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Abstract— In this paper, a general framework for linear secure
distributed matrix multiplication (SDMM) is introduced. The
model allows for a neat treatment of straggling and Byzantine
servers via a star product interpretation as well as simplified
security proofs. Known properties of star products also imme-
diately yield a lower bound for the recovery threshold as well
as an upper bound for the number of colluding workers the
system can tolerate. Another bound on the recovery threshold is
given by the decodability condition, which generalizes a bound
for GASP codes. The framework produces many of the known
SDMM schemes as special cases, thereby providing unification for
the previous literature on the topic. Furthermore, error behavior
specific to SDMM is discussed and interleaved codes are proposed
as a suitable means for efficient error correction in the proposed
model. Analysis of the error correction capability under natural
assumptions about the error distribution is also provided, largely
based on well-known results on interleaved codes. Error detection
and other error distributions are also discussed.

Index Terms— Secure distributed matrix multiplication,
Reed–Solomon codes, star product codes, interleaved codes,
information-theoretic security.

I. INTRODUCTION

SECURE distributed matrix multiplication (SDMM) has
been studied as a way to compute a matrix product

using the help of worker servers such that the computation
is information-theoretically secure against colluding workers.
SDMM was first studied by Chang and Tandon in [2]. Their
scheme was improved by D’Oliveira et al. in [3], [4], and
[5] using GASP codes. Different schemes have also been
introduced in [6], [7], [8], [9], [10], [11], [12], [13], [14],
and [15]. Furthermore, different modes of SDMM, such as
private, batch, or cooperative SDMM, have been studied
in [12], [16], [17], [18], [19], [20], [21], and [22]. The
information-theoretic capacity of SDMM has been studied
in [2], [6], [8], and [23], but overall capacity results are still
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scarce. In addition to considering SDMM over finite fields,
SDMM has also been utilized over the analog domain (i.e.,
real or complex numbers) in [24].

The workers in an SDMM scheme are thought of as
untrustworthy-but-useful, which means that some of them
might not work according to the protocol. The main robust-
ness has been against providing security against colluding
workers, which share the information they receive and try to
infer the contents of the original matrices. Tools from secret
sharing have been used to guarantee information-theoretic
security against such colluding workers. Additionally, robust-
ness against so-called straggling workers has been considered.
Stragglers are workers that respond slowly or not at all. Such
workers cause an undesired straggler effect if the computation
time is limited by the slowest worker.

Byzantine workers are workers that return erroneous results
either intentionally or as a result of a fault. Such errors can be
difficult to detect directly without further analysis. To guaran-
tee the correctness of the matrix product, it is crucial to be able
to detect the errors and correct them with minimal overhead in
communication and computation. Tools from classical coding
theory can be used to correct errors caused by the Byzantine
workers and erasures caused by stragglers.

A coded computation scheme that accounts for stragglers
and Byzantine workers has been presented in [18] using
so-called Lagrange coded computation. This scheme considers
stragglers as erasures and Byzantine workers as errors in some
linear codes. This means that a straggling worker requires
one additional worker and a Byzantine worker requires two
additional workers. Furthermore, error detection methods have
been utilized in [25] and [26]. In these methods, the user
compares the results given by the workers to the correct results
by using probabilistic error detection methods.

A. System Model

We consider the setting with a user that has two private
matrices A and B, and access to N workers. The workers
receive some encoded pieces Ãi, B̃i, which are used to
compute the response C̃i. Some of the users may be stragglers,
which means that they do not respond in time. Additionally,
some workers may be Byzantine workers, which means that
they respond with some erroneous response C̃i + Zi, for
some nonzero Zi. These are denoted by workers 2 and 3,
respectively, in Figure 1. The user aims to compute the product
AB from the responses.

One of the requirements in SDMM is that the pri-
vate data contained in the matrices A and B is kept
information-theoretically secure from any X colluding
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Fig. 1. System model of the linear SDMM framework. Worker 2 and 3 are
a straggler and a Byzantine worker, respectively.

workers. The encoded pieces should be made by adding noise
to the matrices in such a way that

I(A, B; ÃX , B̃X ) = 0

for all subsets X of size X of the workers. Here ÃX and B̃X
denote the sets of Ãi and B̃i held by the colluding set X .

There are multiple goals when designing an SDMM scheme,
including reducing communication costs, reducing compu-
tation time, or increasing robustness against straggling or
Byzantine workers. It is a matter of implementation to decide
which of these goals to prioritize.

B. Contributions

As the main contribution, this paper introduces a general
framework for linear SDMM schemes that can be used to
construct many SDMM schemes from the literature in a unified
way. We show a strong connection between star product
codes and SDMM schemes and relate the properties of the
associated codes to the security of the schemes as well as
to the recovery threshold and collusion tolerance. Previously,
star product codes have been successfully utilized in private
information retrieval (PIR) [27]. Using existing results for star
product codes, we give new lower bounds for the recovery
threshold of linear SDMM schemes in Theorem 2 and Theo-
rem 3. Using these bounds we show that the secure MatDot
code presented in [7] and the SDMM scheme based on the
DFT presented in [10] are optimal concerning the recovery
threshold under some mild assumptions. These bounds are
now possible due to the general framework that encompasses
many interesting cases, going way beyond the special cases
found in the literature. Most previous schemes are based
on polynomial evaluation codes, while our framework works
for all linear codes including algebraic geometry codes. Fur-
thermore, we present a bounded-distance decoding strategy
utilizing interleaved codes, which provides robustness against
straggling and Byzantine workers. Finally, we analyze the
error-correcting capabilities of the proposed strategy under
some natural assumptions about the error distributions.

C. Organization

The organization of this paper is as follows. In Section II
we give some preliminaries on star product codes, and
interleaved codes, and introduce the so-called matrix codes.
In Section II-E we give examples of SDMM schemes from
the literature. In Section III-A we present our linear SDMM
framework and define the decodability and security of such

schemes. Additionally, we connect the properties of the
scheme with some coding-theoretic notions, which showcases
the usefulness of using coding theory to study SDMM.
In Section III-B we show a condition for the security of linear
SDMM schemes based on the coding-theoretic properties
of the scheme. In Section III-C we give some fundamental
bounds on the recovery threshold of linear SDMM schemes.
In particular, we focus on linear SDMM schemes coming from
maximum distance separable (MDS) codes. In Section III-D
we give examples of linear SDMM schemes based on the
SDMM schemes in the literature. In Section IV we show how
interleaved codes and collaborative decoding can be used to
treat Byzantine workers in linear SDMM schemes.

II. PRELIMINARIES

We write [n] = {1, . . . , n}. We consider scalars, vectors,
and matrices over a finite field Fq with q elements. The group
of units of Fq is denoted by F×q = Fq \ {0}. Vectors in Fn

q

are considered to be row vectors. If G is a matrix, then G≤m

and G>m denote the submatrices with the first m rows and
the rest of the rows, respectively. Furthermore, if I is a set
of indices, then GI is the submatrix of G with the columns
indexed by I. We denote random variables with bold symbols,
i.e., the random variable corresponding to A will be denoted
by A.

Throughout, we consider linear codes, i.e., linear subspaces
of Fn

q . We denote the dual of a linear code C by C⊥. The
support of a linear code C ⊆ Fn

q is defined as supp(C) =⋃
c∈C supp(c), where supp(c) = {i ∈ [n] | ci ̸= 0}. We say

that C is of full-support if supp(C) = [n]. A linear code C
is said to be maximum distance separable (MDS) if it has
minimum distance dC = n− dim C + 1.

A. Star Product Codes

The star product is a way of combining two linear codes
to form a new linear code. Such a construction has been used
in, e.g., code-based cryptography and multiparty computation.
A good survey on star products is given in [28].

Definition 1 (Star Product Code): Let C and D be linear
codes of length n over Fq . The star product of these codes is
defined as

C ⋆D = span{c ⋆ d | c ∈ C, d ∈ D},

where (c1, . . . , cn) ⋆ (d1, . . . , dn) = (c1d1, . . . , cndn).
Notice that the star product of codes is defined as the linear

span of the elementwise products of codewords. The span is
taken so that the resulting code is linear. While the parameters
of a star product code are not known in general, we have
a Singleton type bound for the minimum distance of a star
product of linear codes.

