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Unbiased Estimating Equation and Latent Bias
Under f-Separable Bregman Distortion Measures

Masahiro Kobayashi , Member, IEEE, and Kazuho Watanabe , Member, IEEE

Abstract— We discuss unbiased estimating equations in a class
of objective functions using a monotonically increasing function
f and Bregman divergence. The choice of the function f
gives desirable properties, such as robustness against outliers.
To obtain unbiased estimating equations, analytically intractable
integrals are generally required as bias correction terms. In this
study, we clarify the combination of Bregman divergence, statis-
tical model, and function f in which the bias correction term
vanishes. Focusing on Mahalanobis and Itakura–Saito distances,
we generalize fundamental existing results and characterize a
class of distributions of positive reals with a scale parameter,
including the gamma distribution as a special case. We also gen-
eralized these results to general model classes characterized by
one-dimensional Bregman divergence. Furthermore, we discuss
the possibility of latent bias minimization when the proportion
of outliers is large, which is induced by the extinction of the bias
correction term. We conducted numerical experiments to show
that the latent bias can approach zero under heavy contamination
of outliers or very small inliers.

Index Terms—f -separable distortion measures, Bregman
divergence, Itakura–Saito distance, latent bias, M-estimators,
unbiased estimating equations.

I. INTRODUCTION

THE maximum likelihood estimation (MLE) for the sta-
tistical model p(x|θ) estimates the parameter θ by mini-

mizing the negative log-likelihood. It is equivalent to empirical
inference under the Kullback–Leibler (KL)-divergence. How-
ever, MLE is susceptible to outliers or mismatches of the
assumed model. In robust statistics, estimation methods weak-
ening adverse effects of outliers have been studied [1], [2].
M-estimation is a well-known method that changes the neg-
ative log-likelihood function − 1

n

∑n
i=1 log p(xi|θ) in MLE

to a general robust objective function 1
n

∑n
i=1 ρ(xi,θ) [1],
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[2]. This is equivalent to changing the assumed model to
heavy-tailed distribution under the KL-divergence measure.
Another definition is given by solving the following estimating
equation with respect to the parameter θ,

1
n

n∑
i=1

ψ(xi,θ) = 0, (1)

where the function ψ is the generalized score function in
MLE [1], [2]. Although the two definitions are not always the
same, they concur if the condition ψ(x,θ) = ∂ρ(x,θ)

∂θ holds.
Another well-known estimation method is the minimum

divergence estimation, which is to change KL-divergence to
another divergence [3], [4]. Well-known divergences are f -
and Bregman divergences, which are defined by a strictly
convex function [5]. A common part of these divergences
is only KL-divergence [6]. The f -divergence includes the α-
divergence as a subclass, which plays an important role in
information geometry [7]. Particularly, estimators based on the
minimization of Hellinger distance, which is an α-divergence,
have robustness and completely efficient properties [8]. How-
ever, the continuous model estimation using f -divergence
requires the use of non-parametric kernel density estimators
instead of the true distribution. Non-parametric kernel density
estimators have the disadvantages of a bandwidth selection
problem and worse estimation efficiency in high dimensions.
There are known methods to deal with this problem, such
as using the same kernel to represent empirical and model
distributions [9], or using a dual representation of diver-
gence [10], [11], [12]. However, the estimation based on
minimizing the Bregman divergence does not require kernel
density estimator because the empirical distribution is avail-
able. Broniatowski et al. [13] called this type of divergence in
which the empirical distribution can be used instead of the true
distribution decomposable divergence. Jana and Basu [14] sim-
ply called such divergence non-kernel divergence and showed
that single-integral and non-kernel divergences are limited to
Bregman divergence. The β-divergence, also known as density
power divergence, which belongs to the Bregman divergence
is the first non-kernel divergence proposed as an extension
of M-estimation (1) [15]. Since then, robust non-kernel diver-
gences applicable to empirical inference have been developed.

The minimization of these divergences reduces to estimating
equations by the weighted (negative) score function s(x,θ) =
∂l(x,θ)

∂θ , where l(x,θ) = − log p(x|θ). Conversely, these
divergences are constructed from estimating equations. The
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following two types of estimating equations are well known:

1
n

n∑
i=1

ξ(l(xi,θ))s(xi,θ) = Ep(x|θ) [ξ(l(X,θ))s(X,θ)] ,

(2)∑n
i=1 ξ(l(xi,θ))s(xi,θ)∑n

j=1 ξ(l(xj ,θ))
=

Ep(x|θ) [ξ(l(X,θ))s(X,θ)]
Ep(x|θ) [ξ(l(X,θ))]

,

(3)

where ξ : R → R works as the weight function. These estimat-
ing equations are included in the M-estimation framework (1)
by putting the function ψ as follows:

ψ(x,θ) = ξ(l(x,θ))s(x,θ)− Ep(x|θ) [ξ(l(X,θ))s(X,θ)] ,
ψ(x,θ) = ξ(l(x,θ))s(x,θ)Ep(x|θ) [ξ(l(X,θ))]

− ξ(l(x,θ))Ep(x|θ) [ξ(l(X,θ))s(X,θ)] ,

respectively [16]. Equation (2) is called the non-normalized
estimating equation because the summation of weights of
score functions is not one. This estimating equation cor-
responds to the Bregman divergence, and its special cases
(β-divergence [15], and its generalizations [17], [18], [19]) and
variants (U -divergence [20], Ψ-divergence [21]). Equation (3)
is the normalized estimating equation because the summation
of weights of score functions is one. Windham [22] proposed
an estimator using density power weight, which is equiva-
lent to the solution to equation (3). Then, Jones et al. [23]
constructed the corresponding divergence. This divergence,
called γ-divergence, has the property that the latent bias can
be minimized when the proportion of outliers is large and
that the divergence with such a property is unique under
some assumptions [24]. This property of the γ-divergence was
extended to the normalized estimating equation (3) with the
general weight ξ [16]. However, these approaches require bias
correction terms, i.e., the right-hand sides of (2) and (3), which
generally result in analytically intractable integrals. This is
true for most practical models except for a few simple cases.
For example, if the weight function ξ is a power function
that corresponds to β- and γ-divergences, and the statistical
model is a specific case within the exponential family, such as
Gaussian, gamma, and inverse Gaussian distributions, the bias
correction term can be calculated. However, if the statistical
model is complex or for general weight functions, analytical
computation becomes intractable.

Recently, following the success of divergences using density
power weight such as β- and γ-divergences, the extension,
unification, and relationship of these divergences have been
investigated. There are two mainstream research directions.
The first direction is to extend the existing divergences within
non-kernel divergences. Kanamori and Fujisawa [25] proposed
Hölder divergence, which establishes invariance to the affine
transformation of random variables based on the compos-
ite score. In their approach, the proportion of outliers can
be estimated by considering the unnormalized density [26].
Kuchibhotla et al. [27] proposed the bridge density power
divergence (BDPD), which is constructed by a convex com-
bination of estimating equations (2) and (3) using the density
power weight. They tried to deal with the spurious global

solution problem that γ-divergence produces. Both Hölder
divergence and BDPD include β- and γ-divergences as special
cases. The γ-divergence is generated by the logarithmic trans-
formation of each term of the β-divergence. Ray et al. [28]
proposed the functional density power divergence (FDPD)
which is generated by the general functional transformation
of each term of the β-divergence. It contains BDPD [27]
and Jones et al.’s general divergence [23]. To provide bet-
ter robustness versus efficiency trade-off, the expansion of
β-divergence has been investigated within the Bregman diver-
gence framework [17], [18], [19]. Notably, β-divergence,
γ-divergence, Bregman divergence, and BDPD correspond to
M-estimation (1), whereas Hölder divergence and FDPD do
not necessarily correspond to it.

The second direction is to extend beyond the non-kernel
divergence framework to the super family of divergences that
include many existing divergences. Ghosh et al. [29] proposed
super (S)-divergence, which generalizes α- and β-divergences
and has two tuning parameters. The cases of continuous
and discrete models have been investigated, and it has been
reported that the regions outside α- and β-divergences show
good performance [29], [30], [31]. This divergence has been
further generalized [32]. Maji et al. [33] proposed a logarithm
transformation divergence for each term of S-divergence,
which includes Rényi- [34] and γ- [24] divergences and called
it logarithmic S-divergence (LSD). S-divergence and LSD
correspond to the non-normalized and normalized estimating
equations, respectively. However, these estimating equations
cannot be expressed by the summation of independent and
identically distributed data points as in (2) and (3). In esti-
mators based on both S-divergence and LSD, the asymptotic
variance depends on only one of the two tuning parameters.
Maji et al. [35] proposed C-divergence, which is a very
wide divergence class and includes f - [5] and generalized
S- [32] divergences. In fact, this divergence was previously
proposed by Vonta et al. [36] and used for testing. Basak and
Basu [37] considered a new divergence by giving the argument
of the Bregman divergence a power of the density function.
It is called generalized S–Bregman divergence, which includes
S- [29] and Bregman exponential [17] divergences and has
three tuning parameters.

In this paper, we consider the M-estimation under
f -separable distortion measures, which were proposed to
extend linear distortion, such as the average distortion to
nonlinear distortion, and for which the rate-distortion function
was studied [38]. It was also used to solve the estimation prob-
lem with Bregman divergence as the base distortion measure,
and a simple clustering or vector quantization algorithm was
constructed [39]. In this paper, this class of objective functions
is called the f -separable Bregman distortion measure. Note
that this distortion measure is defined by neither f - nor
Bregman divergences between the aforementioned probability
distributions. It is defined by a function f , not necessarily
convex, and the Bregman divergence between vector or scalar
variables. The M-estimation under this distortion measure,
as discussed in Section III, can be viewed as a deviance-based
estimation of the regular exponential family model. The unbi-
asedness of the estimating equation of deviance-based methods
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has been studied, and some sufficient conditions for it have
been obtained [40], [41]. However, these results only apply to
the case where the data-generating distribution is included in
the assumed model. On the other hand, the M-estimation of
the location family is proved to have an unbiased estimating
equation for general symmetric distributions [2]. It is unknown
in what cases of f -separable Bregman distortion measures the
estimating equation is unbiased for such a general class of
distributions. If an estimating equation is unbiased, it can be
regarded as normalized, and the estimator has the potential to
minimize the latent bias, even if the proportion of outliers is
large.

