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The Efficacy of Pessimism in
Asynchronous Q-Learning
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Abstract— This paper is concerned with the asynchronous form
of Q-learning, which applies a stochastic approximation scheme
to Markovian data samples. Motivated by the recent advances
in offline reinforcement learning, we develop an algorithmic
framework that incorporates the principle of pessimism into
asynchronous Q-learning, which penalizes infrequently-visited
state-action pairs based on suitable lower confidence bounds
(LCBs). This framework leads to, among other things, improved
sample efficiency and enhanced adaptivity in the presence of
near-expert data. Our approach permits the observed data in
some important scenarios to cover only partial state-action
space, which is in stark contrast to prior theory that requires
uniform coverage of all state-action pairs. When coupled with the
idea of variance reduction, asynchronous Q-learning with LCB
penalization achieves near-optimal sample complexity, provided
that the target accuracy level is small enough. In comparison,
prior works were suboptimal in terms of the dependency on
the effective horizon even when i.i.d. sampling is permitted.
Our results deliver the first theoretical support for the use of
pessimism principle in the presence of Markovian non-i.i.d. data.

Index Terms— Asynchronous Q-learning, offline reinforcement
learning, pessimism principle, model-free algorithms, partial
coverage, variance reduction.

I. INTRODUCTION

THE asynchronous form of Q-learning, which is a stochas-
tic approximation paradigm that applies to Markovian

non-i.i.d. samples, has found applicability in an abundance
of reinforcement learning (RL) applications [1], [2], [3], [4].
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The input data takes the form of a Markovian sample trajectory
induced by a policy called the behavior policy; in each time,
asynchronous Q-learning only updates the Q-function estimate
of a single state-action pair along the trajectory rather than
updating all pairs at once — and hence the terminology
“asynchronous” [2], [5]. This classical algorithm has the
virtue of being off-policy, allowing one to learn the optimal
policy even when the behavior policy is suboptimal. Recent
years have witnessed a resurgence of interest in understanding
the performance of asynchronous Q-learning, due to a shift
of attention from classical asymptotic analysis to the non-
asymptotic counterpart. By and large, non-asymptotic results
bear important and clear implications for the impacts of salient
parameters (e.g., model capacity, horizon length) in large-
dimensional RL problems.

A. Motivation

A central consideration in modern RL applications is
data efficiency: the limited availability of data samples
places increasing demands on sample-efficient RL solutions,
and in turn, calls for reexamining classical algorithms like
Q-learning. When it comes to asynchronous Q-learning,
recent theoretical advances have led to sharpened sample
complexity analyses [6], [7], [8]. For concreteness, consider a
γ-discounted infinite-horizon Markov decision process (MDP)
and a stationary behavior policy: asynchronous Q-learning
provably yields ε-accuracy as soon as the sample size exceeds
the order of1 [6]

1
µmin(1− γ)4ε2

+ o

(
1
ε2

)
(1)

modulo some log factor, where µmin stands for the minimum
occupancy probability of the sample trajectory over all state-
action pairs. While this bound (1) is tight in a general sense for
vanilla Q-learning, two issues immediately spring into mind.
• Uniform coverage vs. partial coverage. The factor 1/µmin

in (1) imposes a firm requirement on uniform coverage
of the state-action space, namely, every state-action pair
needs to be visited sufficiently often in order to guarantee
reliable learning. Nevertheless, it is not uncommon for
a behavior policy to provide only partial coverage of
the state-action space; for instance, a behavior policy

1Here, the higher-order term o
(

1
ε2

)
depends also on other parameters of

the MDP and of the sample trajectory (e.g., the mixing time, the discount
factor, and µmin).
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might elect to rule out several actions that are clearly
underperforming. In truth, partial coverage of the state-
action space results in µmin = 0, thus making the general
bound (1) vacuous in this case.

• Lack of adaptivity to expert data. The general bound (1)
falls short of reflecting the quality of the sample trajectory
(except for a general uniform coverage parameter µmin).
For instance, if the behavior policy is adopted by an
“expert” who is already aware of which actions are
(close to) optimal, then such expert data could be more
informative than a general sample trajectory with the
same µmin. It is therefore desirable for an algorithm to
adapt automatically to the quality of the data, in the
hope of achieving sample size saving when expert data
is available.