Proposition 1 (Product Singleton Bound [28]): The star
product code C ⋆D has minimum distance

dC⋆D ≤ max{1, n− (dim C + dimD) + 2}

when C and D are linear codes of length n.
A bound for the dimension of a star product code is given

by the following result from [29].
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Proposition 1: Let C,D be full-support codes of length n.
If at least one of the codes is MDS, then

dim C ⋆D ≥ min{n, dim C + dimD − 1}.

B. Algebraic Geometry Codes

In this section, we present some basic notation and con-
cepts on algebraic geometry codes and Reed–Solomon codes.
Algebraic geometry codes are linear codes coming from pro-
jective smooth irreducible algebraic curves and their associated
algebraic function fields. These concepts are included for the
interested reader as they are needed for Section III-D but are
not needed for the rest of the paper. We follow the presentation
in [30] and [31].

Let F be an algebraic function field over Fq of genus g,
and PF the set of places of F . A divisor of F is the formal
sum

D =
∑

P∈PF

nP P,

where nP ∈ Z and nP ̸= 0 for finitely many P ∈ PF .
We write supp(D) = {P ∈ PF : nP ̸= 0} and deg D =∑

P∈PF
nP deg P . We define D ≥ 0 if nP ≥ 0 for all

P ∈ PF . The principal divisor of z ∈ F \ {0} is

(z) =
∑

P∈PF

vP (z)P,

where vP (z) is the valuation of z at P . The Riemann–Roch
space of a divisor D is

L(D) = {z ∈ F \ {0} : (z) + D ≥ 0} ∪ {0}.

This space is a vector space of finite dimension, denoted by
ℓ(D). Let P = {P1, . . . , Pn} be a set of distinct rational
places. Assume that supp(D) ∩ P = ∅. We define the linear
map evP : L(D) → Fn

q by

evP(z) = (z(P1), . . . , z(Pn)).

The algebraic geometry code of places P and divisor D is

CL(P, D) = evP(L(D)).

We may consider the star product of algebraic geometry
codes. From the definition, it is clear that

CL(P, D1) ⋆ CL(P, D2) ⊆ CL(P, D1 + D2).

Furthermore, if deg D1 ≥ 2g + 1 and deg D2 ≥ 2g, then the
above holds with equality [30].

As a special case, we consider the rational function field
Fq(x). Let P∞ be the pole of x, and let P = {P1, . . . , Pn}
be a set of rational places not containing P∞. We define the
Reed–Solomon code as CL(P, D), where D = (k − 1)P∞
for k ≤ n. The function xi is in L(D) if and only if
(xi) + D ≥ 0, i.e., if 0 ≤ i ≤ k − 1. Therefore, L(D) =
{f(x) ∈ Fq[x] : deg f(x) < k} = Fq[x]<k. This leads to the
representation

RSk(α) = {(f(α1), . . . , f(αn)) | f(x) ∈ Fq[x]<k},

where Pi = Px−αi . It is well-known that RSk(α) is an
[n, k] MDS code. Furthermore, we define the generalized

Reed–Solomon codes as GRSk(α, ν) = ν ⋆ RSk(α) for some
vector ν ∈ (F×q )n. As F has genus g = 0, we may use the
above to get

RSk1(α) ⋆ RSk2(α) = RSmin{n,k1+k2−1}(α).

We notice that the Reed–Solomon codes satisfy the inequali-
ties of Proposition 1 and Proposition 2 with equality.

C. Interleaved Codes

Interleaved codes have been used to correct burst errors in
a stream of codewords in many applications. Burst errors are
errors where multiple consecutive symbols are affected instead
of single symbol errors distributed arbitrarily. These concepts
are needed for Section IV.

Definition 2 (Homogeneous Interleaved Codes): Let C be a
linear code over the field Fq . Then the ℓ-interleaved code of
C is the code

IC(ℓ) =


c1

...
cℓ

 : ci ∈ C ∀i ∈ [ℓ]

 .

The codewords in an interleaved code are matrices, where
each row is a codeword in the code C. Instead of the Hamming
weight as the measure of the size of an error, the column
weight is used. The column weight of a matrix is defined to
be the number of nonzero columns.

When many codewords need to be transmitted, they can
be sent such that the first symbol of each codeword is sent,
then the second symbol of each codeword, and so on. If a
burst error occurs, then multiple codewords are affected, but
only a small number of symbols are affected in any particular
codeword. This transforms the burst error into single symbol
errors in the individual codewords, which means that regular
error correction algorithms can be used to correct up to half
the minimum distance of errors.

Even more efficient error correction algorithms can be
performed for interleaved codes by considering collaborative
decoding, where all of the codewords in the interleaved code
are considered at the same time. This is advantageous since
the error locations in each of the codewords are the same.
Collaborative decoding algorithms have been studied in [32]
and [33] and more recently in [34]. Collaborative decoding
algorithms can achieve beyond half the minimum distance
decoding by correcting the errors as a system of simultaneous
equations.

D. Matrix Codes

In this section, we will define matrix codes, which will
allow us to consider linear codes whose symbols are matrices
of some specified size over the field instead of scalars. This
notion can be used to study the algebraic structure of SDMM.

Definition 3 (Matrix Code): Let C be a linear code of
length n over Fq . Then the t× s matrix code of C is

Matt×s(C) = {(C1, . . . , Cn) : Ci ∈ Ft×s
q , Cαβ ∈ C}.

Here Cαβ = (Cαβ
1 , . . . , Cαβ

n ) is the vector obtained by taking
the entry indexed by (α, β) ∈ [t]× [s] in each of the matrices
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Ci, for i ∈ [n]. Such a code is a linear code in the ambient
space Matt×s(Fq)n.

We consider the weight of these matrix tuples as the
number of nonzero matrices. These objects can be thought
of as matrices over the code C, which motivates the nota-
tion. Our definition is essentially the same as homogeneous
ts-interleaved codes since the matrices contain ts entries.
However, this representation leads to some nice multiplica-
tive properties coming from the multiplication of matrices.
We define the star product of two such tuples as

C ⋆ D = (C1D1, . . . , CnDn)

whenever C ∈ Matt×s(C) and D ∈ Mats×r(D). Similarly,
we define the star product of the associated spaces by

Matt×s(C) ⋆ Mats×r(D)
= span{C ⋆ D | C ∈ Matt×s(C), D ∈ Mats×r(D)}.

The following lemma will show that the star product of
matrix codes is the matrix code of the star product.

Lemma 1: Let C and D be linear codes of length n. Then

Matt×s(C) ⋆ Mats×r(D) = Matt×r(C ⋆D).

Proof: Let α ∈ [t] and γ ∈ [r]. By definition of matrix
multiplication,

(C ⋆ D)αγ
i =

s∑
β=1

Cαβ
i Dβγ

i .

Therefore, by linearity,

(C ⋆ D)αγ =
s∑

β=1

Cαβ ⋆ Dβγ ∈ C ⋆D,

since Cαβ ∈ C and Dβγ ∈ D. Hence, C⋆D ∈ Matt×r(C⋆D).
By linearity of Matt×r(C ⋆D), we get that

Matt×s(C) ⋆ Mats×r(D) ⊆ Matt×r(C ⋆D).

Fix indices α ∈ [t] and γ ∈ [r], and codewords c ∈ C and
d ∈ D. Let β ∈ [s] and define C ∈ Matt×s(C) by setting
the entries of Ci to be zeros except Cαβ

i = ci. Furthermore,
define D ∈ Mats×r(D) by setting the entries of Di to be
zeros except Dβγ

i = di. Then,

(C ⋆ D)αγ
i = (C1D1)αγ = cidi

so (C ⋆ D)αγ = c ⋆ d and the other entries of C ⋆ D are zero
vectors. By taking linear combinations of such products we
can achieve all codewords in Matt×r(C ⋆D), since each entry
of such matrices can be represented as a sum of simple star
products of the form c ⋆ d. □

We will write just Mat(C) if the dimensions are clear from
context.

E. Examples of SDMM Schemes

In this section, we recall some examples of SDMM schemes
by adopting the presentation typically used in the literature.
Later, we will show how these schemes arise as special cases
from the general framework proposed in this paper.