In this paper, we study the conditions for bias correction
terms of f -separable Bregman distortion measures to vanish
and characterize the combination of Bregman divergence, sta-
tistical model, and function f . Focusing on Mahalanobis and
Itakura–Saito (IS) distances, we specify the conditions for the
general model classes and the function f to achieve unbiased
estimating equations. We also describe the properties of these
general model classes and discuss the relationship between
these models and regular exponential family. Furthermore,
we discuss if the latent bias can be minimized when the
proportion of outliers is large. We compare the M-estimation
under the f -separable IS distortion measure with the estima-
tion methods minimizing β- and γ-divergences theoretically
in terms of asymptotic efficiency and numerically through
experiments examining latent bias under heavy contamination.

II. f -SEPARABLE BREGMAN DISTORTION MEASURES

This section introduces the estimation method based on
f -separable Bregman distortion measures [39]. We consider
estimating the parameter θ ∈ Θ ⊆ Rd of a statistical
model p(x|θ) when given the data xn = {x1, · · · ,xn},
xi = (x(1)

i , · · · , x(d)
i )T ∈ χ ⊆ Rd. We assume that p(x|θ∗)

is the data-generating distribution, and the parameter θ is the
expected value of x under the model, i.e., θ = E[X] =∫

xp(x|θ)dx if it exists. The objective function is defined
by

Lf (θ) =
1
n

n∑
i=1

f (dϕ (xi,θ)) , (4)

where f : R+ → R is a differentiable and continuous
monotonically increasing function, dϕ(x,θ) : χ ×Θ → R+

is the Bregman divergence, and R+ is the set of nonnega-
tive real numbers. The Bregman divergence is defined by a
differentiable strictly convex function ϕ : χ → R as

dϕ(x,θ) ≜ ϕ(x)− ϕ(θ)− ⟨x− θ,∇ϕ(θ)⟩, (5)

where ∇ϕ is its gradient vector and ⟨·, ·⟩ is the inner prod-
uct. The corresponding estimating equation to the objective
function (4) is given by

1
n

n∑
i=1

f ′(dϕ(xi,θ))
∂

∂θ
dϕ(xi,θ) = 0, (6)

where f ′ is the derivative of f . This is not generally unbiased.
The estimator θ̂ of the parameter θ∗ is given by the solution
of the estimating equation (6). The property of the estimator

depends on the function f . For example, if the function f
is concave, the estimator is robust against outliers. Then, the
update rule of the estimator θ̂ is given by

θ =
∑n

i=1 f
′ (dϕ(xi,θ))xi∑n

j=1 f
′ (dϕ(xj ,θ))

(7)

which gives the iterative algorithm. When the function f
satisfies f(0) > −∞, the update rule converges with finite
iteration [39]. In other words, the estimator is one of the local
minima of the objective function (4).

The original f -separable distortion measures are defined by
f -mean with respect to some base distortion d [38]. From the
viewpoint of f -mean, representative examples are the log–
sum–exp function and power mean, which are, respectively,
given by the following functions:

fα(z) =

{
1−exp(−αz)

α (α ̸= 0),
z (α = 0),

(8)

fβ(z) =

{
(z+a)β−1

β (β ̸= 0),
log(z + a) (β = 0),

(9)

where α ∈ R, β ∈ R and a ∈ R+. When α = 0 or β = 0,
functions (8) and (9) are, respectively, given by the following
continuous limits:

f0(z) = lim
α→0

fα(z) = z,

f0(z) = lim
β→0

fβ(z) = log(z + a).

If tuning parameters satisfy α > 0 and β < 1, the estimators
become robust. When α = 0 and β = 1, functions (8) and (9)
become linear functions. The derivative of functions (8)
and (9) are, respectively, given by

f ′α(z) = exp(−αz),
f ′β(z) = (z + a)β−1.

III. RELATION TO ROBUST DIVERGENCES

First, we show that the minimization of Lf (θ) is derived
from deviance-based M-estimation of the expectation param-
eter under the regular exponential family,

p(x|θ) = rϕ(x) exp(−dϕ(x,θ)), (10)

where rϕ(x) is uniquely determined by the strictly convex
function ϕ and θ is the expectation parameter, i.e., θ = E[X]
[42]. The deviance function [40] is defined by

∆(x,θ) = 2
[
l(x,θ)− inf

τ
(l(x, τ ))

]
. (11)

The objective function of the deviance-based M-estimation is
defined by

1
n

n∑
i=1

ρ(
√

∆(xi,θ)),

where ρ : R+ → R. If the function ρ is differentiable, the
corresponding estimating equation is given by

1
n

n∑
i=1

ρ′(
√

∆(xi,θ))√
∆(xi,θ)

s(xi,θ) = 0,
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where ρ′ is the derivative of ρ. From (11), the deviance
function of the regular exponential family (10) is given by

∆(x,θ)

=2
[
− log rϕ(x) + dϕ(x,θ)− inf

τ
(− log rϕ(x) + dϕ(x, τ ))

]
=2 [− log rϕ(x) + dϕ(x,θ) + log rϕ(x)] = 2dϕ(x,θ).

Thus, the objective function and estimating equation under the
regular exponential family are, respectively, given by

1
n

n∑
i=1

ρ

(√
2dϕ(xi,θ)

)
, (12)

1
n

n∑
i=1

ρ′
(√

2dϕ(xi,θ)
)

√
2dϕ(xi,θ)

∂

∂θ
dϕ(xi,θ) = 0, (13)

where s(x,θ) = ∂
∂θdϕ(x,θ) is the negative score function.

The objective functions of f -separable Bregman distortion
measures (4) and deviance-based M-estimation (12) are related
as follows f(z) = ρ(

√
2z). Similarly, the estimating equa-

tions (6) and (13) have the following relationship f ′(z) =
ρ′(
√

2z)/
√

2z.
Next, we turn to empirical inference based on robust diver-

gences under the regular exponential family (10). Suppose for
a moment that the bias correction term can be ignored. In this
case, the non-normalized estimating equation (2) is given by

1
n

n∑
i=1

ξ (l(xi,θ))
∂

∂θ
dϕ(xi,θ) = 0. (14)

Compared with this equation, the estimating equation (6) of
f -separable Bregman distortion measures can be interpreted
as a weighted score function. We focus on the arguments
of the weight functions of (6) and (14). The only difference
is the term infθ l(x,θ) = − log rϕ(x). Specifically, if the
domain of the function f ′ is extended to (−∞,∞), the
function f ′ works identically to the weight function ξ. In view
of this relation, function (8) associated with the log–sum–
exp function yields the estimation methods that minimize β-
and γ-divergences with the non-normalized and normalized
estimating equations (2) and (3), respectively. In particular,
if the function f is given by (8) and the squared distance is
used to estimate the standard Gaussian location parameter, the
estimating equation (6) reduces to

1
n

n∑
i=1

exp
(
−α∥xi − θ∥2

)
(xi − θ) = 0,

which is the same estimating equation as β- and γ-divergences.
In other words, when we assume the regular exponential
family and the function (8), then it is related to the estimation
based on the power of the statistical model.

In this section, we assumed the bias correction term is
exactly 0; however, it is not generally true. With the com-
bination of the model and Bregman divergence discussed in
the next section, the estimating equation (6) becomes unbiased
without any bias correction term for any function f satisfying
the condition given in the main theorems.

IV. CONDITIONS FOR UNBIASED ESTIMATING EQUATION

In general, the estimator based on f -separable Bregman
distortion measures introduced in Section II does not satisfy
consistency because its estimating equation is not necessarily
unbiased. Thus, to satisfy an unbiased estimating equation,
we must subtract the bias correction term bf (θ) from the
objective function (4) as follows:

Lf (θ) =
1
n

n∑
i=1

f (dϕ (xi,θ))− bf (θ),

bf (θ) = −
∫

∇∇ϕ(θ)Ep(x|θ) [f ′ (dϕ (X,θ)) (X − θ)] dθ,

(15)

where
∫
·dθ denotes the indefinite integral with respect to

θ. Differentiating (15) with respect to θ and setting it to 0,
we obtain the following estimating equation,

∇∇ϕ(θ)
1
n

n∑
i=1

f ′ (dϕ (xi,θ)) (xi − θ)

=∇∇ϕ(θ)Ep(x|θ)[f ′ (dϕ (X,θ)) (X − θ)].

Multiplying both sides by the inverse matrix (∇∇ϕ(θ))−1

yields the following non-normalized estimating equation:

1
n

n∑
i=1

f ′(dϕ (xi,θ)) (xi−θ)=Ep(x|θ)[f ′ (dϕ (X,θ)) (X − θ)].

We can also consider the normalized estimating equation as
follows:∑n

i=1 f
′(dϕ (xi,θ)) (xi−θ)∑n

j=1 f
′ (dϕ (xj ,θ))

=
Ep(x|θ)[f ′(dϕ (X,θ)) (X−θ)]

Ep(x|θ)[f ′ (dϕ (X,θ))]
.

Fujisawa [16] elucidated that this estimating equation can
possibly minimize the latent bias, even for a large proportion
of outliers. In both cases, it is necessary to calculate the
integral for bias correction for each combination of statistical
model, Bregman divergence, and function f . However, the
integral may not exist or be analytically intractable in many
cases. In this paper, we discuss the following estimating
equation:

1
n

n∑
i=1

f ′ (dϕ (xi,θ)) (xi − θ) = 0.

It means that the bias correction term is independent of
the parameter θ. In other words, the following equation is
satisfied,

Ep(x|θ) [f ′ (dϕ (X,θ)) (X − θ)] = 0. (16)

Then, this estimating equation is automatically normalized.
Therefore, the estimator has the possibility to minimize the
latent bias, even for many outliers. In the remaining section,
we characterize the combination of the statistical model
p(x|θ), Bregman divergence dϕ(x,θ), and function f , where
the bias correction term vanishes. In what follows, the statisti-
cal model considered is generally not the regular exponential
family.

