
tr[ρA ⊗ IC ] =

1

|C|
. (22)

(⇐) On the other hand, suppose there exists some CPTP
map E : B → C such that ωAC violates the reduction criterion.
This requires the existence of a bipartite vector |φ⟩AC such
that ⟨φ|ωAC |φ⟩ > ⟨φ|ρA ⊗ IC |φ⟩. We will use this inequality
to construct a teleportation protocol that exceeds the classical
threshold.

Let |φ⟩AC =
∑r−1

i=0

√
σi|i⟩A|i⟩C with σi > 0 for i =

0, . . . , r − 1 be a Schmidt decomposition of |φ⟩. Introduce
unitaries U(n) that rotate the Schmidt basis {|i⟩}i into a
mutually unbiased basis,

U(n) =

r−1∑
k=0

ωkn|k⟩⟨k|, (23)

with ω = e2πi/r an r-th root of unity. Observe the invariance
(U(n) ⊗ U(n)†)|φ⟩ = |φ⟩ and define the states |αn⟩ =
(U(n)⊗ I)|φ⟩ for n = 0, . . . , r − 1. This implies that

⟨αn| idA ⊗Un(ωAC)|αn⟩ > ⟨αn|ρA ⊗ IC |αn⟩, (24)

where Un(ρ) := U(n)ρU(n)†. A crucial property of the |αn⟩
is that their ensemble average is classical,

1

r

r−1∑
n=0

|αn⟩⟨αn|

=
1

r

r−1∑
n=0

r−1∑
k,k′=0

ωn(k−k′)(|k⟩⟨k| ⊗ I)|φ⟩⟨φ|(|k′⟩⟨k′| ⊗ I)

=

r−1∑
k=0

σk|k⟩⟨k| ⊗ |k⟩⟨k|, (25)

where we used the orthogonality relation
∑r−1

n=0 ω
n(k−k′) =

rδk,k′ in the second equality. Hence, we can complete the set
{ 1
r |αn⟩⟨αn|}r−1

n=0 by the product operators

Πr+n =

|A|∑
k=1
k ̸=n

|k⟩⟨k| ⊗ |n⟩⟨n|+ (1− σn)|n⟩⟨n| ⊗ |n⟩⟨n|

(26)

for n = 0, . . . , r − 1, so that
∑r−1

n=0(
1
r |αn⟩⟨αn| + Πr+n) =

IA ⊗
∑r−1

n=0 |n⟩⟨n|C . Finally, let

Π2r+n = IA ⊗ |r + n⟩⟨r + n| (27)

for n = 0, · · · , |C| − r − 1. The collection of positive
semidefinite operators{

1
r |αn⟩⟨αn|

}r−1

n=0
∪ {Πr+n}r−1

n=0 ∪ {Π2r+n}|C|−r−1
n=0 (28)

constitutes a valid POVM.
It remains to specify decoding operations for each operator

corresponding to a measurement outcome: For each of the ele-
ments { 1

r |αn⟩⟨αn|}r−1
n=0 the corresponding decoder is the map

Un◦E ; for each of the elements {Πr+n}r−1
n=0∪{Π2r+n}|C|−r−1

n=r

the corresponding decoder is the CPTP map that prepares the
computational basis state |n⟩⟨n|, i.e., Dn(X) = tr[X]|n⟩⟨n|
for all X . Since ωAC = EB→C(ρAB), the fidelity of this
protocol is given by

F =
1

|C|2r

r−1∑
n=0

⟨αn| idA ⊗Un(ωAC)|αn⟩

+
1

|C|2
r−1∑
n=0

tr[Πr+n(ρA ⊗ |n⟩⟨n|)] + 1

|C|2

|C|−r−1∑
n=0

tr[ρA]

>
1

|C|2r

r−1∑
n=0

⟨αn|ρA ⊗ IC |αn⟩

+
1

|C|2
r−1∑
n=0

tr[Πr+n(ρA ⊗ IC)] +
1

|C|2

|C|−r−1∑
n=0

tr[ρA]

=
1

|C|2
tr[ρA ⊗ IC ]

=
1

|C|
, (29)

where we used (24) in the inequality, proving the claim.