The goal is to compute the matrix product of the matrices
A ∈ Ft×s

q and B ∈ Fs×r
q using a total of N workers while

protecting against any X colluding workers. Furthermore,
we denote by S the number of stragglers and by E the number
of Byzantine workers. The recovery threshold is defined as the
number of responses from workers that are required to decode
the intended product. In particular, the recovery threshold is
the minimal integer R such that any R responses are enough to
recover the product, but in some cases, fewer than R responses
may suffice.

The schemes are based on different matrix partitioning
techniques. The most general matrix partitioning is the grid
partitioning, which partitions the matrices to mp and np pieces
such that

A =

A11 · · · A1p

...
. . .

...
Am1 · · · Amp

 , B =

B11 · · · B1n

...
. . .

...
Bp1 · · · Bpn

 .

These pieces are obtained by splitting the matrices evenly into
the smaller submatrices. The product of these matrices can
then be expressed as

AB =

C11 · · · C1n

...
. . .

...
Cm1 · · · Cmn

 ,

where Cik =
∑p

j=1 AijBjk. Special cases of this include the
inner product partitioning (IPP) and outer product partitioning
(OPP). In IPP the matrices are partitioned into p pieces such
that

A =
(
A1 · · · Ap

)
, B =

B1

...
Bp

 .

Then the product can be expressed as AB =
∑p

j=1 AjBj .
In OPP the matrices are partitioned into m and n pieces,
respectively, such that

A =

A1

...
Am

 , B =
(
B1 · · · Bn

)
.

Then the product can be expressed as

AB =

A1B1 · · · A1Bn

...
. . .

...
AmB1 · · · AmBn

 .

In the next three examples, we will present some
well-known examples from the literature.

Example 1 (Secure MatDot [7]): The secure MatDot
scheme uses the inner product partitioning to split the
matrices into p pieces. Define the polynomials

f(x) =
p∑

j=1

Ajx
j−1 +

X∑
k=1

Rkxp+k−1,

g(x) =
p∑

j′=1

Bj′x
p−j′ +

X∑
k′=1

Sk′x
p+k′−1,

where R1, . . . , RX and S1, . . . , SX are matrices of appropri-
ate size that are chosen uniformly at random over Fq . Let
α1, . . . , αN ∈ F×q be distinct nonzero points and evaluate the
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polynomials f(x) and g(x) at these points to get the encoded
matrices

Ãi = f(αi), B̃i = g(αi).

These encoded matrices can be sent to each worker node.
The workers compute the matrix products C̃i = ÃiB̃i and
return these to the user. The user receives evaluations of the
polynomial h(x) = f(x)g(x) from each worker. Using the
definition of f(x) and g(x) we can write out the coefficients
of h(x) as

h(x) =
p∑

j=1

p∑
j′=1

AjBj′x
p+j−j′−1 + (terms of degree ≥ p).

The degree of h(x) is at most 2p + 2X − 2. Furthermore, the
coefficient of the term xp−1 is exactly the product AB, which
we wish to recover. Using polynomial interpolation we can
compute the required coefficient, given that we have at least
2p+2X − 1 evaluations. Therefore, the recovery threshold of
the secure MatDot code is R = 2p + 2X − 1.

Example 2 (GASP [3]): Similar to Example 1, this scheme
is also based on polynomial evaluation, but the choice of
the polynomials and the evaluation points is more involved.
Additionally, the matrices are partitioned according to the
outer product partitioning. The following example will give
an idea of the general construction described in [3] and [4].

The matrices A ∈ Ft×s
q and B ∈ Fs×r

q are split into
m = n = 3 submatrices with the outer product partitioning.
We wish to protect against X = 2 colluding workers. Define
the polynomials

f(x) = A1 + A2x + A3x
2 + R1x

9 + R2x
12,

g(x) = B1 + B2x
3 + B3x

6 + S1x
9 + S2x

10,

where R1, R2, S1, S2 are matrices of appropriate size that
are chosen uniformly at random over Fq . The exponents are
chosen carefully so that the total number of workers needed is
as low as possible. Let α1, . . . , αN ∈ F×q be distinct nonzero
points and evaluate the polynomials f(x) and g(x) at these
points to get the encoded matrices

Ãi = f(αi), B̃i = g(αi).

These encoded matrices can be sent to each worker node.
The workers compute the matrix products C̃i = ÃiB̃i and
send these to the user. The user receives evaluations of the
polynomial h(x) = f(x)g(x) from each worker. Using the
definition of f(x) and g(x) we can write out the coefficients
of h(x) as

h(x) = A1B1 + A2B1x + A3B1x
2 + A1B2x

3 + A2B2x
4

+ A2B3x
5 + A1B3x

6 + A2B3x
7 + A3B3x

8

+ (terms of degree ≥ 9).

We notice that the coefficients of the first 9 terms are exactly
the submatrices we wish to recover. We need 18 responses
from the workers, since h(x) has 18 nonzero coefficients,
provided that the corresponding linear equations are solvable.
In this case, the recovery threshold is R = 18.

The general choice of the exponents in the polynomials f(x)
and g(x) is explained in [4]. A so-called degree table is used
to analyze the recovery threshold of the scheme. Furthermore,
the choice of the evaluation points is not as simple as with the
secure MatDot code, but it was shown that a suitable choice
can be made in a large enough field [3].

Example 3 (SDMM Based on DFT [10]): In the SDMM
scheme based on the discrete Fourier transform, the matrices
are split into p = N − 2X pieces with the inner product
partitioning. Define the functions

f(x) =
p∑

j=1

Ajx
j−1 +

X∑
k=1

Rkxp+k−1,

g(x) =
p∑

j′=1

Bj′x
−j′+1 +

X∑
k′=1

Sk′x
−p−X−k′+1,

where R1, . . . , RX and S1, . . . , SX are matrices of appropriate
size that are chosen uniformly at random over Fq . Let ζ ∈ F×q
be a primitive N th root of unity. The functions f(x) and g(x)
are evaluated at the points 1, ζ, ζ2, . . . , ζN−1 and the results
are sent to the workers such that worker i ∈ [N ] receives the
encoded matrices

Ãi = f(ζi−1), B̃i = g(ζi−1).

The workers compute the matrix products of the encoded
matrices and return the results C̃i = ÃiB̃i. The user receives
evaluations of the function

h(x) = f(x)g(x) =
p∑

j=1

AjBj + (non-constant terms).

The other terms have degree in [−N +1, N−1], which means
that the average of the responses equals the constant term,
since

∑N
i=1 ζs = 0 for N ∤ s. Hence, the product AB can

be computed as the average of all the responses. This means
that no stragglers can be tolerated since all of the responses
are needed. Furthermore, the field has to be such that the
appropriate N th root of unity exists.

III. LINEAR SDMM

Many SDMM schemes in the literature use concepts from
coding theory and secret sharing but are usually presented as
concrete constructions based on polynomial interpolation. This
makes it easy to argue that the schemes compute the desired
matrix product, but the comparison of different schemes is
difficult. A more general and abstract description can provide
simpler comparisons between SDMM schemes, as well as
allow for constructions that are not based on any particular
SDMM scheme while losing some detail about why each
scheme works the way they do. In this section, we present a
general linear SDMM framework that can be used to describe
the earlier SDMM schemes compactly. This scheme uses the
common elements of each of the examples presented in the
previous section. Furthermore, we prove a general security
result for linear SDMM schemes and give some bounds on
the recovery threshold.
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A. A General Linear SDMM Framework via Star Products

A linear SDMM scheme over the field Fq can be constructed
in general with the following formula. Here N denotes the
total number of workers, X the designed security parameter,
and m, p, n partitioning parameters.
• The input matrices A ∈ Ft×s

q and B ∈ Fs×r
q are split into

submatrices A1, . . . , Amp and B1, . . . , Bnp using the grid
partitioning and some enumeration of the partitions.

• Matrices R1, . . . , RX and S1, . . . , SX are drawn uni-
formly at random such that the matrices Rk and Sk′

have the same dimensions as the partitions of A and B,
respectively.

• By combining the partitions and the random matrices we
get the following tuples of matrices

(A1, . . . , Amp, R1, . . . , RX),
(B1, . . . , Bnp, S1, . . . , SX)

of length mp+X and np+X , respectively. These tuples
are encoded using linear codes CA and CB of length
N . Let F and G be suitable generator matrices of size
(mp + X)×N and (np + X) × N for CA and CB ,
respectively. The encoded matrices are then

Ã = (Ã1, . . . , ÃN ) = (A1, . . . , Amp, R1, . . . , RX)F,

B̃ = (B̃1, . . . , B̃N ) = (B1, . . . , Bnp, S1, . . . , SX)G.

