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On the Zero-Error Capacity of the Modulo-Additive
Noise Channel With Help
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Abstract— The zero-error helper capacity of the modulo-
additive noise channel is studied both in the presence and in the
absence of feedback. In its presence, a complete solution of said
capacity is provided. In its absence, a solution is provided when
the alphabet size is prime. For all other cases, upper and lower
bounds are derived, and a necessary and sufficient condition for
positivity is provided. Thanks to the help, the zero-error capacity
may increase by more than the help’s rate, and it can be positive
yet smaller than one bit.

Index Terms— Feedback, helper, list decoding, modulo-additive
noise channel, zero-error capacity.

I. INTRODUCTION

THIS paper investigates the extent to which the zero-error
capacity can benefit from a rate-limited description of the

noise. We study both encoder assistance, where the descrip-
tion is provided to the encoder before transmission begins,
and decoder assistance, where it is provided to the decoder.
We show that, perhaps paradoxically, the zero-error helper
capacity can be calculated as a function of the description
rate even for some channels whose no-help zero-error capacity
is unknown. This is not a contradiction, because a zero-rate
description is not tantamount to no description: it still allows
for a binary description of length that is sublinear in the
blocklength. In fact, as we shall see, the solution of the zero-
rate help case is the key to the general solution.

We focus on the memoryless modulo-additive noise channel
(MMANC) whose time-k output Yk corresponding to the
time-k input xk is

Yk = xk ⊕ Zk, (1)

where {Zk} ∼ IID QZ is the channel noise; xk, Zk,
and Yk all take values in the set A =

{
0, 1, . . . , |A|−1

}
; and

“⊕” denotes mod-|A| addition. The channel law QY |X(·|·) is
thus

QY |X(y|x) = QZ(y ⊖ x), x, y ∈ A, (2)

where “⊖” denotes mod-|A| subtraction. A key role is played
by the cardinality |S| of the support set S of QZ

S =
{
z ∈ A : QZ(z) > 0

}
. (3)
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Example 1: When |S| = 2, the MMANCs corresponding to
|A| being 3, 5, and 7 are, respectively, the Triangle channel,
Shannon’s Pentagon channel [1], and the Heptagon channel
(a.k.a. the 3/2, 5/2, and 7/2 channels, respectively).

In the presence of a noiseless feedback link from
the receiver to the encoder, we calculate the zero-error
helper capacity both for encoder and for decoder assistance
(Theorem 3). In its absence, we derive upper and lower bounds
on the zero-error helper capacity (Theorem 5) and establish a
positivity result for the zero-error capacity (Corollary 3): if the
assistance rate is positive, then so is the capacity; otherwise,
the capacity is positive if and only if (iff) the support S of
the noise is a strict subset of A. When the cardinality of A
is prime (as in Example 1) we calculate the zero-error helper
capacity in Theorem 4 using structured codes. Calculating the
zero-error helper capacity without feedback when |A| is not
prime is left as an open problem.

These results add to the body of literature on the benefits
of helpers as measured in terms of the rare-error capacity1

[3], [4], [5], [6], [7], error exponents [8], erasures-only capac-
ity [5], listsize capacity [5], [9], and secrecy [10].

The rest of the paper is organized as follows. Section II
introduces some notation, defines the key quantities of interest,
and surveys some of the literature that touches on this work.
Section III presents the paper’s main results and some of
their consequences. The proof of Theorem 3 pertaining to
feedback is presented in Section IV. The proofs of Theorems 4
and 5 pertaining to the no-feedback setting are presented in
Sections V-A and V-B respectively.

II. PRELIMINARIES

A. Notation

Unless stated otherwise, all logarithms in this paper are to
base 2. The positive integers are denoted Z+, and if n ∈ Z+,
then [n] denotes the set {1, 2, . . . , n}. The cardinality of a
set K is denoted |K|, and the set of all probability mass
functions (PMFs) on it P(K).

Mod-|A| addition “⊕” and mod-|A| substraction “⊖” are
extended to n-tuples, which are usually designated in boldface,
componentwise:

x⊕ y =
(
x1 ⊕ y1, . . . , xn ⊕ yn

)
(4)

1Throughout this paper, “rare-error capacity” and “rare-error feedback
capacity” refer to the supremum of the achievable rates, in the sense that
the probability of error tends to zero as the blocklength tends to infinity [2].
We refrain from calling it Shannon capacity lest it be confused with the
Shannon capacity of a graph.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4742-5124
https://orcid.org/0009-0001-9013-8788


4722 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 7, JULY 2024

and likewise for x ⊖ y. If B ⊆ An is a set of n-tuples, then
B∗ denotes B \ {0}, i.e., B without the all-zero n-tuple. For
B,B′ ⊆ An, we denote the sumset and the difference set by

B ⊕ B′ =
{
b⊕ b′ : b ∈ B, b′ ∈ B′

}
(5)

B ⊖ B′ =
{
b⊖ b′ : b ∈ B, b′ ∈ B′

}
; (6)

and for x ∈ An, we write x⊕B and x⊖B for {x} ⊕ B and
{x} ⊖ B. We use {ξ}+ to denote max{0, ξ}.

B. Definitions and Preliminaries

A blocklength-n code for a (general) discrete mem-
oryless channel (DMC) QY |X(·|·) with input alpha-
bet X and output alphabet Y , consists of a mes-
sage set M =

{
1, 2, . . . , |M|

}
and an encoding function

f : M→ Xn, m 7→ x(m) = (x1(m), . . . , xn(m)). Since
the codewords x(1), . . . ,x(|M|) need not be distinct, the
codebook C =

{
x(1),x(2), . . . ,x(|M|)

}
is a multiset

(i.e., an unordered collection of elements that may repeat).
Its cardinality is |M|. A sequence of codes, indexed
by the blocklength n, is said to have transmission rate
lim infn→∞

1
n log |M|.

The zero-error capacity C0 [1] is the supremum of rates R
for which there exists a sequence of rate-R codes, indexed by
the blocklength, that fulfill the zero-error requirement that to
every output sequence y ∈ Yn there correspond at most one
compatible message, i.e., a message m ∈M for which

Qn
Y |X(y|x(m)) > 0. (7)

Here Qn
Y |X(y|x) stands for

∏n
i=1 QY |X(yi|xi).

A necessary and sufficient condition for C0 to be positive is
that there exist channel inputs x, x′ ∈ X such that QY |X(y|x)·
QY |X(y|x′) = 0 for every y ∈ Y [1]. This characterization
can be used, for example, to conclude that C0 is zero for the
Triangle channel. It also shows that, whenever C0 is positive,
we can transmit a bit by using the channel once (with the input
x or x′). Consequently, C0 cannot be positive yet smaller than
one. As we shall see, this is not the case in the presence of
help (Remark 3).