Note that our definition of teleportation protocol includes
any one-way LOCC pre-processing that might be performed
on ρAB before Alice and Bob actually decide to use their
quantum resource for teleportation. Given that F(ρAB ; |C|)
equivalently quantifies the largest singlet fraction obtainable
by ρAB after one-way LOCC processing [16], Thm. 4 thus
says that ρAB can achieve a singlet fraction exceeding |C|−1

by one-way LOCC iff ρAB can violate the reduction criterion
after local processing on Bob’s side.

It is interesting to compare this result to the work of [2],
which shows that if a state’s singlet fraction can exceed
|C|−1 after local processing on Alice’s side, then the original
state ρAB must already violate the reduction criterion. In this
case, the necessary condition stated in Thm. 4 for exceeding
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the classical bound |C|−1 does not require an optimization
over CPTP maps E : B → C. However, in general such an
optimization is needed. Indeed, there are bipartite states that
do not violate the reduction criterion, yet they can achieve a
violation after processing on Bob’s side.

Examples can be found in the family of Werner states [31],
defined to be U ⊗U -invariant bipartite states (for U unitary).
More precisely, consider a Werner state on two 3-dimensional
systems,

ρλ =
1

24
[(3− λ)I3 ⊗ I3 + (3λ− 1)F3], (30)

where I3 denotes the identity on C3 and F3 denotes the swap
operator acting on C3 ⊗ C3. We have λ = tr(ρλF), and ρλ
is entangled iff λ < 0 [31]. Furthermore, a direct calculation
using the U ⊗ U -symmetry shows that all Werner states on
Cd ⊗ Cd satisfy the reduction criterion whenever d > 2.

Let now {|e0⟩, |e1⟩} and {|f0⟩, |f1⟩, |f2⟩} be orthonormal
bases for C2 and C3, respectively, and consider the quantum
channel E : B(C3) → B(C2) with Kraus operators

P = |e0⟩⟨f0|+ |e1⟩⟨f1| Q = |e0⟩⟨f2|. (31)

Now the state σλ = (id⊗E)(ρλ) ∈ B(C3 ⊗ C2) violates the
reduction criterion if and only if σT1

λ ≱ 0, where T1 denotes
the partial transpose on the first system [15]. Equivalently, we
can check the eigenvalues of the operator

id⊗E
(
ρT1

λ

)
=

1

24

[
(3− λ)I3 ⊗ (I2 + |e0⟩⟨e0|)

+ (3λ− 1)(ϕ+2 + |f2⟩⟨f2| ⊗ |e0⟩⟨e0|)
]
, (32)

where |ϕ+2 ⟩ = |f0⟩⊗|e0⟩+|f1⟩⊗|e1⟩. The smallest eigenvalue
of this operator is equal to

7 + 3λ−
√

13− 30λ+ 37λ2, (33)

which is negative whenever −1 ≤ λ < −3/7. It thus follows
that id⊗Λ(ρλ) violates the reduction criterion in this range.

Theorem 4 provides a criterion for testing whether a given
bipartite state is useful for beating the classical bound in the
one-way teleportation setting. The criterion can be explicitly
expressed as a bilinear optimization problem, as we now
show. For a given bipartite state ρAB , define its “conditional
state” to be ρB|A = ρ

−1/2
A ρABρ

−1/2
A [1, 25], where we use

the generalized inverse evaluated on the support of ρA. The
reduction criterion ρAB ≤ ρA ⊗ IB can be rephrased in terms
of the conditional state ρB|A as ρB|A ≤ IÃ ⊗ IB , where Ã is
the support of ρA (we will suppress the tilde from now on). It
follows that ρAB violates the reduction criterion if and only
if the largest eigenvalue of ρB|A exceeds 1.