• Each worker is sent one component of each vector, i.e.,
worker i ∈ [N ] receives matrices Ãi and B̃i. The worker
then computes ÃiB̃i and sends the result to the user.
In coding-theoretic terms, this can be interpreted as the
star product of the vectors Ã and B̃. Hence, we may write

C̃ = Ã ⋆ B̃ = (Ã1B̃1, . . . , ÃN B̃N ).

• The user computes a linear combination of the responses
C̃i to obtain the product AB. Not all of the responses
may be needed, which means that the scheme can tolerate
straggling workers.

By definition of matrix codes in Definition 3 we have that

Ã ∈ Mat(CA), B̃ ∈ Mat(CB)

since these tuples were obtained by multiplication by the
generator matrices. Therefore,

C̃ = Ã ⋆ B̃ ∈ Mat(CA ⋆ CB)

by Lemma 1. However, C̃ does not generally consist of
elementary products cA ⋆ cB for cA ∈ CA and cB ∈ CB . As Ã
can be any element in Mat(CA) and B̃ can be any element
of Mat(CB), we can achieve all elements of Mat(CA ⋆CB) as
linear combinations of the responses C̃ = Ã⋆B̃ by Lemma 1.
Hence, the smallest linear code that the responses live in is
Mat(CA ⋆ CB), even though the responses do not necessarily
form a linear subspace.

We will denote the encoding of the matrix and the encoding
of the random padding by

A′ = (A1, . . . , Amp)F≤mp, R′ = (R1, . . . , RX)F>mp,

B′ = (B1, . . . , Bnp)G≤np, S′ = (S1, . . . , SX)G>np.

Then we have that Ã = A′ + R′ and B̃ = B′ + S′. This
corresponds to the decomposition

CA = Cenc
A + Csec

A ,

CB = Cenc
B + Csec

B ,

where Cenc
A and Cenc

B are generated by F≤mp and G≤np,
respectively, and Csec

A and Csec
B are generated by F>mp and

G>np, respectively. These codes denote the encoding of the
matrices and the security part, respectively.

Next, we define what the last step of the linear SDMM
framework means, i.e., how the linear combinations of the
responses give us the product AB. The decodability of SDMM
schemes has previously been defined by stating that the
product AB can be computed using some unknown function.
Here we require that the function is linear since we are in the
linear SDMM setting.

Definition 4: Let K ⊆ [N ]. A linear SDMM scheme is
K-decodable if there exist matrices ΛKi ∈ Fm×n

q such that

AB =
∑
i∈K

ΛKi ⊗ C̃i,

for all matrices A and B and all choices of the random
matrices Rk and Sk′ . Here, ⊗ denotes the Kronecker product.
In particular, we say that a linear SDMM scheme is decodable
if it is [N ]-decodable. In this case we write Λi = Λ[N ]

i .
Notice that we do not allow Λi to depend on the random

matrices. The reason for this is that the decoding process
should not involve expensive computations by the user. The
following lemma will show which responses are required for
decoding.

Lemma 2: Consider a decodable linear SDMM scheme and
an information set I ⊆ [N ] of CA ⋆ CB . Then the linear
SDMM scheme is I-decodable. In particular, the decoding
can be done from any N−D + 1 responses, where D is the
minimum distance of CA ⋆ CB .

Proof: Let H be a generator matrix for CA ⋆ CB and
I ⊆ [N ] an information set of CA ⋆ CB . Then,

C̃ = C̃I(HI)−1H,

i.e., the whole response can be computed only from the
responses from an information set I. In particular, there are
coefficients λIij such that

C̃i =
∑
j∈I

λIijC̃j .

Thus,

AB =
∑

i∈[N ]

Λi ⊗
( ∑

j∈I
λIijC̃j

)
=

∑
j∈I

( ∑
i∈[N ]

λIijΛi

)
︸ ︷︷ ︸

=ΛIj

⊗ C̃j .

Hence, the product AB can be computed from just the
responses from an information set.

Let K ⊆ [N ] be such that |K| ≥ N−D + 1. Then the
projection from CA ⋆ CB to the coordinates indexed by K
is injective by definition of minimum distance. Hence, K
contains an information set, so the product can be decoded
from the responses of K. □
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In addition to being able to decode the result from any
N−D +1 responses, there is also a set of N −D indices that
do not contain an information set. Therefore, it is natural to
define the recovery threshold of a linear SDMM scheme as
R = N−D + 1. This means that the scheme can tolerate at
most D− 1 stragglers. If CA ⋆ CB is an [N, K, D] MDS code,
then we have that R = K, which is minimal by the Singleton
bound.

In [9] the authors show that using their secure MatDot
construction it is possible to recover the result from a smaller
number of fixed workers. This does not contradict our defini-
tion of recovery threshold, since we require that the result can
be recovered from any R responses from the workers.

In addition to decodability, we define the security of linear
SDMM schemes.

Definition 5: An SDMM scheme is said to be secure
against X-collusion (or X-secure) if

I(A, B; ÃX , B̃X ) = 0

for all X ⊆ [N ], |X | ≤ X , and all distributions of A and B.
The above definition is the same that has previously been

considered in the literature with the exception that the distribu-
tion of A and B has not been explicitly mentioned. We require
that the scheme is secure for all possible distributions to
avoid some uninteresting edge cases. In particular, any SDMM
scheme is secure if we only look at distributions such that
H(A) = H(B) = 0. In practice, we will work with uniformly
distributed A and B, since this maximizes the entropy.

This construction of linear SDMM schemes is quite abstract
as it does not provide a general way of constructing new
SDMM schemes from any linear codes. However, it provides a
robust and general way to study different SDMM schemes and
prove general results. The security properties are determined
by the codes Csec

A and Csec
B as the following lemma and

Proposition 3 show.
Lemma 3: A decodable linear SDMM scheme is not

min{dim Csec
A + 1, dim Csec

B + 1}-secure.
Proof: Without loss of generality, let us consider an

information set I ⊆ [N ] of CA. Then |I| = dim CA. As the
scheme has to be decodable, we must have that dim CA >
dim Csec

A , since otherwise the encoded pieces would only be
determined by randomness. Consider a set X ⊆ I such that
|X | = dim Csec

A + 1. Thus, the columns of F>mp
X are linearly

dependent, but the columns of FX are linearly independent.
Therefore,

I(A; ÃX ) = H(ÃX )−H(ÃX | A)

= H(ÃX )−H(A′
X + R′

X | A)

= H(ÃX )−H(R′
X ) > 0.

Here we used the definition of mutual information, the decom-
position of Ã = A′ + R′, the fact that A′ is completely
determined by A, and R′ is independent of A. Finally, ÃX is
uniformly distributed, but R′

X is not. As |X | = dim Csec
A + 1,

the scheme is not secure against (dim Csec
A + 1)-collusion. □

Now, we can show that the linear codes CA and CB have
the expected dimensions.

Proposition 2: The codes CA and CB of a decodable and
X-secure linear SDMM scheme have dimensions mp+X and
np + X , respectively.

Proof: The generator matrix F has dimensions (mp +
X)×N , so we need to show that F has full row rank.

If the X × N matrix F>mp does not have full row rank,
then dim Csec

A ≤ X − 1 so by Lemma 3 the scheme is not
X-secure. Hence, F>mp has full row rank.

Assume that F does not have full row rank. Then there is
a matrix A and random matrices Rk such that

Ã = (A1, . . . , Amp, R1, . . . , RX)F = 0.

We must have that A ̸= 0, since otherwise F>mp would not
have full row rank. Let us choose B such that AB ̸= 0. Then,
C̃ = Ã ⋆ B̃ = 0, but from the decodability we get that

0 ̸= AB =
∑

i∈[N ]

Λi ⊗ C̃i = 0.

Hence, F has full row rank. A similar argument shows that
G has full row rank. □

We can now write the earlier decomposition as

CA = Cenc
A ⊕ Csec

A ,

CB = Cenc
B ⊕ Csec

B ,

where dim Cenc
A = mp, dim Cenc

B = np, and dim Csec
A =

dim Csec
B = X . By projecting to supp(CA ⋆CB) = supp(CA)∩

supp(CB), we may assume that CA and CB are full-support
codes since this does not affect the properties of the star
products. Furthermore, Csec

A and Csec
B must have full support

since otherwise there is no randomness added to one of the
encoded pieces.

