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New Quantum Algorithms for Computing Quantum
Entropies and Distances

Qisheng Wang , Ji Guan , Junyi Liu , Zhicheng Zhang , and Mingsheng Ying

Abstract— We propose a series of quantum algorithms for
computing a wide range of quantum entropies and distances,
including the von Neumann entropy, quantum Rényi entropy,
trace distance, and fidelity. The proposed algorithms significantly
outperform the prior best (and even quantum) ones in the
low-rank case, some of which achieve exponential speedups.
In particular, for N -dimensional quantum states of rank r, our
proposed quantum algorithms for computing the von Neumann
entropy, trace distance and fidelity within additive error ε have
time complexity of Õ(r/ε2), Õ(r5/ε6) and Õ(r6.5/ε7.5),
respectively. By contrast, prior quantum algorithms for the von
Neumann entropy and trace distance usually have time complex-
ity Ω(N), and the prior best one for fidelity has time complexity
Õ(r12.5/ε13.5). The key idea of our quantum algorithms is
to extend block-encoding from unitary operators in previous
work to quantum states (i.e., density operators). It is realized by
developing several convenient techniques to manipulate quantum
states and extract information from them. The advantage of our
techniques over the existing methods is that no restrictions on
density operators are required; in sharp contrast, the previous
methods usually require a lower bound on the minimal non-zero
eigenvalue of density operators.

Index Terms— Quantum computing, quantum algorithms,
quantum entropy, trace distance, quantum fidelity.

I. INTRODUCTION

QUANTUM entropies and distances are basic concepts [1]
in quantum physics and quantum information. Quantum
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entropies characterize the randomness of a quantum system,
while quantum distances measure the closeness of quantum
systems. It is essential to compute their values in many
important applications, from the estimation of the capacity
of quantum communication channels and verification of the
outcomes of quantum computation to the characterization of
quantum physical systems (see, e.g., [2], [3], [4]). Several
kinds of quantum algorithms for computing quantum entropies
and distances have been proposed under different compu-
tational resources, e.g., quantum algorithms with access to
copies of quantum states [5], [6], [7], quantum algorithms
with purified quantum query access [8], [9], [10], [11], and
variational quantum algorithms [12], [13], [14].

A main consideration of those quantum algorithms with
copy access for computing quantum entropies and distances
is the number of copies of quantum states used in the algo-
rithms. This type of input model is known as the “quantum
sample access” model, where identical copies of quantum
states are directly given. For example, a method of testing
the closeness of N -dimensional mixed quantum states was
provided in [5] with respect to trace distance and fidelity using
O(N/ε2) and O(N/ε) copies, respectively, based on quantum
spectrum testing [15] and efficient quantum tomography [16],
[17], [18]. A method of computing the von Neumann and
quantum Rényi entropies of an N -dimensional quantum state
was introduced in [6] using O(N2/ε2) and O(N2/α/ε2/α)
copies, respectively. Recently, a new method of computing
entropies was proposed in [7], especially computing the von
Neumann entropy uses Õ(κ2/ε5) copies,1 where κ > 0 is
given such that Π/κ ≤ ρ ≤ I for some projector Π.
A distributed quantum algorithm for computing tr(ρσ), i.e.,
the fidelity of pure quantum states, was proposed in [19] using
O(max{

√
N/ε, 1/ε2}) copies.

Another class of quantum algorithms for computing quan-
tum entropies and distances utilizes the conventional “purified
quantum query access” model, where mixed quantum states
are given by quantum oracles that prepare their purifications.
Quantum algorithms for computing the von Neumann entropy
and closeness testing with respect to trace distance were devel-
oped in [8] with query complexity Õ(N/ε1.5) and Õ(N/ε),
respectively, both of which have complexity exponential in
the number of qubits. Recently, a quantum algorithm for
computing the von Neumann entropy within a multiplicative
factor was proposed in [9], which reproduces the result within
additive error of [8]. A method of computing the quantum α-
Rényi entropy was proposed in [10] using O

(
κ

(xε)2 log
(

N
ε

))
1Õ(·) suppresses polylogarithmic factors.
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queries to the oracle, where κ > 0 is given such that I/κ ≤
ρ ≤ I and x = tr(ρα)/N .

Compared to the “quantum sample access” model where
only identical copies of quantum states are directly given,
the “purified quantum query access” model allows more
potential operations from which one can learn properties of
quantum states. This is because any operation allowed in the
former model can be trivially simulated in the latter model.
Consequently, the latter model (in query complexity) usually
uses fewer computational resources than the former (in sample
complexity). For example, the best known query complexity
for computing the von Neumann entropy is Õ(N/ε1.5) [8],
while the best known sample complexity for the same task
is O(N2/ε2) [6]. In addition, the latter model also plays
an important role in computational complexity theory when
comparing classical and quantum computing. For example,
testing the closeness between two quantum states (in trace
distance) is known to be QSZK-complete (in certain parameter
regime) [20], [21], where the quantum states are given in the
“purified quantum query access” model.

The recent quantum algorithms with purified quantum query
access mentioned above are usually developed in the general
framework of quantum singular value transformation (QSVT)
[22]. The powerful technique of QSVT on unitary operators
developed by [22] has been successfully applied as a unified
framework in a wide range of quantum algorithms, including
Grover’s search algorithm [23], the quantum walk algo-
rithms [24], [25], the HHL algorithm for solving systems of
linear equations [26], and Hamiltonian simulation [27]. In the
framework of QSVT, a unitary operator U can be regarded
as a block-encoding that stores a matrix A in (the upper-left
corner of) its matrix representation (see Definition II.1). QSVT
can be understood as an algorithmic technique that transforms
the matrix A to f(A) for some function f(·) of interest, and
it also provides a quantum circuit implementation of Ũ that
block-encodes f(A) using queries to U . The original QSVT
deals with unitary operators, while a Hamiltonian variant of the
QSVT was proposed in [28], which was then used in quantum
polar decomposition [29], [30].

Except for unitary operators and Hamiltonians, density
operators (mixed quantum states) are another important
class of objects we can manipulate in quantum compu-
tation. A technique was developed in [31] to implement
a unitary operator that block-encodes a density operator,
using queries to its purified quantum query oracle. Equipped
with QSVT, this technique enables us to implement uni-
tary operators that block-encode certain matrix functions
of quantum states, and thus strengthens the power of the
“purified quantum query access” model. This technique
has been employed in quantum algorithms for semidefinite
programming [32] and quantum fidelity estimation [11]. Con-
versely, however, it seems difficult to prepare a quantum
state from a unitary operator that block-encodes its density
operator.

A natural idea of extracting information from a density
operator is to directly manipulate the quantum state itself
rather than a unitary operator that encodes it. This leads us

to extend the definition of block-encoding proposed originally
for unitary operators [22], [31], [33] to that for general
operators (see Definition II.1), especially for quantum states
(i.e., density operators). Regarding quantum states as block-
encodings, we are able to design new quantum algorithms for
computing a wide range of quantum entropies and distances,
such as the von Neumann entropy, quantum Rényi entropy,
quantum Tsallis entropy, trace distance, and fidelity. These
quantum algorithms significantly outperform the best known
ones in the low-rank case, and some of them can even achieve
exponential speedups. Here, the low-rank case means that
the rank of N -dimensional quantum states is much smaller
than N , e.g., r = polylog(N), which is of great interest in
both theoretical (e.g., [34], [35]) and experimental (e.g., [36])
physics.

In the remainder of this Introduction, we will first present
our main results in Section I-A. The new techniques that
enable us to achieve our results will be outlined in Section I-B.
Then related works will be reviewed in Section I-C, and a
discussion will be given in Section I-D.

A. Main Results

Let us first set the stage for presenting our main results.
In order to manipulate quantum states, we extend the definition
of block-encoding for unitary operators to that for general
operators (see Definition II.1), and use this extended definition
of block-encoding to describe our quantum algorithms. In our
quantum algorithms, a mixed quantum state is given by a quan-
tum unitary operator (oracle) which prepares a purification
of the state (see Definition II.2). This conventional model is
known as the “purified quantum query access” model and has
been widely used in developing quantum algorithms [8], [9],
[10], [32], [37], [38].

Throughout this paper, the quantum query complexity of
a quantum query algorithm means the number of queries
to the given quantum oracles. The time complexity of a
quantum query algorithm is the sum of its quantum query
complexity and the number of elementary quantum gates used
in it. When quantum algorithms are compared with classical
algorithms, quantum oracles are given as classical descrip-
tions of quantum circuits. The actual number of elementary
quantum gates performed in the quantum algorithm only has
a polynomial overhead compared to its “time complexity”
defined here. Then our main results can be summarized in the
following:

Theorem I.1 (Informal): In the “purified quantum
query access” model, given quantum oracles that prepare
N -dimensional mixed quantum states of rank r, there are
quantum query algorithms that compute

• von Neumann entropy,
• quantum α-Rényi entropies for α ∈ (0, 1) ∪ (1,+∞),
• quantum α-Tsallis entropies for α ∈ (0, 1) ∪ (1,+∞),
• α-trace distance for α > 0 (defined by Eq. (1), including

the trace distance), and
• α-fidelity for 0 < α < 1 (defined by Eq. (2), including

the fidelity)
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within additive error ε with time complexity poly
(log(N), r, 1/ε), where the time complexity hides a constant
which depends only on α.2

Our quantum algorithms are compared with the existing
algorithms in Table I. In particular, our algorithms outper-
form the best known ones in the low-rank case, e.g., r =
polylog(N). To see this more clearly, let us recast the existing
results in the low-rank case, and then compare them with
ours. Table I compares the query complexity (in the “purified
quantum query access” model) and the sample complexity (in
the “quantum sample access” model). It is important to note
the difference between the two models in the comparison.
While it is trivial that a sample in the “quantum sample access”
model can be simulated by a query in the “purified quantum
query access” model, the vice versa remains unknown. In other
words, the “quantum sample access” model can be seen as
a restricted version of the “purified quantum query access”
model where the oracle is only used to prepare the mixed
quantum states. Therefore, any sample complexity in the
“quantum sample access” model implies the same amount
of query complexity in the “purified quantum query access”
model. Regarding these, we still compare the query/sample
complexities defined in the two models together. For further
discussion regarding the two different quantum input models,
please refer to [8].

• For the von Neumann entropy and quantum α-Rényi
entropy, it was shown in [6] that their sample com-
plexities are O

(
N2/ε2

)
and O

(
(N/ε)max{2/α,2}),

respectively. Unitarily invariant properties of entropies
considered, their method is based on weak Schur sam-
pling (see [43]), and does not imply a straightforward
method for low-rank quantum states. The query complex-
ity for the von Neumann entropy was shown in [8] to be
Õ(N/ε1.5), which can be improved to Õ(

√
Nr/ε1.5) for

the low-rank case after a careful analysis. It was shown
in [42] that Õ(κ2/ε) queries are sufficient to compute
the von Neumann entropy of a quantum state ρ if some
κ > 0 is known in advance such that ρ ≥ I/κ. Similarly,
the method in [10] for the quantum α-Rényi entropy can
be improved to Õ

(
κNrmax{α−1,0}/ε2

)
for the low-rank

case.
• For the trace distance and fidelity, most algorithms are

proposed for closeness testing with respect to them. The
sample complexities O

(
N/ε2

)
and O (N/ε) given in [5]

can be improved (by their Corollary 1.6) to O
(
r/ε2

)
and O (r/ε) for the low-rank case, respectively. The
query complexity Õ(N/ε) given in [8] can be improved
to Õ(min{

√
Nr/ε, r/ε2}) for the low-rank case. The

above results do not cover our results, because closeness

2A few days after this paper was submitted to arXiv, the concurrent work of
Gilyén and Poremba [39] appeared. They proposed a quantum algorithm for
fidelity estimation using identical copies of quantum states based on density
matrix exponentiation [40], [41]. We note that their techniques of converting
identical copies to unitary block-encodings (Corollary IV.4 in [39]) can be
applied to our quantum algorithms in Theorem I.1. As a result, we can obtain
quantum algorithms for computing these quantum entropies and distances
using poly(r, 1/ε) copies of quantum states, which only has a polynomial
overhead compared to the query complexity of our quantum query algorithms.

testing can be solved by computing the closeness but the
converse seems difficult.

• For the quantum algorithms in [7], [10], and [42] that
attempt to reduce the dependence on N , they introduce
an extra dependence on κ, where κ is the reciprocal
of the minimal non-zero eigenvalue of quantum states.
Our quantum algorithms can be easily adapted to their
settings by taking r = O(κ), thus with time complex-
ity poly(log(N), κ, 1/ε), while the converse seems not
applicable.3

Although our quantum algorithms focus on low-rank quan-
tum states, they are also comparable to those for the general
case where one could only assume that the quantum states are
full-rank, i.e., r = N .
• For the von Neumann entropy, our quantum algorithm

has query complexity Õ(N/ε2) when the quantum state
is full-rank, which is slightly worse than the query
complexity Õ(N/ε1.5) in [8].

• For the trace distance, our quantum algorithm has query
complexity Õ(N5/ε6) when the quantum state is full-
rank. To the best of our knowledge, this is the first
quantum algorithm for computing the trace distance
between quantum states with time complexity poly(N)
in the general case.

We will further discuss the above results for quantum
entropies in Section I-A.1 and those for closeness (i.e. trace
distance and fidelity) of quantum states in Section I-A.2.

1) Computing Quantum Entropies: In quantum information
theory, the entropy of a (mixed) quantum state is a measure
of its uncertainty, and computing its value is crucial when
characterizing and verifying an unknown quantum system.
After von Neumann [44] introduced the famous von Neumann
entropy

S(ρ) = − tr (ρ ln (ρ)) ,

which is a natural generalization of the classical Shannon
entropy [45], several other entropies have been proposed, e.g.,
Rényi entropy [46], [47], [48], [49], Tsallis entropy [50], [51],
[52], Min and Max (Hartley) entropies [53], [54], [55], and the
unified entropy [56], [57]. The quantum α-Rényi entropy and
the quantum α-Tsallis entropy are defined by

SR
α (ρ) =

1
1− α

ln (tr (ρα)) ,

ST
α (ρ) =

1
1− α

(tr (ρα)− 1)

for α ∈ (0, 1) ∪ (1,+∞), respectively. It is easy to see that
the von Neumann entropy is a limiting case of the Rényi
entropy [48] and the Tsallis entropy [50]:

S(ρ) = lim
α→1

SR
α (ρ) = lim

α→1
ST

α (ρ).

For α = 0, the quantum Tsallis entropy degenerates to the
rank of quantum states:

ST
0 (ρ) = rank(ρ)− 1

3This is because κ implies an upper bound r ≤ κ of rank, but r does not
imply any upper bound for κ.
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TABLE I
OUR QUANTUM ALGORITHMS VS. PRIOR WORKS∗

TABLE II

QUANTUM QUERY COMPLEXITY FOR COMPUTING QUANTUM ENTROPIES*

and the quantum Rényi entropy becomes the logarithm of the
rank, i.e., the quantum Max (Hartley) entropy:

Smax(ρ) = SR
0 (ρ) = ln(rank(ρ)).

a) Overview: Given a quantum unitary oracle that pre-
pares a mixed quantum state (see Definition II.2), we develop
quantum algorithms for computing several quantum entropies.
Their quantum query complexities are collected in Table II,
which are also their quantum time complexities up to poly-
logarithmic factors. Most of our algorithms do not require any
restrictions on the lower bound for the eigenvalues of quantum
states except those for computing the quantum Max entropy
and the rank of quantum states, where Π/κ ≤ ρ is required
for some projector Π and κ > 0.

The prior best quantum algorithms for computing von Neu-
mann entropy [6], [8], [9] and quantum Rényi entropy [6], [10]
have time complexity Ω(N) even for rank r = 2. Compared
to them, our quantum algorithms are exponentially faster in
the low-rank case. In particular, our quantum algorithm for
computing the von Neumann entropy with query complexity
Õ(r/ε2) is comparable to the quantum algorithm given in [42]

with query complexity Õ(κ2/ε), where we note that r ≤ κ
always holds.

It is worth mentioning that for odd integer α > 1, the
query complexity of computing the quantum Tsallis entropy
ST

α (ρ) does not depend on rank r. In this case, there is
a simple SWAP test-like quantum algorithm that computes
tr(ρα) using O(1/ε2) copies [41], [58]. Compared to it, our
algorithm (Theorem III.7) yields a quadratic speedup (see
Section III-C for more discussions). For non-integer α, we are
not aware of any prior approaches for computing the quantum
Tsallis entropy with complexity better than quantum state
tomography.

b) Lower bounds: We are able to give a query lower
bound Ω̃(rc) for computing the quantum Rényi entropy SR

α (ρ)
including the von Neumann entropy S(ρ) in terms of rank
r, where c ≥ 1/3 is a constant depending only on α
(see Theorem III.11). This lower bound is simply derived
from the quantum query complexity for computing the Rényi
(and Shannon) entropy of classical probability distributions
[59], [60].
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TABLE III
QUANTUM QUERY COMPLEXITY FOR COMPUTING α-TRACE DISTANCE∗

TABLE IV
QUANTUM QUERY COMPLEXITY FOR COMPUTING α-FIDELITY∗

2) Computing Quantum Distances: Distance measures of
quantum states are basic quantities in quantum computation
and quantum information. Two of the most important distance
measures are the trace distance and fidelity. For each of
them, we propose quantum algorithms that compute it and
its extensions. Here, we assume that there are two quantum
oracles Uρ and Uσ that prepare the density operators ρ and
σ, respectively. The query complexity of a quantum algorithm
means the total number of queries to both Uρ and Uσ .

a) Trace distance: The α-trace distance of two quantum
states ρ and σ is defined by

Tα(ρ, σ) = tr
(∣∣∣∣ρ− σ

2

∣∣∣∣α) =
∥∥∥∥ρ− σ

2

∥∥∥∥α

S,α

, (1)

where ∥A∥S,α = (tr (|A|α))1/α is the Schatten α-norm. Here,
the 1-trace distance is the well-known trace distance T (ρ, σ) =
T1(ρ, σ).

