
ACCEPTED IN T-IT 1

Quantizing Heavy-tailed Data in Statistical
Estimation: (Near) Minimax Rates, Covariate

Quantization, and Uniform Recovery
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Abstract—Modern datasets often exhibit heavy-tailed behavior,
while quantization is inevitable in digital signal processing and
many machine learning problems. This paper studies the quan-
tization of heavy-tailed data in several fundamental statistical
estimation problems where the underlying distributions have
bounded moments of some order (no greater than 4). We propose
to truncate and properly dither the data prior to a uniform
quantization. Our major standpoint is that (near) minimax
rates of estimation error could be achieved by computationally
tractable estimators based on the quantized data produced by the
proposed scheme. In particular, concrete results are worked out
for covariance estimation, compressed sensing (also interpreted as
sparse linear regression), and matrix completion, all agreeing that
the quantization only slightly worsens the multiplicative factor.
Additionally, while prior results focused on the quantization
of responses (i.e., measurements), we study compressed sensing
where the covariates (i.e., sensing vectors) are also quantized;
in this case, though our recovery program is non-convex (since
our covariance matrix estimator lacks positive semi-definiteness),
we prove that all local minimizers enjoy near-optimal estimation
error. Moreover, by the concentration inequality of the product
process and a covering argument, we establish a near minimax
uniform recovery guarantee for quantized compressed sensing
with heavy-tailed noise. Finally, numerical simulations are pro-
vided to corroborate our theoretical results.

I. INTRODUCTION

Heavy-tailed distributions are ubiquitous in modern datasets,
especially those arising in economy, finance, imaging, biol-
ogy, see [5], [45], [57], [84], [88], [93] for instance. In the
recent literature, heavy-tailed distribution is often captured by
bounded l-th moment, where l is some fixed small scalar;
this is essentially weaker than the sub-Gaussian assumption.
As a result, outliers and extreme values appear much more
frequently in data from heavy-tailed distributions (referred to
as heavy-tailed data), which poses challenges for statistical
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analysis. In fact, many standard statistical procedures devel-
oped for sub-Gaussian data suffer from performance degrada-
tion in the heavy-tailed regime. Fortunately, the past decade
has witnessed considerable progress in statistical estimation
methods that are robust to heavy-tailedness, see [9], [17], [35],
[36], [44], [65], [68], [73], [97] for instance.

Departing momentarily from heavy-tailed data, quantiza-
tion, which maps signals to bitstreams so that they can be
stored, processed, and transmitted, is an inevitable process in
the era of digital signal processing. In particular, the resolution
of quantization should be selected to achieve a trade-off
between accuracy and various data processing costs. In some
applications, relatively low resolution would be preferable.
For instance, in a distributed learning setting or a MIMO
system, the frequent information transmission among multiple
parties often results in prohibitive communication cost [56],
[69], and quantizing signals or data to fairly low resolution
is an effective approach to reduce the cost [43], [96]. Under
such a big picture, in recent years there has been rapidly
growing literature on high-dimensional signal recovery from
quantized data (see, e.g., [7], [22], [26], [32], [33], [50], [89]
for 1-bit quantization, [46], [50], [89], [94] for multi-bit uni-
form quantization), trying to understand the interplay between
quantization and signal reconstruction in some fundamental
estimation problems.

Independently, a set of robustifying techniques has been de-
veloped to overcome the challenge posed by heavy-tailed data,
and uniform data quantization under uniform dither was shown
to cost very little in some recovery problems. Considering the
ubiquitousness of heavy-tailed behavior and data quantization,
a natural question is to design a quantization scheme for
heavy-tailed data that only incurs minor information loss. For
instance, when applied to statistical estimation problems with
heavy-tailed data, an appropriate quantization scheme should
enable at least one faithful estimator from the quantized data,
and ideally the estimator that could nearly achieve the optimal
error rate. Despite the vast literature in this field, prior results
that simultaneously take heavy-tailed data and quantization
into account are surprisingly rare — only the ones presented
in [33] and our earlier work [22] regarding the dithered 1-bit
quantizer, to the best of our knowledge. These results remain
incomplete and exhibit some downsides. Specifically, [33] con-
sidered a computationally intractable program for quantized
compressed sensing and used techniques hard to generalize to
other problems, while the error rates in [22] are inferior to the
corresponding minimax ones (under unquantized sub-Gaussian
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data), as will be discussed in Section I-A3. In a nutshell, a
quantization scheme for heavy-tailed data arising in statistical
estimation problems that allows for computationally tractable
near-minimax estimators is still lacking.

This paper aims to provide a solution to the above question
and narrow the gap between heavy-tailed data and data quan-
tization in the literature. In particular, we propose a unified
quantization scheme for heavy-tailed data which, when applied
to the canonical estimation problems of (sparse) covariance
matrix estimation, compressed sensing (or sparse linear re-
gression) and matrix completion, allows for (near) minimax
estimators that are either in closed-form or can be solved
from convex programs. Additionally, we present novel devel-
opments concerning covariate (or sensing vector) quantization
and uniform signal recovery in quantized compressed sensing
with heavy-tailed data.

A. Related Works

This section is devoted to a review of the most relevant
works. Before that we note that a heavy-tailed random vari-
able in this work is formulated by the moment constraint
E|X|l ≤ M , where M is an absolute constant and l is
some fixed small scalar (specifically, l ≤ 4 in the present
paper). In Sections I-A1 to I-A3 we focus on estimation
problems from possibly heavy-tailed and/or quantized data;
then, in Sections I-A4 to I-A5 we touch on two specific aspects
of quantized compressed sensing, namely the lesser-known
covariate quantization problem and the highly sought-after
notion of uniform recovery.

1) Statistical Estimation under Heavy-Tailed Data: Devel-
oping estimation methods that are robust to heavy-tailedness
has become a recent focus in the statistics literature, where
heavy-tailed distributions are often only assumed to have
bounded moments of some small order. In particular, signif-
icant efforts have been devoted to the fundamental problem
of mean estimation for heavy-tailed distribution. For instance,
effective techniques available in the literature include Catoni’s
mean estimator [17], [35], median of means [68], [73], and
trimmed mean [28], [66]. Indeed, these methods share the
same core spirit of making the outliers less influential. To this
end, the trimmed method (also referred to as truncation or
shrinkage) may be the most intuitive — it truncates overlarge
data to some threshold so that they are more benign for the
estimation procedure. For more in-depth discussions we refer
to the recent survey [65]. Furthermore, these robust methods
for estimating the mean have been applied to empirical risk
minimization [9], [44] and various high-dimensional estima-
tion problems [36], [97], achieving near optimal guarantees.
For instance, by invoking M-estimators with truncated data,
(near) minimax rates can be achieved in high-dimensional
sparse linear regression, matrix completion and covariance
estimation [36].

While we capture heavy-tailedness by bounded moment of
some small order, there has been a line of works considering
sub-exponential or more generally sub-Weibull distributions
[39], [58], [80], [85], which have heavier tail than sub-
Gaussian ones but still possess finite moment up to arbitrary

order. Specifically, without truncation and quantization, sparse
linear regression was studied under sub-exponential data in
[85] and under sub-Weibull data in [58], and the obtained
error rates match the ones in the sub-Gaussian case up
to logarithmic factors. Additionally, under sub-exponential
measurement matrix and noise, [80] established a uniform
guarantee for 1-bit generative compressed sensing, while [39]
analyzed generalized Lasso for a general nonlinear model.
Because the tail assumptions in these works are substantially
stronger than ours, there is not a common fair stage for further
comparison.

2) Statistical Estimation from Quantized Data: Quantized
Compressed Sensing. While there have been other quantiza-
tion methods, we only review the most relevant memoryless
quantization schemes1 that allow for simple hardware design,
with an emphasis on the benefit of dithering. An important
model is 1-bit compressed sensing where only the sign of the
measurement is retained [7], [48], [75], [76]; more precisely,
this model concerns the recovery of sparse θ⋆ ∈ Rd from
sign(Xθ⋆) with the sensing matrix X ∈ Rn×d. However,
1-bit compressed sensing associated with the direct sign(·)
quantization suffers from some frustrating limitations, e.g.,
the loss of signal norm information, and the identifiability
issue under some regular sensing matrix (e.g., under Bernoulli
sensing matrix, see [33]).2 Fortunately, these limitations can
be overcome by random dithering prior to the quantization,
under which the 1-bit measurements read as sign(Xθ⋆ + τ ),
with τ ∈ Rn being some suitably chosen random dither.
Specifically, under Gaussian dither τ ∼ N (0, In) and standard
Gaussian sensing matrix X , full reconstruction with norm
information could be achieved [54]. More surprisingly, under
a uniform random dither, recovery with norm can be achieved
under a rather general sub-Gaussian sensing matrix [22], [33],
[50], [89] even with near optimal error rate.

Besides the 1-bit quantizer that retains the sign, the uniform
quantizer maps a ∈ R to Q∆(a) = ∆

(
⌊ a∆⌋ + 1

2

)
for some

pre-specified ∆ > 0; here and hereafter, we refer to ∆ as the
quantization level, and note that smaller ∆ represents higher
resolution. While recovering θ⋆ from Q∆(Xθ⋆) encounters
identifiability issue,3 it is again beneficial to use random
dithering to obtain the measurements Q∆(Xθ⋆ + τ ). More
specifically, by using uniform dither the Lasso estimator [87],
[89] and projected back projection (PBP) method [94] achieve
minimax rate in certain cases, and the derived error bounds
for these estimators demonstrate that the dithered uniform
quantization does not affect the scaling law but only slightly
worsens the multiplicative factor. Although the aforementioned
progress was recently made, the technique of dithering in

1This means that the quantization methods for different measurements are
independent. For other quantization schemes, we refer to the recent survey
[29].

2In fact, almost all existing guarantees using the 1-bit observations
sign(Xθ⋆) are restricted to standard Gaussian sensing matrix consisting of
i.i.d. N (0, 1) entries, with the exceptions of [1] for sub-Gaussian sensing
matrix and [30], [86] for partial Gaussian circulant matrix.

3For instance, if X ∈ {−1, 1}n×d (typical example is the Bernoulli design
where entries of X are i.i.d. zero-mean) and ∆ = 1, then θ1 := 1.1e1 and
θ2 := 1.2e1 + 0.1e2 can never be distinguished because Q1(Xθ1) =
Q1(Xθ2) always holds.
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quantization indeed has a long history and (at least) dates back
to some early engineering work (e.g., [83]), see [41] for a brief
introduction.

Other Estimation Problems with Quantized Data. Some
other statistical estimation problems were also investigated
under dithered 1-bit quantization. Specifically, [24] studied
a general signal estimation problem in a traditional setting
where sample size tends to infinity, showing that dithered 1-bit
quantization incurs merely logarithmic rate loss. Inspired by
potential application in the reduction of power consumption in
a large scale massive MIMO system, [32] proposed to collect 2
bits per entry from each sub-Gaussian sample and developed
an estimator that is in general near minimax optimal. Their
estimator was extended to the high-dimensional sparse case
in [22], and its tuning-free version was devised in [31].
More recently, a parameter-free covariance estimator with
improved operator norm error rate was proposed in [19].
Next, considering the ubiquitousness of binary observations
in many recommendation systems, the authors of [26] first
approached the 1-bit matrix completion problem by maximum
likelihood estimation with a nuclear norm constraint. Their
method was developed in a series of follow-up works by using
different regularizers/constraints to encourage low-rankness, or
considering multi-bit quantization on a finite alphabet [3], [14],
[16], [52], [59]. Using a uniformly dithered 1-bit quantizer,
the 1-bit matrix completion result in [22] essentially departs
from the standard likelihood approach and can tolerate pre-
quantization noise with unknown distribution.

3) Quantization of Heavy-Tailed Data in Statistical Estima-
tion: Note that the results we just reviewed are for estimation
problems from either unquantized heavy-tailed data (Section
I-A1) or quantized sub-Gaussian data (Section I-A2). In this
part, we turn to existing results under quantized heavy-tailed
data that are more closely related to this work. Despite being
a natural question with practical relevance, quantization of
heavy-tailed data was rarely studied in prior work; to our
best knowledge, the only results were presented in [22],
[33] concerning dithered 1-bit quantization. Specifically, [33,
Thm. 1.11] considered heavy-tailed noise and possibly heavy-
tailed covariate, implying that a sharp uniform error rate is
achievable (see their Example 1.10). However, their result is
for a computationally intractable program (Hamming distance
minimization) and hence of limited practical value. Another
limitation is that their techniques (based on random hyperplane
tessellations) are specialized to 1-bit compressed sensing but
do not generalize to other estimation problems. In contrast,
[22] proposed a unified quantization scheme that first truncates
the data and then invokes a dithered 1-bit quantizer. Although
this quantization scheme could (at least) be applied to sparse
covariance matrix estimation, compressed sensing, and matrix
completion while still enabling practical estimators, the main
drawback is that the convergence rates of estimation errors
are essentially slower than the corresponding minimax optimal
ones (e.g., Õ

( √
s

n1/3

)
for 1-bit compressed sensing under heavy-

tailed noise [22, Thm. 10]), and in certain cases the rates
cannot be improved without changing the quantization process
(e.g., [22, Thm. 11] complements [22, Thm. 10] with a

nearly matching lower bound). In a nutshell, [33] proved
a sharp rate for 1-bit compressed sensing but used highly
intractable program and its techniques are not extendable to
other estimation regimes, while the more widely applicable
scheme and practical estimators in [22] suffer from slow error
rates.

4) Covariate Quantization in Compressed Sensing: In the
rest of the review, we will concentrate on quantized com-
pressed sensing, i.e., the recovery of a sparse signal θ⋆ ∈ Rd
from the quantized version of (xk, yk := x⊤

k θ
⋆ + ϵk)

n
k=1

where xk, yk, ϵk are the sensing vector, measurement and
noise, respectively. Note that this formulation also models
the sparse linear regression problem (e.g., [72], [81]) where
one wants to learn a sparse parameter θ⋆ ∈ Rd from the
given data (xk, yk)

n
k=1, which are believed to follow the linear

model yk = x⊤
k θ

⋆ + ϵk. In this regression setting, xk, yk are
commonly referred to as covariate and response, respectively.
We are interested in both settings in this work (as further
explained in Section III-B), but for clearer presentation, we
simply refer to the problem as quantized compressed sensing,
and term xk, yk as covariate and response, respectively.

Note that studying “how quantization of covariate affects
the recovery/learning” is meaningful especially when the
problem is interpreted as sparse linear regression — working
with low-precision data in some (distributed) learning systems
could significantly reduce communication cost and power
consumption [43], [96], which we will further demonstrate
in Section IV-A. However, almost all of the prior works are
restricted to response quantization. To the best of our knowl-
edge, the only existing rigorous guarantees involving covariate
quantization were obtained in [22, Thms. 7-8]. Nevertheless,
these results require E(xkx⊤

k ) to be sparse [22, Assumption 3]
(so that their sparse covariance matrix estimator is applicable).
Note that this assumption is non-standard and rarely assumed
in sparse linear regression and compressed sensing.4 It is thus
desired to develop theoretical guarantees without resorting to
the sparsity on E(xkx⊤

k ).
5) Uniform Signal Recovery in Compressed Sensing: It is

standard in compressed sensing to leverage a random sensing
matrix, so a recovery guarantee can be uniform or non-
uniform. More precisely, a uniform guarantee ensures the
recovery of all structured signals of interest with a single draw
of the sensing ensemble, while a non-uniform guarantee is
only valid for a structured signal fixed before drawing the
random ensemble, with the implication that a new realization
of the sensing matrix is required for sensing a new signal.
Uniformity is a highly desired property in compressed sensing,
since in applications the measurement ensemble is typically
fixed and is expected to work for all signals [21], [40]. Besides,
the derivation of a uniform guarantee is often significantly
harder than a non-uniform one, making uniformity an inter-
esting theoretical problem in its own right. (As a result, in
the literature of compressed sensing, theoretical results for

4In fact, although isotropic sensing vector (i.e., E(xkx⊤
k ) = Id) has been

conventional in compressed sensing, many results in the literature can be
extended to sensing vector with general unknown covariance matrix and hence
do not really rely on the sparsity of E(xkx⊤

k ).
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the nonuniform setting are often a precursor to the uniform
recovery guarantees.)

A classical fact in linear compressed sensing is that the
restricted isometry property (RIP) of the sensing matrix im-
plies uniform recovery of all sparse signals (e.g., [38]), but
this is unfortunately not the case when it comes to nonlinear
compressed sensing models. For instance, in the specific
quantization model, the more general single index model
yk = f

(
x⊤
k θ

⋆
)

with possibly unknown f(·), and the lesser-
known phase-only model yk = sign(x⊤

k θ
⋆) with xk ∈ Cd,

most representative results are non-uniform (e.g., [47], [75],
[78], [79], [87], [89], [94]). We refer to [20], [33], [50], [75],
[94] for concrete uniform guarantees, some of which remain
(near) optimal (e.g., [94, Sect. 7.2A]), while others suffer from
essential degradation compared to the non-uniform ones (e.g.,
[75, Thm. 1.3]). It is worth noting that the interesting recent
work [40] provided a unified approach to uniform guarantee
for a series of non-linear models; however, their uniform
guarantees typically exhibit a decaying rate of O(n−1/4) that
is slower than the non-uniform one of O(n−1/2) (Section 4
therein). As a follow-up work, [21] obtained a near optimal
uniform O(n−1/2) error rate for various nonlinear generative
compressed sensing models.

The above-reviewed uniform guarantees are restricted to
sub-Gaussian data. Regarding dithered 1-bit quantization of
heavy-tailed data, results in [22, Sect. III] are non-uniform,
while [33, Thm. 1.11] presents a sharp uniform guarantee for
the intractable program of hamming distance minimization.

B. Our Contributions

We summarize our contributions in this part. Our primary
contribution is a unified quantization scheme (for heavy-tailed
data) that allows for near-minimax estimators. Besides, we
present new developments regarding covariate quantization
and uniform recovery in a heavy-tailed quantized setting. This
work also provides some notable innovations that prove useful
in related studies.
A Unified Quantization Scheme and Estimators with
(Near) Minimax Rates. We propose a unified quantization
scheme for heavy-tailed data which allows for practical and
(near) optimal estimators in multiple estimation problems.
The proposed scheme consists of three steps: 1) truncation
that shrinks data to some threshold, 2) dithering that adds
suitable random noise to the truncated data, and 3) uniform
quantization. Note that the proposed scheme replaces the 1-
bit quantizer in [22] with the less extreme (multi-bit) uniform
quantizer Q∆(·), but the gain turns out to be significant
— we are now able to derive (near) optimal rates that are
essentially faster than the ones in [22], see Theorems 2-8. As a
concrete example, for quantized compressed sensing with sub-
Gaussian sensing vector xk but heavy-tailed measurement yk
satisfying E|yk|2+ν ≤ M for some ν > 0, we derive the ℓ2-

norm error rate O
(
(M1/(2l)+∆)

√
s log d
n

)
(Theorem 5, s, d, n

are respectively the sparsity, signal dimension, measurement
number).

Compared to [33], our major advantages are that our estima-
tors are computationally feasible and that our method applies

to estimation problems beyond quantized compressed sensing.
Concerning the effect of quantization, our results (in all the
considered models) suggest a unified conclusion — dithered
uniform quantization does not affect the scaling law but only
slightly worsens the multiplicative factor, which generalizes
similar findings for quantized compressed sensing in [87],
[89], [94] towards two directions, i.e., to the case where heavy-
tailed data present and to some other estimation problems (i.e.,
covariance matrix estimation, matrix completion).

New Results on Covariate Quantization. Besides the above
main contributions, we establish the estimation guarantees for
quantized compressed sensing under covariate quantization
that are free of the non-standard assumption on the sparsity of
E(xkx

⊤
k ). This provides important relaxations to [22, Thms.

7-8]. More specifically, unlike [22] that relies on the sparsity
of E(xkx⊤

k ) to ensure convexity, we deal with the non-
convex program directly and manage to prove that all local
minimizers deliver near minimax estimation errors (Theorems
9-10). Our analysis is motivated by a line of works on non-
convex M-estimator [62]–[64] but also exhibits some essential
differences (Remark 5). Further, we extract our techniques
as a deterministic framework (Proposition 1) and then use
it to establish guarantees for dithered 1-bit quantization as
byproducts (Theorems 11-12), which are comparable to [22,
Thms. 7-8] but free of sparsity on E(xkx⊤

k ).

Uniform Recovery Guarantee. We additionally contribute to
the literature a uniform guarantee for constrained Lasso under
the dithered uniform quantization of heavy-tailed response.
Specifically, we upgrade our non-uniform Theorem 5 to its
uniform version Theorem 13, which states that using a single
realization of the sub-Gaussian sensing matrix, heavy-tailed
noise and uniform dither, all s-sparse signals within an ℓ2-ball
can be uniformly recovered up to an ℓ2-norm error of Õ

(√
s
n

)
,

thus matching the near minimax non-uniform rate in Theorem
5 up to logarithmic factors. The proof relies on a concentration
inequality for product process [67] and a careful covering
argument inspired by [94]. Due to the heavy-tailed noise, a
new treatment is needed before invoking the concentration
result from [67].

Some Notable Innovations. An important innovation of our
work is to use triangular dither when covariance estimation is
necessary, which departs from the uniform dither commonly
adopted in prior works (e.g., [22], [32], [89], [94]) and is novel
to the literature. From a technical side, many of our analyses
on the dithered quantizer are much cleaner than prior works
because we make full use of the nice statistical properties of
the quantization error and quantization noise (Theorem 1),5 see
Section II-B. Based on these two innovations (and thus after
the first appearance of the present paper), a clean analysis
on quantized low-rank multivariate regression with possibly
quantized covariates is provided in [23], and more recently
a 2-bit covariance estimator based on triangular dithering is
devised in [19].

5Prior work that did not fully leverage these properties may incur extra
technical complication, e.g., the symmetrization and contraction in [89, Lem.
A.2].
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C. Outline

The remainder of this paper is structured as follows. We
provide the notation and preliminaries in Section II. We
present the first set of main results (concerning the (near) opti-
mal guarantees for three estimation problems under quantized
heavy-tailed data) in Section III. Our second set of results
(concerning covariate quantization and uniform recovery in
quantized compressed sensing) is then presented in Section IV.
To corroborate our theory, numerical results on synthetic data
are reported in Section V. We give some remarks to conclude
the paper in Section VI. All the proofs are postponed to the
Appendices.

II. PRELIMINARIES

We adopt the following conventions throughout the paper:
1) We use boldface symbols (e.g., A, x) to denote matrices

and vectors, and regular letters (e.g., a, x) for scalars. We
write [m] = {1, ...,m} for positive integer m. We denote the
complex unit by i. The i-th entry for a vector x (likewise, y,
τ ) is denoted by xi (likewise, yi, τi).

2) Notation with “⋆” as superscript denotes the desired un-
derlying parameter or signal, e.g., Σ⋆, θ⋆. Moreover, notation
marked by a tilde (e.g., x̃) and a dot (e.g., ẋ) stands for the
truncated data and quantized data, respectively.

3) We reserve d and n for the problem dimension and sam-
ple size, respectively. In many cases Υ̂ denotes the estimation
error, e.g., Υ̂ = θ̂ − θ⋆ if θ̂ is the estimator for the desired
signal θ⋆. We use Σs to denote the set of d-dimensional s-
sparse signals.

4) For vector x ∈ Rd, we work with its transpose x⊤,
ℓp-norm ∥x∥p = (

∑
i∈[d] |xi|p)1/p (p ≥ 1), max norm

∥x∥∞ = maxi∈[d] |xi|. We define the standard Euclidean
sphere as Sd−1 = {x ∈ Rd : ∥x∥2 = 1}.

5) For matrix A = [aij ] ∈ Rm×n with singular values
σ1 ≥ σ2 ≥ ... ≥ σmin{m,n}, recall the operator norm
∥A∥op = supv∈Sn−1 ∥Av∥2 = σ1, Frobenius norm ∥A∥F =

(
∑
i,j a

2
ij)

1/2, nuclear norm ∥A∥nu =
∑min{m,n}
k=1 σk, and

max norm ∥A∥∞ = maxi,j |aij |. λmin(A) (resp. λmax(A))
stands for the minimum eigenvalue (resp. maximum eigen-
value) of a symmetric A.

6) We denote universal constants by C, c, Ci and ci, whose
value may vary from line to line. We write T1 ≲ T2 or T1 =
O(T2) if T1 ≤ CT2. Conversely, if T1 ≥ CT2 we write T1 ≳
T2 or T1 = Ω(T2). Also, we write T1 ≍ T2 if T1 = O(T2)
and T2 = Ω(T1) simultaneously hold.

7) We use U (Ω) to denote the uniform distribution over
Ω ⊂ RN , N (µ,Σ) to denote Gaussian distribution with mean
µ and covariance Σ, t(ν) to denote student’s t distribution
with degrees of freedom ν.

8) Our technique to handle heavy-tailedness is a data trunca-
tion step, for which we introduce the operator Tζ(·) for some
threshold ζ > 0. It is defined as Tζ(a) = sign(a)min{|a|, ζ}
for some a ∈ R. To truncate vectors we apply Tζ(·) entry-
wisely in most cases, with the exception of covariance matrix
estimation under operator norm error (Theorem 3).

9) Q∆(.) is the uniform quantizer with quantization level
∆ > 0. It applies to scalar a by Q∆(a) = ∆

(⌊
a
∆

⌋
+ 1

2

)
, and

we set Q0(a) = a. Given a threshold µ, the hard thresholding
of scalar a is Tµ(a) = a ·1(|a| ≥ µ). Both functions element-
wisely apply to vectors or matrices.

A. High-Dimensional Statistics

Let X be a real random variable, we present some basic
knowledge of the sub-Gaussian and sub-exponential random
variables. Then we also precisely formulate the heavy-tailed
distribution.