Remark 1: The communication costs incurred by the linear
SDMM framework can be computed as follows. Here the
costs are measured as the number of Fq symbols. The user
needs to upload N matrices of size t

m × s
p and N matrices

of size s
p ×

r
n for a total upload cost of N( ts

mp + sr
pn ). The

user needs to download R matrices of size t
m × r

n for a total
download cost of R tr

mn . The total communication cost is then
N( ts

mp + sr
pn )+R tr

mn . As N can be made as small as R, given
some fixed matrix partitioning m, p, n the communication
cost is essentially determined by the recovery threshold R as
well as the matrix dimensions t, s, r. The parameters m, n, p
can be optimized to find a suitable compromise between
communication and computation.

B. Security of Linear SDMM Schemes

The security of linear SDMM comes from the fact that the
schemes implement a secret sharing scheme such as the one
introduced by Shamir in [35]. The following proposition is
a well-known result in secret sharing and will highlight the
usefulness of the linear SDMM framework since the security
of the schemes can be proven by checking the properties of
the codes Csec

A and Csec
B . A version of this theorem has been

stated in, e.g. [36]. Recall that a matrix is the generator matrix
of an MDS code if and only if all of its maximal submatrices
are invertible.
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Proposition 3: A linear SDMM scheme is X-secure if Csec
A

and Csec
B are MDS codes.

Proof: Let X ⊆ [N ], |X | = X , be a set of X colluding
nodes. Writing the generator matrix F as

F =
(

F≤mp

F>mp

)
allows us to write the shares the colluding nodes have about
the encoded matrix Ã as

ÃX = (A1, . . . ,Amp)F
≤mp
X︸ ︷︷ ︸

=A′
X

+ (R1, . . . ,RX)F>mp
X︸ ︷︷ ︸

=R′X

.

If Csec
A is an MDS code, then any X×X submatrix of F>mp is

invertible. As (R1, . . . ,RX) is uniformly distributed, we get
that R′

X = (R1, . . . ,RX)F>mp
X is also uniformly distributed.

Therefore,

0 ≤ I(A; ÃX ) = H(ÃX )−H(ÃX | A)

= H(ÃX )−H(A′
X + R′

X | A)

= H(ÃX )−H(R′
X ) ≤ 0,

since a uniform distribution maximizes the entropy. Here we
used the fact that A′

X is completely determined by A. The
idea is that the confidential data of A is hidden by adding
uniformly random noise. A similar argument works for the
matrix B. Finally, we get that

0 ≤ I(A, B; ÃX , B̃X )

= I(A, B; ÃX ) + I(A, B; B̃X | ÃX )

≤ I(A; ÃX ) + I(B; B̃X ) = 0.

The inequality follows from ÃX being conditionally indepen-
dent of B given A, and B̃X being conditionally independent
of ÃX and A given B. This shows that the information
leakage to any X colluding workers is zero. Hence, the scheme
is X-secure. □

The next question is whether the MDS property of the codes
Csec

A and Csec
B is needed for the security. If we did not require

that the security property has to hold for all distributions of
A and B, then the MDS property would not be needed if
H(A) = 0 or H(B) = 0, since there is no information to
leak in the first place. The following lemma will show that
under certain conditions, the codes need to be MDS.

Lemma 4: Let d⊥A and d⊥B be the minimum distances of
C⊥A and C⊥B . If X ≤ min{d⊥A, d⊥B}−1, then the linear SDMM
scheme is X-secure if and only if Csec

A and Csec
B are MDS

codes.
Proof: If Csec

A and Csec
B are MDS codes, then the security

is clear by Proposition 3. Hence, assume that the scheme is
X-secure. Let A be uniformly distributed and X ⊆ [N ],
|X | = X , be a set of colluding workers. We have that any
d⊥A − 1 columns of F are linearly independent, so ÃX is
uniformly distributed. Therefore,

I(A; ÃX ) = H(ÃX )−H(R′
X ) = 0

if and only if H(R′
X ) = H(ÃX ), i.e., if and only if R′

X is
uniformly distributed. Thus, F>mp

X is invertible and Csec
A is an

MDS code. Similarly, we get that Csec
B is MDS. □

The above lemma is useful when studying linear SDMM
schemes constructed from MDS codes.

Corollary 1: If CA and CB are MDS codes, then the linear
SDMM scheme is X-secure if and only if Csec

A and Csec
B are

MDS codes.
Proof: By properties of MDS codes, we get that d⊥A =

N − (N − (mp + X)) + 1 = mp + X + 1, so X ≤ d⊥A − 1 =
mp+X . Similarly, X ≤ d⊥B−1 = np+X . The result follows
from Lemma 4. □

C. Bounds for Linear SDMM

We will only consider linear SDMM schemes which are
decodable and secure against X-collusion. As an immediate
consequence of Proposition 1 (Theorem 2 in [28]) we get the
following lower bound for the recovery threshold for a linear
SDMM scheme.

Theorem 1: A linear SDMM scheme has recovery threshold

R ≥ min{N, (m + n)p + 2X − 1}.

Proof: We define R = N−D + 1, where D is the
minimum distance of the code CA ⋆ CB . The codes CA and
CB have length N and dimensions mp + X and np + X ,
respectively. Therefore,

D ≤ max{1, N − (mp + X)− (np + X) + 2}

by Proposition 1. Thus,

R = N−D + 1 ≥ min{N, (m + n)p + 2X − 1}. □

We see that a linear SDMM scheme can achieve a recovery
thresholdlower than(m+n)p+2X−1onlywhenR = N bythe
above theorem, i.e., when the scheme cannot tolerate stragglers.
Therefore, we get the following theorem as a corollary.

Theorem 2: A linear SDMM scheme that can tolerate strag-
glers has recovery threshold

R ≥ (m + n)p + 2X − 1.

Another approach uses Proposition 1 (Theorem 7 in [29])
to find another lower bound for the recovery threshold. This
theorem uses the natural security condition of Proposition 3.

Theorem 3: A linear SDMM scheme with MDS codes Csec
A

and Csec
B has recovery threshold

R ≥ mn + max{m, n}p + 2X − 1.

Proof: We can use the decomposition of the codes to
write

CA ⋆ CB = (Cenc
A ⊕ Csec

A ) ⋆ (Cenc
B ⊕ Csec

B )
= Cenc

A ⋆ Cenc
B + Csec

A ⋆ Cenc
B + Cenc

A ⋆ Csec
B + Csec

A ⋆ Csec
B .

Let us consider the linear decoding map given by

C̃ 7→
∑

i∈[N ]

Λi ⊗ C̃i.

By writing C̃ = (A′ + R′) ⋆ (B′ + S′) we get

AB =
∑

i∈[N ]

Λi ⊗ C̃i

=
∑

i∈[N ]

Λi ⊗A′iB
′
i +

∑
i∈[N ]

Λi ⊗ (A′iS
′
i + R′iB

′
i + R′iS

′
i) .
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As this has to hold for all choices of the random matrices,
it has to hold when they are chosen to be zeros. Hence,∑

i∈[N ]

Λi ⊗ (A′iS
′
i + R′iB

′
i + R′iS

′
i) = 0

for all choices of the random matrices. By picking out any
entry of the response matrices, we get a linear map

Dec: CA ⋆ CB → Fm×n
q .

By the rank–nullity theorem,

dim CA ⋆ CB = dim im(Dec) + dim ker(Dec).

From the previous computation and the decomposition of the
codes, we see that

CA ⋆ Csec
B + Csec

A ⋆ Cenc
B = Csec

A ⋆ CB + Cenc
A ⋆ Csec

B

= Csec
A ⋆ Cenc

B + Cenc
A ⋆ Csec

B + Csec
A ⋆ Csec

B ⊆ ker Dec .

Using Proposition 1 we can give a lower bound on the
dimension of ker Dec, since Csec

B is MDS. Thus,

dim ker(Dec) ≥ dim CA ⋆ Csec
B

≥ min{N, (mp + X) + X − 1}.

