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A Few Interactions Improve Distributed
Nonparametric Estimation, Optimally

Jingbo Liu , Member, IEEE

Abstract— Consider the problem of nonparametric estimation
of an unknown β-Hölder smooth density pXY at a given
point, where X and Y are both d dimensional. An infinite
sequence of i.i.d. samples (Xi, Yi) are generated according to
this distribution, and two terminals observe (Xi) and (Yi),
respectively. They are allowed to exchange k bits either in
oneway or interactively in order for Bob to estimate the unknown
density. We show that the minimax mean square risk is order(

k
log k

)− 2β
d+2β for one-way protocols and k

− 2β
d+2β for interactive

protocols. The logarithmic improvement is nonexistent in the
parametric counterparts, and therefore can be regarded as a
consequence of nonparametric nature of the problem. Moreover,
a few rounds of interactions achieve the interactive minimax
rate: the number of rounds can grow as slowly as the super-
logarithm (i.e., inverse tetration) of k. The proof of the upper
bound is based on a novel multi-round scheme for estimating the
joint distribution of a pair of biased Bernoulli variables, and the
lower bound is built on a sharp estimate of a symmetric strong
data processing constant for biased Bernoulli variables.

Index Terms— Density estimation, communication complexity,
nonparametric statistics, learning with system constraints, strong
data processing constant.

I. INTRODUCTION

THE communication complexity problem was introduced
in the seminal paper of Yao [50] (see also [26] for

a survey), where two terminals (which we call Alice and
Bob) compute a given Boolean function of their local inputs
(X = (Xi)ni=1 and Y = (Yi)ni=1) by means of exchanging
messages. The famous log-rank conjecture provides an esti-
mate of the communication complexity of a general Boolean
function, which is still open to date. Meanwhile, communi-
cation complexity of certain specific functions can be better
understood. For example, the Gap-Hamming problem [12],
[24] concerns testing f(X,Y) > 1

n against f(X,Y) <
− 1
n , where f(X,Y) := 1

n

∑n
i=1XiYi denotes the sample

correlation and Xi, Yi ∈ {+1,−1}. It was shown in [12] with
a geometric argument that the communication complexity (for
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worst-case deterministic X,Y) is Θ(n), therefore a one-way
protocol where Alice simply sends X cannot be improved
(up to a multiplicative constant) by an interactive protocol.

Gap-Hamming is closely related to the problem of esti-
mating the joint distribution of a pair of binary or Gaussian
random variables (using n i.i.d. samples). Indeed, for n large
we may assume that Alice (resp. Bob) can estimate the
marginal distributions of X (resp. Y ) very well, so that
the joint distribution is parameterized by only one scalar
which is the correlation. An information-theoretic proof of
Gap-Hamming was previously provided in [19], building on a
converse for correlation estimation for the binary symmetric
distribution, and pinned down the exact prefactor in the
risk-communication tradeoff. In particular, the result of [19]
implies that the naive algorithm where Alice simply sends
X can be improved by a constant factor in the estimation
risk by a more sophisticated scheme using additional samples.
For the closely related problem of correlation (distribution)
testing, [38] and [48] provided asymptotically tight bounds on
the communication complexity under the one-way and inter-
active protocols when the null hypothesis is the independent
distribution (zero correlation), which also implies that the error
exponent can be improved by an algorithm using additional
samples. The technique of [48] is based on the tensorization
of internal and external information ((20) ahead), whereas the
bound of [38] uses hypercontractivity. More recently, [20]
derived bounds for testing against dependent distributions
using optimal transport inequalities.

In this paper, we take the natural step of introducing
nonparametric (NP) statistics to Alice and Bob, whereby two
parties estimate a nonparametric density by means of sending
messages interactively. It will be seen that this problem is
closely related to a “sparse” version of the aforementioned
Gap-Hamming problem, where interaction does help, in con-
trast to the usual Gap-Hamming problem.

For concreteness, consider the problem of nonparametric
estimation of an unknown β-Hölder smooth density pXY
at a given point (x0, y0). For simplicity we assume the
symmetric case where X and Y are both d dimensional.
An infinite sequence of i.i.d. samples (Xi, Yi) are generated
according to pXY , and Alice and Bob observe (Xi) and (Yi),
respectively. After they exchange k bits (either in one-way or
interactively), Bob estimates the unknown density at the given
point. We successfully characterize the minimax rate in terms

of the communication complexity k: it is order
(

k
log k

)− 2β
d+2β

for one-way protocols and k−
2β

d+2β for interactive protocols.
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Notably, allowing interaction strictly improves the esti-
mation risk. Previously, separations between one-way and
interactive protocols are known but in very different contexts:
In [32, Corollary 1] (see also [31]), the separation was found
in the rate region of common randomness generation from
biased binary distributions, using certain convexity arguments,
but this only implies a difference in the leading constant, rather
than the asymptotic scaling. On the other hand, the example
distribution in [42] is based on the pointer-chasing construction
of [35], which appears to be a highly artificial distribution
designed to entail a separation between the one-way and inter-
active protocols. Another example where interaction improves
zero-error source coding with side information, based on a “bit
location” algorithm, was described in [36], and it was shown
that two-way communication complexity differs from inter-
activity communication complexity only by constant factors.
In contrast, the logarithmic separation in the present paper
arises from the nonparametric nature of the problem: If we
consider the problem of correlation estimation for Bernoulli
pairs with a fixed bias (a parametric problem), the risk will be
order k−

1
2 , and there will be no separation between one-way

and interactive protocols (which is indeed the case in [19]).
In contrast, nonparametric estimation is analogous to Bernoulli
correlation estimation where the bias changes with k (since
the optimal bandwidth adapts to k), which gives rise to the
separation.

For the risk upper bound, in the one-way setting it is
efficient for Alice to just encode the set of i’s such that
Xi falls within a neighborhood (computed by the optimal
bandwidth for a given k) of the given point x0. To achieve
the optimal k−

2β
d+2β rate for interactive protocols, we provide

a novel scheme that uses r > 1 rounds of interactions, where
r = r(k) grows as slowly as the super logarithm (i.e. the
inverse of tetration) of k. With the sequence of r(k) we use in
Section V-C (and suppose that β = d = 1), while r = 4
interactions is barely enough for k equal to the number of
letters in a short sentence, r = 8 is more than sufficient for
k equal to the number of all elementary particles in the entire
observable universe. Thus from a practical perspective, r(k) is
effectively a constant, although it remains an interesting the-
oretical question whether r(k) really diverges (Conjecture 1).

For the lower bound, the proof is based on the symmetric
data processing constant introduced in [32]. Previously, the
data processing constant s∗r has been connected to two-party
estimation and hypothesis testing in [19]; the idea was canon-
ized as the following statement: “Information for hypothesis
testing locally” is upper bounded by s∗r times “Information
communicated mutually”. However, s∗r is not easy to compute,
and previous bounds on s∗r are also not tight enough for
our purpose. Instead, we first use an idea of simulation of
continuous variables to reduce the problem to estimation of
Bernoulli distributions, for which s∗r is easier to analyze. Then
we use some new arguments to bound s∗∞.

Let us emphasize that this paper concerns density estimation
at a given point, rather than estimating the global density
function. For the latter problem, it is optimal for Alice to just
quantize the samples and send it to Bob, which we show in
the companion paper [28]. The mean square error (in ℓ2 norm)

of estimating global density function scales differently than
the case of point-wise density estimation since the messages
cannot be tailored to the given point.

A. Related Work

Besides function computation, distribution estimation and
testing, other problems which have been studied in the com-
munication complexity or privacy settings include lossy source
coding [25] and common randomness or secret key genera-
tion [30], [32], [43], [47]. The key technical tool for interactive
two-way communication models, namely the tensorization
of internal and external information ((20) ahead), appeared
in [25] for lossy compression, [9], [33] for function compu-
tation, [32] and [47] for common randomness generation, and
[19], [48] for parameter estimation.

For one-way communication models, the main tool is a
tensorization property related to the strong data processing
constant (see (10) ahead), which was first used in [4] in
the study of the error exponents in communication con-
strained hypothesis testing. The hypercontractivity method for
single-shot bounds in one-way models was used in [27], [30]
for common randomness generation and [38] for testing.

In statistics, communication-constrained estimation has
received considerable attention recently, starting from [52],
which considered a model where distributed samples are
compressed and sent to a central estimator. Further works
on this communication model include settings of Gaussian
location estimation [10], [11], parametric estimation [22],
nonparametric regression [53], Gaussian noise model [54],
statistical inference [2], and nonparametric estimation [21]
(with a bug fixed in [7]) [1]. Related problems solved using
similar techniques include differential privacy [16] and data
summarization [37], [46], [45]. Communication-efficient con-
struction of test statistics for distributed testing using the
divide-and-conquer algorithm is studied in [8]. Generally
speaking, these works on statistical minimax rates concern the
so-called horizontal partitioning of data sets, where data sets
share the same feature space but differ in samples [18], [49].
In contrast, vertical distributed or federated learning, where
data sets differ in features, has been used by corporations
such as those in finance and medical care [18], [49]. It is
worth mentioning that such horizontal partitioning model was
also introduced in Yao’s paper [50] in the context of function
computation under the name “simultaneous message model”,
where different parties send messages to a referee instead
of to each other. The direct sum property (similar to the
tensorization property of internal and external information) of
the simultaneous message model was discussed in [13].

B. Organization of the Paper

We review the background on nonparametric estima-
tion, data processing constants and testing independence in
Section II. The formulation of the two-party nonparametric
estimation problem and the summary of main results are given
in Section III. Section IV examines the problem of estimating
a parameter in a pair of biased Bernoulli distributions, which
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will be used as a building block in our nonparametric estima-
tion algorithm. Section V proves some bounds on information
exchanges, which will be the key auxiliary results for the proof
of upper bound for Bernoulli estimation in Section VI, and
for nonparametric estimation in Section VII. Finally, lower
bounds are proved in Section VIII in the one-way case and in
Section IX in the interactive case.

II. PRELIMINARIES

A. Notation

We use capital letters for probability measures and lower
cases for the densities functions. We use the abbreviations
U ji := (Ui, . . . , Uj) and U j := U j1 . We use boldface
letters to denote vectors, for example Ui = (Ui(l))nl=1.
Unless otherwise specified, the base of logarithms can be
arbitrary but remain consistent throughout equations. The
precise meaning of the Landau notations, such as O(·), will
be explained in each section or proofs of specific theorems.
We use

∑odd
1≤i≤r to denote summing over i ∈ {1, . . . , r} \ 2Z.

For the vector representation of a binary probability distri-
bution, we use the convention that PU = [PU (0), PU (1)].
For the matrix representation of a joint distribution of a
pair of binary random variables, we use the convention that

PXY =
[
PXY (0, 0) PXY (0, 1)
PXY (1, 0) PXY (1, 1)

]
. For x ∈ [0, 1], we use the

shorthand x̄ := 1− x.

B. Nonparametric Estimation

Let us recall the basics about the problem of estimating a
smooth density; more details may be found in [41] and [44].
Let d ≥ 1 be an integer, and s = (s1, . . . , sd) ∈ {0, 1, 2, . . . }d
be a multi-index. For x = (x1, . . . , xd) ∈ Rd, let Ds denote
the differential operator

Ds =
∂s1+···+sd

∂xs11 · · · ∂x
sd

d

. (1)

Given β ∈ (0,∞), let ⌊β⌋ be the maximum integer strictly
smaller than β [44] (note the difference with the usual con-
ventions). Given a function f whose domain includes a set
A ⊆ Rd, define ∥f∥A,β as the minimum L ≥ 0 such that

|Dsf(x1)−Dsf(x2)| ≤ L∥x1 − x2∥β−⌊β⌋2 , ∀x1, x2 ∈ A,
(2)

for all multi-indices s such that s1 + · · · + sd = ⌊β⌋. For
example, β = 1 define a Lipschitz function and an integer β
defines a function with bounded β-th derivative.

Given L > 0, let P(β, L) be the class of probability density
functions p satisfying ∥p∥Rd,β ≤ L. Let x0 ∈ Rd be arbitrary.
The following result on the minimax estimation error is
well-known:

inf
Tn

sup
p∈P(β,L)

E[|Tn − p(x0)|2] = Θ(n−
2β

d+2β ) (3)

where the infimum is over all estimators Tn of p(x0), i.e.,
measurable maps from i.i.d. samples X1, . . . , Xn ∼ p to R.
Θ(·) in (3) may hide constants independent of n.