Now consider any channel EB→C with Choi matrix JBC :=
idB ⊗EB′→C(

∑B
i,j=1 |ii⟩⟨jj|BB′) defined in terms of or-

thonormal bases {|i⟩B}|B|
i=1 for B and {|j⟩B′}|B|

j=1 for B′. By
the Choi isomorphism, the action of EB→C on an input state
χB is given by EB→C(χB) = trB

(
χT
BJBC

)
, where T denotes

transposition in the chosen orthonormal basis for B and we
omitted identity operators for readability. Hence, the action of
EB→C on the B-part of ρB|A can be written as

idA ⊗EB→C(ρB|A) = trB

(
ρTB

B|AJBC

)
. (34)

Note that idA ⊗EB→C(ρB|A) coincides with the conditional
state of the output state idA ⊗EB→C(ρAB). The largest eigen-
value of idA ⊗EB→C(ρB|A) can be expressed variationally as
max|φ⟩AC

⟨φ| trB(ρTB

B|AJBC)|φ⟩AC , where the maximization
is taken over all pure states on system AC. This maximum
does not change when relaxing the optimization to all (not
necessarily pure) density operators. Using the argument in
the preceding paragraph, we thus arrive at the following
optimization formulation of Theorem 4: a bipartite state ρAB

can exceed the |C|-dimensional classical teleportation bound
iff λ∗(ρAB) > 1, where λ∗(ρAB) is defined as the solution to
the following bilinear optimization problem:

maximize: tr
[
σAC trB

(
ρTB

B|AJBC

)]
subject to: trC JBC = IB ;

trσ = 1;

σ, J ≥ 0. (35)

Stated in this form, it becomes manageable to numerically
explore the states which offer no non-classical advantage for
teleportation, and we are currently pursuing such an investi-
gation.

IV. TELEPORTATION AND DENSE CODING

We now make the operational duality between teleportation
and dense coding concrete and quantitative. To this end,
we reinterpret a given |C|-dimensional teleportation protocol
(ρAB , {Πi}Ni=1, {Di}Ni=1) as an N -message dense coding pro-
tocol from Bob to Alice, referring to Fig. 1 for a graphical
depiction. Bob encodes the message i ∈ [N ] into his system
B of the shared state ρAB by applying Di : B → C, while
Alice decodes the message by applying the POVM {Πi

AC′}Ni=1

to her systems AC ′. Here it is assumed that a |C|-dimensional
(noiseless) channel idC→C′ connects Bob and Alice. Such
a protocol thus defines a classical channel W : X → X ′

characterized by the transition probabilities

p(j|i) = tr(Πj
AC′ω

i
AC′), (36)

with ωi
AC′ as defined in eq. (2).

We will discuss two different ways of assessing the quality
of this classical channel, and hence the quality of a dense cod-
ing protocol. The first one makes use of a classical correlation
measure called “classical correlation fidelity”. The second one
is by means of the classical capacity of the channel W , which
coincides with the accessible information of the state ensemble
defining the dense coding protocol.

The advantage of the classical correlation fidelity as a figure
of merit is that it is a classical analogue of the entanglement
fidelity in teleportation, allowing us to exhibit a concise quan-
titative operational duality between teleportation and dense
coding. On the other hand, the accessible information is an
information-theoretic measure with a clear operational inter-
pretation in terms of classical information transmission. The
two figures of merit can also be related to each other; see the
discussion after Thm. 7.
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A. Classical correlation fidelity

For a quantum channel Λ: C ′ → C, we can interpret F (Λ)
as a measure of how well Λ preserves maximal coherent cor-
relations with a reference system C ′′. For a classical channel
τcl : X → X ′, we thus define a corresponding classical cor-
relation measure F(τcl) called “classical correlation fidelity”
that quantifies how well τcl preserves maximal incoherent
correlations with a reference system X ′′:

F(τcl) := tr
[
γ+X′′X′ id⊗τcl(γ+X′′X)

]
, (37)

where γ+X′′X = 1
N

∑N
i=1 |ii⟩⟨ii|X′′X is a perfectly correlated

state on two N -level classical systems X ′′ and X . We use
a sans-serif font F(τcl) defined for a classical channel τcl to
distinguish this classical fidelity quantity from the quantum
entanglement fidelity F (Λ) defined for a quantum channel Λ.