The minimum cannot be N , since then dim ker(Dec) = N ,
so Dec is the zero map. Hence, the minimum is achieved by
the second term. On the other hand, the output space of Dec
is mn dimensional, since we must be able to produce any
matrix. Combining this with the dimension of ker(Dec) we
get

dim CA ⋆ CB ≥ mn + mp + 2X − 1.

Symmetrically, we get

dim CA ⋆ CB ≥ mn + np + 2X − 1

by switching m and n. These two inequalities give us the
claimed inequality, since R ≥ dim CA ⋆ CB . □

The above bound is well-known for GASP codes coming
from the combinatorics of the degree table [4, Theorem 2].
The security of the GASP codes is proven by constructing
the scheme such that Csec

A and Csec
B are MDS codes. Hence,

we can see the above theorem as a generalization of this result.
We notice that the bound on the recovery threshold given in
Theorem 3 is quite loose in the case where m, n, p > 1 as
seen in the construction in [13]. We do not believe that the
bound in Theorem 3 is tight for all parameters.

Remark 2: The SDMM scheme based on the DFT in [10]
meets the bound in Theorem 3 since it has parameters m =
n = 1 and R = N = p + 2X . Furthermore, the secure
MatDot scheme in [7] meets the bound in Theorem 2 for
linear SDMM schemes that can tolerate stragglers, since it
has parameters m = n = 1 and R = 2p+2X−1. To the best
of our knowledge, these optimality results have not been stated
before. The linear SDMM framework is the first sufficiently
general framework that has been studied and can be used
to show optimality. It is still possible to have schemes that
outperform the DFT or secure MatDot schemes, but these

would have to be nonlinear or otherwise deviate from the given
framework.

Both Theorem 2 and Theorem 3 have the common term
2X in the bound, which gives that the number of colluding
workers is strictly less than half of the number of workers.

Corollary 2: A linear SDMM scheme with MDS codes CA

and CB can tolerate at most X < N
2 colluding workers.

Proof: If CA and CB are MDS codes, then the bound
given in Theorem 3 holds by Corollary 1. Therefore,

N ≥ R ≥ mn + max{m, n}p + 2X − 1 ≥ 2X + 1 > 2X

as m, n, p ≥ 1. □

D. Constructing SDMM Schemes Using the Framework

The examples of SDMM schemes presented in Section II-E
can be described using the linear SDMM framework by
describing the partitioning of the matrices, the codes CA and
CB , and the decoding process. Furthermore, the security of the
schemes can be proven using Proposition 3.

Example 4 (Secure MatDot): The secure MatDot scheme
can be described using the linear SDMM framework as
follows. The matrices A ∈ Ft×s

q and B ∈ Fs×r
q are partitioned

into p pieces using the inner product partitioning, i.e., m =
n = 1 in the grid partitioning. The generator matrices F and
G are defined as (p + X)×N Vandermonde matrices on the
distinct evaluation points α1, . . . , αN ∈ F×q :

F =


1 1 · · · 1
α1 α2 · · · αN

α2
1 α2

2 · · · α2
N

...
...

. . .
...

αp+X−1
1 αp+X−1

2 · · · αp+X−1
N

 ,

G =



αp−1
1 αp−1

2 · · · αp−1
N

...
...

. . .
...

α1 α2 · · · αN

1 1 · · · 1
αp

1 αp
2 · · · αp

N
...

...
. . .

...
αp+X−1

1 αp+X−1
2 · · · αp+X−1

N


.

These matrices generate Reed–Solomon codes of dimen-
sion p + X and length N on the evaluation points α =
(α1, . . . , αN ). We denote this by CA = RSp+X(α) and
CB = RSp+X(α). It is easy to see that this produces the
same encoding as the general description of the secure MatDot
scheme. It was noted in [29] that the resulting star product
code is then CA ⋆ CB = RS2p+2X−1(α), provided that N ≥
2p + 2X − 1. The decoding can be done by computing∑

i∈[N ]

[λ(p−1)
i ]⊗ C̃i =

∑
i∈[N ]

λ
(p−1)
i C̃i

=
∑

i∈[N ]

λ
(p−1)
i h(αi)

= h(p−1) = AB,
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where λ
(p−1)
i is the coefficient of xp−1 in the ith Lagrange

interpolation polynomial on the evaluation points α. Here h(x)
is the same product polynomial that is defined in Example 1
and h(p−1) = AB is the coefficient of xp−1 in that polynomial.
We have the decomposition

CA = CB = RSp(α)⊕GRSX(α, αp),

where αp = (αp
1, . . . , α

p
N ). Hence, the scheme is X-secure

by Proposition 3 as GRSX(α, αp) is MDS. The recovery
threshold of this scheme is R = 2p+2X−1, which meets the
bound in Theorem 2. Notice that the codes CA and CB are the
same, but we use different generator matrices in the encoding
phase. This shows that the choice of the generator matrices is
important.

Example 5 (GASP Code): We will continue Example 2 to
show how the GASP scheme can be described using lin-
ear SDMM. The matrices A ∈ Ft×s

q and B ∈ Fs×r
q are

partitioned to m = n = 3 pieces using the outer product
partitioning, i.e., p = 1 in the grid partitioning. The generator
matrices are determined by the evaluation points α and the
exponents in the polynomials f(x) and g(x). By choosing
the same polynomials as in Example 2 we get the generator
matrices

F =


1 1 · · · 1
α1 α2 · · · αN

α2
1 α2

2 · · · α2
N

α9
1 α9

2 · · · α9
N

α12
1 α12

2 · · · α12
N

 ,

G =


1 1 · · · 1
α3

1 α3
2 · · · α3

N

α6
1 α6

2 · · · α6
N

α9
1 α9

2 · · · α9
N

α10
1 α10

2 · · · α10
N

 .

The star product of the codes CA and CB is generated by

H =


1 1 · · · 1
α1 α2 · · · αN

α2
1 α2

2 · · · α2
N

...
...

. . .
...

α22
1 α22

2 · · · α22
N

 ,

where the exponents of the evaluation points are sums of the
exponents of f(x) and g(x), i.e.,

η = (0, 1, 2, . . . , 12, 15, 18, 19, 21, 22).

By setting N = 18, we have that H is an 18 × 18 matrix.
The evaluation points α are chosen such that H is invertible
and that Csec

A and Csec
B are MDS codes. This can be done by

utilizing the Schwartz–Zippel lemma over a large enough field.
Thus, the scheme is X-secure by Proposition 3.

We can reconstruct AB by computing linear combinations
of the responses. In particular, by setting

Λi =

(H−1)i,1 (H−1)i,4 (H−1)i,7

(H−1)i,2 (H−1)i,5 (H−1)i,8

(H−1)i,3 (H−1)i,6 (H−1)i,9



we can compute the linear combination∑
i∈[N ]

Λi ⊗ C̃i

=
∑

i∈[N ]

C̃i(H−1)i,1 C̃i(H−1)i,4 C̃i(H−1)i,7

C̃i(H−1)i,2 C̃i(H−1)i,5 C̃i(H−1)i,8

C̃i(H−1)i,3 C̃i(H−1)i,6 C̃i(H−1)i,9


=

A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3

 = AB.

Here we utilize the equality

(A1B1, A2B1, . . . , A3B3, . . . ) = (C̃1, . . . , C̃N )H−1

which comes from the definition of the polynomial h(x) in
Example 2.

Example 6 (SDMM Based on DFT): The SDMM scheme
based on DFT that was first presented in [10] uses the inner
product partitioning to partition the matrices to p = N − 2X
pieces. The generator matrices can be expressed as

F =


1 1 · · · 1
1 ζ · · · ζN−1

1 ζ2 · · · ζ2(N−1)

...
...

. . .
...

1 ζp+X−1 · · · ζ(p+X−1)(N−1)

 ,

G =



1 1 · · · 1
1 ζ−1 · · · ζ−(N−1)

...
...

. . .
...

1 ζ−(p−1) · · · ζ−(p−1)(N−1)

1 ζ−(p+X) · · · ζ−(p+X)(N−1)

...
...

. . .
...

1 ζ−(p+2X−1) · · · ζ−(p+2X−1)(N−1)


.