1) The sub-Gaussian norm is defined as ∥X∥ψ2 = inf{t >
0 : E exp(X

2

t2 ) ≤ 2}. A random variable X with finite ∥X∥ψ2

is said to be sub-Gaussian. Analogously to the Gaussian vari-
able, a sub-Gaussian random variable exhibits an exponentially
decaying probability tail and satisfies a moment constraint:

P(|X| ≥ t) ≤ 2 exp

(
− ct2

∥X∥2ψ2

)
; (1)

(E|X|p)1/p ≤ C∥X∥ψ2

√
p, ∀ p ≥ 1. (2)

Note that these two properties can also define ∥·∥ψ2 up to mul-
tiplicative constant, e.g., ∥X∥ψ2 ≍ supp≥1

(E|X|p)1/p√
p (see [92,

Prop. 2.5.2]). For a d-dimensional random vector x we define
its sub-Gaussian norm as ∥x∥ψ2

= supv∈Sd−1 ∥v⊤x∥ψ2
.

2) The sub-exponential norm is defined as ∥X∥ψ1
=

inf{t > 0 : E exp( |X|
t ) ≤ 2}, and X is sub-exponential if

∥X∥ψ1 < ∞. The sub-exponential X satisfies the following
properties:

P(|X| ≥ t) ≤ 2 exp

(
− ct

∥X∥ψ1

)
;

(E|X|p)1/p ≤ C∥X∥ψ1
p, ∀ p ≥ 1. (3)

To relate ∥.∥ψ1
and ∥.∥ψ2

one has ∥XY ∥ψ2
≤ ∥X∥ψ1

∥Y ∥ψ1

[92, Lem. 2.7.7].
3) In contrast to the moment constraints in (2) and (3),

heavy-tailed distributions in this work are only assumed to
satisfy bounded moments of some small order no greater than
4, formulated for a random variable X as E|X|l ≤ M for
some M > 0 and l ∈ (0, 4]. Following [58, Def. 2.4, 2.5], we
consider the following two moment assumptions for a heavy-
tailed random vector x ∈ Rd (again, M > 0, l ∈ (0, 4]):

• Marginal Moment Constraint. The weaker assumption
that constrains the moment of each coordinate is formu-
lated by supi∈[d]E|xi|l ≤M .

• Joint Moment Constraint. The stronger assumption that
constrains the moments “toward all directions v ∈ Sd−1,”
is formulated by supv∈Sd−1 E|v⊤x|l ≤M .

B. Dithered Uniform Quantization

In this part, we describe the dithered uniform quantizer and
its properties in detail. We also specify the choices of random
dither in this work.

1) We first provide the detailed procedure of dithered
quantization and its general property. Let x ∈ RN be the input
signal with dimension N ≥ 1 whose entries may be random
and dependent. Independent of x, we generate the random
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dither τ ∈ RN with i.i.d. entries from some distribution,6 and
then quantize x to ẋ = Q∆(x+ τ ). Following [41], we refer
to w := ẋ− (x+τ ) as the quantization error, and ξ := ẋ−x
as the quantization noise. The principal properties of dithered
quantization are provided in Theorem 1.

Theorem 1. (Adapted from [41, Thms. 1-2]). Consider the
dithered uniform quantization described above for the input
signal x, with random dither τ = [τi], quantization error w
and quantization noise ξ = [ξi]. Use i to denote the imaginary
unit, and let Y be the random variable having the same
distribution as the random dither τi.
(a) (Quantization Error). If f(u) := E(exp(iuY )) satis-
fies f

(
2πl
∆

)
= 0 for all non-zero integer l, then w ∼

U ([−∆
2 ,

∆
2 ]
N ) is independent of x.7

(b) (Quantization Noise). Assume that Z ∼ U ([−∆
2 ,

∆
2 ]) is

independent of Y . Let g(u) := E(exp(iuY ))E(exp(iuZ)).
Given positive integer p, if the p-th order derivative g(p)(u)
satisfies g(p)

(
2πl
∆

)
= 0 for all non-zero integer l, then

the p-th conditional moment of ξi does not depend on x:
E[ξpi |x] = E(Y + Z)p.

We note that Theorem 1 serves as the cornerstone for our
analysis on the dithered uniform quantizer; for instance, (a)
allows for applications of concentration inequalities in our
analyses, and (b) inspires us to develop a covariance matrix
estimator from quantized samples. The take-home message is
that, adding appropriate dither before quantization can make
the quantization error and quantization noise behave in a
statistically nice manner. For example, the elementary form of
Theorem 1(a) is that under a dither τi satisfying the condition
there, the quantization noise Q∆(xi + τi)− (xi + τi) follows
U ([−∆

2 ,
∆
2 ]) under any given scalar xi [41, Lem. 1].

2) We use uniform dither for quantization of the response in
compressed sensing and matrix completion. More specifically,
under ∆ > 0, we adopt the uniform dither τk ∼ U ([−∆

2 ,
∆
2 ])

for the response yk ∈ R, which is also a common choice
in previous works (e.g., [33], [50], [89], [94]). For Y ∼
U ([−∆

2 ,
∆
2 ]), it can be calculated that

E(exp(iuY )) =

∫ ∆/2

−∆/2

1

∆

(
cos(ux) + i sin(ux)

)
dx

=
2

∆u
sin
(∆u

2

)
,

(4)

and hence E(exp(i 2πl∆ Y )) = 0 holds for all non-zero integer
l. Therefore, the benefit of using τk ∼ U ([−∆

2 ,
∆
2 ]) is that

the quantization errors wk = Q∆(yk + τk) − (yk + τk) i.i.d.
follow U ([−∆

2 ,
∆
2 ]), and are independent of {yk}.

3) We use triangular dither for quantization of the covariate,
i.e., the sample in covariance estimation or the covariate
in compressed sensing. Particularly, when considering the
uniform quantizer Q∆(.) for the covariate xk ∈ Rd, we adopt

6Throughout this work, we suppose that a random dither is drawn inde-
pendent of anything else (particularly, the signal to be quantized and other
dithers), and the dither has i.i.d. entries if it is a vector.

7Although the statement is a bit different, it can be implied by [41, Thm.
1] and the proof therein.

the dither τk ∼ U ([−∆
2 ,

∆
2 ]
d) + U ([−∆

2 ,
∆
2 ]
d),8 which is

the sum of two independent U ([−∆
2 ,

∆
2 ]
d) and referred to

as a triangular dither [41]. Simple calculations verify that the
triangular dither respects not only the condition in Theorem
1(a), but also the one in Theorem 1(b) with p = 2; specifically,
let Y = Y1+Y2 where Y1 and Y2 are independent and follow
U
([

− ∆
2 ,

∆
2

])
, and let Z ∼ U

([
− ∆

2 ,
∆
2

])
be independent

of Y , then based on (4), we know that

f(u) = E(exp(iuY )) =
[ 2

∆u
sin

∆u

2

]2
satisfies f( 2πl∆ ) = 0, and that

g(u) = E(exp(iuY ))E(exp(iuZ)) =
[ 2

∆u
sin

∆u

2

]3
satisfies g′′( 2πl∆ ) = 0, where l is any non-zero integer. Thus, at
the cost of a dithering variance larger than uniform dither, the
triangular dither brings the additional nice property of signal-
independent variance for the quantization noise — E(ξ2ki) =
1
4∆

2, where ξki is the i-th entry of ξk = Q∆(xk + τk) −
(xk + τk).

To the best of our knowledge, the triangular dither is new to
the literature of quantized compressed sensing. We will explain
its necessity if covariance estimation is involved. This is also
complemented by numerical simulation (see Figure 5(a)).

III. (NEAR) MINIMAX ERROR RATES

In this section, we derive (near) optimal error rates for
several canonical statistical estimation problems. Our novelty
is that by using the proposed quantization scheme for heavy-
tailed data, (near) optimal error rates could be achieved by
computationally feasible estimators.

A. Quantized Covariance Matrix Estimation

Given X := {x1, ...,xn} as i.i.d. copies of a zero-mean
random vector x ∈ Rd, one often encounters the covariance
matrix estimation problem, i.e., to estimate Σ⋆ = E(xx⊤).
This estimation problem is of fundamental importance in
multivariate analysis and has attracted much research interest
(e.g., [4], [10], [12], [13]). However, the practically useful
setting (e.g., in a massive MIMO system [95]) where the
samples undergo certain quantization process remains under-
developed, for which we are only aware of the 1-bit quan-
tization results in [22], [32]. This setting poses the problem
of quantized covariance matrix estimation (QCME), in which
one aims to design a quantization scheme for xk that allows
for accurate estimation of Σ⋆ only based on the quantized
samples. We consider heavy-tailed xk that possesses bounded
fourth moments either marginally or jointly, but note that our
estimation methods and theoretical results appear to be new
even for sub-Gaussian xk (Remark 1).

As introduced before, we overcome the heavy-tailedness of
xk by a data truncation step, i.e., we first truncate xk to x̃k in
order to make the outliers less influential. Here, we defer the

8An equivalent statement is that entries of τk are i.i.d. distributed as U
([
−

∆
2
, ∆

2

])
+U

([
−∆

2
, ∆

2

])
. The equivalence can be clearly seen by comparing

the joint probability density functions.
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precise definition of x̃k to concrete results because it should be
well suited to the error metric. After the truncation, we dither
and quantize x̃k to ẋk = Q∆(x̃k + τk) with the triangular
dither τk ∼ U ([−∆

2 ,
∆
2 ]
d)+U ([−∆

2 ,
∆
2 ]
d). Different from the

uniform dither adopted in the literature (e.g., [22], [33], [50],
[89], [94]), first let us explain our choice of triangular dither.
Recall that the quantization noise and quantization error are
respectively defined as ξk := ẋk−x̃k and wk := ẋk−x̃k−τk,
thus giving ξk = τk+wk. Under uniform dither or triangular
dither, wk is independent of x̃k and follows U ([−∆

2 ,
∆
2 ]
d)

(see Section 2.2), thus allowing us to calculate that

E(ẋkẋ
⊤
k ) = E

(
(x̃k + ξk)(x̃k + ξk)

⊤)
= E(x̃kx̃

⊤
k ) +E(x̃kξ

⊤
k ) +E(ξkx̃

⊤
k ) +E(ξkξ

⊤
k )

(i)
= E(x̃kx̃

⊤
k ) +E(ξkξ

⊤
k ). (5)

Note that (i) is because

E(ξkx̃
⊤
k ) = E(τkx̃

⊤
k ) +E(wkx̃

⊤
k )

= E(τk)E(x̃
⊤
k ) +E(wk)E(x̃

⊤
k ) = 0

due to the previously noted fact that τk and wk are indepen-
dent of x̃k and zero-mean. While with suitable choice of the
truncation threshold E(x̃kx̃⊤

k ) is expected to well approximate
Σ⋆, the remaining E(ξkξ⊤k ) gives rise to constant bias. To
address the issue, a straightforward idea is to remove the
bias, which requires the full knowledge of E(ξkξ⊤k ), i.e., the
covariance matrix of the quantization noise. For i ̸= j, because
τk, wk ∼ U ([−∆

2 ,
∆
2 ]
d) and

E(wkiτkj) = Ex̃ki
(E[wkiτkj |x̃ki]) = 0

(note that conditionally on x̃ki, wki = Q∆(x̃ki+τki)−(x̃ki+
τki) and τkj are independent), we have

E(ξkiξkj) = E
(
(wki + τki)(wkj + τkj)

)
= E(wkiwkj) +E(wkiτkj) +E(τkiwkj) +E(τkiτkj)

= 0,

showing that E(ξkξ⊤k ) is diagonal. Moreover, under triangular
dither the i-th diagonal entry is also known as E|ξki|2 = ∆2

4 ,
see Section II-B. Taken collectively, we arrive at

E(ξkξ
⊤
k ) =

∆2

4
Id; (6)

Based on (5) we thus propose the following estimator

Σ̂ =
1

n

n∑
k=1

ẋkẋ
⊤
k − ∆2

4
Id, (7)

which is the sample covariance of the quantized sample Ẋ :=
{ẋ1, ..., ẋn} followed by a correction step. On the other hand,
the reason why the standard uniform dither is not suitable
for QCME becomes self-evident — the diagonal of E(ξkξ⊤k )
remains unknown9 and hence there is no hope to precisely
remove the bias.

We are now ready to present error bounds for Σ̂ under
max-norm, operator norm. We will also investigate the high-
dimensional setting by assuming some sparse structure of

9It depends on the input signal, see [41, Page 3].

Σ⋆, for which we propose a thresholding estimator. More
concretely, our first result provides the error rate under
∥ · ∥∞, in which we assume xk satisfies the marginal fourth-
moment constraint and utilize an element-wise truncation
x̃k = Tζ(xk).

Theorem 2. (Element-Wise Error). Given ∆ > 0 and
δ > 4, we consider the problem of QCME described above.
We suppose that xks are i.i.d. zero-mean and satisfy the
marginal moment constraint E|xki|4 ≤ M for any i ∈
[d], where xki is the i-th entry of xk. We truncate xk to
x̃k = [x̃ki] = Tζ(xk) with threshold ζ ≍

(
nM
δ log d

)1/4
, then

quantize x̃k to ẋk = Q∆(x̃k + τk) with triangular dither
τk ∼ U ([−∆

2 ,
∆
2 ]
d) +U ([−∆

2 ,
∆
2 ]
d). If n ≳ δ log d, then the

estimator in (7) satisfies

P

(
∥Σ̂−Σ⋆∥∞ ≥ CL

√
δ log d

n

)
≤ 2d2−δ,

where L :=
√
M +∆2.

Notably, despite the heavy-tailedness and quantization, the
estimator achieves an element-wise rate O(

√
log d
n ) coincident

with the one for the sub-Gaussian case. One can clearly
position quantization level ∆ in the multiplicative factor L =√
M+∆2. Thus, the information loss incurred by quantization

is inessential in that it does not affect the key scaling law
but only slightly worsens the leading factor. These remarks
on the (near) optimality and the information loss incurred by
quantization remain valid in our subsequent theorems.

Our next result concerns the operator norm estimation
error, under which we impose a stronger joint moment con-
straint on xk and truncate xk regarding ℓ4-norm, i.e., x̌k =

xk

∥xk∥4
min{∥xk∥4, ζ} for some threshold ζ. After the dithered

uniform quantization, we still define the estimator as (7).

Theorem 3. (Operator Norm Error). Given ∆ > 0 and δ > 0,
we consider the problem of QCME described above. Suppose
that the i.i.d. zero-mean xks satisfy E|v⊤xk|4 ≤ M for any
v ∈ Sd−1. We truncate xk to x̌k = xk

∥xk∥4
min{∥xk∥4, ζ}

with threshold ζ ≍ (M1/4 + ∆)
(

n
δ log d

)1/4
, then quantize

x̌k to ẋk = Q∆(x̌k + τk) with triangular dither τk ∼
U ([−∆

2 ,
∆
2 ]
d) + U ([−∆

2 ,
∆
2 ]
d). If n ≳ δd log d, then the

estimator in (7) satisfies

P

(
∥Σ̂−Σ⋆∥op ≥ CL

√
δd log d

n

)
≤ 2d−δ,

with L :=
√
M +∆2.

The operator norm error rate in Theorem 3 is near minimax
optimal, e.g., compared to the lower bound in [36, Thm. 7],
which states that for any estimator Σ̂ of the positive semi-
definite matrix Σ⋆ based on i.i.d. zero-mean {xk}nk=1 with
covariance matrix Σ⋆, there exists some v0 ∈ Sd−1 such that
P
(
∥Σ̂ − Σ⋆∥op ≥ 1

48

√
6d
n

)
≥ 1

3 , where Σ⋆ = Id + v0v
⊤
0 .

Again, the quantization only affects the multiplicative factor
L . Nevertheless, one still needs (at least) n ≳ d to achieve
a small operator norm error. In fact, in a high-dimensional
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setting where d may exceed n, even the sample covariance
1
n

∑n
k=1 xkx

⊤
k for sub-Gaussian zero-mean xk may have

extremely bad performance. To achieve small operator norm
error in a high-dimensional regime, we resort to additional
structure on Σ⋆, and specifically we use column-wise sparsity
as an example, which corresponds to the situations where
dependencies among different coordinates are weak. Based on
the estimator in Theorem 2, we further invoke a thresholding
regularization [4], [12] to promote sparsity.

Theorem 4. (Sparse QCME). Under conditions and estimator
Σ̂ in Theorem 2, we additionally assume that all columns
of Σ⋆ = [σ⋆ij ] are s-sparse and consider the thresholding
estimator Σ̂s := Tµ(Σ̂) for some µ (recall that Tµ(a) =

a · 1(|a| ≥ µ) for a ∈ R). If µ = C1(
√
M + ∆2)

√
δ log d
n

with sufficiently large C1, then Σ̂s satisfies

P

(
∥Σ̂s −Σ⋆∥op ≤ CL s

√
δ log d

n

)
≥ 1− exp(−0.25δ),

where L :=
√
M +∆2.

Notably, our estimator Σ̂s achieves minimax rates
O
(
s
√

log d
n

)
under operator norm, e.g., compared to the min-

imax lower bound derived in [12, Thm. 2], which states that
(under some regular scaling) for any covariance estimator Σes

based on n i.i.d. samples of N (µ,Σ⋆) where Σ⋆ is the true
covariance matrix, there exists some covariance matrix Σ⋆

with s-sparse columns such that E∥Σes − Σ⋆∥2op ≳ s2 log d
n .

Note that this lower bound is for a general sparse covariance
matrix with column-wise sparsity, and it is possible to achieve
faster rate over covariance matrices with more specific sparse
structures, see [11] for instance.

To analyze the thresholding estimator, our proof resembles
the ones developed in prior works (e.g., [12]) but requires more
effort like bounding the additional bias terms arising from
the data truncation and quantization. We also point out that
the results for the full-data unquantized regime immediately
follow by setting ∆ = 0, thus Theorems 2-3 represent the
strict extension of [36, Sect. 4], and Theorem 4 complements
[36] with a high-dimensional sparse setting.

As the parameter choices in Theorems 2-4 rely on M that
somehow connects to ∥Σ⋆∥∞, our methods require certain
prior estimate of the unknown Σ⋆, or otherwise a careful
tuning of the parameter. It would be interesting to investigate
how to address this in practice.

Remark 1. (Sub-Gaussian Case). While we concentrate on
the quantization of heavy-tailed data in this work, our results
can be readily adjusted to sub-Gaussian xk, for which the
truncation step is inessential and can be removed (i.e., ζ =
∞). These results are also new to the literature but will not
be presented here.

B. Quantized Compressed Sensing

We consider the linear model

yk = x⊤
k θ

⋆ + ϵk, k = 1, ..., n, (8)

where xks are the covariates, yks are responses, θ⋆ is the
sparse signal in compressed sensing or sparse parameter vector
in high-dimensional linear regression that we want to estimate.
In the quantized compressed sensing (QCS) problem, we are
interested in developing quantization scheme for (xk, yk)s
(mainly for yk in prior works) that enables accurate recovery
of θ⋆ based on the quantized data.

In spite of the same mathematical formulation, there are
some important differences between compressed sensing and
sparse linear regression that we should clarify first. Specif-
ically, different from sensing vectors in compressed sensing
that are generated by some analog measuring device and can
oftentimes be designed, xks in sparse linear regression repre-
sent the sample data from certain datasets that are believed to
affect the responses yks through (8). While the sparsity of θ⋆

is arguably the most classical signal structure for compressed
sensing, due to good interpretability it is also commonly
adopted to achieve dimension reduction in high-dimensional
statistics. In this work, we are interested in both problem
settings. Thus, we do not adopt the isotropic convention (i.e.,
E(xkx

⊤
k ) = Id) from compressed sensing but instead deal

with xk having general unknown covariance matrix. While the
study of quantization and heavy-tailed noise is meaningful in
both settings, we note that some of our subsequent results are
mainly of interest to the specific sensing or regression problem.
For instance, the heavy-tailed covariate considered in Theorem
6 is primarily motivated by the regression setting, in which
xk may come from a dataset that exhibits a much heavier
tail than sub-Gaussian data. Moreover, as will be elaborated
in Section IV when appropriate, our subsequent results on
covariate quantization (resp., uniform signal recovery guaran-
tee) may prove more useful to the regression problem (resp.,
compressed sensing problem).

To fix idea, we assume that xks are i.i.d. drawn from
some multi-variate distribution, ϵks are i.i.d. statistical noise
independent of the xks, and we truncate yk to ỹk = Tζy (yk)
and then quantize it to ẏk = Q∆(ỹk + τk) with uniform
dither τk ∼ U ([−∆

2 ,
∆
2 ]). Under these statistical assumptions

and dithered quantization, near-optimal recovery guarantees
have been established in [89], [94] for the regime where both
xk and ϵk are drawn from sub-Gaussian distributions (hence
the truncation is not needed). In contrast, our focus is on
the quantization of heavy-tailed data. Particularly, we always
assume that the noise ϵks are i.i.d. drawn from some heavy-
tailed distribution, resulting in heavy-tailed responses. We will
separately deal with the case of sub-Gaussian covariate and a
more challenging situation where xks are also heavy-tailed.

To estimate the sparse θ⋆, a classical approach is via the
regularized M-estimator known as Lasso [70], [72], [90]

argmin
θ

1

2n

n∑
k=1

(yk − x⊤
k θ)

2 + λ∥θ∥1,

whose objective combines the ℓ2-loss for data fidelity and ℓ1-
norm that encourages sparsity. Because we can only access
the quantized data (xk, ẏk) (or even (ẋk, ẏk) if covariate
quantization is involved, see Section IV), the main issue lies in
the ℓ2-loss 1

2n

∑n
k=1(yk−x⊤

k θ)
2 that requires the unquantized
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data (xk, yk). To resolve the issue, we calculate the expected
ℓ2-loss:

E(yk − x⊤
k θ)

2 (i)
= θ⊤

E(xkx
⊤
k )θ − 2E(ykxk)

⊤θ :

(ii)
= θ⊤Σ⋆θ − 2Σ⊤

yxθ,
(9)

where (i) holds up to an inessential constant E|yk|2, and in
(ii) we let Σ⋆ := E(xkx

⊤
k ), Σyx = E(ykxk). This inspires

us to generalize the ℓ2 loss to 1
2θ

⊤Qθ − b⊤θ and consider
the following program

θ̂ = argmin
θ∈S

1

2
θ⊤Qθ − b⊤θ + λ∥θ∥1. (10)

Compared to (9) we will use (Q, b) that well approximates
(Σ⋆,Σyx), and we also introduce the constraint θ ∈ S to
allow more flexibility. It is important to note that this is the
general strategy in this work to design estimators in different
QCS settings, see more discussions in Remark 3.

The next theorem is concerned with QCS under sub-
Gaussian covariate but heavy-tailed response. Note that the
heavy-tailedness of yk stems from the noise distribution as-
sumed to have bounded 2 + ν moment (ν = 2(l − 1) > 0
in the theorem statement), but following [22], [36], [97] we
directly impose the moment constraint on the response.

Theorem 5. (Sub-Gaussian Covariate, Heavy-Tailed Re-
sponse). Given some δ > 0,∆ > 0, in (8) we suppose that
xks are i.i.d., zero-mean sub-Gaussian with ∥xk∥ψ2 ≤ σ,
κ0 ≤ λmin(Σ

⋆) ≤ λmax(Σ
⋆) ≤ κ1 for some κ1 > κ0 > 0

where Σ⋆ = E(xkx
⊤
k ), θ

⋆ ∈ Rd is s-sparse, the noise ϵks
are i.i.d. heavy-tailed and independent of xks, and we assume
E|yk|2l ≤ M for some fixed l > 1. In the quantization, we
truncate yk to ỹk = Tζy (yk) with threshold ζy ≍

(
nM1/l

δ log d

)1/2
,

then quantize ỹk to ẏk = Q∆(ỹk + τk) with uniform dither
τk ∼ U ([−∆

2 ,
∆
2 ]). For recovery, we define the estimator θ̂

as (10) with

Q =
1

n

n∑
k=1

xkx
⊤
k , b =

1

n

n∑
k=1

ẏkxk, S = Rd.

We set

λ = C1
σ2

√
κ0

(∆ +M1/(2l))

√
δ log d

n

with sufficiently large C1. If n ≳ δs log d for some hidden
constant only depending on (κ0, σ), then with probability at
least 1− 9d1−δ , the estimation error Υ̂ = θ̂ − θ⋆ satisfies

∥Υ̂∥2 ≤ C3L

√
δs log d

n
and ∥Υ̂∥1 ≤ C4L s

√
δ log d

n

where L := σ2(∆+M1/(2l))

κ
3/2
0

.

The rate O
(√

s log d
n

)
for ℓ2-norm error is minimax optimal

up to logarithmic factor (e.g., compared to [81]). Note that
a random noise bounded by ∆ roughly contributes ∆ to
(E|yk|2l)1/(2l), and the latter is bounded by M1/(2l); because
in the error bound ∆ and M1/(2l) almost play the same role,
the effect of uniform quantization can be readily interpreted

as an additional bounded noise, analogously to the error rate
in [87].

Next, we switch to the more challenging situation where
both xk and yk are heavy-tailed, assuming that they both pos-
sess bounded fourth moments (a marginal moment constraint
for xk). The consideration of this setting is motivated by the
setting of sparse linear regression, where the covariates xks
may oftentimes exhibit heavy-tailed behavior. Specifically, we
element-wisely truncate xk to x̃k and set Q := 1

n

∑n
k=1 x̃kx̃

⊤
k

as a robust covariance matrix estimator, whose estimation
performance under ∥ · ∥∞ follows immediately from Theorem
2 by setting ∆ = 0.