We develop quantum algorithms for computing α-trace
distance for α > 0, with their query complexities shown
in Table III. As a special case, our quantum algorithm
(Theorem IV.1) for computing the trace distance (i.e., the
1-trace distance) has query complexity Õ

(
r5/ε6

)
. Note that

the closeness testing of the α-trace distances of quantum states
for integer α, e.g., the 1-, 2- and 3-trace distances, was studied
in [8]. For other cases of α, we are not aware of any prior
approaches to compute the α-trace distance with complexity
better than quantum state tomography.

b) Fidelity: The α-fidelity of two quantum states ρ and
σ is defined by

Fα(ρ, σ)=exp ((α− 1)Dα(ρ∥σ))=tr
((
σ

1−α
2α ρσ

1−α
2α

)α)
,

(2)

where Dα(ρ∥σ) is the sandwiched quantum Rényi relative
entropy [48], [49]. Here, the 1/2-fidelity is the well-known
fidelity F (ρ, σ) = F1/2(ρ, σ) [61].

We develop quantum algorithms for computing the
α-fidelity for 0 < α < 1, with their query complexities shown
in Table IV). As a special case, our quantum algorithm (The-
orem IV.5) for computing the fidelity (i.e., the 1/2-fidelity)
has query complexity Õ

(
r6.5/ε7.5

)
, which is a polynomial

speedup over the best known Õ
(
r12.5/ε13.5

)
in [11]. For

other cases of α, we do not know any prior approaches to
compute the α-fidelity with complexity better than quantum
state tomography.

c) Lower bounds and hardness: Our quantum algorithms
for computing the fidelity and trace distance have a time
complexity polynomial in the rank r. We show that there is no
quantum algorithm that computes the fidelity or trace distance
with time complexity poly(log(r), 1/ε) unless BQP = QSZK
(see Theorem IV.7), based on the result of [20] that (α, β)-
Quantum State Distinguishability is QSZK-complete for 0 ≤
α < β2 ≤ 1.4

Our quantum algorithms for computing the fidelity and
trace distance achieve a significant speedup under the low-
rank assumption. We argue that these problems are unlikely
to be efficiently solved by classical computers because com-
puting the fidelity and trace distance are DQC1-hard (see
Theorem IV.8); and it was shown in [63] that DQC1 is
not (classically) weakly simulatable unless the polynomial
hierarchy collapses to the second level, i.e., PH = AM.

B. Techniques

In this subsection, we give an overview of the techniques
that enable us to achieve the results presented in the above
subsection.

1) Quantum States as Block-Encodings: The key idea
of our quantum algorithms is to regard quantum states as

4The available regime of α and β for the QSZK-completeness of (α, β)-
Quantum State Distinguishability was recently improved to 0 ≤

√
2 ln 2α <

β2 ≤ 1 in [62].
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TABLE V
COMPARISON BETWEEN DENSITY OPERATORS AND UNITARY OPERATORS AS BLOCK-ENCODINGS∗

block-encodings. To this end, we extend the definition of
block-encoding proposed for unitary operators to that for
general ones (see Definition II.1). Suppose that a unitary
operator UA prepares a subnormalized density operator A (see
Definition II.2). In this framework, we provide a convenient
way to manipulate the subnormalized density operator A and
extract information from it as follows.
• Evolution: If U is a unitary operator, which is a

block-encoding of an operator B, we can prepare a
subnormalized density operator BAB† (see Lemma II.2).
This evolution of the subnormalized density operator can
be seen as a generalization of quantum unitary operation
ρ 7→ UρU† for (normalized) density operator ρ.

• Trace Estimation: We provide an efficient method to
estimate the trace of A based on quantum amplitude
estimation [64] (see Lemma II.15). As will be seen, trace
estimation is an important subroutine in our quantum
algorithms (see Section I-A.1 and Section I-A.2).

• Linear Combinations: As an analog of Linear-
Combination-of-Unitaries (LCU) algorithm through a
series of work [22], [65], [66], [67], [68], [69], [70],
we also provide a technique to prepare a linear (con-
vex) combination of subnormalized density operators (see
Lemma II.17). This technique will be used in computing
the trace distance (see Section I-A.2 and Theorem IV.1).

The technique of “trace estimation” is the cornerstone in
developing our quantum algorithms. To compute the values
of quantum entropies and distances, the key part has the
form tr(ϱ), where ϱ is a (subnormalized) density operator.
Our strategy is to prepare a quantum state, which is a block-
encoding of ϱ, through the technique of “evolution”. Roughly
speaking, we prepare the subnormalized density operator ϱ
up to a scaling factor; we will use the phrase “prepare ϱ”
regardless of the scaling factor in the following discussion of
this section. For example, we prepare −ρ ln(ρ) for the von
Neumann entropy, and prepare ρα for the quantum α-Rényi
and Tsallis entropies. To achieve this, we develop techniques
for eigenvalue transformation of density operators based on
QSVT as follows.
• Eigenvalue Transformation: Based on the evolution,

if we can construct a unitary operator U , which is a

block-encoding of P (A) for some polynomial P (·) as
in QSVT [22], we can transform A to another subnor-
malized density operator A(P (A))2 (see Theorem II.4).

• Positive Powers: We develop a technique to prepare the
subnormalized density operator Ac for 0 < c < 1 without
any restrictions on A (see Lemma II.8). Inspired by this,
we can also obtain a unitary operator, which is a block-
encoding of |A|c, using queries to a unitary operator
U , which is a block-encoding of Hermitian operator A
(see Lemma II.13). In order to obtain block-encodings
of powers of A, previously known methods [22], [33],
[38] usually require a lower bound for the minimal
non-zero eigenvalues of density operators; for example,
I/κ ≤ A ≤ I for some κ > 0 in [33]. This technique
for positive powers of subnormalized density operators
will be frequently used in our quantum algorithms for
computing quantum entropies, fidelity and trace distance
(see Section I-A.1 and Section I-A.2), in order to avoid
restrictions on density operators.

We also provide a method to block-encode the eigenvalue
threshold projector Πsupp(A) of A in a quantum state, where
supp(A) is the support of A, and ΠS is the projector onto
subspace S.

• Eigenvalue threshold projector: We propose a method
to (approximately) block-encode the eigenvalue threshold
projector Πsupp(A) of A in a subnormalized density
operator (see Lemma II.19). We note that a technique
for block-encoding eigenvalue threshold projectors was
also provided in [32], but they required that A ≥ qΠ for
some projector Π and the value of q > 0 is known in
advance. In contrast, our method does not impose any
restriction on A. This method will be used in computing
the trace distance (see Section I-A.2 and Theorem IV.1).

A comparison between density operators and unitary oper-
ators as block-encodings is given in Table V.

2) Example — Computing Trace Distance: To give the
readers a flavor, we take the quantum algorithm for comput-
ing the trace distance (see Theorem IV.1 for details) as an
illustrative example. The key observation to compute the trace
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Fig. 1. The computation process of computing trace distance.

distance is that

T (ρ, σ) = tr
(
|ν|1/2 Πsupp(µ) |ν|

1/2
)
,

where ν = (ρ− σ)/2, µ = (ρ+ σ)/2. The idea is to prepare
η = |ν|1/2 Πsupp(µ) |ν|

1/2 (up to a scaling factor), and then
estimate tr(η) through the technique of “trace estimation”
(Lemma II.15). The computation process is shown in Figure 1.

To (approximately) prepare η, we first prepare Π̂ ≈
Πsupp(µ) through the technique of “eigenvalue threshold pro-
jector” (Lemma II.19). Here, µ = (ρ+ σ)/2 can be prepared
through the technique of “linear combinations” (Lemma II.17).
Then we only need to construct a unitary operator, which
is a block-encoding of ν̂ ≈ |ν|1/2. After that, by the tech-
nique of “evolution” (Lemma II.2), we can prepare ν̂Π̂ν̂† ≈
|ν|1/2 Π̂ |ν|1/2 ≈ η.

In order to construct a unitary operator as a block-encoding
of |ν|1/2, we first use the LCU technique (Theorem II.18) to
block-encode ν = (ρ − σ)/2 in a unitary operator Uν . Then
applying the technique of “positive powers” (Lemma II.13)
on Uν , we can construct a unitary operator which is a block-
encoding of ν̂ ≈ |ν|1/2.

To get an estimation of the trace distance between ρ and σ,
we should just note that T (ρ, σ) = tr(η) ≈ tr

(
ν̂Π̂ν̂†

)
, where

we have already prepared ν̂Π̂ν̂† through the above process.
Strictly speaking, we have prepared a mixed quantum state,
whose density operator is a block-encoding of ν̂Π̂ν̂† up to a
scaling factor. After carefully selecting appropriate parameters
that determine the errors in the above process, we obtain a
quantum algorithm for computing the trace distance with query
complexity Õ(r5/ε6), where r is (an upper bound for) the rank
of quantum states ρ and σ, and ε is the desired additive error.
Here, Õ(·) suppresses the polylogarithmic factor of N , where
N is the dimension of the Hilbert space of ρ and σ.

C. Related Works

a) Classical property testing: The problems considered
in this paper can be thought of as a quantum analog of testing
properties of probability distributions. Classical algorithms for
testing properties of probability distributions have been widely
studied since the beginning of this century. The first algorithm
was proposed in [71] for the closeness testing of probability
distributions in ℓ1 distance using Õ(N2/3/ε4) samples, which
was then improved to use Õ(N2/3/ε8/3) samples [72]. Later,
it was shown in [73] that the optimal sample complexity
for this problem is Θ

(
max{N2/3/ε4/3, N1/2/ε2}

)
, and they

also proved that the optimal sample complexity Θ(1/ε2) for
closeness testing in ℓ2 distance. The identity testing is a special
case of the closeness testing given that one of the distributions
is known. It was shown in [74] that Õ(N1/2/ε4) samples are

sufficient for the identity testing in ℓ1 distance, which was
improved to optimal Θ(N1/2/ε2) in [75]. The independence
testing, i.e., whether a distribution on [N ] × [M ] (N ≥ M)
is equal to or ε-far from a product distribution in ℓ1 dis-
tance, was shown to have sample complexity Õ(N2/3M1/3) ·
poly(1/ε) [74]. Recently, a modular reduction-based approach
was proposed in [76], which covers the closeness, identity
and independence testing. They also gave a tight sample
complexity Θ

(
max{N2/3M1/3/ε4/3, (NM)1/2/ε2}

)
for the

independence testing. In addition, the monotonicity testing was
also shown to have sample complexity Õ(N1/2/ε4) [77].

Apart from property testing between distributions, proper-
ties of a single distribution are well studied in the literature,
e.g., [78], [79], and [80]. An algorithm that computes the Shan-
non entropy using O

(
N

ε log(N)

)
samples for ε = Ω(N0.03)

was proposed in [81] and [82]. After that, the optimal
estimator of Shannon entropy using Θ

(
N

ε log(N) + (log(N))2

ε2

)
samples was given in [83] and [84]. Also, an estimator for
exp

(
(1− α)SR

α (p)
)

was provided in [83], where SR
α (p) is

the α-Rényi entropy of distribution p.
b) Quantum property testing: The emerging topic of

quantum property testing (see [43]) studies the quantum advan-
tage in testing classical statistical and quantum information
properties.

Quantum advantages in testing classical statistical properties
have been extensively studied. Quantum algorithms for testing
properties of classical distributions was first studied in [85],
which gave quantum query complexity O(N1/2/ε6) for the
closeness testing, and O(N1/3) for identity testing (to the
uniform distribution) in ℓ1 distance (for constant precision ε).
Later, the quantum query complexity of the identity testing (to
a known distribution) was improved to Õ(N1/3/ε5) in [86].
The quantum query complexity for the closeness testing in
ℓ1 distance was further improved to Õ(N1/2/ε2.5) in [87],
to Õ(N1/2/ε) in [8], and to O(N1/2/ε) in [88]. Recently,
the quantum query complexity for computing the Shannon
entropy and the Rényi entropy was studied in [59]; especially,
an Õ(N1/2/ε2) quantum query complexity was shown for the
Shannon entropy.

There are also some quantum algorithms for testing quan-
tum information properties not mentioned above. It was shown
in [41] that testing the orthogonality of pure quantum states
requires Θ(1/ε) copies, promised that either they are orthog-
onal or have fidelity ≥ ε. Recently, it was shown in [89] that
quantum identity testing only uses O(N3/2/ε2) copies with
the help of random choice of independent measurements.

D. Discussion

In this paper, we suggest a generalized definition of
block-encoding, with which we can directly manipulate
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subnormalized density operators and extract information from
them. Based on this, we develop new quantum algorithms that
compute a large class of quantum entropies and distances,
which achieve a significant speedup over the best known
ones in the low-rank case. Several interesting problems remain
open:
• Our upper and lower bounds are far from being tight,

a similar issue for computing the von Neumann entropy
arose in [8]. In the error analysis of our algorithms,
the rank r appears in the upper bound for the error
as a multiplicative factor. This makes our algorithms
unlikely to have complexity sub-polynomial in r. Can we
find more efficient algorithms (for example, with query
complexity sub-polynomial in r) or improve the lower
bounds (to, for example, Ω(r))?

• It would be interesting to study other distance mea-
sures of quantum states, e.g., the relative von Neumann
entropy [1] (the quantum generalization of the Kullback-
Leibler divergence [90])

S(ρ∥σ) = tr (ρ (ln(ρ)− ln(σ))) .

• Can we apply the idea of manipulating quantum states to
problems other than computing quantum entropies and
distances?

E. Recent Developments

After the work described in this paper, a series of quantum
algorithms for computing quantum entropies and distances
have been developed and applied in practical tasks.
• Von Neumann entropy. In the “purified quantum query

access” model, the query complexity for computing the
von Neumann entropy was further analyzed in detail
and shown to be O(r log(r)/ε2) in [91]. Computing
the von Neumann entropy in space-bounded quantum
computation was investigated in [92], and they showed
that the space-bounded version of von Neumann entropy
difference is BQL-complete. In the “quantum sample
access” model, the time complexity for computing the
von Neumann entropy was improved to Õ(N2) in [93],
compared to the Õ(N6) in [6], while retaining the
same (up to polylogarithmic factors) sample complexity
Õ(N2).

• Rényi entropy. In the “purified quantum query access”
model, the query complexity for computing the α-Rényi
entropy of a quantum state was improved to Õ(r

1
α /ε

1
α +1)

for 0 < α < 1 and Õ(r/ε1+
1
α ) for α > 1 in [94].

In the “quantum sample access” model, the time com-
plexity for computing the α-Rényi entropy was improved
to Õ(N

4
α−2) for 0 < α < 1 and Õ(N4− 2

α ) for
α > 1 in [93], compared to the Õ(N

6
α ) for 0 <

α < 1 and Õ(N6) for α > 1 in [6], at the cost of
larger sample complexity; they also showed sample lower
bounds Ω(max{N,N 1

α−1}) for computing the α-Rényi
entropy. In addition, variational quantum algorithms for
computing the von Neumann and Rényi entropies were
proposed in [95].

• Trace distance. In the “purified quantum query access”
model, the query complexity for computing the trace
distance was improved to Õ(r/ε2) in [96], and they
showed that low-rank trace distance estimation is BQP-
complete based on the result of [97], improving the
DQC1-hardness given in this paper. The space-bounded
version of trace distance estimation was shown to be
BQL-complete in [92], and its certification was shown to
be coRQUL-complete. In the “quantum sample access”
model, the sample complexity for computing the fidelity
was shown to be Õ(r2/ε5) in [96], which was later
employed in a hypothesis testing based auditing pipeline
for quantum differential privacy with domain knowl-
edge [98].

• Fidelity. In the “purified quantum query access” model,
the query complexity for computing the fidelity was
improved to Õ(r2.5/ε5) in [39]. When quantum states
are well-conditioned (i.e., ρ, σ ≥ I/κ for some known
κ > 0), the query complexity was shown to be Õ(κ4/ε)
in [99], with the dependence on ε optimal (up to poly-
logarithmic factors). It was shown in [97] that pure-state
fidelity estimation is BQP-complete, which, together with
the polynomial-time quantum algorithms for low-rank
fidelity estimation in [11] and [39] and this paper, implies
that low-rank fidelity estimation is also BQP-complete,
improving the DQC1-hardness given in this paper. In the
“quantum sample access” model, the sample complexity
for computing the fidelity was shown to be Õ(r5.5/ε12)
in [39].

F. Organization of This Paper

Section II introduces the idea that regards quantum states as
block-encodings, and provides a series of basic techniques for
manipulating them. Section III presents quantum algorithms
that compute quantum entropies, including the von Neumann
entropy, quantum Rényi entropy and quantum Tsallis entropy.
Section IV presents quantum algorithms that compute the trace
distance, fidelity and their extensions.

II. QUANTUM STATES AS BLOCK-ENCODINGS

Since the introduction of qubitization in Hamiltonian sim-
ulation [31], block-encodings have been widely used as a
basic notion in quantum algorithms, e.g., [22] and [33]. In the
existing research, block-encodings are unitary operators that
block-encode smaller ones.

Quantum states (i.e., density operators) are often used to
contain necessary information in quantum algorithms. For this
purpose, a technique was provided in [31] to implement a
unitary operator that block-encodes a mixed quantum state.
However, to the best of our knowledge, there is no known
method to do the inverse, that is, to prepare a mixed quantum
state using queries to the given unitary operator (quantum
oracle) that block-encodes its density operator. As a result,
it could be difficult to extract information from operators that
are block-encoded in unitary operators. This motivate us to
regard quantum states as block-encodings. As will be seen
later in this section, it is convenient to extract information
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from the operators block-encoded in quantum states as well
as to manipulate them.

In this section, we will extend the definition of block-
encoding proposed for unitary operators as in [22], [31], and
[33] to that for general operators, especially for density oper-
ators (i.e., quantum states). Then we show the possibility that
information can be stored in and extracted from quantum states
as block-encodings. Also, we can manipulate the information
block-encoded in quantum states. Here, the “information”
block-encoded in quantum states (i.e., density operators) is
essentially subnormalized density operators.

A. Subnormalized Density Operators

We will use the language of the conventional block-
encoding. Here, we give the definition of block-encoding for
ordinary quantum operators as follows.

Definition II.1 (Block-Encoding): Suppose A is an n-qubit
operator, α, ε ≥ 0 and a ∈ N. An (n+ a)-qubit operator B is
said to be an (α, a, ε)-block-encoding of A, if

∥α a⟨0|B |0⟩a−A∥ ≤ ε.

Intuitively, A is represented by the matrix in the upper left
corner of B, i.e.

B ≈
[
A/α ∗
∗ ∗

]
.

Here, we write |0⟩a to denote |0⟩⊗a, where the subscript
a indicates which (and how many) qubits are involved in
the Dirac symbol. For example, if a system consists of two
subsystems of a qubits and b qubits and it is in state |0⟩⊗(a+b),
we can represent it as |0⟩a+b or |0⟩a |0⟩b.