Determining the zero-error capacity for general DMCs
is an open combinatorial problem and is one of the holy
grails of information theory. It is known for some specific
channels, including the Pentagon channel: Shannon showed
that 1

2 log 5 ≤ C0 ≤ log 5
2 in 1959 [1], and Lovász proved,

using algebraic graph theory, that the lower bound is tight in
1979 [11]. The zero-error capacity of the 7/2 channel is to
date unknown.

The problem is greatly simplified if the time-i channel
input may depend not only on the message m but also
on the past channel outputs yi−1 that are revealed to the
encoder via a feedback link from the channel output to the
encoder. A blocklength-n encoder now consists of n functions
fi : M × Yi−1 → X , (m, yi−1) 7→ xi(m, yi−1), one for
each i ∈ [n], and the zero-error feedback capacity C0F
is defined like C0 except that x(m) in (7) is replaced by
x(m,y) = (x1(m), x2(m, y1), . . . , xn(m, yn−1)).2 Since the

2Also in the presence of feedback, the blocklength n is deterministic: we
do not consider coding schemes with random transmission durations.

encoder may ignore the feedback link,

C0F ≥ C0. (8)

The zero-error feedback capacity C0F was determined by
Shannon:

Theorem 1 ([1]): On a DMC, if C0 = 0, then the zero-error
feedback capacity C0F is also zero. Else, C0F = − log π0,
where

π0 = min
P∈P(X )

max
y∈Y

∑
x∈Xy

P (x), (9)

and Xy comprises the inputs that can induce the output letter y
with positive probability:

Xy = {x ∈ X : QY |X(y|x) > 0}. (10)

Note that, since C0F > 0 iff C0 > 0, and since C0F ≥
C0, also C0F cannot be positive yet strictly smaller than one.
We shall see that this is not true in the presence of zero-rate
help (Remark 3).

Applying Theorem 1 to the MMANC yields the following
corollary.

Corollary 1: On the MMANC, if C0 = 0, then the zero
error feedback capacity C0F is also zero. Else,

C0F = log |A| − log |S|. (11)

Proof: We can lower-bound π0 by lower bounding the
maximum over y ∈ A by the average:

π0 = min
P∈P(A)

max
y∈A

∑
x∈Xy

P (x) (12)

≥ 1
|A|

min
P∈P(A)

∑
y∈A

∑
x∈Xy

P (x) (13)

=
|S|
|A|

min
P∈P(A)

∑
x∈A

P (x) (14)

=
|S|
|A|

, (15)

where in (13) we lower-bounded the maximum over A by the
arithmetic average; and (14) holds since in the double sum,
each x ∈ A is contained in Xy for exactly |S| different y’s
in A. The corollary follows by noting that this lower bound
is tight as can be seen by considering P equiprobable. ■

Henceforth, we focus on MMANCs. A helper is an altruistic
party that has no message to send and only wishes to assist the
transmission. To do so, it observes the noise sequence Z = Zn

(noncausally); it produces a rate-limited description T of it;
and it reveals the description to the encoder, or to the decoder,
or to both. It is incognizant of the transmitted message. More
formally, a blocklength-n helper, represented by the helping
function h : An → T , observes the noise sequence Z and
describes it as T = h(Z), with T taking values in a finite
set T . For a given sequence of coding schemes, the help
rate Rh is defined as lim supn→∞

1
n log |T |. We distinguish

between two kinds of assistance:
Decoder assistance corresponds to the scenario where the

description T is revealed to the decoder, as in Fig. 1a. In this
scenario we use C0,dec(Rh) to denote the supremum of rates R
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Fig. 1. Modulo-additive noise channels.

for which there exists a sequence of zero-error coding schemes
(without feedback) with transmission rate at least R, and with
help rate no larger than Rh. By zero-error we now mean that
for any y ∈ An and t ∈ T , at most one message m is
compatible with (y, t) in the sense that

Qn
Y |X(y|x(m)) > 0 and h(y ⊖ x(m)) = t. (16)

In the presence of feedback, we denote the analogous capacity
C0F,dec(Rh): we merely replace x(m) with x(m,y) in (16).

Encoder assistance corresponds to the scenario where
T is revealed noncausally to the encoder, as in Fig. 1b.
In the absence of feedback, the encoding function is
f : M×T → An, (m, t) 7→ x(m, t), and C0,enc(Rh) is
defined with the requirement that to every y ∈ An there
correspond at most one compatible message m in the sense
that3

∃t ∈ T s.t. Qn
Y |X(y|x(m, t))>0 and h(y ⊖ x(m, t))= t. (17)

With feedback, the encoder employs functions fi : M ×
T × Ai−1 → A, (m, t, yi−1) 7→ xi(m, t, yi−1) for i ∈ [n],
and C0F,enc(Rh) is defined analogously by replacing x(m, t)
with x(m, t,y) = (x1(m, t), x2(m, t, y1), . . . , xn(m, t, yn−1))
in (17).

Assumption 1: We shall assume throughout that

|S| > 1 (18)

and

Rh ≤ log |S|. (19)

If |S| = 1, then the noise is deterministic and even without
feedback or help, the zero-error capacity is log |A|. And, for
any sequence of helpers h : An → T of rate Rh > log |S|,
one can construct another sequence of helpers h′ of rate
R′h = log |S| with h′(z) = h(z) for all z ∈ Sn, so that h(Z)
and h′(Z) are identical with probability one.

In this paper, we present results on C0,dec(Rh) and
C0,enc(Rh), the zero-error capacity in the presence of decoder
or encoder assistance, and on C0F,dec(Rh) and C0F,enc(Rh), the
analogous quantities in the presence of feedback.

3This condition is equivalent to QY|M (y|m) > 0, where QY|M (y|m) =∑
t∈T QT (t)QY|X,T (y|x(m, t), t).

C. Related Work

Related to our work is the following theorem [12] on the
case where the noise is of full support:

Theorem 2 (MMANC With Noise of Full Support [12]):
On the MMANC with rate-Rh decoder or encoder assistance,
if S = A, then

C0,dec(Rh) = C0,enc(Rh) = Rh, (20a)

and in particular,

C0,dec(0) = 0 (20b)

and

C0,enc(0) = 0. (20c)

Our present work extends this result by studying the general
case where the noise need not be of full support. As we shall
see ahead (Corollary 3), the condition S = A is also necessary
for (20b) to hold, and likewise for (20c). We also study the
effect of feedback on the zero-error helper capacity.

