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Abstract—We study an information theoretic privacy mecha-
nism design problem for two scenarios where the private data is
either observable or hidden. In the hidden private data scenario,
an agent observes useful data Y that is correlated with private
data X , and generate disclosed data U which maximizes the
revealed information about Y while satisfying a bounded privacy
leakage constraint. Considering the other scenario, the agent has
additional access to X . To design the privacy mechanism, we
first extend the Functional Representation Lemma and Strong
Functional Representation Lemma by relaxing the independence
condition and thereby allowing a certain leakage. We then find
lower and upper bounds on the privacy-utility trade-offs in both
scenarios. In particular, for the case where no leakage is allowed
and X is observable, our upper and lower bounds improve
previous bounds. Considering bounded mutual information as
privacy constraint and the observable private data scenario we
show that if the common information and mutual information
between X and Y are equal, then the attained upper bound
is tight. Finally, the privacy-utility trade-off with prioritized
private data is studied where part of X is more private than
the remaining part.

I. INTRODUCTION

The amount of data produced by robots, humans, net-
worked sensors that record and analyze signals from physical
environments, information processing and software systems
is growing rapidly. Disclosing unprocessed data may lead
to privacy threats through adversarial inferences. Moreover,
theoretical and practical approaches to information-theoretic
privacy (secrecy) can be utilized for many information process-
ing systems. Perfect privacy (secrecy) is often not achievable
in applications and we may need to relax the restriction
[1]. Altogether, we need privacy mechanism designs for the
disclosure of the data.

In this paper, random variable (RV) Y denotes the useful
data and is correlated with the private data denoted by RV
X . Furthermore, RV U describes the disclosed data. Two
scenarios are considered, where in both, an agent wants to
disclose the useful information to a user as shown in Fig. 1. In
the hidden private data scenario, the agent observes Y and has
no direct access to X , i.e., the private data is hidden. The goal
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Fig. 1. In the hidden private data scenario the agent has only access to Y
and in the observable private data scenario the agent has additionally access
to X .

is to design U based on Y that reveals as much information as
possible about Y and satisfies a bounded privacy criterion. In
observable private data scenario, the agent has access to both
X and Y and can design U based on (X,Y ) to release as
much information as possible about Y while satisfying the
bounded leakage constraint. In both scenarios we consider
privacy constraints using different non-zero privacy measures.

The privacy mechanism design problem from an informa-
tion theory perspective is recently receiving increased attention
and related results can be found in [2]–[28]. In more detail,
in [2], the concept of a privacy funnel is introduced, where
the privacy utility trade-off has been studied considering a
distortion measure for utility and the log-loss as privacy
measure. The concept of maximal leakage has been introduced
in [3] and used in [4] for the Shannon cipher system. Further-
more, some bounds on the privacy-utility trade-off are derived.
Fundamental limits of the privacy utility trade-off measuring
the leakage using estimation-theoretic guarantees are studied
in [5].

In both [29] and [6], the privacy-utility trade-offs con-
sidering expected distortion and equivocation as a measures
of utility and privacy are studied. In [7], the hypothesis
test performance of an adversary is used to measure privacy
leakage. In [8], maximal correlation either mutual information
is used for measuring the privacy and properties of rate-privacy
functions are studied. In [9], average total variation is used as
a privacy measure and a χ2-privacy criterion is considered
in [5], where an upper bound and a lower bound on the
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privacy-utility trade-off have been derived. The problem of
privacy-utility trade-off considering mutual information both
as measures of utility and privacy given the Markov chain
X − Y − U is studied in [10]. Under the perfect privacy
assumption it is shown that the privacy mechanism design
problem can be reduced to a linear program. This has been
extended in [11] considering the privacy utility trade-off with a
rate constraint on the disclosed data. Moreover, in [10], it has
been shown that information can only be revealed if the kernel
(leakage matrix) between useful data and private data is not
invertible. In [12], we generalize [10] by relaxing the perfect
privacy assumption allowing some small bounded leakage.
More specifically, we design privacy mechanisms with a per-
letter privacy criterion considering an invertible kernel where
a small leakage is allowed. We generalized this result to
a non-invertible leakage matrix in [13]. In both [14] and
[15], the optimal privacy-utility trade-offs have been studied
considering two scenarios where the private data is either
observable or hidden. Sufficient conditions for equality of the
optimal trade-offs in the considered two scenarios have been
derived where the utility is measured by a distortion metric.
A multi-user data disclosure design problem with a privacy
constraint is studied in [21] where upper and lower bounds
on the privacy-utility trad-off have been derived. Another
multi-user privacy mechanism design problem is considered
in [22] where each user is equipped with a local cache. In
[16], by using the Functional Representation Lemma bounds
on privacy-utility trade-off for the two scenarios are derived.
These results are derived under the perfect secrecy assumption,
i.e., no leakages are allowed. The bounds are tight when the
private data is a deterministic function of the useful data.

The concept of differential privacy is introduced in [30]
and it has been used in [31] to minimize the statistical risk of
identifying membership in a database. The concept of mutual
information as differential privacy is introduced in [32]. A
related secure source coding problem is studied in [29].

Our results in this work can be divided into three main parts
as follows:
Part I (Privacy-utility trade-off with non-zero leakage): In
the first part of the paper, we consider the problems studied
in [33] and [10]. Furthermore, our setup is related to [14]
and [16], where in [16] the problem of secrecy by design
is studied. We generalize the privacy problems considered in
[16] by relaxing the perfect privacy constraint and allowing
some leakage. More specifically, we consider bounded mutual
information, i.e., I(U ;X) ≤ ε for privacy leakage constraint.
To this end, we extend the Functional Representation Lemma
and the Strong Functional Representation Lemma, introduced
in [34] by relaxing the independence condition to derive lower
bounds for the observable private data scenario. The key
idea to extend both lemmas is to use randomized response
introduced in [35]. We show that if the common information
and mutual information between X and Y are equal, then the
maximum utility in two scenarios and the attained upper bound
in the observable private data scenario are equal. Furthermore,
in the special case of perfect privacy we find a new upper
bound for the perfect privacy function by using the excess
functional information introduced in [34]. We show that this

new bound generalizes the bound in [16]. Moreover, we show
that the bound is tight when |Y| = 2. Finally, we compare our
new lower and upper bounds with the bounds found in [16]
when the leakage is zero. The conference version regarding
this part can be found in [19].
Part II (Privacy-utility trade-off with non-zero leakage and
per-letter privacy constraints): In the second part, for each
scenario we use two different per-letter privacy constraints
instead of the bounded mutual information constraint. As
argued in [13], it can be more desirable to protect the private
data individually and not merely on average. We first find
similar results as the extended versions of the Functional
Representation Lemma (FRL) and the Strong Functional Rep-
resentation Lemma (SFRL) found in the previous part con-
sidering the per-letter privacy constraint rather than bounded
mutual information. Using these results we find a lower bound
for the privacy-utility trade-off in the observable private data
scenario. Furthermore, we provide bounds for three other
problems and study a special case where X is a deterministic
function of Y . We show that the obtained upper and lower
bounds in the hidden private data scenario are asymptotically
optimal when X is a deterministic function of Y . In [13], one
of the problems considered in this part has been studied. It has
been shown that by using methods from Euclidean information
geometry as used in [36], [37], we can simplify the design
problem in the high privacy regime and the main problem can
be solved approximately by a linear program. In this work,
we provide upper bounds on the error of the approximation
considered in [13]. Finally we compare the attained bounds in
a numerical example. The conference version related to this
part can be found in [19].
Part III (Privacy-utility trade-off with non-zero leakage and
prioritized private data): Finally, we consider the problem in
the observable private data scenario where the private data is
divided into two parts, i.e., X = (X1, X2). In this part we use
bounded mutual information as privacy constraint. We assume
that the first part is more private than the second part, i.e.,
the privacy leakage of X1 is less than or equal to the privacy
leakage of X2. Furthermore, we assume that the total leakage
between (X1, X2) and U is bounded by ε and we derive upper
and lower bounds. Similar to the previous parts we use the
extended versions of Functional Representation Lemma and
the Strong Functional Representation Lemma to find lower
bounds. The key idea to obtain lower bounds on the privacy-
utility trade-off considering prioritized private data is to use
randomization technique introduced in [35] over X2 instead
of X . We compare the obtained lower bounds on the privacy-
utility trade-off with the results corresponding to Part I. We
show that the lower bounds obtained in Part III can tighten
the lower bounds derived in Part I.
Our contribution can be summarized as follows:
(i) We extend the Functional Representation Lemma and the
Strong Functional Representation Lemma by a randomized
response output that allows some controlled leakage. Various
extended versions are introduced using different leakage mea-
sures.
(ii) We formulate and study various privacy mechanism de-
sign problems through the lens of information theory with
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controlled leakage, demonstrating the use of the extended
versions of Functional Representation Lemma and the Strong
Functional Representation Lemma.
(iii) We provide discussion and comparison of the obtained
results with each other and the literature.
Notation: Given two jointly random variables X and Y , the
entropy, conditional entropy and mutual information between
X and Y are given by H(Y ) = E(log( 1

PY (y) )), H(Y |X) =

E(log( 1
PY |X(y|x) )), and I(X;Y ) = H(Y ) − H(Y |X). X

and Y are independent if and only if I(X;Y ) = 0. Fur-
thermore, the Markov chain X − Y − U holds if and only
if I(X;U |Y ) = 0. For the binary entropy h(·) we have
h(p) = − (p log(p) + (1− p) log(1− p)) . In this work, let
matrix PXY defined on R|X |×|Y| denote the joint distribution
of discrete random variables X and Y defined on finite
alphabets X and Y . We represent marginal distributions of
X and Y by vectors PX and PY defined on R|X | and R|Y|
given by the row and column sums of PXY . We represent
the leakage matrix PX|Y by a matrix defined on R|X |×|Y|
with elements PX|Y (x|y) for all x and y. Furthermore, for
given u ∈ U , PX,U (·, u) and PX|U (·|u) defined on R|X | are
distribution vectors with elements PX,U (x, u) and PX|U (x|u)
for all x ∈ X and u ∈ U . The relation between U and
Y is described by the kernel PU |Y defined on R|U|×|Y|,
furthermore, the relation between U and the pair (Y,X) is
described by the kernel PU |Y,X defined on R|U|×|Y|×|X|. In
this work, minPX corresponds to minimum value inside the
distribution vector PX .

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this work we assume that each element in vectors PX
and PY is non-zero. In the second part of the results, which
corresponds to privacy-utility trade-off with non-zero leakage
and per-letter privacy constraints, we assume that for the
discrete random variables X and Y defined on finite alphabets
X and Y we have that |X | < |Y|. Furthermore, we assume
that the leakage matrix PX|Y is of full rank. In the remaining
parts of the results we consider arbitrary correlated discrete
random variables X and Y as private data and useful data.
In the following we introduce the main problems in three
different parts. In each part, we first define the problems
considered in this paper, then we motivate them and study
the properties of the measures for utility and privacy leakage
and compare them with previous works.

A. Privacy-utility trade-off with non-zero leakage

In this part, for both design problems we use mutual
information as utility and leakage measures. The privacy
mechanism design problems for the two scenarios can be
stated as follows

gε(PXY ) = sup
PU|Y :X−Y−U
I(U ;X)≤ε,

I(Y ;U), (1)

hε(PXY ) = sup
PU|Y,X :I(U ;X)≤ε,

I(Y ;U). (2)

The function hε(PXY ) is used when the privacy mechanism
has access to both the private data and the useful data. The
function gε(PXY ) is used when the privacy mechanism has
only access to the useful data. Clearly, the relation between
hε(PXY ) and gε(PXY ) can be stated as follows

gε(PXY ) ≤ hε(PXY ).

In the following we study the case where 0 ≤ ε < I(X;Y ),
otherwise the optimal solution of hε(PXY ) or gε(PXY ) is
H(Y ) achieved by U = Y .

Remark 1. For ε = 0, (1) leads to the perfect privacy problem
studied in [10]. It has been shown that for a non-invertible
leakage matrix PX|Y , g0(PXY ) can be obtained by a linear
program. Furthermore, for ε = 0, (2) leads to the secret-
dependent perfect privacy function h0(PXY ), studied in [16],
where upper and lower bounds on h0(PXY ) have been derived.
The bounds are tight when X is deterministic function of Y .

B. Privacy-utility trade-off with non-zero leakage and per-
letter privacy constraints

The privacy mechanism design problems for the two sce-
narios can be stated as follows

gw`ε (PXY ) = sup
PU|Y :X−Y−U

PU (u)d(PX|U (·|u),PX)≤ε, ∀u,

I(Y ;U), (3)

hw`ε (PXY ) = sup
PU|Y,X :PU (u)d(PX|U (·|u),PX)≤ε, ∀u,

I(Y ;U),

(4)

g`ε(PXY ) = sup
PU|Y :X−Y−U

d(PX|U (·|u),PX)≤ε, ∀u

I(Y ;U), (5)

h`ε(PXY ) = sup
PU|Y,X :d(PX|U (·|u),PX)≤ε, ∀u

I(Y ;U), (6)

where d(P,Q) corresponds to the total variation distance be-
tween two distributions P and Q, i.e., d(P,Q) =

∑
x |P (x)−

Q(x)|. The functions hw`ε (PXY ) and h`ε(PXY ) are used when
the privacy mechanism has access to both the private data
and the useful data. The functions gw`ε (PXY ) and g`ε(PXY )
are used when the privacy mechanism has only access to
the useful data. In this work, the privacy constraints used
in (3) and (5), i.e., PU (u)d(PX|U (·|u), PX) ≤ ε, ∀u, and
d(PX|U (·|u), PX) ≤ ε, ∀u, are called the weighted strong `1-
privacy criterion and the strong `1-privacy criterion. We refer
to them as strong since they are per-letter privacy constraints,
i.e., they must hold for every u ∈ U . The difference between
the two privacy constraints in this work is the weight PU (u),
therefore, we refer to PU (u)d(PX|U (·|u), PX) ≤ ε, ∀u, as
weighted. We later show that the weight PU (u) enables us
to use extended versions of the Functional Representation
Lemma and Strong Functional Representation Lemma to find
lower bounds considering the observable private data scenario,
i.e., lower bounds on hw`ε (PXY ).

Remark 2. The strong `1-privacy criterion, i.e.,
d(PX|U (·|u), PX) ≤ ε, ∀u, has been introduced in [13],
where we have provided and utilized its properties to find an
approximate solution of g`ε(PXY ).
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Remark 3. For ε = 0, both (3) and (5) lead to the perfect
privacy problem studied in [10]. This follows since by letting
ε = 0, we have

∑
u PU (u)d(PX|U (·|u), PX) = 0 which

results in independence of X and U . It has been shown that
for a non-invertible leakage matrix PX|Y , g0(PXY ) can be
obtained by a linear program [10]. Similarly, for ε = 0,
both (4) and (6) lead to the secret-dependent perfect privacy
function h0(PXY ), studied in [16], where upper and lower
bounds on h0(PXY ) have been derived. In [19], these bounds
have been strengthened.

Remark 4. The privacy problem defined in (5) has been
studied in [13] where a lower bound on g`ε(PXY ) has been
provided using the information geometry concepts. Further-
more, it is shown that it is sufficient to assume |U| ≤ |Y| so
that it is ensured that the supremum can be achieved.