We are interested in matrices block-encoded in a mixed
quantum state (density operator), which are indeed subnor-
malized density operators.

Definition II.2 (Subnormalized Density Operator): A sub-
normalized density operator A is a semidefinite operator with
tr(A) ≤ 1. A (normalized) density operator is a subnormalized
density operator with trace 1. An (n + a + b)-qubit unitary
operator U is said to prepare an n-qubit subnormalized density
operator A, if it prepares the purification |ρ⟩ = U |0⟩n+a+b of
a density operator ρ = trb(|ρ⟩ ⟨ρ|), which is a (1, a, 0)-block-
encoding of A.

Given a subnormalized density operator A prepared by
a unitary operator U , we usually need to construct another
unitary operator Ũ which is a block-encoding of A. This
technique was first introduced by [31], then generalized for
subnormalized density operators by [22] and [32].

Lemma II.1 (Block-Encoding of Subnormalized Density
Operators [22], [31], [32]): Suppose U is an (n + a)-
qubit unitary operator that prepares an n-qubit subnormalized
density operator A. Then there is a (2n + a)-qubit unitary
operator Ũ which is a (1, n+a, 0)-block-encoding of A, using
1 query to U and U† and O(a) elementary quantum gates.

B. Generalized Evolution

It is well known that after applying a unitary operator U
on a mixed quantum state ρ, it will become another state

UρU†. Here, we extend the basic unitary evolution to the
case of subnormalized density operators, which transforms
a subnormalized density operator A to BAB†, where B is
block-encoded in a unitary operator.

Lemma II.2 (Evolution of Subnormalized Density Opera-
tors): Suppose that

1) U is an (n+ a)-qubit unitary operator that prepares an
n-qubit subnormalized density operator A, and

2) V is an (n+b)-qubit unitary operator which is a (1, b, 0)-
block-encoding of B.

Then, Ũ = (V ⊗ Ia)(U ⊗ Ib) is an (n + a + b)-qubit uni-
tary operator that prepares an n-qubit subnormalized density
operator BAB†.

Proof: Let a = a1+a2 such that U prepares an (n+a1)-
qubit density operator ρ, which is a (1, a1, 0)-block-encoding
of A. Suppose

A =
∑

j

λj |uj⟩ ⟨uj | .

Then we have

|ρ⟩n+a1+a2
=
∑

j

√
λj |uj⟩n |0⟩a1

|ψj⟩a2
+ |⊥a1⟩n+a1+a2

,

where |ψj⟩ is an orthogonal basis, and∥∥∥
a1
⟨0|⊥a1 ⟩n+a1+a2

∥∥∥ = 0.

Note that

|ρ̃⟩ := Ũ |0⟩n+a+b = (V ⊗ Ia) |ρ⟩n+a1+a2
|0⟩b

=
∑

j

√
λj |0⟩a1

|ψj⟩a2

(
V |uj⟩n |0⟩b

)
+ V |⊥a1⟩n+a1+a2

|0⟩b .

Let ρ̃ = tra2 (|ρ̃⟩ ⟨ρ̃|), then

a1+b⟨0|ρ̃ |0⟩a1+b = tra2

(
a1+b⟨0|ρ̃⟩ ⟨ρ̃|0⟩a1+b

)
,

where

a1+b⟨0|ρ̃⟩ =
∑

j

√
λj |ψj⟩a2

⊗ (b⟨0|V |0⟩b) |uj⟩n

=
∑

j

√
λj |ψj⟩a2

⊗B |uj⟩n .

We have that

a1+b⟨0|ρ̃ |0⟩a1+b =
∑

j

λjB |uj⟩n ⟨uj |B† = BAB†.

C. Polynomial Eigenvalue Transformation

Now we show how a subnormalized density operator A
can be transformed to a new subnormalized density operator
A(P (A))2, where P (x) is a polynomial. To this end, we recall
the polynomial eigenvalue transformation of unitary operators
in [22], and extend it to the case of preparing subnormalized
density operators.

Theorem II.3 (Polynomial Eigenvalue Transformation of
Unitary Operators [22]): Suppose that
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1) U is an (n + a)-qubit unitary operator, which is a
(1, a, 0)-block-encoding of an Hermitian operator A.

2) P ∈ R[x] 5 is a degree-d polynomial such that
∥P∥[−1,1] ≤

1
2 .6 Moreover, if P is even or odd, the

condition can be relaxed to ∥P∥[−1,1] ≤ 1.

Then for every δ > 0, there is a quantum circuit7 Ũ such that
1) Ũ is a (1, a+ 2, δ)-block-encoding of P (A).
2) Ũ uses d queries to U and U†, 1 query to controlled-U

and O((a+ 1)d) elementary quantum gates.
3) A description of Ũ can be computed by a (classical)

Turing machine in O(poly(d, log(1/δ))) time.
In the following, combining Theorem II.3 and Lemma II.2,

we develop a technique of polynomial eigenvalue transforma-
tion of subnormalized density operators.

Theorem II.4 (Polynomial Eigenvalue Transformation of
Subnormalized Density Operators): Suppose that

1) U is an (n+ a)-qubit unitary operator that prepares an
n-qubit subnormalized density operator A.

2) P ∈ R[x] is a degree-d polynomial such that
∥P∥[−1,1] ≤

1
2 . Moreover, if P is even or odd, the

condition can be relaxed to ∥P∥[−1,1] ≤ 1.

Then for every δ ∈ (0, 1), there is a quantum circuit Ũ such
that

1) Ũ prepares an n-qubit subnormalized density operator
B, and B is a (1, 0, δ)-block-encoding of A(P (A))2.

2) Ũ uses O(d) queries to U and U†, 1 query to controlled-
U and controlled-U†, and O((n + a)d) elementary
quantum gates.

3) A description of Ũ can be computed by a (classical)
Turing machine in O(poly(d, log(1/δ))) time.

Proof: By Lemma II.1, there is a quantum circuit V that
is a (1, O(n + a), 0)-block-encoding of A, which consists of
1 query to U and U† and O(n+a) elementary quantum gates.
Then by Theorem II.3, there is a quantum circuit Ṽ , which
is a (1, b, δ)-block-encoding of P (A), with d queries to V
and V †, 1 query to controlled-V , and O((n+a)d) elementary
quantum gates, where b = O(n+ a).

We claim that Ũ = (Ṽ ⊗Ia)(U⊗Ib) is desired. To see this,
by Lemma II.2, Ũ prepares an n-qubit subnormalized density

operator
(

b⟨0|Ṽ |0⟩b
)
A
(

b⟨0|Ṽ |0⟩b
)†

. On the other hand,∥∥∥∥(b⟨0|Ṽ |0⟩b
)
A
(

b⟨0|Ṽ |0⟩b
)†
−A(P (A))2

∥∥∥∥
≤
∥∥∥∥(b⟨0|Ṽ |0⟩b − P (A)

)
A
(

b⟨0|Ṽ |0⟩b
)†∥∥∥∥+

5Let R̃ ⊆ R be the set of polynomial-time computable real numbers. That
is, for every real number x ∈ R̃, there is a polynomial-time (classical) Turing
machine M such that |M(1n)− x| < 2−n, where M(1n) denotes the output
floating point real number of M on input 1n. Throughout this paper, we only
consider polynomial-time computable real numbers, and for any S ⊆ R,
we write S to denote S ∩ R̃ for convenience. Especially, we just write R for
R̃.

6For a function f : R → C and a set I ⊆ R, we define ∥f∥I =
sup {|f(x)||x ∈ I} .

7Throughout this paper, without explicit explanation, quantum circuits are
uniform. Here, a uniform quantum circuit is a family of quantum circuits
whose descriptions can be computed by a polynomial-time (classical) Turing
machine.

∥∥∥∥P (A)A
((

b⟨0|Ṽ |0⟩b
)†
− P (A)

)∥∥∥∥
≤ δ ∥A∥ (∥P (A)∥+ δ) + ∥P (A)∥ ∥A∥ δ

≤ 5
2
δ = Θ(δ).

We conclude that Ũ prepares the purification |ρ̃⟩ of ρ̃, which
is a (1, O(n+ a),Θ(δ))-block-encoding of A(P (A))2, which
yields the proof.

By Theorem II.4, we are able to transform a subnormalized
density operator A to A(f(A))2 for a large range of f(x), pro-
vided f(x) can be efficiently approximated by a polynomial.

Theorem II.5 (Eigenvalue Transformation of Subnormalized
Density Operators): Suppose that

1) U is an (n+ a)-qubit unitary operator that prepares an
n-qubit subnormalized density operator A.

2) f : [−1, 1] → R can be approximated by a degree-d
polynomial P ∈ R[x] such that there are two parameters
δ, ε ∈ (0, 1

2 ], it holds that ∥P (x)− f(x)∥[δ,1] ≤ ε and
∥P∥[−1,1] ≤

1
2 . Moreover, if P is even or odd, the latter

condition can be relaxed to ∥P∥[−1,1] ≤ 1.

Then there is a quantum circuit Ũ such that
1) Ũ prepares an n-qubit subnormalized density operator

B, and B is a
(
1, 0,Θ

(
ε+ δ +

∥∥x(f(x))2
∥∥

[0,δ]

))
-

block-encoding of A(f(A))2.
2) Ũ uses O(d) queries to U and U†, 1 query to controlled-

U and controlled-U†, and O((n + a)d) elementary
quantum gates.

3) A description of Ũ can be computed by a (classical)
Turing machine in O(poly(d, log(1/δ))) time.

Proof: Let Ũ be the quantum circuit obtained by
Theorem II.4, which prepares an n-qubit subnormalized den-
sity operator B as a (1, 0, δ)-block-encoding of A(P (A))2.
We analyze the error by the fact that∥∥x(P (x))2 − x(f(x))2

∥∥
[0,1]

≤ Θ
(
ε+ δ +

∥∥x(f(x))2
∥∥

[0,δ]

)
.

We consider two cases.
Case 1: x ∈ [δ, 1].∣∣x(P (x))2 − x(f(x))2

∣∣ ≤ |x| |P (x) + f(x)| |P (x)− f(x)|
≤ (1 + ε)ε ≤ 2ε = Θ(ε).

Case 2: x ∈ [0, δ).∣∣x(P (x))2 − x(f(x))2
∣∣ ≤ ∣∣x(P (x))2

∣∣+ ∣∣x(f(x))2
∣∣

≤ δ +
∥∥x(f(x))2

∥∥
[0,δ]

.

Then we have∥∥B −A(f(A))2
∥∥ ≤ ∥∥B −A(P (A))2

∥∥
+
∥∥A(P (A))2 −A(f(A))2

∥∥
≤ δ + Θ

(
ε+ δ +

∥∥x(f(x))2
∥∥

[0,δ]

)
= Θ

(
ε+ δ +

∥∥x(f(x))2
∥∥

[0,δ]

)
.

As will be seen, Theorem II.5 can be used to develop a
technique of preparing positive powers of Hermitian operators
(see Section II-D).
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D. Positive Powers

We will use Theorem II.5 to develop an efficient approach
for implementing positive powers of Hermitian matrix A,
which removes the dependence on κ that I/κ ≤ A ≤ I
as in [33] (see Lemma II.13 of its full version). In this
subsection, we will provide the positive power tricks for
an Hermitian operator block-encoded in a density operator
(Lemma II.8) and in a unitary operator (Lemma II.13). To this
end, we recall some results of polynomial approximations of
power functions.

Lemma II.6 (Polynomial Approximation of Positive Power
Functions [33], [100]): Let δ, ε ∈ (0, 1

2 ], c ∈ (0, 1) and
f(x) = 1

2 x
c. Then there is an even/odd degree-O

(
1
δ log

(
1
ε

))
polynomial8 P ∈ R[x] such that ∥P (x)− f(x)∥[δ,1] ≤ ε and
∥P∥[−1,1] ≤ 1.

Lemma II.7 (Polynomial Approximation of Negative Power
Functions [22], [33], [100]): Let δ, ε ∈ (0, 1

2 ], c >

0 and f(x) = δc

2 x−c. Then there is an even/odd
degree-O

(
c+1

δ log
(

1
ε

))
polynomial P ∈ R[x] such that

∥P (x)− f(x)∥[δ,1] ≤ ε and ∥P∥[−1,1] ≤ 1.
First, we develop a method of implementing positive powers

of Hermitian matrix A, which is given as block-encoded in a
density operator ρ. Here, the purification of ρ can be prepared
by a unitary operator U .

Lemma II.8 (Positive Powers Block-Encoded in Density
Operators): Suppose that

1) U is an (n+ a)-qubit unitary operator that prepares an
n-qubit subnormalized density operator A.

2) δ, ε ∈
(
0, 1

2

]
and c ∈ (0, 1).

Then there is a quantum circuit Ũ such that
1) Ũ prepares an n-qubit subnormalized density operator

B, and B is a (4δc−1, 0,Θ(δc +εδc−1))-block-encoding
of Ac.

2) Ũ uses O(d) queries to U and U†, 1 query to controlled-
U and controlled-U†, and O((n + a)d) elementary
quantum gates, where d = O

(
1
δ log

(
1
ε

))
.

3) A description of Ũ can be computed by a (classical)
Turing machine in O(poly(d)) time.

Proof: Let f(x) = δc

2 x
−c, where c ∈

(
0, 1

2

)
. Then

x(f(x))2 = δ2c

4 x
1−2c, and

∥∥x(f(x))2
∥∥

[0,δ]
≤ δ

4 = Θ(δ).
By Lemma II.7, we can obtain an even/odd polynomial P (x)
of degree O

(
1
δ log

(
1
ε

))
such that ∥P − f∥[δ,1] ≤ ε and

∥P∥[−1,1] ≤ 1. By Theorem II.5, there is a quantum circuit Ũ ,
which prepares an n-qubit subnormalized density operator B,
which is a (1, 0,Θ(δ + ε))-block-encoding of A (f(A))2 =
δ2c

4 A
1−2c. In other words, B is a (4δ−2c, 0,Θ(δ1−2c +

εδ−2c))-block-encoding of A1−2c. These yield the proof by
letting c′ = 1− 2c.

Remark II.1: In Lemma II.8, we provide a positive power
trick for density operators, whose error depends on two

8In this paper, a degree-d polynomial means a uniform family of
(polynomial-time computable) polynomials with parameter d. That is, suppose
Pd(x) =

∑d
k=0 akxk , where ak is a polynomial-time computable real

number for 0 ≤ k ≤ d, then there is a polynomial-time classical Turing
machine that, on input 1d, outputs descriptions Mk of ak for 0 ≤ k ≤ d,
where Mk is a polynomial-time classical Turing machine that, on input 1n,
output ak within additive error 2−n.

parameters δ and ε. This allows us to prepare positive powers
of density operators flexibly, without dealing with their “condi-
tion numbers” κ such that Π/κ ≤ ρ for some projector Π. The
method used in Lemma II.8 is a straightforward application of
Theorem II.5 with the observation that x(f(x))2 → 0 when
x→ 0. In fact, any function f(x) that satisfies this condition
(and, of course, other conditions required in Theorem II.5) is
applicable in this trick, without dealing with κ. As will be seen,
this technique for positive powers of subnormalized density
operators will be frequently used in our quantum algorithms
(see Section III and Section IV), in order to avoid the κ
restrictions on density operators.

Next, inspired by the above observation, we extend the
result to the case that A is given as block-encoded in a unitary
operator. Here, we need to implement a threshold projector.
The following lemma is Corollary III.3 of [22].

Lemma II.9 (Polynomial Approximation of Threshold Pro-
jectors [22]): Let δ, ε ∈ (0, 1

2 ) and t ∈ [0, 1] such that
0 < t− δ < t+ δ < 1. There is an even polynomial P ∈ R[x]
of degree O

(
1
δ log

(
1
ε

))
such that

1) ∥P∥[−1,1] ≤ 1,
2) P (x) ∈ [1− ε, 1] for x ∈ [−t+ δ, t− δ], and
3) P (x) ∈ [0, ε] for x ∈ [−1,−t− δ] ∪ [t+ δ, 1].
We take some special cases of Lemma II.9 as follows, which

will be often used to design our quantum algorithms.
Corollary II.10: Let δ, ε ∈ (0, 1

4 ]. Then there is an
even degree-O

(
1
δ log

(
1
ε

))
polynomial R ∈ R[x] such that

∥R∥[−1,1] ≤ 1 and

R(x) ∈

{
[1− ε, 1] x ∈ [−1,−2δ] ∪ [2δ, 1]
[0, ε] x ∈ [−δ, δ]

.

Corollary II.11: Let δ, ε ∈ (0, 1
4 ]. Then there is an

even degree-O
(

1
δ log

(
1
ε

))
polynomial R ∈ R[x] such that

∥R∥[−1,1] ≤ 1 and

R(x) ∈

{
[1− ε, 1] x ∈ [−1 + 2δ, 1− 2δ]
[0, ε] x ∈ [−1,−1 + δ] ∪ [1− δ, 1]

.

We also need the following lemma to multiply block-
encoded matrices.

Lemma II.12 (Product of Block-Encoded Matrices [22]):
Suppose that

1) U is an (n+a)-qubit unitary operator that is a (α, a, δ)-
block-encoding of an n-qubit operator A.

2) V is an (n+ b)-qubit unitary operator that is a (β, b, ε)-
block-encoding of an n-qubit operator B.

Then there is a quantum circuit Ũ such that
1) Ũ is an (αβ, a+ b, αε+ βδ)-block-encoding of AB.
2) Ũ uses 1 query to each of U and V .
With the approximation of threshold functions, we are able

to implement positive powers of Hermitian matrix A, which
is given as block-encoded in a unitary operator.

Lemma II.13 (Positive Powers Block-Encoded in Unitary
Operators): Suppose that

1) U is an (n + a)-qubit unitary operator which is a
(1, a, 0)-block-encoding of an n-qubit Hermitian opera-
tor A.
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2) δ, ε ∈
(
0, 1

4

]
and c ∈ (0, 1).

Then there is a quantum circuit W such that
1) W is a (2, O(a+1),Θ(ε+δc))-block-encoding of |A|c.
2) W uses O(Q) queries to U and U†, O(1) query to

controlled-U and O((a + 1)Q) elementary quantum
gates, where Q = O

(
1
δ log

(
1
ε

))
.

3) A description of W can be computed by a (classical)
Turing machine in poly(Q) time.