Evaluating Fcl ≡ F(W ) for the classical dense coding chan-
nel W : X → X ′ defined above with transition probabilities
p(j|i) given in eq. (36), we obtain

Fcl =
1

N

N∑
i=1

p(i|i) = psucc, (38)

where psucc is the success probability of discriminating the
uniformly drawn states {ωi

AC} using the POVM {Πi
AC}Ni=1,

previously introduced in eq. (4). This allows us to reformulate
Lem. 1 as a quantitative link between between teleportation
and dense coding protocols.

Theorem 5. Let (ρAB , {Πi}Ni=1, {Di}Ni=1) define either a |C|-
dimensional teleportation protocol from Alice to Bob or an
N -message dense coding protocol from Bob to Alice. Then

F =
N

|C|2
Fcl, (39)

where F = F (Λ) is the entanglement fidelity of the teleporta-
tion channel Λ and Fcl = F(W ) is the correlation fidelity of
the classical dense coding channel W .

Similar to teleportation, we can now define the measure

Fcl(ρAB ;N, |C|) = max
W

F(W ), (40)

where the maximization is taken over all classical channels W
induced by an N -message dense coding protocol using a |C|-
dimensional quantum channel connecting Bob to Alice. Let us
again identify a classical bound for this quantity. Observe that,
if ρAB is separable, then so are the ωi

AC states, and thus they
satisfy the reduction criterion ωi

AC ≤ ωi
A ⊗ IC = ρA ⊗ IC .

Using the same argument as in (21), we then have

Fcl =
1

N

∑
i

p(i|i) ≤ |C|
N
. (41)

In fact, this inequality holds for all bound entangled states. On
the other hand, the protocol described above eq. (19) allows
Bob to send |C| messages to Alice over a |C|-dimensional
quantum channel. Therefore, we conclude that

Fcl(ρAB ;N, |C|) ≥ min{|C|/N, 1}, (42)

and this inequality is tight for all bound entangled states ρAB .
We identify this as the classical bound for dense coding, and

any state for which the inequality is strict (for some values of
N and |C|) is a non-classical resource for dense coding.

Consider now any state satisfying the conditions of Thm. 4.
As shown in the proof of Thm. 4, the teleportation protocol
achieving F > |C|−1 uses N = |C|+r classical messages and
a |C|-dimensional quantum channel. Hence, by Thm. 5, the
correlation fidelity in the corresponding dense coding protocol
satisfies

Fcl =
|C|2

N
F >

|C|
N

= min{|C|/N, 1}. (43)

We therefore obtain the following dual statement to Thm. 4.

Theorem 6. A bipartite state ρAB can attain a dense coding fi-
delity Fcl(ρAB ;N, |C|) exceeding the classical fidelity |C|/N
iff |C|/N < 1 and there exists a CPTP map E : B → C such
that ωAC = idA ⊗E(ρAB) violates the reduction criterion.

B. Accessible information

The accessible information is a measure of how much
classical information can be retrieved from a quantum state
ensemble (ρx)x with probabilities (px)x [14]. To define it,
denote by H(X) = −

∑
i pi log pi the Shannon entropy of

a probability distribution (pi)i, and denote by I(X;Y ) =
H(X)+H(Y )−H(XY ) the mutual information of a pair of
random variables (X,Y ), with the logarithm taken to base 2.
For a quantum state ensemble E = (px, ρx)

N
x=1 and a POVM

M = {Mx}Nx=1, the accessible information I(E ,M) is defined
as the mutual information I(X;X ′), where X takes values
x ∈ [N ] with probability px, and X ′ describes the outcome
of sampling ρx from X and measuring with respect to M .
That is, the random variable pair (X,X ′) has distribution
pXX′ = pX′|X(x′|x)pX(x) where pX′|X(x′|x) = tr(Mx′ρx)
(compare this to (36)) and pX(x) = px. Optimizing I(X;X ′)
over the measurement M yields the accessible information
I(E) := maxM I(E ,M) of the ensemble E .