Intuitively, for small ε, both privacy constraints mean that
X and U are almost independent. As we discussed in [13],
closeness of PX|U (·|u) and PX allows us to approximate
g`ε(PXY ) with a series expansion and find a lower bound.
In this work we show that by using a similar methodology,
we can approximate gw`ε (PXY ) exploiting the closeness of
PX,U (·, u) and PXPU (u). This provides us a lower bound for
gw`ε (PXY ). As we discussed earlier, an advantage of per-letter
privacy measures over on average measures can be stated as
follows. From a privacy perspective, it is often more desirable
to protect sensitive data individually and not on average. Using
an average criterion means that there can exist some data
points which leak more than the average privacy threshold.
However, if we choose bounded mutual information rather
than the strong `1-privacy criterion and the weighted strong
`1-privacy criterion, we can solve the problems explicitly
under some specific assumptions. The problems considering
the per-letter constraints have not been explicitly solved and
only approximate solutions are derived in [13]. In the high
privacy regime, the approximate solutions are close to the
exact solutions.
Furthermore, as we stated earlier the only difference between
the strong `1-privacy criterion and the weighted strong `1-
privacy criterion is the weight PU (u) that enables us to extend
FRL and SFRL. The extended versions of FRL and SFRL help
us to find lower bound on hw`ε (PXY ). On the other hand, if we
use the strong `1-privacy criterion we can find upper bounds on
h`ε(PXY ). As a summary, the strong `1-privacy criterion lead
to an upper bound on the privacy-utility trade-off considering
the observable private data scenario and the weighted strong
`1-privacy criterion results in lower bounds on it.
Next, we study some properties of the weighted strong
`1-privacy criterion and the strong `1-privacy criterion. To
this end recall that the linkage inequality is the property
that if L measures the privacy leakage between two ran-
dom variables and the Markov chain X − Y − U holds
then we have L(X;U) ≤ L(Y ;U). Since the weighted
strong `1-privacy criterion and the strong `1-privacy crite-
rion are per letter constraints we define L1(X;U = u) ,
d(PX|U (·|u), PX), L1(Y ;U = u) , d(PY |U (·|u), PY ),
L2(X;U = u) , PU (u)d(PX|U (·|u), PX), L2(Y ;U = u) ,
PU (u)d(PY |U (·|u), PY ).

Proposition 1. The weighted strong `1-privacy criterion and
the strong `1-privacy criterion satisfy the linkage inequality.
Thus, for each u ∈ U we have L1(X;U = u) ≤ L1(Y ;U =
u) and L2(X;U = u) ≤ L2(Y ;U = u).

Proof: The proof is provided in Appendix A.
As discussed in [9, page 4] and [15, page 5], one benefit of

the linkage inequality is to ensure privacy in layers of private
information which is discussed in the following. Assume that
there are “primary” and “secondary private data” where the
disclosure mechanism is designed independently based on
primary private data. The secondary private data may be
unforeseen or not accessible by the agent and is arbitrary
correlated with the primary data. The linkage inequality en-
sures that the privacy leakage of the secondary private data
is bounded by the guarantee on the privacy leakage of the
primary data. Alternatively, assume that the Markov chain
X − Y − U holds and the distribution of X is not known.
If we can find X̃ such that X − X̃ − Y − U holds and the
distribution of X̃ is known then by the linkage inequality we
can conclude L(X;U = u) ≤ L(X̃;U = u). In other words,
if the framework is designed for X̃ , then a privacy constraint
on X̃ leads to the constraint on X , i.e., provides an upper
bound for any pre-processed RV X . To have the Markov chain
X − X̃ −Y −U consider the scenario where X̃ is the private
data and X is a function of private data which is not known.
For instance let X̃ = (X1, X2, X3) and X = f(X1) where
the function f(·) is not known. Thus, the mechanism that is
designed based on X̃−Y −U preserves the leakage constraint
on X and U . As pointed out in [9, Remark 2], among all
the Lp-norms (p ≥ 1), only the `1 norm satisfies the linkage
inequality. Next, given a leakage measure L and let the Markov
chain X−Y −U hold, if we have L(X;U) ≤ L(X;Y ), then
we say that the post processing inequality holds. In this work
we use L1(X;U) =

∑
u PU (u)L1(X;U = u), L2(X;U) =∑

u L2(X;U = u) and L1(Y ;U) =
∑
u PU (u)L1(Y ;U =

u), L2(Y ;U) =
∑
u L2(Y ;U = u).

Using the same proof as [9, Theorem 3] which is based on
the convexity of the `1-norm, the average of the weighted
strong `1-privacy criterion and the strong `1-privacy criterion
with weights equal to one and PU (u), respectively, satisfy the
post-processing inequality. In other words, under the Markov
chain X − Y − U we have L1(X;U) ≤ L1(Y ;U) and
L2(X;U) ≤ L2(Y ;U). Before stating the next result we
present the inference threat model as introduced in [27]. Let
C(·, ·) : X × P(X ) → R be an inference cost function,
where P(X ) denotes all possible distribution vectors for X .
The adversarial attacker chooses a belief distribution for X as
qX which is the solution of c∗0 = minqX∈P(X ) EXC(X, qX).
After observing U = u, he updates the belief distribution as
the solution of c∗u = minqX∈P(X ) EX|U [C(X, qX)|U = u].
Let ∆C = c∗0 − EU [c∗U ] denote the on average gain cost
attained by the attacker. Note that ∆C specifies how much
improvement the attacker can obtain in his inference. Next
result asserts that by using `1-privacy criterion and the strong
`1-privacy criterion, ∆C can be bounded by a constant.

Proposition 2. The weighted strong `1-privacy criterion and
the strong `1-privacy criterion result in bounded inference
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threat that is modeled in [27].

Proof: The weighted strong `1-privacy criterion and the
strong `1-privacy criterion lead to a bounded on average
constraint

∑
u PU (u)

∥∥PX|U=u−PX
∥∥

1
≤ ε. Thus, using [9,

Theorem 4], we conclude that adversarial inference perfor-
mance is bounded as follows

∆C ≤ 2L
∑
u

PU (u)
∥∥PX|U=u−PX

∥∥
1
≤ 2Lε, (7)

where L = supx∈X ,qX∈P(X ) |C(x, qX)|.
Another property of the `1 distance is the relation between

the `1-norm and probability of error in a hypothesis test. As
argued in [38, Remark 6.5], for the binary hypothesis test with
H0 : X ∼ P and H1 : X ∼ Q, the expression 1 − 1

2d(P,Q)
is the sum of false alarm and missed detection probabilities.
Thus, we have 1

2d(P,Q) = 1 − 2Pe, where Pe is the error
probability (the probability that we can not decide the right
distribution for X with equal prior probabilities for H0 and
H1). For instance, consider the scenario where we want to
decide whether X and U are independent or correlated. To
this end, let P = PX,U , Q = PXPU , H0 : X,U ∼ P and
H1 : X,U ∼ Q. We have

1

2
d(P,Q) =

1

2

∑
u

PU (u)d(PX|U (·|u), PX) ≤ 1

2
ε.

Thus, by increasing the leakage, which means that d(P,Q)
increases, then the error of probability decreases.
Another property is the relation between the strong `1-privacy
criterion and MMSE(X|U) which has been used in [39,
Corrolary 2]. An interesting result is that the strong `1-
privacy criterion leads to a lower bound on MMSE(X|U) [13,
Proposition 9]. Practical examples based on the MNIST data
set and medical experiment with real data have been provided
in [13, Experiment 2] and [13, Experiment 3] which show
the applicability of the strong `1-privacy criterion. Meaningful
interpretations of the solution to g`ε(PXY ) have been provided
in [13] for both experiments. Geometrical interpretation of the
solution to g`ε(PXY ) have been derived in [13, Section IV].
An interesting result is that all candidates of optimizers for
g`ε(PXY ) are inside an `1-ball with a bounded radius and
certain centers [13, Section IV]. The role of the strong `1-
privacy criterion can be evaluated by using different metrics
such as probability of error and MMSE for measuring the
utility and the privacy leakage in g`ε(PXY ) and comparing the
results with the previous works. More detail can be found in
[13, Section V-B].
Finally, if we use `1 distance as privacy leakage, after approx-
imating gw`ε (PXY ) and g`ε(PXY ), we face a linear program
problem in the end, which are much easier to handle.

C. Privacy-utility trade-off with non-zero leakage and priori-
tized private data

In this part, we assume that the private data X is divided
into two parts X1 and X2, where the first part is more private
than the other part, i.e., the privacy leakage of X1 is less
than or equal to the privacy leakage of X2. We use mutual
information for measuring both privacy leakage and utility and

we only consider the observable private data scenario where
the privacy mechanism has access to both X and Y . Hence,
the problem can be stated as follows

hpε (PX1X2Y ) = sup
PU|Y X1X2

:I(U ;X1,X2)≤ε,
I(U ;X1)≤I(U ;X2)

I(Y ;U). (8)

The constraint I(U ;X1, X2) ≤ ε ensures that the total leakage
is bounded by ε and the constraint I(U ;X1) ≤ I(U ;X2)
corresponds to the priority of X1. In practice, we usually have
different levels of privacy leakage for the private data and in
this work we consider two levels.

Remark 5. For ε = 0, (8) leads to the secret-dependent perfect
privacy function h0(PXY ).

In certain scenarios, the privacy problem containing pri-
oritized private data leads to the non-prioritized problem,
i.e., hpε (PX1X2Y ) = hε(PX1X2Y ). For instance, consider the
scenario where X1 is a deterministic function of X2, i.e.,
X1 = f(X2). In this case, the inequality corresponding to the
priority I(U ;X1) = I(U ; f(X2)) ≤ I(U ;X2) holds, hence,
hpε (PX1X2Y ) = hε(PX1X2Y ). In a more general setting, if
the Markov chain X1 − X2 − Y − U holds, due to the data
processing inequality we have hpε (PX1X2Y ) = hε(PX1X2Y ).
In other words, under certain assumptions, the prioritized
privacy problem reduces to the non-prioritized version.

III. OVERVIEW AND RELATION BETWEEN THE PRIVACY
MEASURES AND PROBLEMS

In this section we first present an overview of the privacy
problems outlined in (1) and (2). We then provide essential
lemmas and definitions corresponding to the functional repre-
sentation lemma, strong functional representation lemma, ex-
cess functional information, and common information between
two RVs. Finally, we study the relation between the privacy
measures and problems considered in this work.
As mentioned earlier, (1) and (2) have been studied in previous
works, e.g., [10], and [33]. In [33, Lemma 1], lower and upper
bounds on gε(PXY ) have been derived, where we have

H(Y )

I(X;Y )
ε ≤ gε(PXY ) ≤ H(Y |X) + ε. (9)

The result in [33, Lemma 2] asserts that the mapping ε →
gε(PXY ) is concave for any ε ≥ 0. Concavity of gε(PXY )
can be used to show the lower bound in (9), since in this
case, when ε = I(X;Y ), U = Y is feasible and the utility
H(Y ) is achieved. Hence, the line H(Y )

I(X;Y )ε is achievable. As
stated in [33, Remark 1], by using the concavity of gε(PXY ),
the lower bound (9) can be improved. In this case, we have

ε
H(Y )

I(X;Y )
+ g0(PXY )

(
1− ε

I(X;Y )

)
≤ gε(PXY ). (10)

One benefit of the lower bound in (10) is that we can
use it as a lower bound on hε(PXY ), c.f., see Theorem 2.
Considering perfect privacy, i.e., ε = 0, g0(PXY ) can be
obtained by solving a linear program [10, Theorem 1]. This
means the optimal mapping is the solution to a linear program.
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Moreover, it has been shown that to find the optimal privacy-
preserving mapping, it is sufficient to consider U such that
|U| ≤ null(PX|Y )+1. Solving the linear program proposed in
[10] can become challenging when the size of Y or X grow.
Hence, simple lower and upper bounds are derived in [10,
Corrolary 2] as follows

(H(Y )− log(rank(PX|Y )))+ ≤ g0(PXY ) ≤
min{H(Y |X), log(null(PX|Y ) + 1)},

where a+ =

{
0, a < 0,

a, a ≥ 0
. The upper bound

log(null(PX|Y ) + 1) can be obtained using the sufficiency
condition |U| ≤ null(PX|Y ) + 1, since in this case we have
H(U) ≤ log(null(PX|Y ) + 1). Necessary and sufficient
conditions for attaining non-zero utility when the private data
is hidden, i.e., g0(PXY ) > 0, have been derived in [17] and
[40]. It has been shown that g0(PXY ) > 0 if and only if
rows of PX|Y are linearly dependent. This result has been
also shown and generalized in [10], e.g., see [10, Proposition
1]. Moreover, considering observable private data scenario,
necessary and sufficient conditions for attaining non-zero
utility, i.e., h0(PXY ) > 0, have been derived in [16, Theorem
5]. It has been shown that h0(PXY ) > 0 if and only if Y is
not a deterministic function of X , i.e., H(Y |X) > 0. Next,
we recall the Functional Representation Lemma (FRL) and
the Strong Functional Representation Lemma (SFRL).

Lemma 1. (Functional Representation Lemma [16,
Lemma 1]): For any pair of RVs (X,Y ) distributed
according to PXY supported on alphabets X and Y where
|X | is finite and |Y| is finite or countably infinite, there exists
a RV U defined on U such that X and U are independent,
i.e., we have

I(U ;X) = 0, (11)

Y is a deterministic function of (U,X), i.e., we have

H(Y |U,X) = 0, (12)

and

|U| ≤ |X |(|Y| − 1) + 1. (13)

Lemma 2. (Strong Functional Representation Lemma [34,
Theorem 1]): For any pair of RVs (X,Y ) distributed accord-
ing to PXY supported on alphabets X and Y where |X | is
finite and |Y| is finite or countably infinite with I(X,Y ) <∞,
there exists a RV U defined on U such that X and U are
independent, i.e., we have

I(U ;X) = 0,

Y is a deterministic function of (U,X), i.e., we have

H(Y |U,X) = 0,

I(X;U |Y ) can be upper bounded as follows

I(X;U |Y ) ≤ log(I(X;Y ) + 1) + 4,

and |U| ≤ |X |(|Y| − 1) + 2.

Remark 6. By checking the proof in [34, Th. 1], the term
e−1 log(e) + 2 + log(I(X;Y ) + e−1 log(e) + 2) can be used
instead of log(I(X;Y ) + 1) + 4.

Both FRL and SFRL have constructive proofs that can be
useful to find lower bounds on the privacy-utility trade-offs
considered in this work. Lower and upper bounds on h0(PXY )
have been derived in [16, Theorem 6, 7] and we have

H(Y )−H(X)=H(Y |X)−H(X|Y )≤h0(PXY )≤H(Y |X).
(14)

The lower bound in (14) is attained by Lemma 1 and is tight if
and only if X is a deterministic function of Y , i.e., H(X|Y ) =
0. In [16, Theorem 7] it is claimed that the necessary and
sufficient conditions for equalities h0(PXY ) = g0(PXY ) =
H(Y |X) are fulfilled when H(X|Y ) = 0. In this paper, we
show that H(X|Y ) = 0 can be improved using the concept of
common information. In the following we state the definition
of excess functional information defined in [34] as

ψ(X → Y ) = inf
PU|Y X :I(U ;X)=0, H(Y |X,U)=0

I(X;U |Y ).

The lower bound on ψ(X → Y ) derived in [34, Prop. 1]
is given in the next lemma. Since this lemma is useful for
deriving the upper bound on hε(PXY ) we state it here.

Lemma 3. [34, Prop. 1] For discrete Y we have

ψ(X → Y ) ≥

−
∑
y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt

− I(X;Y ), (15)

where for |Y| = 2 the equality holds and it is attained by the
Poisson functional representation [34].

Remark 7. The lower bound in (15) can be negative. For in-
stance, let Y be a deterministic function of X , i.e., H(Y |X) =

0. In this case we have −
∑
y∈Y

∫ 1

0
PX{PY |X(y|X) ≥

t} log(PX{PY |X(y|X) ≥ t})dt − I(X;Y ) = −I(X;Y ) =
−H(Y ).