In particular, we focus on Mahalanobis and IS distances.
To estimate the location parameter of elliptical distribution,



KOBAYASHI AND WATANABE: UNBIASED ESTIMATING EQUATION AND LATENT BIAS 5767

it is known that the bias correction term vanishes, and the
estimator is consistent under certain conditions on the function
f [2]. Moreover, it is known that the bias correction term
vanishes for a log-gamma regression model. This is equivalent
to the case where IS distance is used, and the model is the
gamma distribution [41]. In this paper, we derive a simple
condition of the function f that induces an unbiased estimating
equation. Even if the weight function f ′ is changed, the
calculation of the bias correction term is unnecessary; only the
simple conditions should be checked. In particular, for the IS
distance, the class of the model is extended to a more general
class.

A. Mahalanobis Distance

Suppose the strictly convex function is given by ϕ(x) =
xTAx, where A is a positive definite matrix. Then, the
corresponding Bregman divergence is given by

dMah.(x,θ) ≜ (x− θ)TA(x− θ),

which is called Mahalanobis distance. If the positive definite
matrix A is identity, it reduces to the squared distance,

∥x− θ∥2 =
d∑

j=1

(x(j) − θ(j))2.

We assume that the statistical model is the elliptical
distribution.

Definition 1 (Elliptical Distribution [43], [44, pp. 46–47]):
For x ∈ Rd and the location parameter θ ∈ Θ = Rd

and a nonnegative function g : R+ → R+, let
CMah. = 2π

d
2 /Γ(d

2 )
∫∞
0
td−1g(t2)dt < ∞ be the

normalization constant, and the positive definite matrix
A be the inverse of a fixed covariance matrix. Then, the
elliptical distribution is defined by the following probability
density function,

p(x|θ) =
|A| 12
CMah.

g((x− θ)TA(x− θ)). (17)

This distribution includes Gaussian, Laplace, t distributions
and so on [44].

Assumption 1: There exists the elliptical distribution (17)
corresponding to the nonnegative function g, i.e., CMah. =
2π

d
2 /Γ(d

2 )
∫∞
0
td−1g(t2)dt <∞.

Theorem 1: Under Assumption 1, if and only if the follow-
ing condition holds against the combination of the function f
and the statistical model (17), the estimating equation without
a bias correction term or equivalently (16) holds:∫ ∞

0

g(t)f ′(t)t
d−1
2 dt <∞. (18)

The proof of Theorem 1 is in Appendix A. Although in this
case, the unbiased estimating equation is intuitively trivial
because of the symmetry around θ and has been pointed out
in the literature [2], the explicit condition for unbiasedness has
never been discussed.

B. IS Distance

Suppose the strictly convex function is given by ϕ(x) =
− log x. Then, the corresponding Bregman divergence is given
by

dIS(x, θ) ≜
x

θ
− log

x

θ
− 1, (19)

which is called the IS distance.
Definition 2 (IS Distribution): For x ∈ R+ \ {0} and the

scale parameter θ ∈ Θ = R+\{0}, and a nonnegative function
g : R+ → R+, we define the following probability density
function with the normalization constant CIS <∞,

p(x|θ) =
1
CIS

1
x
g(dIS(x, θ)). (20)

The normalization constant CIS independent of the parameter
θ is given by

CIS =
∫ ∞

0

1
x
g(dIS(x, θ))dx =

∫ ∞

0

1
t
g(dIS(t, 1))dt. (21)

We used integration by substitution t = x/θ. When the
expectation exists, the scale parameter coincides with the
expectation. In particular, if g(z) = exp(−kz), the IS dis-
tribution reduces to the gamma distribution with the known
shape parameter k > 0,

p(x|θ) =
(
k

θ

)k 1
Γ(k)

xk−1 exp
(
−k
θ
x

)
,

where Γ(·) is the gamma function. Details of the IS distribu-
tion are described in Section V-A.

Assumption 2: There exists the IS distribution (20) cor-
responding to the nonnegative function g, i.e., CIS =∫∞
0

1
xg(dIS(x, 1))dx <∞.

Theorem 2: Under Assumption 2, if and only if the follow-
ing condition holds against the combination of the function f
and statistical model (20), the estimating equation without a
bias correction term or equivalently (16) holds:∫ ∞

0

g(t)f ′(t)dt <∞. (22)

Proof: From the left-hand side of (16), substituting the
IS distance (19) and IS distribution (20), we have

Ep(x|θ) [f ′ (dIS (X, θ)) (X − θ)]

=
∫ ∞

0

1
CIS

1
x
g(dIS(x, θ))f ′(dIS(x, θ))(x− θ)dx

∝
∫ θ

0

1
x
g(dIS(x, θ))f ′(dIS(x, θ))(x− θ)dx

+
∫ ∞

θ

1
x
g(dIS(x, θ))f ′(dIS(x, θ))(x− θ)dx

= θ

∫ 0

∞
g(t)f ′(t)dt+ θ

∫ ∞

0

g(t)f ′(t)dt = 0.

We used integration by substitution, t = dIS(x, θ). There-
fore, if the integral (22) exists, then (16) holds, i.e., the
unbiased estimating equation holds without any bias correc-
tion term. Conversely, the above discussion also shows that
Ep(x|θ) [|f ′(dIS(X, θ))(X − θ)|] ∝ 2θ

∫∞
0
g(t)f ′(t)dt. This

means that the condition (22) is also necessary. □
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1) Example: Gamma Distribution: In the case of the
function (8) and gamma distribution with the known shape
parameter k > 0, i.e., g(z) = exp(−kz), then the integral in
equation (22) is given by∫ ∞

0

exp(−kz) exp(−αz)dz =
∫ ∞

0

exp(−(k + α)z)dz.

Therefore, the condition α > −k must be satisfied for the
integral to be bounded. In other words, the lower limit of α
that satisfies the unbiased estimating equation differs for each
shape parameter k. Since k > 0, we can see that the condition
of Theorem 2 is satisfied if α > 0, for which the estimator is
robust against outliers.

For the function (9) and gamma distribution with the known
shape parameter k > 0, the integral in equation (22) becomes∫ ∞

0

exp(−kz)(z + a)β−1dz.

When a > 0, the condition of Theorem (22) holds for β <∞.
Moreover, when a = 0, the condition of Theorem (22) holds
for 0 < β <∞. However, it does not hold for β ≤ 0.

C. Other Bregman Divergence

The conditions of Theorems 1 and 2 are the same in one-
dimensional case. A common point is that the statistical model
is expressed by the Bregman divergence used for estimation.
Hence, the results of Theorems 1 and 2 can be extended to
a wider class of continuous distributions written by Bregman
divergence. We assume the following statistical model, which
is defined by one-dimensional Bregman divergence.

Definition 3 (Continuous Bregman Distribution): For x ∈
(a, b) ⊆ R, the parameter θ ∈ Θ = (a, b) ⊆ R, and the
function g : R+ → R+, we define the following probability
density function with the normalization constant satisfying
Cϕ(θ) <∞,

p(x|θ) =
1

Cϕ(θ)
ϕ′(x)− ϕ′(θ)

x− θ
g(dϕ(x, θ)). (23)

Here, a ∈ R ∪ {−∞} and b ∈ R ∪ {∞} express the left
and right edges of the support of the probability density
function which depend on the strictly convex function ϕ. For
example, if ϕ(x) = − log x, a = 0 and b = ∞, and if
ϕ(x) = x2, a = −∞ and b = ∞. In general, the normalization
constant Cϕ(θ) depends on the parameter θ. This distribu-
tion includes one-dimensional elliptical and IS distribution.
Specifically, if (24) holds, and the expected value exists,
E[X] <∞, E[X] = θ holds from the estimating equation (16)
with f(z) = z, and the condition for it is given by (25).
Details of the continuous Bregman distribution is discussed in
Section V-B.

Assumption 3:
1) Bregman divergence satisfies the following for any θ and

a positive constant ζ (including ∞) with respect to the
support (a, b) of (23):

lim
x→a

dϕ(x, θ) = lim
x→b

dϕ(x, θ) = ζ. (24)

2) Bregman divergence used for estimation corresponds to
that of the model (23).

Assumption 4: There exists the continuous Bregman distri-
bution (23) corresponding to the nonnegative function g, i.e.,
Cϕ(θ) <∞.

Theorem 3: Under Assumption 3 and Assumption 4, if and
only if the following condition holds against the combination
of the function f and statistical model (23), the estimating
equation without a bias correction term or equivalently (16)
holds: ∫ ζ

0

g(t)f ′(t)dt <∞. (25)

Proof: From the left-hand side of equation (16), substi-
tuting the one-dimensional Bregman divergence (5) and the
continuous Bregman distribution (23), we have

Ep(x|θ) [f ′ (dϕ (X, θ)) (X − θ)]

=
∫ b

a

1
Cϕ(θ)

ϕ′(x)− ϕ′(θ)
x− θ

g(dϕ(x, θ))f ′(dϕ(x, θ))(x− θ)dx

∝
∫ θ

a

(ϕ′(x)− ϕ′(θ))g(dϕ(x, θ))f ′(dϕ(x, θ))dx

+
∫ b

θ

(ϕ′(x)− ϕ′(θ))g(dϕ(x, θ))f ′(dϕ(x, θ))dx

=
∫ 0

ζ

g(t)f ′(t)dt+
∫ ζ

0

g(t)f ′(t)dt = 0.

We used integration by substitution as t = dϕ(x, θ) and (24).
Therefore, if integral (25) exists, then (16) holds, i.e., the
unbiased estimating equation holds without any bias cor-
rection term. Conversely, the above discussion also shows
that Ep(x|θ) [|f ′(dϕ(X, θ))(X − θ)|] ∝ 2

∫ ζ

0
g(t)f ′(t)dt. This

means that the condition (25) is also necessary. □
Note that Assumption 3 must be satisfied for the integration
by substitution to imply the unbiased estimating equation.

The elliptical and IS distributions are rare examples
with unbiased estimating equations for the corresponding
f -separable Bregman distortion measures and include the
corresponding regular exponential family models.