These follow directly from the general description in Exam-
ple 3. From the generator matrices, we can see the
decompositions

CA = RSp(α)⊕GRSX(α, αp)
= RSp+X(α)

CB = RSp(α−1)⊕GRSX(α−1, α−(p+X))
= GRSp+X(α, α−p),

where α = (1, ζ, ζ2, . . . , ζN−1) and ζ is a primitive N th root
of unity. Furthermore, αk = (1, ζk, ζ2k, . . . , ζk(N−1)). The
star product of these codes is FN

q , so the recovery threshold
is R = N = p + 2X , which is below the bound described in
Theorem 2. This is because the scheme is not able to tolerate
stragglers. On the other hand, the scheme is able to reach the
bound in Theorem 3.

Example 7 (Hermitian Curve): We shall consider an exam-
ple coming from algebraic geometry codes. In particular, let us
consider the Hermitian function field H2 = F4(x, y) defined
by y2 + y = x3. By [31, Lemma 6.4.4] this curve has genus
g = 1 and 9 rational places. Let P1, . . . , P8, P∞ be the rational
places, where P∞ is the common pole of x and y and P1 the
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zero of y, and define P = {P2, . . . , P8}. Define the divisors
F = G = 3P∞ and the length N = 7 algebraic geometry
codes CA = CL(P, F ) and CB = CL(P, G). The star product
code is given by

CA ⋆ CB = CL(P, F + G)

using [30, Corollary 6], since deg F = deg G = 3 ≥
2g + 1. The generator matrices can be constructed by con-
sidering the Riemann–Roch spaces L(F ) and L(G), which
have bases {1, x, y}. Furthermore, L(F + G) has basis
{1, x, y, x2, xy, x3}. By considering the defining equation,
we may consider the basis {1, x, y, x2, xy, y2}, which is
obtained as products of the bases of L(F ) and L(G).

The matrices A ∈ Ft×s
4 and B ∈ Fs×r

4 are partitioned to
p = 2 pieces using the inner product partitioning. We protect
against X = 1 colluding workers. The generator matrices are
defined as the generator matrices of CA and CB using the bases
described above. Thus,

F = G =

 1 1 · · · 1
x(P2) x(P3) · · · x(P8)
y(P2) y(P3) · · · y(P8)

 .

The encoded pieces are evaluations of A1 + A2x + R1y and
B1 + B2x + S1y at the places P2, . . . , P8. Then we have that
A1B1 is the coefficient of 1 in the responses and A2B2 is the
coefficient of x2. Hence, the product AB = A1B1+A2B2 can
be computed as a linear combination of the responses. The
resulting code CA ⋆ CB has minimum distance D = 1. Hence,
the scheme has a recovery threshold R = N−D + 1 = 7.
Furthermore, the scheme is 1-secure, since Csec

A = Csec
B are

full-support codes.
The secure MatDot scheme with the same parameters, p =

2 and X = 1, has a recovery threshold 2p+2X−1 = 5 and can
tolerate straggling workers. It seems nontrivial to construct a
decodable and X-secure linear SDMM scheme using algebraic
geometry codes.

Algebraic geometry codes have recently been studied in
SDMM with the HerA construction [37], which is based on
the Hermitian curve, as well as in [38] with the PoleGap
construction, which is based on Kummer extensions. Both
of these schemes fit in the linear SDMM framework as they
choose CA and CB to be suitable AG codes.

Recently, constructions using grid partitioning have been
given in the literature with general parameters m, n, p > 1.
The Modular Polynomial scheme presented in [13] follows
a similar linear structure that is given in the linear SDMM
framework, where the matrix partitions are encoded using
suitable linear codes.

Remark 3: Not all SDMM schemes from the literature can
be described using the linear SDMM framework. The field
trace polynomial code presented in [39] uses a large field Fq

while the responses are in some subfields of Fq . This reduces
the download cost since the elements of the smaller fields use
less bandwidth. On the other hand, it is not possible to utilize
this construction over prime fields that may be preferred in
some applications. As the linear SDMM framework does not
account for the different fields it is not possible to describe
the field trace polynomial code using it. However, the linear
structure is still present in the field trace polynomial code.

IV. ERROR CORRECTION IN SDMM

Protecting against straggling workers has been the subject of
research in many SDMM schemes. Another form of robustness
is protection against so-called Byzantine workers, which return
erroneous responses as a result of a fault or on purpose.
This error can occur during the computation or transmission,
but we assume that the number of errors is bounded below
parameter E. Robustness against Byzantine workers has been
studied in the context of private information retrieval (PIR)
and other distributed computation systems such as Lagrange
coded computation in [18].

The difference between straggling workers and Byzantine
workers is that a straggling worker is simple to detect while
noticing erroneous responses from a Byzantine worker is not
as straightforward. In coding-theoretic terms, the straggling
workers correspond to erasures in codes and Byzantine work-
ers correspond to errors. It is well-known that erasures require
one additional code symbol to fix with MDS codes, while
errors typically require two additional code symbols to fix. The
authors of [18] devised a coded computation scheme, where
each additional straggler requires one additional response and
each Byzantine worker requires two additional responses. This
disparity between the costs can be fixed using interleaved
codes by utilizing the structure of the error patterns.

A. Interleaved Codes in SDMM

The responses of the workers in a linear SDMM scheme can
be expressed as C̃i + Zi, where Zi is a potentially nonzero
error matrix and C̃i = ÃiB̃i. We require that the number
of (nonzero) errors is at most E, i.e., there are at most E
Byzantine workers. We may consider each of the individual
codewords of the matrix code by considering a specific matrix
entry, say (α, γ), of the responses. Such a vector is of the form

C̃αγ + Zαγ ∈ FN
q ,

where C̃αγ ∈ CA ⋆ CB . As wt(Zαγ) ≤ E, we may uniquely
correct the errors if D ≥ 2E + 1, where D is the minimum
distance of CA ⋆ CB . Additionally, if there are S stragglers,
then we need D ≥ 2E + S + 1, which corresponds to the
well-known bound for bounded distance decoding.

Let E ⊆ [N ] be the indices of the Byzantine workers. Then
supp Zαγ ⊆ E for all matrix positions (α, γ), which means
that the errors are located in the same places in all codewords.
This corresponds to burst errors in the associated interleaved
code. There are several algorithms for decoding interleaved
codes that can correct up to twice as many errors as non-
interleaved decoders, such as those presented in [33] and [34].
This is achieved by collaborative decoding, where the fact that
the erroneous symbols are in the same place in each codeword
is utilized.

Figure 2 depicts how the responses of a linear SDMM
scheme can be seen as a collection of codewords from the star
product code CA ⋆ CB . Each layer in the diagram depicts the
responses from one of the workers. By collecting the matching
matrix entries to a vector of length N we obtain codewords
in the code CA ⋆ CB with some possible errors. If one of the
workers returns an incorrect result, say worker 2 in Figure 2,
then the errors in the codewords will be in coordinate 2.
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Fig. 2. Diagram depicting the responses from the worker nodes. The
Byzantine worker is depicted by the purple layer and the straggler by the
blurred layer. Each response is a matrix, which is represented as a rectangular
array in the figure. The codewords are the length N vectors formed by
stacking the responses and looking at the corresponding matrix entries. Hence,
a Byzantine worker and stragglers can only affect their own position in the
codewords.

Similarly, if one of the workers fails to return a response
in time, say worker 4 in Figure 2, then the corresponding
coordinate is an erasure in each of the codewords.

Our proposed idea for correcting errors from the responses
of a linear SDMM scheme with at most E Byzantine workers
is the following.
• Compute the syndromes of each of the vectors in the

response matrices and find out which matrix entries
contain errors.

• Choose some subset of ℓ matrix entries which contain
errors and collect the corresponding ℓ vectors as a code-
word of the ℓ-interleaved code.

• Find the error locations from the interleaved code using
an error correction algorithm for the ℓ-interleaved code.

• Treat the erroneous coordinates as erasures and decode
as usual.

As error correction of the interleaved codewords requires more
computation compared to decoding without errors, it is not
advantageous to choose ℓ to be maximal, i.e., choosing all
of the matrix entries to the interleaved codeword. On the
other hand, collaborative decoding algorithms do not guarantee
success with probability 1, so ℓ has to be chosen such that the
success probability is suitably high.