Also related to our results is the work of Merhav on error
exponents [8]. To see the relevance, note that on a DMC,
the Reliability Function E(R) equals infinity iff R can be
achieved with zero error. The intuition is the following. Let the
transition matrix be Q(y|x) and the input sequence be xn, then
all output sequences of positive probability have probability at
least αn, where

α = min
(x,y)∈X×Y : Q(y|x)>0

Q(y|x).

Consequently,(
Pr(error|M = m) > 0

)
=⇒

(
Pr(error|M = m) ≥ αn

)
, (21)

whose contrapositive can be rewritten as(
− 1

n
log Pr(error|M = m) > log

1
α

)
=⇒

(
Pr(error|M = m) = 0

)
. (22)

For our MMANC, Merhav [8, Eq. (57)] derived an upper
bound on the Reliability Function for R < log |A|,

E(R) ≤ min
Q̃Z : H(Q̃Z)>log |A|+Rh−R

D(Q̃Z∥QZ). (23)

This upper bound is finite iff R > log |A|− log |S|+Rh: only
in this range of rates, there exists a PMF Q̃Z that is feasible
in the minimization and satisfies supp(Q̃Z) ⊆ S. This implies
an upper bound on the zero-error capacity

C0(Rh) ≤ log |A| − log |S|+ Rh. (24)

When |A| is a prime, our results (Theorem 4) show that this
upper bound is tight.

III. MAIN RESULTS

A. Feedback Link Present

The following theorem addresses the zero-error helper
capacity of the MMANC in the presence of a feedback link.

Theorem 3 (Assistance and Feedback): On the MMANC
with feedback and rate-Rh decoder or encoder assistance,

C0F,dec(Rh) = C0F,enc(Rh) = log |A| − log |S|+ Rh. (25)
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B. Feedback Link Absent

When the cardinality |A| of the alphabet A is prime, the
zero-error helper capacity without feedback is determined in
the following theorem:

Theorem 4 (Assistance Without Feedback: Prime Cardi-
nality): On the MMANC with rate-Rh decoder or encoder
assistance, if |A| is prime, then

C0,dec(Rh) = C0,enc(Rh) = log |A| − log |S|+ Rh. (26)

When |A| is not necessarily a prime, we provide the
following upper and lower bounds:

Theorem 5 (Assistance Without Feedback: General Cardi-
nality): On the MMANC with rate-Rh decoder assistance,

C0,dec(Rh) ≤ log |A| − log |S|+ Rh (27)

and

C0,dec(Rh) ≥
log |A|
log |S|

·Rh

+
(

1− Rh

log |S|

)
·max

{
C0,

1
2

log
|A|
|S|

}
.

(28)

These bounds also hold for C0,enc(Rh).
Theorem 5 has two corollaries. The first characterizes the

zero-error helper capacity when the noise support “tessellates”
the alphabet A and thus strengthens Theorem 2.

Corollary 2 (Special MMANCs): If C0 = log |A| − log |S|,
then

C0,dec(Rh) = C0,enc(Rh) = log |A| − log |S|+ Rh. (29)

Proof of Corollary 2: Follows from Theorem 5 by substi-
tuting log |A| − log |S| for C0 on the RHS of (28) and noting
that the result matches the RHS of (27). ■

When S = A, which implies that C0 = 0 and hence that
C0 = log |A|− log |S|, the corollary recovers Theorem 2. But
see Corollary 3 ahead for a stronger statement.

For another application of this corollary, consider the
MMANCs with |A| = 4 and with S = {0, 1} or S = {0, 2}
(so |S| = 2). In both cases C0 = 1 (= log |A|−log |S|), so the
corollary yields that C0,dec(Rh) = C0,enc(Rh) = 1 + Rh.

The second corollary to Theorem 5 provides a necessary and
sufficient condition for the positivity of the zero-error helper
capacity.

Corollary 3 (Positivity): The following statements are
equivalent:

i) C0,dec(Rh) = 0;
ii) C0,enc(Rh) = 0;

iii) C0F,dec(Rh) = 0;
iv) C0F,enc(Rh) = 0;
v) Rh = 0 and S = A.

Proof of Corollary 3: The equivalence of iii), iv), and v)
follows from Theorem 3 on feedback. The implications v) =⇒
i) and v) =⇒ ii) follow from (27) and the analogous result for
C0,enc(Rh); the implication i) =⇒ v) follows from (28) as
follows:

C0,dec(Rh) ≥
log |A|
log |S|

·Rh +
(

1− Rh

log |S|

)
· 1
2

log
|A|
|S|

(30)

=
1
2

log
|A|
|S|

+
(

log |A|
2 log |S|

+
1
2

)
·Rh (31)

≥ 1
2

log
|A|
|S|

+ Rh; (32)

the proof that ii) =⇒ v) is similar. ■
The above theorems and corollaries have some noteworthy

implications:
Remark 1 (Benifit of Assistance): Assistance can increase

the zero-error capacity by more than its rate. Even zero-rate
assistance can increase the zero-error capacity: on the Pen-
tagon channel, it raises the zero-error capacity from Lovász’s
1
2 log 5 to log 5

2 , i.e., to C0F (Corollary 1); on the Triangle
channel, it raises the zero-error capacity from zero to log 3

2 ,
which even exceeds C0F (the latter being zero for this channel).

Remark 2: Thanks to Theorem 4, the zero-error capacity
with a helper can sometimes be determined even if it is
unknown in the absence of help, e.g., for the Heptagon
channel.

Remark 3 (Less Than One Bit): As on the Gel’fand-
Pinsker channel with feedback [13], in all cases (with or
without feedback, and with decoder or encoder assistance),
the zero-error capacity can be positive yet smaller than 1 bit.
This is not the case in the absence of assistance.

IV. FEEDBACK LINK PRESENT

In this section, we study the zero-error feedback capacity
with helper and establish Theorem 3; see Fig. 1a and 1b with
the feedback link. To this end, we need the following lemma,
stating that feedback does not increase the helper rare-error
capacity on the MMANC.

Lemma 1: On the MMANC with feedback and rate-Rh
decoder or encoder assistance, the rare-error capacities are
given by

CF,dec(Rh) = CF,enc(Rh) = log |A| −
{
H(QZ)−Rh

}+
. (33)

Proof: In light of [3, Theorem 12] and [4, Theorem 8],
which establish that the RHS of (33) can be achieved without
feedback, we only need to prove a converse. To that end,
we prove the stronger claim that—even if the description T is
presented to both encoder and decoder—the rare-error feed-
back capacity does not exceed the RHS of (33). We assume
Rh ≤ H(QZ), because otherwise the result is obvious.