B. Main Contributions

This paper seeks to make asynchronous Q-learning adaptive
to near-expert data, allowing for partial coverage of the state-
action space in some important scenarios. A key idea that has
been recently proposed to accommodate partial coverage in
the presence of near-expert data is the principle of pessimism
(or conservatism) in the face of uncertainty [9], [10], whose
benefits have been established in the context of offline RL (or
batch RL). In a nutshell, the pessimism principle penalizes
the Q-function based on how infrequent a state-action pair
is visited, which effectively directs the attention of an RL
algorithm away from the under-covered part of the state-action
space. However, it remains unclear how effective this idea of
pessimism could be in the asynchronous setting when coping
with Markovian data.

In order to address this issue, the current paper revisits
asynchronous Q-learning in the presence of a Markovian
sample trajectory generated by a behavior policy πb. We focus
on a γ-discounted infinite-horizon MDP with S states and
A actions, and suppose that the behavior policy is stationary
and satisfies a certain single-policy concentrability assumption
(associated with a test distribution ρ) with coefficient C⋆ ≥ 1;
informally, this means that the observed sample trajectory
effectively becomes expert data as C⋆ approaches 1, as we
shall formalize in Section II. Our contributions are two-fold;
here and below, Õ(·) stands for the orderwise upper bound
while hiding any logarithmic dependency.
• Asynchronous Q-learning with LCB penalization. We

propose a variant of asynchronous Q-learning by
penalizing each Q-learning iteration based on a lower
confidence bound (LCB). This variant of Q-learning
achieves ε-accuracy (w.r.t. a test distribution ρ) as long
as the total sample size is above the order of

Õ

(
SC⋆

(1− γ)5 ε2

)
,

provided that the accuracy level ε is small enough. Given
that C⋆ can be as small as O(1) and given the trivial
bound 1/µmin ≥ SA (so that (1) ≥ SA

(1−γ)4ε2 ), our theory
leads to sample size benefits in terms of its dependency
on A when the data is near-expert.

• Variance-reduced asynchronous Q-learning with LCB
penalization. While asynchronous Q-learning with LCB
penalization allows for reduced sample complexity in
the presence of near-expert data, the dependency on the
effective horizon 1

1−γ remains suboptimal. To address
this, we leverage the idea of variance reduction (also
called reference-advantage decomposition) [11], [12],
[13] to further accelerate convergence of the algorithm,
which in turn yields a sample complexity

Õ

(
SC⋆

(1− γ)3 ε2

)
for sufficiently small accuracy level ε. The scaling 1

(1−γ)3
is essentially unimprovable even for the synchronous
setting with independent samples [10], [14]. Notably,
none of the prior works on offline RL were able to achieve
the scaling of SC⋆

(1−γ)3 ; that is, the best-known theory [10]
scales as Õ

(
SC⋆

(1−γ)5ε2
)

and relies on i.i.d. sampling.
Finally, we remark that the algorithmic and theoretical
frameworks put forward herein are suitable for two important
scenarios in the absence of active exploration of the
environment: (i) online reinforcement learning with a time-
invariant policy (so that the data arrives on the fly with no
policy evolvement), and (ii) offline reinforcement learning,
where the data generated by the behavior policy has been
pre-collected. In addition to the appealing sample complexity,
model-free algorithms also enjoy the benefits of low memory
and low computational complexity.

II. MODELS AND ASSUMPTIONS

A. Basics of Infinite-Horizon Markov Decision Processes

In this paper, we consider an infinite-horizon Markov
decision process, denoted by M = (S,A, γ, P, r). Here, S
represents the state space that contains S distinct states; A
stands for the action space that contains A distinct actions;
γ ∈ (0, 1) denotes the discount factor, with 1

1−γ representing
the effective horizon; P : S × A → ∆(S) stands for
the probability transition kernel (with ∆(S) denoting the
probability simplex over the set S), such that P (· | s, a) ∈
∆(S) denotes the transition probability from state s when
action a is executed; r : S × A → [0, 1] indicates
the deterministic reward function, such that r(s, a) is the
immediate reward gained in state s upon execution of action a.
We assume throughout that the immediate rewards fall within
the range [0, 1].