Proof: Let f(x) = 1
2 |x|

c be an even function and
δ, ε ∈ (0, 1

4 ]. By Lemma II.6, there is an even degree-dP

polynomial P ∈ R[x], where dP = O
(

1
δ log

(
1
ε

))
, such

that ∥P (x)− f(x)∥[δ,1] ≤ ε, ∥P (x)− f(x)∥[−1,−δ] ≤ ε and
∥P∥[−1,1] ≤ 1. By Theorem II.3, for δU > 0, there is a
quantum circuit Ũ such that

1) Ũ is a (1, a + 2, 0)-block-encoding of B, and B is a
(1, 0, δU )-block-encoding of P (A).

2) Ũ uses dP queries to U and U†, 1 query to controlled-U
and O((a+ 1)dP ) elementary quantum gates.

3) A description of Ũ can be computed by a (classical)
Turing machine in poly(dP , log(1/δU )) time.

Let R ∈ R[x] be the even degree-dR polynomial in Corol-
lary II.10, where dR = O

(
1
δ log

(
1
ε

))
, such that ∥R∥[−1,1] ≤

1 and

R(x) ∈

{
[1− ε, 1] x ∈ [−1,−2δ] ∪ [2δ, 1]
[0, ε] x ∈ [−δ, δ]

.

By Theorem II.3, for δV > 0, there is a quantum circuit Ṽ
such that

1) Ṽ is a (1, a + 2, 0)-block-encoding of C, and C is a
(1, 0, δV )-block-encoding of R(A).

2) Ṽ uses dR queries to U and U†, 1 query to controlled-U
and O((a+ 1)dR) elementary quantum gates.

3) A description of Ṽ can be computed by a (classical)
Turing machine in poly(dR, log(1/δV )) time.

By Lemma II.12, using one query to each of Ũ and Ṽ ,
we can obtain a quantum circuit W , which is a (1, 2a+4, 0)-
block-encoding of BC. In the following, we will show that
∥BC − f(A)∥ ≤ Θ(ε+ δc). We note that

∥P (x)R(x)− f(x)∥[0,1] ≤ Θ(ε+ δc).

This is seen by the following three cases:
1) |x| > 2δ. We have |P (x)R(x)− f(x)| ≤

|(P (x)− f(x))R(x)|+ |f(x)(R(x)− 1)| ≤ Θ(ε).
2) |x| < δ. We have |P (x)R(x)− f(x)| ≤ |P (x)| |R(x)|+

|f(x)| ≤ Θ(ε+ δc).
3) δ ≤ |x| ≤ 2δ. We have |P (x)R(x)− f(x)| ≤

|(P (x)− f(x))R(x)|+ |f(x)| |R(x)− 1| ≤ Θ(ε+ δc).
Note that A is Hermitian, we have ∥P (A)R(A)− f(A)∥ ≤
Θ(ε+ δc). Finally,

∥BC − f(A)∥ ≤ ∥BC − P (A)R(A)∥
+ ∥P (A)R(A)− f(A)∥

≤ Θ(δU + δV + ε+ δc).

These conclude that W is a (1, 2a + 4,Θ(ε + δc))-block-
encoding of f(A) by setting δU = δV = ε, and therefore
a (2, O(n+ a),Θ(ε+ δc))-block-encoding of |A|c.

By setting κ = 1/δ, Lemma II.13 reproduces the result
of [33] (see Lemma II.13 of its full version). The strength
of Lemma II.13 is to allow implement positive powers of A,
regardless of whether the condition I/κ ≤ A ≤ I holds. The
technique used in Lemma II.13 by multiplying the polynomial
approximation with a threshold function is similar to Corollary
42 of the full version of [22] for implementing the threshold
pseudoinverse.

E. Trace Estimation

In this subsection, we will provide a method of estimating
the trace of an Hermitian matrix which is block-encoded in a
density operator. Before that, we recall the quantum amplitude
estimation [64].

Theorem II.14 (Quantum Amplitude Estimation, [64]): Sup-
pose U is an (a+ b)-qubit unitary operator such that

U |0⟩a+b =
√
p |0⟩a |ϕ0⟩b +

√
1− p |1⟩a |ϕ1⟩b ,

where |ϕ0⟩ and |ϕ1⟩ are normalized (pure) quantum states and
p ∈ [0, 1]. There is a quantum algorithm that outputs p̃ ∈ [0, 1]
such that

|p̃− p| ≤
2π
√
p(1− p)
M

+
π2

M2

with probability ≥ 8
π2 , using O(M) queries to U and U†.

If we know an upper bound B of p, then we can take
M =

⌈
2π
(

2
√

B
ε + 1√

ε

)⌉
= Θ

(√
B
ε + 1√

ε

)
to guarantee that

|p̃− p| ≤ ε.
Based on quantum amplitude estimation, we develop the

trace estimation of subnormalized density operators as shown
below, which will be useful to design quantum algorithms, see
Section III and Section IV.

Lemma II.15 (Trace Estimation of Subnormalized Density
Operators): Suppose U is an (n + a)-qubit unitary operator
that prepares an n-qubit subnormalized density operator A,
and B > 0 is a known constant that tr(A) ≤ B. For every ε >
0, there is a quantum algorithm that estimates tr(A) within
additive error ε with O

(√
B
ε + 1√

ε

)
queries to U and U†.

Proof: Let a = a1+a2 such that U prepares an (n+a1)-
qubit density operator ρ, which is a (1, a1, 0)-block-encoding
of A. Suppose

A =
∑

j

λj |uj⟩ ⟨uj | .

Then we have

U |0⟩n+a1+a2
= |ρ⟩n+a1+a2

=
∑

j

√
λj |uj⟩n |0⟩a1

|ψj⟩a2
+ |⊥a1⟩n+a1+a2

,

where |ψj⟩ is an orthogonal basis, and∥∥∥
a1
⟨0|⊥a1 ⟩n+a1+a2

∥∥∥ = 0.

Moreover, we have

U |0⟩n+a1+a2
=
√
p |0⟩a1

|ϕ0⟩n+a2
+
√

1− p |1⟩a1
|ϕ1⟩n+a2

for some (pure) quantum states |ϕ0⟩ and |ϕ1⟩, where p =
tr(A).
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If we know an upper bound B of tr(A), then let M =⌈
2π
(

2
√

B
ε + 1√

ε

)⌉
= Θ

(√
B
ε + 1√

ε

)
, and by Theorem II.14,

we can computes p̃ such that

|p̃− p| ≤
2π
√
p(1− p)
M

+
π2

M2
≤ ε

with success probability ≥ 8
π2 , using M queries to U and

U†.

F. Linear Combinations

We will provide a technique (Lemma II.17) that prepares a
linear combination of subnormalized density operators, which
is a natural analog of Linear-Combination-of-Unitaries (LCU)
algorithm through a series of work [22], [65], [66], [67], [68],
[69], [70].

Before stating our linear combination result of subnormal-
ized density operators, we introduce a technique that embeds
a density operator in a larger space.

Lemma II.16: Suppose U is an (n + a)-qubit unitary
operator that prepares an n-qubit density operator ρ. For
every b ≥ 0, there is an (n + a + b)-qubit unitary operator
U (b) = U ⊗ Ib such that

1) U (b) prepares an (n+b)-qubit density operator ρ(b), and
ρ(b) is a (1, b, 0)-block-encoding of ρ.

2) U (b) uses 1 query to U .
Proof: Let |ψ⟩n+a = U |0⟩n+a and then ρn =

tra(|ψ⟩n+a ⟨ψ|). Let U (b) = U ⊗ Ib and
∣∣ψ(b)

〉
n+a+b

=
U (b) |0⟩n+a+b = |ψ⟩n+a |0⟩b. We have

ρ(b) = tra

(∣∣∣ψ(b)
〉

n+a+b

〈
ψ(b)

∣∣∣)
= tra

(
|ψ⟩n+a ⟨ψ| ⊗ |0⟩b ⟨0|

)
= ρn ⊗ |0⟩b ⟨0| .

The proof is completed by noting that b⟨0|ρ(b) |0⟩b = ρn.
Now we are ready to show the technique to prepare a linear

combination of subnormalized density operators. The basic
idea is to prepare a linear combination of (normalized) density
operators, but a careful qubit alignment is needed with the help
of Lemma II.16.

Lemma II.17 (Linear Combination of Subnormalized Den-
sity Operators): Suppose

1) V is an m-qubit unitary operator such that V |0⟩ =∑
k∈[2m]

√
αk |k⟩.9

2) For every k ∈ [2m], Uk is an (n+ak +bk)-qubit unitary
operator that prepares an (n+ak)-qubit density operator
ρk, and ρk is a (1, ak, 0)-block-encoding of an n-qubit
subnormalized density operator Ak.

Let a = maxk∈[2m]{ak} and b = maxk∈[2m]{bk}. Then there
is an (m+ n+ a+ b)-qubit unitary operator U such that

1) U (V ⊗ In+a+b) prepares an n-qubit subnormalized
density operator

A =
∑

k∈[2m]

αkAk.

9Here, we use the notation [n] = {0, 1, 2, . . . , n− 1}.

2) U uses 1 query to each Uk for k ∈ [2m].
Proof: Let a′k = a− ak, b′k = b− bk, and

U =
∑

k∈[2m]

|k⟩ ⟨k| ⊗ U
(a′k+b′k)
k

be an (m + n + a + b)-qubit unitary operator, where U (b) =

U ⊗ Ib is defined as in Lemma II.16. Here, U(a′k+b′k)
k acts on

n+a+ b qubits. To be precise, if we split the n+a+ b qubits
into three parts: (i) n qubits, (ii) a qubits and (iii) b qubits,

then U(a′k+b′k)
k uses 1 query to Uk which acts on: (i) the whole

n qubits, (ii) the first ak qubits and (iii) the first bk qubits.
Let |ψk⟩n+ak+bk

= Uk |0⟩n+ak+bk
. Then we note that

|ψ⟩ = U (V ⊗ In+a+b) |0⟩m |0⟩n |0⟩a |0⟩b
= U

∑
k∈[2m]

√
αk |k⟩m |0⟩n |0⟩a |0⟩b

=
∑

k∈[2m]

√
αk |k⟩m

(
U

(a′k+b′k)
k |0⟩n |0⟩a |0⟩b

)
=
∑

k∈[2m]

√
αk |k⟩m |ψk⟩n+ak+bk

|0⟩a′k |0⟩b′k ,

and

ρ = trm+b (|ψ⟩ ⟨ψ|)

=
∑

k∈[2m]

αk trb

(
|ψk⟩n+ak+bk

⟨ψk| ⊗ |0⟩a′k+b′k
⟨0|
)

=
∑

k∈[2m]

αk trbk

(
|ψk⟩n+ak+bk

⟨ψk|
)
⊗ |0⟩a′k ⟨0|

=
∑

k∈[2m]

αk(ρk)n+ak
⊗ |0⟩a′k ⟨0|

=
∑

k∈[2m]

αk

(
ρ
(a′k)
k

)
n+a

,

where ρ(b) = ρ⊗|0⟩b ⟨0| is defined as in Lemma II.16. To see
that ρ is a (1, a, 0)-block-encoding of A =

∑
k∈[2m]Ak,

we note that

a⟨0|ρ |0⟩a =
∑

k∈[2m]

αk ak
⟨0|(ρk)n+ak

|0⟩ak

=
∑

k∈[2m]

αkAk = A.

Therefore, U (V ⊗ Ia ⊗ Ib) prepares a subnormalized density
operator A.

As it will be also used to design quantum algorithms in this
paper, we provide the LCU algorithm for comparison. Here,
we use the notion as in the full version of [22].

Definition II.3 (State Preparation Pair): Let y ∈ Cm

with ∥y∥1 ≤ β, and ε ≥ 0. A pair of unitary oper-
ator (PL, PR) is called a (β, b, ε)-state-preparation-pair if
PL |0⟩b =

∑
j∈[2b] cj |j⟩ and PR |0⟩b =

∑
j∈[2b] dj |j⟩ such

that
∑

j∈[m]

∣∣βc∗jdj − yj

∣∣ ≤ ε and c∗jdj = 0 for all m ≤ j <

2b.
Theorem II.18 (Linear Combination of Unitary Opera-

tors [22]): Suppose
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1) y ∈ Cm with ∥y∥1 ≤ β, and (PL, PR) is a (β, b, ε1)-
state-preparation-pair for y.

2) For every k ∈ [m], Uk is an (n + a)-qubit unitary
operator that is an (α, a, ε2)-block-encoding of an n-
qubit operator Ak.

Then there is an (n + a + b)-qubit quantum circuit W such
that

1) W is a (αβ, a+ b, αε1 +αβε2)-block-encoding of A =∑
k∈[m] ykAk.

2) W uses 1 query to each of P †L, PR and (controlled-)Uk

for k ∈ [m], and O(b2) elementary quantum gates.

G. Eigenvalue Threshold Projector

In this subsection, we show how to block-encode an eigen-
value threshold projector Πsupp(A) of a subnormalized density
operator A in another. We note that a technique for block-
encoding eigenvalue threshold projectors in subnormalized
density operators was also provided in [32]. The major
difference is that our approach does not have any further
requirements on the subnormalized density operator A, while
the method of [32] requires that A ≥ qΠ for some projector
Π and the value of q > 0 is known in advance.

First, we introduce the notion of truncated support. Let δ >
0 and A be an Hermitian operator with spectral decomposition
A =

∑
j λj |ψj⟩ ⟨ψj |. The δ-support of A is

suppδ(A) = span{|ψj⟩ : |λj | > δ}.

Note that suppδ(A) ⊆ supp0(A) = supp(A). Here, we write
ΠS to denote the projector onto a subspace S.

Lemma II.19 (Eigenvalue Threshold Projector): Suppose
1) U is an (n+ a)-qubit unitary operator that prepares an

n-qubit subnormalized density operator A.
2) δ, ε ∈ (0, 1

10 ] and 32ε2 ≤ δ.

For every δ′ > 0, there is a quantum circuit Ũ such that
1) Ũ prepares an n-qubit subnormalized density operator,

which is a (1, 0, δ′)-block-encoding of B such that(
δ

4
(1− 2ε)− δ1/2ε

)
Πsupp2δ(A) ≤ B

≤
(
δ

4
+ ε2 + δ1/2ε

)
Πsupp(A).

2) Ũ uses O(d) queries to U and U†, 1 query to controlled-
U and O((n + a)d) elementary quantum gates, where
d = O

(
1
δ log

(
1
ε

))
.

3) A description of Ũ can be computed by a (classical)
Turing machine in poly(d, log(1/δ′)) time.

Proof: Let f(x) = δ1/2

2 x−1/2, and by Lemma II.7, there
is a degree-O

(
1
δ log

(
1
ε

))
even polynomial P ∈ R[x] such that

∥P − f∥[δ,1] ≤ ε and ∥P∥[−1,1] ≤ 1. By Corollary II.10, there
is a degree-O

(
1
δ log

(
1
ε

))
even polynomial R ∈ R[x] such that

∥R∥[−1,1] ≤ 1 and

R(x) ∈

{
[1− ε, 1] x ∈ [−1,−2δ] ∪ [2δ, 1]
[0, ε] x ∈ [−δ, δ]

.

Note that Q = PR ∈ R[x] is a degree-d even polynomial,
where d = O

(
1
δ log

(
1
ε

))
. By Theorem II.3, for δQ > 0, there

is a quantum circuit UQ such that
1) UQ is a (1, O(n+a), 0)-block-encoding of A1, and A1 is

a (1, 0, δQ)-block-encoding of Q(A).
2) UQ uses d queries to U and U†, 1 query to controlled-U

and O((n+ a)d) elementary quantum gates.
3) A description of UQ can be computed by a (classical)

Turing machine in poly(d, log(1/δQ)) time.
By Lemma II.2, using 1 query to each of UQ and U , we obtain
a unitary operator Ũ that prepares A1AA

†
1. We note that∥∥∥A1AA

†
1 −A(Q(A))2

∥∥∥ ≤ ∥∥∥A1AA
†
1 −Q(A)AA†1

∥∥∥
+
∥∥∥Q(A)AA†1 −Q(A)AQ(A)

∥∥∥
≤ 2δQ.

Moreover, A1AA
†
1 can be regarded as a (scaled) projector.

To see this, let 1S be the indicator function that

1S(x) =

{
1, x ∈ S,
0, otherwise.

Then Πsuppδ(A) = 1[δ,1](A). We note that if 32ε2 ≤ δ, then(
δ
4 (1− 2ε)− δ1/2ε

)
Πsupp2δ(A) ≤ A(Q(A))2

≤
(

δ
4 + ε2 + δ1/2ε

)
Πsupp(A). (3)

We need to show that(
δ

4
(1− 2ε)− δ1/2ε

)
1[2δ,1](x) ≤ x(Q(x))2

≤
(
δ

4
+ ε2 + δ1/2ε

)
1(0,1](x)

for every x ∈ [0, 1]. This is seen by the following four cases.
1) x = 0. This case is trivial as each hand side is equal to

0.
2) x ∈ (0, δ]. We have 0 ≤ x(Q(x))2 ≤ x(R(x))2 ≤

xε2 ≤ δε2.
3) x ∈ (δ, 2δ]. We have

0 ≤ x(Q(x))2 ≤ x(P (x))2 ≤ x(f(x) + ε)2

= x(f(x))2 + xε2 + 2xf(x)ε ≤ δ

4
+ ε2 + δ1/2ε.

4) x ∈ (2δ, 1]. The right hand side is x(Q(x))2 ≤ δ
4 +

ε2 + δ1/2ε is similar to Case 3. The left hand side is as
follows.

x(Q(x))2 ≥ x(P (x))2(1− ε)2

≥ x(f(x)− ε)2(1− ε)2

≥ x((f(x))2 − 2f(x)ε)(1− 2ε)

=
(
δ

4
− δ1/2x1/2ε

)
(1− 2ε)

≥ δ

4
(1− 2ε)− δ1/2ε.

Therefore, we conclude that Eq. (3) holds. We claim the lemma
by setting B = A(Q(A))2 and δ′ = 2δQ.
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III. QUANTUM ENTROPIES

In the Introduction, we have already introduced several
quantum entropies such as the von Neumann entropy, quantum
Rényi entropy and quantum Tsallis entropy. In addition to
this, the quantum Min entropy Smin(ρ) and the quantum
Max (Hartley) entropy Smax(ρ) are defined as limits of Rényi
entropies by

Smin(ρ) = SR
∞(ρ) = lim

α→∞
SR

α (ρ) = − ln (∥ρ∥) ,

Smax(ρ) = SR
0 (ρ) = lim

α→0
SR

α (ρ) = ln (rank(ρ)) .