Consider a message M that is drawn equiprobably from
the message set M. For any sequence of coding schemes of
rate R with rate-Rh assistance and vanishing probabilities of
error,

log |M| = H(M) (34)
= I(M ;Y, T ) + H(M |Y, T ) (35)
≤ I(M ;Y, T ) + nδn (36)
= I(M ;Y|T ) + nδn (37)
= H(Y|T )−H(Y|M,T ) + nδn (38)
≤ H(Y)−H(Y|M,T ) + nδn (39)
≤ H(Y)−H(Z|M,T ) + nδn (40)
= H(Y)−H(Z|T ) + nδn (41)
= H(Y)−H(Z) + I(Z; T ) + nδn (42)
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≤ H(Y)−H(Z) + log |T |+ nδn (43)
≤ n log |A| − nH(QZ) + log |T |+ nδn, (44)

where (36) holds for some {δn} tending to zero by Fano’s
inequality; (37) and (41) hold because T is a function of Z,
so (Z, T ) is independent of M ; and (40) holds because, in the
presence of feedback and help, Z is a function of (Y, M, T )
namely Zi = Yi ⊖ fi(M, T, Y i−1) for i ∈ [n]. Dividing the
inequalities by n and letting n tend to infinity establishes the
converse. ■

Proof of Theorem 3: We first establish the converse for
decoder assistance. If Q̃Y |X is any auxiliary MMANC over A
of noise PMF Q̃Z ∈ P(A) that is absolutely continuous
with respect to QZ (i.e., whose support is contained in S,
denoted by Q̃Z ≪ QZ), then its rare-error feedback capacity
with decoder assistance C̃F,dec(Rh) forms an upper bound on
C0F,dec(Rh), because any error-free coding scheme for the
original channel is also error-free on the auxiliary channel.
Indeed, for any y ∈ An and t ∈ T , the absolute continuity
hypothesis implies that(

Q̃n
Y |X(y|x(m,y)) > 0

)
=⇒

(
Qn

Y |X(y|x(m,y)) > 0
)

(45)

so if a message m is compatible with (y, t) on the auxil-
iary channel (in the sense that Q̃n

Y |X(y|x(m,y)) > 0 and
h(y ⊖ x(m,y)) = t), then it is also compatible with (y, t) on
the original channel.

Therefore, upon minimizing over the choice of Q̃Y |X to get
the tightest bound,

C0F,dec(Rh) ≤ min
Q̃Z : Q̃Z≪QZ

C̃F,dec(Rh) (46)

= min
Q̃Z : Q̃Z≪QZ

{
log |A| −

{
H(Q̃Z)−Rh

}+
}
(47)

= log |A| −
{

log |S| −Rh
}+

, (48)

where (47) follows from Lemma 1, and (48) holds because,
subject to a support constraint, the uniform PMF maximizes
entropy.

Similar arguments apply also to encoder assistance.
We now turn to the direct part.
• Case 1: Rh ≥ log |S|. In this case feedback is unnec-

essary. The codebook comprises all the distinct sequences
in An. Using ⌈n log |S|⌉ bits, the helper describes the noise
sequence Z precisely. The decoder (resp. encoder) subtracts
the noise from the received sequence (resp. from the codeword
to be transmitted), so the codeword and the message can be
received error-free. This establishes the achievability of log |A|
bits per channel use.
• Case 2: Rh = 0. A two-phase coding scheme is

proposed. In Phase 1, we follow the construction (for a
uniform input distribution) in Shannon’s proof of Theorem 1
in [1], where the encoder sequentially reduces the decoder’s
ambiguity. In the i-th channel use, thanks to the feedback,
the encoder reconstructs the list of messages compatible with
Y i−1 and evenly assigns them to different input symbols (in a
manner agreed upon with the decoder prior to transmission).

Only |S| of the |A| input symbols are compatible with Yi,
and the number of compatible messages is reduced by a
factor of roughly |S|

|A| . More precisely, Shannon showed that

if |M| =
⌊( |S|
|A|

)−n⌋
, then after n channel uses, the number

of compatible messages is at most |A|2. The final ambiguity
is removed in Phase 2, where the helper comes into play.
Since the messages that are compatible with the outputs from
Phase 1 are known to the encoder, and since their number does
not exceed |A|2, the encoder can inform the decoder which
compatible message was sent in two additional clean channel
uses. To clean these two channel uses, the helper informs the
decoder (resp. encoder) of the exact value of Zn+2

n+1 ∈ S2 and
the decoder (resp. encoder) subtracts the noise after (resp.
before) the transmission. The rate of help is therefore

lim
n→∞

1
n + 2

log |S|2 = 0 (49)

and the transmission rate

lim
n→∞

1
n + 2

log |M| = lim
n→∞

log
⌊( |S|
|A|

)−n⌋
n + 2

= log
|A|
|S|

. (50)

• Case 3: 0 < Rh < log |S|. We divide the transmission
block into two parts of relative length Rh

log |S| and 1 − Rh
log |S| .

We then apply the aforementioned coding schemes for helper
rates of log |S| and zero, respectively. The total rate achieved
by this time-sharing scheme is

Rh log |A|
log |S|

+
(

1− Rh

log |S|

) (
log |A| − log |S|

)
= log |A| − log |S|+ Rh. (51)

■

V. FEEDBACK LINK ABSENT

In this section, we provide proofs pertaining to the
zero-error helper capacity in the absence of feedback; see
Fig. 1a and 1b without the feedback link.

A. Prime Cardinality

We begin with the case where |A| is a prime, which we
denote p. We denote the cardinality-p finite field Fp and
identify it with the set Zp = {0, . . . , p − 1} with mod-p
arithmetic.

Proof of Theorem 4: Since feedback cannot hurt, it fol-
lows from Theorem 3 that we only need to prove the direct
part. This is trivial unless |S| < |A|, which we proceed to
assume. We first focus on decoder assistance.
• Case 1: Rh ≥ log |S|. The achievability in this case is as

in the proof of Theorem 3, where the feedback link is ignored.
• Case 2: Rh = 0. We will construct a sequence of

blocklength-n codebooks of rate
(
log |A||S| − ϵn

)
that can be

decoded error-free utilizing rate-ϵ′n decoder assistance, for
some {ϵn} and {ϵ′n} tending to zero.