Theorem 6. (Heavy-Tailed Covariate, Heavy-Tailed Re-
sponse). Given some δ > 0, ∆ > 0, in (8) we suppose
that xks are i.i.d. zero-mean satisfying a marginal fourth
moment constraint supi∈[d]E|xki|4 ≤ M , κ0 ≤ λmin(Σ

⋆) ≤
λmax(Σ

⋆) ≤ κ1 for some κ1 > κ0 > 0 where Σ⋆ =
E(xkx

⊤
k ), θ

⋆ ∈ Σs satisfies ∥θ⋆∥1 ≤ R, the noise ϵks are
i.i.d. heavy-tailed and independent of xks, and we assume
E|yk|4 ≤ M . In the quantization, we truncate xk, yk re-
spectively to x̃k = [x̃ki] = Tζx(xk), ỹk := Tζy (yk) with
ζx, ζy ≍

(
nM
δ log d

)1/4
, then we quantize ỹk to ẏk = Q∆(ỹk+τk)

with uniform dither τk ∼ U ([−∆
2 ,

∆
2 ]). For recovery, we

define the estimator θ̂ as (10) with

Q =
1

n

n∑
k=1

x̃kx̃
⊤
k , b =

1

n

n∑
k=1

ẏkx̃k, S = Rd.

We set

λ = C1(R
√
M +∆2)

√
δ log d

n

with sufficiently large C1. If n ≳ δs2 log d for some hidden
constant only depending on (κ0,M), then with probability at
least 1− 4d2−δ , the estimation error Υ̂ := θ̂ − θ⋆ satisfies

∥Υ̂∥2 ≤ C2L

√
δs log d

n
and ∥Υ̂∥1 ≤ C3L s

√
δ log d

n

where L := R
√
M+∆2

κ0
.

Theorem 6 generalizes [36, Thm. 2(b)] to the uniform
quantization setting. Clearly, the obtained rate remains near
minimax optimal if R is of minor scaling (e.g., bounded
or logarithmic factors). Nevertheless, such near optimality in
Theorem 6 comes at the cost of more restricted conditions and
stronger scaling, as remarked in the following.

Remark 2. (Comparing Theorems 5-6). Compared with n ≳
s log d in Theorem 5, the first downside of Theorem 6 is the
sub-optimal sample complexity n ≳ s2 log d, and note that
n ≳ s2 log d is also required in [36, Thm. 2(b)]. But indeed,
it can be improved to n ≳ s log d by explicitly adding the
constraint ∥θ∥1 ≤ R to the recovery program, as will be noted
as an interesting side finding in Remark 6. Secondly, following
[36] we impose an ℓ1-norm constraint ∥θ⋆∥1 ≤ R that is
stronger than ∥θ⋆∥2 ≲ M1/(2l)

σ used in the proof of Theorem
5. In fact, when replacing the ℓ1 constraint in Theorem 6 with
an ℓ2-norm bound ∥θ⋆∥2 ≤ R, then our proof technique leads
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to an error rate ∥Υ̂∥2 = O
(√

s2 log d
n

)
that exhibits worse

dependence on s.

Remark 3. (Modification of ℓ2-loss). Recall that we general-
ize the regular ℓ2-loss 1

2n

∑n
k=1(yk−x⊤

k θ)
2 to 1

2θ
⊤Qθ−b⊤θ

as loss function in (10). Note that the choice of (Q, b)
in Theorem 5 is tantamount to using the loss function
1
2n

∑n
k=1(ẏk − x⊤

k θ)
2 that replaces yk with the quantized

response ẏk; this idea is analogous to the generalized Lasso
investigated for single index model [78] and dithered quan-
tized model [89], and will be used again in quantized matrix
completion, see (12) below. However, our generalized ℓ2-
loss provides more flexibility to deal with heavy-tailedness
or quantization of xk, e.g., (Q, b) in Theorem 6 amounts to
adopting 1

2n

∑n
k=1(ẏk − x̃⊤

k θ)
2 as loss function, and under

quantized covariate more delicate modifications are required
in Theorems 9-12, which is beyond the range of prior works
on generalized Lasso.

C. Quantized Matrix Completion

Completing a low-rank matrix from only a partial observa-
tion of its entries is known as the matrix completion problem,
which has found many applications including recommendation
systems, image inpainting, quantum state tomography [2],
[18], [27], [42], [74], to name just a few. Mathematically, let
Θ⋆ ∈ Rd×d be the underlying matrix satisfying rank(Θ⋆) ≤
r, the matrix completion problem can be formulated as

yk =
〈
Xk,Θ

⋆
〉
+ ϵk, k = 1, 2, ..., n, (11)

where Xks are distributed on X := {eie⊤j : i, j ∈ [d]}
(ei is the i-th column of Id), ϵk is observation noise. Note
that for Xk = ei(k)e

⊤
j(k) one has

〈
Xk,Θ

⋆
〉

= θ⋆i(k),j(k),
so each observation is a noisy entry. Our main interest is
in quantized matrix completion (QMC), where our goal is
to design a quantizer for the observation yk that allows for
accurate estimation of Θ⋆ from the quantized observations.

Unlike in compressed sensing, additional condition (besides
the low-rankness) on Θ⋆ is needed to ensure the well-
posedness of the matrix completion problem. More specifi-
cally, certain incoherence conditions are required if we pursue
exact recovery (e.g., [15], [82]), whereas a faithful estimation
can be achieved as long as the underlying matrix is not overly
spiky and sufficiently diffuse (e.g., [51], [71]). The latter con-
dition is also known as “low spikiness” and is formulated by
d∥Θ⋆∥∞
∥Θ⋆∥F

≤ α [36], [71], which has been noted to be necessary
for the well-posedness of matrix completion problem [27],
[71]. In subsequent works, the low-spikiness condition is often
formulated as the simpler max-norm constraint ∥Θ⋆∥∞ ≤ α
[18], [26], [37], [51], [53].

In this work, we consider the uniform sampling scheme
Xk ∼ U (X ), but with a little bit more work it generalizes
to a more general sampling scheme [51]. We apply the
proposed quantization scheme to possibly heavy-tailed yk —
we truncate yk to ỹk = Tζy (yk) with some threshold ζy , and
then quantize ỹk to ẏk = Q∆(ỹk + τk) with uniform dither
τk ∼ U ([−∆

2 ,
∆
2 ]). Because we do not pursue exact recovery

(which is impossible under quantization), we do not assume
any incoherence condition like [82]. Instead, we only hope to

accurately estimate Θ⋆, and following [18], [26], [37], [51],
[53] we impose a max-norm constraint

∥Θ⋆∥∞ ≤ α.

Overall, we estimate Θ⋆ from (Xk, ẏk) by the regularized
M-estimator [70], [72]

Θ̂ = argmin
∥Θ∥∞≤α

1

2n

n∑
k=1

(
ẏk −

〈
Xk,Θ

〉)2
+ λ∥Θ∥nu (12)

that combines an ℓ2-loss and nuclear norm regularizer.
In the literature, there has been a line of works on 1-

bit or multi-bit matrix completion related to our results to
be presented [3], [14], [16], [52], [59]. While the referenced
works commonly adopted a likelihood approach, our method
is an essential departure and embraces some advantage, see
a precise comparison in Remark 4. Considering such novelty,
we include the result for sub-exponential ϵk in Theorem 7,
for which the truncation of yk becomes unnecessary and we
simply set ζy = ∞.

Theorem 7. (QMC under Sub-Exponential Noise). Given
some ∆ > 0, δ > 0, in (11) we suppose that Xks are
i.i.d. uniformly distributed over X = {eie⊤j : i, j ∈ [d]},
Θ⋆ ∈ Rd×d satisfies rank(Θ⋆) ≤ r and ∥Θ⋆∥∞ ≤ α,
the noise ϵks are i.i.d. zero-mean sub-exponential satisfying
∥ϵk∥ψ1

≤ σ, and are independent of Xks. In the quanti-
zation, we do not truncation yk but directly quantize it to
ẏk = Q∆(yk + τk) with uniform dither τk ∼ U ([−∆

2 ,
∆
2 ]).

We choose λ = C1(σ + ∆)
√

δ log d
nd with sufficiently large

C1, and define Θ̂ as (12). If δd log3 d ≲ n ≲ δr2d2 log d,
then with probability at least 1 − 4d−δ , the estimation error
Υ̂ := Θ̂−Θ⋆ satisfies

∥Υ̂∥F
d

≤ C2L

√
δrd log d

n
and

∥Υ̂∥nu
d

≤ C3L r

√
δd log d

n

where L := α+ σ +∆.

By contrast, under heavy-tailed noise only assumed to have
bounded variance, we truncate yk with a suitable threshold
before the dithered quantization to achieve an optimal trade-
off between bias and variance.

Theorem 8. (QMC under Heavy-tailed Noise). Given some
∆ > 0, δ > 0, we consider (11) in the setting of Theorem 7
but with the assumption ∥ϵk∥ψ1 ≤ σ replaced by E|ϵk|2 ≤M .
In the quantization, we truncate yk to ỹk = Tζy (yk) with ζy ≍
(
√
M + α)

√
n

δd log d , and then quantize ỹk to ẏk = Q∆(ỹk +

τk) with uniform dither τk ∼ U ([−∆
2 ,

∆
2 ]). We choose λ =

C1(α+
√
M+∆)

√
δ log d
nd with sufficiently large C1, and define

Θ̂ as (12). If δd log d ≲ n ≲ δr2d2 log d, then with probability
at least 1−6d−δ , the estimation error Υ̂ := Θ̂−Θ⋆ satisfies

∥Υ̂∥F
d

≤ C2L

√
δrd log d

n
and

∥Υ̂∥nu
d

≤ C3L r

√
δd log d

n

where L := α+
√
M +∆.

Compared to the information-theoretic lower bounds in [55],
[71], the error rates obtained in Theorems 7-8 are minimax
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optimal up to logarithmic factors. Specifically, Theorem 8
derives a near optimal guarantee for QMC with heavy-tailed
observations, as the key standpoint of this paper. Note that,
the 1-bit quantization counterpart of these two Theorems
was derived in our previous work [22]; in sharp contrast to
Theorem 8, for 1-bit QMC under heavy-tailed noise, the error
rate under ∥Υ̂∥F

d in [22, Thm. 13] reads as O
((
r2d log d

n

)1/4)
and is essentially slower; using the 1-bit observations therein,
this slow error rate is indeed nearly tight due to the lower
bound in [22, Thm. 14].

To close this section, we give a remark to illustrate the
novelty and advantage of our QMC method by a careful
comparison with prior works.

Remark 4. QMC with 1-bit or multi-bit quantized observa-
tions has received considerable research interest [3], [14],
[16], [26], [52], [59]. Adapted to our notation, these works
studied the model ẏk = Q(

〈
Xk,Θ

⋆
〉
+τk) under general ran-

dom dither τk and quantizer Q(.), and they commonly adopted
regularized (or constrained) maximum likelihood estimation
for estimating Θ⋆. By contrast, with the random dither and
quantizer specialized to τk ∼ U ([−∆

2 ,
∆
2 ]) and Q∆(.), our

model is formulated as ẏk = Q∆(Tζy (
〈
Xk,Θ

⋆
〉
+ ϵk) +

τk). Thus, while suffering from less generality in (τk,Q),
our method embraces the advantage of robustness to pre-
quantization noise ϵk, whose distribution is unknown and can
even be heavy-tailed. Note that such unknown ϵk evidently
forbids the likelihood approach.

IV. COVARIATE QUANTIZATION AND UNIFORM SIGNAL
RECOVERY IN QUANTIZED COMPRESSED SENSING

By now we have presented near optimal results in the
contexts of QCME, QCS, and QMC under heavy-tailed data
that further undergo the proposed quantization scheme, which
we position as the primary contribution of this work. In this
section, we further provide two additional developments to
enhance our results on heavy-tailed QCS.

A. Covariate Quantization

In the area of QCS, almost all prior works merely focused
on the quantization of response yk, see the recent survey [29];
here, we consider a setting of “complete quantization” —
meaning that the covariate xk is also quantized. To motivate
our study of “complete quantization”, we interpret compressed
sensing as sparse linear regression. Indeed, to reduce the power
consumption and computational cost, it is sometimes prefer-
able to work with low-precision data in a machine learning
system, e.g., the sample quantization scheme developed in
[96] led to experimental success in training linear model.
Also, it was shown that direct gradient quantization may not
be efficient in certain distributed learning systems where the
terminal nodes are connected to the server only through a very
weak communication fabric and the number of parameters
is extremely huge; rather, quantizing and transmitting some
important samples could provably reduce communication cost
[43]. In fact, the process of data collection may already appeal
to quantization due to certain limits of the data acquisition

device (e.g., a low-resolution analog-to-digital module used
in distributed signal processing [25]). Our main goal is to
understand how quantization of (xk, yk)s affects the subse-
quent recovery/learning process, particularly showing that the
simple dithered uniform quantization scheme still allows for
an accurate estimator that may even provide near minimax
error rate. To our best knowledge, the only prior rigorous
estimation guarantees for QCS with covariate quantization are
[22, Thms. 7-8]; these two results require a restricted and
unnatural assumption, which we will also relax later.

1) Multi-bit QCS with Quantized Covariate: Since we will
also consider the 1-bit quantization, we more precisely refer to
the QCS under uniform quantizer as multi-bit QCS. We will
generalize Theorems 5-6 to covariate quantization in the next
two theorems.

Let (ẋk, ẏk) be the quantized covariate-response pair, we
first quickly sketch the idea of our approach. Specifically,
we stick to the framework of M-estimator in (10), which
appeals to accurate surrogates for Σ⋆ = E(xkx

⊤
k ) and

Σyx = E(ykxk) based on (ẋk, ẏk), where ẋk represents
the quantized covariate. Fortunately, the surrogates can be
constructed analogously to our QCME estimator when trian-
gular dither is used for quantizing xk. Let us first state our
quantization scheme as follows:

• Response Quantization. This is the same as Theorems
5-6. We truncate yk to ỹk = Tζy (yk) with threshold ζy ,
and then quantize ỹk to ẏk = Q∆(ỹk+ϕk) with uniform
dither ϕk ∼ U ([−∆

2 ,
∆
2 ]) and quantization level ∆ ≥ 0.

• Covariate Quantization. This is the same as Theorem
2. We truncate xk to x̃k = Tζx(xk) with threshold
ζx, and then quantize x̃k to ẋk = Q∆̄(x̃k + τk) with
triangular dither τk ∼ U ([− ∆̄

2 ,
∆̄
2 ]
d) + U ([− ∆̄

2 ,
∆̄
2 ]
d)

and quantization level ∆̄ ≥ 0.
• Notation. We write the quantization noise as φk = ẏk −
ỹk and ξk = ẋk − x̃k, the quantization error as ϑk =
ẏk − (ỹk + ϕk) and wk = ẋk − (x̃k + τk).

We will adopt the above notation in subsequent developments.
Based on the quantized covariate-response pairs (ẋk, ẏk)s, we
specify our estimator by setting (Q, b) in (10) as

Q =
1

n

n∑
k=1

ẋkẋ
⊤
k − ∆̄2

4
Id and b =

1

n

n∑
k=1

ẏkẋk. (13)

Note that the choice of Q is due to the estimator in Theorem
2, while b is inspired by the calculation

E(ẏkẋk) = E
(
(ỹk + φk)(x̃k + ξk)

)
= E(ỹkx̃k) +E(ỹkξk) +E(φkx̃k) +E(φkξk)

= E(ỹkx̃k),

where the last equality can be seen by conditioning on x̃k or
ỹk. However, the issue is that Q is not positive semi-definite,
hence the resulting program is non-convex. To explain this,
note that the rank of 1

n

∑n
k=1 ẋkẋ

⊤
k does not exceed n, so

when d > n at least d − n eigenvalues of Q are − ∆̄2

4 .
Alternatively, the non-convexity can also be seen from the
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observation that setting (Q, b) as in (13) is tantamount to
replacing the regular ℓ2-loss 1

2n

∑n
k=1(yk − x⊤

k θ)
2 with

1

2n

n∑
k=1

(ẏk − ẋ⊤
k θ)

2 − ∆̄

8
∥θ∥22.

We mention that the lack of positive semi-definiteness of
Q is problematic in both statistics and optimization aspects:
1) Statistically, Lemma 4 used to derive the error rates in
Theorems 5-6 requires Q to be positive semi-definite, and is
hence no longer applicable here; 2) From the optimization
side, it is, in general, unknown how to globally optimize a
non-convex program.

Motivated by a line of previous works on non-convex M-
estimator [62]–[64], we add an ℓ1-norm constraint to (10) by
setting S = {θ ∈ Rd : ∥θ∥1 ≤ R}, where R represents the
prior estimation on ∥θ⋆∥1. Let ∂∥θ1∥1 be a subdifferential
of ∥θ∥1 at θ = θ1,10 we consider the local minimizer of the
proposed recovery program,11 or more generally put, θ̃ ∈ S
that satisfies12〈

Qθ̃ − b+ λ · ∂∥θ̃∥1,θ − θ̃
〉
≥ 0, ∀ θ ∈ S. (14)

We will prove a fairly strong guarantee stating that all θ̃ ∈ S
satisfying (14) (of course including all local minimizers)
enjoy near minimax error rate. While this guarantee bears
resemblance to the ones in [64], we point out that, [64] only
derived concrete results for the sub-Gaussian regime; because
of the heavy-tailed data and quantization in our setting, some
essentially different ingredients are required for the technical
analysis (see Remark 5). As before, our results for sub-
Gaussian xk and heavy-tailed xk are presented separately.

Theorem 9. (Quantized Sub-Gaussian Covariate). Given ∆ ≥
0, ∆̄ ≥ 0, δ > 0, we consider (8) with the same assumptions
on (xk, yk,θ

⋆) as Theorem 5, and additionally assume that
∥θ⋆∥2 ≤ R. The quantization of (xk, yk) is described above,
and we set ζx = ∞, ζy ≍

√
nM1/l

δ log d . For recovery, we let

Q =
1

n

n∑
k=1

ẋkẋ
⊤
k − ∆̄2

4
Id,

b =
1

n

n∑
k=1

ẏkẋk, S = {θ : ∥θ∥1 ≤ R
√
s},

and set

λ = C1
(σ + ∆̄)2

√
κ0

(∆ +M1/(2l))

√
δ log d

n

with sufficiently large C1. If n ≳ δs log d for some hidden
constant only depending on (κ0, σ,∆, ∆̄,M,R), with proba-
bility at least 1−8d1−δ−C2 exp(−C3n), all θ̃ ∈ S satisfying
(14) have estimation error Υ̃ := θ̃ − θ⋆ bounded by

∥Υ̃∥2 ≤ CL

√
δs log d

n
and ∥Υ̃∥1 ≤ C ′L s

√
δ log d

n

10Thus, ∂∥θ̃∥1 in (14) below should be understood as “there exists one
element in ∂∥θ̃∥1 such that (14) holds.”

11The existence of local minimizer is guaranteed because of the additional
ℓ1-constraint.

12To distinguish the global minimizer in (10), we denote by θ̃ the estimator
in QCS with quantized covariate.

where L := (σ+∆̄)2(∆+M1/(2l))

κ
3/2
0

.

Similarly, the next result extends Theorem 6 to a setting
involving covariate quantization.

Theorem 10. (Quantized Heavy-Tailed Covariate). Given
∆ ≥ 0, ∆̄ ≥ 0, δ > 0, we consider (8) with the same
assumptions on (xk, yk,θ

⋆) as Theorem 6. The quantization of
(xk, yk) is described above, and we set ζx, ζy ≍

(
nM
δ log d

)1/4
.

For recovery, we let

Q =
1

n

n∑
k=1

ẋkẋ
⊤
k − ∆̄2

4
Id,

b =
1

n

n∑
k=1

ẏkẋk, S = {θ : ∥θ∥1 ≤ R},

and set

λ = C1(R
√
M +∆2 +R∆̄2)

√
δ log d

n

with sufficiently large C1. If n ≳ δs log d for some hidden
constant only depending on (κ0,M), then with probability at
least 1 − 8d1−δ , all θ̃ ∈ S satisfying (14) have estimation
error Υ̃ := θ̃ − θ⋆ bounded by

∥Υ̃∥2 ≤ C3L

√
δs log d

n
and ∥Υ̃∥1 ≤ C4L s

√
δ log d

n
.

where L := R
√
M+∆2+R∆̄2

κ0
.

Remark 5. (Comparing Our Analyses with [64]). The above
results are motivated by a line of works on nonconvex M-
estimator [62]–[64], and our guarantee for the whole set of
stationary points (14) resembles [64] most. While the main
strategy for proving Theorem 9 is adjusted from [64], the
proof of Theorem 10 does involve an essentially different RSC
condition, see our (42). In particular, compared with [64,
equation (4)], the leading factor of ∥Υ̃∥21 in (42) degrades

from O
(
log d
n

)
to O

(√
log d
n

)
. To retain near optimal rate we

need to impose a stronger scaling ∥θ⋆∥1 ≤ R with proper
changes in the proof. Although Theorem 10 is presented for
a concrete setting, it sheds light on an extension of [64] to
a weaker RSC condition that could accommodate covariate
with a heavier tail. Such extension is formally presented as a
deterministic framework in Proposition 1.

Proposition 1. Suppose that the s-sparse θ⋆ ∈ Rd satisfies
∥θ⋆∥1 ≤ R, and the positive definite matrix Σ⋆ ∈ Rd×d
satisfies λmin(Σ

⋆) ≥ κ0. If for some Q ∈ Rd×d, b ∈ Rd
we have

λ ≥ C1 max
{
∥Qθ⋆ − b∥∞, R · ∥Q−Σ⋆∥∞

}
(15)

holds for sufficiently large C1, then all θ̃ ∈ S satisfying (14)
with S = {θ ∈ Rd : ∥θ∥1 ≤ R} have estimation error Υ̃ :=
θ̃ − θ⋆ bounded by

∥Υ̃∥2 ≤ C2

√
sλ

κ0
and ∥Υ̃∥1 ≤ C3

sλ

κ0
.

By extracting the ingredients that guarantee (14) to be
accurate, interestingly, Proposition 1 is now independent of

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3329240

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



ACCEPTED IN T-IT 13

the model assumption (8). Particularly, we could set Σ⋆ =
E[xkx

⊤
k ] when we apply Proposition 1 to (8). Compared with

the framework [64, Thm. 1], the key strength of Proposition 1
is that it does not explicitly assume the RSC condition on the
loss function that is hard to verify without assuming a sub-
Gaussian covariate. Instead, the role of the RSC assumption in
[64] is now played by λ ≳ R∥Q−Σ⋆∥∞, which immediately
yields a kind of RSC condition by simple argument as (43).
Although this RSC condition is often essentially weaker than
the conventional one in terms of the leading factor of ∥Υ̃∥21
(see Remark 5), along this line one can still derive non-trivial
(or even near optimal) error rate. The gain of replacing RSC
assumption with λ ≳ R∥Q−Σ⋆∥∞ is that the latter amounts
to constructing element-wise estimator for Σ⋆, which is often
much easier for heavy-tailed covariate (e.g., due to many
existing robust covariance estimators).

We conclude this part with a side interesting observation.

Remark 6. By setting ∆̄ = 0, Theorem 10 produces a
result (with a convex program) for the setting of Theorem
6. Interestingly, with the additional ℓ1-constraint, a notable
improvement is that the sub-optimal n ≳ s2 log d in Theorem
6 is sharpened to the near optimal one in Theorem 10. More
concretely, this is because (ii) in (30) can be tightened to
(ii) of (43). Going back to the full-data unquantized regime,
Theorem 10 with ∆ = ∆̄ = 0 recovers [36, Theorem 2(b)]
with improved sample complexity requirement.

2) 1-bit QCS with Quantized Covariate: Our consideration
of covariate quantization in QCS seems fairly new to the
literature. To the best of our knowledge, the only related results
are [22, Thms. 7-8] for QCS with 1-bit quantized covariate and
response. The assumption there, however, is quite restrictive.
Specifically, it is assumed that Σ⋆ = E(xkx

⊤
k ) has sparse

columns (see [22, Assumption 3]), which is non-standard
in both compressed sensing and sparse linear regression.
Departing momentarily from our focus on dithered uniform
quantization, we consider QCS under dithered 1-bit quantiza-
tion and will apply Proposition 1 to derive results comparable
to [22, Thms. 7-8] without resorting to the sparsity of Σ⋆.

We first review the 1-bit quantization scheme developed in
[22]:

• Response Quantization. We truncate yk to ỹk =
Tζy (yk) with some threshold ζy , and then quantize ỹk
to ẏk = sign(ỹk + ϕk) with uniform dither ϕk ∼
U ([−γy, γy]).

• Covariate Quantization. We truncate xk to x̃k =
Tζx(xk) with some threshold ζx, and then quantize x̃k
to ẋk1 = sign(x̃k + τk1) and ẋk2 = sign(x̃k + τk2),
where τk1, τk2 ∼ U ([−γx, γx]d) are independent uni-
form dithers. (Note that we collect 2 bits per entry).

The following two results refine [22, Thms. 7-8] by deriving
comparable error rates without using sparsity of Σ⋆.