The unified entropy [56] is defined by

Ss
α(ρ) =

1
(1− α)s

((tr (ρα))s − 1)

for α ∈ (0, 1) ∪ (1,+∞) and s ̸= 0, which includes the von
Neumann entropy S(ρ) = limα→1 S

s
α(ρ), the Rényi entropy

SR
α (ρ) = lims→0 S

s
α(ρ) and the Tsallis entropy ST

α (ρ) =
S1

α(ρ).
In this section, we will propose a series of quantum algo-

rithms for computing several quantum entropies. Section III-A
provides a quantum algorithm for computing the von Neumann
entropy. Section III-B is for the Max entropy. Section III-C is
for the quantum Rényi and Tsallis entropies.

A. Von Neumann Entropy

The von Neumann entropy is one of the most important
quantum information quantities. As mentioned above, both
quantum algorithms for estimating von Neumann entropy
provided by [6] and [8] have time complexity exponential in
the number n = log2(N) of qubits of the quantum state. Here,
we provide a different approach that exponentially improves
the dependence on n given that the density operator of the
mixed quantum state is low-rank. Our key technique used
here is different from that of [8], where they approximated
a function ∝ − ln(x) and constructed a unitary operator that
is a block-encoding of S(ρ), while we approximate a function
∝
√
− ln(x) and prepare a density operator that is a block-

encoding of S(ρ).
Theorem III.1: Suppose that
1) Uρ is an (n + nρ)-qubit unitary operator that prepares

an n-qubit density operator ρ with rank(ρ) ≤ r.
2) nρ is a polynomial in n.10

There is a quantum algorithm that computes the von Neumann
entropy S(ρ) within additive error ε using Õ( r

ε2 ) queries to
Uρ and Õ( r

ε2 poly(n)) elementary quantum gates.11

Before the proof of Theorem III.1, we need the following
method of approximating functions by polynomials based on
Taylor series.

Lemma III.2 (Corollary 66 of the Full Version of [22]): Let
x0 ∈ [−1, 1], r ∈ (0, 2], δ ∈ (0, r] and f : [x0 − r − δ,

10Theoretically, any n-qubit mixed quantum state has a purification with at
most n ancilla qubits, so it is sufficient to assume that nρ ≤ n. Here, we just
assume that nρ = poly(n) for convenience.

11Since the quantum algorithm is complicated, we do not distinguish
between the queries to a unitary operator and those to its controlled versions,
and we ignore poly-logarithmic factors.

x0 + r + δ] → C such that

f(x0 + x) =
∞∑

k=0

akx
k

for all x ∈ [−r − δ, r + δ]. Suppose B > 0 and
∞∑

k=0

|ak| (r + δ)k ≤ B.

Let ε ∈ (0, 1
2B ], then there is an efficient computable polyno-

mial P ∈ C[x] of degree O
(

1
δ log

(
B
ε

))
such that

∥f(x)− P (x)∥[x0−r,x0+r] ≤ ε,

∥P∥[−1,1] ≤ ε+ ∥f∥[x0−r−δ/2,x0+r+δ/2] ≤ ε+B,

∥P∥[−1,1]\[x0−r−δ/2,x0+r+δ/2] ≤ ε.

By Lemma III.2, we are able to give an approximation of
scaled

√
− ln(x) as follows.

Lemma III.3: For every δ′, ε ∈ (0, 1
4 ], there is an efficient

computable polynomial P ∈ R[x] of degree O
(

1
δ′ log

(
1

δ′ε

))
such that ∥∥∥∥∥P (x)−

√
− ln(x)

2
√
− ln(δ′)

∥∥∥∥∥
[δ′,1−δ′]

≤ ε,

∥P∥[−1,1] ≤ 1.

Proof: Let f(x) =
√
− ln(x)

2
√
− ln(δ′)

whose Taylor series

expanded around x0 = 1
2 is f(x0+x) =

∑∞
k=0 akx

k. We note
that f(x) is holomorphic in C\ (−∞, 0]\ [1,∞) if we choose
the definitions of ln(·) and

√
(·) to be their principle branches

in complex analysis. Thus the radius of convergence of the
Taylor series of f(x) expanded around x0 = 1

2 is R = 1
2 .

We have
lim sup

k→∞

k
√
|ak| =

1
R

= 2.

Therefore, there exists k0 ∈ N such that for every k > k0,
it holds that k

√
|ak| < 2 + δ′. Now we set r = 1

2 − δ′ and
δ = δ′/2, and we have

∞∑
k=0

|ak| (r + δ)k ≤
∞∑

k=0

(2 + δ′)k

(
1
2
− δ′

2

)k

+O(1)

≤
∞∑

k=0

(
1− δ′

2

)k

+O(1)

=
2
δ′

+O(1) =: B.

Now applying Lemma III.2, there is an efficiently com-
putable polynomial P ∈ C[x] of degree O

(
1
δ log

(
B
ε

))
=

O
(

1
δ′ log

(
1

δ′ε

))
such that

∥f(x)− P (x)∥[δ′,1−δ′] ≤ ε,

∥P (x)∥[−1,1] ≤ ε+ ∥f∥[3δ′/4,1−3δ′/4] ,

∥P∥[−1,1]\[3δ′/4,1−3δ′/4] ≤ ε.

Here, we note that

∥f∥[3δ′/4,1−3δ′/4] = f

(
3δ′

4

)
≤ 3

4
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and we obtain ∥P∥[−1,1] ≤ 1 combining the three cases above.
Finally, since we are only interested in the real part of P (x)
and x is always a real number, just selecting the real part of
the coefficients of P (x) will obtain a desired polynomial with
real coefficients.

Now we are ready to give the proof of Theorem III.1.
Proof of Theorem III.1: Let δ, ε1 ∈ (0, 1

4 ) and

f(x) =

√
− ln(x)

2
√
− ln(δ)

.

By Lemma III.3, there is a polynomial P (x) of
degree O

(
1
δ log

(
1

δε1

))
such that ∥P∥[−1,1] ≤ 1 and

∥P (x)− f(x)∥[δ,1−δ] ≤ ε1. By Corollary II.11, there is an

even polynomial R(x) of degree O
(

1
δ log

(
1
ε1

))
such that

∥R∥[−1,1] ≤ 1 and

R(x) ∈

{
[1− ε1, 1] x ∈ [−1 + 2δ, 1− 2δ]
[0, ε1] x ∈ [−1,−1 + δ] ∪ [1− δ, 1]

.

We note that 1
2P (x)R(x) is a polynomial of degree d =

O
(

1
δ log

(
1

δε1

))
satisfying

∥∥ 1
2P (x)R(x)

∥∥
[−1,1]

≤ 1
2 . Let

δ1 ∈ (0, 1) and by Lemma II.4, there is a quantum circuit
Ũ such that

1) Ũ prepares an n-qubit subnormalized density oper-
ator A1, and A1 is a (1, 0, δ1)-block-encoding of
ρ
(

1
2P (ρ)R(ρ)

)2
.

2) Ũ uses O(d) queries to Uρ and U†ρ , 1 query to
controlled-U and controlled-U†ρ , and O((n + a)d) ele-
mentary quantum gates.

3) A description of Ũ can be computed by a (classical)
Turing machine in O(poly(d, log(1/δ1))) time.

Now we are going to show that∥∥x(P (x)R(x))2 − x(f(x))2
∥∥

[0,1]
≤ Θ

(
ε1 +

δ

ln
(

1
δ

)) ,
which immediately yields∥∥ρ(P (ρ)R(ρ))2 − ρ(f(ρ))2

∥∥ ≤ Θ

(
ε1 +

δ

ln
(

1
δ

)) .
We consider four cases.

1) x ∈ [0, δ]. In this case,∣∣x(P (x)R(x))2 − x(f(x))2
∣∣

≤
∣∣x(P (x)R(x))2

∣∣+ ∣∣x(f(x))2
∣∣

≤ δ + δ(f(δ))2

= δ + δ/4
= Θ(δ).

2) x ∈ [δ, 1− 2δ]. In this case,∣∣x(P (x)R(x))2 − x(f(x))2
∣∣

≤ |x|
( ∣∣(P (x))2 − (f(x))2

∣∣ ∣∣(R(x))2
∣∣

+
∣∣(R(x))2 − 1

∣∣ ∣∣(f(x))2
∣∣ )

≤ 2 |P (x)− f(x)|+ 2 |R(x)− 1|
≤ 2ε1 + 2ε1 = Θ(ε1).

3) x ∈ [1− 2δ, 1− δ]. We note that −x ln(x) < 1− x for
every x ∈ (0, 1). In this case,∣∣x(P (x)R(x))2 − x(f(x))2

∣∣
≤
∣∣x(P (x)R(x))2

∣∣+ ∣∣x(f(x))2
∣∣

≤
∣∣x(P (x))2

∣∣+ ∣∣x(f(x))2
∣∣

≤ 2
∣∣x(f(x))2

∣∣+ ∣∣x(P (x))2 − x(f(x))2
∣∣

≤ 2
−x ln(x)
−4 ln(δ)

+ 2 |P (x)− f(x)|

≤ 1− x

−2 ln(δ)
+ 2ε1

≤ 2δ
−2 ln(δ)

+ 2ε1

= Θ

(
δ

ln
(

1
δ

) + ε1

)
.

4) x ∈ [1− δ, 1]. In this case,∣∣x(P (x)R(x))2 − x(f(x))2
∣∣

≤
∣∣x(P (x)R(x))2

∣∣+ ∣∣x(f(x))2
∣∣

≤
∣∣(R(x))2

∣∣+ ∣∣x(f(x))2
∣∣

≤ Θ

(
ε1 +

δ

ln
(

1
δ

)) .
We note that tr

(
ρ(f(ρ))2

)
= S(ρ)

4 ln( 1
δ ) . Based on this, we have∣∣∣∣16 ln

(
1
δ

)
tr(A1)− S(ρ)

∣∣∣∣
≤ Θ

(
r

(
(ε1 + δ1) ln

(
1
δ

)
+ δ

))
.

On the other hand, tr(A1) has an upper bound that

tr(A1) ≤
S(ρ)

16 ln
(

1
δ

) +O(1) ≤ ln(r)
16 ln

(
1
δ

) +O(1) =: B.

Let ε2 ∈ (0, 1). By Lemma II.15, we can compute p̃ such
that |tr(A1)− p̃| ≤ ε2 with O

(√
B

ε2
+ 1√

ε2

)
queries to Ũ and

Ũ†.
Finally, we choose 16 ln

(
1
δ

)
p̃ to be the approximation of

S(ρ). The error is bounded by∣∣16 ln
(

1
δ

)
p̃− S(ρ)

∣∣
≤ Θ

(
r
(
(ε1 + δ1) ln

(
1
δ

)
+ δ
)

+ ε2 ln
(

1
δ

))
. (4)

Let the right hand side of Eq. (4) become ≤ ε, then the number
of queries to Uρ is

O (d) ·O

(√
B

ε2
+

1
√
ε2

)
= Õ

(
d

ε2

)
= Õ

( r
ε2

)
.

B. Max Entropy and Rank of Quantum States

The Max (Hartley) entropy Smax(ρ) = ln (rank(ρ)) of a
quantum state ρ is the logarithm of its rank. Low-rank quantum
states turn out to be useful in quantum algorithms, e.g. [11],
[34], [37], [40], and [101]. Estimating the rank of quantum
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states is important in checking whether a quantum state fits in
a certain low-rank condition of a quantum algorithm. Recently,
a variational quantum algorithm was proposed in [14] to
estimate the rank of quantum states. Here, we provide a
quantum algorithm for rank estimation. For δ > 0, the δ-rank
of a matrix A is defined by

rankδ(A) = min{rank(B) : ∥A−B∥ ≤ δ}.

In particular, rank0(A) = rank(A). We note that if A
is Hermitian and has the spectrum decomposition A =∑

j λj |ψj⟩ ⟨ψj |, then rankδ(A) = tr
(
Πsuppδ(A)

)
is the num-

ber of eigenvalues λj such that |λj | > δ.
Theorem III.4 (Rank Estimation): Suppose that
1) U is an (n+ a)-qubit unitary operator that prepares an

n-qubit density operator ρ.
2) δ ∈ (0, 1

10 ].
For ε, ε′ ∈ (0, 1), there is a quantum algorithm that outputs r̃
such that

(1− ε) rankδ(ρ)− ε′ ≤ r̃ ≤ (1 + ε) rank(ρ) + ε′,

using O
(

1
δ2ε′ log

(
1
δε

))
queries to U and

O
(

1
δ2ε′ log

(
1
δε

)
poly(n)

)
elementary quantum gates.

Proof: Step 1: By Lemma II.19, introducing parameters
δ1, ε1 ∈ (0, 1

10 ] with 32ε21 ≤ δ, there is a quantum circuit Ũ
such that

1) Ũ prepares an n-qubit subnormalized density operator
A, which is a (1, 0, δ1)-block-encoding of Π̃ such that(

δ
8 (1− 2ε1)−

(
δ
2

)1/2
ε1

)
Πsuppδ(ρ) ≤ Π̃

≤
(

δ
8 + ε21 +

(
δ
2

)1/2
ε1

)
Πsupp(ρ). (5)

2) Ũ uses O(d) queries to U and U†, 1 query to controlled-
U and O((n + a)d) elementary quantum gates, where
d = O

(
1
δ log

(
1
ε1

))
.

3) A description of Ũ can be computed by a (classical)
Turing machine in poly(d, log(1/δ1)) time.

We note that
∣∣∣tr(A)− tr(Π̃)

∣∣∣ ≤ 2nδ1 and by Eq. (5) we have(
1− 2ε1 − 4

√
2δ−1/2ε1

)
rankδ(ρ) ≤ 8δ−1 tr(Π̃)

≤
(
1 + 8δ−1ε21 + 4

√
2δ−1/2ε1

)
rank(ρ).

Step 2: Introducing a parameter ε2, by Lemma II.15, we can
compute p̃ that estimates tr(A) such that |p̃− tr(A)| ≤
ε2 with O

(√
B

ε2
+ 1√

ε2

)
queries to Ũ and Ũ†, where B is

an upper bound for tr(A). Here, we just choose B = 1.
Step 3: Output r̃ = 8δ−1p̃ as the estimation of the rank of

ρ. Here, we see that(
1− 2ε1 − 4

√
2δ−1/2ε1

)
rankδ(ρ)− 8δ−1 (2nδ1 + ε2) ≤ r̃

≤
(
1 + 8δ−1ε21+4

√
2δ−1/2ε1

)
rank(ρ)+8δ−1 (2nδ1 + ε2) .

By letting ε1 = 1
32δε < 1 (note that it also holds that

32ε21 < 32ε1 = δε < δ), ε2 = 1
16δε

′, and δ1 = 1
2n+4 δε

′,
the above inequality becomes (1 − ε) rankδ(ρ) − ε′ ≤ r̃ ≤

(1+ε) rank(ρ)+ε′. To see this, we have to show the following
three inequalities.

1) 2ε1 + 4
√

2δ−1/2ε1 ≤ ε. Note that δ−1 ≥ δ−1/2 ≥ 3.
We have 2ε1 + 4

√
2δ−1/2ε1 ≤ δ−1ε1 + 4

√
2δ−1ε1 =

(1 + 4
√

2)δ−1ε1 ≤ 32δ−1ε1 = ε.
2) 8δ−1ε21 + 4

√
2δ−1/2ε1 ≤ ε. Note that ε21 < ε1 < 1 and

δ−1 ≥ δ−1/2 ≥ 3. We have 8δ−1ε21 + 4
√

2δ−1/2ε1 ≤
8δ−1ε1+4

√
2δ−1ε1 = (8+4

√
2)δ−1ε1 ≤ 32δ−1ε1 = ε.

3) 8δ−1 (2nδ1 + ε2) ≤ ε′. This is simple by directly taking
the values of ε2 and δ1.

Finally, the number of queries to U is

O

(
1
δ

log
(

1
ε1

)
·

(√
B

ε2
+

1
√
ε2

))
=O

(
1
δ2ε′

log
(

1
δε

))
.

And similarly, the number of elementary quantum gates is
O
(

1
δ2ε′ log

(
1
δε

)
poly(n)

)
.

Based on Theorem III.4, we can obtain the exact rank of ρ
if Π/κ ≤ ρ for some projector Π and κ > 0.

Corollary III.5 (Exact Rank): Suppose U is an (n+a)-qubit
unitary operator that prepares an n-qubit density operator ρ.
If Π/κ ≤ ρ for some projector Π and κ > 0, then there is
a quantum algorithm that outputs r = rank(ρ) using Õ(κ2)
queries to U and Õ(κ2 poly(n)) elementary quantum gates.

Proof: The claim holds immediately by letting δ = ε =
1

10κ and ε′ = 1/10 in Theorem III.4.
Now we furthermore define the δ-Max entropy by

Smax
δ (ρ) = ln(rankδ(ρ)). Based on Theorem III.4, we are

able to give an estimation of the Max entropy.
Theorem III.6 (Max Entropy Estimation): Suppose that
1) U is an (n+ a)-qubit unitary operator that prepares an

n-qubit density operator ρ.
2) δ ∈ (0, 1

10 ].
For ε > 0, there is a quantum algorithm that outputs s̃ such
that

Smax
δ (ρ)− ε ≤ s̃ ≤ Smax(ρ) + ε,

using Õ( 1
δ2ε ) queries to U and Õ( 1

δ2ε poly(n)) elementary
quantum gates.

Moreover, if Π/κ ≤ ρ for some projector Π and κ > 0,
there is a quantum algorithm that computes the Max entropy
Smax(ρ) within additive error ε using Õ(κ2

ε ) queries to U and
Õ(κ2

ε poly(n)) elementary quantum gates.
Proof: By Theorem III.4, there is a quantum algorithm

that outputs r̃ such that(
1− ε

2

)
rankδ(ρ) ≤

(
1− ε

4

)
rankδ(ρ)−

ε

4
≤ r̃

≤
(
1 +

ε

4

)
rank(ρ) +

ε

4
≤
(
1 +

ε

2

)
rank(ρ),

using Õ( 1
δ2ε ) queries to U and Õ( 1

δ2ε poly(n)) elementary
quantum gates. After taking logarithm of both sides, we have

ln (rankδ(ρ)) + ln
(
1− ε

2

)
≤ ln(r̃)

≤ ln (rank(ρ)) + ln
(
1 +

ε

2

)
,
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which is

Smax
δ (ρ)− ε ≤ ln(r̃) ≤ Smax(ρ) + ε.