More properties of the excess functional information
ψ(X → Y ) can be found in [34, Prop. 3]. For instance, using
[34, Prop. 3] an alternative characterization for ψ(X → Y )
can be stated as follows

ψ(X → Y ) = inf
PU|XY :I(U ;X)=0

H(Y |U)− I(X;Y ).

Next we recall the definition of the common information
between X and Y using [41]. For any pair of RVs (X,Y )
defined on discrete alphabets X and Y , the common informa-
tion between X and Y can be defined as follows

C(X;Y ) = inf
PW |XY :X−W−Y

I(X,Y ;W ). (16)

As shown in [41, Remark A] we have

I(X;Y ) ≤ C(X;Y ) ≤ min{H(X), H(Y )}. (17)
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One simple observation is that when H(X|Y ) = 0 or
H(Y |X) = 0 we have I(X;Y ) = C(X;Y ). This follows
since when H(X|Y ) = 0 we have

I(X,Y ;W ) = I(Y ;W )

and W can be chosen as X , hence X − W − Y holds.
However, these are not the only cases where we have
I(X;Y ) = C(X;Y ) [42]. In this paper, we show that the
equalities h0(PXY ) = g0(PXY ) = H(Y |X) are fulfilled
when I(X;Y ) = C(X;Y ). Due to the observation the
constraint I(X;Y ) = C(X;Y ) generalizes the constraint
H(X|Y ) = 0.
In the following we recall the definition of the common
information using [43]. The Gács-Körner common information
between two RVs X and Y is defined as the entropy of the
common part between X and Y , i.e., C(X;Y ) = H(U),
where U is the common part between X and Y [43]. The
common part U is defined based on the graphical representa-
tion of X and Y , which is shown to be a deterministic function
of only X and only Y . Moreover, the Gács-Körner common
information satisfies C(X;Y ) ≤ I(X;Y ) with equality if and
only if the Markov chain X − U − Y holds [42]. For more
information about the Gács-Körner common information see
[43] and [15, Appendix B].
In this work, we can use both notions of common information
defined in [41] or [43], since our focus is on scenarios where
the common information and mutual information between X
and Y are equal, i.e., C(X;Y ) = I(X;Y ). In other words,
our results hold for both Wyner and Gács-Körner notions of
common information.

In the following, we present the relation between the
weighted strong `1-privacy criterion and bounded mutual
information.
Using Pinsker’s inequality [44], we show that for any ε ≥ 0
and pair (X,U), bounded mutual information implies the
weighted strong `1-privacy criterion with a different leakage.
In more detail, we have

I(X;U) ≤ ε⇒ PU (u)d(PX|U (·, u), PX) ≤
√

2ε, ∀u. (18)

The proof for (18) is provided in Appendix A. Note that (18)
can help us to find relations between the privacy problems
considering bounded mutual information and the weighted
strong `1-privacy criterion in both scenarios where the private
data is hidden or observable. By using (18) we have

hε(PXY ) ≤ hw`ε̄ (PXY ), (19)

gε(PXY ) ≤ gw`ε̄ (PXY ), (20)

where ε̄ =
√

2ε. Next, we present the relation between the
strong `1-privacy criterion and bounded mutual information.
Using reverse Pinsker’s inequality [44], we show that for any
ε ≥ 0 and pair (X,U), the strong `1-privacy criterion implies
the bounded mutual information with a different leakage. In
more detail we have

d(PX|U (·|u), PX) ≤ ε, ∀u⇒ I(X;U) ≤ ε2

minPX
. (21)

The proof for (21) is provided in Appendix A. Similarly, (21)
enables us to find relations between the privacy problems

considering bounded mutual information and the strong `1-
privacy criterion in both scenarios where the private data is
hidden or observable. Using (21) we have

h`ε(PXY ) ≤ hε′(PXY ), (22)

g`ε(PXY ) ≤ gε′(PXY ), (23)

where ε′ = ε2

minPX
. Finally, using (19), (20), (22), and (23)

we have

h`ε̃(PXY ) ≤ hε(PXY ) ≤ hw`ε̄ (PXY ),

g`ε̃(PXY ) ≤ gε(PXY ) ≤ gw`ε̄ (PXY ),

where ε̃ =
√
εminPX and ε̄ =

√
2ε. Another simple relation

can be established considering the strong `1-privacy criterion
and the weighted strong `1-privacy criterion. Clearly, the
strong `1-privacy criterion implies the weighted strong `1-
privacy criterion. In other words we have

d(PX|U (·|u), PX)≤ε, ∀u⇒PU (u)d(PX|U (·|u), PX)≤ε,∀u,
(24)

which lead to following results

h`ε(PXY ) ≤ hw`ε (PXY ), (25)

g`ε(PXY ) ≤ gw`ε (PXY ). (26)

Finally, we present the relation between the privacy problem
with prioritized private data with other problems. Let X =
(X1, X2), in this case using (19) we have

hpε (PX1X2Y ) ≤ hε(PX1X2Y ) ≤ hw`ε̄ (PX1X2Y ),

where ε̄ =
√

2ε. Consequently, lower bounds on hpε (PX1X2Y )
can be used as lower bounds on hε(PX1X2Y ).

IV. MAIN RESULTS

In this part, we provide lower and upper bounds for the
privacy problems defined in (1), (2), (3), (4), (5), (6) and
(8). We study the tightness of the bounds in special cases
and compare them in examples. In more detail, in the first
part of the results, which corresponds to privacy-utility trade-
off with non-zero leakage, we show that the upper bound
on hε(PXY ) is achieved when the common information and
mutual information between X and Y are equal. We provide
necessary and sufficient conditions for the achievability of the
obtained upper bound in general. Moreover, in cases where
no leakage is allowed, i.e., ε = 0, we provide new bounds
that generalize the previous bounds. In the second part of the
results in this section corresponding to privacy-utility trade-off
with non-zero leakage and per-letter privacy criterions we use
concepts from information geometry to find lower bounds on
gw`ε (PXY ) and g`ε(PXY ). In the remaining parts of the main
results, we provide lower and upper bounds for hpε (PX1X2Y )
and study them for special cases.
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A. Privacy-utility trade-off with non-zero leakage

In this section, we extend FRL and SFRL for correlated
random variables X and U , i.e., 0 ≤ I(U ;X) = ε. We refer to
them as Extended Functional Representation Lemma (EFRL)
and Extended Strong Functional Representation Lemma (ES-
FRL). We show that the extended lemmas, i.e., EFRL and
ESFRL, enable us to find lower bounds on hε(PXY ).

Remark 8. The idea of extending Functional Representation
Lemma and Strong Functional Representation Lemma is basi-
cally adding a randomized response argument to the random
variable U found by Lemma 1 and Lemma 2. The idea is
simple, when it can be connected with an old principle it
gets creditable. The randomized response technique has been
introduced in [35] and has been used in many related works,
e.g., [45, Theorem 2] and [46, Theorem 2].

Lemma 4. (Extended Functional Representation Lemma): For
any 0 ≤ ε < I(X;Y ) and pair of RVs (X,Y ) distributed
according to PXY supported on alphabets X and Y where
|X | is finite and |Y| is finite or countably infinite, there exists
a RV U defined on U such that the leakage between X and
U is equal to ε, i.e., we have

I(U ;X) = ε,

Y is a deterministic function of (U,X), i.e., we have

H(Y |U,X) = 0,

and |U| ≤ [|X |(|Y| − 1) + 1] [|X |+ 1] .

Proof: The proof is provided in Appendix B.

Lemma 5. (Extended Strong Functional Representation
Lemma): For any 0 ≤ ε < I(X;Y ) and pair of RVs (X,Y )
distributed according to PXY supported on alphabets X and
Y where |X | is finite and |Y| is finite or countably infinite
with I(X,Y ) < ∞, there exists a RV U defined on U such
that the leakage between X and U is equal to ε, i.e., we have

I(U ;X) = ε,

Y is a deterministic function of (U,X), i.e., we have

H(Y |U,X) = 0,

I(X;U |Y ) can be upper bounded as follows

I(X;U |Y ) ≤ αH(X|Y ) + (1− α) [log(I(X;Y ) + 1) + 4] ,

and |U| ≤ [|X |(|Y| − 1) + 2] [|X |+ 1] , where α = ε
H(X) .

Proof: The proof is provided in Appendix B.
In Lemma 8, which is proved in Appendix B, we show that

there exists a RV U that satisfies (11), (12) and has bounded
entropy. The lemma is a generalization of [16, Lemma 2] for
dependent X and U .
Before stating the next theorem we derive an expression for
I(Y ;U). We have

I(Y ;U) = I(X,Y ;U)− I(X;U |Y ),

= I(X;U) + I(Y ;U |X)− I(X;U |Y ),

= I(X;U) +H(Y |X)−H(Y |U,X)− I(X;U |Y ).
(27)

As argued in [16], (27) is an important observation to find
lower and upper bounds for hε(PXY ) and gε(PXY ).
In next theorem we generalize [16, Theorem 5] considering
non-zero leakage. Necessary and sufficient conditions that the
utility in the observable private data scenario is larger than ε,
i.e., hε(PXY ) > ε, are characterized.

Theorem 1. For any 0 ≤ ε < I(X;Y ) and pair of RVs (X,Y )
distributed according to PXY supported on alphabets X and
Y , we have

hε(PXY ) > ε (28)

if and only if

H(Y |X) > 0. (29)

Proof: The proof is provided in Appendix B.
In the next theorem we present lower bounds on hε(PXY )

and find the conditions under which the bounds are tight.
The following theorem is a generalization of [16, Th. 6] for
correlated X and U , i.e., I(X;U) ≤ ε.

Theorem 2. For any 0 ≤ ε < I(X;Y ) and pair of RVs (X,Y )
distributed according to PXY supported on alphabets X and
Y , we have

hε(PXY ) ≥ max{L1
h(ε), L2

h(ε), L3
h(ε)}, (30)

where

L1
h(ε) = H(Y |X)−H(X|Y ) + ε = H(Y )−H(X) + ε,

L2
h(ε) = H(Y |X)− αH(X|Y ) + ε

− (1− α) (log(I(X;Y ) + 1) + 4) ,

L3
h(ε) = ε

H(Y )

I(X;Y )
+ g0(PXY )

(
1− ε

I(X;Y )

)
,

and α = ε
H(X) . The lower bound in (30) is tight if H(X|Y ) =

0, i.e., X is a deterministic function of Y . Furthermore, if the
lower bound L1

h(ε) is tight then we have H(X|Y ) = 0.

Proof: The proof is provided in Appendix B. The lower
bounds L1

h(ε) and L2
h(ε) are derived by using Lemma 4 and

Lemma 5.
Next, we argue that when non-zero leakage is allowed,

EFRL and ESFRL can strictly improve the utility compared
with FRL and SFRL, respectively. Using (27) utility achieved
by FRL is H(Y |X)−H(X|Y ), which is less than or equal to
utility achieved by EFRL, i.e., H(Y |X) − H(X|Y ) + ε =
Lε1. Furthermore, utility achieved by SFRL is H(Y |X) −
(log(I(X;Y ) + 1) + 4), which is less than or equal to utility
attained by ESFRL, i.e., H(Y |X) + ε − αH(X|Y ) − (1 −
α) (log(I(X;Y ) + 1) + 4) = L2

h(ε), since we have

L2
h(ε)− (H(Y |X)− (log(I(X;Y ) + 1) + 4)) =

ε+
ε

H(X)
(log(I(X;Y ) + 1) + 4)− ε

H(X)
H(X|Y )

≥ 0.

The latter holds since H(X|Y ) ≤ H(X). Equality holds
if and only if ε = 0. For the only if part, noting that
ε+ ε

H(X) (log(I(X;Y ) + 1) + 4) ≥ ε and ε ≥ ε
H(X)H(X|Y ).
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Hence, for non-zero leakage EFRL and ESFRL strictly im-
prove the bounds attained by the FRL and SFRL.
In the following we let ε = 0 in Theorem 2 and derive lower
bounds on h0(PXY ). In this case, for any pair of RVs (X,Y )
distributed according to PXY supported on alphabets X and
Y we have

h0(PXY ) ≥ max{L0
1, L

0
2}, (31)

where

L0
1 = H(Y |X)−H(X|Y ) = H(Y )−H(X),

L0
2 = H(Y |X)− (log(I(X;Y ) + 1) + 4) .

Note that the lower bound L0
1 has been derived in [16, Th. 6],

while the lower bound L0
2 is new. Hence, the lower bound

derived in (31) generalizes the bound found in [16, Th. 6].
In the next two examples we compare the bounds Lε1, Lε2 and
Lε3 in special cases where I(X;Y ) = 0 and H(X|Y ) = 0.

Example 1. Let X and Y be independent. Then, we have

L1
h(ε) = H(Y )−H(X) + ε,

L2
h(ε) = H(Y )− ε

H(X)
H(X) + ε− 4(1− ε

H(X)
),

= H(Y )− 4(1− ε

H(X)
).

Thus,

L2
h(ε)− L1

h(ε) = H(X)− 4 + ε(
4

H(X)
− 1),

= (H(X)− 4)(1− ε

H(X)
).

Consequently, for independent X and Y if H(X) > 4, then
L2
h(ε) > L1

h(ε), i.e., the second lower bound is dominant and
hε(PXPY ) ≥ L2

h(ε).

Example 2. Let X be a deterministic function of Y . As we
have shown in Theorem 2, if H(X|Y ) = 0, then

L1
h(ε) = L3

h(ε) = H(Y |X) + ε

≥ H(Y |X) + ε− (1− ε

H(X)
)(log(H(X) + 1) + 4)

= L2
h(ε).

Therefore, Lε1 and Lε3 become dominants.

In Lemma 9 which is provided in Appendix B, we find a
lower bound for supU H(U) where U satisfies the leakage
constraint I(X;U) ≤ ε, the bounded cardinality stated in
Lemma 4 and H(Y |U,X) = 0.
In the next result, using (27) we derive an upper bound on
hε(PXY ).

Lemma 6. For any 0 ≤ ε < I(X;Y ) and pair of RVs (X,Y )
distributed according to PXY supported on alphabets X and
Y we have

gε(PXY ) ≤ hε(PXY ) ≤ H(Y |X) + ε = U1
h(ε).

Proof: By using (27) we have

hε(PXY ) ≤ H(Y |X) + sup I(U ;X) ≤ H(Y |X) + ε.

Corollary 1. If X is a deterministic function of Y , then by
using Theorem 2 and Lemma 6 we have

gε(PXY ) = hε(PXY ) = H(Y |X) + ε,

since in this case the Markov chain X − Y − U holds.

In the next result we find a larger set of distributions PXY
compared to Corollary 1 for which we have gε(PXY ) =
hε(PXY ), where common information corresponds to the
Wyner [41] or Gács-Körner [43] notions of common infor-
mation. One advantage of having gε(PXY ) = hε(PXY ) is
discussed after Theorem 3, where we show that under the
assumption of equality between common information and
mutual information the upper bound in Lemma 6 is tight.

Proposition 3. If the common information and the mutual
information between X and Y are equal, then we have

gε(PXY ) = hε(PXY ).

Proof: The proof follows similar arguments as the proof
of [14, Th. 2]. Let U∗ be an optimizer of hε(PXY ), then by
using the proof of [14, Th. 2] we can construct U ′ satisfying
the Markov chain X − Y − U ′, I(U∗;Y ) = I(U ′;Y ) and
I(U ′;X) ≤ I(U∗;X) which completes the proof.