We say K : Rd → R is a kernel of order l (l ∈ {1, 2, . . . })
if
∫
K = 1 and all up to the l-th derivatives of the Fourier

transform of K vanish at 0 [44, Definition 1.3]. Therefore the
rectangular kernel, which is the indicator of a set, is order 1.
A kernel estimator has the form

Tn =
1
nhd

n∑
l=1

K

(
Xl − x0

h

)
(4)

where h ∈ (0,∞) is called bandwidth. If K is a kernel of
order l = ⌊β⌋, then the kernel estimator (4) with appropriate
h achieves the bound in (3) [44, Chapter 1]. In particular, the
rectangular kernel is minimax optimal for β ∈ (0, 2].

If K is compactly supported, then only local smoothness is
needed, and density lower bound does not change the rate: we
have

inf
Tn

sup
p∈PS(β,L,A)

E[|Tn − p(x0)|2] = Θ(n−
2β

d+2β ) (5)

where S is any compact neighborhood of x0, A ∈ [0, 1
vol(S) )

is arbitrary (with vol(S) denoting the volume of S), and
PS(β, L,A) denotes the non-empty set of probability density
functions p satisfying ∥p∥S,β ≤ L and infx∈S p(x) ≥ A.

C. Strong and Symmetric Data Processing Constants

The strong data processing constant has proved useful in
many distributed estimation problems [4], [10], [16], [52].
In particular, it is strongly connected to two-party hypothesis
testing under the one-way protocol. In contrast, the symmetric
data processing constant [32] can be viewed as a natural
extension to interactive protocols. This section recalls their
definitions and auxiliary results, which will mainly be used in
the proofs of lower bounds; however, the intuitions are useful
for the upper bounds as well.

Given two probability measures P , Q on the same measur-
able space, define the KL divergence

D(P∥Q) :=
∫

log
(
dP

dQ

)
dP. (6)

Define the χ2-divergence

Dχ2(P∥Q) :=
∫ (

dP

dQ
− 1
)2

dQ. (7)

Let X,Y be two random variables with joint distribution PXY .
Define the mutual information

I(X;Y ) := D(PXY ∥PX × PY ). (8)

Definition 1: Let PXY be an arbitrary distribution on
X × Y . Define the strong data processing constant

s∗(X;Y ) := sup
PU|X

I(U ;Y )
I(U ;X)

(9)

where PU |X is a conditional distribution (with U being an
arbitrary set), and the mutual informations are computed under
the joint distribution PU |XPXY .

Clearly, the value of s∗(X;Y ) does not depend on the
choice of the base of logarithm. A basic yet useful property
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of the strong data processing constant is tensorization: if
(X,Y) ∼ P⊗nXY then

s∗(X;Y) = s∗(X;Y ). (10)

Now if (X;Y) are the samples observed by Alice and Bob,
Π1 denotes the message sent to Bob, then I(Π1;X) ≤ k
implies that

D(PΠ1Y∥PΠ1PY) ≤ s∗(X;Y )k. (11)

The left side is the KL divergence between the distribution
under the hypothesis that (X,Y ) follows some joint distribu-
tion, and the distribution under the hypothesis that X and Y
are independent. Thus the error probabilities in testing against
independence with one-way protocols can be lower bounded.
This simple argument dates back at least to [3] and [4].

A similar argument can be extended to testing indepen-
dence under interactive protocols [48]. The fundamental
fact enabling such extensions is the tensorization of certain
information-theoretic quantities, which appeared in various
contexts [9], [25], [32].

Definition 2: Let (X,Y ) ∼ PXY . For given r <∞, define
s∗r(X;Y ) as the supremum of R/S such that there exists
random variables U1, . . . , Ur satisfying

R ≤
odd∑

1≤i≤r

I(Ui;Y |U i−1) +
even∑

1≤i≤r

I(Ui;X|U i−1); (12)

S ≥
odd∑

1≤i≤r

I(Ui;X|U i−1) +
even∑

1≤i≤r

I(Ui;Y |U i−1), (13)

and

Ui − (X,U i−1)− Y, i ∈ {1, . . . , r} \ 2Z (14)

Ui − (Y,U i−1)−X, i ∈ {1, . . . , r} ∩ 2Z (15)

are Markov chains. We call s∗∞(X;Y ) the symmetric data
processing constant.

Let us remark that using the Markov chains we have the
right side of (12)

odd∑
1≤i≤r

I(Ui;Y |U i−1) +
even∑

1≤i≤r

I(Ui;X|U i−1)

= I(X;Y )− I(X;Y |Ur) (16)
= I(Ur;XY )− [I(Ur;X|Y ) + I(Ur;Y |X)] (17)

whereas the right side of (13)

odd∑
1≤i≤r

I(Ui;X|U i−1) +
even∑

1≤i≤r

I(Ui;Y |U i−1) = I(Ur;XY ).

(18)

In the computer science literature [9], I(Ur;XY ) is called the
external information whereas I(Ur;X|Y ) + I(Ur;Y |X) the
internal information.

The symmetric strong data processing constant is symmetric
in the sense that s∗∞(X;Y ) = s∗∞(Y ;X), since r = ∞ in
the definition. On the other hand, s∗1(X;Y ) coincides with
the strong data processing constant which is generally not

symmetric. Furthermore, a tensorization property holds for the
internal and external information: denote by R(X;Y ) the set
of all (R,S) satisfying (12) and (13) for some U1, . . . , Ur.
Let (X,Y) ∼ P⊗nXY . Then

R(X;Y) = nR(X;Y ). (19)

In particular, taking the slope of the boundary at the original
yields

s∗∞(X;Y) = s∗∞(X;Y ). (20)

A useful and general upper bound on s∗∞ in terms of
SVD was provided in [32, Theorem 4], which implies that
s∗∞ = s∗1 when X and Y are unbiased Bernoulli. However,
that bound is not tight enough for the nonparametric estimation
problem we consider, and in fact we adopt a new approach in
Section IX for the biased Bernoulli distribution. Let us remark
that s∗∞ = s∗1 holds also for Gaussian (X,Y ), which follows
by combining the result on unbiased Bernoulli distribution
and a central limit theorem argument [32] (see also [19]).
Moreover, it was conjectured in [32] that the set of possible
(R,S) satisfying (12)-(13) does not depend on r when X and
Y are unbiased Bernoulli.

D. Testing Against Independence

Consider the following setting: PXY is an arbitrary dis-
tribution on X × Y; PXY := P⊗nXY ; Π = (Π0, . . . ,Πr) is
a sequence of random variables, with PΠ|XY being given
and satisfying PΠ0|XY = PΠ0 , PΠi|XYΠi−1

0
= PΠi|XΠi−1

0
for i ∈ {1, . . . , r} \ 2Z and PΠi|XYΠi−1

0
= PΠi|YΠi−1

0
for

i ∈ {1, . . . , r} ∩ 2Z; P̄XY = PXPY is the distribution under
the hypothesis of independence, and P̄ΠXY := PΠ|XYP̄XY.
The following result is known in [19], [20], and [48]:

Lemma 1: D(PYΠ∥P̄YΠ) ≤ I(X;Y)− I(X;Y|Π).
Now by Definition 2, we immediately have

s∗r(X;Y ) ≥ I(X;Y)− I(X;Y|Π)
I(XY; Π)

(21)

≥ D(PYΠ∥P̄YΠ)
H(Π)

(22)

which generalizes (11). Therefore, s∗r(X;Y ) can be used to
bound D(PYΠ∥P̄YΠ), and in turn, the error probability in
indepedence testing.

III. PROBLEM SETUP AND MAIN RESULTS

We consider estimating the density function at a given point,
where the density is assumed to be Hölder continuous in a
neighborhood of that point. It is clear that there is no loss of
generality assuming such neighborhood to be the unit cube,
and that the given point is its center. More precisely, the class
of densities under consideration is defined as follows:

Definition 3: Given d ∈ {1, 2, . . . }, L > 0, A ∈ [0, 1), and
β > 0, let H(β, L,A) be the set of all probability density pXY
on X × Y (where X = Y = Rd) satisfying

pX(x), pY (y) ≥ A, ∀x, y ∈ [0, 1]d, (23)
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and

∥pXY ∥[0,1]2d,β ≤ L. (24)

Definition 4: We say C is a prefix code [14] if it is a subset
of the set of all finite non-empty binary sequences satisfying
the property that for any distinct s1, s2 ∈ C, s1 cannot be a
prefix of s2.

The problem is to estimate the density at a given point of
an unknown distribution from H(β, L,A). More precisely,
• PXY is a fixed but unknown distribution whose corre-

sponding density pXY belongs to H(β, L,A) for some
β ∈ (0,∞), L ∈ (0,∞), and A ∈ [0, 1).

• Infinite sequence of pairs (X(1), Y (1)), (X(2),
Y (2)),. . . are i.i.d. according to PXY . Alice (Terminal 1)
observes X = (X(l))∞l=1 and Bob (Terminal 2) observes
Y = (Y (l))∞l=1.

• Unlimited common randomness Π0 is observed by both
Alice and Bob. That is, an infinite random bit string
independent of (X,Y) shared by Alice and Bob.

• For i = 1, . . . , r (r is an integer), if i is odd, then
Alice sends to Bob a message Πi, which is an element
in a prefix code, where Πi is computed using the com-
mon randomness Π0, the previous transcripts Πi−1 =
(Π1, . . . ,Πi−1), and X; if i is even, then Bob sends to
Alice a message Πi computed using Π0, Πi−1, and Y.

• Bob computes an estimate p̂ of the true density
pXY (x0, y0), where x0 = y0 is the center of [0, 1]d.

One-Way NP Estimation Problem: Suppose that r = 1.
Under the constraint on the expected length of the transcript
(i.e. length of the bit string)

E[|Πr|] ≤ k, (25)

where k > 0 is a real number, what is the minimax risk

R(k) := min
p̂,Π

max
pXY ∈H(β,L,A)

E[|p̂− pXY (x0, y0)|2]? (26)

Interactive NP Estimation Problem. Under the same con-
straint on the expected length of the transcript, but without
any constraint on the number of rounds r, what is the minimax
risk?

Remark 1: The prefix condition ensures that Bob knows
that the current round has terminated after finishing reading
each Πi. Alternatively, the problem can be formulated by
stating that Πi is a random variable in an arbitrary alphabet,
and replacing (25) by the entropy constraint H(Πr) ≤ k.
Furthermore, one may use the information leakage constraint
I(X,Y; Πr) ≤ k instead. From our proofs it is clear that
the minimax rates will not change under these alternative
formulations.

Remark 2: There would be no essential difference if the
problem were formulated with |Π| ≤ k almost surely and
|p̂−pXY (x0, y0)|2 ≤ R(k) with probability (say) at least 1/2.
Indeed, for the upper bound direction, those conditions are sat-
isfied with a truncation argument, once we have an algorithm
satisfying E[|Π|] ≤ k/4 and E[|p̂−pXY (x0, y0)|2] ≤ R(k)/4,
by Markov’s inequality and the union bound, therefore results
only differ with a constant factor. For the lower bound, the

proof can be extended to the high probability version, since
we used the Le Cam style argument [51].

Remark 3: The common randomness assumption is com-
mon in the communication complexity literature, and, in some
sense, is equivalent to private randomness [34]. In our upper
bound proof, the common randomness is the randomness in the
codebooks. Random codebooks give rise to convenient proper-
ties, such as the fact that the expectation of the distribution of
the matched codewords equals exactly the product of idealized
single-letter distributions (78). It is likely, however, that some
approximate versions of these proofs steps, and ultimately the
same asymptotic risk, should hold for some carefully designed
deterministic codebooks.

Theorem 1: In one-way NP estimation, for any β ∈ (0,∞),
L ∈ (0,∞), and A ∈ [0, 1),

R(k) = Θ(
(

k

log k

)− 2β
d+2β

) (27)

where Θ(·) hides multiplicative factors depending on L, β,
and A.