We can now state the following quantitative relationship
between teleportation and dense coding:

Theorem 7. Let (ρAB , {Πi}Ni=1, {Di}Ni=1) be a teleportation
protocol for which Π is the optimal measurement maximizing
the entanglement fidelity F in (4) for the given set {Di}i of
decoding operations. Denote by p ≡ psucc = d2F/N with
d ≡ |C| the success probability of the corresponding state
discrimination problem of the ensemble E = (1/N, ωi

AC)
N
i=1.

Then the accessible information I(E) of the associated dense
coding protocol satisfies

logN − (1− p) log(N − 1)− h(p)

≤ I(E) ≤ logN + log p, (44)

where h(p) = −p log p − (1 − p) log(1 − p) is the binary
entropy of p. In terms of the entanglement fidelity F ≡ F (Λ)
with Λ the teleportation channel defined in (1),

2 log d+ logF + (1− p)
[
log(1− p)− log(d2F − p)

]
≤ I(E) ≤ 2 log d+ logF. (45)
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Proof. We first prove the upper bound in (44). The optimal
success probability of distinguishing the states {ωi

AC}Ni=1 can
be expressed as [24]

p = exp(−Hmin(X|AC)ρ). (46)

Here, the min-entropy

Hmin(A|B)ρ := − inf
σB

inf{λ : ρAB ≤ 2λIA ⊗ σB}, (47)

with the first infimum over all states σB , is evaluated on the
classical-quantum state

ρXAC =

N∑
i=1

1

N
|i⟩⟨i|X ⊗ ωi

AC . (48)

Recall furthermore that the min-entropy satisfies the relation

Hmin(A|B) ≤ H(A|B) = H(AB)−H(B), (49)

where H(A)ρ = − tr ρA log ρA denotes the von Neumann
entropy of a quantum state ρA.

The data-processing inequality with respect to the measure-
ment AC → Y gives

I(E) ≡ I(E ,Π) = I(X;Y ) ≤ I(X;AC)ρ. (50)

Furthermore, using the fact that H(X)ρ = logN for our
ensemble E together with (46) and (49), we obtain

I(X;AC)ρ = H(X)ρ −H(X|AC)ρ
= logN −H(X|AC)ρ
≤ logN −Hmin(X|AC)ρ
= logN + log p, (51)

which proves the upper bound in (44).
For the lower bound, we employ Fano’s inequality [11]: Let

X,Y be random variables with joint distribution pXY (x, y),
and let X̃ = f(Y ) be a random variable over the same
alphabet as X . Defining the decoding error probability pe =
Prob(X̃ ̸= X), we have

H(X|Y ) ≤ h(pe) + pe log(|X| − 1). (52)

Choosing X and Y as in the paragraph above Thm. 7 and
using p = 1− pe as well as h(p) = h(1− p), we obtain

I(E) = I(X;Y ) = H(X)−H(X|Y )

≥ logN − (1− p) log(N − 1)− h(p).
(53)

This concludes the proof of eq. (44). The bounds in (45) follow
using the relation F = Np/d2 from Lem. 1.

Since psucc = Fcl by Thm. 5, the bounds in Thm. 7
relate our two chosen figures of merit, the classical correlation
fidelity Fcl and the accessible information I(E).