Noting that if X is a deterministic function of Y , then the
common information and mutual information between X and
Y are equal, i.e., we have

H(Y |X) = 0⇒ C(X;Y ) = I(X;Y ). (32)

The proof for (32) is provided in Appendix B. Thus, the
constraint in Proposition 3 contains a larger set of joint distri-
butions PXY compared to the constraint used in Corollary 1.
In the next lemma we provide an important property of an
optimizer of hε(PXY ) which is used to derive equivalencies
in Theorem 3.

Lemma 7. Let Ū be an optimizer of hε(PXY ). We have

H(Y |X, Ū) = 0.

Proof: The detailed proof is provided in Appendix B and
is similar to the proof of [16, Lemma 5]. The proof is by
contradiction and we show that if for an optimizer of hε(PXY ),
denoted by Ū , we have H(Y |X, Ū) > 0, then we can build U
such that it satisfies I(U ;X) ≤ ε and achieves strictly greater
utility than Ū , which contradicts the assumption.

In the next theorem we generalize the equivalent statements
in [16, Th. 7] for bounded leakage between X and U , i.e.,
I(X;U) ≤ ε.

Theorem 3. For any ε < I(X;Y ), we have the following
equivalencies

i. gε(PXY ) = H(Y |X) + ε,
ii. gε(PXY ) = hε(PXY ),

iii. hε(PXY ) = H(Y |X) + ε.

Proof: The statements i ⇒ ii and iii ⇒ i can be shown
by using Lemma 6 and Lemma 7, respectively. For proving ii
⇒ iii, let Ū be an optimizer of gε(PXY ), by using Lemma 7,
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(27) and Markov chain X − Y − U we show that I(Ū ;Y ) =
I(X; Ū)+H(Y |X). Furthermore, we show that I(X; Ū) = ε,
thus, hε(PXY ) = H(Y |X) + ε. A detailed proof is provided
in Appendix B.

By using Theorem 3 and Proposition 3, Corollary 1 can be
strengthened as follows.

Corollary 2. If the common information and mutual informa-
tion between X and Y are equal then we have

gε(PXY ) = hε(PXY ) = H(Y |X) + ε.

Lemma 7 and Theorem 3 generalize [16, Th. 7] for non-
zero leakage. Now let ε = 0 in Lemma 7 and Theorem 3.
As argued in [16] when X is a deterministic function of Y ,
the necessary and sufficient conditions for having equality in
Lemma 7 are fulfilled. Furthermore, this result holds when
X and Y are independent or Y is a deterministic function
of X . However, in this work we have shown that for any
0 ≤ ε < I(X;Y ), this statement can be generalized and we
can substitute the condition that X is a deterministic function
of Y by the condition that the common information and mutual
information between X and Y are equal.

Special case: H(Y |X) = 0

In this section we study the bounds derived in Theorem
2 considering the scenario where H(Y |X) = 0. Considering
zero leakage scenario, ε = 0, the constraint H(Y |X) = 0
results in zero utility, i.e., h0(PXY ) = 0, [16, Theorem 5].
This result can be verified by using (27). We have

I(U ;Y ) = I(U ;X) +H(Y |X)−H(Y |X,U)− I(U ;X|Y )

= −I(U ;X|Y ).

Using 0 ≤ I(U ;Y ) = −I(U ;X|Y ) ≤ 0 we must have
I(U ;Y ) = 0. Here, we show that when non-zero leakage is
allowed we can achieve non-zero utility, however, Theorem 1
ensures that utilities larger than ε can not be attained, i.e.,
hε(PXY ) ≤ ε. Next, we show that if H(Y |X) = 0 we
have hε(PXY ) = ε, we then propose a RV U that attains
it. Using a similar proof as (32) we conclude that if Y is
a deterministic function of X the common information and
mutual information between X and Y are equal. As a result,
by using Corollary 2 we have hε(PXY ) = ε. To achieve ε let

U =

{
Y, w.p. α
c, w.p. 1− α

, where c is a constant which does not

belong to the support of X and α = ε
I(X;Y ) . We emphasize

that since we only consider the range ε < I(X;Y ), we have
α < 1. To verify the privacy constraint we have

I(U ;X) = H(X)−H(X|U)

= H(X)− αH(X|Y )− (1− α)H(X)

= αI(X;Y )

= ε.

Using (27) we have

I(U ;Y )
(a)
= ε−H(X|Y ) +H(X|Y,U)

= ε−H(X|Y ) +H(X|Y )

= ε,

where in (a) we use I(U ;X) = ε and H(Y |X) =
H(Y |X,U) = 0.

Special case: ε = 0 (Independent X and U )

In this section we derive new lower and upper bounds
for h0(PXY ) and compare them with the previous bounds
found in [16]. In the next theorem lower and upper bounds on
h0(PXY ) are provided.

Theorem 4. For any pair of RVs (X,Y ) distributed according
to PXY supported on alphabets X and Y we have

max{L0
1, L

0
2} ≤ h0(PXY ) ≤ min{U0

1 , U
0
2 },

where L0
1 and L0

2 are defined in (31) and

U0
1 = H(Y |X),

U0
2 = H(Y |X)+∑
y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt+

I(X;Y ).

Furthermore, if |Y| = 2, then we have

h0(PXY ) = U0
2 .

Proof: The proof is provided in Appendix B.
As mentioned before the upper bound U0

1 has been derived
in [16, Th. 7]. The upper bound U0

2 is a new upper bound.
Thus, the lower and upper bounds on h0(PXY ) stated in
Theorem 4 generalize the bounds in [16]. Furthermore, in
case of binary Y the exact expression for h0(PXY ) has been
derived.
To study the bounds U0

2 and U0
1 let us consider a case where

X is a deterministic function of Y . Using Corollary 1 we
know that the upper bound U0

1 is tight. If X is a deterministic
function of Y , i.e., H(X|Y ) = 0, we have

∑
y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt+

I(X;Y ) = 0. (33)

The proof for (33) is provided in Appendix B. According to
(33), if X is a deterministic function of Y , then we have
U0

2 = U0
1 . In other words, in this case U0

2 is tight as well as
U0

1 . In the next example we compare the bounds U0
1 and U0

2

for a BSC(θ) and we show that U0
2 can improve U0

1 .

Example 3. (Binary Symmetric Channel) Let the binary
RVs X ∈ {0, 1} and Y ∈ {0, 1} have the following joint
distribution

PXY (x, y) =

{
1−θ

2 , x = y
θ
2 , x 6= y

,
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Fig. 2. Comparing the upper bounds U0
1 and U0

2 for BSC(θ). The blue
curve illustrates the upper bound found in [16] and the red line shows
the upper bound found in this work. In fact by using Theorem 4 the red
curve corresponding to U0

2 can be achieved and it presents the solution for
h0(PXY ).

where θ < 1
2 . We obtain

∑
y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt =

∫ 1−θ

θ

PX{PY |X(0|X) ≥ t} log(PX{PY |X(0|X) ≥ t})dt+∫ 1−θ

θ

PX{(PY |X(1|X) ≥ t} log(PX{PY |X(1|X) ≥ t})dt =

(1− 2θ) (PX(0) log(PX(0)) + PX(1) log(PX(1))) =

− (1− 2θ)H(X) =

− (1− 2θ).

Thus,

U0
2 = H(Y |X)+∑
y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt+

I(X;Y ) = h(θ)− (1− 2θ) + (1− h(θ)) = 2θ,

U0
1 = H(Y |X) = h(θ),

where h(·) corresponds to the binary entropy function. As
shown in Fig. 2, we have

h0(PXY ) ≤ U0
2 ≤ U0

1 .

However by using Theorem 4, since |Y| = 2 the upper bound
U0

2 is achieved and we have

h0(PXY ) = U0
2 .

Example 4. (Erasure Channel) Let the RVs X ∈ {0, 1} and
Y ∈ {0, e, 1} have the following joint distribution

PXY (x, y) =


1−θ

2 , x = y
θ
2 , y = e

0, else
,

where θ < 1
2 . We have∑

y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt

=

∫ 1−θ

0

PX{PY |X(0|X) ≥ t} log(PX{PY |X(0|X) ≥ t})dt

+

∫ 1−θ

0

PX{PY |X(1|X) ≥ t} log(PX{PY |X(1|X) ≥ t})dt

= −(1− θ)H(X) = −(1− θ).

Thus,

U0
2 = H(Y |X)+∑
y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt+

I(X;Y ) = h(θ)− (1− θ) + h(θ) + 1− θ − h(θ) = h(θ),

U0
1 = H(Y |X) = h(θ).

Hence, in this case, U0
1 = U0

2 = h(θ). Furthermore, in [16,
Example 8], it has been shown that for this pair of (X,Y ) we
have g0(PXY ) = h0(PXY ) = h(θ).

In [34, Prop. 2] it has been shown that for every α ≥ 0,
there exist a pair (X,Y ) such that I(X;Y ) ≥ α and

ψ(X → Y ) ≥ log(I(X;Y ) + 1)− 1. (34)

Let (X,Y ) be as in [34, Prop. 2], i.e. (X,Y ) satisfies (34).
Then for such pair we have

H(Y |X)− log(I(X;Y ) + 1)− 4 ≤ h0(PXY ) (35)
≤ H(Y |X)− log(I(X;Y ) + 1) + 1. (36)

The lower bound in (35) follows from (31). For the upper
bound, we use (27) and (34) so that

I(U ;Y ) ≤ H(Y |X)− ψ(X → Y )

≤ H(Y |X)− log(I(X;Y ) + 1) + 1.

For such pair using (35) and (31) we can conclude that the
lower bound L0

2 = H(Y |X)− (log(I(X;Y ) + 1) + 4) is tight
within 5 bits.

B. Privacy-utility trade-off with non-zero leakage and per-
letter privacy constraints

In this section, we provide lower and upper bounds on the
privacy problems defined in (3), (4), (5), and (6). To do so, we
first introduce similar lemmas as Lemma 4 and Lemma 5 in
Appendix C, where we have replaced the mutual information
constraint, i.e., I(U ;X) = ε, with the weighted strong privacy
criterion 1 defined in (3) and (4). In the remaining part of this
work d(·, ·) corresponds to the total variation distance, i.e.,
d(P,Q) =

∑
x |P (x)−Q(x)|.

In the next proposition we find a lower bound on hw`ε (PXY )
using Lemma 10 and Lemma 11 which are provided in
Appendix C.
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Proposition 4. For any 0 ≤ ε <
√

2I(X;Y ) and pair of RVs
(X,Y ) distributed according to PXY supported on alphabets
X and Y we have

hw`ε (PXY ) ≥ max{L1
hw`(ε), L

2
hw`(ε)}, (37)

where

L1
hw`(ε) =H(Y |X)−H(X|Y ) +

ε2

2
,

L2
hw`(ε) =H(Y |X)− αH(X|Y ) +

ε2

2
−(1− α) (log(I(X;Y ) + 1) + 4) ,

with α = ε2

2H(X) .

Proof: The proof is provided in Appendix C.
Considering the lower bounds on hw`ε (PXY ) and hε(PXY ),

i.e., L1
hw`(ε) and L1

h(ε), derived in Proposition 4 and Theorem
2, we can conclude that in high privacy regimes the utility
attained by L1

hw`(ε) is lees than the utility achieved by L1
h(ε).

On the other hand, by letting ε̄ =
√

2ε, we have L1
hw`(ε̄) =

L1
h(ε) and L2

hw`(ε̄) = L2
h(ε). This means that the lower bounds

hw`ε (PXY ) and hε(PXY ), i.e., L1
hw`(ε), L2

hw`(ε), L1
h(ε), and

L2
h(ε), follow the same inequality as (19). In the next section,

we provide a lower bound on gw`ε (PXY ) by following the
same approach as in [13]. For more details about the proofs
and steps of approximation see [13, Section III].

Lower bound on gw`ε (PXY )

In [13], we show that g`ε(PXY ) can be approximated by a
linear program using information geometry concepts. Using
this result we can derive a lower bound for g`ε(PXY ). In this
part, we follow a similar approach to approximate gw`ε (PXY ),
which results in a lower bound. We emphasize that in contrast
with [13] PX,U (·, u) and PXPU (u) are not distribution vectors
since the sum of elements in both vectors equal to PU (u),
however, the approach to approximate gw`ε (PXY ) does not
change. Similar to [13], for sufficiently small ε, by using the
leakage constraint in gw`ε (PXY ), i.e., the weighted strong `1-
privacy criterion, we can rewrite PX,U (·, u) as a perturbation
of PXPU (u). Thus, for any u we can write PX,U (·, u) =
PXPU (u) + εJu, where Ju ∈ R|X | is a perturbation vector
and satisfies the following properties:

1T · Ju = 0, ∀u, (38)∑
u

Ju = 0 ∈ R|X |, (39)

1T · |Ju| ≤ 1, ∀u, (40)

where | · | corresponds to the absolute value of the vector. We
define matrix M ∈ R|X |×|Y|, which is used in the remaining
part, as follows: Let V be the matrix of right eigenvectors of
PX|Y , i.e., PX|Y = UΣV T and V = [v1, v2, ..., v|Y|], then
M is defined as

M ,
[
v1, v2, ..., v|X |

]T
.

Similar to [13, Proposition 2], we have the following result.

Proposition 5. In (1), it suffices to consider U such that |U| ≤
|Y|. Since the supremum in (1) is achieved, we can replace
the supremum by the maximum.

Proof: The proof follows the similar lines as the proof of
[13, Proposition 2]. The only difference is that the new convex
and compact set is as follows

Ψ=

{
y ∈ R|Y|+ |My=MPY +

ε

PU (u)
M

[
P−1
X|Y1

Ju
0

]
, Ju ∈ J

}
,

where J = {J ∈ R|X |+ | ‖J‖1 ≤ 1, 1T · J = 0} and
R+ corresponds to non-negative real numbers. Only non-zero
weights PU (u) are considered since in the other case the
corresponding PY |U (·|u) does not appear in H(Y |U).

Next, we show that PY |U (·|u) lies in a convex polytope. If
the Markov chain X − Y − U holds, for sufficiently small ε
and every u ∈ U , the vector PY |U (·|u) lies in the following
convex polytope

Su =

{
y ∈ R|Y|+ |My = MPY +

ε

PU (u)
M

[
P−1
X|Y1

Ju
0

]}
,

(41)

where Ju satisfies (38), (39), and (40). Furthermore, PU (u) >
0, otherwise PY |U (·|u) does not appear in I(Y ;U). To prove
(41) using the Markov chain X − Y − U , we have

PX|U=u − PX = PX|Y [PY |U=u − PY ] = ε
Ju

PU (u)
.

Thus, by following the similar lines as [13, Lemma 2] and
using the properties of Null(M ) as [13, Lemma 1], we have

MPY |U (·|u) = MPY +
ε

PU (u)
M

[
P−1
X|Y1

Ju
0

]
.

By using the same arguments as [13, Lemma 3], it can be
shown that any vector inside Su is a standard probability
vector. Thus, by using [13, Lemma 3] and (41) we have
following result.

Theorem 5. We have the following equivalency

min
PU|Y :X−Y−U

d(PX,U (·,u),PXPU (u))≤ε, ∀u∈U

H(Y |U) = min
PU , PY |U=u∈Su, ∀u∈U,∑

u PU (u)PY |U=u=PY ,
Jusatisfies (38), (39), and (40)

H(Y |U).

(42)

Furthermore, similar to [13, Proposition 3], it can be shown
that the minimum of H(Y |U) occurs at the extreme points
of the sets Su, i.e., for each u ∈ U , P ∗Y |U (·|u) that minmizes
H(Y |U) must belong to the extreme points of Su. To find
the extreme points of Su let Ω be the set of indices which
correspond to |X | linearly independent columns of M , i.e.,
|Ω| = |X | and Ω ⊂ {1, .., |Y|}. Let MΩ ∈ R|X |×|X| be
the submatrix of M with columns indexed by the set Ω.
Assume that Ω = {ω1, .., ω|X |}, where ωi ∈ {1, .., |Y|} and
all elements are arranged in an increasing order. The ωi-th
element of the extreme point V ∗Ω can be found as i-th element

of M−1
Ω (MPY + ε

PU (u)M

[
P−1
X|Y1

Ju
0

]
), i.e., for 1 ≤ i ≤ |X |

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3326070

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



13

we have

V ∗Ω(ωi) =

(
M−1

Ω MPY +
ε

PU (u)
M−1

Ω M

[
P−1
X|Y1

Ju
0

])
(i).