The proof of the upper bound is in Section VII-B. Recall
that nonparametric density estimation using a rectangular
kernel is equivalent to counting the frequency of samples in a
neighborhood of a given diameter, the bandwidth, which we
denote as ∆. A naive protocol is for Alice to send the indices
of samples in x0 + [−∆,∆]d. Locating each sample in that
neighborhood requires on average Θ(log 1

∆ ) = Θ(log k) bits.
Thus Θ(k/ log k) samples in that neighborhood can be located.
It turns out that the naive protocol is asymptotically optimal.

The proof of the lower bound (Section VIII) follows by a
reduction to testing independence for biased Bernoulli distribu-
tions, via a simulation argument. Although some arguments are
similar to [19], the present problem concerns biased Bernoulli
distributions instead. The (KL) strong data processing constant
turns out to be drastically different from the χ2 data processing
constant, as opposed to the cases of many familiar distributions
such as the unbiased Bernoulli or the Gaussian distributions.

As alluded, our main result is that the risk can be strictly
improved when interactions are allowed:

Theorem 2: In interactive NP estimation, for any β ∈
(0,∞), L ∈ (0,∞), and A ∈ [0, 1), we have

R(k) = Θ
(
k−

2β
d+2β

)
(28)

where Θ(·) hides multiplicative factors depending on L, β
and A.

To achieve the scaling in (28), r can grow as slowly as the
super-logarithm (i.e., inverse tetration) of k; for the precise
relation between r and k, see Section V-C.

The proof of the upper bound of Theorem 2 is given
in Section VII-C, which is based on a novel multi-round
estimation scheme for biased Bernoulli distributions formu-
lated and analyzed in Sections IV,V,VI. Roughly speaking,
the intuition is to “locate” the samples within neighbor-
hoods of (x0, y0) by successive refinements, which is more
communication-efficient than revealing the location at once.

The lower bound of Theorem 2 is proved in Section IX. The
main technical hurdle is to develop new and tighter bounds on
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the symmetric data processing constant in [32] for the biased
binary cases.

IV. ESTIMATION OF BIASED BERNOULLI DISTRIBUTIONS

In this section, we shall describe an algorithm for estimating
the joint distribution of a pair of biased Bernoulli random vari-
ables. The biased Bernoulli estimation problem can be viewed
as a natural generalization of the Gap hamming problem [12],
[24] to the sparse setting, and is the key component in both
the upper and lower bound analysis for the nonparametric esti-
mation problem. Indeed, we shall explain in Section VII that
our nonparametric estimator is based on a linear combination
of rectangle kernel estimators, which estimate the probability
that X and Y fall into neighborhoods of x0 and y0. Indicators
that samples are within such neighborhoods are Bernoulli
variables, so that the biased Bernoulli estimator can be used.
For the lower bound, we shall explain in Section VIII that the
nonparametric estimation problem can be reduced to the biased
Bernoulli estimation problem via a simulation argument.

For notational simplicity, we shall use X,Y for the
Bernoulli variables in this section as well as Sections V-VI,
although we should keep in mind that these are not the
continuous variables in the original nonparametric estimation
problem.

Bernoulli Estimation Problem:
• Fixed real numbers m1,m2 ∈ (10,∞), and an unknown
δ ∈ [−1,min{m1,m2} − 1].

• (X,Y) = (X(l), Y (l))∞i=1 i.i.d. according to the
distribution

P
(δ)
XY :=( 1

m1m2
(1 + δ) 1

m1
(1− 1

m2
)− δ

m1m2
1
m2

(1− 1
m1

)− δ
m1m2

(1− 1
m1

)(1− 1
m2

) + δ
m1m2

)
(29)

where we recall our convention that the upper left entry
of the matrix denotes the probability that X = Y = 0.
Alice observes (X(l))∞l=1 and Bob observes (Y (l))∞l=1.

• Unlimited common randomness Π0.
Goal: Alice and Bob exchange messages in no more than

r rounds in order to estimate δ.
Our algorithm is described as follows:
Input: m1,m2 ∈ (10,∞); positive integer n and r; a

sequence of real numbers α1, . . . , αr ∈ (1,∞) satisfying

odd∏
1≤i≤r

αi ≤
m1

10
; (30)

even∏
1≤i≤r

αi ≤
m2

10
. (31)

The α1, . . . , αr can be viewed as parameters of the algorithm,
and controls how much information is revealed about the
locations of “common zeros” of X,Y in each round of
communication. For example, setting α1 = m1

10 and all other
αi = 1 yields a one-way communication protocol, whereas
setting all αi > 1 yields a “successive refinement” algorithm

which may incur smaller communication budget yet convey
the same amount of information.

Before describing the algorithm, let us define a conditional
distribution PUr|XY by recursion, which will be used later in
generation random codebooks.

Definition 5: For each i ∈ {1, . . . , r} \ 2Z, define

PUi|X=0,Ui−1=0 = [1, 0]; (32)

PUi|X=1,Ui−1=0 = [α−1
i , 1− α−1

i ]; (33)
PUi|X=0,Ui−1 ̸=0 = PUi|X=1,Ui−1 ̸=0 = [0, 1]. (34)

Then set PUi|XY Ui−1 = PUi|XUi−1 . For i = 1, . . . , r even,
we use similar definitions, but with the roles of X and Y
switched. This specifies PUi|XY Ui−1 , i = 1, . . . , r.

Note that by Definition 5, Ui = 1 implies Ui+1 = 1 for each
i = 1, . . . , r − 1. In words, for i odd, Ui marks all X = 0 as
0, and marks X = 1 as either 0 or 1; whenever Ui = 1 is
marked, then X is definitely 1, and will be forgotten in all
subsequent rounds. Now set

P
(δ)
XY Ur := PUr|XY P

(δ)
XY . (35)

where PUr|XY is induced by (PUi|XY Ui−1)ri=1 in Definition 5.
Initialization: By applying a common function to the com-

mon randomness, Alice and Bob can produce a shared infinite
array (Vi,j(l)), where i ∈ {1, . . . , r}, j ∈ {1, 2, . . . }, l ∈
{1, 2, . . . , n}, such that the entries in the array are independent
random variables, with Vi,j(l) ∼ Bern(1− α−1

i ). Also set

U0(l) = 0, ∀l = 1, . . . , n. (36)

Iterations: Consider any i = 1, . . . , r, where i is odd.
We want to generate Ui by selecting a codeword so that
(X,Y,Ui) follows the distribution of (P (δ)

XY Ui)⊗n, where
Ui−1 is defined in previous rounds. Define

A0 := {l ≤ n : X(l) = 0, Ui−1(l) = 0}; (37)
A1 := {l ≤ n : X(l) = 1, Ui−1(l) = 0}; (38)
A := {l ≤ n : Ui−1(l) = 0}. (39)

Note that Alice knows both A0 and A1, while Bob knows A,
since it will be seen from the recursion that Alice and Bob
both know U1, . . . ,Ui−1 at the beginning of the i-th round.
Alice chooses ĵi as the minimum nonnegative integer j such
that

Vi,j(l) = 0, ∀l ∈ A0. (40)

Alice encodes ĵi using a prefix code, e.g. Elias gamma
code [17], and sends it to Bob. Then both Alice and Bob
compute Ui = (Ui(l))nl=1 ∈ {0, 1}n by

Ui(l) := V(i,ĵi)
(l), ∀l ∈ A; (41)

Ui(l) := 1, ∀l ∈ {1, . . . , n} \ A. (42)

The operations in the i-th round for even i is similar, with
the roles of Alice and Bob reversed. We will see later that the
notation Ui is consistent in the sense of (49).

Estimator: Recall that in classical parametric statistics,
one can evaluate the score function at the sample, com-
pute its expectation and variation, and construct an estimator
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achieving the Cramer-Rao bound asymptotically. Now for
i ∈ {1, . . . , r} \ 2Z, define the score function

Γi(ui, y) :=
∂

∂δ
lnP (δ)

Ui|Y Ui−1(ui|y, ui−1)
∣∣∣
δ=0

(43)

=

{
∂
∂δ lnP (δ)

Ui|Y Ui−1(ui|y,0)
∣∣∣
δ=0

if ui−1 = 0

0 otherwise

(44)

where P (δ)
Ui|Y Ui−1 is induced by P (δ)

XY Ur . For i ∈ {1, . . . , r} ∪
2Z, define Γi(ui, x) similarly with the roles of X and Y
reversed. Alice and Bob can each compute

ΓA :=
even∑

1≤i≤r

n∑
l=1

Γi(U i(l), X(l)) (45)

and

ΓB :=
odd∑

1≤i≤r

n∑
l=1

Γi(U i(l), Y (l)) (46)

respectively. Finally, Alice’s and Bob’s estimators are given
by

δ̂A := ΓA ·
(
∂δE(δ)[ΓA]

)−1

; (47)

δ̂B := ΓB ·
(
∂δE(δ)[ΓB]

)−1

, (48)

where E(δ) refers to expectation when the true parameter is
δ, and ∂δ denotes the derivative in δ. We will show that these
estimators are well-defined: ∂δE(δ)[ΓA] and ∂δE(δ)[ΓB] are
independent of δ (Lemma 3), and can be computed by Alice
and Bob without knowing δ.

Lemma 2: For each i ∈ {1, . . . , r} \ 2Z, conditioned on
X,Y,U1, . . . ,Ui−1, we have

Ui ∼ P⊗nUi|XUi−1(·|X,U1, . . . ,Ui−1), (49)

where PUi|XUi−1 is as defined in (32)-(34). A similar relation
holds for even i.

Proof: Immediate from (41)-(42). □
Lemma 3: E(δ)[ΓA] and E(δ)[ΓB] are linear in δ.

Proof: By (49),

E(δ)[Γi(U i(l)), Y (l)] (50)

=
∑
ur,x,y

Γi(ui, y)P
(δ)
XY (x, y)PUr|XY (ur|x, y) (51)

for each i odd and l ∈ {1, . . . , n}, and similar expressions
hold for i even. The claims then follow. □

Theorem 3: δ̂A and δ̂B are unbiased estimators.
Proof: For i odd, by (43) we have

∑
ui

Γi(ui, y)
P

(0)
Ui|Y Ui−1(ui|y, ui−1) = 0 for any (y, ui−1). Then

E(0)[Γi(U i(l)), Y (l)] = 0 follows from (51). It follows that
E(0)[δ̂A] = E(0)[δ̂B] = 0, and unbiasedness is implied by
Lemma 3. □

V. BOUNDS ON INFORMATION EXCHANGES

In this section we prove key auxiliary results that will be
used in the upper bounds.

A. General (αi)

The following Theorem is crucial for the achievability part
of the analysis of the Bernoulli estimation problem described
in Section IV (and hence for the nonparametric estimation
problem). Specifically, (52)-(53) bounds the communication
from Alice to Bob and in reverse, and (54)-(55) bounds
the information exchanged which, in turn, will bound the
estimation risk via Fano’s inequality.

Theorem 4: Consider any m1,m2 > 10, α1, . . . , αr ∈
(1,∞) satisfying (30)-(31), and P (δ)

UrXY as in (35). We have

odd∑
1≤i≤r

P
(0)
XUi−1(0,0) logαi ≤

1.1
m1

odd∑
1≤i≤r

logαi
even∏

2≤j≤i−1

α−1
j ;

(52)
even∑

1≤i≤r

P
(0)
Y Ui−1(0,0) logαi ≤

1.1
m2

even∑
1≤i≤r

logαi
odd∏

1≤j≤i−1

α−1
j ,

(53)

and assuming the natural base of logarithms,

lim
δ→0

δ−2
odd∑

1≤i≤r

I(Ui;Y |U i−1) ≥ 1
5m2

1m2

odd∏
1≤j≤r

αj ;

(54)

lim
δ→0

δ−2
even∑

1≤i≤r

I(Ui;X|U i−1) ≥ 1
5m1m2

2

even∏
1≤j≤r

αj .