Remark 1: In this section, we derived the condition under
which the estimating equation holds without the bias cor-
rection term. Generally, the bias correction term does not
vanish. We showed rare examples, Mahalanobis, IS, and
one-dimensional Bregman divergences, for which the bias
correction term vanishes. We emphasize that conditions (18),
(22), and (25) of the theorems are easy to check. For example,
when the statistical model is the gamma distribution, i.e.,
the function g is exp(−kz), we immediately see that the
condition is satisfied with respect to the function f ′ which is
a polynomial. Thus, the conditions of the theorem can narrow
the range within which the function f or f ′ can be chosen.

Remark 2: This paper focuses on unbiasedness of the esti-
mating equations, which is the necessary condition for the
consistency of estimators. On the other hand, even when
the unbiasedness of estimating equations does not hold, the
generalization performance may be good due to the trade-off
between bias and variance. For example, the Lq-likelihood
estimator is the case where the bias correction term is truncated
from the β-divergence [45]. However, under small samples,
the exchange of bias and variance has been shown to improve
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the generalization performance. For f -separable Bregman dis-
tortion measures, the generalization performance when the
estimating equations are not unbiased is unknown and is a
subject for future work.

V. DETAILS OF STATISTICAL MODELS

In Section IV, we clarified conditions that consist of the
Bregman divergence, statistical model, and the class of func-
tion f for the unbiased estimating equation to hold without the
bias correction term. We have newly defined the IS distribution
and its generalized continuous Bregman distribution. In this
section, we describe the properties of these distributions.
We also discuss the relationship between the continuous Breg-
man distribution and regular exponential family.

A. IS Distribution

1) Relationship Between Function g, Expected Value E[X],
and Normalization Constant CIS:

Lemma 1: Under Assumption 2, the following relation
holds with respect to the expected value E[X] and the function
g which composes the IS distribution,∫ ∞

0

g(t)dt <∞ ⇐⇒ Ep(x|θ) [X] = θ <∞.

Proof: This relation immediately holds from Theorem 2
by substituting f ′(z) = 1. □

Lemma 2: Under Assumption 2, the following relation
holds with respect to the expected value E[X] and the nor-
malization constant CIS of the IS distribution,

Ep(x|θ) [X] = θ <∞ ⇐⇒

CIS =
∫ ∞

0

1
x
g(dIS(x, 1))dx =

∫ ∞

0

g(dIS(x, 1))dx <∞.

(26)

Proof: We assume that the expected value E[X] exists
and is θ. From the definition and finiteness of expected value
E[X], we have

∞ > θ = Ep(x|θ)[X] =
∫ ∞

0

1
CIS

1
x
g(dIS(x, θ))xdx

=
1
CIS

∫ ∞

0

g(dIS(x, θ))dx = θ
1
CIS

∫ ∞

0

g(dIS(x, 1))dx.

Here, the normalization constant CIS must satisfy

CIS =
∫ ∞

0

1
x
g(dIS(x, 1))dx =

∫ ∞

0

g(dIS(x, 1))dx <∞.

(27)

Therefore, we have

Ep(x|θ) [X] = θ <∞⇒ (27).

Conversely, when we assume (27), we have

(27) ⇒ Ep(x|θ) [X] = θ <∞.

Therefore, (26) holds. □

Theorem 4: Under Assumption 2, the following relation
holds with respect to the expected value E[X], the normal-
ization constant CIS, and the function g which composes the
IS distribution,∫ ∞

0

g(t)dt <∞ ⇐⇒ Ep(x|θ) [X] = θ <∞ ⇐⇒

CIS =
∫ ∞

0

1
x
g(dIS(x, 1))dx =

∫ ∞

0

g(dIS(x, 1))dx <∞.

Proof: Theorem 4 immediately holds from Lemma 1 and
Lemma 2. □

Lemma 1 shows that when the function g satisfy∫∞
0
g(t)dt < ∞, meaning that g ∈ L1(R+), if the IS

distribution exists, its expected value E[X] is θ. In other
words, the existence of the expected value depends only on
the function g. This property holds in the general continuous
Bregman distribution described in Section V-B (Corollary 1).

Lemma 2 means the normalization constant CIS is expressed
in another form than (21). Then, it holds that

CIS =
∫ ∞

0

1
x
g(dIS(x, 1))dx =

∫ ∞

0

g(dIS(x, 1))dx.

The integrand of the normalization constant (27) does not
have factor 1

x which diverges infinity when x goes to 0.
This fact has an advantage in calculating the normalization
constant numerically. However, the relation (26) between the
normalization constant and expected value does not hold on
the continuous Bregman distribution. It is a property of the
scale family as discussed in Appendix B (Theorem 7).

Remark 3: Lemma 1 is obtained from the property of
the continuous Bregman distribution. Similarly, Lemma 2
is obtained from the property of the scale family. The IS
distribution belongs to the continuous Bregman distribution
and scale family. Therefore, Theorem 4 is obtained.

2) Examples of the IS Distribution:
a) Gamma distribution: When we choose the function

g(z) = exp(−kz), the IS distribution becomes the gamma
distribution with the known shape parameter k > 0. Then,
1
xg(dIS(x, θ)) is expressed as follows:

1
x
g(dIS(x, θ)) =

1
x

exp (−kdIS(x, θ))

=
(e
θ

)k

xk−1 exp
(
−k
θ
x

)
.

The normalization constant CIS is given by

CIS =
∫ ∞

0

1
x

exp (−kdIS(x, θ)) dx =
( e
k

)k

Γ(k).

Therefore, the gamma distribution is obtained

p(x|θ) =
1
CIS

1
x

exp(−kdIS(x, θ))

=
(
k

θ

)k 1
Γ(k)

xk−1 exp
(
−k
θ
x

)
. (28)

The gamma distribution is also expressed as

p(x|β, k) =
xk−1

Γ(k)βk
exp

(
−x
β

)
.
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The parameters β and k are called scale and shape parameters,
respectively. This model corresponds to (28) by the trans-
formation with respect to parameter θ = kβ or the change
of random variable Y = kX . It is worth nothing that the
parameter θ is also the scale parameter and expected value.

b) Mixture distribution: Let g1(z) : R+ → R+ and
g2(z) : R+ → R+ be nonnegative functions. We define the
function g by a convex combination, i.e., g(z) = bg1(z) +
(1− b)g2(z), where the coefficient satisfies 0 ≤ b ≤ 1. Then,
the IS distribution with respect to the function g is given
by the convex combination of IS distributions with the same
parameter θ:

p(x|θ) = w
1
C1

1
x
g1 (dIS(x, θ)) + (1− w)

1
C2

1
x
g2 (dIS(x, θ)) ,

w =
bC1

bC1 + (1− b)C2
,

where C1 =
∫∞
0

1
xg1(dIS(x, 1))dx and C2 =∫∞

0
1
xg2(dIS(x, 1))dx are the normalization constants of

the component distributions, respectively, and w is the mixing
coefficient. Similarly, if g is a convex combination of three
or more functions, the IS mixture is generated. If g1(z) and
g2(z) are given by exp(−k1z) and exp(−k2z) respectively,
the IS mixture reduces to the gamma mixture with the same
parameter θ, where k1 and k2 are positive.

B. Continuous Bregman Distribution

1) Relationship Between Function g and Expected Value
E[X]:

Corollary 1: Under (24) of Assumption 3 and Assump-
tion 4, the following relation holds with respect to the expected
value E[X] and the function g which composes the continuous
Bregman distribution,∫ ζ

0

g(t)dt <∞ ⇐⇒ Ep(x|θ)[X] = θ <∞.

Proof: Corollary 1 follows immediately from Theorem 3
as f ′(z) = 1. □

2) Examples of the Continuous Bregman Distribution: We
show common examples of the continuous Bregman distribu-
tion. Note that the normalization constants of the following
examples and those of the corresponding continuous Bregman
distributions are different.

a) One-dimensional elliptical distribution: We set
ϕ(x) = x2. Then, (23) becomes the one-dimensional elliptical
distribution as follows:

p(x|θ) =
1

CMah.
g((x− θ)2).

b) IS distribution: We set ϕ(x) = − log x. Then, (23)
becomes the IS distribution as follows:

p(x|θ) =
1
CIS

1
x
g(dIS(x, θ)).

We explained this distribution in Section V-A.

Fig. 1. Comparison between the continuous Bregman distribution and
regular exponential family. (a) The intersection between the continuous
Bregman distribution and regular exponential family. (b) One-dimensional
elliptical distribution; (c) Gaussian distribution; (d) IS distribution; (e) gamma
distribution.

c) Mixture distribution: As in the case of the IS mixture,
we define the function g by a convex combination, i.e., g(z) =
bg1(z)+(1−b)g2(z). Then, we obtain the following continuous
Bregman mixture:

p(x|θ) =w
1

Cϕ,1(θ)
ϕ′(x)− ϕ′(θ)

x− θ
g1(dϕ(x, θ))

+ (1− w)
1

Cϕ,2(θ)
ϕ′(x)− ϕ′(θ)

x− θ
g2(dϕ(x, θ)),

w =
bCϕ,1(θ)

bCϕ,1(θ) + (1− b)Cϕ,2(θ)
,

where all component distributions have the same parameter θ
and depend on the same strictly convex function ϕ. Thus, the
supports of the component distributions are all same. Here,
Cϕ,1(θ) and Cϕ,2(θ) are the normalization constants of the
component distributions. Similarly, for a convex combination
of three or more functions g, the continuous Bregman mixture
can be generated.

C. Relation to Regular Exponential Family

We consider the relationship between the continuous Breg-
man distribution (23) and the regular exponential family (10).