(43)

Other elements of V ∗Ω are set to be zero. Now we approximate
the entropy of V ∗Ω .
Let V ∗Ωu

be an extreme point of the set Su, then we have

H(PY |U=u) =

|Y|∑
y=1

−PY |U=u(y) log(PY |U=u(y))

= −(bu +
ε

PU (u)
auJu) + o(ε), (44)

with bu = lu
(
M−1

Ωu
MPY

)
, au =

lu

(
M−1

Ωu
M(1:|X |)P−1

X|Y1

)
∈ R1×|X|, lu =[

log
(
M−1

Ωu
MPY (i)

)]
i=1:|X | ∈ R1×|X|, and M−1

Ωu
MPY (i)

stands for i-th (1 ≤ i ≤ |X |) element of the vector
M−1

Ωu
MPY . Furthermore, M(1:|X |) stands for submatrix of

M with first |X | columns. The proof of (44) follows similar
lines as [13, Lemma 4] and is based on first order Taylor
expansion of log(1 + x). By using (44) we can approximate
(3) as follows.
For sufficiently small ε, the minimization problem in (42) can
be approximated as follows

min
PU (.),{Ju,u∈U}

−

 |Y|∑
u=1

PU (u)bu + εauJu

 (45)

subject to:
|Y|∑
u=1

PU (u)V ∗Ωu
= PY ,

|Y|∑
u=1

Ju = 0, PU ∈ R|Y|+ .

1T |Ju| ≤ 1, 1T · Ju = 0, ∀u ∈ U ,

The proof of (45) follows directly from (44) and the fact that
the minimum of H(Y |U) occurs at the extreme points of the
sets Su. Thus, for PY |U=u = V ∗Ωu

, u ∈ {1, .., |Y|}, where V ∗Ωu

is defined in (43), H(Y |U) can be approximated as follows

H(Y |U)=
∑
u

PU (u)H(PY |U=u)∼=
|Y|∑
u=1

PU (u)bu+εauJu.

By using the vector ηu = PU (u)
(
M−1

Ωu
MPY

)
+

ε
(
M−1

Ωu
M(1 : |X |)P−1

X|Y1

)
(Ju) for all u ∈ U , where ηu ∈

R|X |, we can write (45) as a linear program. The vector ηu
corresponds to multiple of non-zero elements of the extreme
point V ∗Ωu

, furthermore, PU (u) and Ju can be uniquely found
as

PU (u) = 1T · ηu,

Ju =
PX|Y1

M(1 : |X |)−1MΩu
[ηu−(1T ηu)M−1

Ωu
MPY ]

ε
.

By solving the linear program we obtain PU and Ju for all
u, thus, PY |U (·|u) can be computed using (43). Let P ∗U |Y

be found by the linear program, which solves (45), and let
I(U∗;Y ) be evaluated by this kernel. Then we have

gw`ε (PXY ) ≥ I(U∗;Y ) = L1
gw`(ε). (46)

The proof directly follows since the kernel P ∗U |Y that achieves
the approximate solution satisfies the constraints in (1). In the
next result we present lower and upper bounds of gw`ε (PXY )
and hw`ε (PXY ).

Theorem 6. For sufficiently small ε ≥ 0 and any pair of RVs
(X,Y ) distributed according to PXY supported on alphabets
X and Y we have

L1
gw`(ε) ≤ gw`ε (PXY ),

and for any ε ≥ 0 we obtain

gw`ε (PXY ) ≤ ε|Y||X |
minPX

+H(Y |X) = Ugw`(ε),

gw`ε (PXY ) ≤ hw`ε (PXY ).

Furthermore, for any 0 ≤ ε ≤
√

2I(X;Y ) we have

max{L1
hw`(ε), L

2
hw`(ε)} ≤ hw`ε (PXY ),

where L1
hw`(ε) and L2

hw`(ε) are defined in Proposition 4.

Proof: The proof is provided in Appendix C.
In the next section we provide upper and lower bounds for

g`ε(PXY ) and h`ε(PXY ).

Lower and Upper bounds on g`ε(PXY ) and h`ε(PXY )

As we mentioned earlier in [13], we have provided an
approximate solution for g`ε(PXY ) using a local approximation
of H(Y |U) for sufficiently small ε. Furthermore, in [13,
Proposition 8] we specified permissible leakages. By using
[13, Proposition 8], we can write

g`ε(PXY ) = sup
PU|Y :X−Y−U

d(PX|U (·|u),PX)≤ε, ∀u

I(Y ;U)

= max
PU|Y :X−Y−U

d(PX|U (·|u),PX)≤ε, ∀u
|U|≤|Y|

I(Y ;U). (47)

In the next lemma we find a lower bound for g`ε(PXY ),
where we use the approximate problem for (5). Let the kernel
PU∗|Y achieve the optimum solution in [13, Theorem 2].
Thus, I(U∗;Y ) evaluated by this kernel is a lower bound for
g`ε(PXY ). In other words, we have

g`ε(PXY ) ≥ I(U∗;Y ) = L1
g`(ε). (48)

The proof follows since the kernel P ∗U |Y that achieves the
approximate solution satisfies the constraints in (5). Next we
provide upper bounds for g`ε(PXY ). To do so, we first bound
the approximation error in [13, Theorem 2]. Let Ω1 be the
set of all Ωi ⊂ {1, .., |Y|}, |Ωi| = |X |, such that each Ωi
produces a valid standard distribution vector M−1

Ωi
MPY , i.e.,

all elements in the vector M−1
Ωi
MPY are positive.
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Proposition 6. Let the approximation error be the distance
between H(Y |U) and the approximation derived in [13,
Theorem 2]. Then, for all ε < 1

2ε2, we have

|Approximation error| < 3

4
.

Furthermore, for all ε < 1
2

ε2√
|X |

the upper bound can be

strengthened as follows

|Approximation error| < 1

2(2
√
|X | − 1)2

+
1

4|X |
.

where ε2 =
miny,Ω∈Ω1 M

−1
Ω MPY (y)

maxΩ∈Ω1 |σmax(HΩ)| , HΩ = M−1
Ω M(1 :

|X |)P−1
X|Y1

and σmax is the largest right singular value.

Proof: The proof is provided in Appendix C.
As a result we can find an upper bound on g`ε(PXY ). To do

so let approx(g`ε) be the value that the kernel PU∗|Y in (48)
achieves, i.e., the approximate value in [13, (7)].

Corollary 3. For any 0 ≤ ε < 1
2ε2 we have

g`ε(PXY ) ≤ approx(g`ε) +
3

4
= U1

g`(ε),

furthermore, for any 0 ≤ ε < 1
2

ε2√
|X |

the upper bound can be

strengthened as

g`ε(PXY )≤ approx(g`ε) +
1

2(2
√
|X | − 1)2

+
1

4|X |
=U2

g`(ε).

In the next theorem we summarize the bounds for g`ε(PXY )
and h`ε(PXY ), furthermore, a new upper bound for h`ε(PXY )
is derived.

Theorem 7. For any 0 ≤ ε < 1
2ε2 and pair of RVs (X,Y )

distributed according to PXY supported on alphabets X and
Y we have

L1
g`(ε) ≤ g

`
ε(PXY ) ≤ U1

g`(ε),

where L1
g`

(ε) is defined in (48) and for any 0 ≤ ε < 1
2

ε2√
|X |

we get

L1
g`(ε) ≤ g

`
ε(PXY ) ≤ U2

g`(ε),

furthermore, for any 0 ≤ ε

g`ε(PXY ) ≤ h`ε(PXY ) ≤ ε2

minPX
+H(Y |X) = Uh`(ε).

Proof: It is sufficient to show that the upper bound
on h`ε(PXY ) holds, i.e., Uh`(ε). To do so, let U satisfy
d(PX|U (·|u), PX) ≤ ε, then we have

I(U ;Y ) = I(X;U)+H(Y |X)−I(X;U |Y )−H(Y |X,U)

≤ I(X;U)+H(Y |X)

(a)

≤
∑
u

PU (u)

(
d(PX|U (·|u),PX)

)2
minPX

+H(Y |X)

=
ε2

minPX
+H(Y |X),

where (a) follows by the reverse Pinsker inequality.
In next section we study the special case where X is a

deterministic function of Y , i.e., H(X|Y ) = 0.

Special case: X is a deterministic function of Y

In this case we have

hw`ε (PXY ) = gw`ε (PXY ) (49)
= max

PU|Y :X−Y−U
d(PX,U (·,u),PXPU (u))≤ε, ∀u

|U|≤|Y|

I(Y ;U)

= sup
PU|Y :d(PX,U (·,u),PXPU (u))≤ε, ∀u

|U|≤|Y|

I(Y ;U),

h`ε(PXY ) = g`ε(PXY ) (50)
= max

PU|Y :X−Y−U
d(PX|U (·|u),PX)≤ε, ∀u

|U|≤|Y|

I(Y ;U)

= sup
PU|Y :d(PX|U (·|u),PX)≤ε, ∀u

|U|≤|Y|

I(Y ;U),

since the Markov chain X − Y − U holds. Consequently, by
using Theorem 2 and (49) we have the next corollary.

Corollary 4. For any 0 ≤ ε ≤
√

2I(X;Y ) we have

max{L1
hw`(ε), L

2
hw`(ε), L

1
gw`(ε)} ≤ gw`ε (PXY ) ≤ Ugw`(ε).

We can see that the bounds in Corollary 4 are asymptotically
optimal. The latter follows since in the high privacy regime,
i.e., the leakage tends to zero, Ugw`(ε) and L1

hw`(ε) both
tend to H(Y |X), which is the optimal solution to g0(PXY )
when X is a deterministic function of Y , [16, Theorem 6].
Furthermore, by using Theorem 3 and (50) we obtain the next
result.

Corollary 5. For any 0 ≤ ε < 1
2ε2 we have

L1
g`(ε) ≤ g

`
ε(PXY ) ≤ min{U1

g`(ε), Uh`(ε)}.

Remark 9. For deriving the upper bound Uh`(ε) and lower
bounds L1

hw`(ε) and L2
hw`(ε) we do not use the assumption

that the leakage matrix PX|Y is of full row rank. Thus, these
bounds hold for all PX|Y and all ε ≥ 0.

Next result shows a property of the optimizers of hw`ε (PXY )
and h`ε(PXY ).

Proposition 7. Let Ū1 and Ū2 be any optimizers of hw`ε (PXY )
and h`ε(PXY ), respectively. Then we have

H(Y |X, Ū1) = H(Y |X, Ū2) = 0.

Proof: The proof follows similar arguments as for
Lemma 7. In the proof of Lemma 7, instead of Ū use Ū1

and let U ′ be produced in a similar way. The only difference
is that instead of showing I(U ;X) ≤ ε, we need to show that
d(PX,U (·, u), PXPU (u)) ≤ ε for all u, where U = (U ′, Ū1).
The latter holds since U ′ is independent of (Ū1, X) and Ū1

satisfies the strong privacy criterion 1. The same proof works
for Ū2.

In the next part, we study a numerical example to illustrate
the new bounds.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3326070

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



15

Fig. 3. Comparing the upper and lower bounds on gε(PXY ), hε(PXY ), g`ε(PXY ), h`ε(PXY ), gw`ε (PXY ), and hw`ε (PXY ). The upper bounds U1
g`
(ε)

and U2
g`
(ε) are valid for ε < 0.0171 and ε < 0.0121, respectively. On the other hand, the upper bound Uh` (ε) is valid for all ε ≥ 0.

Example

Let us consider RVs X and Y with joint distribution

PXY =

[
0.693 0.027 0.108 0.072
0.006 0.085 0.004 0.005

]
. Using the definition

of ε2 in Proposition 6 we have ε2 = 0.0341. Fig. 3 illustrates
the lower and upper bounds on gε(PXY ), hε(PXY ), g`ε(PXY ),
h`ε(PXY ), gw`ε (PXY ), and hw`ε (PXY ) derived in Theorem 2,
Theorem 6, and Theorem 7. As shown in Fig. 3, the upper
bounds U1

g`(ε) and U2
g`(ε) are valid for ε < 0.0171 and

ε < 0.0121, however the upper bound Uh`(ε) is valid for
all ε ≥ 0. In this example, considering the upper bounds in
Theorem 7, we can see that for any ε the upper bound Uh`(ε)
is the smallest upper bound for g`ε(PXY ). Furthermore, the
upper and lower bounds on g`ε(PXY ), h`ε(PXY ), i.e., Lgw`(ε),
Ugw`(ε) and L1

hw`(ε) obtained in Theorem 6 are illustrated. We
can see that L1

hw`(ε) ≥ Lgw`(ε). The lower bound L2
hw`(ε) is

not shown in Fig. 3 since in this particular privacy range, the
term (1 − α)(log(I(X;Y ) + 1) + 4) outweighs the value of
H(Y |X). As a result, including it as a lower bound would not
be meaningful or effective. Likewise, the lower bound L2

h(ε)
on hε(PXY ) is also not shown in Fig. 3. More comparisons can
be made by utilizing the relationships established in Section
III, e.g., (19), (20), (22), (23), (25), and (26). For instance, we
can see that Lgw`(ε) ≥ Lg`(ε). This result can be motivated by
examining the relationship between gw`ε (PXY ) and g`ε(PXY )
as derived in equation (26). It is important to note that (26)
does not imply Lgw`(ε) ≥ Lg`(ε). However, by considering
the inequality Lgw`(ε) ≥ Lg`(ε), we can assess the behavior
and effectiveness of the respective lower bounds utilizing (26).
In other words, “good” lower and upper bounds on g`ε(PXY )
and gw`ε (PXY ) must satisfy (26). If they do not meet this
requirement, it becomes necessary to consider both bounds
on g`ε(PXY ) and gw`ε (PXY ) simultaneously. Along the same
lines, we can also see that U1

h(ε) ≥ Uh`(ε) which is motivated
by (22). This follows since in this privacy regime we have

ε′ = ε2

minPX
≤ ε (minPX = 0.1) which results in

h`ε(PXY ) ≤ hε′(PXY ) ≤ hε(PXY ).

To compare L1
hw`(ε) and L1

h(ε), using Theorem 2 and Theo-
rem 6 we have

L1
hw`(ε̄) = L1

h(ε),

where ε̄ =
√

2ε. This result also fulfills (19) and can be seen
in Fig. 3. Next, we provide an example that demonstrates the
dominance of the lower bound U2

g`(ε) over other lower bounds,
such as Uh`(ε) and U1

g`(ε), for g`ε .

Let PXY =

[
0.350 0.025 0.085 0.040
0.025 0.425 0.035 0.015

]
. In this case,

ε2 = 0.1994. Fig. 4 illustrates the lower and upper bounds
for g`ε(PXY ) and gw`ε (PXY ). We can see that for ε < 0.0705,
U2
g`(ε) is the smallest upper bound and for ε > 0.0705, Uh`(ε)

is the smallest upper bound on g`ε(PXY ). As a result both
lower bounds Uh`(ε) and U2

g`(ε) can be used for g`ε(PXY ).
Moreover, it can be seen that U1

g`(ε) ≤ Ugw`(ε) and L1
g`(ε) ≤

Lgw`(ε). Likewise, these inequalities can be examined using
(20).