Theorem 11. (1-bit Quantized Sub-Gaussian Covariate).
Given δ > 0, we consider (8) where the s-sparse θ⋆ satisfies
∥θ⋆∥1 ≤ R, xks are i.i.d. zero-mean sub-Gaussian with
∥xk∥ψ2

≤ σ, and Σ⋆ = E(xkx
⊤
k ) satisfies λmin

(
Σ⋆
)
≥ κ0

for some κ0 > 0, the noise ϵks are independent of xks and

i.i.d. sub-Gaussian, while for simplicity we assume ∥yk∥ψ2 ≤
σ. In the quantization of (xk, yk) described above, we set
ζx = ζy = ∞ and γx, γy ≍ σ

√
log
(

n
2δ log d

)
. For recovery

we let

Q :=
γ2x
2n

n∑
k=1

(
ẋk1ẋ

⊤
k2 + ẋk2ẋ

⊤
k1

)
,

b :=
γxγy
n

n∑
k=1

ẏkẋk1, S = {θ : ∥θ∥1 ≤ R}

and set

λ = C1σ
2R

√
δ log d(log n)2

n

with sufficiently large C1. If n ≳ δs log d(log n)2, then with
probability at least 1− 4d2−δ , all θ̃ ∈ S satisfying (14) have
estimation error Υ̃ := θ̃ − θ⋆ bounded by

∥Υ̃∥2 ≤ C2
σ2

κ0
·R
√
δs log d(log n)2

n
,

∥Υ̃∥1 ≤ C3
σ2

κ0
·Rs

√
δ log d(log n)2

n
.

Theorem 12. (1-bit Quantized Heavy-Tailed Covariate).
Given δ > 0, we consider (8) where the s-sparse θ⋆ satisfies
∥θ⋆∥1 ≤ R, xks are i.i.d. zero-mean heavy-tailed satisfying
the joint fourth-moment constraint supv∈Sd−1 E|v⊤xk|4 ≤
M , and Σ⋆ = E(xkx

⊤
k ) satisfies λmin

(
Σ⋆
)

≥ κ0 for
some κ0 > 0, the noise ϵks are independent of xks and
i.i.d. heavy-tailed with a bounded fourth-moment, while for
simplicity we assume E|yk|4 ≤ M . In the quantization of
(xk, yk) described above, we set ζx, ζy, γx, γy ≍

(
nM2

δ log d

)1/8
and enforce ζx < γx, ζy < γy . For recovery we let

Q :=
γ2x
2n

n∑
k=1

(
ẋk1ẋ

⊤
k2 + ẋk2ẋ

⊤
k1

)
,

b :=
γxγy
n

n∑
k=1

ẏkẋk1, S = {θ : ∥θ∥1 ≤ R}

and set
λ = C1

√
MR

(δ log d
n

)1/4
with sufficiently large C1. If n ≳ δs2 log d, then with probabil-
ity at least 1−4d2−δ , all θ̃ ∈ S satisfying (14) have estimation
error Υ̃ := θ̃ − θ⋆ bounded by

∥Υ̃∥2 ≤ C2

√
M

κ0
·R
(δs2 log d

n

)1/4
,

∥Υ̃∥1 ≤ C3

√
M

κ0
·Rs

(δ log d
n

)1/4
.

B. Uniform Recovery Guarantee

Uniformity is a highly desired property for a compressed
sensing guarantee because it allows one to use a fixed (pos-
sibly randomly drawn) measurement ensemble for all sparse
signals. Unfortunately, as with many other results for nonlinear
compressed sensing in the literature, our earlier recovery
guarantees are non-uniform and only ensure the accurate
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recovery of a sparse signal fixed before drawing the random
measurement ensemble.

We provide another additional development to QCS in this
part. Specifically, we establish a uniform recovery guarantee
which, despite the heavy-tailed noise and nonlinear quantiza-
tion scheme, notably retains a near minimax error rate. This
is done by upgrading Theorem 5 to be uniform over all sparse
θ⋆ by more in-depth technical tools and a careful covering
argument. Part of the techniques is inspired by prior works
[40], [94], but certain technical innovations are required:

1) Like the recent work [40], one crucial technical tool in
our proof is a powerful concentration inequality for product
process due to Mendelson [67], as adapted in the present
Lemma 9. However, [40] only studied sub-Gaussian distri-
bution, and the results produced by their unified approach
typically exhibit a decaying rate of O(n−1/4) [40, Sect. 4]. By
contrast, our problem involves heavy-tailed noise only having
bounded (2 + ν)-th moment (ν > 0), and we aim to establish
a near minimax uniform error bound — cautiousness and new
treatment are thus needed in the application of Lemma 9. More
specifically, in the proof we need to bound

I1 = sup
θ∈Σs,R0

sup
v∈V

n∑
k=1

(
ỹkx

⊤
k v −E[ỹkx⊤

k v]
)
,

where V = {v : ∥v∥2 = 1, ∥v∥1 ≤ 2
√
s}, and Σs,R0 =

Σs ∩ {θ ∈ Rd : ∥θ∥2 ≤ R0} is the signal space of interest,
and recall that ỹk = Tζy (x

⊤
k θ+ ϵk) with sub-Gaussian xk. It

is natural to invoke Lemma 9 to bound I1 straightforwardly,
but the issue is on lack of good bound for ∥ỹk∥ψ2

due to
the heavy-tailedness of ϵk; indeed, one only has the trivial
estimate as ∥ỹk∥ψ2 = O(ζy), which is much worse than an
O(1) bound since ζy ≍

√
n

δ log d , and using Lemma 9 with
this estimate leads to a loose bound for I1 and finally a sub-
optimal error rate. To address the issue, our main idea is to
introduce the truncated heavy-tailed noise Tζy (ϵk) and define
z̃k = ỹk − Tζy (ϵk), which enables us to decompose I1 as

I1 ≤ sup
θ∈Σs,R0

sup
v∈V

n∑
k=1

(
z̃kx

⊤
k v −E[z̃kx⊤

k v]
)

︸ ︷︷ ︸
:=I11

+ sup
v∈V

n∑
k=1

(
Tζy (ϵk)x

⊤
k v −E[Tζy (ϵk)x

⊤
k v]
)

︸ ︷︷ ︸
:=I12

.

Now, the benefits of working with I11, I12 are that: i) We
can directly invoke Lemma 9 to bound I11 since we have
a good sub-Gaussian norm estimate ∥z̃k∥ψ2 ≤ ∥x⊤

k θ∥ψ2 ≲
∥xk∥ψ2R0, see Step 2.1.1 in the proof; ii) I12 becomes
the supremum of a process that is independent of θ and
only indexed by v, hence Bernstein’s inequality suffices for
bounding I12 (Step 2.1.2 in the proof), analogously to the
proof of the non-uniform guarantee (Theorem 5).

2) Like [94, Prop. 6.1], we invoke a covering argument with
similar techniques to bound

I0 = sup
θ∈Σs,R0

sup
v∈V

n∑
k=1

ξkx
⊤
k v,

where ξk = Q∆(ỹk+ τk)− ỹk is the quantization noise. Nev-
ertheless, our Lasso estimator is different from their projected
back projection estimator, and it turns out that we need to
directly handle “supv∈V ” by Lemma 10, unlike [94, Prop.
6.2] that again used a covering argument for this purpose. See
more discussions in Step 2.4 of the proof.

We are in a position to present our uniform recovery
guarantee. We follow most assumptions in Theorem 5 but
specify the signal space as θ⋆ ∈ Σs,R0

and impose the (2l)-
th moment constraint on ϵk. Following prior works on QCS
(e.g., [40], [89]), we consider constrained Lasso that utilizes
an ℓ1-constraint ∥θ∥1 ≤ ∥θ⋆∥1 (rather than (10)) to pursue
uniform recovery.

Theorem 13. (Uniform Version of Theorem 5). Given some
δ > 0,∆ > 0, in (8) we suppose that xks are i.i.d., zero-
mean sub-Gaussian with ∥xk∥ψ2

≤ σ, κ0 ≤ λmin(Σ
⋆) ≤

λmax(Σ
⋆) ≤ κ1 for some κ1 ≥ κ0 > 0 where Σ⋆ =

E(xkx
⊤
k ), θ

⋆ ∈ Σs,R0
:= Σs ∩ {θ : ∥θ∥2 ≤ R0} for some

absolute constant R0, ϵks are i.i.d. noise that are independent
of xks and satisfy E|ϵk|2l ≤ M for some fixed l > 1. In
quantization, we truncate yk to ỹk = Tζy (yk) with threshold

ζy ≍
(n(M1/l+σ2)

δ log d

)1/2
, then quantize ỹk to ẏk = Q∆(ỹk+τk)

with uniform dither τk ∼ U ([−∆
2 ,

∆
2 ]). For recovery, we

define the estimator θ̂ as the solution to constrained Lasso

θ̂ = argmin
∥θ∥1≤∥θ⋆∥1

1

2n

n∑
k=1

(ẏk − x⊤
k θ)

2

If n ≳ δs logW for W = κ1d
2n3

∆2s5δ3 and some hidden constant
depending on (κ0, σ), then with probability at least 1−Cd1−δ
on a single random draw of (xk, ϵk, τk)nk=1, it holds uniformly
for all θ⋆ ∈ Σs,R0 that the estimation error Υ̂ := θ̂ − θ⋆

satisfy

∥Υ̂∥2 ≤ C3σ(σ +M
1
2l )

κ0

√
δs log d

n
+
C3σ∆

κ0

√
δs logW

n
,

∥Υ̂∥1 ≤ C4σ(σ +M
1
2l )

κ0
s

√
δ log d

n
+
C4σ∆

κ0
s

√
δ logW

n
.

Notably, our uniform guarantee is still minimax optimal up
to some additional logarithmic factors (i.e.,

√
logW ) arising

from the covering argument (Step 2.4 of the proof), whose
main aim is to show that one uniform dither τ = [τk] suffices
for all signals. Thus naturally,

√
logW is associated with a

leading factor of the quantization level ∆, meaning that the
logarithmic gap between uniform recovery and non-uniform
recovery closes when ∆ → 0. In particular, Theorem 13
implies a uniform error rate matching the non-uniform one
in Theorem 5 (up to some multiplicative factors) when ∆ is
small enough or in an unquantized case.

To the best of our knowledge, the only existing uniform
guarantee for heavy-tailed QCS is [33, Thm. 1.11], but the
following distinctions make it impossible to closely compare
their result with our Theorem 13: 1) [33, Thm. 1.11] is for
dithered 1-bit quantization, but ours is for dithered uniform
quantizer; 2) We handle heavy-tailedness by truncation, while
[33, Thm. 1.11] does not involve this kind of special treatment;
3) [33, Thm. 1.11] considers a highly intractable program with
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hamming distance as objective and θ ∈ Σs as constraint (when
specialized to sparse signal), while our Theorem 13 is for the
convex program Lasso; 4) Their analysis is based on an in-
depth result on random hyperplane tessellations (see also [34],
[77]), while our proof follows the more standard strategy (i.e.,
to upgrade each piece in a non-uniform proof to be uniform)
and requires certain technical innovations (e.g., the treatment
to deal with the truncation step).13 Note that [33, Thm. 1.11]
is robust to adversarial bit flips, and we leave it future work to
extend our results to a setting where adversarial noise presents.

V. NUMERICAL SIMULATIONS

In this section, we provide two sets of experimental results
to support and demonstrate our theoretical developments. The
first set of our simulations is devoted to validating our major
standpoint that near minimax rates are achievable in quantized
heavy-tailed settings. Then, the second set of results is pre-
sented to illustrate the crucial role played by the appropriate
dither (i.e., triangular dither for covariate, uniform dither for
response) before uniform quantization. For the importance of
data truncation we refer to in [36, Sect. 5], which includes
three estimation problems in this work and contrasts the
estimations with or without the data truncation.

A. (Near) Minimax Error Rates

Each data point in our results is set to be the mean value
of 50 or 100 independent trials.

1) Quantized Covariance Matrix Estimation: We start
from covariance matrix estimation, specifically, we verify the
element-wise rate B1 := O

(
L
√

log d
n

)
and operator norm

rate B2 := O
(
L
√

d log d
n

)
in Theorems 2-3.

For estimator in Theorem 2, we draw xk = (xki) such that
the first two coordinates are independently drawn from t(4.5),
(xki)i=3,4 are from t(6) with covariance E(xk3xk4) = 1.2,
and the remaining d− 4 coordinates are i.i.d. following t(6).
We test different choices of (d,∆) under n = 80 : 20 : 220,
and the log-log plots are shown in Figure 1(a). Clearly, for
each (d,∆) the experimental points roughly exhibit a straight
line that is well aligned with the dashed line representing the
n−1/2 rate. As predicted by the factor L =

√
M + ∆2,

the curves with larger ∆ are higher, but note that the error
decreasing rates remain unchanged. In addition, the curves
of (d,∆) = (100, 1), (120, 1) are extremely close, which is
consistent with the logarithmic dependence of B1 on d.

For the error bound B2, the coordinates of xk are inde-
pendently drawn from a scaled version of t(4.5) such that
Σ⋆ = diag(2, 2, 1, ..., 1), and we test different settings of
(d,∆) under n = 200 : 100 : 1000. As shown in Figure
1(b), the operator norm error decreases with n in the optimal
rate n−1/2, and using a coarser dithered quantizer (i.e., larger
∆) only slightly lifts the curves. Indeed, the effect seems
consistent with L ’s quadratic dependence on ∆. To validate
the relative scaling of n and d, in addition to the setting

13It is possible to use such a standard strategy to upgrade Theorem 6 to a
uniform result; we suspect that the error rate may exhibit worse dependence
on s due to covering argument.

(d,∆) = (100, 1) under n = 200 : 100 : 1000, we try
(d,∆) = (150, 1) under 1.5 times the original sample size
n = 1.5× (200 : 100 : 1000) (but in Figure 1(b) we still plot
the curve according to the sample size of 200 : 100 : 1000
without the multiplicative factor of 1.5), and surprisingly the
obtained curve coincides with the one for (d,∆) = (100, 1).
Thus, ignoring the logarithmic factor log d, the operator norm
error can be characterized by B2 fairly well.

Additionally, we want to compare B1 and B2 regarding
the dependence on d more clearly. Specifically, we generate
the samples xks as in Figure 1(a) and test the fixed sample
size n = 180 and varying dimension d = 80 : 20 : 260.
The max norm estimation errors of Σ̂ in Theorem 2 and the
operator norm errors (under d = 80 : 20 : 180 to ensure
n ≥ d) of the estimator in Theorem 3 are reported in Figure
1(c). It is clear that the max norm error increases with d
rather slowly, while the operator norm error increases much
more significantly under larger d. This is consistent with the
logarithmic dependence of B1 on d and the more essential
dependence of B2 on d.

2) Quantized Compressed Sensing: We now switch to QCS
with unquantized covariate and aim to verify the ℓ2-norm error
rate B3 = O

(
L
√

s log d
n

)
obtained in Theorems 5-6. We let

the support of the s-sparse θ⋆ ∈ Rd be [s], and then draw
the non-zero entries from a uniform distribution over Ss−1

(hence ∥θ⋆∥2 = 1). For the setting of Theorem 5 we adopt
xk ∼ N (0, Id) and ϵk ∼ 1√

6
t(3), while xki

iid∼
√
5
3 t(4.5) and

ϵk ∼ 1√
3
t(4.5) for Theorem 6. We simulate different choices

of (d, s,∆) under n = 100 : 100 : 1000, and the proposed
convex program (10) is solved with the framework of ADMM
(we refer to the review [8]). Experimental results are shown
as log-log plots in Figure 2. Consistent with the theoretical
bound B3, the errors in both cases decrease in a rate of n−1/2,
whereas the effect of uniform quantization is merely on the
multiplicative factor L . Interestingly, it seems that the gaps
between ∆ = 0, 0.5 and ∆ = 0.5, 1 are in agreement with the
explicit form of L , i.e., L ≍ M1/(2l) + ∆ for Theorem 5,
and L ≍

√
M + ∆2 for Theorem 6. In addition, note that

the curves of (d, s) = (150, 5), (180, 5) are close, whereas
increasing s = 8 suffers from a significantly larger error. This
is consistent with the scaling law of (n, d, s) in B3.

Then, we simulate the complete quantization setting where
both covariate and response are quantized (Theorems 9-10).
The simulation details are the same as before except that xk
is also quantized with a quantization level the same as yk. We
provide the best ℓ1-norm constraint for recovery, i.e., S := {θ :
∥θ∥1 ≤ ∥θ⋆∥1}. Then, composite gradient descent [63], [64]
is invoked to handle the non-convex estimation program. We
show the log-log plots in Figure 3. Note that these results have
implications similar to Figure 2, in terms of the n−1/2 rate,
the effect of quantization, and the relative scaling of (n, d, s).

3) Quantized Matrix Completion: Finally, we simulate
QMC and demonstrate the error bound B4 = O

(
L
√

rd log d
n

)
for ∥Υ̂∥F /d in Theorems 7-8. We generate the rank-r Θ⋆ ∈
Rd×d as follows: we first generate Θ0 ∈ Rd×r with i.i.d.
standard Gaussian entries to obtain the rank-r Θ1 := Θ0Θ

⊤
0 ,
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Fig. 1. (a): Element-wise error (Theorem 2); (b): operator norm error (Theorem 3); (c): the dependence on d of both error metrics.
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Fig. 2. (a): QCS in Theorem 5; (b): QCS in Theorem 6.
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Fig. 3. (a): QCS in Theorem 9; (b): QCS in Theorem 10.

then we rescale it to Θ⋆ := k1Θ1 such that ∥Θ⋆∥F = d.
We use ϵk ∼ N (0, 14 ) to simulate the sub-exponential noise
in Theorem 7, while ϵk ∼ 1√

6
t(3) for Theorem 8. The convex

program (12) is fed with α = ∥Θ⋆∥∞ and optimized by the
ADMM algorithm. We test different choices of (d, r,∆) under
n = 2000 : 1000 : 8000, with the log-log error plots displayed
in Figure 4. Firstly, the experimental curves are well aligned
with the dashed line that represents the optimal n−1/2 rate.
Then, comparing the results for ∆ = 0, 0.5, 1, we conclude
that quantization only affects the multiplicative factor L in
the estimation error. It should also be noted that, increasing
either d or r leads to a significantly larger error, which is

consistent with the B4’s essential dependence on d and r.

B. Importance of Appropriate Dithering

To demonstrate the crucial role played by the suitable dither,
we provide the second set of simulations. In order to observe
more significant phenomena and then conclude evidently, we
may test a huge sample size but a rather simple estimation
problem under coarse quantization (i.e., large ∆).

Specifically, for covariance matrix estimation we set d = 1
and i.i.d. draw X1, ..., Xn from N (0, 1). Thus, the problem
boils down to estimating E|Xk|2, for which the estimators
in Theorems 2-3 coincide. Since Xk is sub-Gaussian, we
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Fig. 4. (a): QMC in Theorem 7; (b): QMC in Theorem 8.
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Fig. 5. (a): covariance matrix estimation; (b): QCS in Theorem 5; (c): QMC in Theorem 7.

do not perform data truncation before dithered quantization.
Besides our estimator Σ̂ = 1

n

∑n
k=1 Ẋ

2
k − ∆2

4 where Ẋk =
Q∆(Xk + τk) and τk is triangular dither, we invite the
following competitors:

• Σ̂no = 1
n

∑n
k=1(Ẋ

′
k)

2, where Ẋ ′
k = Q∆(Xk) is the

direct quantization without dithering;

• Σ̂u − ∆2

6 and Σ̂u, where Σ̂u = 1
n

∑n
k=1(Ẋ

′′
k )

2, and
Ẋ ′′
k = Q∆(Xk + τ ′′k ) is quantized under uniform dither

τ ′′k ∼ U ([−∆
2 ,

∆
2 ]).

To illustrate the choice of Σ̂u − ∆2

6 and Σ̂u, we write

Ẋ ′′
k = Xk + τ ′′k + wk = Xk + ξk

with quantization error wk ∼ U ([−∆
2 ,

∆
2 ]) (due to Theorem

1(a)) and quantization noise ξk = τ ′′k + wk, then (5) gives

E(Ẋ ′′
k )

2 = E|Xk|2 +E|ξk|2,

while E|ξk|2 remains unknown. Thus, we consider Σ̂u − ∆2

6
because of an unjustified guess

E|ξk|2 ≈ E|τ ′′k |2 +E|wk|2 =
∆2

6
,

while Σ̂u simply gives up the correction of E|ξk|2. We test
∆ = 3 under n = (2 : 2 : 20) · 103. From the results shown in
Figure 5(a), the proposed estimator based on quantized data
under triangular dither embraces the lowest estimation errors

and the optimal rate of n−1/2, whereas other competitors are
not consistent, i.e., they all reach some error floors under a
large sample size.

For the two remaining signal recovery problems, we simply
focus on the quantization of the response yk. In particu-
lar, we simulate QCS in the setting of Theorem 5, with
(d, s,∆) = (50, 3, 2) under n := (2 : 2 : 20) · 103. Other
experimental details are as previously stated. We compare our
estimator θ̂ with its counterpart θ̂′ defined by (10) with the
same Q,S but b′ = 1

n

∑n
k=1 ẏ

′
kxk, where ẏ′k = Q∆(ỹk) is

a direct uniform quantization with no dither. Evidently, the
simulation results in Figure 5(b) confirm that the application
of a uniform dither significantly lessens the recovery errors.
Without dithering, although our results under the Gaussian
covariate still exhibit n−1/2 decreasing rate, the identifiability
issue unavoidably arises under the Bernoulli covariate. In that
case, the simulation without dithering will evidently deviate
from the n−1/2 rate, see [87, Figure 1] for instance.

In analogy, we simulate QMC (Theorem 7) with data
generated as previous experiments, and specifically we try
(d, r,∆) = (30, 5, 1.5) under n = (5 : 5 : 25) · 103. While our
estimator Θ̂ is defined in (12) involving ẏk from a dithered
quantizer, we simulate the performance of its counterpart
without dithering, i.e., Θ̂′ defined in (12) with ẏk substituted
by ẏ′k = Q∆(yk). From the experimental results displayed
in Figure 5(c), one shall clearly see that Θ̂ performs much
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better in terms of the decreasing rate of n−1/2 and the
estimation error; while the curve without dithering even does
not decrease.

VI. CONCLUDING REMARKS

In digital signal processing and many distributed machine
learning systems, data quantization is an indispensable pro-
cess. On the other hand, many modern datasets exhibit heavy-
tailedness, and the past decade has witnessed an increasing
interest in statistical estimation methods robust to heavy-tailed
data. In this work, we try to bridge these two developments by
studying the quantization of heavy-tailed data. We propose to
truncate the heavy-tailed data prior to a uniform quantizer with
random dither well suited to the problem at hand. Applying
our quantization scheme to covariance matrix estimation,
compressed sensing, and matrix completion, we have proposed
(near) optimal estimators based on quantized data, and they
are computationally feasible. These results suggest a unified
conclusion that the dithered quantization does not affect the
key scaling law in the error rate but only slightly worsens the
multiplicative factor, which was complemented by numerical
simulations. Further, in two respects, we presented additional
developments for quantized compressed sensing. Firstly, we
study a novel setting that involves covariate quantization.
Because our quantized covariance matrix estimator is not
positive semi-definite, the proposed recovery program is non-
convex, but we proved that all local minimizers enjoy near
minimax rates. At a higher level, this development extends
a line of works on non-convex M-estimator [62]–[64] to
accommodate heavy-tailed covariate, see the deterministic
framework Proposition 1. As an application, we derive re-
sults for (dithered) 1-bit compressed sensing as byproducts.
Secondly, we established a near minimax uniform recovery
guarantee for QCS under heavy-tailed noise, which states
that all sparse signals within an ℓ2-ball can be uniformly
recovered up to near optimal ℓ2-norm error, using a single
realization of the measurement ensemble. We believe the
developments presented in this work will prove useful in many
other estimation problems, for instance, the triangular dither
and the quantization scheme apply to multi-task learning, as
shown by subsequent works [23], [60].
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detect the cyclostationarity in heavy-tailed distributed signals. Signal
Processing, 172:107514, 2020.

[58] Arun Kumar Kuchibhotla and Abhishek Chakrabortty. Moving beyond
sub-gaussianity in high-dimensional statistics: Applications in covari-
ance estimation and linear regression. Information and Inference: A
Journal of the IMA, 11(4):1389–1456, 2022.

[59] Jean Lafond, Olga Klopp, Eric Moulines, and Joseph Salmon. Prob-
abilistic low-rank matrix completion on finite alphabets. Advances in
Neural Information Processing Systems, 27, 2014.

[60] Kangqiang Li and Yuxuan Wang. Two results on low-rank heavy-tailed
multiresponse regressions. arXiv preprint arXiv:2305.13897, 2023.

[61] Christopher Liaw, Abbas Mehrabian, Yaniv Plan, and Roman Vershynin.
A simple tool for bounding the deviation of random matrices on
geometric sets. In Geometric aspects of functional analysis, pages 277–
299. Springer, 2017.

[62] Po-Ling Loh. Statistical consistency and asymptotic normality for high-
dimensional robust m-estimators. The Annals of Statistics, 45(2):866–
896, 2017.

[63] Po-Ling Loh and Martin J. Wainwright. High-dimensional regression
with noisy and missing data: Provable guarantees with nonconvexity.
The Annals of statistics, 40(3):1637–1664, 2012.

[64] Po-Ling Loh and Martin J. Wainwright. Regularized m-estimators
with nonconvexity: Statistical and algorithmic theory for local optima.
Journal of Machine Learning Research, 16(19):559–616, 2015.
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APPENDIX

A. Proofs in Section III

1) Quantized Covariance Matrix Estimation: We first
provide Bernstein’s inequality that is recurring in our proofs.
In application, we will choose the more convenient one from
(16) and (17).

Lemma 1. (Bernstein’s inequality, [6, Thm. 2.10, Coro.
2.11]). Let X1, ..., Xn be independent random variables, and
assume that there exist positive numbers v and c such that∑n
i=1E[X

2
i ] ≤ v and

n∑
i=1

E|Xi|q ≤
q!

2
vcq−2 for all integers q ≥ 3,

then for any t > 0 we have

P

(∣∣∣ n∑
i=1

(Xi −EXi)
∣∣∣ ≥ √

2vt+ ct

)
≤ 2 exp

(
− t
)

(16)

P

(∣∣∣ n∑
i=1

(Xi −EXi)
∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2(v + ct)

)
(17)

We will also use the Matrix Bernstein’s inequality.