The codes we construct have two key properties. The first is
that they are L-list-decodable [14], [15], [16] where L ∈ Z+

grows subexponentially with n. That is, every y ∈ An is
compatible with at most L messages. This guarantees that
the decoder’s ambiguity could be eliminated with a sublinear
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number of bits. Elias [14] established the existence such
codebooks of rate log |A||S| − Θ(L−1). But this is not enough,
because, in the absence of feedback, neither the transmitter
nor the helper can determine the list facing the decoder. This
is where the second property comes in: To overcome this
issue and enable the helper to remove the ambiguity, we shall
impose a linear structure on the code, and this is where the
assumption that |A| is a prime will be essential: it will allow
us to view A as a field.

The existence of linear L-list-decodable codes can be estab-
lished using a variation on a theme by Elias [14] using tools
that were used successfully in the analysis of random linear
codes (e.g. [17], [18], [19]).

Lemma 2: Consider a MMANC with |A| = p, where p is
prime. Given L ∈ Z+, define

RL = max
{

0, log
|A|
|S|

− log2 |A|
log(L + 1)

}
. (52)

Then, for any n ∈ Z+, there exists a blocklength-n linear code
over the field Fp of rate log |A|

n ⌊ nRL

log |A|⌋ that is L-list-decodable.
Proof: Assume RL > 0 (because otherwise there is

nothing to prove). Given some blocklength n, let the message
set be M = Fk

p , with k ∈ Z+ to be specified later. A generic
message m ∈ M is thus represented by a k-vector, and the
transmission rate is k/n in base-p logarithm, or (k/n) log2 p
bits per channel use.

Pick a random (n × k)-matrix A whose entries are drawn
IID equiprobably from Fp, and consider the encoding rule
m 7→ X(m) = Am. Let C be the random linear code
(multiset) it induces. This encoding rule maps any ℓ linearly
independent messages to independent codewords, each having
IID equiprobable random components.

Among any (L + 1) messages, at least ℓ ≜ ⌈logp(L + 1)⌉
are linearly independent, so the probability that there exists
some y ∈ An compatible with (L + 1) messages is upper
bounded by the probability that there exists some y ∈ An

that is compatible with ℓ linearly independent messages. The
latter, by the Union Bound, is strictly smaller than∑

y∈An

∑
m1,...,mℓ∈M

linearly independent

Pr
ℓ⋂

i=1

n⋂
j=1

[
Xj(mi) ∈ Xyj

]

=
∑

y∈An

∑
m1,...,mℓ∈M

linearly independent

(
|S|n

|A|n

)ℓ

(53)

≤ |A|n
(
|M|

ℓ

) (
|S|
|A|

)nℓ

(54)

≤ |A|npkℓ

(
|S|
|A|

)nℓ

(55)

≤
(
|A| p

(
ℓ logp

|A|
|S|−1

) (
|S|
|A|

)ℓ )n

(56)

= 1, (57)

where (53) holds because—when m1, . . . ,mℓ are linearly
independent—the codewords X(m1), . . . ,X(mℓ) are inde-
pendent, each having IID equiprobably distributed compo-
nents, and because |Xy| = |S| for every y ∈ A; and in (56)

we choose k = ⌊n
(
logp

|A|
|S| −

1
logp(L+1)

)
⌋, so

kℓ ≤ n
(

logp

|A|
|S|

− 1
logp(L + 1)

)
ℓ (58)

≤ n
(
ℓ logp

|A|
|S|

− 1
)
. (59)

Hence, with positive probability, the random linear code is L-
list-decodable. The lemma then follows by noting that, in bits,
the rate is k

n · log |A|. ■
We now use Lemma 2 to complete the proof of Theorem 4

for the case of Rh = 0. Let {Ln} be a sequence of positive
integers tending to infinity subexponentially, e.g., Ln = Θ(n).
The lemma implies that, for every blocklength n, there exists a
linear code Cn of rate log |A|

n ⌊ nRLn

log |A|⌋ that is Ln-list-decodable.
A minor annoyance is that the codewords in Cn need not
be distinct. To overcome this, we consider the code C′n ⊆
Fn

p comprising all the distinct elements in Cn. Note that
(i) C′n is a subgroup of Fn

p ; (ii) C′n is Ln-list-decodable;
and (iii)

|C′n| ≥
|Cn|
Ln

(60)

(because Cn, being Ln-list-decodable, contains no codeword
more than Ln times). This latter property and the fact that
{Ln} is subexponential imply that {C′n} has the desired rate:

lim
n→∞

1
n

log |C′n| = lim
n→∞

1
n

log |Cn| (61)

= lim
n→∞

RLn (62)

= lim
n→∞

log
|A|
|S|

− log2 |A|
log(Ln + 1)

(63)

= log
|A|
|S|

, (64)

where (61) follows from (60) and the fact that {Ln} is
subexponential; and (64) holds because {Ln} tends to infinity.

We next show that—although the helper is incognizant of
the list of messages that are compatible with the received
sequence—a ⌈log Ln⌉-bit description of the noise sequence
(which is of zero rate as Ln is subexponential in the block-
length n) suffices to guarantee zero-error transmission of the
codebook C′n. To this end, we propose the following helper.
To simplify its description, we drop the subscript n.

For z, z′ ∈ Sn, let us write z ∼ z′ if their componentwise
difference is in C′, i.e.,(

z ∼ z′
)
⇐⇒

(
z⊖ z′ ∈ C′

)
, z, z′ ∈ Sn. (65)

Since C′ is a subgroup of Fn
p , this relation is an equivalence

relation, and z ∼ z′, i.e., z and z′ are equivalent iff z and z′

belong to the same coset of C′. We shall use [z] ⊆ Sn to
denote the equivalence class containing z.

Our proposed helper assigns labels (descriptions) only to
noise sequences in Sn, and it does so in such a way that, unless
identical, equivalent noise sequences are assigned differing
labels. Such a helper leads to zero errors, because if x ∈ C′
is transmitted and x⊕ z is received (where z ∈ Sn), then the
decoder can confuse x with some x′ only if: (i) x′ is also a
codeword; (ii) x⊕ z = x′ ⊕ z′ for some z′ ∈ Sn; and (iii) z
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and z′ have the same label. The former two conditions imply
that z ∼ z′, and hence that z and z′ are identical or else of
differing labels. The third condition then implies that they are,
in fact, identical, so x′ equals x.

It remains to verify that we can find a labeling rule as above
with at most L different labels. This will follow once we show
that, for every z ∈ Sn, ∣∣[z]∣∣ ≤ L. (66)

To establish (66), we note that the L-list-decodability prop-
erty of C′, namely

L ≥
∣∣(y ⊖ C′) ∩ Sn

∣∣, ∀y ∈ An (67)

is equivalent (because C′ is a subgroup of Fn
p ) to

L ≥
∣∣(y ⊕ C′) ∩ Sn

∣∣, ∀y ∈ An, (68)

i.e., to every coset of C′ intersecting Sn in at most L points.
This establishes (66) and concludes the achievability proof.
• Case 3: 0 < Rh < log |S|. Analogous to (51), the

achievability follows from time sharing.
The case with encoder assistance is essentially identical.