Assumption 5:
1) Let g(z) = exp(−kz) with k > 0.
2) For all x, the factor

1
Cϕ(θ)

ϕ′(x)− ϕ′(θ)
x− θ

does not depend on the parameter θ.
Proposition 1: Under Assumption 5, the continuous Breg-

man distribution becomes the regular exponential family as
follows:

p(x|θ) =
1

Cϕ(θ)
ϕ′(x)− ϕ′(θ)

x− θ
exp(−dϕ(x, θ))

= rϕ(x) exp(−dϕ(x, θ)),

where rϕ(x) is uniquely determined by the strictly convex
function ϕ [42], i.e.,

rϕ(x) =
1

Cϕ(θ)
ϕ′(x)− ϕ′(θ)

x− θ
.
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Figure 1 shows the relationship between the continuous
Bregman distribution and regular exponential family. The
intersection between the continuous Bregman distribution and
the regular exponential family include Gaussian and gamma
distributions. The condition 2 of Assumption 5 is a tight
condition. Even if the condition 1 of Assumption 5 holds
and the continuous Bregman distribution corresponding to the
strictly convex function ϕ exists, it is not necessarily the
regular exponential family.

VI. LATENT BIAS

In this section, we discuss the possibility of the latent
bias minimization for many outliers, which is induced by
the vanishing bias correction term. The estimating equation
of the f -separable Bregman distortion measures reduces to
the normalized estimating equation. From the viewpoint of
the normalized estimating equation, the condition of latent
bias minimization was shown as a theorem [16]. We can
apply this theorem. From the viewpoint of the objective
function, we see that the definitions of outliers are different
for f -separable distortion measures and γ-divergence. As a by-
product, we obtain a solution to a drawback of γ-divergence in
the case of the exponential model. In what follows, we assume
that the function f is twice differentiable.

A. Contaminated Distribution

We assume that the data-generating distribution is given as
follows:

p̃(x) = (1− ε)p(x|θ∗) + εc(x), (29)

where p(x|θ∗) is the target distribution, c(x) is the contamina-
tion distribution that generates outliers, and ε is the proportion
of outliers. Suppose the parameter θ̂ estimated from the data
generated from this distribution is expressed asymptotically
as θ̃, i.e., θ̂

P−→ θ̃. Here, θ̃ − θ∗ is called the latent
bias, which expresses the bias caused by the contamination
distribution [16].

B. Definition of Outliers: γ-Divergence

In the estimation based on γ-divergence, it is assumed that
the following quantity can be made arbitrarily small for an
appropriately large γ0 > 0 as an assumption regarding outliers,

νp =
[
Ec(x) [p(X|θ∗)γ0 ]

] 1
γ0 . (30)

This assumption means that outliers are distributed over the
region where the likelihood is small in the target distribu-
tion p(x|θ∗). Since nothing about the outlier proportion is
assumed, it is also possible to deal with the case where the
proportion of outlier is large.

However, Kuchibhotla et al. [27] reported the following two
disadvantages. First, the γ-divergence is adversely affected
by data at the edge of the support of the target model, like
location–scale family. For example, in estimating of the scale
parameter of the exponential distribution, a wrong global
solution is generated when a very small inlier around x = 0,
such as x = 10−4, is mixed [23]. Here, an inlier means a data

point near zero [1, p. 140]. Secondly, the estimator, which
can achieve the latent bias minimization, is a local solution.
Nevertheless, the solution selection criteria have yet to be
established. A solution to these problems has been invented by
Kuchibhotla et al. [27]; however, they are not fully resolved.

C. Definition of Outliers: f -Separable Bregman Distortion
Measures

In the estimation based on f -separable Bregman distortion
measures, we consider that the following quantity can be made
arbitrarily small for an appropriate function f as an assumption
regarding outliers,

νdϕ
= Ec(x) [f (dϕ (X,θ∗))] . (31)

In other words, if the function f is parameterized by a
parameter α, (31) can be arbitrarily reduced for an appro-
priately large parameter α. This assumption corresponds to
the assumption (30) of γ-divergence. It means that when the
random variable follows the contamination distribution, i.e.,
X ∼ c(x), an outlier is in the region where dϕ(X,θ∗) →∞
is satisfied. When estimating the location parameter of the
elliptical distribution using Mahalanobis distance, the defini-
tion of outlier is the same as (30), i.e., x with ∥x∥ → ∞ is
regarded as the outlier. However, when estimating the scale
parameter of the IS distribution using the IS distance, the
definition of outlier is not the same as (30). In this case, from

lim
x→0

dIS(x, θ) = lim
x→∞

dIS(x, θ) = ∞,

the data near 0 or ∞ are regarded as outliers. In other words,
the estimator based on f -separable IS distortion measures is
robust against large outliers and very small inliers to which
γ-divergence is vulnerable.

D. Necessary Condition for Latent Bias Minimization

We express the estimating equation with the data-generating
distribution p̃(x) as follows:

ψp̃(θ) = Ep̃(x) [f ′ (dϕ(X,θ)) (θ −X)] = 0.

The solution to this estimating equation is given by θ̃.
Assumption 6: We denote the smallest eigenvalue of

Ep(x|θ∗)
[
f ′′ (dϕ(X,θ∗)) (X − θ∗)(X − θ∗)T

]
∇∇ϕ(θ∗)

by λmin. We assume the following,

λmin > −Ep(x|θ∗) [f ′ (dϕ(X,θ∗))] .

Theorem 5: Assume Assumption 6 holds and that for any
sufficiently small η > 0,∥∥ψc

(
ψ−1

pθ∗
(τ )

)∥∥ < η
1− ε

ε
(32)

for ∥τ∥ < η. Then, there exists a solution θ̃ of ψp̃(θ) = 0
such that ∥θ̃ − θ∗∥ < η and θ̃ = θ∗ for p̃(x) = p(x|θ∗).

Proof: Under Assumption 6, the following matrix is
positive definite,

∂ψpθ∗ (θ)
∂θT

∣∣∣∣
θ=θ∗

= Ep(x|θ∗)

[
∂f ′ (dϕ(X,θ)) (θ −X)

∂θT

∣∣∣∣
θ=θ∗

]
,
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because
∂ψpθ∗ (θ)
∂θT

∣∣∣∣
θ=θ∗

= Ep(x|θ∗)
[
f ′′(dϕ(X,θ∗))(X − θ∗)(X − θ∗)T

]
∇∇ϕ(θ∗)

+ Ep(x|θ∗) [f ′ (dϕ(X,θ∗))] E,

where E is the identity matrix. The positive definiteness of this
matrix and the condition (32) ensure that all the assumptions
of [16, Theorem 3.1] are satisfied. Hence, the assertions of the
theorem directly follow from those of [16, Theorem 3.1]. □
These assertions of the theorem mean that the latent bias can
be arbitrarily small and that Fisher consistency holds. The
positive definiteness of ∂ψpθ∗ (θ)/∂θT|θ=θ∗ in the proof is
necessary for the implicit function theorem. It is difficult to
actually confirm the condition (32) of Theorem 5. Therefore,
we assume condition (3.1) in the literature [16] corresponds to
the condition (32) of Theorem 5. In our case, condition (3.1)
[16] reduces to the following:

∥ψc(θ∗)∥ =
∥∥Ec(x) [f ′ (dϕ(X,θ∗)) (X − θ∗)]

∥∥ (33)

can be made arbitrarily small. The fact that ∥ψc(θ∗)∥ can be
made arbitrarily small implies that ∥ψc(θ)∥ can also be made
arbitrarily small in the vicinity of θ = θ∗ by the continuity.
Since ψ−1

pθ∗
(τ ) is contained in the vicinity of θ = θ∗ for

a sufficiently small η > 0, (32) is implied by the fact that
∥ψc(θ∗)∥ can be made arbitrarily small. If the quantity (31)
can be made arbitrarily small under an appropriate function
f , then (33) can also be made arbitrarily small. However, the
converse is not generally true.

If the contamination distribution c(x) has the point mass at
∥x∥ → ∞, (33) can be rewritten as

lim
∥x∥→∞

∥f ′ (dϕ(x,θ∗)) (x− θ∗)∥ , (34)

then the following condition is required for the limit (34) to
be arbitrarily small:

lim
z→∞

f ′(z) = 0,

which is also a necessary condition for the influence function
to be bounded [39]. When (34) equals to 0, the influence
function has a desirable property called the redescending prop-
erty. In other words, when the redescending property holds,
the influence of the sufficiently large outliers is ignored. For
functions (8) and (9), sufficient conditions for the redescending
property were investigated [39].

Remark 4: The estimator that can achieve the latent bias
minimization is one of the local solutions of (4). Thus, its
solution selection problem occurs. In other words, this problem
is the initial value selection of the iterative update rule (7).

E. Strategy for Initial Value Selection

The estimator that can achieve the latent bias minimization
is a local minimum solution given by a fixed point of the
iterative algorithm. Thus, we need the strategy for initial value
selection. We have already assumed that (33) is sufficiently
small. It means that the contamination distribution is far
from the target distribution. Furthermore, we consider that the

proportion of the target distribution 1 − ε is larger than the
proportion of the contamination distribution ε. In other words,
we assume ε < 0.5. We apply the K-means clustering with
two clusters to the dataset and roughly separate it into the data
generated from the target and contamination distributions. The
initial values of the cluster centers are set at the minimum and
maximum values of the data. If the target and contamination
distributions are ideally separated, it can be expected that the
initial value near the true value is obtained.

VII. ASYMPTOTIC PROPERTY

The estimation based on f -separable Bregman distortion
measures, which satisfies the unbiasedness of the estimating
equation, can be interpreted as an M-estimation (1), where

ψ(x,θ) = f ′(dϕ(x,θ))(x− θ).

Therefore, under appropriate assumptions, the following con-
sistency and asymptotic normality of the estimator follow from
the asymptotic theory of M-estimation [1], [2], [46],

θ̂
P−→ θ∗,

√
n

(
θ̂ − θ∗

)
d−→ N(0,Σ(θ∗)),

where Σ(θ∗) = J−1(θ∗)I(θ∗)J−1(θ∗),

I(θ) = Ep(x|θ)

[
[f ′ (dϕ (X,θ))]2 (X − θ) (X − θ)T

]
,

J(θ) = Ep(x|θ)

[
∂f ′ (dϕ (X,θ)) (θ −X)

∂θT

]
.

If the data are generated from the distribution (29),
the asymptotic variance is given by Σ(θ∗)/(1 − ε)
[16, Theorem 4.2].