Let ∆(A) be the probability simplex over the set A.
A policy π : S → ∆(A) is an action selection rule, such
that π(· | s) ∈ ∆(A) specifies the action selection probability
in state s. When π is deterministic, we often overload the
notation and let π(s) represent the action selected in state s.
The value function and the Q-function of policy π are defined
respectively as

V π(s) := E

[ ∞∑
t=0

γtr(st, at) | s0 = s

]
,

Qπ(s, a) := E

[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a

]
,
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for all (s, a) ∈ S × A, where the expectation is taken over
a random trajectory (s0, a0, s1, a1, s2, a2, · · · ) induced by the
MDP M when policy π is employed. For a given initial state
distribution ρ ∈ ∆(S), we can also overload the notation of the
value function to represent a certain average value function:

V π(ρ) := Es∼ρ
[
V π(s)

]
.

Moreover, it is well known that there exists at least one
deterministic policy, denoted by π⋆, that simultaneously
maximizes the value function and the Q-function over all state-
action pairs. Therefore, we introduce the following notation

V ⋆(s) := max
π

V π(s), V ⋆(ρ) := Es∼ρ
[
V ⋆(s)

]
,

and

Q⋆(s, a) := max
π

Qπ(s, a)

to represent the optimal value function and the optimal
Q-function. Given a test distribution ρ ∈ ∆(S) and a target
accuracy level ε ∈

(
0, 1

1−γ
)
, our aim is to develop a policy π̂

obeying

V ⋆(ρ)− V π̂(ρ) ≤ ε.

A kind of distributions that plays an important role in our
theory is the discounted state-action occupancy distribution
defined as follows: for all (s, a) ∈ S ×A,

dπρ (s, a) := (1− γ)
∞∑
t=0

γtP (st = s, at = a | π, s0 ∼ ρ) ,

dπρ (s) := (1− γ)
∞∑
t=0

γtP (st = s | π, s0 ∼ ρ) ,

where the trajectory (s0, a0, s1, a1, s2, a2, · · · ) is induced
by the MDP under the policy π and a given initial state
distribution ρ. When π coincides with the optimal policy π⋆,
we abbreviate

d⋆ρ(s, a) := dπ
⋆

ρ (s, a), d⋆ρ(s) := dπ
⋆

ρ (s) = dπ
⋆

ρ

(
s, π⋆(s)

)
for all (s, a) ∈ S ×A.

B. Sampling Mechanism

Suppose that the observed Markovian sample trajectory{
(st, at)

}
t≥0

is obtained by executing a behavior policy πb

in the MDP M. We say that the total sample size is T if
the algorithm employs T state-action pairs of this trajectory,
i.e.,

{
(st, at)

}
0≤t≤T . Assume that µb(s, a) is the stationary

distribution of the this Markov chain generated by πb, with
the minimum state-action occupancy probability defined to be

µmin := min
s∈S, a∈A

µb(s, a).

We impose the following assumptions on πb throughout this
paper.

Assumption 1: The behavior policy πb is stationary, and the
Markov chain induced by πb is uniformly ergodic.

Remark 1: In words, uniform ergodicity says that for any
initial state-action pair, the total-variation distance between the
distribution of (st, at) and the stationary distribution of the

chain decays geometrically in t; see [15, Definition 1.1] for a
precise definition of uniform ergodicity.

Furthermore, for a given test distribution or initial state
distribution ρ ∈ ∆(S), we adopt the following concept as
introduced in [10].

Assumption 2 (Single-policy concentrability): Suppose that
there exists some constant C⋆ ≥ 1 such that

∀(s, a) ∈ S ×A :
d⋆ρ (s, a)
µb (s, a)

≤ C⋆, (2)

where we define 0/0 = 0 by convention. Throughout this
paper, C⋆ ≥ 1 is called the single-policy concentrability
coefficient.