Thm. 7 generalizes some of the results of Werner [30] on
the duality between teleportation and dense coding protocols
to arbitrary entanglement assistance. To see this, let us first
assume that we are in the “tight” regime N = d2, where N
is the number of measurement outcomes and d ≡ |C| is the
dimension of the system to be teleported. Then (4) implies that
F = N

d2 p = p. Hence, the teleportation protocol has perfect

fidelity F = 1 if and only if the associated state discrimination
problem has perfect success probability p = 1. In this case,
I(E) = 2 log d by Thm. 7, the maximal value of any dense
coding protocol using a |C|-dimensional quantum channel.

In the more general case when N and d2 may be dif-
ferent, the second inequality in (45) implies that any dense
coding protocol achieving the maximal accessible information
I(E) = 2 log d corresponds to a perfect teleportation protocol
with F = 1. Interestingly, the converse statement is not neces-
sarily true, which can for example be observed in port-based
teleportation protocols achieving a fidelity of F arbitrarily
close to 1 when d is fixed and N is large [21, 22, 3, 29, 26,
10]. Here, the accessible information of the associated dense
coding protocol vanishes in the limit N → ∞ [20, 28].

For certain port-based teleportation protocols, the following
bound on I(E) was stated (without proof) in [28]:

I(E) ≤ d2

N
F log d2 + logF. (54)

Using (4) we have d2

N F = p ≤ 1 (as a probability), and hence
(54) may improve upon the upper bound on I(E) in (45). On
the other hand, the bounds derived in Thm. 7 hold for arbitrary
teleportation and dense coding protocols.

Thm. 7 and Cor. 3 also provide an alternative and self-
contained proof of the result of [18] that bound entangled
states do not provide an advantage in dense coding: From
Cor. 3, any teleportation protocol using a bound entangled state
has fidelity at most 1/d. It then follows from the upper bound
(45) of Thm. 7 that I(E) ≤ 2 log d+logF ≤ 2 log d− log d =
log d. Hence, we have proved the following statement:

Corollary 8 ([18]). Any dense coding protocol defined in
terms of a bound entangled state has accessible information
at most log d, where d is the dimension of the system sent
through the noiseless quantum channel.

V. CONCLUSION

In this work provide a new perspective on the dual tasks
of teleportation and dense coding. We argue that the known
operational duality between these tasks extends to the level
of protocols: the measurement and decoding operations in a
teleportation protocol from Alice to Bob can be repurposed as
a dense coding protocol from Bob to Alice. The quantitative
link between these tasks is provided by generalizing an expres-
sion for the teleportation fidelity in port-based teleportation to
fully general protocols. This fidelity expression reformulates
teleportation as a state discrimination problem that Bob and
Alice aim to solve in the associated dense coding protocol. We
use this connection to give two different quantitative duality
theorems between teleportation and dense coding: one in terms
of a classical version of fidelity called “classical correlation
fidelity”, and one in terms of the information-theoretically
relevant accessible information. We also give new proofs of
the established facts that bound entangled states do not provide
any advantage over classical resources in either teleportation or
dense coding. In fact, we strengthen these results by showing
that for both protocols a bipartite resource state can give
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a quantum advantage if and only if there exists a locally
processed version that violates the reduction criterion.

In the dense coding scenario we assumed that the quantum
channel connecting Bob to Alice is noiseless. It would be
interesting to consider how the correlation fidelity changes
in the presence of channel noise. A similar problem was
recently studied in [9], which considered a setting where
the noisy channel is fixed and Alice and Bob are allowed
to choose an optimal entangled state |φ⟩AB for the classical
communication task. The optimal classical correlation fidelity
Fcl in this case can then be identified as a function of the given
channel, known as its entanglement-assisted communication
value. We can thus interpret the classical correlation fidelity
in (40) as the entanglement-assisted communication value of
a noiseless channel, with the assistance restricted to a non-
optimal entangled resource state ρAB .

Another interesting future direction of research is to study
teleportation in the more general setting of two-way LOCC,
where classical communication is allowed both from Alice to
Bob and vice versa.
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