A. Gamma Distribution

We assume that the statistical model is the gamma distri-
bution p(x|θ) =

(
k
θ

)k 1
Γ(k)x

k−1 exp
(
−k

θx
)
, the function f

is (8), and Bregman divergence is the IS distance (19). Then,
the asymptotic variance of the estimator is given by

V [θ̂] = Σ(θ∗) =
Γ(2α+ k)Γ(k)

[Γ(α+ k)]2
(α+ k)2(α+1+k)

(2α+ k)2α+1+k

1
k2+k

θ∗2,

the tuning parameter satisfies α > −0.5k. For the exponential
distribution (k = 1), we can compare the asymptotic relative
efficiencies (AREs) of the estimators based on minimizing the
f -separable IS distortion measures and β- and γ-divergences.
The ARE is given by V [θ̂MLE]

V [θ̂]
, where V [θ̂MLE] is the asymp-

totic variance of the maximum likelihood estimator (α = 0).
The asymptotic variances of the estimators based on β- and γ-
divergences were derived for the exponential distribution [15],
[23]. Figure 2 shows their AREs, when the tuning parameter
α = β = γ. We observe that the range of tuning parameter
α = β = γ > 0 induces the robustness against outliers.
As shown in Figure 2, for the function (8) and IS distance,
the ARE is generally greater than that of β-divergence in the
range of tuning parameter α < 2. The ARE is also greater
than that of γ-divergence in the entire range of the tuning
parameter. However, in general, the ARE and robustness have
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Fig. 2. Comparison of ARE under the exponential model (k = 1).

trade-off relationship. Therefore, it is essential to choose the
tuning parameter appropriately, taking into account both of
them.

We show the behavior of the estimator with respect to the
number of data with numerical examples where the results
were averaged over 10,000 trials. The number of data is
given as n = 30, 50 and from 100 to 1000 in steps of
100. Figure 3 shows the bias and mean squared error (MSE)
(log–log plot) of the estimator based on the f -separable IS
distortion measure when the data are given in the exponential
distribution (θ = 1). In addition, Figure 4 shows the bias and
MSE (log–log plot) of the estimator when the distribution is
contaminated by a Gaussian distribution with a proportion of
contamination ε = 0.4. Figure 3 shows that both bias and
MSE converge to zero with the same order of convergence
regardless of the value of the tuning parameter. However,
looking at the values of bias and MSE with a fixed number
of data, it can be seen that they reach a minimum at α = 0
(MLE) and increase monotonically as α increases. Figure 4
shows that bias and MSE both converge to larger values for
α = 0.25 than for α = 0, and converge to 0 for α = 0.5 and
above when the proportion of contamination is large. The
phenomenon of bias and MSE taking larger values for small
values of the tuning parameters than for α = 0 is discussed
in Section VIII-B1 with a fixed number of data. When the
proportion of contamination is small or the contamination
distribution is farther from the target distribution, the values
of bias and MSE converge to zero even when the tuning
parameters are small. This shows that if the target distribution
contains a distribution of data, the estimator asymptotically
approaches the true value of the target distribution, regardless
of whether the data are contaminated or not.

VIII. NUMERICAL EXPERIMENTS

This section discusses the results of experiments conducted
to demonstrate the latent bias minimization by f -separable
Bregman distortion measures under heavy contamination.
Generally, in the location parameter estimation, the bias
correction term vanishes, and the estimating equation is nor-
malized. In any case, the latent bias can be minimized under
heavy contamination. However, in scale parameter estima-
tion, the latent bias minimization is difficult under heavy

contamination. Thus, we focus on scale parameter estimation
using f -separable IS distortion measures.

A. Setup

We use the function (8). When the target is the exponential
distribution and the Bregman divergence is the IS distance,
Assumption 6 holds for α ≥ 0 in (8). We consider condi-
tion (32) of Theorem 5. If the contamination distribution is
sufficiently far away from the target distribution, the integrand
in (33) approaches 0 exponentially. Therefore, condition (32)
of Theorem 5 holds for sufficiently large α.

Competitors are the estimation methods based on β- and
γ-divergences, which include tuning parameters β and γ,
respectively. These divergences have weight functions ξ that
are power functions. Estimation based on the β-divergence
is expected to have a non-zero latent bias because the
β-divergence corresponds to the non-normalized estimating
equation. If α = β = γ = 0, the estimation methods reduce to
the exact MLE under the assumed model. When the tuning
parameters are significantly large, the estimation methods
are robust against outliers. For each estimation method, the
iterative method is used by giving the initial value of parameter
θ. The fixed point of the iterative method is treated as an
estimator of θ. In the cases of β- and γ-divergences, we set the
true value to the initial value of parameter θ to investigate the
behavior of the solution near the true value. For the estimation
based on f -separable distortion measures, we obtain the initial
value from the method of Section VI-E. Estimation based
on β- and γ-divergences is advantageous because the initial
value is not always close to the true value in f -separable
Bregman distortion measure-based estimation. Parameter θ is
estimated from 100 data samples. The proportion of outliers
is ε ∈ {0.1, 0.2, 0.3, 0.4}. The reported results are averaged
over 100 trials. We considered the following situations.

1) Exponential Distribution With Outlier Contamination: In
this experiment, we investigate the behavior of the latent bias
under significant outlier contamination. The data-generating
distribution is the following:

(1− ε)Exp(θ∗ = 1) + εN(µout, σ
2
out = 1),

where the location parameter of the contamination distribution
is µout ∈ {10, 20, 30}.

2) Exponential Distribution With Inlier Contamination:
The aim of this experiment is to investigate the behavior
under the small inlier contamination, for which it was reported
the estimation based on minimizing γ-divergence generates
a spurious global solution [23], [27]. The data-generating
distribution is the following:

(1− ε)Exp(θ∗ = 1) + εδ(x− 10−4),

where δ is the Dirac delta function.
3) Gamma Distribution With Outlier Contamination: We

investigate the behavior of the latent bias in the gamma
distribution when the shape parameter k is greater than and
less than one when outliers are mixed. The data-generating
distribution is the following:

(1− ε)Gam(θ∗ = 1|k) + εN(µout = 20, σ2
out = 1),
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Fig. 3. Bias and MSE of the non-contaminated exponential distribution against the number of samples.

Fig. 4. Bias and MSE of the exponential distribution contaminated with outliers (ε = 0.4) against the number of samples. The contamination distribution
is the Gaussian distribution: N(µout = 20, σ2

out = 1).

where the shape parameter is k ∈ {0.5, 2}.
4) Gaussian Distribution Estimation Under Outlier Con-

tamination: In this experiment, we apply the estimation based
on minimizing the f -separable IS distortion measures to the
variance estimation problem of the Gaussian distribution.
However, we need the location parameter to estimate the
variance.

Therefore, we estimate the location parameter µ by min-
imizing the f -separable squared distortion measures as the
function f is (8). In other words, we estimate the location
and variance parameters simultaneously. The update rules of
location and variance are respectively given as follows:

µ =

∑n
i=1 exp

(
−α (xi−µ)2

2σ2

)
xi∑n

j=1 exp
(
−α (xj−µ)2

2σ2

) , (35)

σ2 =
∑n

i=1 exp
(
−α

2 dIS

(
(xi − µ)2, σ2

))
(xi − µ)2∑n

j=1 exp
(
−α

2 dIS ((xj − µ)2, σ2)
) .

The update rule (35) of the location parameter is the same
as those based on minimizing β- and γ-divergences. In other
words, the result of the variance estimation causes the differ-
ence in estimation. The update rules and the objective function
of the estimation based on minimizing β- and γ-divergences
are given in Appendices C-A3 and C-B3. The data-generating

distribution is given as follows:

(1− ε)N(µ∗ = 0, σ∗2 = 1) + εN(µout = 5, σ2
out = 1).

B. Results

1) Exponential Distribution With Outlier Contamination:
First, we discuss the influence of the proportion of outliers
when the location parameter of the contamination is 20
(Figure 5). For the f -separable IS distortion measure, the bias
goes to zero regardless of the proportion of outliers. It is
achieved when we set the tuning parameter α to a large value.
However, when the proportion of outliers is greater than or
equal to 0.3, the bias increases once and then approaches 0 as
the tuning parameter α increases. To find out the cause of
this, we investigated the shape of the objective function. When
α = 0, the estimation method is the MLE of the exponential
distribution, and the solution of the objective function is
unique. Since the objective function changes continuously
as the parameter α increases, the solution of the objective
function is unique when α is small. The unique solution moves
to the direction of the target or contamination distributions as α
increases. We observed that the moving direction of the unique
solution depends on the proportion of outliers. For ε = 0.1 and
0.2, the unique solution moves to the direction of the target
distribution. However, for ε = 0.3 and 0.4, the unique solution
moves in the direction of the contamination distribution.
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Fig. 5. Bias of the exponential distribution contaminated with outliers. The contamination distribution is the Gaussian distribution: N(µout = 20, σ2
out = 1).

Fig. 6. Results for the different locations of the contamination distribution
N(µout, σ2 = 1) with ε = 0.2.

Consequently, the bias increased up to a certain value of α
(Figures 5 (c) and (d)). However, a local solution is generated
in the objective function as α increases. The selection of this
generated local solution causes the phenomenon that the bias
suddenly approaches 0, as illustrated in Figures 5 (b), (c),
and (d).

Next, we discuss the influence of the location parameter
of the contamination distribution. Figure 6 shows the results
of the f -separable IS distortion measure when the location
parameter µ of contamination distribution is 10, 20, and 30,
and the proportion of outliers is 0.2. The farther the con-
tamination distribution that generates the outliers is from the
target distribution to be estimated, the smaller the minimum
value α when the bias reaches zero. It is worth nothing that
the curve in the figure changes continuously only when the
location parameter of the contamination distribution is 10. This
is because when the target and contamination distributions are
close to each other, the unique solution for sufficiently small
α moves toward the true parameter of the target distribution
with respect to the increase in α.

2) Exponential Distribution With Inlier Contamination:
Figure 7 shows the results of the inlier contamination experi-
ment. Only the f -separable IS distortion measure has achieved
bias going to zero, while neither β- nor γ-divergences has been
achieved. This is because, in the objective function of β- or
γ-divergence, the solution near the true value moves toward
zero with respect to the increase in β or γ. Especially in the
case of γ-divergence, there are suspicious solution near θ = 0
[23], [27] and the solution near the true value. Additionally,
when γ exceeds a certain value, the solution near the true value
disappears. Therefore, above a certain value of γ, the estimator
is given as a solution near θ = 0, so the bias approaches
-1. In other words, for β- or γ-divergence, the bias cannot

approach zero no matter how the initial value of parameter θ
is tuned.