C. Privacy-utility trade-off with non-zero leakage and priori-
tized private data

In this part we find lower and upper bounds for hpε (PX1X2Y )
defined in (8). To find lower bounds we use similar techniques
as used in Theorem 2 and Proposition 4, i.e., we use extended
versions of FRL and SFRL for correlated (X1, X2) and U .

Theorem 8. For any 0 ≤ ε and RVs (X1, X2, Y ) distributed
according to PX1X2Y supported on alphabets X1, X2 and Y
we have

max{L1
hp(ε), L2

hp(ε), L3
hp(ε)} ≤ hpε (PX1X2Y ) ≤ U1

hp(ε),
(51)
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Fig. 4. Comparing the upper and lower bounds for gw`ε (PXY ) and g`ε(PXY ). The upper bounds U1
g`
(ε) and U2

g`
(ε) are valid for ε < 0.0997 and

ε < 0.0705, respectively. However, the upper bound Uh` (ε) is valid for all ε ≥ 0.

where

L1
hp(ε) = ε+H(Y |X1, X2)−H(X1, X2|Y ),

L2
hp(ε) = ε+H(Y |X1, X2)− αH(X2|Y )

− (log(I(X1, X2;Y ) + 1) + 4) ,

L3
hp(ε) = ε+H(Y |X1, X2)− αH(X1, X2|Y )

− (1− α) (log(I(X1, X2;Y ) + 1) + 4) ,

U1
hp(ε) = ε+H(Y |X1, X2),

with α = ε
H(X2) .

Proof: The proof is provided in Appendix D.
To compare the lower bounds L1

hp(ε), L2
hp(ε), and L3

hp(ε)
we consider four cases as follows.
Case 1: Let X1 be a deterministic function of Y , then we have
H(X1, X2|Y ) = H(X2|Y ). Hence, in this case L1

hp(ε) ≥
L3
hp(ε) ≥ L2

hp(ε).
Case 2: Let X2 be a deterministic function of Y and assume
that 4 +H(Y ) ≤ H(X1|Y ). In this case, we have

L2
hp(ε)− L3

hp(ε)

= α (H(X1|Y )− log(I(X1;Y ) +H(X2|X1) + 1)− 4)

(a)

≥ α (H(X1|Y )− I(X1;Y )−H(X2|X1)− 4)

(b)

≥ α (H(X1|Y )− I(X1;Y )−H(Y |X1)− 4)

= α (H(X1|Y )−H(Y )− 4)

≥ 0, (52)

where (a) follows since log(1+x) ≤ x and in step (b) we use
H(X2|X1) ≤ H(Y |X1) since H(X2|Y ) = 0. Furthermore,

L2
hp(ε)− L1

hp(ε)

= H(X1|Y )− log(I(X1;Y ) +H(X2|X1) + 1)− 4

≥ H(X1|Y )− I(X1;Y )−H(X2|X1)− 4

≥ H(X1|Y )− I(X1;Y )−H(Y |X1)− 4

= H(X1|Y )−H(Y )− 4

≥ 0. (53)

So, in this case L2
hp(ε) ≥ max(L1

hp(ε), L3
hp(ε)).

Case 3: Let Y be independent of (X1, X2) and assume
H(X1, X2) ≥ 4. In this case we have L2

hp(ε) ≥ L1
hp(ε) and

L3
hp(ε) ≥ L1

hp(ε).
Case 4: Let X1 be a deterministic function of X2 and
H(X2|Y ) ≥ log(I(X2;Y )+1)+4. A simple example can be
letting X1 = f(X2) and H(X2|Y ) ≥ H(X2)

2 +2 which results
in H(X2|Y ) ≥ log(I(X2;Y ) + 1) + 4 using log(x+ 1) ≤ x.
Note that considering X1 = f(X2) does not violate the
priority constraint I(U ;X1) ≤ I(U ;X2), since in this case
the inequality holds for any U . We have

L3
hp(ε)− L2

hp(ε)

= ε
H(X2|Y )

H(X2)
+ ε

log(I(X2;Y ) + 1) + 4

H(X2)
− εH(X2|Y )

H(X2)

= ε
log(I(X2;Y ) + 1) + 4

H(X2)

≥ 0.

Furthermore,

L3
hp(ε)− L1

hp(ε)

= (1− α) (H(X2|Y )− log(I(X2;Y ) + 1)− 4)

≥ 0.

Hence, in this case L3
hp(ε) ≥ max{L2

hp(ε), L1
hp(ε)}. The

upper bound U1
hp(ε) is attained whenever the pair (X1, X2) is

a deterministic function of Y . In this case U1
hp(ε) = L1

hp(ε).
Next we compare the bounds obtained in Theorem 8 and
Theorem 2. As we outlined in Section III, lower bounds on
hpε (PX1X2Y ) can be used as lower bounds on hpε (PX1X2Y )
since we have hpε (PX1X2Y ) ≤ hε(PX1X2Y ). Let X =
(X1, X2), using Lemma 6, Theorem 2, and Theorem 8 we
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have

L1
hp(ε) = L1

h(ε), (54)

U1
hp(ε) = U1

h(ε). (55)

In the following we consider two scenarios to compare L3
hp(ε)

and L2
hp(ε) with L2

h(ε).
Scenario 1: To compare L3

hp(ε) with L2
h(ε), let us assume

that H(X1, X2|Y ) ≤ log(I(X1, X2;Y ) + 1) + 4. A simple
example can be considering X1 and X2 as binary RVs. In this
case we have

L3
hp(ε)− L2

h(ε)

= β (log(I(X1, X2;Y ) + 1) + 4−H(X1, X2|Y ))

≥ 0,

where β = ε( 1
H(X2) −

1
H(X1,X2) ).

Scenario 2: To compare L2
hp(ε) with L2

h(ε), let us assume
that X2 is a deterministic function of Y and H(X1|Y ) ≥
log(I(X1, X2;Y )+1)+4. As we pointed out earlier a simple
example is to let 4 + H(Y ) ≤ H(X1|Y ) which leads to
H(X1|Y ) ≥ log(I(X1, X2;Y ) + 1) + 4. In this case we have

L2
hp(ε)− L2

h(ε)

= β (H(X1|Y )− log(I(X1, X2;Y ) + 1)− 4)

≥ 0,

where β = ε
H(X1,X2) . Moreover, by using (52), (53), and (54)

we have

L2
hp(ε) ≥ max{L2

h(ε), L3
hp(ε), L1

hp(ε) = L1
h(ε)}.

Consequently, in this scenario L2
hp(ε) can improve the lower

bounds L1
h(ε) and L2

h(ε) that are derived for hε(PX1X2Y ).
Using the comparisons between the lower bounds on
hε(PX1X2Y ) and hpε (PX1X2Y ), we can conclude that in some
scenarios randomizing over X2 can achieve better utilities
compared to randomizing over (X1, X2).
Similar to Lemma 7 and Proposition 7 it can be shown that if
Ũ is an optimizer of hpε (PX1X2Y ), then Y is a deterministic
function of Ũ and (X1, X2).

Proposition 8. Let Ũ be an optimizer of hpε (PX1X2Y ), then

H(Y |X1, X2, Ũ) = 0.

Proof: The proof follows similar arguments as in
Lemma 7. Let Ũ be an optimizer of hpε (PX1,X2,Y ) and
H(Y |X1, X2, Ũ) > 0. Consequently, I(X1, X2; Ũ) ≤ ε and
I(X1; Ũ) ≤ I(X2; Ũ). Let U ′ be produced by FRL using
(X1, X2, Ũ) instead of X in Lemma 1 and same Y . Thus,
I(Y ;U ′) > 0 and by letting U = (U ′, Ũ) and using similar
arguments as in Lemma 7 we have I(Y ;U) > I(Y ; Ũ).
Furthermore,

I(X1, X2, U)
(a)
= I(X1, X2; Ũ) ≤ ε,

I(X1;U)
(b)
= I(X1; Ũ) ≤ I(X2; Ũ)

(c)
= I(X2;U),

where (a), (b) and (c) follow from the fact that U ′ is indepen-
dent of (X1, X2, Ũ). Thus, U achieves strictly larger utility
than Ũ which contradicts the optimality of Ũ .

V. CONCLUSION

Different information theoretic data disclosure problems
have been studied in this work. The FRL and SRFL have
been extended by relaxing the independence constraint and
allowing certain amount of leakage using different privacy
measures. It has been shown that by using extended versions
of the FRL and SFRL lower bounds on privacy-utility trade-
off functions can be derived. The results are useful since the
proofs are constructive and therefore valuable for mechanism
design and the bounds on optimality serve as a benchmark.
Concepts from information geometry can be used to find lower
bounds on privacy-utility trade-off functions considering the
hidden private data scenario when per-letter privacy constraints
(strong privacy criterions) are used.
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perfect sample privacy,” in 2018 IEEE International Workshop on
Information Forensics and Security, Dec 2018, pp. 1–7.

[26] S. Asoodeh, M. Diaz, F. Alajaji, and T. Linder, “Estimation efficiency
under privacy constraints,” IEEE Transactions on Information Theory,
vol. 65, no. 3, pp. 1512–1534, March 2019.

[27] F. P. Calmon and N. Fawaz, “Privacy against statistical inference,” in
2012 50th Annual Allerton Conference on Communication, Control, and
Computing, Oct 2012, pp. 1401–1408.

[28] E. Nekouei, T. Tanaka, M. Skoglund, and K. H. Johansson, “Information-
theoretic approaches to privacy in estimation and control,” Annual
Reviews in Control, 2019.

[29] H. Yamamoto, “A source coding problem for sources with additional
outputs to keep secret from the receiver or wiretappers (corresp.),” IEEE
Transactions on Information Theory, vol. 29, no. 6, pp. 918–923, 1983.

[30] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in 3rd Conf. Theory Cryptogr.
Berlin, Germany: Springer, 2006, pp. 265–284.

[31] C. Dwork, “Differential privacy,” Bugliesi M., Preneel B., Sassone V.,
Wegener I. (eds) Automata, Languages and Programming. ICALP 2006.
Lecture Notes in Computer Science, vol. 4052.

[32] P. Cuff and L. Yu, “Differential privacy as a mutual information
constraint,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, 2016, pp. 43–54.

[33] S. Asoodeh, M. Diaz, F. Alajaji, and T. Linder, “Information extraction
under privacy constraints,” Information, vol. 7, no. 1, 2016. [Online].
Available: https://www.mdpi.com/2078-2489/7/1/15

[34] C. T. Li and A. El Gamal, “Strong functional representation lemma and
applications to coding theorems,” IEEE Transactions on Information
Theory, vol. 64, no. 11, pp. 6967–6978, 2018.

[35] S. L. Warner, “Randomized response: A survey technique for eliminating
evasive answer bias,” Journal of the American Statistical Association,
vol. 60, no. 309, pp. 63–69, 1965.

[36] S. Borade and L. Zheng, “Euclidean information theory,” in 2008 IEEE
International Zurich Seminar on Communications, 2008, pp. 14–17.

[37] S. L. Huang and L. Zheng, “Linear information coupling problems,” in
2012 IEEE International Symposium on Information Theory Proceed-
ings. IEEE, 2012, pp. 1029–1033.

[38] Y. Polyanskiy and Y. Wu, “Lecture notes on information theory,” Lecture
Notes for ECE563 (UIUC) and, vol. 6, no. 2012-2016, p. 7, 2014.

[39] S. Asoodeh, F. Alajaji, and T. Linder, “Privacy-aware mmse estimation,”
in 2016 IEEE International Symposium on Information Theory (ISIT),
2016, pp. 1989–1993.

[40] T. Berger and R. W. Yeung, “Multiterminal source encoding with
encoder breakdown,” IEEE Transactions on Information Theory, vol. 35,
no. 2, pp. 237–244, March 1989.

[41] A. Wyner, “The common information of two dependent random vari-
ables,” IEEE Transactions on Information Theory, vol. 21, no. 2, pp.
163–179, 1975.

[42] R. Ahlswede and J. Körner, On common information and related
characteristics of correlated information sources. Springer, 2006.
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APPENDIX A

Proofs for Section II and Section III:

Proof of Proposition 1: For each u ∈ U we have

L1(X;U = u) = d(PX|U=u(·|u), PX)

= d(PX|Y PY |U=u(·|u), PX|Y PY )

=
∑
x

|
∑
y

PX|Y (x, y)(PY |U=u(y)−PY (y))|

(a)

≤
∑
x

∑
y

PX|Y (x, y)|PY |U=u(y)− PY (y)|

=
∑
y

∑
x

PX|Y (x, y)|PY |U=u(y)− PY (y)|

=
∑
y

|PY |U=u(y)− PY (y)|

= d(PY |U=u(·|u), PY ) = L1(Y ;U = u),

where (a) follows from the triangle inequality. Furthermore,
we can multiply all the above expressions by the term PU (u)
and we obtain

L2(X;U = u) ≤ L2(Y ;U = u).

Proof of (18): We have

ε ≥ I(U ;X) =
∑
u

PU (u)D(PX|U (·|u), PX)

(a)

≥
∑
u

PU (u)

2

(
d(PX|U (·|u), PX)

)2
≥
(
PU (u)d(PX|U (·|u), PX)

)2
2

where (a) follows by the Pinsker’s inequality [44].
Proof of (21): We have

I(X;U)
(a)

≤
∑
u

PU (u)

(
d(PX|U (·|u), PX)

)2
minPX

≤
∑
u

PU (u)

(
ε2

minPX

)
=

ε2

minPX
,

where (a) follows by the reverse Pinsker’s inequality [44].
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APPENDIX B
Proofs for Privacy-utility trade-off with non-zero leakage:

Proof of Lemma 4: Let Ũ be the RV found by FRL and let

W =

{
X, w.p. α
c, w.p. 1− α

, where c is a constant which does

not belong to the support of X and Y and α = ε
H(X) . We

show that U = (Ũ ,W ) satisfies the conditions. We have

I(X;U) = I(X; Ũ ,W )

= I(Ũ ;X) + I(X;W |Ũ)

(a)
= H(X)−H(X|Ũ ,W )

= H(X)− αH(X|Ũ ,X)− (1− α)H(X|Ũ , c)
= H(X)− (1− α)H(X) = αH(X) = ε,

where in (a) we used the fact that X and Ũ are independent.
Furthermore,

H(Y |X,U) = H(Y |X, Ũ ,W )

= αH(Y |X, Ũ) + (1− α)H(Y |X, Ũ , c)
= H(Y |X, Ũ) = 0.

In the last line we used the fact that Ũ is produced by FRL.
Proof of Lemma 5: Let Ũ be the RV found by SFRL
and W be the same RV which is used to prove Lemma 4.
It is sufficient to show that I(X;U |Y ) ≤ αH(X|Y ) +
(1 − α) [log(I(X;Y ) + 1) + 4] since all other properties are
already proved in Lemma 3. We have

I(X; Ũ ,W |Y ) = I(X; Ũ |Y ) + I(X,W |Ũ , Y )

(a)
= I(X; Ũ |Y ) + αH(X|Ũ , Y )

= I(X; Ũ |Y ) + α(H(X|Y )− I(X; Ũ |Y ))

= αH(X|Y ) + (1− α)I(X; Ũ |Y )

(b)

≤ αH(X|Y )+(1−α)[log(I(X;Y )+1)+4] ,

where in step (a) we used the fact that

I(X,W |Ũ , Y ) = H(X|Ũ , Y )−H(X|W, Ũ, Y )

= H(X|Ũ , Y )− (1− α)H(X|Ũ , Y )

= αH(X|Ũ , Y ),

and (b) follows since Ũ is produced by SFRL.