We only need to output s̃ = ln(r̃) as an estimation of the Max
entropy Smax(ρ).

Moreover, if Π/κ ≤ ρ for some projector Π and κ > 0,
the claim is obtained by letting δ = 1

κ (and then Smax
δ (ρ) =

Smax(ρ)).

C. Quantum Rényi Entropy and Quantum Tsallis Entropy

Now we are going to discuss how quantum algorithms can
compute the quantum Rényi entropy SR

α (ρ) and the quantum
Tsallis entropy ST

α (ρ). The key is to compute tr(ρα), which
is given as follows.

Theorem III.7 (Trace of Positive Powers): Suppose that
1) Uρ is an (n + nρ)-qubit unitary operator that prepares

an n-qubit density operator ρ with rank(ρ) ≤ r.
2) nρ is a polynomial in n.

For a ∈ (0, 1) ∪ (1,+∞), there is a quantum algorithm that
computes tr(ρα) within additive error ε using Q queries to Uρ

and Q · poly(n) elementary quantum gates, where

Q =


Õ
(
r

3−α2
2α /ε

3+α
2α

)
, 0 < α < 1,

O (1/ε) , α > 1 ∧ α is odd,

Õ
(
r1/{α−1

2 }/ε1+1/{α−1
2 }
)
, otherwise.

and {x} = x− ⌊x⌋ is the decimal part of real number x.
Proof: We will discuss in three cases as stated in the

statement of this theorem.
Case 1: 0 < α < 1. In this case, we have tr(ρα) ≤ r1−α.

By Lemma II.8 and introducing δ1 and ε1, there is a quantum
circuit Ũ such that

1) Ũ prepares an n-qubit subnormalized density operator
A, and A is a

(
4δα−1

1 , 0,Θ
(
δα
1 + ε1δ

α−1
1

))
-block-

encoding of ρα.
2) Ũ uses O(d) queries to Uρ and O((n+nρ)d) elementary

quantum gates, where d = O
(

1
δ1

log
(

1
ε1

))
.

3) The description of Ũ can be computed by a classical
Turing machine in O(poly(d)) time.

Note that A is a
(
4δα−1

1 , 0,Θ
(
δα
1 + ε1δ

α−1
1

))
-block-encoding

of ρα, i.e.,
∥∥4δα−1

1 A− ρα
∥∥ ≤ Θ(δα

1 + ε1δ
α−1
1 ), we have∣∣4δα−1

1 tr(A)− tr(ρα)
∣∣ ≤ Θ(r(δα

1 + ε1δ
α−1
1 )). Therefore,

tr(A) ≤ 1
4δα−1

1

(
tr(ρα) + Θ(r(δα

1 + ε1δ
α−1
1 ))

)
≤ Θ(r1−αδ1−α

1 + rδ1 + rε1) =: B.

By Lemma II.15 and introducing ε2, we can obtain x̃ as an
approximation of tr(A) with Q = O

(√
B

ε2
+ 1√

ε2

)
queries to

Ũ such that |tr(A)− x̃| ≤ ε2. Then we output 4δα−1
1 x̃ as an

approximation of tr(ρα) by noting that∣∣4δα−1
1 x̃− tr(ρα)

∣∣ ≤ Θ
(
δα−1
1 ε2 + r(δα

1 + ε1δ
α−1
1 )

)
.

The number of queries to Uρ is

Qd = Õ

(
1
δ1

(√
B

ε2
+

1
√
ε2

))
= Õ

(
r

3−α2
2α /ε

3+α
2α

)

by taking δ1 = Θ̃
(
(ε/r)1/α

)
, ε1 = Θ̃

(
(ε/r)1/α

)
and ε2 =

Θ̃
(
ε1/α/r1/α−1

)
.

Case 2: α > 1 and α is an odd number. Let α = 2β + 1.
By Lemma II.1, there is a unitary operator U1, which is
a (1, n + nρ, 0)-block-encoding of ρ with 1 query to Uρ.
By Lemma II.12, there is a unitary operator Uβ , which is a
(1,Θ(β(n+ nρ)), 0)-block-encoding of ρβ with β queries to
U1. By Lemma II.2, there is a quantum circuit U that prepares
ρ2β+1 = ρα with 1 query to Uρ and 1 query to Uβ . Note
that tr(ρα) ≤ 1 and by Lemma II.15, we can obtain x̃ as
an approximation of tr(ρα) with O(1/ε) queries to U such
that |x̃− tr(ρα)| ≤ ε. In total, the number of queries to Uρ is
O(1/ε) · β = O(1/ε).

Case 3: α > 1 and α is not an odd number. Let β =⌊
α−1

2

⌋
and c =

{
α−1

2

}
. By Lemma II.13 and introduc-

ing δ1 and ε1, there is a unitary operator Uc that is a
(2, O(n + nρ),Θ(ε1 + δc

1))-block-encoding of ρc with Q1 =
O
(

1
δ1

log
(

1
ε1

))
queries to U1. By Lemma II.12, there is a

unitary operator Uβ+c that is a (2, O(β(n+nρ)),Θ(ε1 +δc
1))-

block-encoding of ρβ+c with 1 query to Uβ and 1 query to
Uc. By Lemma II.2, there is a unitary operator U that prepares
a subnormalized density operator A with 1 query to Uρ and
1 query to Uβ+c, and A is a (4, 0,Θ(ε1 +δc

1))-block-encoding
of ρ2(β+c)+1 = ρα, i.e., ∥4A− ρα∥ ≤ Θ(ε1 + δc

1). Note that

tr(A) ≤ 1
4

(tr(ρα) + Θ(r(ε1 + δc
1))) =: B.

By Lemma II.15 and introducing ε2, we can obtain x̃ as an
approximation of tr(A) with Q2 = O

(√
B

ε2
+ 1√

ε2

)
queries

to U such that |x̃− tr(A)| ≤ ε2. Then we output 4x̃ as an
approximation of tr(ρα) by noting that

|4x̃− tr(ρα)| ≤ Θ(ε2 + r(ε1 + δc
1)).

The number of queries to Uρ is

(β +Q1)Q2 = Õ

((
β +

1
δ1

)(√
B

ε2
+

1
√
ε2

))

= Õ

(
r1/c

ε1+1/c

)
by taking δ1 = Θ̃

(
(ε/r)1/c

)
, ε1 = Θ̃ (ε/r) and ε2 = Θ̃ (ε).

In the following, we are going to show how to estimate the
quantum Rényi and Tsallis entropies based on Theorem III.7.

Theorem III.8 (Quantum Rényi Entropy): Suppose that
1) Uρ is an (n + nρ)-qubit unitary operator that prepares

an n-qubit density operator ρ with rank(ρ) ≤ r.
2) nρ is a polynomial in n.

For a ∈ (0, 1) ∪ (1,+∞), there is a quantum algorithm that
computes SR

α (ρ) within additive error ε using Q queries to Uρ

and Q · poly(n) elementary quantum gates, where

Q =


Õ
(
r

3−α2
2α /ε

3+α
2α

)
, 0 < α < 1,

O
(
rα−1/ε

)
, α > 1 ∧ α is odd,

Õ
(
rα−1+α/{α−1

2 }/ε1+1/{α−1
2 }
)
, otherwise.

and {x} = x− ⌊x⌋ is the decimal part of real number x.
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Proof: We will discuss in cases as stated in the statement
of this theorem.

Case 1: 0 < α < 1. In this case, 1 ≤ tr(ρα) ≤ r1−α.
By Theorem III.7, there is a quantum algorithm that outputs
1 ≤ x ≤ r1−α such that |x− tr(ρα)| ≤ ε′. Then∣∣∣∣ 1

1− α
ln(x)− SR

α (ρ)
∣∣∣∣ ≤ Θ

(
ε′

1− α

)
.

Let ε′ = Θ((1− α)ε). The number of queries to Uρ is

Õ
(
r

3−α2
2α /ε′

3+α
2α

)
= Õ

(
r

3−α2
2α /ε

3+α
2α

)
.

Case 2: α > 1. In this case, r1−α ≤ tr(ρα) ≤ 1.
By Theorem III.7, there is a quantum algorithm that outputs
r1−α ≤ x ≤ 1 such that |x− tr(ρα)| ≤ ε′. Then∣∣∣∣ 1

1− α
ln(x)− SR

α (ρ)
∣∣∣∣ ≤ Θ

(
rα−1ε′

α− 1

)
.

Let ε′ = Θ((α− 1)r1−αε).
Subcase 2.1: α > 1 and α is an odd number. The number

of queries to Uρ is

O
(α
ε′

)
= O

(
rα−1

ε

)
.

Subcase 2.2: α > 1 and α is not an odd number. The
number of queries to Uρ is

Õ
((
α+ (r/ε′)1/{α−1

2 }
)
/ε′
)

= Õ
(
rα−1+α/{α−1

2 }/ε1+1/{α−1
2 }
)
.

Theorem III.9 (Quantum Tsallis Entropy): Suppose that
1) Uρ is an (n + nρ)-qubit unitary operator that prepares

an n-qubit density operator ρ with rank(ρ) ≤ r.
2) nρ is a polynomial in n.

For a ∈ (0, 1) ∪ (1,+∞), there is a quantum algorithm that
computes ST

α (ρ) within additive error ε using Q queries to Uρ

and Q · poly(n) elementary quantum gates, where

Q =


Õ
(
r

3−α2
2α /ε

3+α
2α

)
, 0 < α < 1,

O (1/ε) , α > 1 ∧ α is odd,

Õ
(
r1/{α−1

2 }/ε1+1/{α−1
2 }
)
, otherwise.

and {x} = x− ⌊x⌋ is the decimal part of real number x.
Proof: By Theorem III.7, there is a quantum algorithm

that outputs 1 ≤ x ≤ r1−α such that |x− tr(ρα)| ≤ ε′. Then∣∣∣∣x− 1
1− α

∣∣∣∣− ST
α (ρ) ≤ Θ

(
ε′

|1− α|

)
.

Let ε′ = Θ(|1− α| ε). We will discuss in three cases as stated
in the statement of this theorem.

Case 1: 0 < α < 1. The number of queries to Uρ is

Õ
(
r

3−α2
2α /ε′

3+α
2α

)
= Õ

(
r

3−α2
2α /ε

3+α
2α

)
.

Case 2: α > 1 and α is an odd number. The number of
queries to Uρ is

O
(α
ε′

)
= O

(
1
ε

)
.

Case 3: α > 1 and α is not an odd number. The number
of queries to Uρ is

Õ
((
α+ (r/ε′)1/{α−1

2 }
)
/ε′
)

= Õ
(
r1/{α−1

2 }/ε1+1/{α−1
2 }
)
.

We note that when α > 1 is an odd number, the query
complexities of our quantum algorithms for tr(ρα) and ST

α (ρ)
do not depend on r. This result can be applied to computing
the classical Tsallis entropy of a distribution p : [N ] → [0, 1].
Suppose a quantum oracle U is given as

U |0⟩ =
∑

i∈[N ]

√
p(i) |i⟩ . (6)

For convenience, we assume that N = 2n. This kind of
quantum oracle is called “classical distribution with pure state
preparation access”. We start from the quantum state |0⟩n |0⟩n,
and the algorithm for estimating the classical Tsallis entropy
of p is as follows.

1) Apply U on the first part of the quantum state, then the
state becomes ∑

i∈[N ]

√
p(i) |i⟩n |0⟩n .

2) Apply a CNOT gate with control qubit the j-th qubit of
the first part and target qubit the j-th qubit of the second
part for each j ∈ [n], then the state becomes∑

i∈[N ]

√
p(i) |i⟩n |i⟩n .

3) Note that if the second part of the quantum state after
step 2 is traced out, it becomes a mixed quantum state
(density operator)

ρ =
∑

i∈[N ]

p(i) |i⟩ ⟨i| .

Apply the algorithm of Theorem III.9, we are able to
obtain an estimation of the quantum Tsallis entropy
ST

α (ρ) (i.e., the classical α-Tsallis entropy of p) within
additive error ε with O(1/ε) queries to U and O(1/ε ·
poly(n)) elementary quantum gates.

Corollary III.10: For odd integer α > 1, given the quantum
oracle U to a probability distribution p : [N ] → [0, 1] as in
Eq. (6), there is a quantum algorithm that computes the Tsallis
entropy ST

α (p) of p within additive error ε, using O(1/ε)
queries to U and O(1/ε ·poly(n)) elementary quantum gates.

For integer α ≥ 2, according to [58] (see also [41]),
there is a simple SWAP test like quantum circuit that outputs
0 and 1 with probability (1± tr(ρα))/2, respectively, using α
copies of ρ. With a straightforward statistical method, we can
estimate tr(ρα) within additive error ε by O(1/ε2) repetitions
of that quantum circuit. Directly applying this method also
implies a quantum algorithm, which computes the Tsallis
entropy (both quantum and classical) within additive error ε,
using O(1/ε2) queries to quantum oracles. Compare to this
simple algorithm, our quantum algorithm (of Theorem III.9
and Corollary III.10) yields a quadratic speedup for odd α > 1.
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D. Lower Bounds

We establish lower bounds for estimating quantum entropies
in the low-rank case, which are derived from known lower
bounds for estimating entropies of classical distributions [59],
[60].

Theorem III.11: Suppose Uρ is a quantum oracle that
prepares the density operator ρ (see Definition II.2), and
r = rank(ρ). For α ≥ 0, any quantum algorithm that computes
SR

α (ρ) within additive error ε = Θ(1) requires Ω(Q(r))
queries to Uρ, where

Q(r) =


r1/3, α = 0,

max{r1/7α−o(1), r1/3}, 0 < α < 1,

Ω̃(r1/2), α = 1,

max{r 1
2−

1
2α , r1/3}, α > 1.

Proof: We obtain lower bounds from those for classical
distributions. The quantum query model for classical distri-
butions we adopt is called the “classical distribution with
quantum query access”, which is defined as follows. Suppose
p : [N ] → [0, 1] is a probability distribution on [N ]. The
quantum oracle U is defined by a function f : [S] → [N ]
such that

U |s, 0⟩ = |s, f(s)⟩

for s ∈ [S] and S ∈ N, satisfying

p(i) =
1
S
|{s ∈ [S] : f(s) = i}|

for i ∈ [N ]. It is pointed out in [8] that we can easily construct
a “purified quantum query access” oracle by preparing a
uniform superposition through the Hadamard gates, and then
makes a query to U . Therefore, all lower bounds in the
“classical distribution with quantum query access” model also
hold in the “purified quantum query access” model.

Let B(N) be the lower bound for estimating the Rényi
entropy. It is straightforward to see that if there is a quantum
algorithm that computes the quantum Rényi entropy using
Q(r) queries to Uρ, then with the same algorithm, we can
compute the Rényi entropy of a probability distribution p :
[N ] → [0, 1] using Q(N) queries to the “classical distribu-
tion with quantum query access” oracle. Therefore, we have
Q(r) ≥ B(r). Our claim immediately holds by taking the
lower bounds of B(N) given in [59] and [60].

IV. QUANTUM DISTANCES

Distance measures of quantum states are quantum infor-
mation quantities that indicate their closeness. Testing the
closeness of quantum states is a basic problem in quantum
property testing. Two of the most important distance measures
of quantum states are the trace distance and fidelity.

In this section, we will provide quantum algorithms for
computing them as well as their extensions. Section IV-A
presents quantum algorithms for computing the trace distance
and its extension. Section IV-B presents quantum algorithms
for computing the fidelity and its extensions.

A. Trace Distance

The α-trace distance of two quantum states ρ and σ is
defined by

Tα(ρ, σ) = tr
(∣∣∣∣ρ− σ

2

∣∣∣∣α) .
Here, T1(ρ, σ) = T (ρ, σ) is the trace distance. The trace
distance of two pure quantum states (i.e., quantum states of
rank 1) can be computed directly from their fidelity, which
can be solved by the SWAP test [102]. The closeness testing
of the 1-, 2-, and 3-trace distances were studied in [8].

Our quantum algorithms for computing the α-trace distance
are given as follows.

Theorem IV.1: Suppose that
1) Uρ is an (n + nρ)-qubit unitary operator that prepares

an n-qubit density operator ρ.
2) Uσ is an (n + nσ)-qubit unitary operator that prepares

an n-qubit density operator σ.
3) nρ and nσ are polynomials in n.
4) r = max{rank(ρ), rank(σ)}.

For α > 0, there is a quantum algorithm that computes
Tα(ρ, σ) within additive error ε using Q queries to both Uρ

and Uσ , and Q · poly(n) elementary quantum gates, where

Q =


Õ(r3/ε4), α ≡ 0 (mod 2)

Õ(r5/α/ε5/α+1), 0 < α < 1

Õ
(
r3+1/{α/2}/ε4+1/{α/2}

)
, otherwise

and {β} = β − ⌊β⌋.
Especially, taking α = 1, we obtain a quantum algorithm

for trace distance estimation using Õ(r5/ε6) queries to Uρ and
Uσ .

The key observation of our quantum algorithm is that

Tα(ρ, σ) = tr
(∣∣∣∣ρ− σ

2

∣∣∣∣α)
= tr

(∣∣∣∣ρ− σ

2

∣∣∣∣α/2

Πsupp(µ)

∣∣∣∣ρ− σ

2

∣∣∣∣α/2
)
,

where µ = (ρ+ σ) /2, supp(µ) is the support of µ and
ΠS is the projector onto a subspace S. A straightforward
idea is to first prepare a subnormalized density operator that
is a block-encoding of Πsupp(µ), and then prepare another
subnormalized density operator that is a block-encoding of
|ν|α/2 Πsupp(µ) |ν|

α/2 by the evolution of subnormalized den-
sity operators (Lemma II.2), where ν = (ρ− σ)/2. However,
we are only able to prepare subnormalized density operator
that is a block-encoding of a projector onto a truncated support
by Lemma II.19. In this way, we can prepare a subnormalized
density operator |ν|α/2 Πsuppδ(µ) |ν|

α/2 for some δ > 0,
instead of |ν|α/2 Πsupp(µ) |ν|

α/2.
When δ is fixed, the inherent error of this approach is
Proposition IV.2:∣∣∣tr(|ν|α/2 Πsupp(µ) |ν|

α/2
)
− tr

(
|ν|α/2 Πsuppδ(µ) |ν|

α/2
)∣∣∣

≤ 2 rδmin{α,1}/2.
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Proof: Let µ =
∑

j λj |ψj⟩ ⟨ψj |, where λj ∈ [0, 1] and∑
j λj = 1. Then ∥|ν| |ψj⟩∥ ≤

√
λj . This is seen by the

following.