3) Gamma Distribution With Outlier Contamination: Fig-
ures 8 and 9 show the biases of the contaminated gamma
distribution when the true shape parameter k is 2 and 0.5,
respectively. The β-divergence-based-estimator was numeri-
cally unstable when using the iterative algorithm. Therefore,
it was obtained through grid search. When the true shape
parameter k is 2, the behavior of the bias is almost the same
as in the exponential distribution (Figure 8). However, when
the true shape parameter is 0.5, the behavior of the bias
differs significantly from that of the exponential distribution
(Figure 9). The β- and γ-divergences-based-estimators did
not reduce the bias to zero; it increased as the proportion of
outliers increased. The objective function and the estimating
equations for the β- and γ-divergences with respect to the
gamma distribution include the gamma function. Because of
the constraint that the argument of the gamma function is
positive, if the true shape parameter k is less than one, the
tuning parameters β and γ that can be adjusted are constrained
to be in the range [0, k/(1 − k)). Here, the range of tuning
parameters for β- and γ-divergences is [0, 1). The case of f -
separable IS distortion measure-based estimation, has achieved
bias converging to zero. In estimating the contaminated gamma
distribution based on the f -separable IS distortion measure, the
bias can be reduced to zero independent of the known shape
parameter.

4) Gaussian Distribution Estimation Under Outlier Con-
tamination: Figures 10 and 11 show the biases of the mean
and the variance of the contaminated Gaussian distribution
estimation experiment, respectively. To estimate the mean, the
bias achieved zero regardless of the proportion of outliers and
estimation methods. However, as the proportion of outliers
increases, the variance estimation results start to differ. Thus,
the process of the bias of the mean estimation results going
to zero starts to differ when the tuning parameter value
increases. In particular, this difference becomes more promi-
nent as the proportion of outliers increases. In the estimation
based on the f -separable distortion measure and γ-divergence,
the bias of the variance estimation can approach zero by
increasing the tuning parameter regardless of the proportion
of outliers. The tuning parameter value achieving bias near
zero is smaller for γ-divergence than of the f -separable IS
distortion measure. In the estimation based on β-divergence,
the bias cannot approach 0, even when the proportion of
outliers is 0.1, and it worsens as the proportion of outliers ratio
increases.
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Fig. 7. Bias of exponential distribution contaminated with inliers. The contamination distribution is Dirac delta: δ(x− 10−4).

Fig. 8. Bias of the gamma distribution (k = 2) contaminated with outliers. The contamination distribution is the Gaussian distribution:
N(µout = 20, σ2

out = 1).

Fig. 9. Bias of the gamma distribution (k = 0.5) contaminated with outliers. The contamination distribution is the Gaussian distribution:
N(µout = 20, σ2

out = 1).

Fig. 10. Bias of the Gaussian mean parameter µ contaminated with outliers. The contamination distribution is the Gaussian distribution:
N(µout = 5, σ2

out = 1).

Fig. 11. Bias of the Gaussian variance parameter σ2 contaminated with outliers. The contamination distribution is the Gaussian distribution:
N(µout = 5, σ2

out = 1).

C. Trade-off Between Sample Efficiency and Robustness
We demonstrated that the bias can reach zero with the

f -separable IS distortion measure-based estimation. However,
the performance of the estimator should be measured under the

trade-off between efficiency and robustness. We focus on the
exponential distribution for which the AREs of the estimators
are discussed in Section VII (Figure 2). The contamination
distribution is the Gaussian distribution with µout = 20 and
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Fig. 12. MSE of the exponential distribution with the outliers under n = 30 samples.

Fig. 13. MSE of the exponential distribution with the outliers under n = 100 samples.

Fig. 14. Bias of the exponential distribution with the outliers under n = 30 samples.

TABLE I
CORRESPONDENCE BETWEEN ARE AND TUNING PARAMETERS UNDER

THE EXPONENTIAL DISTRIBUTION

σ2
out = 1. The proportion of outliers was set to ε ∈
{0, 0.1, 0.2, 0.3, 0.4}. We changed the number of data samples
as 30, 50, 100, and 1000. Since we observed similar tendencies
in results as discussed below, we omit showing the results, for
n = 50 and 1000, and for ε = 0.3 in this paper. We averaged
the results over 10, 000 trials. For comparison, the tuning
parameters corresponding to AREs between 0.5 and 1 were
obtained from Figure 2 for f -separable IS distortion measure,
β- and γ-divergences. This means that all three estimators have
an equal ARE if there is no contamination by outliers. Note
that ARE and tuning parameters are inversely proportional.
Table I shows the correspondence between ARE and tuning
parameters under the exponential distribution, where α, β, and

γ are tuning parameters of f -separable IS distortion measure
using (8), β-divergence, and γ-divergence, respectively. The
full correspondence between ARE and tuning parameters is
shown in Figure 2.

Figures 12–15 show the MSE and bias of the estimators
for n = 30 and 100. Note that, the x-axis represents ARE,
not tuning parameters. When ARE is close to one, it is weak
against outliers but efficient. Conversely, when ARE is close
to 0.5, it is outlier-resistant but less efficient. When outliers
are not mixed (ε = 0), for all estimators, both MSE and bias
monotonically increase as ARE decreases. This works as a
sanity check for using ARE despite its asymptotic nature. For
ε = 0, the MSEs of all three estimators are roughly same,
whereas the bias of the f -separable IS distortion measure
is smaller than those of β- and γ-divergences. When the
proportion of outliers is 0.1, the MSEs of f -separable IS
distortion measure, and β- and γ-divergences show similar
trends. However, the f -separable IS distortion measure shows
slightly better performance overall. In particular, it shows
better results for both MSE and bias for AREs around 0.95.
When the proportion of outliers is greater than 0.2, the MSE
of the f -separable IS distortion measure is greather than those
of β- and γ-divergences for AREs between 0.9 and 1. This
is because the bias is then increased relative to the MLE
(Figures 14 and 15). Considering the bias, when ARE is 0.9,
the bias in the f -separable IS distortion measure is smaller
than those in β- and γ-divergences, but the MSE is greater, and
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Fig. 15. Bias of the exponential distribution with the outliers under n = 100 samples.

hence the variance is larger. On the other hand, f -separable
IS distortion measure shows better performance than β- and
γ-divergeces in most regions where ARE is less than 0.85.

IX. CONCLUSION

In this paper, we discussed the condition for the unbiased
estimating equation in the class of parameter estimation by
minimizing the f -separable Bregman distortion measures. Its
condition consists of the statistical model, Bregman diver-
gence, and function f . We clarified that the condition the
function f and statistical model should satisfy is character-
ized by a simple integral for Mahalanobis and IS distances.
These results were extended to the case of one-dimensional
Bregman divergence. In estimating the scale parameter of
the gamma distribution, divergence-based estimation generally
requires bias correction terms. Furthermore, we proved that
the vanishing bias correction term implies the possibility of
minimizing latent bias caused by the large proportion of
outliers. We demonstrated that the latent bias could approach
zero through experiments with outliers or very small inliers
mixed. For the choice of function f , there is a trade-off
between robustness against outliers and model efficiency.
Methods for determining the tuning parameters of divergence
have been studied [47], [48], [49]. These methods can be used
to determine the appropriate function f and the strictly convex
function ϕ.

APPENDIX A
PROOF OF THEOREM 1

We decompose the positive definite matrix A as, A =
V ΛV T, where V −1 = V T and Λ is a diagonal matrix with
positive eigenvalues. Then, Mahalanobis distance is rewritten
as

(x− θ)T A (x− θ)

= (x− θ)T V ΛV T (x− θ)

= yTΛy =
d∑

j=1

λjy
2
j = ∥s∥2,

where y = V T (x− θ), s = Λ
1
2 y and λj is the j-th element

of the diagonal matrix Λ. From (16), we have

Ep(x|θ) [f ′(dMah.(X,θ))(X − θ)]

=
∫

Rd

|A| 12
CMah.

g (dMah.(x,θ)) f ′ (dMah.(x,θ)) (x− θ)dx

=
∫

Rd

|V ||Λ| 12
CMah.

g
(
yTΛy

)
f ′

(
yTΛy

)
V y

∣∣∣∣∂(x)
∂(y)

∣∣∣∣ dy
= |V |2|Λ| 12 V

∫
Rd

1
CMah.

g
(
yTΛy

)
f ′

(
yTΛy

)
ydy

= |Λ| 12 V

∫
Rd

1
CMah.

g
(
∥s∥2

)
f ′

(
∥s∥2

) (
Λ

1
2

)−1

s

∣∣∣∣∂(y)
∂(s)

∣∣∣∣ ds
= V

(
Λ

1
2

)−1
∫

Rd

1
CMah.

g
(
∥s∥2

)
f ′

(
∥s∥2

)
sds

= V
(
Λ

1
2

)−1

Ep(s)

[
f ′

(
∥S∥2

)
S

]
, (36)

where Jacobians are given by∣∣∣∣∂(x)
∂(y)

∣∣∣∣ = |V |,∣∣∣∣∂(y)
∂(s)

∣∣∣∣ = |Λ|− 1
2 ,

respectively. Notably, because the matrix V is an orthogonal
matrix, |V |2 = 1. Here, the random vector S follows a
spherical distribution p(s) = 1

CMah.
g(∥s∥2). We refer to the

next theorem.
Theorem 6 ( [44, pp. 37–38]): Suppose S =

(S1, · · · , Sd) ∼ 1
CMah.

g(∥s∥2), d ≥ 2. Consider the
transformation to spherical coordinates for S,

S(R,H) = Rs̄(H),

s̄(η) =

s̄j =
(∏j−1

k=1 sin ηk

)
cos ηj , 1 ≤ j ≤ d− 1,

s̄d =
(∏d−2

k=1 sin ηk

)
sin ηd−1,

(37)

where R ≥ 0, Hk ∈ [0, π), k = 1, · · · , d− 2, Hd−1 ∈ [0, 2π).
Then R, H1, · · · , Hd−1 are independent and, respectively,
have the following probability density functions
hr(r) = 2π

d
2

Γ( d
2 )

1
CMah.

rd−1g(r2), r ≥ 0,

hηk
(ηk)= 1

B( 1
2 , d−k

2 )
sind−k−1 ηk, 0≤ηk<π, k=1, · · ·, d−2,

hηd−1(ηd−1) = 1
2π , 0 ≤ ηd−1 < 2π.