If Rh ≥ log |S|, the rate log |A| is achievable as in the proof
of Theorem 3. If Rh = 0, the relation

C0,enc(0) ≥ C0,dec(0) (69)

holds because, in the presence of encoder assistance, any zero-
rate help to the encoder can be conveyed to the decoder with
negligible extra help and negligible loss in rate: the encoder
simply appends a frame to convey the help, with the frame
being of sublinear length (because the help to be conveyed
is of zero rate); it requests that the helper provide it with a
precise description of the noise affecting the frame (with the
extra help being negligible because the frame is short); and
it subtracts that noise from the transmission in that frame so
as to render it noise free. For intermediate values of Rh, the
achievability follows by time sharing. ■

Remark 4 (Gap to Capacity vs L): By Lemma 2, as the
number of labels L tends to infinity, it is possible to com-
municate error-free at transmission rates that converge to the
zero-error helper capacity, with the gap to capacity decaying
in L like O (1/ log L). Although irrelevant to the computation
of the capacity, it might be interesting to investigate whether
the gap to capacity can decay faster in L.

Remark 5 (L-List-Decodability and (ℓ, L) Recoverability):
On the MMANC, L-list-decodability is related to (zero-error)
list-recoverability [19]: Given ℓ, L ∈ Z+ and a finite set X ,
a codebook C ⊆ Xn is (ℓ, L)-list-recoverable if for any
collection of n subsets S1,S2, . . . ,Sn of X , each of which
has no more than ℓ elements,∣∣∣C ∩ (

S1 × · · · × Sn

)∣∣∣ ≤ L. (70)

On the MMANC, (|S|, L)-list-recoverability implies L-list-
decodability, because, given any output sequence y ∈ An,
we can substitute yi⊖S for each Si in (70) to recover L-list-
decodability.

Remark 6: If instead of defining RL as in (52), we defined

RL = log
|A|
|S|

− |S| · log2 |A|
log(L + 1)

, (71)

then the resulting weaker version of Lemma 2, while still
sufficient for our purposes, could have been recovered from
the literature on (ℓ, L)-list-recoverability, specifically from the
result that a random linear code of such rate is (|S|,L)-list-
recoverable with high probability [17], [20] and, a fortiori,
with positive probability.

Remark 7: The factor of |S| in the numerator of the second
term on the RHS of (71), which is absent from (52), can be
improved for large |A| using [21, Theorem 5.1] and [20].

B. General Case

We now turn to the general case where |A| need not be
prime and establish Theorem 5.

Proof of Theorem 5: As in the proof of Theorem 4,
we only need to prove the direct part, and we focus on decoder
assistance, so our goal is to establish that

C0,dec(Rh) ≥
log |A|
log |S|

·Rh

+
(

1− Rh

log |S|

)
·max

{
C0,

1
2

log
|A|
|S|

}
.

(72)

The achievability for encoder-assistance will then follow as
in the proof of Theorem 4. To establish (72), we propose the
following coding scheme based on time sharing.
• Case 1: Rh = log |S|. That C0,dec(Rh) ≥ log |A| follows

from the proof for Theorem 3, where the feedback link is not
utilized.
• Case 2: Rh = 0. That C0,dec(0) ≥ C0 is obvious, because

help cannot hurt.
To show that

C0,dec(0) ≥ 1
2

log
|A|
|S|

, (73)

we first introduce some notation. Given a codebook C ⊆ An

and a noise sequence z ∈ Sn, let Fz(C)—or Fz for short—
be the confusion set of z comprising the noise sequences
confusable with z:

Fz(C) =
{
z′ ∈ Sn : ∃x,x′ ∈ C s.t. x ̸= x′

and z⊕ x = z′ ⊕ x′
}

(74)

=
{
z′ ∈ Sn : z′ ⊖ z ∈ (C ⊖ C)∗

}
. (75)

The proposed helper assigns confusable noise sequences dif-
ferent labels: if z′ ∈ Fz, then the labels assigned to z and z′

are different. This guarantees error-free recovery of the noise
sequence and hence, if the code has no repeating codewords,
also of the transmitted message.

As we next argue, the number of different labels required
is at most

max
z∈Sn

∣∣Fz

∣∣ + 1. (76)

Indeed, the number of required labels is the chromatic number
of the confusion graph of the noise sequences, i.e., the
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undirected graph with vertices Sn and with z connected to z′

if z′ ∈ Fz. This graph is well-defined because(
z⊖ z′ ∈ (C ⊖ C)∗

)
⇐⇒

(
z′ ⊖ z ∈ (C ⊖ C)∗

)
. (77)

The degree of a vertex z in this graph is
∣∣Fz

∣∣, and our claimed
upper bound on the number of required labels follows from the
fact that the chromatic number of any graph is upper bounded
by its maximum degree plus 1.

It remains to establish the existence of a code with no
repeating codewords that induces small confusion sets. This is
established by the following lemma, whose proof is postponed
to the appendix.

Lemma 3: On the MMANC, let L > 3 be a positive integer,
and define

RL = max
{

0,
1
2

log
|A|
|S|

− log |S|
2 log3 L

}
. (78)

Then for any n ∈ Z+, there exists a codebook of car-
dinality ⌊2nRL⌋, of differing codewords, and for which
maxz∈Sn

∣∣Fz

∣∣ ≤ L− 1.
With the aid of the lemma, we can conclude the achiev-

ability for zero-rate help using arguments similar to those
we used in the proof of Theorem 4: Consider a sequence of
blocklength-n codebooks whose existence is guaranteed by
Lemma 3 when we substitute Ln for L, where {Ln} tends to
infinity subexponentially in n. With these codebooks and the
proposed helper, transmission is error-free, the helping rate
is zero, and the transmission rate approaches 1

2 log |A||S| , thus
proving (73).
• Case 3: 0 < Rh < log |S|. Follows from time sharing,

by dividing the transmission block into two parts of relative
length Rh

log |S| and 1− Rh
log |S| and applying the aforementioned

schemes. ■

APPENDIX

Proof of Lemma 3: Without loss of generality, assume
RL > 0 and |S|n > L (otherwise the result is obvious). Define

R =
1
n

log⌊2nRL⌋ (79)

≤ RL (80)

and let M = {1, . . . , 2nR}. Generate a random codebook
C = {X(1), . . . ,X(|M|)} by drawing its codewords inde-
pendently, each equiprobably from An. We will show that
with positive probability, the properties (i) C contains no
repeating codewords, and (ii) maxz∈Sn

∣∣Fz

∣∣ ≤ L − 1 hold
simultaneously.