In some sense, the single-policy concentrability coefficient
measures the closeness between the stationary distribution of
the observed data and a certain occupancy distribution induced
by the optimal policy. In particular, if we take ρ = µ⋆ to
be the stationary state distribution of the MDP under the
deterministic policy π⋆, then it can be easily verified that
d⋆µ⋆ (s, a) = µ⋆(s)1{π⋆(s) = a}, allowing us to rewrite (2)
w.r.t. the density ratio of two stationary distributions as
follows:

∀s ∈ S :
µ⋆ (s)

µb

(
s, π⋆(s)

) ≤ C⋆. (3)

In this paper, the sample data is said to be near-expert if
C⋆ = O(1), as in this case the empirical distribution of
the sample data is not far away from what is induced by
the optimal policy. Note that the introduction of the single-
policy concentrability coefficient C⋆ is solely for the purpose
of theoretical analysis, and the algorithms proposed herein do
not require prior knowledge of C⋆ at all. It is also worth noting
that C⋆ (cf. (2)) is a function of the test distribution ρ as well,
although we suppress this dependency in the notation C⋆ for
the sake of conciseness.

Another important quantity that affects the performance of
our model-free algorithms is the mixing time associated with
the sample trajectory. To be precise, for any 0 < δ < 1, the
mixing time of the Markov chain induced by the MDP M
under behavior policy πb is defined as

tmix (δ) := min
{
t : max

s0∈S,a0∈A
dTV

(
P t (· | s0, a0) , µb

)
≤ δ
}
.

Here, P t(· | s0, a0) stands for the distribution of (st, at) (i.e.,
the state-action pair in the t-th step of the trajectory) when the
chain is initialized to (s0, a0), whereas dTV(µ, ν) is the total-
variation distance between two distributions µ and ν over a
discrete space X [16], namely,

dTV (µ, ν) =
1
2

∑
x∈X

∣∣µ(x)− ν(x)
∣∣ = sup

B⊆X

∣∣µ(B)− ν(B)
∣∣.

In particular, we shall abbreviate

tmix := tmix(1/4),

following the convention in prior works like [15]. Clearly, this
important quantity measures how long it takes for a Markov
chain to decorrelate itself from the initial state.
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Remark 2: Another simpler sampling mechanism studied
in prior literature (e.g., [10]) is i.i.d. sampling, under
which the observed sample trajectory takes the form of
{(st, at, s′t)}1≤t≤T with

(st, at) ∼ µb and s′t ∼ P (· | st, at), 1 ≤ t ≤ T

independently generated. It is worth mentioning that the
theorems and analysis in the current paper automatically apply
to i.i.d. sampling by taking tmix = 1. Clearly, the Markovian
sample trajectory studied herein is in general more challenging
to cope with, due to the complicated Markovian dependency.

III. ASYNCHRONOUS Q-LEARNING
WITH LCB PENALIZATION

In this section, we describe how to incorporate the
pessimism principle into classical asynchronous Q-learning,
accompanied by our theoretical performance guarantees.

A. Algorithm

We introduce the key algorithmic ingredients of our first
algorithm: asynchronous Q-learning with LCB penalization.
The complete details can be found in Algorithm 1.

1) Asynchronous Q-Learning: Let us begin by reviewing
the basics of asynchronous Q-learning, which maintains
iterates {Qt} as the Q-function estimates. In each iteration t,
the algorithm takes action at−1 ∼ πb(· | st−1), observes the
next state st ∼ P (· | st−1, at−1), and then updates its
Q-function estimate w.r.t. a single state-action pair
(st−1, at−1) as follows

Qt (st−1, at−1) = (1− ηn)Qt−1 (st−1, at−1)

+ ηn

{
r (st−1, at−1) + γVt−1 (st)

}
,

Qt (s, a) = Qt−1 (s, a) , ∀ (s, a) ̸= (st−1, at−1).

Here, n represents the number of visits to (st−1, at−1)
prior to the t-th iteration, 0 < ηn < 1 stands for the
learning rate, and the value function estimate is defined to
be Vt−1(s) := maxa∈AQt−1(s, a).