Lemma 8. For any pair of RVs (X,Y ) distributed according
to PXY supported on alphabets X and Y , where |X | is finite
and |Y| is finite or countably infinite, there exists RV U such
that it satisfies (11), (12), and

H(U) ≤
∑
x∈X

H(Y |X = x) + ε+ h(α)

with α = ε
H(X) and h(·) denotes the binary entropy function.

Proof: Let U = (Ũ ,W ) where W is the same RV used
in Lemma 4 and Ũ is produced by FRL which has the same
construction as used in proof of [16, Lemma 1]. Thus, by using
[16, Lemma 2] we have

H(Ũ) ≤
∑
x∈X

H(Y |X = x),

therefore,

H(U) = H(Ũ ,W ) ≤ H(Ũ) +H(W ),

≤
∑
x∈X

H(Y |X = x) +H(W ),

where,

H(W )= −(1− α) log(1− α)−
∑
x∈X

αPX(x) log(αPX(x)),

= h(α) + αH(X),

which completes the proof.
Proof of Theorem 1: For proving the first part let

hε(PXY ) > ε. Using (27) we have

ε < hε(PXY ) ≤ H(Y |X) + sup
U :I(X;U)≤ε

I(X;U)

= H(Y |X) + ε⇒ 0 < H(Y |X).

For the second part let H(Y |X) > 0. Using [33, Lemma 1]
we have

hε(PXY ) ≥ gε(PXY ) ≥ ε H(Y )

I(X;Y )
. (56)

Using H(Y |X) > 0 we have H(Y )
I(X;Y ) > 1 which results in

hε(PXY ) > ε.
Proof of Theorem 2: L3

h(ε) can be derived by using [33,
Remark 2], since we have hε(PXY ) ≥ gε(PXY ) ≥ L3

h(ε). For
deriving L1

h(ε), let U be produced by EFRL. Thus, using the
construction of U as in Lemma 4 we have I(X,U) = ε and
H(Y |X,U) = 0. Then, using (27) we obtain

hε(PXY ) ≥ I(U ;Y )

= I(X;U)+H(Y |X)−H(Y |U,X)−I(X;U |Y )

= ε+H(Y |X)−H(X|Y ) +H(X|Y, U)

≥ ε+H(Y |X)−H(X|Y ) = L1
h(ε).

For deriving L2
h(ε), let U be produced by ESFRL. Thus,

by using the construction of U as in Lemma 5 we have
I(X,U) = ε, H(Y |X,U) = 0 and I(X;U |Y ) ≤ αH(X|Y )+
(1−α) (log(I(X;Y ) + 1) + 4). Then, by using (27) we obtain

hε(PXY ) ≥ I(U ;Y )

= I(X;U)+H(Y |X)−H(Y |U,X)−I(X;U |Y )

= ε+H(Y |X)− I(X;U |Y )

≥ ε+H(Y |X)− αH(X|Y )

+ (1− α) (log(I(X;Y ) + 1) + 4) = L2
h(ε).

Let X be a deterministic function of Y . In this case, set ε = 0
in L1

h(ε) so that we obtain h0(PXY ) ≥ H(Y |X). Furthermore,
by using (27) we have h0(PXY ) ≤ H(Y |X). Moreover, since
X is a deterministic function of Y , the Markov chain X −
Y −U holds and we have h0(PXY ) = g0(PXY ) = H(Y |X).
Therefore, L3

h(ε) can be rewritten as

L3
h(ε) = ε

H(Y )

H(X)
+H(Y |X)

(
H(X)− ε
H(X)

)
,

= ε
H(Y )

H(X)
+ (H(Y )−H(X))

(
H(X)− ε
H(X)

)
,

= H(Y )−H(X) + ε.
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L2
h(ε) can be rewritten as follows

L2
h(ε) = H(Y |X) + ε− (1− ε

H(X)
)(log(H(X) + 1) + 4).

Thus, if H(X|Y ) = 0, then L1
h(ε) = L3

h(ε) ≥ L2
h(ε). Now

we show that L1
h(ε) = L3

h(ε) is tight. By using (27) we have

I(U ;Y )
(a)
= I(X;U) +H(Y |X)−H(Y |U,X),

≤ ε+H(Y |X) = L1
h(ε) = L3

h(ε).

where (a) follows since X is deterministic function of Y which
leads to I(X;U |Y ) = 0. Thus, if H(X|Y ) = 0, the lower
bound in (30) is tight. Now suppose that the lower bound
L1
h(ε) is tight and X is not a deterministic function of Y .

Let Ũ be produced by FRL using the construction of [16,
Lemma 1]. As argued in the proof of [16, Th. 6], there exists
x ∈ X and y1, y2 ∈ Y such that PX|Ũ,Y (x|ũ, y1) > 0 and
PX|Ũ,Y (x|ũ, y2) > 0 which results in H(X|Y, Ũ) > 0. Let
U = (Ũ ,W ) where W is defined in Lemma 4. For such U
we have

H(X|Y,U) = (1− α)H(X|Y, Ũ) > 0,

⇒ I(U ;Y )
(a)
= ε+H(Y |X)−H(X|Y ) +H(X|Y,U)

> ε+H(Y |X)−H(X|Y ).

where in (a) we used the fact that such U satisfies I(X;U) = ε
and H(Y |X,U) = 0. The last line is a contradiction with
tightness of L1

h(ε), since we can achieve larger values, thus,
X needs to be a deterministic function of Y .

Lemma 9. For any pair of RVs (X,Y ) distributed ac-
cording to PXY supported on alphabets X and Y , then
if U satisfies I(X;U) ≤ ε, H(Y |X,U) = 0 and |U| ≤
[|X |(|Y| − 1) + 1] [|X |+ 1], we have

sup
U
H(U)≥αH(Y |X)+(1− α)(max

x∈X
H(Y |X = x))

+h(α)+ε ≥ H(Y |X)+h(α)+ε,

where α = ε
H(X) and h(·) corresponds to the binary entropy.

Proof: Let U = (Ũ ,W ) where W =

{
X, w.p. α
c, w.p. 1− α

,

and c is a constant which does not belong to the support of
X , Y and Ũ , furthermore, Ũ is produced by FRL. Using (27)
and [16, Lemma 3] we have

H(Ũ |Y ) = H(Ũ)−H(Y |X) + I(X; Ũ |Y )

(a)

≥ max
x∈X

H(Y |X = x)−H(Y |X)

+H(X|Y )−H(X|Y, Ũ), (57)

where (a) follows from [16, Lemma 3]. Furthermore, in the
first line we used I(X; Ũ) = 0 and H(Y |Ũ ,X) = 0. Using

(27) we obtain

H(U)
(a)
= H(U |Y )+H(Y |X)−H(X|Y )+ε+H(X|Y,U),

(b)
= H(W |Y ) + αH(Ũ |Y,X) + (1− α)H(Ũ |Y )

+H(Y |X)−H(X|Y )+ε+ (1− α)H(X|Y, Ũ),

(c)
= (α− 1)H(X|Y ) + h(α) + αH(Ũ |Y,X) + ε

+ (1− α)H(Ũ |Y ) +H(Y |X) + (1− α)H(X|Y, Ũ),

(d)

≥ (α− 1)H(X|Y ) + h(α) + αH(Ũ |Y,X)

+ (1− α)(max
x∈X

H(Y |X = x)−H(Y |X) +H(X|Y )

−H(X|Y, Ũ)) +H(Y |X) + ε+ (1− α)H(X|Y, Ũ)

= αH(Y |X) + (1− α)(max
x∈X

H(Y |X = x)) + h(α) + ε.

In step (a) we used I(U ;X) = ε and H(Y |X,U) = 0 and
in step (b) we used H(U |Y ) = H(W |Y ) + H(Ũ |Y,W ) =
H(W |Y )+αH(Ũ |Y,X)+(1−α)H(Ũ |Y ) and H(X|Y, U) =
H(X|Y, Ũ ,W ) = (1 − α)H(X|Y, Ũ). In step (c) we

used the fact that PW |Y =

{
αPX|Y (x|·) if w = x,

1− α if w = c,
since

PW |Y (w = x|·) =
PW,Y (w=x,·)

PY (·) =
PY |W (·|w=x)PW (w=x)

PY (·) =
PY |X(·|x)αPX(x)

PY (·) = αPX|Y (x|·), furthermore, PW |Y (w =

c|·) = 1 − α. Hence, after some calculation we obtain
H(W |Y ) = h(α) +αH(X|Y ). Finally, step (d) follows from
(57).

Remark 10. The constraint |U| ≤
[|X |(|Y| − 1) + 1] [|X |+ 1] in Lemma 9 guarantees that
supU H(U) <∞.

Proof of Theorem 3:
• i ⇒ ii: Using Lemma 6 we have H(Y |X) + ε =
gε(PXY ) ≤ hε(PXY ) ≤ H(Y |X) + ε. Thus, gε(PXY ) =
hε(PXY ).

• ii ⇒ iii: Let Ū be an optimizer of gε(PXY ). Thus, the
Markov chain X−Y−Ū holds and we have I(X; Ū |Y ) =
0. Furthermore, since gε(PXY ) = hε(PXY ) this Ū
achieves hε(PXY ). Thus, by using Lemma 7 we have
H(Y |Ū ,X) = 0 and according to (27)

I(Ū ;Y )=I(X; Ū)+H(Y |X)−H(Y |Ū,X)−I(X; Ū |Y )

=I(X; Ū)+H(Y |X). (58)

We claim that Ū must satisfy I(X;Y |Ū) > 0
and I(X; Ū) = ε. For the first claim assume that
I(X;Y |Ū) = 0, hence the Markov chain X − Ū − Y
holds. Using X − Ū − Y and H(Y |Ū ,X) = 0 we have
H(Y |Ū) = 0, hence Y and Ū become independent.
Using (58)

H(Y ) = I(Y ; Ū) = I(X; Ū)+H(Y |X),

⇒ I(X; Ū) = I(X;Y ).

The last line is a contradiction since by assump-
tion we have I(X; Ū) ≤ ε < I(X;Y ). Thus,
I(X;Y |Ū) > 0. For proving the second claim assume
that I(X; Ū) = ε1 < ε. Let U = (Ū ,W ) where W =
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Y, w.p. α
c, w.p. 1− α

, and c is a constant that c /∈ X∪Y∪Ū

and α = ε−ε1
I(X;Y |Ū)

. We show that ε−ε1
I(X;Y |Ū)

< 1. By the
assumption we have

ε− ε1
I(X;Y |Ū)

<
I(X;Y )− I(X; Ū)

I(X;Y |Ū)

(a)

≤ 1,

where step (a) follows since I(X;Y ) − I(X; Ū) −
I(X;Y |Ū) = I(X;Y )− I(X;Y, Ū) ≤ 0. It can be seen
that such U satisfies H(Y |X,U) = 0 and I(X;U |Y ) = 0
since

H(Y |X,U) = αH(Y |X, Ū , Y )

+ (1− α)H(Y |X, Ū) = 0,

I(X;U |Y ) = H(X|Y )−H(X|Y, Ū ,W )

= H(X|Y )− αH(X|Y, Ū)

− (1− α)H(X|Y, Ū)

= H(X|Y )−H(X|Y )

= 0,

where in deriving the last line we used the Markov chain
X − Y − Ū . Furthermore,

I(X;U) = I(X; Ū ,W ) = I(X; Ū) + I(X;W |Ū)

= I(X; Ū) + αH(X|Ū)− αH(X|Ū , Y )

= I(X; Ū) + αI(X;Y |Ū)

= ε1 + ε− ε1
= ε,

and

I(Y ;U)=I(X;U)+H(Y |X)−H(Y |U,X)−I(X;U |Y )

=ε+H(Y |X).

Thus, if I(X; Ū) = ε1 < ε we can substitute Ū by U
for which I(U ;Y ) > I(Ū ;Y ). This is a contraction and
we conclude that I(X; Ū) = ε which proves the second
claim. Hence, (58) can be rewritten as

I(Ū ;Y ) = ε+H(Y |X).

As a result hε(PXY ) = ε + H(Y |X) and the proof is
completed.

• iii ⇒ i: Let Ū be the optimizer of hε(PXY ) and
hε(PXY ) = H(Y |X) + ε. Using Lemma 7 we have
H(Y |Ū ,X) = 0. By using (27) we must have
I(X; Ū |Y ) = 0 and I(X; Ū) = ε. We conclude that
for this Ū , the Markov chain X − Y − Ū holds and as
a result Ū achieves gε(PXY ) and we have gε(PXY ) =
H(Y |X) + ε.

Proof of (32): To prove (32) we use the Wyner notion of
common information. Using (17) we know that C(X;Y ) ≥
I(X;Y ), hence, it remains to show that I(X;Y ) is achievable.
Let H(X|Y ) = 0 and U = X which satisfies I(X;Y |U) = 0.
We have

I(U ;X,Y ) = I(X;X,Y ) = H(X)
(a)
= I(X,Y ).

where (a) follows by H(X|Y ) = 0.
Proof of Lemma 7: Let Ū be an optimizer of hε(PXY )
and assume that H(Y |X, Ū) > 0. Consequently, we have
I(X; Ū) ≤ ε. Let U ′ be founded by FRL with (X, Ū) instead
of X in Lemma 1 and same Y , that is I(U ′;X, Ū) = 0 and
H(Y |X, Ū , U ′) = 0. Using [16, Th. 5] we have

I(Y ;U ′) > 0,

since we assumed H(Y |X, Ū) > 0. Let U = (Ū , U ′) and we
first show that U satisfies I(X;U) ≤ ε. We have

I(X;U) = I(X; Ū , U ′) = I(X; Ū) + I(X;U ′|Ū),

= I(X; Ū) +H(U ′|Ū)−H(U ′|Ū ,X),

= I(X; Ū) +H(U ′)−H(U ′) ≤ ε,

where in last line we used the fact that U ′ is independent of
the pair (X, Ū). Finally, we show that I(Y ;U) > I(Y, Ū)
which is a contradiction with optimality of Ū . We have

I(Y ;U) = I(Y ; Ū , U ′) = I(Y ;U ′) + I(Y ; Ū |U ′),
= I(Y ;U ′) + I(Y,U ′; Ū)− I(U ′; Ū)

= I(Y ;U ′) + I(Y, Ū) + I(U ′; Ū |Y )− I(U ′; Ū)

(a)

≥ I(Y ;U ′) + I(Y, Ū)

(b)
> I(Y, Ū),

where in (a) follows since I(U ′; Ū |Y ) ≥ 0 and I(U ′; Ū) =
0. Step (b) follows since I(Y ;U ′) > 0. Thus, the obtained
contradiction completes the proof.
Proof of Theorem 4: L0

1 and L0
2 can be obtained by letting

ε = 0 in Theorem 2. U0
1 which has been derived in [16, Th. 7]

can be obtained by (27). U0
1 can be derived as follows. Since

X and U are independent, (27) can be rewritten as

I(Y ;U) = H(Y |X)−H(Y |U,X)− I(X;U |Y ),

thus, using Lemma 3

h0(PXY ) ≤ H(Y |X)− inf
H(Y |U,X)=0, I(X;U)=0

I(X;U |Y )

= H(Y |X)− ψ(X → Y )

≤ H(Y |X)+∑
y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt

+ I(X;Y ).

For |Y| = 2 using Lemma 3 we have ψ(X → Y ) =

−
∑
y∈Y

∫ 1

0
PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥

t})dt− I(X;Y ) and let Ū be the RV that attains this bound.
Thus,

I(Ū ;Y ) = H(Y |X)+∑
y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt+

I(X;Y ).