Lemma 2. (Matrix Bernstein, [91, Thm. 6.1.1]). Let S1, ...,Sn
be independent zero-mean random variables with common
dimension d1 × d2. We assume that ∥Sk∥op ≤ L for k ∈ [n]
and introduce the matrix variance statistic

ν = max

{∥∥∥ n∑
k=1

E(SkS
⊤
k )
∥∥∥
op
,
∥∥∥ n∑
k=1

E(S⊤
k Sk)

∥∥∥
op

}
.

Then for any t ≥ 0, we have

P

(∥∥∥ n∑
k=1

Sk

∥∥∥
op

≥ t

)
≤ (d1 + d2) exp

(
− 1

2 t
2

ν + Lt
3

)
.

Proof of Theorem 2:

Proof. Recall that ξk = ẋk−x̃k is the quantization noise, and
E(ξkξ

⊤
k ) =

∆2

4 Id, which implies EΣ̂ = E(x̃kx̃
⊤
k ). Thus, by

using triangle inequality we obtain

∥Σ̂−Σ⋆∥∞ ≤ ∥Σ̂−EΣ̂∥∞ + ∥E(x̃kx̃⊤
k − xkx

⊤
k )∥∞

: = I1 + I2.

Step 1. Bounding I1.
Note that

∥Σ̂−EΣ̂∥∞ =
∥∥∥ 1
n

n∑
k=1

ẋkẋ
⊤
k −E(ẋkẋ⊤

k )
∥∥∥
∞
,

so for any (i, j) ∈ [d]× [d] we aim to bound the (i, j)-th entry
error

|σ̂ij −Eσ̂ij | =

∣∣∣∣∣
n∑
k=1

1

n
ẋkiẋkj −E(ẋkiẋkj)

∣∣∣∣∣
Observe that the quantization noise is bounded as follows

∥ξk∥∞ ≤ ∥Q∆(x̃k + τk)− (x̃k + τk)∥∞ + ∥τk∥∞ ≤ 3∆

2
,

which implies E|ξki|4 ≤ ( 3∆2 )4 and

∥ẋk∥∞ ≤ ∥x̃k∥∞ + ∥ξk∥∞ ≤ ζ +
3∆

2
.

By the moment constraint on xki we have E|x̃ki|4 ≤
E|xki|4 ≤ M . Thus, for any positive integer p ≥ 2 we have
the following bound

n∑
k=1

E

∣∣∣ ẋkiẋkj
n

∣∣∣q
≤

(ζ + 3
2∆)2(q−2)

nq

n∑
k=1

E(ẋkiẋkj)
2

≤
(ζ + 3

2∆)2(q−2)

2nq

n∑
k=1

(
E|ẋki|4 +E|ẋkj |4

)
≤

4(ζ + 3
2∆)2(q−2)

nq

·
n∑
k=1

(
E|x̃ki|4 +E|x̃kj |4 +E|ξki|4 +E|ξkj |4

)
≤ q!

2
v0c

q−2
0 ,

(18)
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for some v0 = O
(
M+∆4

n

)
, c0 = O

( (ζ+∆)2

n

)
. With these

preparations, we can invoke Bernstein’s inequality (Lemma
1) to obtain that, for any t ≥ 0, with probability at least
1− 2 exp(−t),

|σ̂ij −Eσ̂ij | ≤ C1

(√ (M +∆4)t

n
+

(ζ2 +∆2)t

n

)
.

Taking t = δ log d and using the choice ζ ≍
(
nM
δ log d

)1/4
, then

applying a union bound over (i, j) ∈ [d]×[d], under the scaling
n ≳ δ log d, we obtain that

I1 ≲ (
√
M +∆2)

√
δ log d

n

holds with probability at least 1− 2d2−δ .
Step 2. Bounding I2.

We aim to bound |E(x̃kix̃kj − xkixkj)| for any (i, j) ∈
[d]× [d]. First by the definition of truncation we have∣∣E(x̃kix̃kj − xkixkj)

∣∣
≤E
[
|xkixkj |(1(|xki| ≥ ζ) + 1(|xkj | ≥ ζ))

]
;

then applying Cauchy-Schwarz to E
[
|xkixkj |1(|xki ≥ ζ|)

]
,

we obtain

E
[
|xkixkj |1(|xki| ≥ ζ)

]
≤
[
E|xkixkj |2

]1/2[
P(|xki| ≥ ζ)

]1/2
≤
√
M

√
M

ζ4
=
M

ζ2
,

where the second inequality is due to Markov’s inequality.
Note that this bound remains valid for E

[
|xkixkj |1(|xkj | ≥

ζ)
]
. Since this holds for any (i, j) ∈ [d]× [d], combining with

ζ ≍
(
nM
δ log d

)1/4
, we obtain

∥E(x̃kx̃⊤
k − xkx

⊤
k )∥∞ ≤ 2M

ζ2
≲

√
M

√
δ log d

n
.

By putting pieces together, we have

∥Σ̂−Σ⋆∥∞ ≲ (
√
M +∆2)

√
δ log d

n

with probability at least 1− 2d2−δ , as claimed.

Proof of Theorem 3:

Proof. Note that the calculations in (5) and (6) remain valid
(but the truncated samples are denoted by x̌k rather than x̃k),
so we have EΣ̂ = E(x̌kx̌

⊤
k ). Using triangle inequality we

first decompose the error as

∥Σ̂−Σ⋆∥op ≤ ∥Σ̂−EΣ̂∥op + ∥E(x̌kx̌⊤
k − xkx

⊤
k )∥op

: = I1 + I2.

Step 1. Bounding I1.
We first write that

Σ̂−EΣ̂ =
1

n

n∑
k=1

Sk where Sk = ẋkẋ
⊤
k −E(ẋkẋ⊤

k ).

Recall that we define quantization error as wk = ẋk−x̌k−τk
and quantization noise as ξk = ẋk − x̌k, and observe that

the quantization noise is bounded ∥ξk∥∞ = ∥ẋk − x̌k∥∞ =
∥τk+wk∥∞ ≤ 3

2∆. Thus, by ∥a∥22 ≤
√
d∥a∥24 that holds for

any a ∈ Rd, we obtain

∥ẋkẋ⊤
k ∥op = ∥ẋk∥22 = ∥x̌k + ξk∥22 ≤ 2∥x̌k∥22 + 2∥ξk∥22

≤ 2
√
d · ∥x̌k∥24 + 2d ·

(3∆
2

)2
≤ 2

√
dζ2 +

9

2
d∆2,

which implies

∥Sk∥op ≤ ∥ẋkẋ⊤
k ∥op +E∥ẋkẋ⊤

k ∥op ≤ 4
√
dζ2 + 9d∆2.

Moreover, we estimate the matrix variance statistic. Since Sk
is symmetric, we simply deal with ∥ES2

k∥op and some algebra
givesES2

k = E
[
∥ẋk∥22ẋkẋ⊤

k

]
−
(
E
[
ẋkẋ

⊤
k

])2
. First let us note

that ∥∥∥(E[ẋkẋ⊤
k

])2∥∥∥
op

=
∥∥∥E[ẋkẋ⊤

k

]∥∥∥2
op

=
∥∥∥E[x̌kx̌⊤

k

]
+

∆2

4
Id

∥∥∥2
op

≤
(∥∥∥E[x̌kx̌⊤

k

]∥∥∥
op

+
∆2

4

)2
≤ 2
∥∥∥E[x̌kx̌⊤

k

]∥∥∥2
op

+
∆4

8
.

Combining with the observation that∥∥∥E[x̌kx̌⊤
k

]∥∥∥
op

= sup
v∈Sd−1

E(v⊤x̌k)
2

≤ sup
v∈Sd−1

√
E(v⊤xk)4 ≤

√
M,

we obtain
∥∥(E[ẋkẋ⊤

k ])
2
∥∥
op

= O(M + ∆4). Then we turn
to the operator norm of E[∥ẋk∥22ẋkẋ⊤

k ]. We apply Cauchy-
Schwarz to estimate∥∥E(∥ẋk∥22ẋkẋ⊤

k

)∥∥
op

= sup
v∈Sd−1

E
(
∥ẋk∥22(v⊤ẋk)

2
)

≤
√
E∥ẋk∥42 sup

v∈Sd−1

√
E(v⊤ẋk)4.

(19)

By ∥a∥22 ≤
√
d∥a∥24 that holds for any a ∈ Rd, E|x̌ki|4 ≤

E|xki|4 ≤M , ẋk = x̌k + ξk and ∥ξk∥∞ ≤ 3∆
2 , we obtain

E∥ẋk∥42 ≤ E(∥x̌k∥2 + ∥ξk∥2)4 ≲ E(∥x̌k∥42 + ∥ξk∥42)
≤ dE(∥x̌k∥44 + ∥ξk∥44) ≲ d2(M +∆4).

(20)

For any v ∈ Sd−1, we write ẋk = x̌k + τk + wk and then
have the bound

E(v⊤ẋk)
4 ≲ E(v⊤x̌k)

4 +E(v⊤τk)
4 +E(v⊤wk)

4

(i)

≲ M +∆4,
(21)

where (i) is because

E(v⊤x̌k)
4 ≤ E(v⊤xk)

4 ≤M

and
τk ∼ U ([−∆

2
,
∆

2
]d) + U ([−∆

2
,
∆

2
]d),

and the quantization error wk follows U ([−∆
2 ,

∆
2 ]
d); in

more detail, ∥v⊤τk∥ψ2
, ∥v⊤wk∥ψ2

= O(∆) and then the
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moment constraint of sub-Gaussian random variable implies
E(v⊤τk)

4 = O(∆4) and E(v⊤wk) = O(∆4). From (19),
(20) and (21), we obtain∥∥E(∥ẋk∥22ẋkẋ⊤

k

)∥∥
op

= O
(
d(∆4 +M)

)
.

Further combining with

ES2
k = E

[
∥ẋk∥22ẋkẋ⊤

k

]
−
(
E
[
ẋkẋ

⊤
k

])2
and

∥∥(E[ẋkẋ⊤
k ])

2
∥∥
op

= O(M+∆4), we arrive at ∥ES2
k∥op ≲

d(∆4+M) and hence
∥∥∑n

k=1ES
2
k

∥∥
op

≲ nd(∆4+M). With
these preparations, Matrix Bernstein’s inequality (Lemma 2)
yields the following inequality that holds for any t ≥ 0

P

(
∥Σ̂−EΣ̂∥op ≥ t

)
≤ 2d exp

(
− C1nt

2

(M +∆4)d+ (
√
dζ2 + d∆2)t

)
.

Setting t = C2(
√
M + ∆2)

√
δd log d
n with sufficiently large

C2, under the scaling of n ≳ δd log d and the threshold ζ ≍
(M1/4 +∆)

(
n

δ log d

)1/4
, we obtain that

I1 = ∥Σ̂−EΣ̂∥op ≤ C2(
√
M +∆2)

√
δd log d

n

holds with probability at least 1− 2d1−δ .
Step 2. Bounding I2.

Having bounded the concentration term I1, we now switch
to the bias term

I2 = sup
v∈Sd−1

∣∣v⊤
E(x̌kx̌

⊤
k − xkx

⊤
k )v

∣∣.
For any v ∈ Sd−1, because x̌k is obtained from truncating x4

regarding ℓ4-norm, we have∣∣v⊤
E(x̌kx̌

⊤
k − xkx

⊤
k )v

∣∣
=
∣∣∣E[((v⊤x̌k)

2 − (v⊤xk)
2
)
1(∥xk∥4 ≥ ζ)

]∣∣∣
≤ E

[
(v⊤xk)

2
1(∥xk∥4 ≥ ζ)

]
(i)

≤
√
E(v⊤xk)4

√
P(∥xk∥44 ≥ ζ4)

(ii)

≤

√
M
E∥xk∥44
ζ4

(iii)

≲

√
Mδd log d

n
,

where (i) and (ii) are respectively by Cauchy-Schwarz and
Markov’s, and in (iii) we use ζ ≍ (M1/4 + ∆)

(
δd log d
n

)1/4
.

This leads to the bound I2 ≲
√

Mδd log d
n . Combining the

bounds of I1, I2 completes the proof.

Proof of Theorem 4: This small appendix is devoted to
the proof of Theorem 4, for which we need a Lemma concern-
ing the element-wise error rate of Σ̂s, i.e., |σ̆ij − σ⋆ij | where
we write Σ̂s = [σ̆ij ], Σ⋆ = E(xkx

⊤
k ) = [σ⋆ij ]. Recalling that

Σ̂s = Tµ(Σ̂), the key message from Lemma 3 is that due to
the thresholding operator Tµ(·), Σ̂s respects an element-wise

bound tighter than O
(√

δ log d
n

)
in Theorem 2, as can be seen

from the additional branch |σ⋆ij | in (22).

Lemma 3. (Element-wise Error Rate of Σ̂s). For any i, j ∈
[d], the thresholding estimator Σ̂s = [σ̆ij ] in Theorem 4
satisfies for some C that

P

(
|σ̆ij − σ⋆ij | ≤ Cmin

{
|σ⋆ij |,L

√
δ log d

n

})
≥ 1− 2d−δ

(22)
where L :=

√
M +∆2.

Proof. Recall that Σ̂s = [σ̆ij ] = Tµ(Σ̂) = Tµ
(
[σ̂ij ]

)
and

hence σ̆ij = Tµ(σ̂ij). Given (i, j), the proof of Theorem 2
delivers

|σ̂ij − σ⋆ij | ≤ C1L

√
δ log d

n

with probability at least 1−2d−δ . Assume that we are on this
event in the following analyses. As stated in Theorem 4, we
set µ = C2L

√
δ log d
n with C2 > C1, L =

√
M +∆2. Since

σ̆ij = Tµ(σ̂ij), we discuss whether |σ̂| ≥ µ holds.
Case 1. when |σ̂ij | < µ holds.

In this case we have σ̆ij = 0, thus |σ̆ij − σ⋆ij | ≤ |σ⋆ij |.
Further note that

|σ⋆ij | ≤ |σ⋆ij − σ̂ij |+ |σ̂ij |

≤ C1L

√
δ log d

n
+ µ ≲ L

√
δ log d

n
,

so we also have |σ̆ij − σ⋆ij | ≲ L
√

δ log d
n .

Case 2. when |σ̂ij | ≥ µ holds.
We consider |σ̂ij | ≥ µ that implies σ̆ij = σ̂ij , then we have

|σ̆ij − σ⋆ij | = |σ̂ij − σ⋆ij | ≤ C1L

√
δ log d

n
.

Moreover, note that

|σ⋆ij | ≥ |σ̂ij | − |σ̂ij − σ⋆ij | ≥ µ− |σ̂ij − σ⋆ij |

≥ (C2 − C1)L

√
δ log d

n

so we also have |σ̆ij − σ⋆ij | = O(|σ⋆ij |).
Therefore, in both cases we have proved that |σ̆ij − σ⋆ij | ≲

min
{
|σ⋆ij |,L

√
δ log d
n

}
, which completes the proof.

We are now in a position to present the proof.

Proof of Theorem 4. We let p = δ
4 ≥ 1 (just assume δ ≥ 4)

and use B0 := L
√

δ log d
n as shorthand. For (i, j) ∈ [d]× [d]

we define the event Aij as

Aij =
{
|σ̆ij − σ⋆ij | ≤ C1 min

{
|σ⋆ij |, B0

}}
.

By Lemma 3 we can choose C1 to be sufficiently large such
that C1B0 > 3µ and P(A ∁

ij) ≤ 2d−δ; here, by convention
we let A ∁

ij be the complement of Aij . Our proof strategy is
to first bound the p-th order moment E∥Σ̂s − Σ⋆∥pop, and
then invoke Markov’s inequality to derive a high probability
bound. We start with the simple estimate displayed in (23),
where (i) and (ii) are due to ∥A∥op ≤ supj∈[d]

∑
i∈[d] |aij |

for symmetric A and (a+ b)p ≤ (2a)p+ (2b)p. In this proof,
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E∥Σ̂s −Σ⋆∥pop
(i)

≤ E

(
sup
j∈[d]

d∑
i=1

|σ̆ij − σ⋆ij |1(Aij) + sup
j∈[d]

d∑
i=1

|σ̆ij − σ⋆ij |1(A ∁
ij)
)p

(ii)

≤ 2pE sup
j∈[d]

( d∑
i=1

|σ̆ij − σ⋆ij |1(Aij)
)p

+ 2pE sup
j∈[d]

( d∑
i=1

|σ̆ij − σ⋆ij |1(A ∁
ij)
)p

:= I1 + I2

(23)

Wj

(i)

≤
( d∑
i=1

|σ⋆ij |1(A ∁
ij)1(|σ̂ij | < µ) +

d∑
i=1

|σ̂ij −Eσ̂ij |1(A ∁
ij) +

d∑
i=1

|σ̃ij − σ⋆ij |1(A ∁
ij)
)p

≤ (3d)p−1
( d∑
i=1

|σ⋆ij |p1(A ∁
ij)1(|σ̂ij | < µ) +

d∑
i=1

|σ̂ij −Eσ̂ij |p1(A ∁
ij) +

d∑
i=1

|σ̃ij − σ⋆ij |p1(A ∁
ij)
)
,

(25)

the ranges of indices in summation or supremum, if omitted,
are [d].

Step 1. Bounding I1.
By the definition of Aij , |σ̆ij − σ⋆ij | = 0 if |σ⋆ij | = 0.

Because the columns of Σ⋆ are s-sparse, we can straightfor-
wardly bound I1 as follows:

I1 = 2pE sup
j

( ∑
i:|σ⋆

ij |>0

|σ̆ij − σ⋆ij |1(Aij)
)p

≤
(
2C1sB0

)p
.

(24)

Step 2. Bounding I2.
We first write I2 = 2pE supjWj with

Wj :=
(∑

i

|σ̆ij − σ⋆ij |1(A ∁
ij)
)p
,

then start from the display (25), where in (i) we define

Eσ̂ij = E(x̃kix̃kj) := σ̃ij .

By replacing supj with
∑
j , this further gives

I2 ≤ 6pdp−1
(∑
i,j

|σ⋆ij |pE
[
1(A ∁

ij)1(|σ̂ij | < µ)
]

+
∑
i,j

E
[
|σ̂ij −Eσ̂ij |p1(A ∁

ij)
]

+
∑
i,j

|σ̃ij − σ⋆ij |pP(A ∁
ij)
)

: = 6pdp−1
(
I21 + I22 + I23

)
.

(26)

Step 2.1. Bounding I21.
Note that A ∁

ij means |σ̆ij − σ⋆ij | > C1 min{|σ⋆ij |, B0}, and
|σ̂ij | < µ implies σ̆ij = 0, their combination thus allows us
to proceed as the following (i) and (iii):

|σ⋆ij |
(i)
> C1B0

(ii)
> 3µ

(iii)
> 3|σ̂ij | ≥ 3|σ⋆ij | − 3|σ̂ij − σ⋆ij |,

where (ii) is due to our choice of C1. Thus, A ∁
ij∩{|σ̂ij | < µ}

implies |σ̂ij−σ⋆ij | > 2
3 |σ

⋆
ij | and |σ⋆ij | > 3µ. Note that Step 2 in

the proof of Theorem 2 gives |σ̃ij−σ⋆ij | = O
(
B0

)
, and hence

we can assume µ > |σ̃ij − σ⋆ij | and so |σ⋆ij | > 3|σ̃ij − σ⋆ij |.
Using these relations and triangle inequality, we obtain

2

3
|σ⋆ij | < |σ̂ij − σ⋆ij | ≤ |σ̂ij −Eσ̂ij |+ |σ̃ij − σ⋆ij |

< |σ̂ij −Eσ̂ij |+
1

3
|σ⋆ij |,

which implies |σ̂ij −Eσ̂ij | > 1
3 |σ

⋆
ij |. Now we conclude that,

A ∁
ij ∩ {|σ̂ij | < µ} implies |σ̂ij −Eσ̂ij | > 1

3 |σ
⋆
ij | and |σ⋆ij | >

3µ, which allows us to bound I21 as

I21 =
∑
i,j

|σ⋆ij |p1(|σ⋆ij | > 3µ)P
(
|σ̂ij −Eσ̂ij | >

1

3
|σ⋆ij |

)
.

(27)
Analogously to the proof of Theorem 2, we can apply
Bernstein’s inequality to P

(
|σ̂ij − Eσ̂ij | > 1

3 |σ
⋆
ij |
)
. More

specifically, by preparations as in (18), we can use (17) in
Lemma 1 with

v = O
(M +∆4

n

)
, c = O

(ζ2 +∆2

n
) = O(

∆2

n
+

√
M

nδ log d

)
(recall that ζ ≍

(
nM

∆ log d

)1/4
). For some absolute constants

C2, C3, it gives the display (28), where in (i) we use

min
{ |σ⋆ij |
M +∆4

,∆−2,

√
δ log d

nM

}
≳

1√
M +∆2

√
δ log d

n

that holds because |σ⋆ij | > 3µ and n ≳ δ log d. We substitute
(28) into (27) and perform some estimates as in the display
(29), where in (i) we substitute |σ⋆ij | > 3µ from the indicator
function into the exponent, (ii) is because supt≥0 t

p exp
(
−

t
2

)
≤ pp, p = δ

4 , and we consider µ = C4(
√
M+∆2)

√
δ log d
n

with C4 large enough.
Step 2.2. Bounding I22.

Then, we deal with I22 by Cauchy-Schwarz

I22 ≤
∑
i,j

√
E|σ̂ij −Eσ̂ij |2p

√
P(A ∁

ij).

As in (28), we can use (17) in Lemma 1 with v = O
(
M+∆4

n

)
and c = O

(
∆2

n +
√

M
nδ log d

)
, yielding that for any t ≥ 0,

P
(
|σ̂ij −Eσ̂ij | ≥ t

)
≤ 2 exp

(
− t2

2(v+ct)

)
≤ 2 exp

(
− t2

4v

)
+
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P

(
|σ̂ij −Eσ̂ij | >

1

3
|σ⋆ij |

)
≤ 2 exp

−
|σ⋆ij |2

C2

{
M+∆4

n +
∆2|σ⋆

ij |
n +

√
M

nδ log d |σ
⋆
ij |
}


≤2 exp

(
−
3n|σ⋆ij |
C2

min
{ |σ⋆ij |
M +∆4

,
1

∆2
,

√
δ log d

nM

}) (i)

≤ 2 exp

(
−
C3|σ⋆ij |

√
nδ log d

√
M +∆2

)
,

(28)

I21 ≤ 2
∑
i,j

|σ⋆ij |p1
(
|σ⋆ij | > 3µ

)
exp

(
−
C3|σ⋆ij |

√
nδ log d

√
M +∆2

)

= 2
∑
i,j

( √
M +∆2

C3

√
nδ log d

)p
·

(
C3|σ⋆ij |

√
nδ log d

√
M +∆2

)p
exp

(
−
0.5C3|σ⋆ij |

√
nδ log d

√
M +∆2

)

· exp

(
−
0.5C3|σ⋆ij |

√
nδ log d

√
M +∆2

)
1
(
|σ⋆ij | > 3µ

)
(i)

≤ 2
∑
i,j

( √
M +∆2

C3

√
nδ log d

)p
·
(
sup
t≥0

tp exp
(
− t

2

))
· exp

(
−3C3

2

√
nδ log d · µ√
M +∆2

)
(ii)

≤ 2d2−10δ

(√
M +∆2

C3

√
δ

n log d

)p
≤ 2d2−10δ(C−1

3 B0)
p,

(29)

2 exp
(
− t

4c

)
. Based on this probability tail bound, we can

bound the moment via integral as follows

E|σ̂ij −Eσ̂ij |2p

= 2p

∫ ∞

0

t2p−1
P(|σ̂ij −Eσ̂ij | > t) dt

≤ 4p

∫ ∞

0

t2p−1
(
exp(− t2

4v
) + exp(− t

4c
)
)
dt

= 2
[
(4v)pΓ(p+ 1) + (4c)2pΓ(2p+ 1)

]
(i)

≤ 2
[
(4vp)p + (8cp)2p

]
,

where we use Γ(p+1) ≤ pp, Γ(2p+1) ≤ (2p)2p in (i) under
suitably large p. Thus, it follows that

I22 ≤
∑
i,j

2d−
δ
2

√
(4vp)p + (8cp)2p

≤ 2d2−
δ
2

[
(2
√
pv)p + (8cp)p

] (i)

≤ 2d2−
δ
2 (C4B0)

p,

where (i) is due to 2
√
pv ≤ (

√
M + ∆2)

√
δ
n and 8cp =

2∆2δ
n + 2

√
δM
n log d (recall that p = δ

4 ).

Step 2.3. Bounding I23.
From Step 2 in the proof of Theorem 2 we have |σ̃ij−σ⋆ij | ≤

C5B0. This directly leads to

I23 ≤ d2 · 2d−δ · (C5B0)
p = 2d2−δ(C5B0)

p.

We are in a position to combine everything and con-
clude the proof. Putting all pieces into (26), it follows that
I2 ≤ d1−

δ
4 (C6B0)

p. Assuming δ ≥ 4, such upper bound
is dominated by (24) for I1, we can hence conclude that

E∥Σ̂s−Σ⋆∥pop ≤ (C6sB0)
p. Therefore, by Markov’s inequal-

ity,

P(∥Σ̂s −Σ⋆∥op ≥ C6esB0)

≤
E∥Σ̂s −Σ⋆∥pop
(C6esB0)p

≤ exp(−p) = exp
(
− δ

4

)
,

which completes the proof. □
2) Quantized Compressed Sensing: Note that our esti-

mation procedure in QCS, QMC falls in the framework of
regularized M-estimator, see [22], [36], [70] for instance.
Particularly, we introduce the following deterministic result
for analysing the estimator (10).