∥|ρ− σ| |ψj⟩∥2 = ⟨ψj | (ρ− σ)2 |ψj⟩
= ⟨ψj | ρ2 |ψj⟩+ ⟨ψj |σ2 |ψj⟩

− ⟨ψj | (ρσ + σρ) |ψj⟩
≤ ⟨ψj | ρ2 |ψj⟩+ ⟨ψj |σ2 |ψj⟩

+ |⟨ψj | ρσ |ψj⟩|+ |⟨ψj |σρ |ψj⟩|
≤ ⟨ψj | ρ2 |ψj⟩+ ⟨ψj |σ2 |ψj⟩

+ 2 ∥ρ |ψj⟩∥ ∥σ |ψj⟩∥
= ⟨ψj | ρ2 |ψj⟩+ ⟨ψj |σ2 |ψj⟩

+ 2
√
⟨ψj | ρ2 |ψj⟩ ⟨ψj |σ2 |ψj⟩

≤ 2
(
⟨ψj | ρ2 |ψj⟩+ ⟨ψj |σ2 |ψj⟩

)
≤ 2 (⟨ψj | ρ |ψj⟩+ ⟨ψj |σ |ψj⟩)
= 4 ⟨ψj |µ |ψj⟩
≤ 4 ∥µ |ψj⟩∥
= 4λj .

Note that∣∣∣tr(|ν|α/2 Πsupp(µ) |ν|
α/2
)
− tr

(
|ν|α/2 Πsuppδ(µ) |ν|

α/2
)∣∣∣

= tr
((

Πsupp(µ) −Πsuppδ(µ)

)
|ν|α

)
.

Then for α ≥ 1, we have

tr
((

Πsupp(µ) −Πsuppδ(µ)

)
|ν|α

)
=

∑
0<λj<δ

⟨ψj | |ν|α |ψj⟩

≤
∑

0<λj<δ

⟨ψj | |ν| |ψj⟩

≤
∑

0<λj<δ

∥|ν| |ψj⟩∥

≤
∑

0<λj<δ

√
λj

≤
√
δ rank(µ)

≤ 2 r
√
δ.

Before deriving bounds for 0 < α < 1, we need the following
lemma.

Lemma IV.3: Suppose that A is an n-dimensional positive
semidefinite operator, |ψ⟩ is an n-dimensional vector, and 0 <
α < 1. Then

∥Aα |ψ⟩∥ ≤ ∥A |ψ⟩∥α ∥|ψ⟩∥1−α
.

Proof: Let

A =
n∑

j=1

λj |ψj⟩ ⟨ψj | ,

where {|ψj⟩} is an orthonormal basis, and λj ≥ 0 for all
1 ≤ j ≤ n. Let

|ψ⟩ =
n∑

j=1

βj |ψj⟩ .

By Hölder’s inequality, we have

∥Aα |ψ⟩∥2 =
n∑

j=1

∣∣λα
j βj

∣∣2
=

n∑
j=1

∣∣λ2α
j β2α

j

∣∣ · ∣∣∣β2(1−α)
j

∣∣∣
≤

 n∑
j=1

∣∣λ2α
j β2α

j

∣∣1/α

α

 n∑
j=1

∣∣∣β2(1−α)
j

∣∣∣1/(1−α)

1−α

=

 n∑
j=1

|λjβj |2
α n∑

j=1

|βj |2
1−α

= ∥A |ψ⟩∥2α ∥|ψ⟩∥2(1−α)
.

For 0 < α < 1, by Lemma IV.3, we have

tr
((

Πsupp(µ) −Πsuppδ(µ)

)
|ν|α

)
=

∑
0<λj<δ

⟨ψj | |ν|α |ψj⟩

≤
∑

0<λj<δ

∥|ν|α |ψj⟩∥

≤
∑

0<λj<δ

∥|ν| |ψj⟩∥α ∥|ψj⟩∥1−α

≤
∑

0<λj<δ

λ
α/2
j

≤ 2 rδα/2.

Therefore,∣∣∣tr(|ν|α/2 Πsupp(µ) |ν|
α/2
)
− tr

(
|ν|α/2 Πsuppδ(µ) |ν|

α/2
)∣∣∣

≤ 2 rδmin{α,1}/2.

Hence, we could obtain a reasonable error by setting δ small
enough.

Step 1: By Lemma II.17 with the Hadamard gate

H |0⟩ =

√
1
2
|0⟩+

√
1
2
|1⟩ ,

we obtain an O(n+ nρ + nσ)-qubit unitary operator Uµ that
prepares density operator µ = (ρ+σ)/2, using 1 query to Uρ

and Uσ , and O(1) elementary quantum gates.
Introducing three parameters δ1, ε1, δQ ∈ (0, 1

10 ],
by Lemma II.19, there is a quantum circuit U1, which prepares
a subnormalized density operator A1 and A1 is a (1, 0, δQ)-
block-encoding of Π1, where(

δ1
4

(1− 2ε1)− δ
1/2
1 ε1

)
Πsupp2δ1

(µ) ≤ Π1

≤
(
δ1
4

+ ε21 + δ
1/2
1 ε1

)
Πsupp(µ).



5674 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

Here, U1 uses Q1 queries to Uµ and O(Q1(n + nρ + nσ))
elementary quantum gates, where Q1 = O

(
1
δ1

log
(

1
ε1

))
.

Moreover, U1 can be computed by a classical Turing machine
in poly

(
Q1, log

(
1

δQ

))
time.

Next, we are going to construct a unitary operator that is
a block-encoding of |ν|α/2. By Lemma II.1, there are two
unitary operators Vσ and Vρ which are a (1, n + nσ, 0)-
block-encoding of σ and a (1, n + nρ, 0)-block-encoding of
ρ, respectively. Here, Vσ uses 1 query to each of Uσ and
U†σ and nσ elementary quantum gates, and Vρ uses 1 query
to each of Uρ and U†ρ and nρ elementary quantum gates.
Let n′ = max(nρ, nσ), then Vρ ⊗ In′−nρ

and Vσ ⊗ In′−nσ

are (1, n + n′, 0)-block-encodings of ρ and σ, respectively.
According to Definition II.3, we note that (HX,H) is a
(2, 1, 0)-state-preparation-pair for y = (1,−1), where H is the
Hadamard gate and X is the Pauli matrix. By Theorem II.18,
there is a (2n + n′ + 1)-qubit quantum circuit W which is
a (1, n + n′ + 1, 0)-block-encoding of ν = (ρ − σ)/2, using
1 query to each of Vρ and Vσ and O(1) elementary quantum
gates.

Now we analyze the error if we replace Πsupp(µ) by
4δ−1

1 Π1 in the following.
Proposition IV.4:∣∣∣tr(|ν|α/2 (4δ−1

1 Π1

)
|ν|α/2

)
− Tα(ρ, σ)

∣∣∣
≤

Θ
(
ε1δ

−1/2
1 + rδ

1/2
1

)
, α ≥ 1,

Θ
(
r1−αε1δ

−1/2
1 + rδ

α/2
1

)
, 0 < α < 1.

Proof: Note that ΠL ≤ 4δ−1
1 Π1 ≤ ΠU , where

ΠL =
(
1− 2ε1 − 4ε1δ

−1/2
1

)
Πsupp2δ1

(µ),

ΠU =
(
1 + 4ε21δ

−1
1 + 4ε1δ

−1/2
1

)
Πsupp(µ).

This leads to

f(ΠL) ≤ f
(
4δ−1

1 Π1

)
≤ f(ΠU ),

where f(Π) = tr
(
|ν|α/2 Π |ν|α/2

)
for convenience. There-

fore, ∣∣f (4δ−1
1 Π1

)
− f

(
Πsupp(µ)

)∣∣ ≤ max{TL, TU},

where
TL =

∣∣f (ΠL)− f
(
Πsupp(µ)

)∣∣ ,
TU =

∣∣f (ΠU )− f
(
Πsupp(µ)

)∣∣ .
By Proposition IV.2, we have

TL ≤
∣∣∣f (ΠL)− f

(
Πsupp2δ1

(µ)

)∣∣∣
+
∣∣∣f (Πsupp2δ1

(µ)

)
− f

(
Πsupp(µ)

)∣∣∣
≤ f

((
2ε1+4ε1δ

−1/2
1

)
Πsupp2δ1

(µ)

)
+ 2 r(2δ1)min{α,1}/2

≤ Θ
(
ε1δ

−1/2
1 Tα(ρ, σ) + rδ

min{α,1}/2
1

)
.

Also we have

TU ≤ f
((

4ε21δ
−1
1 + 4ε1δ

−1/2
1

)
Πsupp(µ)

)

≤ Θ
(
ε1δ

−1/2
1 Tα(ρ, σ)

)
.

Combining the both, we have∣∣f (4δ−1
1 Π1

)
− f

(
Πsupp(µ)

)∣∣
≤ Θ

(
ε1δ

−1/2
1 Tα(ρ, σ) + rδ

min{α,1}/2
1

)
.

We note that Tα(ρ, σ) ≤ 1 if α ≥ 1, and Tα(ρ, σ) ≤ (2r)1−α

if 0 < α < 1. These yield the claim.
In the following, we separately consider different cases of

α.
Case 1 (α Is an Even Integer):
Step 2: By Lemma II.12, there is a unitary operator Wα/2,

which is a (1, O(α(n+n′)), 0)-block-encoding of |ν|α/2, using
α/2 queries to W . By Lemma II.2, using 1 query to each of
Wα/2 and U1, we obtain a quantum circuit Ũ , which prepares
a subnormalized density operator |ν|α/2

A1 |ν|α/2. We note
that∥∥∥|ν|α/2

A1 |ν|α/2 − |ν|α/2 Π1 |ν|α/2
∥∥∥ ≤ ∥A1 −Π1∥ ≤ δQ.

Step 3: Introducing a parameter ε3, by Lemma II.15,
we can compute p̃ that estimates tr(|ν|α/2

A1 |ν|α/2) such that∣∣∣p̃− tr(|ν|α/2
A1 |ν|α/2)

∣∣∣ ≤ ε3 with O
(√

B
ε3

+ 1√
ε3

)
queries

to Ũ , where B = Θ
(
δ1 + ε21 + δ

1/2
1 ε1 + rδQ

)
is an upper

bound for tr(|ν|α/2
A1 |ν|α/2). Note that

tr(|ν|α/2
A1 |ν|α/2) ≤ tr

(
|ν|α/2 Π1 |ν|α/2

)
+ Θ (rδQ)

≤ Θ
(
δ1 + ε21 + δ

1/2
1 ε1 + rδQ

)
.

Step 4: Output 4δ−1
1 p̃ ≈ Tα(ρ, σ) as the estimation. The

additive error is∣∣4δ−1
1 p̃− Tα(ρ, σ)

∣∣
≤ 4δ−1

1

∣∣∣p̃− tr(|ν|α/2
A1 |ν|α/2)

∣∣∣
+ 4δ−1

1

∣∣∣tr(|ν|α/2
A1 |ν|α/2)− tr(|ν|α/2 Π1 |ν|α/2)

∣∣∣
+
∣∣∣ tr(|ν|α/2 (4δ−1

1 Π1

)
|ν|α/2

)
− tr

(
|ν|α/2 Πsupp(µ) |ν|

α/2
) ∣∣∣

≤ Θ
(
rδ

1/2
1 + ε1δ

−1/2
1 + δ−1

1 (ε3 + rδQ)
)
.

In order to make
∣∣4δ−1

1 p̃− Tα(ρ, σ)
∣∣ ≤ ε, it is sufficient to

let δ1 = Θ(ε2/r2), ε3 = Θ(ε3/r2), and other parameters
become small enough polynomials in r and 1/ε. Under these
conditions, the number of queries to Uρ and Uσ is

Q = O

(
Q1α

(√
B

ε3
+

1
√
ε3

))
= Õ

(
r3

ε4

)
,

and the number of elementary quantum gates is O(Q ·
poly(n)).

Case 2 (α ≥ 1 and α Is Not an Even Integer):
Step 2: Now introducing two parameters δ2, ε2 ∈ (0, 1

4 ],
by Lemma II.13, there is a quantum circuit W{α/2} that
is a (1, O(n + n′), 0)-block-encoding of A2, and A2 is
a (2, 0,Θ(ε2 + δ

{α/2}
2 ))-block-encoding of |ν|{α/2}, using
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Q2 queries to W and O (Q2(n+ n′)) elementary quantum
gates, where Q2 = O

(
1
δ2

log
(

1
ε2

))
. By Lemma II.12, there

is a unitary operator W⌊α/2⌋, which is a (1, O(α(n+n′)), 0)-
block-encoding of |ν|⌊α/2⌋, using ⌊α/2⌋ queries to W . Again
by Lemma II.12, there is a unitary operator Wα/2, which
is a (2, O(α(n + n′)),Θ(ε2 + δ

{α/2}
2 ))-block-encoding of

|ν|α/2, using 1 query to W{α/2} and 1 query to W⌊α/2⌋.
By Lemma II.2, using 1 query to each of Wα/2 and U1,
we obtain a quantum circuit Ũ , which prepares a subnormal-
ized density operator A2A1A

†
2. We note that∥∥∥∥A2A1A

†
2 −

1
4
|ν|α/2 Π1 |ν|α/2

∥∥∥∥
≤
∥∥∥A2A1A

†
2−A2Π1A

†
2

∥∥∥+
∥∥∥∥A2Π1A

†
2 −

1
4
|ν|α/2 Π1 |ν|α/2

∥∥∥∥
≤ ∥A1 −Π1∥+

∥∥∥∥A2 −
1
2
|ν|α/2

∥∥∥∥ ∥Π1∥
∥∥∥A†2∥∥∥

+
∥∥∥∥A†2 − 1

2
|ν|α/2

∥∥∥∥ ∥Π1∥
∥∥∥∥1

2
|ν|α/2

∥∥∥∥
≤ Θ

(
δQ + (δ1 + ε21 + δ

1/2
1 ε1)(ε2 + δ

{α/2}
2 )

)
.

Step 3: Introducing a parameter ε3, by Lemma II.15, we can
compute p̃ that estimates tr(A2A1A

†
2) such that∣∣∣p̃− tr(A2A1A

†
2)
∣∣∣ ≤ ε3

with O
(√

B
ε3

+ 1√
ε3

)
queries to Ũ , where

B = Θ
(
(δ1 + ε21 + δ

1/2
1 ε1)(1 + r(ε2 + δ

{α/2}
2 )) + rδQ

)
is an upper bound for tr(A2A1A

†
2). Note that

tr(A2A1A
†
2)

≤ tr
(

1
4
|ν|α/2 Π1 |ν|α/2

)
+ Θ

(
r
(
δQ + (δ1 + ε21 + δ

1/2
1 ε1)(ε2 + δ

{α/2}
2 )

))
≤ Θ

(
(δ1 + ε21 + δ

1/2
1 ε1)(1 + r(ε2 + δ

{α/2}
2 )) + rδQ

)
.

Step 4: Output 4δ−1
1 p̃ ≈ Tα(ρ, σ) as the estimation. The

additive error is∣∣4δ−1
1 p̃− Tα(ρ, σ)

∣∣
≤ 4δ−1

1

∣∣∣p̃− tr(A2A1A
†
2)
∣∣∣

+ 4δ−1
1

∣∣∣tr(A2A1A
†
2)− tr(|ν|α/2 Π1 |ν|α/2)

∣∣∣
+
∣∣∣ tr(|ν|α/2 (4δ−1

1 Π1

)
|ν|α/2

)
− tr

(
|ν|α/2 Πsupp(µ) |ν|

α/2
) ∣∣∣

≤ Θ
(
rδ

1/2
1 + ε1δ

−1/2
1 + r(ε2 + δ

{α/2}
2 )(1 + ε1δ

−1/2
1 )

+ δ−1
1 (ε3 + rδQ)

)
.

In order to make
∣∣4δ−1

1 p̃− Tα(ρ, σ)
∣∣ ≤ ε, it is sufficient to let

δ1 = Θ(ε2/r2), δ2 = Θ((ε/r)1/{α/2}), ε3 = Θ(ε3/r2), and
other parameters become small enough polynomials in r and

1/ε. Under these conditions, the number of queries to Uρ and
Uσ is

Q = O

(
Q1(Q2 + α)

(√
B

ε3
+

1
√
ε3

))

= Õ

(
r3+1/{α/2}

ε4+1/{α/2}

)
,

and the number of elementary quantum gates is O(Q ·
poly(n)).

Case 3 (0 < α < 1):
Step 2: Introducing two parameters δ2, ε2 ∈ (0, 1

4 ],
by Lemma II.13, there is a quantum circuit Wα/2 that
is a (1, O(n + n′), 0)-block-encoding of A2, and A2 is
a (2, 0,Θ(ε2 + δ

α/2
2 ))-block-encoding of |ν|α/2, using

Q2 queries to W and O (Q2(n+ n′)) elementary quantum
gates, where Q2 = O

(
1
δ2

log
(

1
ε2

))
. By Lemma II.2, using

1 query to each of Wα/2 and U1, we obtain a quantum circuit
Ũ , which prepares a subnormalized density operator A2A1A

†
2.

We note that∥∥∥∥A2A1A
†
2 −

1
4
|ν|α/2 Π1 |ν|α/2

∥∥∥∥
≤
∥∥∥A2A1A

†
2 −A2Π1A

†
2

∥∥∥
+
∥∥∥∥A2Π1A

†
2 −

1
4
|ν|α/2 Π1 |ν|α/2

∥∥∥∥
≤ ∥A1 −Π1∥+

∥∥∥∥A2 −
1
2
|ν|α/2

∥∥∥∥ ∥Π1∥
∥∥∥A†2∥∥∥

+
∥∥∥∥A†2 − 1

2
|ν|α/2

∥∥∥∥ ∥Π1∥
∥∥∥∥1

2
|ν|α/2

∥∥∥∥
≤ Θ

(
δQ + (δ1 + ε21 + δ

1/2
1 ε1)(ε2 + δ

α/2
2 )

)
.