Using the Union Bound, we can upper-bound the probability
that Property (i) is violated as follows:

Pr
[
∃m, m′ ∈M s.t. m ̸= m′ and X(m) = X(m′)

]
≤

∑
1≤m<m′≤2nR

Pr
[
X(m) = X(m′)

]
(81)

=
(

2nR

2

)
· 1
|A|n

(82)

≤ 22nR

2|A|n
. (83)

As for Property (ii),

Pr
[
max
z∈Sn

∣∣Fz

∣∣ > L− 1
]

= Pr
[
∃ z ∈ Sn s.t.

∣∣Fz

∣∣ ≥ L
]

(84)

≤
∑
z∈Sn

Pr
[∣∣Fz

∣∣ ≥ L
]

(85)

=
∑
z∈Sn

Pr
[
∃ distinct ξ′1, . . . , ξ

′
L ∈ Sn

s.t. {ξ′1, . . . , ξ
′
L} ⊖ z ⊆ (C ⊖ C)∗

]
(86)

=
∑
z∈Sn

Pr
[
∃ distinct ξ1, . . . , ξL ∈ Sn ⊖ z

s.t. {ξ1, . . . , ξL} ⊆ (C ⊖ C)∗
]
, (87)

where (85) follows from the Union Bound; (86) follows
from the definition of Fz in (75); and in (87) we introduced
ξi = ξ′i ⊖ z.

To analyze the probabilities appearing on the RHS of (87),
we first rule out the degenerate cases. We say that a collection
of n-tuples ξ1, . . . , ξℓ ∈ An is tri-independent if( ℓ∑

i=1

ϵiξi = 0, with ϵi ∈ {0,±1}, ∀ i ∈ [ℓ]
)

=⇒
(
ϵi = 0, ∀ i ∈ [ℓ]

)
. (88)

Lemma 4: Among any L distinct n-tuples ξ1, . . . , ξL ∈ An,
there exist at least ⌈log3 L⌉ that are tri-independent.

Proof of Lemma 4: Let B ⊆ {ξ1, . . . , ξL} be a maximal
tri-independent set (with respect to inclusion), and let ℓ be
its cardinality: |B| = ℓ. Without loss of generality, assume
B = {ξ1, . . . , ξℓ} (otherwise rearrange the tuples). We will
show that every n-tuple in {ξ1, . . . , ξL} can be expressed
in the form

∑ℓ
i=1 ϵiξi, with ϵi ∈ {0,±1} for all i ∈ [ℓ].

(This is obvious for the n-tuples ξ1, . . . , ξℓ but requires proof
for ξℓ+1, . . . , ξL.) This will establish the lemma because the
number of distinct expressions of said form is at most 3ℓ, and
the number of sequences is L, so 3ℓ must be at least L, and ℓ
(the number of elements of B) must thus satisfy ℓ ≥ ⌈log3 L⌉.

To see that any ξ ∈ {ξℓ+1, . . . , ξL} can be expressed in
said form, note that the maximality of B implies that for
any ξ ∈ {ξℓ+1, . . . , ξL}, there exist nontrivial (i.e., not all
zero) {ϵi}ℓ

i=1 and ϵ, such that
∑ℓ

i=1 ϵiξi + ϵξ = 0. Here ϵ
cannot be zero, since otherwise the relation would translate to∑ℓ

i=1 ϵiξi = 0 for nontrivial {ϵi}ℓ
i=1, which would contradict

the fact that, by construction, B is tri-independent. Without
loss of generality, assume ϵ = −1 (otherwise change the sign
of ϵ and all ϵi’s), so ξ =

∑ℓ
i=1 ϵiξi, thus expressing ξ in said

form. ■
With the aid of Lemma 4, and defining

ℓ ≜ ⌈log3 L⌉ ≥ 2, (89)

we can return to the RHS of (87) to conclude that

Pr
[
∃ distinct ξ1, . . . , ξL ∈ Sn ⊖ z

s.t. {ξ1, . . . , ξL} ⊆ (C ⊖ C)∗
]

≤ Pr
[
∃ tri-independent ξ1, . . . , ξℓ ∈ Sn ⊖ z

s.t. {ξ1, . . . , ξℓ} ⊆ (C ⊖ C)∗
]
. (90)

Ignoring, for now, the constraint that ξ1, . . . , ξℓ be in Sn⊖ z,
we claim:



LAPIDOTH AND YAN: ON THE ZERO-ERROR CAPACITY OF THE MODULO-ADDITIVE NOISE CHANNEL WITH HELP 4729

Claim 1: Given ℓ tri-independent n-tuples ξ1, . . . , ξℓ ∈ An,
and a random codebook C generated as above

Pr
[
{ξ1, . . . , ξℓ} ⊆ (C ⊖ C)∗

]
≤

(
22nR

|A|n

)ℓ

. (91)

Proof: Since {ξ1, . . . , ξℓ} are tri-independent and hence,
a fortiori, nonzero, the event

[
ξi ∈ (C ⊖ C)∗

]
is equivalent to

the event
[
∃ (mi, m

′
i) ∈M×M s.t. X(mi)⊖X(m′

i) = ξi

]
.

Consequently, the event
[
{ξ1, . . . , ξℓ} ⊆ (C ⊖ C)∗

]
is equiva-

lent to the event

∃{(mi, m
′
i)}ℓ

i=1 ⊆M×M

s.t.
(
X(mi)⊖X(m′

i) = ξi, ∀i ∈ [ℓ]
)
. (92)

Hence, by the Union Bound,

Pr
[
{ξ1, . . . , ξℓ} ⊆ (C ⊖ C)∗

]
≤

∑
{(mi,m

′
i)}

ℓ
i=1⊆M×M

Pr
⋂

i∈[ℓ]

[
X(mi)⊖X(m′

i) = ξi

]
(93)

≤ 22nRℓ|A|−nℓ, (94)

where (94) follows from Lemma 5 ahead and from the fact
that the number of terms on the RHS of (93) is upper bounded
by 22nRℓ. ■

From (87) and (90) we now obtain

Pr
[
max
z∈Sn

∣∣Fz

∣∣ > L− 1
]

≤
∑
z∈Sn

Pr
[
∃ tri-independent ξ1, . . . , ξℓ ∈ Sn ⊖ z

s.t. {ξ1, . . . , ξℓ} ⊆ (C ⊖ C)∗
]

(95)

≤
∑
z∈Sn

∑
tri-independent

ξ1,...,ξℓ∈S
n⊖z

Pr
[
{ξ1, . . . , ξℓ} ⊆ (C ⊖ C)∗

]
(96)

≤ |S|n
(
|S|n

ℓ

) (
22nR

|A|n

)ℓ

(97)

≤ |S|n(ℓ+1)

ℓ!