B. Analyzing Error Correction Capabilities

Interleaved coding techniques can be used with any linear
SDMM scheme. However, many codes that are used in differ-
ent SDMM constructions do not have efficient error correction
algorithms. SDMM schemes that are based on polynomial
interpolation, such as the secure MatDot or GASPbig schemes,
can be utilized, since Reed–Solomon codes have well-known
error correction algorithms. Collaborative error correction
algorithms have been designed for interleaved Reed–Solomon
codes since they are prevalent in many applications where
burst errors are common. In this section, we analyze the suc-
cess probability of some interleaved Reed–Solomon decoders
in the context of the secure MatDot and GASPbig schemes.
The same techniques are applicable to other linear SDMM
schemes based on Reed–Solomon codes.

We assume that the errors sent by the Byzantine workers are
uniformly distributed, i.e., the errors Zi for i ∈ E are indepen-
dent and uniformly distributed. This is a natural assumption
if the errors occur naturally without malice. Additionally,
this assumption is popular in the literature, where failure
probabilities are analyzed.

Bounded distance decoders for interleaved Reed–Solomon
codes are discussed in [33] and [34]. These decoding
algorithms generalize the Berlekamp–Massey approach of
decoding Reed–Solomon codes to interleaved codes. Addi-
tionally, [33], [34] give bounds on the success probability of
the decoders when the errors are assumed to be uniformly
distributed with specified column weights.

Theorem 4: Consider a linear SDMM scheme over Fq

where CA ⋆ CB is a Reed–Solomon code with minimum
distance D. If there are at most D − 2 Byzantine workers,
which return independent and uniform errors, then there is an
error correction algorithm, which will correct the errors with
failure probability at most(

qℓ − q−1

qℓ − 1

)D−2

· qD−2−ℓ

q − 1
,

where ℓ is the chosen interleaving order.
Proof: As concluded in the discussion above, the errors

caused by the Byzantine workers are burst errors in the
ℓ-interleaved Reed–Solomon code. Furthermore, the errors
are distributed uniformly by assumption. Therefore, we can
utilize [34, Theorem 7], which states that the probability of
unsuccessful decoding is at most(

qℓ − q−1

qℓ − 1

)t

· q−(ℓ+1)(tmax−t)

q − 1
,

where t is the number of errors and tmax = ℓ
ℓ+1 (D − 1).

As t ≤ D − 2 by assumption, we get that the probability of
unsuccessful decoding is at most(

qℓ − q−1

qℓ − 1

)D−2

· q−(ℓ(D+1)−(ℓ+1)(D−2))

q − 1

=
(

qℓ − q−1

qℓ − 1

)D−2

· qD−2−ℓ

q − 1

since the expression is increasing in t. □
We assume that the field size q is suitably large since this

is natural in settings where the matrices are discretized from
the real numbers or the integers. The field size would be of
the order of 232 or 264 to make implementation efficient.

We may now choose a suitable interleaving order ℓ to make
the probability of unsuccessful decoding suitably low. We see
that for large q, the upper bound given in Theorem 4 is
approximately qD−3−ℓ, since the first term is approximately
1. Thus, for ℓ ≥ D − 2 we have that the probability of
unsuccessful decoding is strikingly small. Choosing a larger ℓ
will yield even lower failure probabilities. However, a larger
interleaving order will naturally incur more computation in
the collaborative decoding phase. Hence, we get a trade-off
between the probability of unsuccessful decoding and the
computational complexity.

With the assumption of Theorem 4, i.e., that the error
matrices from the Byzantine workers are uniformly distributed,
we see that we can correct up to E = D − 2 errors with
high probability. Hence, we need a total of N = R + S +
E + 1 workers to account for the S straggling workers and E
Byzantine workers. This is an improvement over independent
decoding of the codewords in the response matrices, which
requires N = R + S + 2E workers.
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C. Randomized Linear SDMM

In the previous analysis, we assumed that the Byzantine
workers return errors that are uniformly and independently
distributed. This is a natural assumption if the errors occur
during communication. However, the Byzantine workers may
be able to introduce errors from other distributions or by
specifically designing them such that the probability of unsuc-
cessful decoding is much higher than what is indicated by
Theorem 4.

Our proposed method is based on randomization of the
linear SDMM scheme. In particular, we present a randomized
secure MatDot scheme, which will make it more difficult for
the Byzantine workers to craft malicious responses that cannot
be corrected by the collaborative decoding method.

The randomized secure MatDot scheme is based on the
secure MatDot scheme. Let ÃMatDot

i and B̃MatDot
i be the

encoded matrices sent to the ith worker in the secure MatDot
scheme. Furthermore, let Ui and Vi be random invertible
diagonal matrices of suitable size chosen uniformly at random
over Fq . The worker is sent

Ãrand
i = U−1

i ÃMatDot
i , B̃rand

i = B̃MatDot
i V −1

i .

This does not increase the computational complexity of the
user, since multiplication by a diagonal matrix is proportional
to the size of the matrix. The responses of the workers are of
the form

Ãrand
i B̃rand

i + Zi = U−1
i ÃMatDot

i B̃MatDot
i V −1

i + Zi,

where Zi is a potentially nonzero error matrix. By multiplying
this with Ui and Vi we obtain the responses

ÃMatDot
i B̃MatDot

i + UiZiVi.

These are responses in the secure MatDot scheme, but the
errors are now of the form UiZiVi, where Ui, Vi are ran-
dom invertible diagonal matrices. Hence, we may use the
error correction method highlighted in the previous section
to correct the error. We call this scheme the randomized
secure MatDot scheme, since we essentially use randomized
generalized Reed–Solomon codes in the encoding phase.

As the workers do not know the matrices Ui and Vi, it is
more difficult for them to coordinate the error matrix in a
way that is favorable to them. The hope is that the Byzantine
workers would return uniform errors, which means that the
bound given in Theorem 4 is valid since UiZiVi is uniformly
distributed if Zi is uniformly distributed.

D. Comparison to the Error Detection Method

The system model in the SDMM schemes differs from the
classical setup in coding theory, where a message is sent over
an unreliable channel from a sender to a receiver. In SDMM
schemes, the user has all the information necessary to com-
pute the responses ÃiB̃i of the workers. This knowledge
can be used to detect Byzantine workers using Freivalds’
algorithm [40], which is a probabilistic algorithm to detect
errors in the matrix multiplication C̃i = ÃiB̃i. The algorithm
consists of choosing a random vector x and computing the
matrix-vector products B̃ix, Ãi(B̃ix) = C̃ix and (C̃i + Zi)x,

and comparing the last two products. If these are different,
then the error matrix Zi from the ith worker is nonzero, i.e.,
the ith worker is a Byzantine worker and should be ignored.
It may still be the case that Zix = 0 even if Zi ̸= 0, but
we can bound the probability of this happening if x is chosen
at random. This approach was successfully utilized in SDMM
in [25] and [26]. This error detection method requires three
matrix-vector multiplications for a total of O( sr

pn + ts
mp + tr

mn )
operations.

On the other hand, the complexity of the interleaved decoder
does not depend on the middle dimension s as it only works
on the N received matrices of dimension t

m×
r
n . Furthermore,

the interleaved decoder does not need the original matrices A
and B as input, which makes it possible to use in scenarios
where the matrices do not originate at the user. Such a system
model has been considered in [8].

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced the linear SDMM framework,
which can be used to study most of the SDMM schemes in
the literature. This framework is based on coding theory and it
works for all linear codes. This is in contrast to earlier works,
which are heavily based on evaluation codes. Utilizing the
generality of the framework, we provided some first results
deriving from known results for star product codes. As many
SDMM schemes from the literature can be considered as
special cases of the linear SDMM framework, the framework
provides a simpler way to compare different SDMM schemes.
Additionally, we studied Byzantine workers in the context of
SDMM and introduced a way to utilize interleaved codes to
correct a larger number of errors with high probability.

In Theorem 2 and Theorem 3 we give bounds for the
recovery threshold and notice that in some special cases, there
are linear SDMM schemes achieving these bounds. In general,
we do not believe that these bounds are tight for arbitrary
partitioning parameters. In the future, we would like to give
sharper bounds or find schemes achieving the current bounds,
and use these bounds to study the rate and capacity of linear
SDMM schemes. Additionally, we would like to extend our
framework to cover the use of field extensions and array codes.
Finally, we would like to study how well the randomized
secure MatDot scheme works in the presence of different error
distributions.
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