2) The Pessimism Principle and LCB Penalization: In order
to accommodate under-coverage of the state-action space in
the presence of near-expert data, a key idea is to penalize the
Q-function of those state-action pairs that are rarely visited
(i.e., the ones that are not favored by the “expert”), so as
to downplay their influence on the Q-estimates. Specifically,
in the t-th iteration, we modify the Q-learning update by
inserting a penalty term bn:

Qt (st−1, at−1) = (1− ηn)Qt−1 (st−1, at−1) +

ηn

{
r (st−1, at−1) + γVt−1 (st)− bn

}
, (4a)

and

Qt (s, a) = Qt−1 (s, a) , ∀(s, a) ̸= (st−1, at−1), (4b)

where the penalty term bn is chosen to be some lower-
confidence bound (LCB) determined by the Hoeffding
concentration inequality. More precisely, we shall set

bn = Cb

√
H log (ST/δ)
n (1− γ)2

(5)

throughout this paper, where we take H = ⌈ 4
1−γ log ST

δ ⌉ —

so that bn is on the order of Õ
(√

1
(1−γ)3n

)
— and recall that

n is the number of visits to (st−1, at−1) prior to time t. The
rationale behind this specific choice will be made clear in the
analysis.

3) Monotonicity of Value Function Estimates: In addition
to the above pessimism principle, another consideration is to
ensure that the value function estimate Vt always improves
upon (or at least, is no worse than) the previous estimate.
Towards this end, we take

Vt (st−1) = max
{

max
a∈A

Qt (st−1, a) , Vt−1(st−1)
}
,

Vt(s) = Vt−1(s) for all s ̸= st−1,

which yields monotonically non-decreasing value function
estimates {Vt}t≥0. This simple modification facilitates analy-
sis while ensuring that Vt(s) is always non-negative (as long
as we initialize Vt(s) ≥ 0 for all s ∈ S).

4) Computational and Memory Complexities: The whole
algorithm, as summarized in Algorithm 1 has low runtime
O(T ) and low memory complexity O(min{T, SA}) (note
that if a state-action pair is never visited, we do not need
to record/update any quantity related to it).

B. Theoretical Guarantees

Equipped with LCB penalization, asynchronous Q-learning
is capable of achieving appealing sample efficiency, even
though the observed sample trajectory might not provide
full coverage of the state-action space. This is stated in the
following theorem, whose proof is postponed to Appendix B.

Theorem 1: Suppose that Assumptions 1 and 2 hold, and
recall that T is the total number of samples. With probability
exceeding 1−δ, the policy π̂ returned by Algorithm 1 satisfies

V ⋆(ρ)−V π̂(ρ) ≲

√
C⋆Sι2

T (1− γ)5
+

C⋆Stmixι

T (1− γ)2
+

C⋆tmixι
2

T (1− γ)3
,

(6)

where ι := log(ST/δ).
By taking the right-hand side of (6) to be bounded above by

ε, we immediately see that Algorithm 1 achieves ε-accuracy
with high probability, as long as the total sample size T
exceeds

Õ

(
SC⋆

(1− γ)5 ε2
+

(
S + 1

1−γ
)
tmixC

⋆

(1− γ)2 ε

)
. (7)

This also means that the sample complexity of Algorithm 1
scales as

Õ

(
SC⋆

(1− γ)5 ε2

)
(8)

for any target accuracy level 0 < ε ≤ S(
S+ 1

1−γ

)
(1−γ)3tmix

.

When we have near-expert data (so that C⋆ = O(1)), the
sample complexity can be as low as

Õ

(
S

(1− γ)5 ε2

)
.



YAN et al.: EFFICACY OF PESSIMISM IN ASYNCHRONOUS Q-LEARNING 7189

Algorithm 1 Asynchronous Q Learning With LCB Penalization.
Input: number of iterations T , initial state s.
Initialize: Q0 (s, a) = 0, V0(s) = 0, n0(s, a) = 0 for all (s, a) ∈ S ×A, H = ⌈ 4

1−γ log ST
δ ⌉.

for t = 1 to T do
Draw at−1 ∼ πb(· | st−1), and observe st ∼ P (· | st−1, at−1).
Let nt (st−1, at−1) = nt−1(st−1, at−1) + 1; and nt(s, a) = nt−1(s, a), ∀(s, a) ̸= (st−1, at−1).
Set n← nt(s, a), and take ηn = (H + 1)/(H + n).
Update