(55)

The proof can be found in Appendix A.
Remark 4: Since

P
(0)
XUi−1(0,0) logαi

= P
(0)
XUi−1(0,0)D(PUi|X=0,Ui−1=0∥PUi|X=1,Ui−1=0) (56)

≥ P (0)
Ui−1(0) inf

Q

[
P

(0)
X|Ui−1(0|0)D(PUi|X=0,Ui−1=0∥Q)

+ P
(0)
X|Ui−1(1|0)D(PUi|X=1,Ui−1=0∥Q)

]
(57)

= P
(0)
Ui−1(0)I(Ui;X|U i−1 = 0) (58)

= I(Ui;X|U i−1), (59)

Theorem 4 also implies the following bound on the external
information (see (18)):

I(Ur;XY ) ≤ 1.1
m1

odd∑
1≤i≤r

logαi
even∏

2≤j≤i−1

α−1
j

+
1.1
m2

even∑
1≤i≤r

logαi
odd∏

1≤j≤i−1

α−1
j . (60)

Remark 5: Let us provide some intuition why interac-
tion helps, assuming the case of m1 = m2 = m
for simplicity. From the proof of Theorem 4, it can be
seen that up to a constant factor, s∗∞(X;Y ) is at least
δ2

m3

∫ ln m
100

0
etdt

(
1
m

∫ ln m
100

0
e−tdt

)−1

∼ δ2

m (which is in fact
sharp as will be seen from the upper bound on s∗∞(X;Y )
in Theorem 6). Moreover, lower bounds on s∗r(X;Y ) can be
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computed by replacing the integrals with discrete sums with
r terms:

δ2

m3

⌈r/2⌉∑
i=1

(eti − eti−1)

 1
m

⌈r/2⌉∑
i=1

e−ti−1(ti − ti−1)

−1

(61)

where 1 = t0 < t1 < · · · < t⌈r/2⌉ = ln m
100 . In particular,

when r = 1, we recover s∗1(X;Y ) ∼ δ2

m lnm , whereas choosing
ti − ti−1 = 1, i = 1, . . . , ⌈r/2⌉ shows that r ∼ lnm achieves
s∗r(X;Y ) ∼ δ2

m . Even better, later we will take tk as the k-th
iterated power of 2, and then r will be the super logarithm
of m.

Recall that (αi) control the amount of information revealed
in each round and serve as hyperparameters of the algorithm
to be tuned. Next we shall explain how to select the value
of (αi) so that the optimal performance is achieved in the
one-way and interactive settings.

B. r = 1 Case

Specializing Theorem 4 we obtain:
Corollary 4: For any m1,m2 > 10, with r = 1 and α1 =

m1
10 we have

P
(0)
X (0) logα1 ≤

1.1
m1

log
m1

10
; (62)

lim
δ→0

δ−2I(U1;Y ) ≥ 1
50m1m2

. (63)

C. r =∞ Case

Denote by n2 the n-th tetration of 2, which is defined
recursively by 02 = 1 and

n2 := 2((n−1)2), ∀n ≥ 1. (64)

Let m := min{m1,m2}, and let r0 be the minmum integer
such that

expe(
r02− 1) ≥ m

10
. (65)

For m > 10 we have r0 ≥ 1. Then we set

r := 2r0; (66)

α2k−1 := α2k := expe(
k2− (k−1)2), ∀k ∈ {1, . . . , r0 − 1};

(67)

α2r0−1 := α2r0 =
m

10
expe(1− (r0−1)2), (68)

which fulfills αi > 1. We see that
odd∑

1≤i≤r

lnαi
even∏

2≤j≤i−1

α−1
j

≤
r0∑
k=1

(
k2− (k−1)2

)
expe

(
1− (k−1)2

)
(69)

≤ e
∞∑
k=1

k2 expe
(
−(k−1)2

)
(70)

= e

∞∑
k=1

expe
(
−(1− log 2) · (k−1)2

)
(71)

< 5. (72)

The first inequality above follows by αr−1 = m
10 expe(1 −

(r0−1)2) ≤ expe(r02 − (r0−1)2). Similarly we also have∑even
1≤i≤r lnαi

∏odd
1≤j≤i−1 α

−1
j < 5. Moreover,

odd∏
1≤j≤r

αj =
even∏

1≤j≤r

αj =
m

10
. (73)

Summarizing, we have
Corollary 5: Consider m1,m2 > 10, m := min{m1,m2},

and (αi) defined in (66)-(68). We have

odd∑
1≤i≤r

P
(0)
XUi−1(0,0) lnαi ≤

6
m1

; (74)

even∑
1≤i≤r

P
(0)
Y Ui−1(0,0) lnαi ≤

6
m2

; (75)

lim
δ→0

δ−2
odd∑

1≤i≤r

I(Ui;Y |U i−1) ≥ m

50m2
1m2

; (76)

lim
δ→0

δ−2
even∑

1≤i≤r

I(Ui;X|U i−1) ≥ m

50m1m2
2

. (77)

where r = 2r0 and r0 is defined in (65).
Let us remark that the sequence (αi) we used in (66)-(68)

is essentially optimal: Let βk :=
∏even

2≤j≤2k α
−1
j . In order for

(69) to converge, we need
∑
k ln( βk

βk−1
)β−1
k−1 to be convergent.

Therefore βk cannot grow faster than βk = exp(βk−1) which
is tetration. However this only amounts to a lower bound on
r for a particular design of PUr|XY in Definition 5. Since
tetration grows super fast, from a practical viewpoint r is
essentially a constant. Nevertheless, it remains an interesting
theoretical question whether r needs to diverge:

Conjecture 1: If there is an algorithm (indexed by k)
achieving the optimal risk (28) for nonparametric estimation,
then necessarily r →∞ as k →∞.

VI. ACHIEVABILITY BOUNDS FOR
BERNOULLI ESTIMATION

In this section we analyze the performance of the Bernoulli
distribution estimation algorithm described in Section IV.

A. Communication Complexity

Consider any i ∈ {1, . . . , r}. Denoting by P̂XYUi

the empirical distribution of (X(l), Y (l), U1(l), . . . , Ui(l))nl=1,
we have from (49) that

E(δ)[P̂XYUi |X,Y,Ui−1] = P̂XYUi−1PUi|XUi−1 . (78)

In particular,

E(δ)[P̂XYUr ] = P
(δ)
XY PUr|XY . (79)

Let ℓ(ĵi) := 2⌊log2(ĵi)⌋ + 1 be the number of bits need to
encode the positive integer ĵi using the Elias gamma code [17].
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For each i ∈ {1, . . . , r} ∩ 2Z we have

E(δ)[ℓ(ĵi)|X,Y,Ui−1] ≤ 2E(δ)[log2 ĵi|X,Y,Ui−1] + 1
(80)

≤ 2 log2 E(δ)[ĵi|X,Y,Ui−1] + 1
(81)

= 2 log2 α
nP̂XUi−1 (0,0)

i + 1 (82)

= 2nP̂XUi−1(0,0) log2 αi + 1 (83)

where (82) follows from the selection rule (40) and the formula
of expectation of the geometric distribution. Then

E(δ)[ℓ(ĵi)] ≤ 2nP (δ)
XUi−1

(0,0) log2 αi + 1 (84)

≤ 2(1 + δ)nP (0)
XUi−1

(0,0) log2 αi + 1 (85)

where (84) used (79); (85) used the fact that P (δ)
XY Ur is

dominated by (1+δ)P (0)
XY Ur . Note that 0 in (84)-(85) denotes

the value of the vector U i−1.

B. Expectation of ΓB

Recall that ΓB was defined in (44). Pick arbitrary i ∈
{1, . . . , r} \ 2Z. Since

P
(δ)
UiY := PY

i∏
j=1

P
(δ)
Uj |Uj−1Y (86)

and since PY and (P (δ)
Uj |Uj−1Y )j∈{1,...,r}∩2Z are independent

of δ, we obtain

∂δ lnP (δ)
UiY (ui, y)|δ=0 =

odd∑
1≤j≤i

Γj(uj , y). (87)

Next, observe that for any l ∈ {1, . . . , n},

E(0)[Γi(U i(l), Y (l))|U i−1(l), Y (l)]

= E(0)

 ∂δP (δ)
Ui|Y Ui−1(Ui(l)|Y, U i−1(l))

∣∣∣
δ=0

P
(0)
Ui|Y Ui−1(Ui(l)|Y, U i−1(l))

∣∣∣∣∣∣U i−1(l), Y (l)


(88)

=
∑
ui

∂δP
(δ)
Ui|Y Ui−1(ui|Y, U i−1(l))

∣∣∣
δ=0

(89)

= 0. (90)

Moreover, for any δ ̸= 0,

1
δ

n∑
l=1

E(δ)[Γi(U1(l), . . . , Ui(l), Y (l))]

= δ−1n
∑
ui,y

Γi(ui, y)P
(δ)
UiY (ui, y) (91)

= n
∑
ui,y

Γi(ui, y)
∂

∂δ
P

(δ)
UiY (ui, y)|δ=0 (92)

= n
∑
ui,y

Γi(ui, y)P
(0)
UiY (ui, y)

odd∑
1≤j≤i

Γj(uj , y) (93)

= n
∑
ui,y

Γ2
i (u

i, y)P (0)
UiY (ui, y) (94)

where (91) used (79); (92) used (90) and the linearity of
P δUi−1Y in δ; (93) used (87); (94) follows from (90). Thus

1
δ

E(δ)[ΓB] = IB, ∀δ ̸= 0 (95)

where we defined

IB := n

odd∑
1≤i≤r

E(0)[Γ2
i (U

i(1), Y (1))]. (96)

Lemma 6: Let (U i, Y ) ∼ P (δ)
UiY . We have

IB ≥ 2n lim
δ→0

δ−2
odd∑

1≤i≤r

I(Ui;Y |U i−1) (97)

where the logarithmic base of the mutual information is
natural.

Proof: Consider any i ∈ {1, 2, . . . , r} \ 2Z. we have

E(0)
[
Γ2
i (U

i, Y )
]

= E(0)

[(
∂δ lnP (δ)

Ui|Y Ui−1(Ui|Y U i−1)|δ=0

)2
]

(98)

= 2 lim
δ→0

δ−2D(P (δ)
Ui|Y Ui−1∥P (0)

Ui|Y Ui−1 |P (0)
Ui−1Y ) (99)

= 2 lim
δ→0

δ−2D(P (δ)
Ui|Y Ui−1∥P (0)

Ui|Ui−1 |P (0)
Ui−1Y ) (100)

= 2 lim
δ→0

δ−2D(P (δ)
Ui|Y Ui−1∥P (0)

Ui|Ui−1 |P (δ)
Ui−1Y ) (101)

≥ 2 lim
δ→0

δ−2D(P (δ)
Ui|Y Ui−1∥P (δ)

Ui|Ui−1 |P (δ)
Ui−1Y ) (102)

= lim
δ→0

δ−2I(Ui;Y ;U i−1) (103)

where we defined the conditional KL divergence

D(PY |X∥QY |X |PX) :=
∫
D(PY |X=x∥QY |X=x)dPX(x);

(100) follows since P
(0)
Ui|Y Ui−1 = P

(0)
Ui|Ui−1 ; (101) follows

since limδ→0 P
(δ)
Ui−1Y = P

(0)
Ui−1Y . □

C. Variance of ΓB

For any δ, since (Ur,X,Y) ∼ (P (δ)
UrXY )⊗n, we have

var(δ)(ΓB) =
n∑
l=1

var(δ)

 odd∑
1≤i≤r

Γi(U1(l), . . . , Ui(l), Y (l))


(104)

= n var(δ)

 odd∑
1≤i≤r

Γi(U1(1), . . . , Ui(1), Y (1))

 .

(105)
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However,

var(δ)

 odd∑
1≤i≤r

Γi(U1(1), . . . , Ui(1), Y (1))


≤ E(δ)


 odd∑

1≤i≤r

Γi(U1(1), . . . , Ui(1), Y (1))

2
 (106)

≤ (1 + δ)E(0)


 odd∑

1≤i≤r

Γi(U1(1), . . . , Ui(1), Y (1))

2


(107)

≤ (1 + δ)
odd∑

1≤i≤r

E(0)
[
Γ2
i (U1(1), . . . , Ui(1), Y (1))

]
(108)

where (107) follows since P (δ) is dominated by (1 + δ)P (0);
(108) used (90). Therefore

var(δ)(ΓB)

≤ n(1 + δ)
odd∑

1≤i≤r

E(0)
[
Γ2
i (U1(1), . . . , Ui(1), Y (1))

]
(109)

= (1 + δ)IB. (110)

D. r = 1 Case

We now prove achievability bounds for the Bernoulli dis-
tribution estimation algorithm.