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2023.3326070

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



22

Therefore, Ū attains U0
2 and h0(PXY ) = U2

0 .
Proof of (33): Since X is a deterministic function of Y , for
any y ∈ Y we have

PY |X(y|x) =

{
PY (y)
PX(x) , x = f(y)

0, else
,

thus,

∑
y∈Y

∫ 1

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt =

∑
y∈Y

∫ PY (y)

PX (x=f(y))

0

PX{PY |X(y|X) ≥ t} log(PX{PY |X(y|X) ≥ t})dt =

∑
y∈Y

PY (y)

PX{x = f(y)}
PX{x = f(y)} log(PX{x = f(y)}) =∑

y∈Y
PY (y) log(PX{x = f(y)}) =∑

y∈Y
PX(x) log(PX(x)) =

−H(X) = −I(X;Y ),

where in last line we used∑
y∈Y PY (y) log(PX{x = f(y)}) =∑
x∈X

∑
y:x=f(y) PY (y) log(PX{x = f(y)}) =∑

x∈X PX(x) log(PX(x)).

APPENDIX C

Proofs for Privacy-utility trade-off with non-zero leakage and
per-letter privacy constraints:

Lemma 10. For any 0 ≤ ε <
√

2I(X;Y ) and any pair of RVs
(X,Y ) distributed according to PXY supported on alphabets
X and Y where |X | is finite and |Y| is finite or countably
infinite, there exists a RV U supported on U such that X and
U satisfy the strong privacy criterion 1, i.e., we have

d(PX,U (·, u), PXPU (u)) ≤ ε, ∀u, (59)

Y is a deterministic function of (U,X), i.e., we have

H(Y |U,X) = 0, (60)

and

|U| ≤ [|X |(|Y| − 1) + 1] [|X |+ 1] . (61)

Proof: Let U be found by the EFRL, where we let the

leakage be ε2

2 . Thus, we have

ε2

2
= I(U ;X)

=
∑
u

PU (u)D(PX|U (·|u), PX)

(a)

≥
∑
u

PU (u)

2

(
d(PX|U (·|u), PX)

)2
(b)

≥
∑
u

PU (u)2

2

(
d(PX|U (·|u), PX)

)2
≥ PU (u)2

2

(
d(PX|U (·|u), PX)

)2
=

(d(PX,U (·, u), PXPU (u)))
2

2
,

where D(·, ·) corresponds to KL-divergence. Furthermore, (a)
follows by the Pinsker’s inequality [44] and (b) follows since
0 ≤ PU (u) ≤ 1. Using the last line we obtain

d(PX,U (·, u), PXPU (u)) ≤ ε, ∀u.

The other constraints can be obtained by using Lemma 4.

Remark 11. RV U , which is specified by the FRL (Lemma 1),
satisfies all constraints in Lemma 10. However, as we show
later, it achieves less utility compared to the RV U which is
used in the proof of Lemma 10. Furthermore, we can add
constraints such as 0 < I(U ;X) and 0 < ε <

√
2I(X;Y ) to

Lemma 10 while the RV U found by the FRL does not satisfy
them.

Lemma 11. For any 0 ≤ ε <
√

2I(X;Y ) and pair of RVs
(X,Y ) distributed according to PXY supported on alphabets
X and Y where |X | is finite and |Y| is finite or countably
infinite with I(X,Y ) <∞, there exists a RV U defined on U
such that X and U satisfy the strong privacy criterion 1, i.e.,
we have

d(PX,U (·, u), PXPU (u)) ≤ ε, ∀u,

Y is a deterministic function of (U,X), i.e., we have

H(Y |U,X) = 0,

I(X;U |Y ) can be upper bounded as follows

I(X;U |Y )≤ αH(X|Y )+(1− α)[log(I(X;Y ) + 1) + 4] ,
(62)

and |U| ≤ [|X |(|Y| − 1) + 2] [|X |+ 1] , where α = ε2

2H(X) .

Proof: Let U be found by the ESFRL, where we let the
leakage be ε2

2 . The first constraint in this statement can be
obtained by using the same proof as Lemma 10. Furthermore,
(62) can be derived using Lemma 5.

Remark 12. RV U produced by the SFRL (Lemma 2) does
not satisfy (62) in general. However, in case of satisfying (62),
by using similar arguments for comparing the attained utility
by FRL, SFRL and the extended versions, it achieves less or
equal utility compared to the RV U which is used in the proof
of Lemma 11. Similarly, we later show that the RV found by
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proof of Lemma 11 strictly improves the utility for non-zero
leakage.

Proof of Proposition 4: For deriving L1
hw`(ε) let U be

produced as in the proof of Lemma 10. Thus, I(X;U) = ε2

2
and U satisfies (59) and (60). We have

hw`ε (PXY ) ≥ I(U ;Y )

= I(X;U)+H(Y |X)−I(X;U |Y )−H(Y |X,U)

=
ε2

2
+H(Y |X)−H(X|Y ) +H(X|Y,U)

≥ ε2

2
+H(Y |X)−H(X|Y ).

Next for deriving L2
hw`(ε) let U be produced by Lemma 11.

Hence, I(X;U) = ε2

2 and U satisfies (59), (60), and (62). We
obtain

hw`ε (PXY ) ≥ I(U ;Y ) =
ε2

2
+H(Y |X)− I(X;U |Y )

≥ ε2

2
+H(Y |X)− αH(X|Y )

− (1− α) (log(I(X;Y ) + 1) + 4) .

Proof of Theorem 6: Lower bounds on gw`ε (PXY ) and
hw`ε (PXY ) are derived in (46) and Proposition 4, respectively.
Furthermore, inequality gw`ε (PXY ) ≤ hw`ε (PXY ) holds since
hw`ε (PXY ) has less constraints. To prove the upper bound
on gw`ε (PXY ), i.e., Ugw`(ε), let U satisfy X − Y − U and
PU (u)d(PX|U (·|u), PX) ≤ ε, then we have

I(U ;Y ) = I(X;U)+H(Y |X)−I(X;U |Y )−H(Y |X,U)

(a)
= I(X;U)+H(Y |X)−H(Y |X,U)

≤ I(X;U)+H(Y |X)

=
∑
u

PU (u)D(PX|U (·|u), PX) +H(Y |X)

(b)

≤
∑
u

PU (u)

(
d(PX|U (·|u),PX)

)2
minPX

+H(Y |X)

(c)

≤
∑
u

PU (u)
d(PX|U (·|u),PX)

minPX
|X |+H(Y |X)

(d)

≤ ε|Y||X |
minPX

+H(Y |X),

where (a) follows by the Markov chain X−Y −U , (b) follows
by the reverse Pinsker inequality [44, (23)] and (c) holds since
d(PX|U (·|u),PX) =

∑|X |
i=1 |PX|U (xi|u) − PX(xi)| ≤ |X |.

Latter holds since for each u and i, |PX|U (xi|u)− PX | ≤ 1.
Moreover, (d) holds since by Proposition 5 without loss of
optimality we can assume |U| ≤ |Y|. In other words (d) holds
since by Proposition 5 we have

gw`ε (PXY ) = sup
PU|Y :X−Y−U

d(PX,U (·,u),PXPU (u))≤ε, ∀u

I(Y ;U)

= max
PU|Y :X−Y−U

d(PX,U (·,u),PXPU (u))≤ε, ∀u
|U|≤|Y|

I(Y ;U). (63)

Proof of Proposition 6: By using [13, Proposition 2], it
suffices to assume |U| ≤ |Y|. Using [13, Proposition 3], let
us consider |Y| extreme points that achieves the minimum in
[13, Theorem 2] as VΩj

for j ∈ {1, .., |Y|}. Let |X | non-
zero elements of VΩj

be aij + εbij for i ∈ {1, .., |X |} and
j ∈ {1, .., |Y|}, where aij and bij can be found in [13, (6)].
As a summary for i ∈ {1, .., |X |} and j ∈ {1, .., |Y|} we have∑
i aij = 1,

∑
i bij = 0, 0 ≤ aij ≤ 1, and 0 ≤ aij + εbij ≤ 1.

We obtain

max I(U ;Y ) = H(Y )
∑
j

Pj
∑
i

(aij + εbij) log(aij + εbij),

= H(Y ) +
∑
j

Pj
∑
i

(aij + εbij)(log(aij) + log(1 + ε
bij
aij

)).

In [13, Theorem 2], we have used the Taylor expansion to
derive the approximation of the equivalent problem. From the
Taylor’s expansion formula we have

f(x) = f(a) +
f ′(a)

1!
(x− a)+

f ′′(a)

2!
(x− a)2 + ...+

f (n)(a)

n!
(x− a)n +Rn+1(x),

where

Rn+1(x) =

∫ x

a

(x− t)n

n!
f (n+1)(t)dt

=
f (n+1)(ζ)

(n+ 1)!
(x− a)n+1, (64)

for some ζ ∈ [a, x]. In [13] we approximated the terms log(1+
bij
aij
ε) by bij

aij
ε + o(ε). Using (64), there exists an ζij ∈ [0, ε]

such that the error of approximating the term log(1 + ε
aij
bij

) is
as follows

Rij2 (ε) = −1

2

 bij
aij

1 +
bij
aij
ζij

2

ε2 = −1

2

(
bij

aij + bijζij

)2

ε2.

Thus, the error of approximation is as follows

Approximation error =
∑
ij

Pj(aij + εbij)R
ij
2 (ε)+

∑
ij

Pj
b2ij
aij

ε2

= −
∑
ij

Pj(aij + εbij)
1

2

(
bij

aij + bijζij

)2

ε2+
∑
ij

Pj
b2ij
aij

ε2

(65)

An upper bound on approximation error can be obtained as
follows

|Approximation error| ≤

|
∑
ij

Pj(aij + εbij)
1

2

(
bij

aij + bijζij

)2

ε2|+ |
∑
ij

Pj
b2ij
aij

ε2|.

(66)

By using the definition of ε2 in Proposition 5
we have ε < ε2 implies ε <

minij aij
maxij |bij | ,

since minij aij = miny,Ω∈Ω1 M−1
Ω MPY (y) and

maxij |bij | < maxΩ∈Ω1 |σmax(HΩ)|. By using the upper
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bound ε <
minij aij
|maxij bij | we can bound the second term in (66)

by 1, since we have

|
∑
ij

Pj
b2ij
aij

ε2| < |
∑
ij

Pj
b2ij
aij

(
minij aij

maxij |bij |

)2

|

< |
∑
ij

Pj min
ij

aij | = |X |min
ij

aij

(a)
< 1,

where (a) follows from
∑
i aij = 1, ∀j ∈ {1, .., |Y|}.

If we use 1
2ε2 as an upper bound on ε, we have ε <

1
2

minij aij
maxij |bij | . We show that by using this upper bound the first

term in (66) can be upper bounded by 1
2 . We have

1

2
|
∑
ij

Pj(aij + εbij)

(
bij

aij + bijζij

)2

ε2|
(a)
<

1

2
|
∑
ij

Pj(aij + εbij)

(
|bij |

aij − ε|bij |
ε

)2

|
(b)
<

1

2
|
∑
ij

Pj(aij + εbij)| <
1

2
,

where (a) follows from 0 ≤ ζij ≤ ε, ∀i, ∀j, and (b) follows
from |bij |

aij−ε|bij |ε < 1 for all i and j. The latter can be shown
as follows
|bij |

aij − ε|bij |
ε <

|bij |
aij − 1

2
minij aij

maxij |bij | |bij |
ε <

bij
1
2 minij aij

ε < 1.

For ε < 1
2ε2 the term aij − ε|bij | is positive and there is no

need of absolute value for this term. Thus, ε < 1
2ε2 implies

the following upper bound

|Approximation error| < 3

4
.

Furthermore, by following similar steps if we use the upper
bound ε < 1

2
ε2√
|X |

instead of ε < 1
2ε2, the upper bound on

error can be strengthened by

|Approximation error| < 1

2(2
√
|X | − 1)2

+
1

4|X |
.

APPENDIX D

Proofs for Privacy-utility trade-off with non-zero leakage and
prioritized private data:

Proof of Theorem 8: The upper bound can be obtained
using the key equation in (27), since the total leakage
I(U ;X1, X2) is bounded by ε. The first lower bound L1

h12(ε)
can be obtained as follows. Let Ū be found by FRL with
X = (X1, X2). Moreover, let U = (Ū ,W ) with W ={
X2, w.p. α
c, w.p. 1− α

, where c is a constant which does not

belong to X1 ∪ X2 ∪ Y and α = ε
H(X2) . We have

I(U ;X1, X2) = I(Ū ,W ;X1, X2)
(a)
= I(W ;X1, X2)

=H(X1,X2)−αH(X1|X2)−(1−α)H(X1,X2)

= αH(X2) = ε,

where (a) follows since Ū is independent of (X1, X2,W ). For
the other leakage constraint we have

I(U ;X2) = I(W ;X2)

= αH(X2)

≥ αI(X1;X2)

= H(X1)− αH(X1|X2)− (1− α)H(X1)

= I(U ;X1),

and by using (27), we obtain

hpε (PX1X2Y ) ≥ I(U ;Y )

= ε+H(Y |X1, X2)− I(X1, X2;U |Y )

≥ ε+H(Y |X1, X2)−H(X1, X2|Y ).

The bounds L2
hp(ε) and L3

hp(ε) can be obtained as follows.
Let Ū be found by SFRL with X = (X1, X2). Moreover,

let U = (Ū ,W ) with W =

{
X2, w.p. α
c, w.p. 1− α

, where c is

a constant which does not belong to X1 ∪ X2 ∪ Y and α =
ε

H(X2) . Similarly we have I(U ;X1, X2) = ε and I(U ;X2) ≥
I(U ;X1). Next, we expand I(U ;X1, X2|Y ).

I(U ;X1, X2|Y ) = I(Ū ;X1, X2|Y ) + I(W ;X1, X2|Y, Ū)

= I(Ū ;X1, X2|Y ) +H(X1, X2|Y, Ū)−H(X1, X2|Y, Ū ,W )

= I(Ū ;X1, X2|Y ) + αH(X1, X2|Y, Ū)− αH(X1|Y, Ū ,X2)

= I(Ū ;X1, X2|Y )− αH(X1|Y, Ū ,X2)

+ α
(
H(X1, X2|Y )− I(Ū ;X1, X2|Y )

)
=(1−α)I(Ū ;X1,X2|Y )+αH(X1,X2|Y)−αH(X1|Y,Ū,X2).

(67)

In the following we bound (67) in two ways. We have

(67) =(1−α)I(Ū ;X1,X2|Y )+αH(X2|Y )+αI(X1; Ū |Y,X2)

= I(Ū ;X1,X2|Y )+αH(X2|Y )−αI(Ū ;X2|Y )

(a)

≤ log(I(X1, X2;Y ) + 1) + 4 + αH(X2|Y ). (68)

Furthermore,

(67) ≤(1−α)I(Ū ;X1,X2|Y ) + αH(X1,X2|Y)

(b)

5 (1−α) (log(I(X1, X2;Y ) + 1) + 4)+αH(X1,X2|Y).
(69)

Inequalities (a) and (b) follow since Ū is produced by SFRL,
so that I(Ū ;X1, X2|Y ) ≤ log(I(X1, X2;Y ) + 1) + 4. Using
(68), (69) and key equation in (27) we have

hpε (PX1X2Y ) ≥ I(U ;Y )
(c)

≥
ε+H(Y |X1,X2)−(log(I(X1, X2;Y )+1)+4+αH(X2|Y ))

= L2
hp(ε),

and

hpε (PX1X2Y ) ≥ I(U ;Y )

(d)

≥ ε+H(Y |X1, X2)

− ((1−α)(log(I(X1, X2;Y ) + 1) + 4) + αH(X1, X2|Y ))

= L3
hp(ε).
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In steps (c) and (d) we used H(Y |X1, X2, U) = 0. The latter
follows by definition of W and the fact that Ū is produced by
SFRL.
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