Qt (st−1, at−1) = (1− ηn)Qt−1 (st−1, at−1) + ηn

{
r (st−1, at−1) + γVt−1 (st)− bn

}
and Qt(s, a) = Qt−1(s, a) for all (s, a) ̸= (st−1, at−1), where

bn = Cb

√
H log (ST/δ)
n (1− γ)2

for some sufficiently large constant Cb > 0.
Update

Vt (st−1) = max
{

max
a∈A

Qt (st−1, a) , Vt−1(st−1)
}
,

and Vt(s) = Vt−1(s) for all s ̸= st−1.
Output: π̂ such that π̂(s) = arg maxa∈AQT (s, a) for all s ∈ S.

In comparison, the general bound (1) developed in the previous
literature requires at least SA

(1−γ)4ε2 samples (since 1/µmin ≥
SA) regardless of what behavior policy is employed. As a
result, the proposed algorithm enjoys enhanced adaptivity to
near-expert data, particularly in the presence of large action
space and/or partial coverage.

It is worth noting, however, that the bound (8) exhibits a
dependency 1

(1−γ)5 on the effective horizon as opposed to
1

(1−γ)4 , due to the adoption of the Hoeffding-style penalty (5).
This is potentially improvable by designing more careful
Bernstein-style penalty (akin to [17, Section 3]). Nevertheless,
we do not pursue this for two reasons: (a) the Hoeffding-style
penalty streamlines analysis; (b) the Bernstein-style penalty
alone is insufficient to yield optimal sample complexity, and
we shall put forward another algorithm momentarily to achieve
sample optimality.

IV. VARIANCE-REDUCED ASYNCHRONOUS Q-LEARNING
WITH LCB PENALIZATION

As we have alluded to previously, the algorithm presented
in Section III falls short of achieving optimal dependency on
the effective horizon. To address this issue, a plausible idea
is to leverage the variance reduction technique — originally
introduced in finite-sum stochastic optimization [18] and
imported to online RL recently [12] — to further accelerate
convergence of the algorithm. This section is devoted to the
development of a new variant of asynchronous Q-learning that
incorporates both pessimism and variance reduction.

A. Algorithm

We start by describing the key ideas of a variance-reduced
variant of Algorithm 1. This algorithm enjoys the same

computational cost (i.e., O(T )) and memory complexity (i.e.,
O(SA)) as Algorithm 1, with full details are summarized in
Algorithm 2 (in conjunction with Algorithms 3 and 4).

1) Variance Reduction: Suppose for the moment that we
have access to a “reference” value function estimate V that is
hopefully not far away from the true optimal value V ⋆. Let us
employ a batch of samples — more concretely, a total number
of T ref consecutive samples {(srefi , aref

i , s
ref
i+1) : 0 ≤ i < T ref}

— to compute an empirical estimate P̃ : S × A → ∆(S) of
the probability transition kernel P . We can then incorporate
variance reduction into the update rule (4) of Algorithm 1 as
follows:

Qt (st−1, at−1) = (1− ηn)Qt−1 (st−1, at−1) +

ηn

{
r (st−1, at−1) + γVt−1 (st)− γV (st) +

γ
〈
P̃ (· | st−1, at−1), V

〉
− bn (st−1, at−1)

}
. (9)

Here, the penalty term bn(st−1, at−1) is set to be a
certain data-driven lower confidence bound tailored to this
variance-reduced update rule. In particular, this penalty
term is chosen to track the uncertainty of both the
“advantage term” Vt−1 (st)−V (st) and the “reference term”〈
P̃ (· | st−1, at−1), V

〉
, inspired by the reference-advantage

decomposition introduced in [12]; see Algorithm 4 for a
precise description. As can be anticipated, if V is a more
accurate estimate of V ⋆ than Vt−1 (i.e., V ≈ V ⋆ and
∥V −V ⋆∥∞ ≪ ∥Vt−1−V ⋆∥∞), then the main stochastic term
V (st) (or V (st)− V ⋆(st)) in (9) is expected to be much less
volatile than the counterpart Vt−1 (st) in (4), thus resulting
in substantial variance reduction and hence accelerated
convergence. It remains to develop a plausible approach that
produces such reliable “reference” value function estimates.
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Algorithm 2 Variance-Reduced Asynchronous Q-Learning With LCB Penalization.
Input: number of iterations T , initial state s.
Initialize: V (s) = 0 for all s ∈ S, K = ⌊log4(3T/4)⌋.
for k = 1 to K do

Set T ref
k = 4k−1 and Tk = 3× 4k−1.