Step 3: Introducing a parameter ε3, by Lemma II.15, we can
compute p̃ that estimates tr(A2A1A

†
2) such that∣∣∣p̃− tr(A2A1A

†
2)
∣∣∣ ≤ ε3

with O
(√

B
ε3

+ 1√
ε3

)
queries to Ũ , where

B = Θ
(
r1−αδ1 + r(δ1 + ε21 + δ

1/2
1 ε1)(ε2 + δ

α/2
2 ) + rδQ

)
is an upper bound for tr(A2A1A

†
2). Note that

tr(A2A1A
†
2)

≤ tr
(

1
4
|ν|α/2 Π1 |ν|α/2

)
+ Θ

(
r
(
δQ + (δ1 + ε21 + δ

1/2
1 ε1)(ε2 + δ

α/2
2 )

))
≤ Θ

(
r1−αδ1 + r(δ1 + ε21 + δ

1/2
1 ε1)(ε2 + δ

α/2
2 ) + rδQ

)
.

Step 4: Output 4δ−1
1 p̃ ≈ Tα(ρ, σ) as the estimation. The

additive error is∣∣4δ−1
1 p̃− Tα(ρ, σ)

∣∣
≤ 4δ−1

1

∣∣∣p̃− tr(A2A1A
†
2)
∣∣∣

+ 4δ−1
1

∣∣∣tr(A2A1A
†
2)− tr(|ν|α/2 Π1 |ν|α/2)

∣∣∣
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+
∣∣∣ tr(|ν|α/2 (4δ−1

1 Π1

)
|ν|α/2

)
− tr

(
|ν|α/2 Πsupp(µ) |ν|

α/2
) ∣∣∣

≤ Θ
(
rδ

α/2
1 + r1−αε1δ

−1/2
1 + r(ε2 + δ

α/2
2 )(1 + ε1δ

−1/2
1 )

+ δ−1
1 (ε3 + rδQ)

)
.

In order to make
∣∣4δ−1

1 p̃− Tα(ρ, σ)
∣∣ ≤ ε, it is sufficient to let

δ1 = Θ((ε/r)2/α), δ2 = Θ((ε/r)2/α), ε3 = Θ(ε2/α+1/r2/α),
and other parameters become small enough polynomials in r
and 1/ε. Under these conditions, the number of queries to Uρ

and Uσ is

Q = O

(
Q1Q2

(√
B

ε3
+

1
√
ε3

))
= Õ

(
r5/α+(1−α)/2

ε5/α+1

)
,

and the number of elementary quantum gates is O(Q ·
poly(n)).

B. Fidelity

Quantum fidelity estimation is a problem to compute the
fidelity of two mixed quantum states given their purifications.
The well-known SWAP test [102] can solve this problem when
one of the quantum states is pure. Recently, a polynomial-time
quantum algorithm was proposed in [11] for the case that one
of the quantum states is low-rank. However, their algorithm
has very large exponents of r (rank) and ε (additive error) in
the complexity. Here, we are able to improve the complexity
with much smaller exponents, compared to the Õ(r12.5/ε13.5)
quantum algorithm for fidelity estimation proposed by [11].

In addition, the sandwiched quantum Rényi relative entropy
Dα(ρ∥σ) [48], [49] is a generalization of quantum state
measures, defined by

Fα(ρ, σ) = exp ((α− 1)Dα(ρ∥σ)) = tr
((
σ

1−α
2α ρσ

1−α
2α

)α)
.

Here, F1/2(ρ, σ) = F (ρ, σ) is the quantum state fidelity. It is
clear that 0 ≤ Fα(ρ, σ) ≤ 1 for α ∈ (0, 1) (see [48]). Recently,
the sandwiched quantum Rényi relative entropy is used in
quantum machine learning [103].

Our quantum algorithms for computing the α-fidelity are
given as follows.

Theorem IV.5: Suppose that
1) Uρ is an (n + nρ)-qubit unitary operator that prepares

an n-qubit density operator ρ with rank(ρ) = r.
2) Uσ is an (n + nσ)-qubit unitary operator that prepares

an n-qubit density operator σ.
3) nρ and nσ are polynomials in n.

For α ∈ (0, 1), there is a quantum algorithm that com-
putes Fα(ρ, σ) within additive error ε, using Õ

(
r

3−α
2α /ε

3+α
2α

)
queries to Uρ, Q queries to Uσ , and Q · poly(n) elementary
quantum gates, where

Q =

Õ
(
r

3−α
2α /ε

3+α
2α

)
, β ∈ N,

Õ
(
r

3−α
2α + 1

α{β} /ε
3+α
2α + 1

α{β}

)
, β /∈ N,

and β = (1− α)/2α, {β} = β − ⌊β⌋.

Especially, taking α = 1
2 , we obtain a quantum algorithm

for fidelity estimation using Õ
(
r2.5/ε3.5

)
queries to Uρ and

Õ
(
r6.5/ε7.5

)
queries to Uσ .

We put the detailed proofs into the following subsubsec-
tions. In fact, such techniques used in estimating the relative
sandwiched Rényi entropy can also be used to compute the
relative Rényi entropy.

Case 1 (β Is an Integer):
Step 1: By Lemma II.1, there is a unitary operator U1, which

is a (1, n+nσ, 0)-block-encoding of σ, using O(1) queries to
Uσ and O(nσ) elementary quantum gates. By Lemma II.12,
there is a unitary operator Uβ , which is a (1, O(β(n+nσ)), 0)-
block-encoding of σβ , using β queries to U1. By Lemma II.2,
there is a unitary operator Uη , which prepares a subnormalized
density operator η = σβρσβ , using 1 query to Uβ and 1 query
to Uρ.

Now introducing two parameters δ1 and ε1, by Lemma II.8,
there is a unitary operator Ũ , which prepares a subnormalized
density operator η′ and η′ is a (4δα−1

1 , 0,Θ(δα
1 + ε1δ

α−1
1 ))-

block-encoding of ηα, using O(d1) queries to Uη , where d1 =
O( 1

δ1
log 1

ε1
).

Step 2: Introducing a parameter ε2, by Lemma II.15, we can
compute p̃ such that |p̃− tr(η′)| ≤ ε2, using O

(√
B

ε2
+ 1√

ε2

)
queries to Ũ , where B = Θ

(
δ1−α
1 + r(δ1 + ε1)

)
is an upper

bound for tr(η′). Note that

tr(η′) ≤ 1
4
δ1−α
1 tr (ηα) + Θ (r(δ1 + ε1))

≤ Θ
(
δ1−α
1 + r(δ1 + ε1)

)
.

Step 3: Output 4δα−1
1 p̃ ≈ Fα(ρ, σ) as the estimation. The

additive error is∣∣4δα−1
1 p̃− Fα(ρ, σ)

∣∣ ≤ 4δα−1
1 |p̃− tr(η′)|
+
∣∣tr(4δα−1

1 η′)− tr(ηα)
∣∣

≤ Θ
(
r(δα

1 + ε1δ
α−1
1 ) + δα−1

1 ε2
)
.

In order to make
∣∣4δα−1

1 p̃− Fα(ρ, σ)
∣∣ ≤ ε, it is suffi-

cient to let δ1 = Θ((ε/r)1/α), ε1 = Θ((ε/r)1/α), and
ε2 = Θ(ε1/α/r1/α−1). Under these conditions, the number
of queries to Uσ is

O

(
βd1

(√
B

ε2
+

1
√
ε2

))
= Õ

(
r

3−α
2α

ε
3+α
2α

)
,

and the number of queries to Uρ is

O

(
d1

(√
B

ε2
+

1
√
ε2

))
= Õ

(
r

3−α
2α

ε
3+α
2α

)
,

and the number of elementary quantum gates is

O

(
βd1

(√
B

ε2
+

1
√
ε2

))
· poly(n, nσ, nρ)

= Õ

(
r

3−α
2α

ε
3+α
2α

poly(n)

)
.

Case 2 (β Is Not an Integer):
Let {β} = β − ⌊β⌋ denote the decimal part of β.
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Step 1: By Lemma II.1, there is a unitary operator U1, which
is a (1, n+nσ, 0)-block-encoding of σ, using O(1) queries to
Uσ and O(nσ) elementary quantum gates. By Lemma II.13,
introducing two parameters δ1 and ε1, there is a unitary
operator U{β}, which is a (1, O(n+nσ), 0)-block-encoding of
A1, using O(Q1) queries to U1 and O(Q1(n+nσ)) elementary
quantum gates, where Q1 = O

(
1
δ1

log 1
ε1

)
and A1 is a

(2, 0,Θ(ε1+δ{β}1 ))-block-encoding of σ{β}. By Lemma II.12,
there is a unitary operator U⌊β⌋, which is a (1, O(β(n +
nσ)), 0)-block-encoding of σ⌊β⌋, using ⌊β⌋ queries to U1.
Again by Lemma II.12, there is a unitary operator Uβ , which
is a (2, O(β(n + nσ)), 0)-block-encoding of A1σ

⌊β⌋, using
1 query to U⌊β⌋ and 1 query to U{β}. By Lemma II.2, there is
a unitary operator Ũ , which prepares a subnormalized density
operator A1σ

⌊β⌋ρσ⌊β⌋A†1, using 1 query to Ũ and 1 query to
Uρ. Note that∥∥∥∥A1σ

⌊β⌋ρσ⌊β⌋A†1 −
1
4
σβρσβ

∥∥∥∥
≤
∥∥∥∥A1σ

⌊β⌋ − 1
2
σβ

∥∥∥∥ ∥ρ∥∥∥∥σ⌊β⌋A†1∥∥∥
+
∥∥∥∥σ⌊β⌋A†1 − 1

2
σβ

∥∥∥∥ ∥ρ∥ ∥∥∥∥1
2
σβ

∥∥∥∥
≤ Θ

(
ε1 + δ

{β}
1

)
.

Step 2: By Lemma II.8, introducing two parameters δ2 and
ε2, there is a unitary operator U2, which prepares a subnor-
malized density operator A2, using O(Q2) queries to Ũ and
O(Q2(n+nσ +nρ)) elementary quantum gates, where Q2 =
O
(

1
δ2

log 1
ε2

)
and A2 is a (4δα−1

2 , 0,Θ(δα−1
2 (δ2 + ε2)))-

block-encoding of
(
A1σ

⌊β⌋ρσ⌊β⌋A†1

)α

.
In order to analysis the error, we need the following lemma.
Lemma IV.6: Suppose that A and B are two positive

semidefinite operators of rank ≤ r, and 0 < α < 1. Then

|tr(Aα)− tr(Bα)| ≤ 3 r ∥A−B∥α
.

Proof: Let J = A−B. Let the eigenvalues of A, B and
J be

µ1 ≥ µ2 ≥ · · · ≥ µN ,

ν1 ≥ ν2 ≥ · · · ≥ νN ,

ξ1 ≥ ξ2 ≥ · · · ≥ ξN ,

respectively. Then we have µr+1 = · · · = µN = νr+1 = · · · =
νN = 0. By Weyl’s inequality [104], we have

νj − ∥J∥ ≤ νj + ξN ≤ µj ≤ νj + ξ1 ≤ νj + ∥J∥

for every 1 ≤ j ≤ N . Furthermore, it holds that
∣∣µα

j − να
j

∣∣ ≤
5 ∥J∥α. This is seen by the following two cases.

1) νj ≥ ∥J∥. In this case, να
j − ∥J∥

α ≤ (νj − ∥J∥)α ≤
µα

j ≤ (νj + ∥J∥)α ≤ να
j + ∥J∥α. Then we obtain that∣∣µα

j − να
j

∣∣ ≤ ∥J∥α.
2) νj < ∥J∥. In this case,

∣∣µα
j − να

j

∣∣ ≤ |µj |α + |νj |α ≤
|νj + ∥J∥|α + |νj |α < (2α + 1) ∥J∥α

< 3 ∥J∥α.

These yield that

|tr(Aα)− tr(Bα)| =

∣∣∣∣∣∣
N∑

j=1

µα
j −

N∑
j=1

να
j

∣∣∣∣∣∣
≤

r∑
j=1

∣∣µα
j − να

j

∣∣
≤ 3 r ∥J∥α

.

By Lemma IV.6, we have∣∣∣∣tr((A1σ
⌊β⌋ρσ⌊β⌋A†1

)α)
− tr

((
1
4
σβρσβ

)α)∣∣∣∣
≤ 3 r

∥∥∥∥A1σ
⌊β⌋ρσ⌊β⌋A†1 −

1
4
σβρσβ

∥∥∥∥α

≤ Θ
(
r
(
ε1 + δ

{β}
1

)α)
.

Step 3: Introducing a parameter ε3, by Lemma II.15, we can
compute p̃ such that |p̃− tr(A2)| ≤ ε3, using O

(√
B

ε3
+ 1√

ε3

)
queries to U2, where

B = Θ
(
δ1−α
2 + r

(
ε1 + δ

{β}
1

)α

+ r(δ2 + ε2)
)

is an upper bound for tr(A2). Note that

tr(A2)

≤ 1
4
δ1−α
2 tr

((
A1σ

⌊β⌋ρσ⌊β⌋A†1

)α)
+ Θ(r(δ2 + ε2))

≤ 1
4
δ1−α
2

(
tr
((

1
4
σβρσβ

)α)
+ Θ

(
r
(
ε1 + δ

{β}
1

)α))
+ Θ(r(δ2 + ε2))

≤ Θ
(
δ1−α
2 + r

(
ε1 + δ

{β}
1

)α

+ r(δ2 + ε2)
)
.

Step 4: Output 4α+1δα−1
2 p̃ ≈ Fα(ρ, σ) as the estimation.

The additive error is∣∣4α+1δα−1
2 p̃− Fα(ρ, σ)

∣∣
≤ 4α+1δα−1

2 |p̃− tr(A2)|

+ 4α
∣∣∣tr(4δα−1

2 A2)− tr
((
A1σ

⌊β⌋ρσ⌊β⌋A†1

)α)∣∣∣
+ 4α

∣∣∣∣tr((A1σ
⌊β⌋ρσ⌊β⌋A†1

)α)
− tr

((
1
4
σβρσβ

)α)∣∣∣∣
≤ Θ

(
r
(
ε1 + δ

{β}
1

)α

+ rδα−1
2 (ε2 + δ2) + δα−1

2 ε3

)
.

In order to make
∣∣4α+1δα−1

2 p̃− Fα(ρ, σ)
∣∣ ≤ ε, it is suffi-

cient to let δ1 = Θ((ε/r)1/α{β}), ε1 = Θ((ε/r)1/α{β}), δ2 =
Θ
(
(ε/r)1/α

)
, ε2 = Θ

(
(ε/r)1/α

)
and ε3 = Θ

(
ε1/α/r1/α−1

)
.

Under these conditions, the number of queries to Uσ is

O

(
Q1Q2

(√
B

ε3
+

1
√
ε3

))
= Õ

(
r

3−α
2α + 1

α{β}

ε
3+α
2α + 1

α{β}

)
,

and the number of queries to Uρ is

O

(
Q2

(√
B

ε3
+

1
√
ε3

))
= Õ

(
r

3−α
2α

ε
3+α
2α

)
,
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and the number of elementary quantum gates is

O

(
Q1Q2

(√
B

ε3
+

1
√
ε3

))
· poly(n, nσ, nρ)

= Õ

(
r

3−α
2α + 1

α{β}

ε
3+α
2α + 1

α{β}
poly(n)

)
.

C. Lower Bounds and Hardness

Our quantum algorithms for both fidelity estimation and
trace distance estimation requires time complexity polynomial
in the rank r of quantum states. Here, we show that unless
BQP = QSZK, there is no quantum algorithm for both fidelity
estimation and trace distance estimation with time complexity
polylogarithmic in r.

Theorem IV.7: If there is a quantum algorithm that computes
fidelity or trace distance of quantum states of rank ≤ r within
additive error ε with time complexity poly (log r, 1/ε), then
BQP = QSZK.

Proof: Here, we recall a decision problem called (α, β)-
Quantum State Distinguishability ((α, β)-QSD). Given Uρ and
Uσ that prepares the purifications of density operators ρ and
σ and a promise that either T (ρ, σ) ≤ α or T (ρ, σ) ≥ β, the
problem is to determine which is the case. It was shown in [20]
that (α, β)-QSD is QSZK-complete if 0 ≤ α < β2 ≤ 1.

If there is a quantum algorithm for computing trace distance
with time complexity poly (log r, 1/ε), then we can distin-
guish the two cases with time complexity poly(n) by letting
r = 2n be the dimension of the two quantum states and
ε = (β − α)/2 > 0.

If there is a quantum algorithm for computing fidelity with
time complexity poly (log r, 1/ε), then we can distinguish
the two cases with time complexity poly(n) by letting r =
2n be the dimension of the two quantum states and ε =(
(1− α)−

√
1− β2

)
/2 > 0. This is because T (ρ, σ) ≤ α

implies F (ρ, σ) ≥ 1−α, and T (ρ, σ) ≥ β implies F (ρ, σ) ≤√
1− β2. Then (α, β)-QSD is reduced to distinguish which

is the case with promise that either F (ρ, σ) ≤
√

1− β2 and
F (ρ, σ) ≥ 1− α.

Our quantum algorithms for estimating the fidelity and trace
distance achieve a significant speedup under the low-rank
assumption. One might wonder whether our algorithms can be
“dequantized” through quantum-inspired low-rank techniques
such as [105] and [106]. We suspect that it might be unachiev-
able because the following theorem shows that computing
fidelity and trace distance are DQC1-hard.

Theorem IV.8: Computing the fidelity and trace distance are
DQC1-hard, even for pure quantum states.

Proof: It was already proved in [12] that estimating the
fidelity is DQC1-hard, even for pure quantum states. Here,
we reduce the problem of estimating the fidelity to that of
estimating the trace distance, and therefore show the DQC1-
hardness of estimating the trace distance.

For any two pure quantum states ψ = |ψ⟩ ⟨ψ| and ϕ =
|ϕ⟩ ⟨ϕ|, their trace distance is essentially

T (ψ, ϕ) =
√

1− (F (ψ, ϕ))2.

Therefore, any algorithm that computes the trace distance
T (ψ, ϕ) will immediately yield the fidelity F (ψ, ϕ) =√

1− (T (ψ, ϕ))2. As a result, estimating the trace distance
is DQC1-hard even for pure quantum states.

It was shown in [63] that DQC1 is not (classically) weakly
simulatable unless the polynomial hierarchy collapses to the
second level, i.e., PH = AM. This, together with Theo-
rem IV.8, means that there is unlikely an efficient classical
algorithm that estimates the fidelity or trace distance. It should
be noted that this does not rule out the existence of a dequan-
tized version of our quantum algorithms because dequantized
algorithms often assume a different input model from The-
orem IV.8. More specifically, dequantized algorithms assume
“sampling and query access” [105], [106] to the input matrix
(in our case, the density operator of the quantum state) stored
in a pre-computed data structure.
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