Corollary 7: Given m1,m2 > 10, for r = 1 and α1 := m1
10 ,

the mean square error E[|δ̂B − δ|2] ≤ 25(1+δ)m1m2
n and total

communication cost E[|Π1|] ≤ 2.2(1+δ)n
m1

log2
m1
10 + 1.

Proof: We have

E[|δ̂B − δ|2] = var(δ)(ΓB) · (∂δE(δ)[ΓB])−2 (111)

≤ (1 + δ)IB · (IB)−2 (112)

≤ (1 + δ)
[
2n lim

δ→0
δ−2I(U1;Y )

]−1

(113)

≤ 25(1 + δ)m1m2

n
(114)

where (111) follows since δ̂B is unbiased (Theorem 3); (112)
follows from (95) and (110); (113) follows from Lemma 6;
lastly we used Corollary 4.

As for the communication cost

E[|ΠA→B|] ≤ 2(1 + δ)n
∑

1≤i≤1

P
(0)
XUi−1

(0, 0) log2 αi + 1

(115)

≤ 2.2(1 + δ)n
m1

log2

m1

10
+ 1 (116)

where we used (85) and Corollary 4. □

E. r =∞ Case

Corollary 8: Let m1,m2 > 10, m := min{m1,m2}.
For r, (αi) defined in Section V-C, the mean square error

E[|δ̂B − δ|2] ≤ 25(1+δ)m1m
2
2

nm and total communication cost
E[|Πr|] ≤ 6(1 + δ)n(m−1

1 +m−1
2 ) log2 e+ r+1

2 .
Proof: The bound on the mean square error is similar to

the r = 1 case:

E[|δ̂B − δ|2] ≤ var(δ)(ΓB) · (∂δE(δ)[ΓB])−2 (117)

≤ (1 + δ)IB · (IB)−2 (118)

≤ (1 + δ)

2n lim
δ→0

δ−2
odd∑

1≤i≤r

I(Ui;Y |U i−1)

−1

(119)

≤ 25(1 + δ)m2
1m2

mn
(120)

except that we use Corollary 5 in the last step.
For the communication cost,

E[|ΠA→B|] ≤ 2(1 + δ)n
odd∑

1≤i≤r

P
(0)
XUi−1

(0, 0) log2 αi +
r + 1

2

(121)

≤ 6(1 + δ)n(m−1
1 +m−1

2 ) log2 e+
r + 1

2
(122)

where used (85) and Corollary 5. □

VII. DENSITY ESTIMATION UPPER BOUNDS

In this section we prove the upper bounds in Theorem 1
and Theorem 2, by building nonparametric density estimators
based on the Bernoulli distribution estimator. For β ∈ (0, 2],
the rectangular kernel is minimax optimal (Section II-B), so
that the integral with the kernel can be directly estimated
using the Bernoulli distribution estimator, which we explain
in Section VII-B and VII-C. Extension to higher order kernels
is possible using a linear combination of rectangular kernels,
which is explained in Section VII-D.

A. Density Lower Bound Assumption

First, we observe the following simple argument showing
that it suffices to consider A > 0. Define

B := sup
x,y∈[0,1]d

sup
pXY

pXY (x, y), (123)

where the supremum is over all density pXY on R2d satisfying
∥pXY ∥[0,1]2d,β ≤ L. Clearly B > 1 is finite and depends only
on β, L, d.

Lemma 9: In either the one-way or the interactive set-
ting, suppose that there exists an algorithm achieving
maxpXY ∈H(β,L,A) E[|p̂−pXY (x0, y0)|2] ≤ R for some R > 0
and A ∈ (0, 1). Then, there must be an algorithm achieving

maxpXY ∈H(β,L,0) E[|p̂− pXY (x0, y0)|2] ≤
(

1+A
1−A

)2

R.

Proof: Pick one pXY such that ∥pXY ∥[0,1]2d,β ≤ L
and infx,y∈[0,1]d pXY (x, y) ≥ 1+A

2 > A. Since 1+A
2 < 1,

such pXY exists. Consider an arbitrary qXY ∈ H(β, L, 0), and
suppose infinite pairs (X1, Y1), . . . i.i.d. according to qXY are
available to Alice and Bob. Using the common randomness,
Alice and Bob can simulate i.i.d. pairs (X̃1, Ỹ1), . . . according
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to p̃XY := 2A
1+ApXY + 1−A

1+AqXY , by replacing each pair with
probability 2A

1+A with a new pair drawn according to pXY .
Clearly p̃XY ∈ H(β, L,A), and by assumption, p̃XY (x0, y0)
can be estimated with mean square risk R. Since pXY is
known, this implies that qXY (x0, y0) can be estimated with

mean square risk
(

1+A
1−A

)2

R. □

For the rest of the section, we will assume that there is a
density lower bound A > 0 and pXY ∈ H(β, L,A), which
is sufficient in view of Lemma 9. Consider bandwidth h > 0
(which will be specified later as an inverse polynomial of k).
Also introduce the notations

A := x0 + h[−1, 1]d; (124)

B := y0 + h[−1, 1]d. (125)

Define PXY as the probability distribution induced by PXY
and with

X := 1{X /∈ A}; (126)
Y := 1{Y /∈ B}. (127)

Define

m1 := P−1(X = 0); (128)

m2 := P−1(Y = 0). (129)

Note that m1/m2 is bounded above and below by positive
constants depending on A, β, and L (see (132) and (137)).
Also, we can assume Alice and Bob both know m1 and m2,
since with infinite samples Alice and Bob know their marginal
densities pX and pY , and Alice can send m1 to Bob with very
high precision using negligible number of bits. Let δ ≥ −1 be
the number such that PXY is the matrix( 1

m1m2
(1 + δ) 1

m1
(1− 1

m2
)− δ

m1m2
1
m2

(1− 1
m1

)− δ
m1m2

(1− 1
m2

)2 + δ
m1m2

)
. (130)

Let δ̂B be Bob’s estimator of δ in (48). Then we define Bob’s
density estimator:

p̂B :=
1 + δ̂B

m1m2h2d
. (131)

We next show that the smoothness of the density ensures
that 1 + δ is at most the order of a constant. Recall that
A is a density lower bound on pX and pY . Define M :=
max{m1,m2} and m := min{m1,m2}. The definition of
(m1,m2) implies Ahd ≤ 1

M , and hence

h ≤
(

1
AM

)1/d

. (132)

Recall B defined in (123). We then have

1 + δ = m1m2PXY (A× B) (133)

≤ m1m2Bh
2d (134)

≤ Bm1m2

A2m2
(135)

=
BM

A2m
. (136)

Next, observe that 1 = m1PX(A × [−1, 1]d) ≤ m1Bh
d

which yields hd ≥ 1
m1B

. Similarly we also have hd ≥ 1
m2B

,
therefore

hd ≥ 1
mB

(137)

Together with (132), we see that hd = Θ(1/m) = Θ(1/M).
Next, the bias of the density estimator is

E[p̂B]− pXY (x0, y0) =
PXY (A× B)

h2d
− pXY (x0, y0)

(138)

which is just the bias of the rectangular kernel estimator (with
bandwidth h in each of the two subspaces). The rectangle
kernel is order 1 [44, Definition 1.3] and compactly supported
while, by assumption β ∈ (0, 2], and therefore the bias is
bounded by ( [44, Proposition 1.2])

|E[p̂B]− pXY (x0, y0)| ≤ Chβ (139)

where C is a constant depending only on β, d and L.

B. One-Way Case

By Corollary 7 and (137), we can bound the variance of the
density estimator as

var(p̂B) =
1

m2
1m

2
2h

4d
var(δ̂B) (140)

≤ 1
m2

1m
2
2h

4d
· 25(1 + δ)m1m2

n
(141)

≤ 25(1 + δ)B4m3

nM
(142)

where (142) used (137). Also by Corollary 7, the communi-
cation constraint is satisfied if the following holds

2.2(1 + δ)n
m1

log2

m1

10
+ 1 ≤ k. (143)

Now we can choose h so that m1 = ( k
log2 k

)
d

d+2β as defined
by (128), and set

n =

⌊(
2.2(1 + δmax)

m1
log2

m1

10

)−1

(k − 1)

⌋
(144)

where δmax, defined as the right side of (136) and hence
depends only on (A, β, L), is an upper estimate of the true
parameter δ. Then the communication constraint is satisfied.
Moreover by the bias (139) and the variance (142) bounds,
the risk is bounded by

|E[p̂B]− pXY (x0, y0)|2 + var(p̂B)

≤ C2h2β +
25(1 + δ)B4m3

nM
(145)

= (Am)−2β/d +
25(1 + δ)B4m3

nM
(146)

≤ D(
k

log k
)−

2β
d+2β (147)

where D is a constant depending only on β, L, and A, and
we used the fact that δ is bounded above by (137) and the
bound on h shown in (132). This proves the upper bound in
Theorem 1 for β ∈ (0, 2].
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C. Interactive Case

Choose h such that m as defined by m := min{m1,m2}
and (128)-(129) satisfies

m := k
d

d+2β , (148)

and set

n :=
⌊

mk ln 2
13(1 + δmax)

⌋
(149)

where as before δmax is an upper bound on δ and only depends
on (A, β, L). By Corollary 8, for k large enough we have m >
10, and the communication cost is bounded by k. Moreover
from (146), the risk is bounded by Dk−

2β
d+2β for some D

depending only on β, L, and A. This proves the upper bound
in Theorem 2 when β ∈ (0, 2].

D. Extension to β > 2

For β > 2, the rectangular kernel is no longer minimax
optimal. However, observe the following:

Proposition 10: For any positive integers d and l, there
exists an order l-kernel in Rd which is a linear combination
of (⌊l/2⌋+ 1)d indicator functions.

Proof: In the following we prove for d = 1; the case
of general d will then follow by taking the tensor product of
kernel functions in R. Note that an l-th kernel must satisfy the
following equations:∫

K(u)du = 1; (150)∫
ujK(u)du = 0, j = 1, . . . , l. (151)

Let use consider K of the following form:

K(u) =
k0∑
k=1

ck1[−k,k] (152)

where k0 := ⌊l/2⌋ + 1. Since such K(u) is an even func-
tion, (150)-(150) yield k0 nontrivial equations for c1, . . . , ck0
(i.e., only when j is even):

2
k0∑
k=1

kck = 1; (153)

k0∑
k=1

2kj+1

j + 1
ck = 0, j ∈ {1, . . . , l} ∩ 2Z. (154)

From the formula for the determinant of the Vandermonde
matrix, we see that these equations have a unique solution for
c1, . . . , ck0 . □

Now for general β > 0, we can take an order
l = ⌊β⌋ kernel as in Proposition 10. We can estimate
1
h2d

∫
pXY (x, y)K( (x,y)−(x0,y0)

h ) by applying the Bernoulli
distribution estimator repeatedly for (⌊l/2⌋ + 1)2d times.
Therefore by the similar arguments as the preceding sections
we see that the upper bounds in Theorem 1 and Theorem 2
hold for β > 2 as well.

VIII. ONE-WAY DENSITY ESTIMATION LOWER BOUND

A. Upper Bounding s∗(X;Y )

The pointwise estimation lower bound is obtained by lower
bounding the risk for estimating PXY (with X and Y being
indicators of neighborhoods of x0 and y0), and applying
Le Cam’s inequality to the latter. Therefore we are led to
considering the strong data processing constant for the biased
Bernoulli distribution.