Lemma 4. (Adapted from [22, Coro. 2]). Consider (8) and the
estimator θ̂ defined in (10), let Υ̂ := θ̂−θ⋆ be the estimation
error. If Q is positive semi-definite, and λ ≥ 2∥Qθ⋆ − b∥∞,
then it holds that ∥Υ̂∥1 ≤ 10

√
s∥Υ̂∥2. Moreover, if for

some κ > 0 we have the restricted strong convexity (RSC)
Υ̂⊤QΥ̂ ≥ κ∥Υ̂∥22, then we have the error bounds ∥Υ̂∥2 ≤
30
√
s
(
λ
κ

)
and ∥Υ̂∥1 ≤ 300s

(
λ
κ

)
.14

To establish the RSC condition, a convenient way is to
use the matrix deviation inequality. The following Lemma is
adapted from [61], by combining Theorem 3 and Remark 1
therein.15

Lemma 5. (Adapted from [61, Thm. 3]). Assume A ∈ Rn×d
has independent zero-mean sub-Gaussian rows α⊤

k s satisfying
∥αk∥ψ2

≤ K, and the eigenvalues of Σ := E(αkα
⊤
k ) are

between [κ0, κ1] for some κ1 ≥ κ0 > 0. For T ⊂ Rd we let

14We do not optimize the constants in Lemmas 4, 6 for easy reference.
15The dependence on K can be further refined [49], while this is not

pursued in the present paper.
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rad(T ) = supx∈T ∥x∥2 be its radius. Then with probability
at least 1− exp(−u2), it holds that

sup
x∈T

∣∣∣∥Ax∥2−
√
n∥

√
Σx∥2

∣∣∣ ≤ C
√
κ1K

2

κ0

(
ω(T )+u·rad(T )

)
,

where ω(T ) = E supv∈T [g
⊤v] with g ∼ N (0, Id) is the

Gaussian width of T .

Based on Lemma 4, the proofs of Theorems 5-6 are divided
into two steps, i.e., showing λ ≥ 2∥Qθ⋆−b∥∞ and verifying
the RSC. While we still have full xk in Theorems 5-6, we will
study the more challenging settings where the covariates xks
are also quantized via Q∆̄(·) in Theorems 9-10, in which we
can take ∆̄ = 0 to return the settings of Theorems 5-6. Using
such perspective, for most technical ingredients (e.g., the
verification of λ ≥ 2∥Qθ⋆ − b∥∞) in the proofs of Theorems
5-6 we can simply refer to the counterparts established in the
proofs of Theorems 9-10. This avoids repetition and will be
explained in the proofs more clearly.

Proof of Theorem 5: Proof. We divide the proofs into
two steps.

Step 1. Proving λ ≥ 2∥Qθ⋆ − b∥∞
Recall that we choose Q = 1

n

∑n
k=1 xkx

⊤
k and b =

1
n

∑n
k=1 ẏkxk. In the setting of Theorem 9, the process of

obtaining ẏk remains the same, while the covariates xks are
further quantized to ẋk = Q∆̄(xk + τk) for some ∆̄ > 0
under triangular dither τk ∼ U ([− ∆̄

2 ,
∆̄
2 ]
d) + U ([− ∆̄

2 ,
∆̄
2 ]
d),

and we choose

Q =
1

n

n∑
k=1

ẋkẋ
⊤
k − ∆̄2

4
Id, b =

1

n

n∑
k=1

ẏkẋk

there. As a result, by considering ∆̄ = 0, it can be implied by
Step 1 in the proof of Theorem 9 that under the choice

λ = C1
σ2

√
κ0

(∆ +M1/(2l))

√
δ log d

n

with sufficiently large C1,

λ ≥ 2
∥∥∥ 1
n

n∑
k=1

xkx
⊤
k θ

⋆ − 1

n

n∑
k=1

ẏkxk

∥∥∥
∞

holds with probability at least 1 − 8d1−δ . Then, by using
Lemma 4 we obtain ∥Υ̂∥1 ≤ 10

√
s∥Υ̂∥2.

Step 2. Verifying the RSC Υ̂⊤QΥ̂ ≥ κ∥Υ̂∥22
We refer to Step 2 in the proof of Theorem 9. In particular,

with the choices ∆̄ = 0 and v = Υ̂ in (38), combined with
∥Υ̂∥1 ≤ 10

√
s∥Υ̂∥2, we obtain

1√
n
∥X∆̂∥2 ≥

√
κ0∥Υ̂∥2 −

C2
√
κ1σ

2

κ0

√
δs log d

n
∥Υ̂∥2

≥ 1

2

√
κ0∥Υ̂∥2,

where the last inequality is due to the assumed scaling
n ≳ δs log d. With these preparations, a direct application of
Lemma 4 completes the proof. □

Proof of Theorem 6: Proof. The proof is similarly based
on Lemma 4.

Step 1. Proving λ ≥ 2∥Qθ⋆ − b∥∞
Recall that we choose Q = 1

n

∑n
k=1 x̃kx̃

⊤
k and b =

1
n

∑n
k=1 ẏkx̃k. In the setting of Theorem 10, the process of

obtaining ẏk remains the same, while the truncated covariates
x̃ks are further quantized to ẋk = Q∆̄(x̃k+τk) for some ∆̄ ≥
0 under triangular dither τk ∼ U ([− ∆̄

2 ,
∆̄
2 ]
d)+U ([− ∆̄

2 ,
∆̄
2 ]
d),

and we choose

Q =
1

n

n∑
k=1

ẋkẋ
⊤
k − ∆̄2

4
Id, b =

1

n

n∑
k=1

ẏkẋk

there. As a result, by considering ∆̄ = 0, it can be implied by
step 1 in the proof of Theorem 10 that, our choice

λ = C1(R
√
M +∆2)

√
δ log d

n

with sufficiently large C1 ensures λ ≥ 2∥Qθ⋆ − b∥∞ with
the promised probability. By Lemma 4 we obtain ∥Υ̂∥1 ≤
10
√
s∥Υ̂∥2.

Step 2. Verifying the RSC Υ̂⊤QΥ̂ ≥ κ∥Υ̂∥22
Unlike the case of sub-Gaussian covariate that is based on

matrix deviation inequality (Lemma 5), here we establish a
lower bound for Υ̂⊤QΥ̂ using the bound on ∥Q − Σ⋆∥∞
(Theorem 2). Specifically, setting ∆ = 0 in Theorem 2 yields
that, ∥Q−Σ⋆∥∞ ≲

√
δM log d

n holds with probability at least
1− 2d2−δ , which allows us to proceed as follows:

Υ̂⊤QΥ̂ = Υ̂⊤Σ⋆Υ̂− Υ̂⊤(Σ⋆ −Q)Υ̂

(i)

≥ κ0∥Υ̂∥22 −
√
δM log d

n
∥Υ̂∥21

(ii)

≥
(
κ0 − C6s

√
δM log d

n

)
∥Υ̂∥22

(iii)

≥ κ0
2
∥Υ̂∥22,

(30)

where (i) is because Υ̂⊤(Σ⋆ − Q)Υ̂ ≤ ∥Υ̂∥21∥Q − Σ⋆∥∞,
(ii) is due to ∥Υ̂∥1 ≤ 10

√
s∥Υ̂∥2, (iii) is due to the the

assumed scaling n ≳ δs2 log d. Now the desired results follow
immediately from Lemma 4. □

3) Quantized Matrix Completion: Under the observation
model (11), we first provide a deterministic framework for
analysing the estimator (12).

Lemma 6. (Adapted from [22, Coro. 3]). Let Υ̂ := Θ̂−Θ⋆.
If

λ ≥ 2

∥∥∥∥∥ 1n
n∑
k=1

(
〈
Xk,Θ

⋆
〉
− ẏk)Xk

∥∥∥∥∥
op

, (31)

then it holds that ∥Υ̂∥nu ≤ 10
√
r∥Υ̂∥F . Moreover, if for

some κ > 0 we have the restricted strong convexity (RSC)
1
n

∑n
k=1

∣∣〈Xk, Υ̂
〉∣∣2 ≥ κ∥Υ̂∥2F , then we have the error

bounds ∥Υ̂∥F ≤ 30
√
r
(
λ
κ

)
and ∥Υ̂∥nu ≤ 300r

(
λ
κ

)
.

Clearly, to derive statistical error rate of Θ̂ from Lemma 6,
the key ingredients are (31) and the RSC. Specialized to the
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covariate Xk ∼ U
(
{eie⊤j : i, j ∈ [d]}

)
in matrix completion,

we will use the following lemma to establish RSC.

Lemma 7. (Adapted from [22, Lem. 4] with q = 0). Given
some α > 0, δ > 0, we define the constraint set ψ with
sufficiently large ψ as

C(ψ) =
{
Θ ∈ Rd×d :∥Θ∥∞ ≤ 2α,

∥Θ∥nu ≤ 10
√
r∥Θ∥F ,

∥Θ∥2F ≥ (αd)2
√
ψδ log d

n

}
.

(32)

Let X1, ...,Xn be i.i.d. uniformly distributed on {eie⊤j : i, j ∈
[d]}, then there exist absolute constants κ ∈ (0, 1) and C, such
that with probability at least 1− d−δ we have

1

n

n∑
k=1

∣∣〈Xk,Θ
〉∣∣2 ≥ κ∥Θ∥2F

d2
− Cα2rd log d

n
, ∀ Θ ∈ C(ψ).

(33)

Matrix completion with sub-exponential noise was studied
in [51], and we make use of the following Lemma in the sub-
exponential case.

Lemma 8. (Adapted from [51, Lem. 5]). Given some δ > 0.
Let X1, ...,Xn be i.i.d. uniformly distributed on {eie⊤j : i, j ∈
[d]}, independent of Xks, ϵ1, ..., ϵn are i.i.d. zero-mean and
satisfy ∥ϵk∥ψ1 ≤ σ. If n ≳ δd log3 d, with probability at least
1− d−δ we have∥∥∥ 1

n

n∑
k=1

ϵkXk

∥∥∥
op

≤ σ

√
δ log d

nd
.

Proof of Theorem 7: Proof. We divide the proof into two
steps.

Step 1. Proving (31)
Defining wk := ẏk−yk− τk as the quantization error, from

Theorem 1(a) we know that wks are independent of Xk and
i.i.d. uniformly distributed on [−∆

2 ,
∆
2 ]. Thus, we can further

write that

ẏk = yk + τk + wk =
〈
Xk,Θ

⋆
〉
+ ϵk + τk + wk,

which allows us to decompose I into

I ≤
∥∥∥ 1
n

n∑
k=1

ϵkXk

∥∥∥
op

+
∥∥∥ 1
n

n∑
k=1

τkXk

∥∥∥
op

+
∥∥∥ 1
n

n∑
k=1

wkXk

∥∥∥
op

: = I1 + I2 + I3.

Because ϵks are independent of Xks and i.i.d. sub-exponential
noise satisfying ∥ϵk∥ψ1

≤ σ, under the scaling n ≳ δd log3 d,

Lemma 8 implies that I1 ≲ σ
√

δ log d
nd holds with probability

at least 1 − d−δ . Analogously, τks and wks are independent
of {Xk : k ∈ [n]} and are i.i.d. uniformly distributed on
[−∆

2 ,
∆
2 ], Lemma 8 also applies to I2 and I3, yielding that

with the promised probability I2 + I3 ≲ ∆
√

δ log d
nd . Taken

collectively, I ≲ (σ + ∆)
√

δ log d
nd , so setting λ = C1(σ +

∆)
√

δ log d
nd with sufficiently large C1 ensures λ ≥ 2I , with

probability at least 1−3d−δ . Further, Lemma 6 gives ∥Υ̂∥nu ≤
10
√
r∥Υ̂∥F .

Step 2. Verifying RSC
First note that ∥Υ̂∥∞ ≤ ∥Θ̂∥∞ + ∥Θ⋆∥∞ ≤ 2α; and as

proved before, ∥Υ̂∥nu ≤ 10
√
r∥Υ̂∥F . To proceed we define

the constraint set C(ψ) as in (32) with some properly chosen
constant ψ. Then using Lemma 7, for some absolute constants
κ,C, (33) holds with probability at least 1 − d−δ . Then we
discuss several cases.

1) If Υ̂ /∈ C(ψ), because Υ̂ satisfies the first two constraints
in the definition of C(ψ), it must violate the third constraint

and satisfy ∥Υ̂∥2F ≤ (αd)2
√

ψδ log d
n , which gives

∥Υ̂∥F ≲ αd
(δ log d

n

)1/4 (i)

≲ αd

√
δrd log d

n
,

as desired. Note that (i) is due to the scaling n ≲ δr2d2 log d.
2) If Υ̂ ∈ C(ψ), (33) implies that 1

n

∑n
k=1

∣∣〈Xk, Υ̂
〉∣∣2 ≥

κ∥Υ̂∥2
F

d2 − C α2rd log d
n , and we further consider the following

two cases.
2.1) If C α2rd log d

n ≥ κ∥Υ̂∥2
F

2d2 , we have ∥Υ̂∥F ≲

αd
√

rd log d
n , as desired.

2.2) If C α2rd log d
n <

κ∥Υ̂∥2
F

2d2 , then the RSC condition

holds: 1
n

∑n
k=1

∣∣〈Xk, Υ̂
〉∣∣2 ≥ κ∥Υ̂∥2

F

2d2 . This allows us to apply

Lemma 6 to obtain ∥Υ̂∥F ≲ (σ +∆)d
√

δrd log d
n .

Thus, in any case, we have shown ∥Υ̂∥F = O
(
(α + σ +

∆)d
√

δrd log d
n

)
. The bound on ∥Υ̂∥nu follows immediately

from ∥Υ̂∥nu ≤ 10
√
r∥Υ̂∥F . The proof is complete. □

Proof of Theorem 8: Proof. The proof is based on
Lemma 6 and divided into two steps.

Step 1. Proving (31)
Recall that the quantization error wk := ẏk−ỹk−τk is zero-

mean and independent of Xk (Theorem 1(a)), thus we have
E(ẏkXk) = E(ỹkXk)+E(τkXk)+E(wkXk) = E(ỹkXk).
Combining with E

(〈
Xk,Θ

⋆
〉
Xk

)
= E(ykXk), triangle

inequality can first decompose the target term into∥∥∥ 1
n

n∑
k=1

(
ẏk −

〈
Xk,Θ

⋆
〉)
Xk

∥∥∥
op

≤
∥∥∥ 1
n

n∑
k=1

ẏkXk −E(ẏkXk)
∥∥∥
op

+
∥∥∥E(ykXk − ỹkXk

)∥∥∥
op

+
∥∥∥ 1
n

n∑
k=1

〈
Xk,Θ

⋆
〉
Xk −E

(〈
Xk,Θ

⋆
〉
Xk

)∥∥∥
op

:=I1 + I2 + I3.

Step 1.1. Bounding I1 and I3
We write I1 = ∥

∑n
k=1 Sk∥op and I3 = ∥

∑n
k=1 Wk∥op by

defining

Sk =
1

n

(
ẏkXk −E(ẏkXk)

)
,

Wk =
1

n

(〈
Xk,Θ

⋆
〉
Xk −E

[〈
Xk,Θ

⋆
〉
Xk

])
.
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By |ẏk| ≤ |ỹk|+ |τk|+ |wk| ≤ ζy +∆ we have

∥Sk∥op ≤
1

n
∥ẏkXk∥op +

1

n
∥E(ẏkXk)∥op

≤ 1

n
∥ẏkXk∥op +

1

n
E∥ẏkXk∥op ≤

2(ζy +∆)

n
.

Analogously, we have ∥Wk∥op ≤ 2α
n since

∣∣〈Xk,Θ
⋆
〉∣∣ ≤

∥Θ⋆∥∞ ≤ α. In addition, by

∥E{(A−EA)⊤(A−EA)}∥op ≤ ∥E(A⊤A)∥op (∀A)

and the simple fact E(XkX
⊤
k ) = E(X⊤

k Xk) = Id/d, we
estimate the matrix variance statistic as follows∥∥∥ n∑

k=1

E(SkS
⊤
k )
∥∥∥
op

= n
∥∥E(SkS⊤

k )
∥∥
op

≤ 1

n

∥∥E(ẏ2kXkX
⊤
k

)∥∥
op

=
1

n
sup

v∈Sd−1

E
(
ẏ2k · ∥X⊤

k v∥22
)

=
1

n
sup

v∈Sd−1

EXk

([
Eẏk|Xk

(ẏ2k)
]
∥X⊤

k v∥22
)

(i)

≤ 4

n
(α2 +M +∆2) sup

v∈Sd−1

EXk
∥X⊤

k v∥22

≤4(α2 +M +∆2)

nd
,

where (i) is because given Xk we can estimate Eẏk|Xk
(ẏ2k) ≤

2
(
Eẏk|Xk

(ỹ2k) + ∆2
)

since |ẏk − ỹk| ≤ ∆, and moreover we
have

Eẏk|Xk
(ỹ2k) ≤Eẏk|Xk

(y2k)

≤2
(
Eẏk|Xk

(
〈
Xk,Θ

⋆
〉2
) +Eẏk|Xk

(ϵ2k)
)

≤2(α2 +M).

It is not hard to see that this bound remains valid for
∥
∑n
k=1E(S

⊤
k Sk)∥op. Also, by similar arguments one can

prove

max

{∥∥∥ n∑
k=1

E(W⊤
k Wk)

∥∥∥
op
,
∥∥∥ n∑
k=1

E(WkW
⊤
k )
∥∥∥
op

}
≤ α2

nd
.

Thus, Matrix Bernstein’s inequality (Lemma 2) gives

P
(
I1 ≥ t

)
≤ 2d · exp

(
− C4ndt

2

(α2 +M +∆2) + (ζy +∆)dt

)
P
(
I3 ≥ t

)
≤ 2d · exp

(
− C5ndt

2

α2 + αdt

)
Thus, setting t = C6(α +

√
M + ∆)

√
δ log d
nd in the two

inequalities above with sufficiently large C6, combining with
the scaling that

√
δd log d
n = O(1), we obtain

I1 + I3 ≲ (α+
√
M +∆)

√
δ log d

nd

with probability at least 1− 4d1−δ .

Step 1.2. Bounding I2
Let us bound ∥E

(
(yk−ỹk)Xk

)
∥∞ first. Write (i, j)-th entry

of Xk as xk,ij , then for given (i, j), P(xk,ij = 1) = d−2,

xk,ij = 0 otherwise. We can thus proceed by the following
estimations:∣∣E((yk − ỹk)xk,ij

)∣∣
=
∣∣E((yk − ỹk)xk,ij1(|yk| ≥ ζy)

)∣∣
≤ E

(
|yk|xk,ij1(|yk| ≥ ζy)

)
= Exk,ij

({
Eyk|xk,ij

|yk|1(|yk| ≥ ζy)
}
xk,ij

)
= d−2

Eyk|xk,ij=1

(
|yk|1(|yk| ≥ ζy)

)
(i)

≤ d−2
√
Eyk∼θ⋆ij+ϵk(y

2
k)
√
Pyk∼θ⋆ij+ϵk(y

2
k ≥ ζ2y )

(ii)

≤ d−2α
2 +M

ζy
≲
α+

√
M

d2

√
δd log d

n
,

where (i), (ii) is by Cauchy-Schwarz and Markov’s, respec-
tively. Since this holds for any (i, j), we obtain

∥E
(
(yk − ỹk)Xk

)
∥∞ = O

(
(α+

√
M)d−2

√
δd log d

n

)
.

which further gives

I2 = O
(
(α+

√
M)

√
δ log d

nd

)
by using ∥A∥op ≤ d∥A∥∞ (∀A ∈ Rd×d). Putting pieces
together, with probability at least 1− 4d1−δ we have

∥ 1
n

∑
k

(
ẏk −

〈
Xk,Θ

⋆
〉)
Xk∥op ≲ (α+

√
M +∆)

√
δ log d

nd
,

hence λ = C1(α +
√
M + ∆)

√
δ log d
nd ensures (31) under

the same probability. Further, Lemma 6 gives ∥Υ̂∥nu ≤
10
√
r∥Υ̂∥F .

Step 2. Verifying RSC
The remaining part is almost the same as Step 2 in the

proof of Theorem 7 — defining the constraint set C(ψ) as
(32) and then discussing several cases based on whether Υ̂ ∈
C(ψ) holds. Thus, we conclude the proof without providing
the details. □

B. Proofs in Section IV
This appendix collects the proofs in Section IV concerning

covariate quantization and uniform signal recovery in QCS.
1) Covariate Quantization: Because of the non-convexity,

the proofs in this part can no longer be based on Lemma
4. Indeed, bounding the estimation errors of θ̃s satisfying
(14) require more tedious manipulations essentially due to the
additional ℓ1 constraint (induced by the constraint S in (14)).

Proof of Theorem 9: Proof. The proof is divided into
three steps — the first two steps resemble the previous proofs
that are based on Lemma 4, while we bound the estimation
errors in the last step.
Step 1. Proving λ ≥ β∥Qθ⋆ − b∥∞ for some pre-
specified β > 2

Recall that (Q, b) are constructed from the quantized data
as Q = 1

n

∑n
k=1 ẋkẋ

⊤
k − ∆̄2

4 Id and b = 1
n

∑n
k=1 ẏkẋk. We

will show that,

λ = C1
(σ + ∆̄)2

√
κ0

(∆ +M1/(2l))

√
log d

n
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guarantees

λ ≥ β
∥∥∥ 1
n

n∑
k=1

(
ẋkẋ

⊤
k − ∆̄2

4
Id

)
θ⋆ − 1

n

n∑
k=1

ẏkẋk

∥∥∥
∞

holds with the promised probability, where β > 2 is any pre-
specified constant. Recall the notation we introduced: ẏk =
ỹk + ϕk + ϑk with the quantization error ϑk ∼ U ([−∆

2 ,
∆
2 ])

being independent of ỹk, ẋk = xk + τk + wk with the
quantization error wk ∼ U ([− ∆̄

2 ,
∆̄
2 ]
d) being independent

of xk. Combining with the assumptions that the dithers are
independent of (xk, yk) and that ϕks and τks are independent,
we have

E(ẏkẋk) = E
(
(ỹk + ϕk + ϑk)(xk + τk +wk)

)
= E(ỹkxk),

E

([
ẋkẋ

⊤
k − ∆̄2

4
Id

]
θ⋆
)
= E(xkx

⊤
k θ

⋆) = E(ykxk),

(34)
which allows us to decompose the target term as two concen-
tration terms (I1, I3) and a bias term (I2)∥∥∥ 1

n

n∑
k=1

[
ẋkẋ

⊤
k − ∆̄2

4
Id

]
θ⋆ − 1

n

n∑
k=1

ẏkẋk

∥∥∥
∞

≤
∥∥∥ 1
n

n∑
k=1

ẏkẋk −E(ẏkẋk)
∥∥∥
∞

+
∥∥∥E(ykxk − ỹkxk

)∥∥∥
∞

+
∥∥∥ 1
n

n∑
k=1

ẋkẋ
⊤
k θ

⋆ −E(ẋkẋ⊤
k θ

⋆)
∥∥∥
∞

:= I1 + I2 + I3.

Step 1.1. Bounding I1
Denote the i-th entry of xk, ẋk, τk,wk by xki, ẋki, τki, wki,

respectively. For I1, the i-th entry reads 1
n

∑n
k=1 ẏkẋki −

E(ẏkẋki). By using the relations

|ẏk| ≤ |ỹk|+ |ϕk|+ |ϑk| ≤ ζy +∆,

and

∥ẋk∥ψ2
≤ ∥xk∥ψ2

+ ∥τk∥ψ2
+ ∥wk∥ψ2

≲ σ + ∆̄

and

E|ẏk|2l ≲ E|ỹk|2l +E|ϕk + ϑk|2l ≲M +∆2l,

for any integer q ≥ 2 we can bound that

n∑
k=1

E

∣∣∣ ẏkẋki
n

∣∣∣q
≤ (ζy +∆)q−2

nq

n∑
k=1

E|ẏ2kẋ
q
ki|

(i)

≤ (ζy +∆)q−2

nq

n∑
k=1

{
E|ẏk|2l

} 1
l
{
E|ẋki|

lq
l−1
}1− 1

l (35)

(ii)

≲
( (σ + ∆̄)(ζy +∆)

n

)q−2

·
( (σ + ∆̄)2(M

1
l +∆2)

n

)(√ lq

l − 1

)q
;

combining with Stirling’s approximation and treating l as
absolute constant, this provides

n∑
k=1

E

∣∣∣ ẏkẋki
n

∣∣∣q ≤ q!

2
v0c

q−2
0

where v0 = O
( (σ + ∆̄)2(M1/l +∆2)

n

)
,

c0 = O
( (σ + ∆̄)(ζy +∆)

n

)
.

In (35), (i) is due to Holder’s, and in (ii) we use the
moment constraint of sub-Gaussian variable (2). With these
preparations, we invoke Bernstein’s inequality (Lemma 1) and
then a union bound over i ∈ [d] to obtain

P

(
I1 ≲ (σ + ∆̄)(M

1
2l +∆)

√
t

n
+

(σ + ∆̄)(ζy +∆)t

n

)
≥ 1− 2d · exp(−t),

Thus, taking t = δ log d and plug in ζy ≍
√

nM1/l

δ log d , we obtain

P

(
I1 ≲ (σ + ∆̄)(M1/(2l) +∆)

√
δ log d

n

)
≥ 1− 2d1−δ.