(38)

Conversely if R, H1, · · · , Hd−1 are independent and have
probability density functions given by (38), and S is defined
by (37), then S ∼ 1

CMah.
g(∥s∥2). Here, B(·, ·) is the beta

function.

Note that R is the random variable with respect to radius,
i.e., R = ∥S∥ and H is the random vector that follows
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the uniform distribution on the unit hypersphere. The joint
distribution of (38) [44, p. 38] is given by

h(r,η) =
1

CMah.
g(r2)rd−1

d−2∏
k=1

sind−k−1 ηk. (39)

From (36), (37), and (39), we have

V
(
Λ

1
2

)−1

Ep(s)

[
f ′

(
∥S∥2

)
S

]
= V

(
Λ

1
2

)−1

Eh(r,η)

[
f ′(R2)s(R,H)

]
=V

(
Λ

1
2

)−1 1
CMah.

∫ 2π

0

∫ π

0

· · ·
∫ π

0

s̄(η)
d−2∏
k=1

sind−k−1 ηkdη︸ ︷︷ ︸
=0

·
∫ ∞

0

f ′(r2)g(r2)rddr.

This means that the expected value of the uniform distribution
on the unit hypersphere is zero. Therefore, if the following
integral exists, then the unbiased estimating equation holds
without any bias correction term∫ ∞

0

g(r2)f ′(r2)rddr

=
1
2

∫ ∞

0

g(t)f ′(t)t
d−1
2 dt,

where we used integration by substitution as t = r2. Con-
versely, the existence (finiteness) of the bias correction term
requires that the absolute value of its each element also has
a finite expectation. This requires that f ′(R2)R has a finite
expectation in the above discussion since S/R = s̄(H) is
always bounded. This means that the condition (18) is also
necessary.

APPENDIX B
PROPERTY OF SCALE FAMILY

The scale family is defined by

p(x|θ) =
1
θ
h

(x
θ

)
,

where h is the probability density function and θ ∈ Θ =
R+ \{0} is the scale parameter. Let us consider the following
case,

h(x) =
1
CSF

h̄(x),

where CSF is the normalization constant as follows,

CSF =
∫ ∞

0

h̄(x)dx.

That is, the scale family is given by

p(x|θ) =
1
θ

1
CSF

h̄
(x
θ

)
. (40)

Theorem 7: The following relation holds with respect to the
expected value E[X] and the normalization constant CSF,

Ep(x|θ)[X] = θ <∞ ⇐⇒

CSF =
∫ ∞

0

h̄(x)dx =
∫ ∞

0

xh̄(x)dx <∞.

Proof: From the definition and finiteness of the expected
value E[X], we have

∞ > θ = Ep(x|θ)[X]

=
∫ ∞

0

x

θ

1
CSF

h̄
(x
θ

)
dx =

θ

CSF

∫ ∞

0

xh̄(x)dx.

Here, the normalization constant CSF must satisfy

CSF =
∫ ∞

0

h̄(x)dx =
∫ ∞

0

xh̄(x)dx <∞. (41)

Therefore, we have

Ep(x|θ)[X] = θ <∞⇒ (41).

Conversely, when we assume (41), we have

(41) ⇒ Ep(x|θ)[X] = θ <∞.

Therefore, Theorem 7 holds. □
If we set h̄(x) = 1

xg (dIS(x, 1)), then, the scale family (40)
reduces to the IS distribution (20). We immediately obtain
Lemma 2 as a corollary to Theorem 7.

APPENDIX C
ROBUST DIVERGENCES

A. β-Divergence

The β-divergence between two probability density functions
q and p is defined as the difference of β-cross-entropy,

Dβ(q, p) = dβ(q, p)− dβ(q, q),

where it is defined by

dβ(q, p) = − 1
β

∫
q(x)p(x|θ)βdx+

1
1 + β

∫
p(x|θ)1+βdx.

Ordinally, the probability distribution q is the data-generating
distribution, and p is the statistical model. Thus, the β-cross-
entropy is minimized to estimate the probability distribution p
by minimizing. However, the empirical distribution is substi-
tuted for the empirical estimation since the true distribution q
is unknown. The objective function to be minimized is given
by the following equation, where the empirical distribution is
substituted for q as

Lβ(θ) = − 1
β

1
n

n∑
i=1

p(xi|θ)β +
1

1 + β

∫
p(x|θ)1+βdx.

1) Exponential Distribution: The objective function and
update rule for the β-divergence, assuming the exponential
distribution for the statistical model, are given by

Lβ(θ) = − 1
β

1
n

n∑
i=1

[
1
θ

exp
(
−xi

θ

)]β

+
1

(1 + β)2θβ
,

θ =
∑n

i=1 exp(−β xi

θ )xi∑n
j=1 exp(−β xj

θ )− nβ
(1+β)2

.
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2) Gamma Distribution: The objective function and update
rule for the β-divergence, assuming the gamma distribu-
tion (28) with a known shape parameter k > 0 for the
statistical model, are given by

Lβ(θ) = − 1
β

1
n

n∑
i=1

[(
k

θ

)k 1
Γ(k)

xk−1
i exp

(
−k
θ
xi

)]β

+
1

(1 + β)k+β(k−1)+1

(
k

θ

)β Γ(k + β(k − 1))

[Γ(k)]1+β
,

θ =
∑n

i=1 x
β(k−1)+1
i exp

(
−β k

θxi

)∑n
j=1 x

β(k−1)
j exp

(
−β k

θxj

)
−M

,

where

M =
nβ

(1 + β)k+β(k−1)+1

(
θ

k

)β(k−1) Γ(k + β(k − 1))
Γ(k)

.

Note that when 0 < k < 1, the tuning parameter β for the
β-divergence is limited to the following ranges:

0 ≤ β <
k

1− k
, (0 < k < 1).

3) Gaussian Distribution: Similarly, when the Gaussian
distribution is assumed for the statistical model, the objective
function and the update rules for the mean and variance
parameters are given by

Lβ(µ, σ2) = − 1
β

1
n

n∑
i=1

[
1√

2πσ2
exp

(
− (xi − µ)2

2σ2

)]β

+ (1 + β)−
3
2 (2πσ2)−

β
2 ,

µ =

∑n
i=1 exp

(
−β (xi−µ)2

2σ2

)
xi∑n

j=1 exp
(
−β (xj−µ)2

2σ2

) ,

and

σ2 =

∑n
i=1 exp

(
−β (xi−µ)2

2σ2

)
(xi − µ)2∑n

j=1 exp
(
−β (xj−µ)2

2σ2

)
− nβ

(1+β)
3
2

respectively.

B. γ-Divergence

As in the case of β-divergence, the γ-divergence between
two probability density functions is defined as the difference
of the corresponding cross entropies as follows

Dγ(q, p) = dγ(q, p)− dγ(q, q),

where dγ(q, p) represents the γ-cross-entropy which is defined
by

dγ(q, p)=−1
γ

log
∫
q(x)p(x|θ)γdx+

1
1+γ

log
∫
p(x|θ)1+γdx.

The objective function to be minimized is given by the
following equation by replacing the true distribution with the
empirical distribution,

Lγ(θ)=−1
γ

log

[
1
n

n∑
i=1

p(xi|θ)γ

]
+

1
1+γ

log
∫
p(x|θ)1+γdx.

1) Exponential Distribution: The objective function and
update rule for the γ-divergence, assuming the exponential
distribution for the statistical model, are given by

Lγ(θ) = − 1
γ

log

[
1
n

n∑
i=1

[
1
θ

exp
(
−xi

θ

)]γ
]

− 1
1 + γ

(γ log θ + log(1 + γ)),

θ = (1 + γ)
∑n

i=1 exp(−γ xi

θ )xi∑n
j=1 exp(−γ xj

θ )
.

2) Gamma Distribution: The objective function and update
rule for the γ-divergence, assuming the gamma distribu-
tion (28) with a known shape parameter k > 0 for the
statistical model, are given by

Lγ(θ)= − 1
γ

log

[
1
n

n∑
i=1

[(
k

θ

)k 1
Γ(k)

xk−1 exp
(
−k
θ
x

)]γ]
− 1

1+γ

[
γ log θ−γ log k+(k+γ(k−1)) log(1+γ)

− log Γ(k + γ(k − 1))
]
− log Γ(k),

θ =
(1 + γ)k

k + γ(k − 1)

∑n
i=1 x

γ(k−1)+1
i exp

(
−γ k

θxi

)∑n
j=1 x

γ(k−1)
j exp

(
−γ k

θxj

) .

Note that when 0 < k < 1, the tuning parameter γ for γ-
divergence is limited to the following range:

0 ≤ γ <
k

1− k
, (0 < k < 1).

3) Gaussian Distribution: Similarly, when the Gaussian
distribution is assumed for the statistical model, the objective
function and the update rules for the mean and variance
parameters are given by

Lγ(µ, σ2)= − 1
γ

log

[
1
n

n∑
i=1

[
1√

2πσ2
exp

(
−(xi−µ)2

2σ2

)]γ
]

− 1
2(1 + γ)

[
γ log(2πσ2) + log(1 + γ)

]
,

µ =

∑n
i=1 exp

(
−γ (xi−µ)2

2σ2

)
xi∑n

j=1 exp
(
−γ (xj−µ)2

2σ2

) ,

and

σ2 = (1 + γ)

∑n
i=1 exp

(
−γ (xi−µ)2

2σ2

)
(xi − µ)2∑n

j=1 exp
(
−γ (xj−µ)2

2σ2

)
respectively.
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