Theorem 5: Let P (δ)
XY be as defined in (29). where δ ∈

(−1, 1) and m > 1. Then s∗(X;Y ) ≤ δ2

m lnm−m+1 .
Proof: For this proof we can assume without loss of

generality that the logarithms are natural. For any QX , let
QY be the output through the channel PY |X . Then

s∗(X;Y ) ≤ D(QY ∥PY )
D(QX∥PX)

(155)

≤
Dχ2(QY ∥PY )
Dχ2(QX∥PX)

·
Dχ2(QX∥PX)
D(QX∥PX)

(156)

≤ δ2

m lnm−m+ 1
(157)

where we define the χ2 divergence in (7). The justification of
the steps are as follows: (155) is well-known. (156) follows
since the χ2 divergence dominates the KL divergence (see
e.g. [39]). To see (157), note that

Dχ2 (QY ∥PY )

Dχ2 (QX∥PX) is upper
bounded by ρ2

m(X,Y ), the square of the maximal correlation
coefficient (see e.g. [5], [6]). As the operator norm of a linear
operator, ρm(X,Y ) can be shown to equal the second largest
singular value of

M :=

(
1√
PX(x)

PXY (x, y)
1√
PY (y)

)
x,y

(158)

=
[ 1+δ
m ∗
∗ 1− 1

m + δ
m(m−1)

]
; (159)

see e.g. [6]. Since M is a symmetric matrix, its singular
values are its eigenvalues. The largest eigenvalue of M is 1,
corresponding to the eigenvector (

√
PX(0),

√
PX(1)) (which

is evident from (158)), whereas the trace

tr(M) =
1 + δ

m
+ 1− 1

m
+

δ

m(m− 1)
= 1 +

δ

m− 1
(160)

which is evident from (159). Therefore ρm(X;Y ) = δ
m−1 .

Moreover, since χ2 and KL divergences are both f -
divergences, their ratio can be bounded by the ratio of their
corresponding f -functions (see e.g. [39]):

Dχ2(QX∥PX)
D(QX∥PX)

≤ sup
0<t≤m

(t− 1)2

t ln t− t+ 1
(161)

=
(m− 1)2

m lnm−m+ 1
; (162)

The constraint t ≤ m in (161) is because minx PX(x) = 1
m

and maxx
QX(x)
PX(x) ≤ m. To show (162), it suffices to show that

inf
u∈(−1,m−1]

(1 + u) ln(1 + u)− u
u2



LIU: FEW INTERACTIONS IMPROVE DISTRIBUTED NONPARAMETRIC ESTIMATION, OPTIMALLY 7879

is achieved at u = m − 1. For this, it suffices to show that
the derivative of the objective function, −(2+u) ln(1+u)+2u

u3 is
negative on (−1,m−1]. Indeed, define ϕ(u) := (2+u) ln(1+
u)−2u. We can check that ϕ(0) = 0, ϕ′(0) = 0, and ϕ′′(u) =

u
(1+u)2 , which imply that ϕ(u) > 0 for u > 0 and ϕ(u) < 0 for
u < 0. Therefore (162), and hence (157), holds. □

B. Lower Bounding One-Way NP Estimation Risk

Given k, d, β, L,A, consider a distribution PXY on
{0, 1}2 with matrix(

1
m2 (1 + δ) 1

m (1− 1
m )− δ

m2
1
m (1− 1

m )− δ
m2 (1− 1

m )2 + δ
m2

)
, (163)

where m :=
(
ak
ln k

) d
2β+d and δ := m−

β
d , with a :=

16β+8d
d ln 2 being a constant. We then need to “simulate”

smooth distributions from PXY . Let f : Rd → [0,∞) be a
function satisfying the following properties:
• f has a compact support;
•
∫

Rd f = 1;
• f(0) > 0;
• f(x) ∈ [0, 1], for all x ∈ Rd;
• ∥f∥Rd,β <

L
4 ;

• Define g(x, y) = f(x)f(y) as a function on R2d. Then
∥g∥R2d,β <

L
4 .

Clearly, such a function exists for any given β, L, d. For
sufficiently large m such that m−1/d supp(f) + x0 ∈ [0, 1]d

and m−1/d supp(f) + y0 ∈ [0, 1]d (recall that (x0, y0) is the
given point in the density estimation problem), define

pX|X=0(x) :=
1

PX(0)
f(m

1
d (x− x0)), ∀x ∈ Rd; (164)

pY |Y=0(y) :=
1

PY (0)
f(m

1
d (y − y0)), ∀y ∈ Rd. (165)

Since PX(0) = PY (0) = 1
m , clearly the above define valid

probability densities supported on [0, 1]d. Define

pX|X=1(x) :=
1{x ∈ [0, 1]d}

PX(1)
[1− f(m1/d(x− x0))]; (166)

pY |Y=1(y) :=
1{y ∈ [0, 1]d}

PY (1)
[1− f(m1/d(y − y0))], (167)

which are also probability densities supported on [0, 1]d.
Define PXY |XY = PX|XPY |Y , where PX|X and PY |Y are
conditional distributions defined by the densities above. Under
the joint distribution PXYXY , we have

pX(x) = pY (y) = 1, ∀x, y ∈ [0, 1]d. (168)

Define

P̄XYXY = PX|XPY |Y PXPY . (169)

We now check that the density of PXY satisfies
∥pXY ∥(0,1)2d,β ≤ L for m sufficiently large. Indeed,

for x, y ∈ [0, 1]d,

pXY (x, y)

=
∑

i,j=0,1

pXY |XY=(i,j)(x, y)PXY (i, j) (170)

=
∑

i,j=0,1

pXY |XY=(i,j)(x, y)P̄XY (i, j)

+ δ
m2 (pX|X=0(x)

− pX|X=1(x))(pY |Y=0(y)− pY |Y=1(y)) (171)

= 1 + δ
m2 (pX|X=0(x)− pX|X=1(x))

· (pY |Y=0(y)− pY |Y=1(y)) (172)

= 1 + δ

[
− 1
m−1 + 1

1− 1
m

f(m1/d(x− x0))
]

·
[
− 1
m−1 + 1

1− 1
m

f(m1/d(y − y0))
]

(173)

= const.− δm

(m− 1)2
f(m1/d(x− x0))

− δm

(m− 1)2
f(m1/d(y − y0))

+
δ

(1− 1/m)2
f(m1/d(x− x0))f(m1/d(y − y0)). (174)

By the assumptions on f , we see that

∥m−β/df(m1/d(· − x0))∥(0,1)d,β ≤
L

4
;

(175)

∥m−β/df(m1/d(· − y0))∥(0,1)d,β ≤
L

4
;

(176)

∥m−β/df(m1/d(· − x0))f(m1/d(∗ − y0))∥(0,1)2d,β ≤
L

4
.

(177)

Therefore with the choice δ = m−β/d, we have
∥pXY ∥(0,1)2d,β ≤ L for m ≥ 10.

Now we can apply a Le Cam style argument [51] for the
estimation lower bound. Suppose that there exists an algorithm
that estimates the density at (x0, y0) as p̂. Alice and Bob can
convert this to an algorithm for testing the binary distributions
PXY against P̄XY . Indeed, suppose that (X,Y) is an infinite
sequence of i.i.d. random variable pairs according to either
PXY or P̄XY . Using the local randomness (which is implied
by the common randomness), Alice and Bob can simulate
the sequence of i.i.d. random variables (X,Y) according to
either PXY or P̄XY , by applying the random transformations
PX|X and PY |Y coordinate-wise. Then Alice and Bob can
apply the density estimation algorithm to obtain p̂. Note that
p̄XY (x0, y0) = 1 while

pXY (x0, y0) = 1 + δ

[
m

m− 1
f(0)− 1

m− 1

]2
, (178)

the latter following from (173). Now suppose that Bob declares
PXY if

|p̂− pXY (x0, y0)| ≤ |p̂− 1|, (179)
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and P̄XY otherwise. By Chebyshev’s inequality, the error
probability (under either hypothesis) is upper bounded by

4δ−2
[

m
m−1f(0)− 1

m−1

]−4

sup
pXY ∈H(β,L,A)

E[|p̂−pXY (x0, y0)|2].

(180)

On the other hand, from (22) and Theorem 5 we have

D(PYΠ∥P̄YΠ)
H(Π)

≤ s∗(X;Y ) (181)

≤ δ2

m lnm−m+ 1
(182)

≤ 2δ2

m · d
4β+2d ln k

(183)

≤ 8β + 4d
dak

(184)

when m is sufficiently large. However, it is known (from
Kraft’s inequality, see e.g. [14]) that the expected length of
a prefix code upper bounds the entropy. Thus

k ≥ E[|Π|] ≥ 1
log 2

H(Π) (185)

and therefore

D(PYΠ∥P̄YΠ) ≤ 8β + 4d
da

log 2. (186)

Then by Pinsker’s inequality (e.g. [44]),

1−
∫
dPYΠ ∧ dP̄YΠ ≤

√
1

2 log e
D(PYΠ∥P̄YΠ) (187)

≤
√

4β + 2d
da

ln 2 (188)

=
1
2

(189)

where the last line follows from our choice a = 16β+8d
d ln 2.

However,
∫
dPYΠ ∧ dP̄YΠ lower bounds twice of (180).

Therefore we have

sup
pXY ∈H(β,L,A)

E[|p̂− pXY (x0, y0)|2]

≥ δ2

8

[
m

m− 1
f(0)− 1

m− 1

]4
· 1
2

(190)

=
1
16
m−2β/d

[
m

m− 1
f(0)− 1

m− 1

]4
(191)

which is lower bounded by 1
17m

−2β/df4(0) =
f4(0)

17

(
ak
ln k

)− 2β
2β+d for large enough k. Since a and f(0)

depend only on d, β, L, this establishes the lower bound in
Theorem 1.

IX. INTERACTIVE DENSITY ESTIMATION LOWER BOUND

In this section we prove the lower bound in Theorem 2.

A. Upper Bounding s∗∞(X;Y )

The heart of the proof is the following technical result:
Theorem 6: There exists c > 0 small enough such that

the following holds: For any PXY which is a distribution on
{0, 1}2 corresponding to the following matrix:(

p2(1 + δ) pp̄− p2δ
pp̄− p2δ p̄2 + p2δ

)
(192)

where p, |δ| ∈ [0, c) and we used the notation p̄ := 1 − p,
we have

s∗∞(X;Y ) ≤ c−1pδ2. (193)

The proof can be found in Appendix B.

B. Lower Bounding Interactive NP Estimation Risk

The proof is similar to the one-way case (Section VIII-B).
Consider the distribution PXY on {0, 1}2 as in (163). Let
m := (ak)

d
2β+d and δ := m−

β
d , where a = 2 ln 2

c with c being
the absolute constant in Theorem 6. Pick the function f , and
define PXYXY and P̄XYXY as before. Note that, as before,
p̄XY is uniform on [0, 1]2d, while ∥pXY ∥(0,1)2d,β ≤ L for
m ≥ 10. pXY (x0, y0) has the same formula (178), and Alice
and Bob can convert a (now interactive) density estimation
algorithm to an algorithm for testing PXY against P̄XY . With
the same testing rule (179), the error probability under either
hypothesis is again upper bounded by (180).

Changes arise in (181), where we shall apply Theorem 6
instead. Note that for the absolute constant c in Theorem 6,
the condition 1

m , |δ| < c is satisfied for sufficiently large k
(hence sufficiently large m).