Step 1.2. Bounding I2
Moreover, we estimate the i-th entry of I2 by

|E
(
(yk − ỹk)xki

)
| ≤ E|ykxki1(|yk| ≥ ζy)|

(i)

≤
(
E|yk|

2l
2l−1 |xki|

2l
2l−1

)1− 1
2l
(
P(|yk| ≥ ζy)

) 1
2l

(ii)

≤
([
E|yk|2l

] 1
2l−1

[
E|xki|

l
l−1
] 2l−2

2l−1

)1− 1
2l
(
P(|yk|2l ≥ ζ2ly )

) 1
2l

(iii)

≤ σM1/l

ζy
≲ σM

1
2l

√
δ log d

n
,

(36)
where (i), (ii) are due to Holder’s, (iii) is due to Markov’s.

Since this holds for i ∈ [d], it gives I2 ≲ σM1/(2l)
√

δ log d
n .

Step 1.3. Bounding I3

We first derive a bound for ∥θ⋆∥2 that is implicitly implied
by other conditions:

M1/l ≥ E|yk|2 ≥ E(x⊤
k θ

⋆)2 = (θ⋆)⊤Σ⋆θ⋆ ≥ κ0∥θ⋆∥22

=⇒ ∥θ⋆∥2 = O
(M1/(2l)

√
κ0

)
.

Hence, we can estimate

∥(ẋ⊤
k θ

⋆)ẋki∥ψ1
≤ ∥ẋ⊤

k θ
⋆∥ψ2

∥ẋki∥ψ2

≤ ∥ẋk∥2ψ2
∥θ⋆∥2 ≲ (σ + ∆̄)2

M1/(2l)

√
κ0

.

Then, we invoke Bernstein’s inequality regarding the indepen-
dent sum of sub-exponential random variables (e.g., [92, Thm.
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2.8.1])16 to obtain that for any t ≥ 0 we have

P

(∣∣∣ 1
n

n∑
k=1

(ẋ⊤
k θ

⋆)ẋki −E{(ẋ⊤
k θ

⋆)ẋki}
∣∣∣ ≥ t

)

≤ 2 exp

(
−C5nmin

{ √
κ0t

(σ + ∆̄)2M
1
2l

,
( √

κ0t

(σ + ∆̄)2M
1
2l

)2})

Hence, we can set t = C6
(σ+∆̄)2√

κ0
M1/(2l)

√
δ log d
n with suffi-

ciently large C6, and further apply union bound over i ∈ [d],
under the scaling that δ log d

n is small enough, we obtain

I3 ≲
(σ + ∆̄)2

√
κ0

M1/(2l)

√
δ log d

n

holds with probability at least 1− 2d1−δ .
Putting pieces together, since κ0 ≲ σ2, it is immediate that

I ≲
(σ + ∆̄)2

√
κ0

(
∆+M1/(2l)

)√δ log d

n

holds with probability at least 1− 8d1−δ . Since

λ = C1
(σ + ∆̄)2

√
κ0

(∆ +M1/(2l))

√
δ log d

n

with sufficiently large C1, λ ≥ β · ∥Qθ⋆ − b∥∞ holds w.h.p.

Step 2. Verifying RSC
We provide a lower bound for v⊤Qv = 1

n∥Ẋv∥22− ∆̄2

4 ∥v∥22
by using the matrix deviation inequality (Lemma 5). First note
that the rows of Ẋ are sub-Gaussian ∥ẋk∥ψ2 ≲ σ+∆̄. Since
E(ẋkẋ

⊤
k ) = Σ⋆ + ∆̄2

4 Id, all eigenvalues of Σ̇ := E(ẋkẋ
⊤
k )

are between [κ0 +
1
4∆̄

2, κ1 +
1
4∆̄

2]. Thus, we invoke Lemma
5 for T := {v ∈ Rd : ∥v∥1 = 1} with u =

√
δ log d; due to

the well-known Gaussian width estimate ω(T ) ≲
√
log d [92,

Example 7.5.9], with probability at least 1−d−δ the following
event holds

sup
∥v∥1=1

∣∣∣∥Ẋv∥2 −
√
n∥Σ̇1/2v∥2

∣∣∣
≤
c1

√
κ1 +

1
4∆̄

2(σ + ∆̄)2

κ0 +
1
4∆̄

2

√
δ log d := c1L1

√
δ log d.

Under the same probability, a simple rescaling then provides∣∣∣ 1√
n
∥Ẋv∥2 − ∥Σ̇1/2v∥2

∣∣∣ ≤ c1L1

√
δ log d

n
∥v∥1, ∀ v ∈ Rd,

(37)
which implies

1√
n
∥Ẋv∥2 ≥ ∥Σ̇1/2v∥2 − c1L1

(δ log d
n

)1/2
∥v∥1

≥
(
κ0 +

1

4
∆̄2
)1/2

∥v∥2 − c1L1

(δ log d
n

)1/2
∥v∥1, ∀ v ∈ Rd.

(38)

16The application of Bernstein’s inequality leads to the σ2 (σ is the upper
bound on ∥xk∥ψ2

) dependence in the multiplicative factor L . It is possible
to refine this quadratic dependence by using a new Bernstein’s inequality
developed in [49, Thm. 1.3], but we do not pursue this in the present paper.

Based on (38), we let ĉ := 2κ0+∆̄2

4κ0+∆̄2 and use the inequality
(a− b)2 ≥ ĉa2 − ĉ

1−ĉb
2 to obtain

v⊤Qv =
1

n
∥Ẋv∥22 −

∆̄2

4
∥v∥22

≥ ĉ
(
κ0 +

1

4
∆̄2
)
∥v∥22 − c21L

2
1

ĉ

1− ĉ

δ log d

n
∥v∥21 −

∆̄2

4
∥v∥22

≥ κ0
2
∥v∥22 − c21L

2
1

(
1 +

∆̄2

2κ0

)δ log d
n

∥v∥21

:=
κ0
2
∥v∥22 − c2(κ0, σ, ∆̄) · δ log d

n
∥v∥21,

which holds for all v ∈ Rd and ĉ2 := c2(κ0, σ, ∆̄) is a constant
depending on κ0, σ, ∆̄ (we remove the dependence on κ1 by
κ1 ≲ σ2).

Step 3. Bounding the Estimation Error
We are in a position to bound the estimation error of any θ̃

satisfying (14). Note that definition of ∂∥θ̃∥ gives λ∥θ⋆∥1 −
λ∥θ̃∥1 ≥

〈
λ · ∂∥θ̃∥1,−Υ̃

〉
. Thus, we set θ = θ⋆ in (14) and

proceed as follows

0 ≥
〈
Qθ̃ − b+ λ · ∂∥θ̃∥1, Υ̃

〉
= Υ̃⊤QΥ̃+

〈
Qθ⋆ − b, Υ̃

〉
+
〈
λ · ∂∥θ̃∥1, Υ̃

〉
(i)

≥ κ0
2
∥Υ̃∥22 −

2ĉ2R
√
s · δ log d
n

∥Υ̃∥1

− λ

β
∥Υ̃∥1 + λ

(
∥θ̃∥1 − ∥θ⋆∥1

)
(ii)

≥ κ0
2
∥Υ̃∥22 −

λ

2
∥Υ̃∥1 + λ

(
∥θ̃∥1 − ∥θ⋆∥1

)
,

(39)

where we use λ ≥ β∥Qθ⋆ − b∥∞ (β > 2) and ∥Υ̃∥1 ≤
∥θ̃∥1 + ∥θ⋆∥1 ≤ 2R

√
s in (i), and (ii) is due to the scaling

2ĉ2Rδ
√
s
log d

n
≤
(1
2
− 1

β

)
λ

that holds under the assumed n ≳ δ log d for some hidden
constant depending on (κ0, σ, ∆̄,∆,M,R). Thus, we arrive
at λ

2 ∥Υ̃∥1 ≥ λ
(
∥θ̃∥1 − ∥θ⋆∥1

)
.

For a ∈ Rd, J ⊂ [d] we obtain aJ ∈ Rd by keeping
entries of a in J while setting others to zero. Let A be the
support of θ⋆, Ac = [d] \ A, then we have

1

2
∥Υ̃∥1 ≥ ∥θ⋆ + Υ̃∥1 − ∥θ⋆∥1

= ∥θ⋆ + Υ̃A + Υ̃Ac∥1 − ∥θ⋆∥1
≥ ∥θ⋆∥1 + ∥Υ̃Ac∥1 − ∥Υ̃A∥1 − ∥θ⋆∥1
= ∥Υ̃Ac∥1 − ∥Υ̃A∥1.

(40)

Further use 1
2∥Υ̃∥1 ≤ 1

2∥Υ̃A∥1 + 1
2∥Υ̃Ac∥1, we obtain

∥Υ̃Ac∥1 ≤ 3∥Υ̃A∥1. Hence, we have ∥Υ̃∥1 ≤ ∥Υ̃A∥1 +
∥Υ̃Ac∥1 ≤ 4∥Υ̃A∥1 ≤ 4

√
s∥Υ̃∥2. Now, we further substitute

this into (39) and obtain

1

2
κ0∥Υ̃∥22 ≤ λ

2
∥Υ̃∥1 + λ

(
∥θ⋆∥1 − ∥θ̃∥1

)
≤ 3λ

2
∥Υ̃∥1 ≤ 6λ

√
s∥Υ̃∥2.
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Thus, we arrive at the desired error bound for ℓ2-norm

∥Υ̃∥2 ≲ L

√
δs log d

n
, with L :=

(σ + ∆̄)2(∆ +M1/(2l))

κ
3/2
0

.

We simply use ∥Υ̃∥1 ≤ 4
√
s∥Υ̃∥2 again to establish the bound

for ∥Υ̃∥1. The proof is complete. □

Proof of Theorem 10: Proof. The proof is divided into
two steps. Compared to the last proof, due to the heavy-
tailedness of xk, the step of “verifying RSC” reduces to the
simpler argument in (42).
Step 1. Proving λ ≥ β∥Qθ⋆ − b∥∞ for some pre-
specified β > 2

Recall that (Q, b) are constructed from the quantized data
as Q = 1

n

∑n
k=1 ẋkẋ

⊤
k − ∆̄

4 Id and b = 1
n

∑n
k=1 ẏkẋk. Thus,

our main aim in this step is to prove that

λ = C1(R
√
M +∆2 +R∆̄2)

√
δ log d

n

suffices to ensure

λ ≥ β
∥∥∥ 1
n

n∑
k=1

(
ẋkẋ

⊤
k − ∆̄2

4
Id

)
θ⋆ − 1

n

n∑
k=1

ẏkẋk

∥∥∥
∞

with the promised probability and any pre-specified β > 2. We
let ẋk = x̃k + τk +wk, ẏk = ỹk +ϕk +ϑk with quantization
errors wk and ϑk. Analogously to (34), we have E[ẏkẋk] =
E(ỹkx̃k) and E(ẋkẋ

⊤
k θ

⋆) = ∆̄2

4 θ⋆ + E(x̃kx̃
⊤
k θ

⋆). Thus,
the term we want to bound can be first decomposed into two
concentration terms (I1, I3) and one bias term (I2):∥∥∥( 1

n

n∑
k=1

ẋkẋ
⊤
k − ∆̄2

4
Id

)
θ⋆ − 1

n

n∑
k=1

ẏkẋk

∥∥∥
∞

≤
∥∥∥ 1
n

n∑
k=1

ẏkẋk −E(ẏkẋk)
∥∥∥
∞

+
∥∥∥E(x̃kx̃⊤

k θ
⋆
)
−E

(
ỹkx̃k

)∥∥∥
∞

+
∥∥∥( 1
n

n∑
k=1

ẋkẋ
⊤
k −E(ẋkẋ⊤

k )
)
θ⋆
∥∥∥
∞

:= I1 + I2 + I3, (41)

Step 1.1. Bounding I1

Denote the i-th entry of xk, x̃k, ẋk, τk,wk by
xki, x̃ki, ẋki, τki, wki, respectively. Since |ẏk| ≤ |ỹk|+ |ϕk|+
|ϑk| ≤ |ỹk|+∆, ẋki ≤ |x̃ki|+ |τki|+ |wki| ≤ |x̃ki|+ 3

2∆̄, for
any integer q ≥ 2 we can bound the moments as
n∑
k=1

E

∣∣∣ ẏkẋki
n

∣∣∣q ≤ (ζx +
3
2∆̄)q−2(ζy +∆)q−2

nq

n∑
k=1

E|ẏkẋki|2

≤
[(ζx +

3
2∆̄)(ζy +∆)]q−2

nq

n∑
k=1

√
E|ẏk|4E|ẋki|4

≲
( (ζx + 3

2∆̄)(ζy +∆)

n

)q−2(M +∆4 + ∆̄4

n

)
,

and in the last inequality we use E|ỹk| ≤ E|yk|4 ≤ M and
E|x̃ki|4 ≤ E|xki|4 ≤ M . With these preparations, we apply
Bernstein’s inequality (Lemma 1) and a union bound, yielding
that

P

(
I1 ≥ C5

{√
(M +∆4 + ∆̄4)t

n
+

(ζx +
3
2∆̄)(ζy +∆)t

n

})
≤ 2d · exp(−t).

Set t = δ log d, we obtain that

I1 ≲ (
√
M +∆2 + ∆̄2)

√
δ log d

n

holds with probability at least 1− 2d1−δ .
Step 1.2. Bounding I2

Noting that E(ykxk) = E(xkx
⊤
k θ

⋆) + E(ϵkxk) =
E(xkx

⊤
k θ

⋆), we could further decompose I2 as

I2 ≤ ∥E(x̃kx̃⊤
k θ

⋆)−E(xkx⊤
k θ

⋆)∥∞
+ ∥E(ykxk)−E(ỹkx̃k)∥∞ := I21 + I22

To bound I21, we note that the assumption and truncation
procedure for xk are the same as in Theorem 2; thus, Step 2
in the proof of Theorem 2 can yield that∥∥E(x̃kx̃⊤

k − xkx
⊤
k )
∥∥
∞ ≤

√
δM log d

n
.

Thus, we have

I21 ≤ ∥E(x̃kx̃⊤
k − xkx

⊤
k )∥∞∥θ⋆∥1 ≤ R

√
M

√
δ log d

n
.

To bound I22, we estimate the i-th entry∣∣E(ykxki − ỹkx̃ki)
∣∣

=
∣∣E(ykxki − ỹkx̃ki)

(
1(|yk| > ζy) + 1(|xki| ≥ ζx)

)∣∣
≤ E

(
|ykxki|1(|yk| > ζy)

)
+E

(
|ykxki|1(|xki| ≥ ζx)

)
(i)

≤ M
( 1

ζ2x
+

1

ζ2y

)
≲

√
δM log d

n
,

where (i) is because

E
(
|ykxki|1(|yk| > ζy)

)
≤
[
E|y2kx2ki|

]1/2√
P(|yk| > ζy)

≤(Ey4k)
1/4(Ex4ki)

1/4

√
Ey4k
ζ4y

≤ M

ζ2y

and applying similar treatment to E
(
|ykxki|1(|xki| > ζx)

)
.

Overall, we have

I2 ≲ R
√
M

√
δ log d

n
.

Step 1.3. Bounding I3

We first note that

I3 = ∥(Q−Σ⋆)θ⋆∥∞ ≤ ∥Q−Σ⋆∥∞·∥θ⋆∥1 ≤ R∥Q−Σ⋆∥∞.

By Theorem 2, we know that

∥Q−Σ⋆∥∞ ≲ (
√
M + ∆̄2)

√
δ log d

n

holds with probability at least 1− 2d2−δ , which leads to

I3 ≤ ∥Q−Σ⋆∥∞∥θ⋆∥1 ≲ R(
√
M + ∆̄2)

√
δ log d

n
.

Thus, by combining everything, we obtain that

∥Qθ⋆ − b∥∞ ≲ (R
√
M +∆2 +R∆̄2)

√
δ log d

n
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holds with probability at least 1 − 4d2−δ . Compared to our
choice of λ, the claim of this step follows.

Step 2. Bounding the Estimation Error
We are now ready to bound the estimation error of any θ̃

satisfying (14). Set θ = θ⋆ in (41), it gives

〈
Qθ̃ − b+ λ · ∂∥θ̃∥1, Υ̃

〉
≤ 0.

Recall that we can assume

∥Q−Σ⋆∥∞ ≤ C6(
√
M + ∆̄2)

√
δ log d

n

with probability at least 1− 2d2−δ , which leads to

Υ̃⊤QΥ̃ = Υ̃⊤Σ⋆Υ̃− Υ̃⊤(Σ⋆ −Q)Υ̃

≥ κ0∥Υ̃∥22 − C6(
√
M + ∆̄2)

√
δ log d

n
∥Υ̃∥21.

(42)

Thus, it follows that

0 ≥
〈
Qθ̃ − b+ λ · ∂∥θ̃∥1, Υ̃

〉
=
〈
Qθ⋆ − b, Υ̃

〉
+ Υ̃⊤QΥ̃+ λ

〈
∂∥θ̃∥1, Υ̃

〉
(i)

≥ C0

√
M∥Υ̃∥22 − C6(

√
M + ∆̄2)

√
δ log d

n
∥Υ̃∥21

− ∥Qθ⋆ − b∥∞∥Υ̃∥1 + λ
(
∥θ̃∥1 − ∥θ⋆∥1

)
(ii)

≥ C0

√
M∥Υ̃∥22 + λ

(
∥θ̃∥1 − ∥θ⋆∥1

)
−
(
2C6R(

√
M + ∆̄2)

√
δ log d

n
+ ∥Qθ⋆ − b∥∞

)
∥Υ̃∥1

(iii)

≥ C0

√
M∥Υ̃∥22 −

λ

2
∥Υ̃∥1 + λ

(
∥θ̃∥1 − ∥θ⋆∥1

)
.

(43)
Note that (i) is due to (42) and ∥θ⋆∥1−∥θ̃∥1 ≥

〈
∂∥θ̃∥1,−Υ̃

〉
,

in (ii) we use ∥Υ̃∥1 ≤ ∥θ̃∥1 + ∥θ⋆∥1 ≤ 2R, and from Step
1 (iii) holds when

λ = C2(R
√
M +∆2 +R∆̄2)

√
δ log d

n

with sufficiently large C2. Therefore, we arrive at 1
2∥Υ̃∥1 ≥

∥θ̃∥1−∥θ⋆∥1. Similar to Step 3 in the proof of Theorem 9, we
can show ∥Υ̃∥1 ≤ 4

√
s∥Υ̃∥2. Applying (43) again, it yields

κ0∥Υ̃∥22 ≤ λ

2
∥Υ̃∥1 + λ∥Υ̃∥1 ≤ 3λ

2
∥Υ̃∥1 ≤ 6

√
sλ∥Υ̃∥2.

Thus, we obtain ∥Υ̃∥2 ≲ L
√

δs log d
n with L :=

R
√
M+∆2+R∆̄2

κ0
. The proof can be concluded by further ap-

plying ∥Υ̃∥1 ≤ 4
√
s∥Υ̃∥2 to derive the bound for ℓ1-norm.

□

Proof of Proposition 1:

Proof. We let θ = θ⋆ in (14), then proceeds as the proof of
Theorem 10:

0 ≥
〈
Qθ̃ − b+ λ · ∂∥θ̃∥1, Υ̃

〉
= Υ̃⊤Σ⋆Υ̃+

〈
Qθ⋆ − b, Υ̃

〉
+ Υ̃⊤(Q−Σ⋆)Υ̃+ λ

〈
∂∥θ̃∥1, Υ̃

〉
(i)

≥ κ0∥Υ̃∥22 − ∥Qθ⋆ − b∥∞∥Υ̃∥1
− ∥Q−Σ⋆∥∞∥Υ̃∥21 + λ

(
∥θ̃∥1 − ∥θ⋆∥1

)
(ii)

≥ κ0∥Υ̃∥22 + λ
(
∥θ̃∥1 − ∥θ⋆∥1

)
−
(
∥Qθ⋆ − b∥∞ + 2R · ∥Q−Σ⋆∥∞

)
∥Υ̃∥1

(iii)

≥ κ0∥Υ̃∥22 −
λ

2
∥Υ̃∥1 + λ

(
∥θ̃∥1 − ∥θ⋆∥1

)
,

(44)

where in (i) we use λmin(Σ
⋆) ≥ κ0 and ∥θ⋆∥1 − ∥θ̃∥1 ≥〈

∂∥θ̃∥1,−Υ̃
〉
, (ii) is by ∥Υ̃∥1 ≤ ∥θ̃∥1 + ∥θ⋆∥1 ≤ 2R, in

(iii) we use the assumption (15). Thus, by κ0∥Υ̃∥22 ≥ 0 we
obtain 2

(
∥θ̃∥1 − ∥θ⋆∥1

)
≤ ∥Υ̃∥1. Similarly to Step 3 in the

proof of Theorem 9, we can show ∥Υ̃∥1 ≤ 4
√
s∥Υ̃∥2. Again

we use (44), it gives

κ0∥Υ̃∥22 ≤ λ

2
∥Υ̃∥1 + λ

(
∥θ⋆∥1 − ∥θ̃∥1

)
≤ 3

2
λ∥Υ̃∥1 ≤ 6λ

√
s∥Υ̃∥2,

thus displaying ∥Υ̃∥2 ≤ 6λ
√
s

κ0
. The proof can be concluded

by using ∥Υ̃∥1 ≤ 4
√
s∥Υ̃∥2.

Proof of Theorem 11:

Proof. To invoke Proposition 1, it is enough to verify (15).
Recalling Σ⋆ = E(xkx

⊤
k ), we first invoke [22, Thm. 1] and

obtain ∥Q−Σ⋆∥∞ = O
(
σ2
√

δ log d(logn)2

n

)
holds with prob-

ability at least 1−2d2−δ . This confirms λ ≳ R · ∥Q−Σ⋆∥∞.
Then, it remains to upper bound ∥Qθ⋆ − b∥∞:

∥Qθ⋆ − b∥∞ ≤ ∥(Q−Σ⋆)θ⋆∥∞ + ∥Σ⋆θ⋆ − b∥∞

≤ ∥Q−Σ⋆∥∞∥θ⋆∥1 +
∥∥∥γxγy

n

n∑
k=1

ẏkẋk1 −E(ykxk)
∥∥∥
∞

(i)

≲ σ2(R+ 1)

√
δ log d(log n)2

n
,

where in (i) we use a known estimate from [22, Eq. (A.31)]:

P

(∥∥∥γxγy
n

n∑
k=1

ẏkẋk1 −E(ykxk)
∥∥∥
∞

≲ σ2

√
δ log d(log n)2

n

)
≥ 1− 2d1−δ.

Thus, by setting

λ = C1σ
2R

√
δ log d(log n)2

n
,

(15) can be satisfied with probability at least 1−4d2−δ , hence
using Proposition 1 concludes the proof.
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Proof of Theorem 12:

Proof. The proof is again based on Proposition 1 and some
ingredients from [22]. From [22, Thm. 4],

∥Q−Σ⋆∥∞ ≲
(M2δ log d

n

)1/4
holds with probability at least 1−2d2−δ , thus confirming λ ≳
R · ∥Q−Σ⋆∥∞ with the same probability. Moreover,

∥Qθ⋆ − b∥∞ ≤ ∥(Q−Σ⋆)θ⋆∥∞ + ∥Σ⋆θ⋆ − b∥∞

≤ ∥Q−Σ⋆∥∞∥θ⋆∥1 +
∥∥∥γxγy

n

n∑
k=1

ẏkẋk1 −E(ykxk)
∥∥∥
∞

(i)

≲
√
M(R+ 1)

(δ log d
n

)1/4
,

where (i) is due to a known estimate from [22, Eq. (A.34)]:

P

(∥∥∥γxγy
n

n∑
k=1

ẏkẋk1 −E(ykxk)
∥∥∥
∞

≲
√
M
(δ log d

n

)1/4)
≥ 1− 2d1−δ

Thus, with probability at least 1− 4d2−δ , (15) holds if

λ = C1

√
MR

(δ log d
n

)1/4
with sufficiently large C1. The proof can be concluded by
invoking Proposition 1.

2) Uniform Recovery Guarantee: We need some auxil-
iary results to support the proof. The first one is a concentra-
tion inequality for product process due to Mendelson [67]; the
following statement can be directly adapted from [40, Thm.
8] by specifying the pseudo-metrics as ℓ2-distance.

Lemma 9. (Concentration of Product Process). Let {ga}a∈A
and {hb}b∈B be stochastic processes indexed by two sets A ⊂
Rp, B ⊂ Rq , both defined on a common probability space
(Ω,A,P). We assume that there exist KA,KB, rA, rB ≥ 0
such that

∥ga − ga′∥ψ2
≤ KA∥a− a′∥2, ∥ga∥ψ2

≤ rA, ∀ a,a′ ∈ A;

∥hb − hb′∥ψ2
≤ KB∥b− b′∥2, ∥hb∥ψ2

≤ rB, ∀ b, b′ ∈ B.

Finally, let X1, ..., Xm be independent copies of a random
variable X ∼ P, then for every u ≥ 1 the following holds
with probability at least 1− 2 exp(−cu2)

sup
a∈A
b∈B

1

n

∣∣∣∣∣
n∑
i=1

ga(Xi)hb(Xi)−E
[
ga(Xi)hb(Xi)

]∣∣∣∣∣
≤ C

( (KA · ω(A) + u · rA) · (KB · ω(B) + u · rB)
n

+
rA ·KB · ω(B) + rB ·KA · ω(A) + u · rArB√

n

)
,

where ω(A) = E supa∈A(g
⊤a) with g ∼ N (0, Ip) is the

Gaussian width of A ⊂ Rp, and similarly, ω(B) is the
Gaussian width of B.

We will use the following result that can be found in [61,
Thm. 8].

Lemma 10. Let (Xu)u∈T be a random process indexed by
points in a bounded set T ⊂ Rn. Assume that the process has
sub-Gaussian increments, i.e., there exists M > 0 such that
∥Xu −Xv∥ψ2

≤ M∥u − v∥2 holds for any u,v ∈ T . Then
for every t > 0, the event

sup
u,v∈T

|Xu −Xv| ≤ CM ·
(
ω(T ) + t · diam(T )

)
holds with probability at least 1 − exp(−t2), where
diam(T ) := supx,y∈T ∥x− y∥2 denotes the diameter of T .