(
22nR

|A|n

)ℓ

, (98)

where (96) follows from the Union Bound, and (97) follows
from Claim 1.

From (83) and (98) (and the Union Bound) we infer that, the
two properties (i) and (ii) hold simultaneously with probability
strictly larger than

1− 22nR

2|A|n
− |S|n(ℓ+1)

ℓ!

(
22nR

|A|n

)ℓ

≥ 1− 1
2
|S|−n ℓ+1

ℓ − 1
ℓ!

(99)

≥ 1− 1
2
− 1

ℓ!
(100)

≥ 0, (101)

where (99) holds because, by (78) and (80)

22nR ≤ 22n( 1
2 log

|A|
|S|−

log |S|
2ℓ ) = |A|n|S|−n ℓ+1

ℓ . (102)

Thus, with positive probability, the random codebook C sat-
isfies both desired properties simultaneously. This concludes
the proof of Lemma 3 (assuming Lemma 5 ahead). ■

We next state and prove Lemma 5.
Lemma 5: Let the ℓ n-tuples {ξi}ℓ

i=1 be tri-independent,
and let {(mi, m

′
i)}ℓ

i=1 ⊆ M×M be ℓ message tuples. Let
the undirected graph G = (V,E) be of vertices V = M and
of edges E = {(mi, m

′
i)}ℓ

i=1 = {ei}ℓ
i=1, where ei denotes

the edge (mi, m
′
i). If X(1), . . . ,X(|M|) are drawn IID, each

equiprobably from An, then the probability

Pr
⋂

i∈[ℓ]

[
X(mi)⊖X(m′

i) = ξi

]
(103)

equals |A|−nℓ if the graph G is acyclic,4 and equals zero
otherwise.

Proof: First, assume that G contains some cycle, say
of vertices v1, v2, . . . , vk, vk+1 ≜ v1. By possibly permuting
{ξi, (mi, m

′
i)} we may assume without loss of generality that

{v1, v2} = {m1, m
′
1} (as sets), so either (v1, v2) = (m1, m

′
1)

or (v1, v2) = (m′
1, m1) (or both, if this is a loop). In the former

case the event of interest is
[
X(m1) ⊖X(m′

1) = ξ1

]
and in

the latter
[
X(m′

1)⊖X(m1) = ξ1

]
. We similarly assume that

{vi, vi+1} = {mi, m
′
i+1} (as sets) for all i ∈ [k].

The probability (103) is positive iff there exist
x1, . . . ,x|M| ∈ An such that

xmi
⊖ xm′

i
= ξi, i ∈ [ℓ], (104)

which, as we shall see, contradicts the nondegeneracy of the
n-tuples.

Define

ϵi =

{
1 if (vi, vi+1) = (mi, m

′
i),

−1 otherwise,
i ∈ [k]. (105)

Then, (104) and (105) imply
k∑

i=1

ϵiξi =
k∑

i=1

ϵi

(
xmi

⊖ xm′
i

)
(106)

=
k∑

i=1

(
xvi ⊖ xvi+1

)
(107)

= 0 (108)

where the last equality holds because vk+1 = v1.
By setting ϵi = 0 for all i ∈ [ℓ] \ [k] (i.e., for all

edges not in the cycle), we obtain ℓ coefficients {ϵi}ℓ
i=1

(that are not all zero) taking values in {0,±1} such that∑ℓ
j=1 ϵjξj =

∑k
j=1 ϵjξj = 0, which contradicts the tri-

independence assumption.
We next consider the case where the graph G is acyclic.

A fortiori, G contains no loops, so mi ̸= m′
i for all i ∈ [ℓ].

Proving that

Pr
⋂

i∈[ℓ]

[
X(mi)⊖X(m′

i) = ξi

]
=

1
|A|nℓ

(109)

is tantamount to proving that the events
{[

X(mi) ⊖
X(m′

i) = ξi

]}
i∈[ℓ]

are independent, because it can be readily

4G is allowed to contain loops and parallel edges, which also count as
cycles.
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verified that for any m ̸= m′ and ξ ∈ An, Pr
[
X(m) ⊖

X(m′) = ξ
]

= 1
|A|n .

Because the codewords are chosen independently, the events
corresponding to edges in different connected components
of G are independent. We can therefore focus on one
non-empty connected component, say G1 = (V1, E1), and
show that the events corresponding to E1 are independent.
That is, we need to show that

Pr
⋂

i : ei∈E1

[
X(mi)⊖X(m′

i) = ξi

]
=

1
|A|n|E1|

. (110)

To prove this, we will show by induction on |E1| that
the system of linear equations (with |E1| equations and |V1|
variables) corresponding to this connected component, namely,

xmi ⊖ xm′
i
= ξi, i ∈ {j : ej ∈ E1} (111)

has |A|n solutions. This is to be expected because G is acyclic,
so G1 is a tree, and hence |V1| = |E1|+ 1.

If |E1| = 1, there are two variables and one equation,
so the number of solutions is, indeed, |A|n. If |E1| ≥ 2, let
m0 be a degree one vertex of G1 (which is guaranteed to exist
because G1 is a tree). As such, x(m0) appears in only one
of the equations, and it is therefore uniquely determined by
the remaining (|V1| − 1) variables. The number of solutions
is thus as for the system that remains when we remove xm0

and the equation in which it appears from the system, which
leaves us with (|E1| − 1) equations corresponding to the
induced subgraph G1[V1 \ {m0}]. This subgraph is still a
tree, and hence, by the induction hypothesis, this restricted
system with (|E1| − 1) equations and (|V1| − 1) variables has
|A|n solutions. This concludes the induction and establishes
that, as we claimed, the system of equations (111) has |A|n
solutions.

We can now complete the proof of (110):

Pr
⋂

i : ei∈E1

[
X(mi)⊖X(m′

i) = ξi

]
=

∑
{xm}m∈V1
solving (111)

Pr
⋂

m∈V1

[
X(m) = xm

]
(112)

=
∑

{xm}m∈V1
solving (111)

1
|A|n|V1|

(113)

=
|A|n

|A|n|V1|
(114)

=
1

|A|n|E1|
, (115)

where the last equality holds because G1 is a tree,
so |V1| = |E1|+ 1. ■
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