D(PYΠ∥P̄YΠ)
H(Π)

≤ s∗∞(X;Y ) (194)

≤ c−1δ2

m
(195)

≤ (cak)−1. (196)

Again using Kraft’s inequality to Bound H(Π), we obtain

D(PYΠ∥P̄YΠ) ≤ log 2
ca

. (197)

Then Pinsker’s inequality yields

1−
∫
dPYΠ ∧ dP̄YΠ ≤

√
ln 2
2ca

=
1
2

(198)

since we selected a = 2 ln 2
c . Again

∫
dPYΠ ∧ dP̄YΠ lower

bounds twice of (180), therefore

sup
pXY ∈H(β,L,A)

E[|p̂− pXY (x0, y0)|2]

≥ δ2

8

[
m

m− 1
f(0)− 1

m− 1

]4
· 1
2

(199)

=
1
16
m−2β/d

[
m

m− 1
f(0)− 1

m− 1

]4
(200)

≥ f4(0)
17

(ak)−
2β

2β+d (201)

where the last line holds for sufficiently large k. Since a
is a universal constant and f depends on d, β, L only, this
completes the proof of the interactive lower bound.
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APPENDIX I
PROOF OF THEOREM 4

First, assume that i ∈ {1, 2, . . . , r} \ 2Z. By the definitions
of PUi|XUi−1 and PUi|Y Ui−1 , we can verify that the following
holds (for δ = 0):

P
(0)
X|Ui(0|0) =

PX(0)

PX(1)
∏odd

1≤j≤i α
−1
j + PX(0)

. (202)

Indeed, (202) follows by applying induction on the following

P
(0)
X|Ui(0|0) =

p0

p0 + p1
(203)

=
P

(0)
X|Ui−2(0|0)

P
(0)
X|Ui−2(0|0) + P

(0)
X|Ui−2(1|0)α−1

i

(204)

where p0 := P
(0)
X|Ui−1(0|0)P (0)

Ui|XUi−1(0|0,0), p1 := P
(0)
X|Ui−1

(1|0)P (0)
Ui|XUi−1(0|1,0), and we used P

(0)
X|Ui−1(0|0) =

P
(0)
X|Ui−2(0|0) which in turn follows from the factorization

P
(0)
XY Ui−1|Ui−2 = P

(0)
XY |Ui−2P

(0)
Ui−1|Y Ui−2 (205)

= P
(0)
X|Ui−2P

(0)
Y |Ui−2P

(0)
Ui−1|Y Ui−2 . (206)

Now from (202),

P
(0)
Ui|Ui−1(0|0) = P

(0)
X|Ui−1(0|0) + α−1

i P
(0)
X|Ui−1(1|0) (207)

=
PX(1)

∏odd
1≤j≤i α

−1
j + PX(0)

PX(1)
∏odd

1≤j≤i−2 α
−1
j + PX(0)

. (208)

Similarly, by switching the roles of X and Y we have

P
(0)
Ui−1|Ui−2(0|0) =

PY (1)
∏even

2≤j≤i−1 α
−1
j + PY (0)

PY (1)
∏even

2≤j≤i−3 α
−1
j + PY (0)

. (209)

Therefore,

P
(0)
Ui (0)

=
∏

1≤j≤i

P
(0)
Ui|Ui−1(0|0) (210)

=

PX(1)
odd∏

1≤j≤i

α−1
j + PX(0)


PY (1)

even∏
2≤j≤i

α−1
j + PY (0)

 (211)

for any i = 1, . . . , r. We also see from (202) and (211) that
for any i odd,

P
(0)
XUi−1(0,0) = PX(0)

PY (1)
even∏

2≤j≤i−1

α−1
j + PY (0)


(212)

=
1
m1

(1− 1
m2

)
even∏

2≤j≤i−1

α−1
j +

1
m2

 (213)

≤ 1.1
m1

even∏
2≤j≤i−1

α−1
j (214)

where the last step follows since
∏even

2≤j≤i−1 α
−1
j ≥ 10

m2
.

Therefore, the claim (52) follows, and (53) is similar.
Next, consider any i ∈ {1, . . . , r}. Define

δi :=
PXY |Ui−1=0(0, 0)

PX|Ui−1=0(0)PY |Ui−1=0(0)
− 1. (215)

Observe that the construction of PUr|XY fulfills the Markov
chain conditions (14)-(15), implying that

P
(δ)
XY (0, 0)P (δ)

XY (1, 1)

P
(δ)
XY (0, 1)P (δ)

XY (1, 0)
=
P

(δ)
XY |Ui−1(0, 0|0)P (δ)

XY |Ui−1(1, 1|0)

P
(δ)
XY |Ui−1(0, 1|0)P (δ)

XY |Ui−1(1, 0|0)
.

(216)

We therefore have1

(1 + δ)(1 + δ
(m1−1)(m2−1) )

(1− δ
m1−1 )(1− δ

m2−1 )
=

(1 + δi)(1 + δi
b(δ)c(δ)

b̄(δ)c̄(δ) )

(1− δi b
(δ)

b̄(δ) )(1− δi c
(δ)

c̄(δ) )

(217)

where we defined

b(δ) := P
(δ)
X|Ui−1(0|0); (218)

c(δ) := P
(δ)
Y |Ui−1(0|0). (219)

By continuity, we have

b(δ) = b(0) + o(1); (220)

c(δ) = c(0) + o(1), (221)

as δ → 0. It is also easy to see from (217) that δi = O(δ)
(for this proof, only δ is the variable, and all other constants,
such as m and (αi), can be hidden in the Landau notations).
Therefore (217)(220)(221) yield

1 +
(

1 +
1

m1 − 1

)(
1 +

1
m2 − 1

)
δ + o(δ)

= 1 +
(

1 +
b(δ)

b̄(δ)

)(
1 +

c(δ)

c̄(δ)

)
δi + o(δ) (222)

= 1 +
(

1 +
b(0)

b̄(0)

)(
1 +

c(0)

c̄(0)

)
δi + o(δ). (223)

Using the fact that X and Y are independent under P (0),
noting (202) and the assumption

∏odd
1≤j≤r α

−1
j ≥ 10

m1
, we have

b(0) = P
(0)

X|Ui′ (0|0) ≤
1
m1

10
m1

(1− 1
m1

) + 1
m1

≤ 1
10
, (224)

where i′ is the largest odd integer not exceeding i. Similarly
we also have c(0) ≤ 1

10 . Consequently, (223) yields

δ2i ≥ δ2
(

(1 + 1
m1−1 )(1 + 1

m2−1 )

(1 + 1
9 )2

)2

+ o(δ2) (225)

≥ 0.94δ2 + o(δ2). (226)

Moreover, let us define

a(δ) := P
(δ)
Ui|Ui−1(0|0). (227)

1We use the notation x̄ := 1− x for x ∈ [0, 1].
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In the following paragraph we consider arbitrary i ∈
{1, 2, . . . , r} \ 2Z, and we shall omit the superscripts (δ) for
a(δ), b(δ), c(δ), unless otherwise noted. Then

I(Ui;Y |U i−1 = 0)
= aD(PY |Ui=0∥PY |Ui−1=0)

+ āD(PY |Ui=1,Ui−1=0∥PY |Ui−1=0) (228)

We can verify that PX|Ui=0(0) = b
b+α−1

i b̄
. Therefore,

PY |Ui=0(0) =
b

b+ α−1
i b̄
· c(1 + δi−1)

+
α−1
i b̄

b+ α−1
i b̄
· b̄c− δi−1bc

b̄
(229)

= c+
bc(1− α−1

i )
b+ α−1

i b̄
δi−1. (230)

Therefore as δ → 0,

D(PY |Ui=0∥PY |Ui−1=0) = d
(
PY |Ui=0(0)∥c

)
(231)

=
1
2
c

(
b(αi − 1)
αib+ b̄

δi−1

)2

+ o(δ2)

(232)

≥ 1
2
c
(
b(αi − 1)0.92δ

)2
+ o(δ2)

(233)

≥ 0.94

2
cb2(αi − 1)δ2 + o(δ2)

(234)

where d(p∥q) := p log p
q + (1− p) log 1−p

1−q denotes the binary
divergence function, and recall that we assumed the natural
base of logarithms. On the other hand, PY |Ui=1,Ui−1=0(0) =
PY |X=1,Ui−1=0(0) = c− δi−1bc

1−b . Therefore

D(PY |Ui=1,Ui−1=0∥PY |Ui−1=0) = d

(
c− δi−1bc

1− b
∥c
)

(235)

=
1
2
c

(
δi−1b

1− b

)2

+ o(δ2)

(236)

≥ 0.94

2
cb2δ2 + o(δ2).

(237)

Turning back to (228), we obtain

I(Ui;Y |U i−1 = 0)

=
0.94

2
[
ab2c(αi − 1)2δ2 + (1− a)cb2δ2

]
+ o(δ2) (238)

≥ 0.95

2
(
α−1
i (αi − 1)2 + 1− α−1

i

)
b2cδ2 + o(δ2) (239)

≥ 0.95

2
(αi − 1)b2cδ2 + o(δ2) (240)

where (239) follows since (208) implies

a(δ) = a(0) + o(1) (241)

=
(1− 1

m1
)
∏odd

1≤j≤i α
−1
j + 1

m1

(1− 1
m1

)
∏odd

1≤j≤i−2 α
−1
j + 1

m1

+ o(1) (242)

≥
(1− 1

m1
)
∏odd

1≤j≤i α
−1
j

(1− 1
m1

)
∏odd

1≤j≤i−2 α
−1
j

+ o(1) (243)

= α−1
i + o(1) (244)

and

1− a(δ) = 1− a(0) + o(1) (245)

=
(1− 1

m1
)(1− α−1

i )
∏odd

1≤j≤i−2 α
−1
j

(1− 1
m1

)
∏odd

1≤j≤i−2 α
−1
j + 1

m1

+ o(1)

(246)

≥
(1− 1

m1
)(1− α−1

i ) 10
m1

(1− 1
m1

) 10
m1

+ 1
m1

+ o(1) (247)

≥ 0.9(1− α−1
i ) + o(1). (248)

Moreover, by (202),

b(δ) = b(0) + o(1) (249)

=
1
m1

(1− 1
m1

)
∏odd

1≤j≤i−1 α
−1
j + 1

m1

+ o(1) (250)

≥
1
m1

(1− 1
m1

+ 1
10 )
∏odd

1≤j≤i−1 α
−1
j

+ o(1) (251)

≥ 0.9
m1

odd∏
1≤j≤i−1

αj + o(1). (252)

Similarly,

c(δ) ≥ 0.9
m2

even∏
1≤j≤i−1

αj + o(1). (253)

Therefore by (240) and (211),

I(Ui;Y |U i−1) = I(Ui;Y |U i−1 = 0)PUi−1(0) (254)

≥ 0.95

2
(αi − 1)b2cδ2

∏
1≤j≤i−1

α−1
j + o(δ2)

(255)

≥ 0.98δ2

2m2
1m2

(αi − 1)
odd∏

1≤j≤i−1

αj + o(δ2)

(256)

=
0.98δ2

2m2
1m2

 odd∏
1≤j≤i

αj −
odd∏

1≤j≤i−2

αj

+ o(δ2)

(257)

and hence
odd∑

1≤i≤r

I(Ui;Y |U i−1) ≥ 0.98δ2

2m2
1m2

odd∏
1≤j≤r

αj + o(δ2), (258)

establishing the claim (54) of the theorem. The proof of (55)
is similar.
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APPENDIX II
PROOF OF THEOREM 6

We can choose the natural base of logarithms in this proof.
Choose U = (U1, U2, . . . , Ur) satisfying the Markov chain
conditions (14)-(15) and so that

s∗∞(X;Y ) ≤ 2 · I(X;Y )− I(X;Y |U)
I(U;X,Y )

(259)

≤ 4 · I(X;Y )− I(X;Y |U)
I(U;X) + I(U;Y )

(260)

which is possible by the definition of s∗∞(X;Y ).
Given α, β ∈ [0, 1], define by Pα,β the unique distribution2

such that
Pα,β(x, y) = PXY (x, y)f(x)g(y) (261)

for some functions f and g, and such that the marginals are
Pα := [α, ᾱ] and P β := [β, β̄]. For the existence of Pα,β , see
e.g. [23] and [40]. Define I(α, β) as the mutual information of
(X,Y ) under Pα,β . Define λ = λ(α, β) as the number such
that Pα,β is the matrix(

αβ + λ αβ̄ − λ
ᾱβ − λ β̄β̄ + λ

)
. (262)

Given any u, let αu ∈ [0, 1] be such that PX|U=u =
[αu, ᾱu]. Define βu similarly but for PY |U=u. With these
notations, note that

E[αU] = E[βU] = p; (263)

and
I(X;Y )− I(X;Y |U) = I(p, p)− E[I(αU, βU)]; (264)
I(U;X) + I(U;Y ) = E[d(αU∥p) + d(βU∥p)] (265)

where we recall that d(·∥·) denotes the binary divergence
function. Define

ψ(α, β) := d(α∥p) + d(β∥p). (266)

Then note that ψ(α, β) is a smooth nonnegative function on
[0, 1]2 with vanishing value and first derivatives at (p, p). Also,
define

ϕ(α, β) :=
I(p, p)− I(α, β) + Iα(p, p)(α− p) + Iβ(p, p)(β − p)

(267)

where Iα(p, p) := ∂
∂αI(α, β)

∣∣
(p,p)

. Then ϕ is also a smooth
function on [0, 1]2 with vanishing value and first derivatives
at (p, p). Moreover, due to (263), we have

E[ϕ(αU, βU)] = I(p, p)− E[I(αU, βU)]. (268)

Thus to prove the theorem it suffices to show the existence of
sufficiently small c > 0, such that for any p, |δ| ∈ (0, c), there
is

sup
α,β

ϕ(α, β)
ψ(α, β)

≤ c−1pδ2 (269)

where the sup is over α, β ∈ (0, 1).
• Case 1: 0.1p < α, β < 10p.