Proof of Theorem 13:

Proof. We start from the optimality
n∑
k=1

(ẏk − x⊤
k θ̂)

2 ≤
n∑
k=1

(ẏk − x⊤
k θ

⋆)2.

By substituting θ̂ = θ⋆+Υ̂ and performing some algebra, we
obtain

n∑
k=1

(x⊤
k Υ̂)2 ≤ 2

n∑
k=1

(
ẏk − x⊤

k θ
⋆
)
x⊤
k Υ̂.

Due to the constraint we have ∥θ⋆ + Υ̂∥1 ≤ ∥θ⋆∥1, then
similar to (40) we can show ∥Υ̂∥1 ≤ 2

√
s∥Υ̂∥2 holds. Thus,

we let V = {v : ∥v∥2 = 1, ∥v∥1 ≤ 2
√
s}, then the following

holds uniformly for all θ⋆ ∈ Σs,R0

∥Υ̂∥22 · inf
v∈V

n∑
k=1

(x⊤
k v)

2

≤2∥Υ̂∥2 · sup
v∈V

n∑
k=1

(ẏk − x⊤
k θ

⋆)x⊤
k v. (45)

Similarly to previous developments, our strategy is to lower
bound the left-hand side while upper bound the right hand
side, but with the difference that the bounds must be valid
uniformly for all θ⋆ ∈ Σs,R0

.

Step 1. Bounding the Left-Hand Side From Below
Letting ∆̄ = 0 and restricting v to V , we use (38) in

the proof of Theorem 9, then for some constant c(κ0, σ)
depending on κ0, σ, with probability at least 1− d−δ

inf
v∈V

1√
n

[
n∑
k=1

(x⊤
k v)

2

]1/2
≥

√
κ0 − c(κ0, σ) ·

√
s log d

n
.

Thus, if n ≥ 4c2(κ0,σ)
κ0

s log d, then it holds that

inf
v∈V

n∑
k=1

(x⊤
k v)

2 ≥ 1

4
κ0n.

Step 2. Bounding the Right-Hand Side Uniformly
To pursue the uniformity over θ⋆ ∈ Σs,R0 , we take a

supremum by replacing specific θ⋆ with supθ∈Σs,R0
, then we

consider the upper bound on

I := sup
θ∈Σs,R0

sup
v∈V

n∑
k=1

(ẏk − x⊤
k θ)x

⊤
k v, (46)
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where ẏk = Q∆(ỹk + τk), ỹk = Tζy (yk) :=
sign(yk)min{|yk|, ζy}, yk = x⊤

k θ + ϵk; note that ẏk, ỹk, yk
depend on θ, and we will use notation ẏθ,k, ỹθ,k, yθ,k to indi-
cate such dependence when necessary. In this proof, the ranges
of θ and v (e.g., in supremum), if omitted, are respectively
θ ∈ Σs,R0

and v ∈ V . Now let the quantization noise be
ξk = ẏk − ỹk, observing that E(ykx⊤

k v) = E(θ⊤xkx
⊤
k v) +

E(ϵkx
⊤
k v) = E(θ⊤xkx

⊤
k v), then we can first decompose I

as

I ≤ sup
θ,v

n∑
k=1

ξkx
⊤
k v + sup

θ,v

n∑
k=1

(
ỹkx

⊤
k v −E[ỹkx⊤

k v]
)

+ sup
θ,v

n∑
k=1

E
(
(ỹk − yk)x

⊤
k v
)

+ sup
θ,v

n∑
k=1

(
θ⊤xkx

⊤
k v −E[θ⊤xkx

⊤
k v]
)

:= I0 + I1 + I2 + I3,
(47)

where I0 is the term arising from quantization, I1 is the
concentration term involving truncation of heavy-tailed data
for which we develop some new machinery to bound it, I2 is
the bias term, I3 is a more regular concentration term that can
be bounded via Lemma 9. In the remainder of the proof, we
will bound I1, I2, I3 separately and finally deal with I0.
Step 2.1. Bounding I1

Using ỹk = Tζy (x
⊤
k θ + ϵk), I1 is concerned with the

concentration of the product process{ n∑
k=1

Tζy (θ
⊤xk + ϵk)x

⊤
k v
}
θ,v

about its mean. It is natural to apply Lemma 9 towards this
end, but we lack good bound on ∥Tζy (θ

⊤xk+ϵk)∥ψ2 because
of the heavy-tailedness of ϵk (on the other hand, the bound
O(ζy) is just too crude to yield a sharp rate). Our strategy is
already introduced in the mainbody — we introduce z̃k :=
ỹk − Tζy (ϵk) and decompose I1 as

I1 ≤ sup
v,θ

n∑
k=1

(
z̃kx

⊤
k v −E[z̃kx⊤

k v]
)

︸ ︷︷ ︸
:=I11

+ sup
v

n∑
k=1

(
Tζy (ϵk)x

⊤
k v −E[Tζy (ϵk)x

⊤
k v]
)

︸ ︷︷ ︸
:=I12

.

Thus, it suffices to bound I11 and I12.
Step 2.1.1. Bounding I11

We use Lemma 9 to bound I11. For any v1,v2 ∈ V , it is
evident that we have ∥x⊤

k v∥ψ2
≤ ∥xk∥ψ2

≤ σ and ∥x⊤
k v1 −

x⊤
k v2∥ψ2

≤ σ∥v1 − v2∥2. Regarding

z̃k = z̃θ,k := Tζy (x
⊤
k θ + ϵk)− Tζy (ϵk)

indexed by θ ∈ Σs,R0 , the 1-Lipschitzness of Tζy (·) gives
|z̃k| ≤ |x⊤

k θ|, and then the definition of sub-Gaussian norm
yields

∥z̃k∥ψ2
≤ ∥x⊤

k θ∥ψ2
≤ ∥xk∥ψ2

∥θ∥2 ≤ R0σ

(this addresses the aforementioned issue). Further, for any
θ1,θ2 ∈ Σs,R0 we verify the sub-Gaussian increments

|z̃θ1,k − z̃θ2,k|
=
∣∣Tζy (x

⊤
k θ1 + ϵk)− Tζy (ϵk)

− Tζy (x
⊤
k θ2 + ϵk) + Tζy (ϵk)

∣∣
=
∣∣Tζy (x

⊤
k θ1 + ϵk)− Tζy (x

⊤
k θ2 + ϵk)

∣∣
≤
∣∣x⊤
k (θ1 − θ2)

∣∣,
(48)

which leads to

∥z̃θ1,k − z̃θ2,k∥ψ2
≤ ∥x⊤

k (θ1 − θ2)∥ψ2

≤∥xk∥ψ2
∥θ1 − θ2∥2 ≤ σ∥θ1 − θ2∥2

With these preparations, we can invoke Lemma 9 use the well-
known estimates ω(Σs,R0

), ω(V ) = O(
√
s log d)17 to obtain

that, with probability at least 1− 2 exp(−cu2) we have

I11 ≲ σ2
[√

n
(
ω(Σs,R0

) + ω(V ) + u
)

+
(
ω(Σs,R0

) + u
)
·
(
ω(V ) + u

)]
≲ σ2

[√
n
(√

s log d+ u
)

+
(√

s log d+ u
)
·
(√

s log d+ u
)]
.

(49)

Therefore, we can set u =
√
δs log d in (49), under the scaling

of n ≳ sδ log d it provides

P
(
I11 ≲ σ2

√
nδs log d

)
≥ 1− 2d−δΩ(s). (50)

Step 2.1.2. Bounding I12

By ∥v∥1 ≤ 2
√
s we have

I12 ≤ 2
√
s∥

n∑
k=1

(Tζy (ϵk)xk −E[Tζy (ϵk)xk])∥∞.

Then to apply Bernstein’s inequality, for integer q ≥ 2 and
i ∈ [d], analogously to (35) in the proof of Theorem 9, we
can bound that

n∑
k=1

E

∣∣∣∣Tζy (ϵk)xki

n

∣∣∣∣q
≤
(ζy
n

)q−2 1

n2

n∑
k=1

E
∣∣T 2

ζy (ϵk)x
q
ki

∣∣
≤
(σζy
n

)q−2(σ2M
1
l

n

)
(Cq)

q
2 ≤ q!

2
v0c

q−2
0 ,

for some v0 = O
(
σ2M1/l

n

)
, c0 = O

(σζy
n

)
. Then we use

Lemma 1 to obtain that, with probability at least 1−2 exp(−t)
we have ∣∣∣∣∣ 1n

n∑
k=1

(Tζy (ϵk)xki −E[Tζy (ϵk)xki])

∣∣∣∣∣
≤ Cσ

(
M

1
2l

√
t

n
+
ζyt

n

)
17In fact, we have the tighter estimate ω(Σs,R0 ), ω(V ) =

O
(√

s log
(
ed
s

))
(e.g., [76]) but we simply put

√
s log d to be consistent

with earlier results concerning unconstrained Lasso.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3329240

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



ACCEPTED IN T-IT 34

Then we use ζy ≍
(
σ +M

1
2l

)√
n

δ log d , set t ≍ δ log d, and
take a union bound over i ∈ [d] to obtain that,

∥
n∑
k=1

1

n
(Tζy (ϵk)xk −E[Tζy (ϵk)xk])∥∞

≲ σ(M1/(2l) + σ)

√
δ log d

n

holds with probability at least 1 − 2d1−δ , which implies the
following under the same probability

I12 ≲ σ
(
M

1
2l + σ

)√
nsδ log d. (51)

Therefore, combining (50) and (51), we obtain that

I1 ≲ σ
(
M

1
2l + σ

)√
nsδ log d

with the promised probability.
Step 2.2. Bounding I2

For this bias term the supremum does not make things
harder. We begin with

I2 = n · sup
θ,v

E
(
(ỹk − yk)x

⊤
k v
)

≤ 2n
√
s · sup

θ
∥E(ỹk − yk)xk∥∞.

Fix any θ ∈ Σs,R0
, we have

E|yk|2l ≲ E|x⊤
k θ|2l +E|ϵk|2l ≲M + σ2l.

Then following arguments similarly to (36) we obtain

∥E(ỹk − yk)xk∥∞ ≲
σM1/l

ζy
≲ σ(M1/(2l) + σ)

√
δ log d

n
,

which implies I2 ≲ σM
1
2l

√
nδs log d.

Step 2.3. Bounding I3

It is evident that we can apply Lemma 9 with
(gθ(xk), hv(xk)) = (θ⊤xk,v

⊤xk), (A,B) = (Σs,R0
,V ),

and hence with KA, rA,KB, rB = O(σ). Along with
ω(Σs,R0

), ω(V ) ≲
√
s log d, we obtain that the following

holds with probability at least 1− 2 exp(−cu2):

I3 ≤ σ2
[(√

s log d+ u
)2

+
√
n
(√

s log d+ u
)]
.

By taking u ≍
√
sδ log d, under the scaling n ≳ δs log d,

it follows that I3 ≲ σ2
√
nδs log d with probability at least

1− 2d−δΩ(s).
Step 2.4. Bounding I0

It remains to bound I0 = supθ,v
∑n
k=1 ξkx

⊤
k v. Bounding

I0 is similar to establishing the “limited projection distortion
(LPD)” property in [94], but the key distinction is that θ and
v in I0 take value in different spaces.

The main difficulty associated with “supθ” lies in the
discontinuity of the quantization noise ξk := Q∆(ỹk+τk)−ỹk,
which we overcome by a covering argument and some ma-
chinery developed in [94, Prop. 6.1]. However, the essential
difference from [94] is that we use Lemma 10 to handle
“supv”, while [94] again used covering argument for v to
strengthen their Proposition 6.1 to their Proposition 6.2, which
is unfortunately insufficient in our setting because the covering

number of V significantly increases under smaller covering
radius (on the other hand, using covering argument for v
suffices for the analyses in [94] regarding a different estimator
named projected back projection).

Let us first construct a ρ-net of Σs,R0 denoted by G =
{θ1, ...,θN}, so that for any θ ∈ Σs,R0

we can pick θ′ ∈ G
satisfying ∥θ′ − θ∥2 ≤ ρ; here, the covering radius ρ is
to be chosen later, and we assume that N ≤

(
9d
ρs

)s
[76,

Lemma 3.3]. As is standard in a covering argument, we first
control I0 over the net G (by replacing “supθ∈Σs,R0

” with
“supθ∈G”), and then bound the approximation error induced
by such replacement.
Step 2.4.1. Bounding I0 over G

In this step, we want to bound I0,G :=
supθ∈G supv∈V

∑n
k=1 ξkx

⊤
k v. First let us consider a fixed

θ ∈ Σs,R0
. Then since |ξk| ≤ ∆, we have ∥ξkxk∥ψ2

≲ ∆σ.
Because {ξkxk : k ∈ [n]} are independent zero mean, by
[92, Prop. 2.6.1] we have

∥∥∑n
k=1 ξkxk

∥∥
ψ2

≲
√
n∆σ. Define

V ′ = V ∪ {0}, then for any v1,v2 ∈ V ′ we have∥∥∥∥∥(
n∑
k=1

ξkxk

)⊤
v1 −

( n∑
k=1

ξkxk

)⊤
v2

∥∥∥∥∥
ψ2

≤ C
√
n∆σ∥v1−v2∥2.

Thus, by Lemma 10, it holds with probability at least 1 −
exp(−u2) that

sup
v∈V

( n∑
k=1

ξkxk

)⊤
v

≤ sup
v,v′∈V ′

∣∣∣∣∣(
n∑
k=1

ξkxk

)⊤
v −

( n∑
k=1

ξkxk

)⊤
v′

∣∣∣∣∣
≤ C

√
n∆σ

(
ω(V ′) + u

)
≤ C1

√
n∆σ

(√
s log

9d

s
+ u
)
.

Moreover, by a union bound over G, we obtain that

I0,G ≲ σ∆
√
n
(√

s log
9d

s
+ u
)

holds with probability at least 1− exp
(
s log 9d

ρs −u
2
)
. We set

u ≍
√
sδ log

(
9d
ρs

)
and arrive at

P

(
I0,G ≲ σ∆

√
nsδ log

9d

ρs

)
≥ 1−

(9d
ρs

)−Ω(δs)

. (52)

Step 2.4.2. Bounding the Approximation Error
From now on we indicate the dependence of ξk on θ by

using the notation ξθ,k := Q∆(ỹθ,k+τk)− ỹθ,k where ỹθ,k =
Tζy (x

⊤
k θ + ϵk). For any θ ∈ Σs,R0

we pick one θ′ ∈ G
such that ∥θ − θ′∥2 ≤ ρ; we fix such correspondence and
remember that from now on every θ ∈ Σs,R0

is associated
with some θ′ ∈ G, (which of course depends on θ but our
notation omits such dependence). Thus, we can bound I0 =
supθ,v

∑n
k=1 ξθ,kx

⊤
k v as

I0 ≤ sup
θ,v

n∑
k=1

ξθ′,kx
⊤
k v + sup

θ,v

n∑
k=1

(ξθ,k − ξθ′,k)x
⊤
k v

≤ I0,G + I01.

(53)
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Note that the bound on I0,G is available in (52), so it remains
to bound I01 := supθ,v

∑n
k=1(ξθ,k−ξθ′,k)x

⊤
k v, which can be

understood as the approximation error of the net G regarding
the empirical process of interest. To facilitate the presentation
we switch to the more compact notations — let X ∈ Rn×d
with rows x⊤

k be the sensing matrix, ξθ = [ξθ,k] ∈ Rn be the
quantization error indexed by θ, τ = [τk] ∈ Rn be the random
dither vector, ϵ = [ϵk] ∈ Rn be the heavy-tailed noise vector,
yθ = [yθ,k] = Xθ + ϵ ∈ Rn and ỹθ = [ỹθ,k] = Tζy (yθ) be
the measurement vector and truncated measurement vector,
respectively. With these conventions we can write I01 =
supθ,v(ξθ − ξθ′)⊤Xv. Recall that a specific θ′ has been
specified for each θ ∈ Σs,R0

, so defining Ψθ := ξθ − ξθ′

allows us to write I01 = supθ,v Ψ⊤
θ Xv. Further, we define

Ψ̃θ := ỹθ − ỹθ′ , Ψ̂θ := Q∆(ỹθ + τ ) − Q∆(ỹθ′ + τ ) and
make the following observation

Ψθ = ξθ − ξθ′ = Ψ̂θ − Ψ̃θ. (54)

We pause to establish a property of X that holds w.h.p..
Specifically, we restrict (37) to v ∈ V (recall that ∆̄ = 0
and so Ẋ = X and Σ̇ = Σ⋆), then under the promised
probability it holds for some c(κ0, σ) that

sup
v∈V

∣∣∣∣∥Xv∥2√
n

− ∥
√
Σ⋆v∥2

∣∣∣∣ ≤ c(κ0, σ)

√
δs log d

n
.

Thus, when n ≳ δs log d with for large enough hidden
constant depending on (κ0, σ), it holds that

sup
v∈V

∥Xv∥2√
n

≤ sup
v∈V

∥
√
Σ⋆v∥2 +

√
κ1 ≤ 2

√
κ1. (55)

We proceed by assuming we are on this event, which allows
us to bound I01 as

I01 = sup
θ,v

Ψ⊤
θ Xv ≤ sup

θ
∥Ψθ∥2 sup

v∈V
∥Xv∥2

≤ 2
√
κ1n · sup

θ
∥Ψθ∥2.

(56)

To bound supθ ∥Ψθ∥2, motivated by (54), we will investigate
Ψ̃θ and Ψ̂θ more carefully. We pick a threshold η ∈ (0, ∆2 )
(that is to be chosen later), and by the 1-Lipschitzness of
Tζy (·) we have

sup
θ

∥Ψ̃θ∥2 = sup
θ

∥ỹθ − ỹθ′∥2 ≤ sup
θ

∥yθ − yθ′∥2

= sup
θ

∥X(θ − θ′)∥2 ≤ 2
√
κ1nρ,

(57)

where the last inequality is because θ−θ′ is 2s-sparse, hence
(55) implies ∥X(θ − θ′)∥2 ≤ 2

√
κ1n∥θ − θ′∥2 ≤ 2

√
κ1nρ.

To proceed, we will define for specific θ the index vectors
Jθ,1,Jθ,2 ∈ {0, 1}n and use |Jθ,1| to denote the number of
1s in Jθ,1 (similar meaning for |Jθ,2|). Specifically, using
the entry-wise notation Ψ̃θ = [Ψ̃θ,k] we define Jθ,1 =

[1(|Ψ̃θ,k| ≥ η)]. Recall that (57) gives supθ ∥Ψ̃θ∥22 ≤
4κ1nρ

2; combined with the simple observation supθ ∥Ψ̃θ∥22 ≥
supθ η

2|Jθ,1|, we obtain a uniform bound on |Jθ,1| as

sup
θ∈Σs,R0

|Jθ,1| ≤
4κ1nρ

2

η2
. (58)

Next, we define the index vector Jθ,2 for θ ∈ G: first let
Eθ,i = {Q∆(ỹθ,i + τi + t) is discontinuous in t ∈ [−η, η]},
and then we define Jθ,2 := [1(Eθ,i)]. Then by Lemma 11 that
we prove later, we have

P

(
sup
θ∈G

|Jθ,2| ≤
Cnη

∆

)
≥ 1− exp

(
− cnη

∆
+ s log

9d

ρs

)
:= 1− P1. (59)

Note that Eθ,i does not happen (i.e., 1(Eθ,i) = 0) means that
Q∆(ỹθ,i+ τi+ t) is continuous in t ∈ [−η, η]; combined with
the definition of Q∆(·), this is also equivalent to the statement
that “Q∆(ỹθ,i+τi+ t) remains constant in t ∈ [−η, η].” Thus,
given a fixed θ ∈ Σs,R0

and its associated θ′, suppose that the
i-th entry of Jθ′,2 is zero (meaning that “Q∆(ỹθ′,i + τi + t)
remains constant in t ∈ [−η, η]”), if additionally i-th entry of
Jθ,1 is zero (i.e., |Ψ̃θ,i| < η), then the i-th entry of Ψ̂θ =
Q∆(ỹθ + τ )−Q∆(ỹθ′ + τ ) vanishes:

Ψ̂θ,i = Q∆(ỹθ,i + τi)−Q∆(ỹθ′,i + τi)

= Q∆(ỹθ′,i + Ψ̃θ,i + τi)−Q∆(ỹθ′,i + τi) = 0;

combining with (54), this implies Ψθ,i = −Ψ̃θ,i. Recall from
(56) that we want to bound supθ ∥Ψθ∥2. Write Jcθ,1 = 1 −
Jθ,1 and Jcθ′,2 = 1− Jθ′,2, then denoting hadamard product
by ⊙ and using the decomposition 1 = max{Jθ,1,Jθ′,2} +
min{Jcθ,1,Jcθ′,2} and (54) we have the display (60), where (i)

is because entries of Ψθ equal to those of −Ψ̃θ if the index
corresponds to min{Jcθ,1,Jcθ′,2} = 1, and in (ii) we use the
simple bound ∥Ψθ∥∞ ≤ ∥ξθ∥∞ + ∥ξθ′∥∞ ≤ 2∆ and the
derived bounds on supθ |Jθ,1|, supθ∈G |Jθ,2|, supθ ∥Ψ̃θ∥2 in
(58), (59) and (57), respectively.
Step 2.4.3. Concluding the Bound on I0

We are ready to put pieces together, specify ρ, η, and
conclude the bound on I0. Overall, with probability at least
1 − P1 − P2 for P1 defined in (59) and some P2 within
the promised probability, combining (52), (53), (56) and (60)
we obtain

I0 ≲ σ∆

√
nsδ log

9d

ρs
+
κ1n∆ρ

η
+ n

√
κ1η∆+ κ1ρn.

Thus, we take the (near-optimal) choice of (ρ, η) as ρ ≍
∆√
κ1

(
sδ
n

)3/2
and η ≍ δ∆s

n log 9d
ρs , under which we obtain

that, with the promised probability (as P1 is also sufficiently
small), we obtain the bound on I0 as

I0 ≲ σ∆

√
nsδ log

(κ1d2n3
∆2s5δ3

)
(61)

We can conclude the proof with all the works above.
Substituting infv∈V

∑n
k=1(x

⊤
k v)

2 ≥ 1
4κ0n and the defini-

tion of I in (46) into (45), then we obtain 1
4κ0n∥Υ̂∥22 ≤

2∥Υ̂∥2I that holds uniformly for all θ ∈ Σs,R0
, which

implies supθ ∥Υ̂∥2 ≤ 8I
κ0n

. Substituting the derived bounds
on I1, I2, I3, I0 into (47), with the promised probability we
have

I ≲ σ
(
σ +M

1
2l

)√
nsδ log d+ σ∆

√
nsδ log

(κ1d2n3
∆2s5δ3

)
,
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sup
θ

∥∥Ψθ

∥∥
2
= sup

θ

∥∥Ψθ ⊙max{Jθ,1,Jθ′,2}+Ψθ ⊙min{Jcθ,1,Jcθ′,2}
∥∥
2

≤ sup
θ

∥∥Ψθ ⊙max{Jθ,1,Jθ′,2}
∥∥
2
+ sup

θ

∥∥Ψθ ⊙min{Jcθ,1,Jcθ′,2}
∥∥
2

(i)

≤ sup
θ

∥∥Ψθ

∥∥
∞ ·
√

|Jθ,1|+ |Jθ′,2| + sup
θ

∥∥Ψ̃θ ⊙min{Jcθ,1,Jcθ′,2}
∥∥
2

(ii)

≤ C
{
∆
√
n
(√κ1ρ

η
+

√
η

∆

)
+ ρ

√
κ1n

}
,

(60)

so the uniform bound on ∥Υ̂∥2 follows immediately. Further
using ∥Υ̂∥1 ≤ 2

√
s∥Υ̂∥2 completes the proof.

Lemma 11. (Bounding supθ∈G |Jθ,2|). Along the proof of
Theorem 13, it holds that

P

(
sup
θ∈G

|Jθ,2| ≥
Cnη

∆

)
≤ exp

(
− cnη

∆
+ s log

9d

ρs

)
. (62)

Proof. Notation and details in the proof of Theorem 13 will
be used. We first consider a fixed θ ∈ G, and by a simple
shifting Eθ,i happens if and only if Q∆(·) is discontinuous in
[ỹθ,i + τi − η, ỹθ,i + τi + η], which is also equivalently to

[ỹθ,i + τi − η, ỹθ,i + τi + η] ∩ (∆ · Z) = ∅.

Because τi ∼ U
(
[−∆

2 ,
∆
2 ]
)

and η < ∆
2 , P(Eθ,i) = 2η

∆ is
valid independent of the location of [ỹθ,i − η, ỹθ,i + η]. Thus,
for fixed θ, by conditioning on (X, ϵ), |Jθ,2| follows the
binomial distribution with n trials and probability of success
p := 2η

∆ . This allows us to write |Jθ,2| =
∑n
k=1 Jk with Jk

i.i.d. following Bernoulli distribution with success probability
EJk = p. Then for any integer q ≥ 2 we have

n∑
k=1

E|Jk −EJk|q ≤
n∑
k=1

E|Jk −EJk|2

≤ np(1− p) ≤ q!

2
np.

Now we invoke Bernstein’s inequality (Lemma 1) to obtain
that for any t > 0,

P
(
|Jθ,2| − np ≥

√
2npt+ t

)
≤ exp(−t).

We let t = cnp and take a union bound over θ ∈ G; this yields
the desired claim since |G| ≤

(
9d
ρs

)s
.
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