2Alternatively, P α,β equals the I-projection arg minQXY

D(QXY ∥PXY ) under the constraints QX = [α, ᾱ] and QY = [β, β̄]
[15, Corollary 3.3].

Since ∂2

∂α2D(α∥p) =
[

1
α + 1

1−α

]
≥ 1

α ≥
1

10p for α ∈
[0, 10p], we have

ψ(α, β) ≥ 1
20p

[(α− p)2 + (β − p)2] (270)

for (α, β) ∈ [0, 10p]2. Now if we can show that

sup
(α,β)∈[0,10p]2

∥∂2ϕ(α, β)∥ = sup
(α,β)∈[0,10p]2

∥∂2I(α, β)∥

(271)

≲ δ2, (272)

we will obtain sup(α,β)∈[0,10p]2
ϕ(α,β)
ψ(α,β) ≲ pδ2 which

matches (269). Here and below, x ≲ y means that there is
an absolute constant C > 0 such that x ≤ Cy when c in
the theorem statement (and hence p and |δ|) is sufficiently
small.
Before explicitly computing ∂2ϕ(α, β), we give some
intuitions why we should expect (272) to be true. For
fixed α, β, p, we will show that

I(α, β) = Ĩ(α, β) + o(δ2) (273)

as δ → 0, where we defined

Ĩ(α, β) :=
δ2

2p̄4
αᾱββ̄. (274)

If the difference between I(α, β) and Ĩ(α, β) could be
neglected, then (272) should hold. To see (273), for given
α, β ∈ (0, 1), note that (261) implies,

(1 + λ
αβ )(1 + λ

ᾱβ̄
)

(1− λ
αβ̄

)(1− λ
ᾱβ )

=
(1 + δ)(1 + δp2

p̄2 )

(1− δp
p̄ )2

. (275)

Under the assumption δ → 0, the above linearizes to

λ

αᾱββ̄
=

δ

p̄2
+ o(δ). (276)

Moreover, note that

Dχ2(Pα,β∥Pα × P β) =
λ2

2αᾱββ̄
(277)

=
δ2

2p̄4
αᾱββ̄ + o(δ2) (278)

where the last step follows by comparing with (276).
Since I(α, β)/Dχ2(Pα,β∥Pα × P β) → 1 as δ → 0,
we see (273) holds. Of course, (273) does not really show
(272) since approximation of function values generally
does not imply approximation of the derivatives. How-
ever, we shall next explicitly take the derivatives to give
a real proof, and the above observations are useful guides.
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First, note that

∂I(α, β)
∂α

=
∑

x,y∈{0,1}

(
∂

∂α
Pα,β(x, y)

)
ln

Pα,β(x, y)
Pα(x)P β(x)

(279)

= (β + λα) ln(1 +
λ

αβ
) + (β̄ − λα) ln(1− λ

αβ̄
)

(−β − λα) ln(1− λ

ᾱβ
) + (−β̄ + λα) ln(1 +

λ

ᾱβ̄
).

(280)

where λα := ∂
∂αλ. Next, we express the first and

second derivatives, λα, λβ and λα,β , in terms of λ.
Differentiating the logarithm of (275) in β yields

λβ

[
1

αβ + λ
+

1
ᾱβ̄ + λ

+
1

αβ̄ − λ
+

1
ᾱβ − λ

]
= λ

[
β−1

αβ + λ
− β̄−1

ᾱβ̄ + λ
− β̄−1

αβ̄ − λ
+

β−1

ᾱβ − λ

]
.

(281)

In the rest of the proof the notation f(t) = O(t) means
|f(t)| ≲ |t| (recall the definition of ≲ in (272)), and
f(t) = Θ(t) if 1 ≲ f(t)/t ≲ 1. Note that for 0.1p <
α, β < 10p we have

λ

αβ
= Θ(δ), (282)

since the right side of (275) clearly equals 1+Θ(δ). Then
by (281),

λβ

[
1

αᾱββ̄
+O(

λ

α2β2
)
]

= λ

[
β̄ − β
αᾱβ2β̄2

+O(
λ

α2β3
)
]

(283)

and hence,

λβ = λ · β̄ − β
ββ̄

(
1 +O(

λ

αβ
)
)

= O(
λ

β
). (284)

Expression of λα can be found similarly. Moreover,
differentiating (281) we get

λα,β

[
1

αβ+λ + 1
ᾱβ̄+λ

+ 1
αβ̄−λ + 1

ᾱβ−λ

]
+ λαλβ

[
− 1

(αβ+λ)2 −
1

(ᾱβ̄+λ)2
+ 1

(αβ̄−λ)2
+ 1

(ᾱβ−λ)2

]
+ λα

[
− α

(αβ+λ)2 + ᾱ
(ᾱβ̄+λ)2

+ α
(αβ̄−λ)2

− ᾱ
(ᾱβ−λ)2

]
+ λβ

[
− β

(αβ+λ)2 + β̄
(ᾱβ̄+λ)2

+ β
(ᾱβ−λ)2 −

β̄
(αβ̄−λ)2

]
+ λ

[
1

(αβ+λ)2 + 1
(ᾱβ̄+λ)2

− 1
(αβ̄−λ)2

− 1
(ᾱβ−λ)2

]
= 0,

(285)

from which we can deduce that

λα,β = O(
λ

αβ
). (286)

Now, taking the derivative in (280), we obtain

∂α,βI(α, β)

= λα,βλ ·
1

αᾱββ̄
+ λαλβ ·

1
αᾱββ̄

+ λαλ ·
β − β̄
αᾱβ2β̄2

+ λβλ ·
α− ᾱ
α2ᾱ2ββ̄

+
λ2

2
· (ᾱ− α)(β̄ − β)

α2ᾱ2β2β̄2

+O

(
λ3

α3β3

)
. (287)

In deriving (287), we applied the Taylor expansions of
x 7→ ln(1 + x) and x 7→ 1

1+x . Plugging (284) and (286)
into (287), we obtain

|∂α,βI(α, β)| = O(
(
λ

αβ

)2

) = O(δ2). (288)

Next, we control |∂α,αI(α, β)|. Similarly to (281),
we have

λα

[
1

αβ + λ
+

1
ᾱβ̄ + λ

+
1

ᾱβ − λ
+

1
αβ̄ − λ

]
= λ

[
α−1

αβ + λ
− ᾱ−1

ᾱβ̄ + λ
− ᾱ−1

ᾱβ − λ
+

α−1

αβ̄ − λ

]
.

(289)

Further taking the derivative, we obtain

λα,α

[
1

αβ + λ
+

1
ᾱβ̄ + λ

+
1

ᾱβ − λ
+

1
αβ̄ − λ

]
+ λα

[
−2β − α−1λ

(αβ + λ)2
+

2β̄ + ᾱ−1λ

(ᾱβ̄ + λ)2

+
2β − ᾱ−1λ

(ᾱβ − λ)2
+
−2β̄ + α−1λ

(αβ̄ − λ)2

]
+ λ2

[
1

α2(αβ + λ)2
+

1
ᾱ2(ᾱβ̄ + λ)2

− 1
ᾱ2(ᾱβ − λ)2

− 1
α2(αβ̄ − λ)2

]
+ 2λ

[
β

α(αβ + λ)2
+

β̄

ᾱ(ᾱβ̄ + λ)2

+
β

ᾱ(ᾱβ − λ)2
+

β̄

α(αβ̄ − λ)2

]
= 0. (290)

Next, we shall use the assumption of α, β ∈ (0.1p, 10p)
to simplify (290) as

λα,α ·Θ(
1
p2

)− λα ·Θ(
1
p3

)

+ λ2 ·Θ(
1
p6

) + λ ·Θ(
1
p4

) = 0. (291)

Since, analogous to (284), we have

λα = O(
λ

α
), (292)

we see that (291) implies

λα,α = O(
λ

p2
). (293)
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Tighter estimates of λα,α are possible, but the above will
suffice. We now take the derivative of (280) in α:

∂α,αI(α, β) = I1 + I2 (294)

where

I1 : = λα,α

[
ln(1 +

λ

αβ
)− ln(1− λ

αβ̄
)

− ln(1− λ

ᾱβ
) + ln(1 +

λ

ᾱβ̄
)
]

(295)

and

I2 := λ2
α

(
1
αβ

1 + λ
αβ

+
1
αβ̄

1− λ
αβ̄

+
1
ᾱβ

1− λ
ᾱβ

+
1
ᾱβ̄

1 + λ
ᾱβ̄

)

+ λα

(
1
α

1 + λ
αβ

−
1
α

1− λ
αβ̄

+
1
ᾱ

1− λ
ᾱβ

−
1
ᾱ

1 + λ
ᾱβ̄

)

+ λαλ

(
− 1
α2β

1 + λ
αβ

+
− 1
α2β̄

1− λ
αβ̄

+
1
ᾱ2β

1− λ
ᾱβ

+
1
ᾱ2β̄

1 + λ
ᾱβ̄

)

+ λ

(
− 1
α2

1 + λ
αβ

+
1
α2

1− λ
αβ̄

+
1
ᾱ2

1− λ
ᾱβ

+
− 1
ᾱ2

1 + λ
ᾱβ̄

)
(296)

We can Taylor expand I1 using the facts that λα,α =
O( λp2 ), α, β = Θ(p), to obtain

I1 = O(
λ2

p4
). (297)

We can Taylor expand I2 using the fact that λα = O(λp )
(analogous to (284)) to obtain

I2 = O(
λ2

p4
). (298)

Thus

|∂α,αI(α, β)| = O(
λ2

p4
) = O(δ2). (299)

By symmetry same bound holds for |∂β,βI(α, β)| as
well. Together with (288), we thus validated (272), and
consequently (269) in this case.

• Case 2: max{α, β} ≥ 10p.
Without loss of generality assume that α ≥ β and α ≥
10p. From (280), we have

∂αI(p, p)
= (p+ λα(p, p)) ln(1 + δ)+(p̄−λα(p, p)) ln(1− δp/p̄)

+ (−p− λα(p, p)) ln(1− δp/p̄)
+ (−p̄+ λα(p, p)) ln(1 + δp2/p̄2). (300)

Using (292) with λ ← δp2 and α ← p, we obtain
λα(p, p) = O(pδ). Thus Taylor expanding the above
displayed, we obtain

∂αI(p, p) ≲ pδ2. (301)

Then

ϕ(α, β) := I(p, p)− I(α, β) + Iα(p, p)(α− p)
+ Iβ(p, p)(β − p) (302)

≤ p2δ2 − 0 + 2Iα(p, p)(α− p) (303)

≲ pαδ2 (304)

where we used the assumption that α ≥ β and the fact
that Iα(p, p) = Iβ(p, p). Now the assumption of α ≥ 10p
implies

ψ(α, β) ≥ d(α∥p) ≳ α. (305)

To see the second inequality in (305), note that

min
α∈(10p,1]

1
α
d(α∥p) = min

α∈[10p,1]

{
ln
α

p
+

1− α
α

ln
1− α
1− p

}
(306)

=
d(10p∥p)

10p
(307)

where the minimization is easily solved by checking that
the derivative is positive for α ≥ 10p. Finally, combining
(305) with (304), we obtain ϕ(α,β)

ψ(α,β) ≲ δ2p, as desired.
• Case 3: min{α, β} ≤ 0.1p, max{α, β} < 10p.

Assume without loss of generality that α ≤ 0.1p. In this
case, using (301), we have

ϕ(α, β) := I(p, p)− I(α, β) + Iα(p, p)(α− p)
+ Iβ(p, p)(β − p) (308)

≤ p2δ2 − 0 + Iα(p, p)(α+ β − 2p) (309)

≤ p2δ2 + Iα(p, p) · 18p (310)

= O(p2δ2). (311)

On the other hand,

ψ(α, β) ≥ d(α∥p) (312)
≥ d(0.1p∥p) (313)

= (0.9− 0.1 ln 10)p+O(p2) (314)
= Θ(p). (315)

Thus we once again obtain ϕ(α,β)
ψ(α,β) ≲ δ2p, as desired.
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