Call function Empirical-transition(T ref
k , V , s) (cf. Algorithm 3) and return (P̃ , bref , s1).

Call function VR-Q-epoch(Tk, V , P̃ , bref , s1) (cf. Algorithm 4) and return (Q,V, s2).
Update the reference V = V , and set the initial state in the next epoch as s = s2.

Output: π̂ such that π̂(s) = arg maxa∈AQ(s, a) for all s ∈ S.

Algorithm 3 Empirical-transition(T ref , V , sref0 )

Input: number of samples T ref , reference V , initial state sref0 .
Initialize: nref(s, a) = 0 for all (s, a) ∈ S ×A, ι = log ST

δ .
for t = 1 to T ref do

Draw aref
t−1 ∼ πb(· | sreft−1), and observe sreft ∼ P (· | sreft−1, a

ref
t−1).

Let nref(sreft−1, a
ref
t−1)← nref(sreft−1, a

ref
t−1) + 1. Set n← nref(sreft−1, a

ref
t−1).

Update

P̃
(
sreft | sreft−1, a

ref
t−1

)
←

(n− 1)P̃
(
sreft | sreft−1, a

ref
t−1

)
+ 1

n
,

µref(sreft−1, a
ref
t−1)←

(n− 1)µref(sreft−1, a
ref
t−1) + V

(
sreft
)

n
,

σref(sreft−1, a
ref
t−1)←

(n− 1)σref(sreft−1, a
ref
t−1) + V

2 (
sreft
)

n
.

Compute the penalty term: for each (s, a) ∈ S ×A, take

bref (s, a) = Cb

√σref (s, a)− [µref (s, a)]2

nref (s, a)
ι+

ι3/4

(1− γ) [nref (s, a)]3/4
+

ι

(1− γ)nref (s, a)


for some sufficiently large constant Cb > 0.
Output: empirical probability transition P̃ , penalty bref , last state sT ref .

2) An Epoch-Based Paradigm: The proposed algorithm
proceeds in an epoch-based manner (K = ⌊log4(3T/4)⌋
epochs in total). In the k-th epoch, we use the value function
estimate at the end of the previous epoch as the reference
function estimate V ; the number of samples used to construct
the empirical transition kernel and the number of samples
employed to run the updates (9) are denoted respectively by
T ref
k and Tk, both of which are chosen to grow exponentially

with the epoch number k (more specifically, we shall choose
T ref
k = 4k−1 and Tk = 3 · 4k−1). Such choices allow one

to ensure that: (i) the estimation error keeps improving over
epochs; and (ii) the samples used in the latest epoch always
account for roughly 3/4 of the total sample size used so far,
thus mitigating inefficient use of samples despite the lack of
sample reuse.

B. Theoretical Guarantees

Armed with the variance reduction idea, we are able
to further improve the sample complexity in terms of the
dependency on 1

1−γ , as stated below. The proof can be found
in Appendix D.

Theorem 2: Suppose that Assumptions 1 and 2 hold, and
recall that T is the total number of samples. Assume that
1/2 ≤ γ < 1. Then with probability exceeding 1 − δ, the
policy π̂ returned by Algorithm 2 satisfies

V ⋆(ρ)− V π̂(ρ) ≲

√
SC⋆ι

T (1− γ)3
+

SC⋆ι4

T (1− γ)4
+

StmixC
⋆ι

T (1− γ)2

+
tmixC

⋆ι2

T (1− γ)3
,

where ι := log ST
δ .

Theorem 2 asserts that the sample size needed for
Algorithm 2 to achieve ε-accuracy is at most

Õ

(
SC⋆

(1− γ)3 ε2
+

SC⋆

(1− γ)4 ε
+

SC⋆tmix

(1− γ)2 ε
+

tmixC
⋆

(1− γ)3 ε

)
.

(10)

In particular, if the accuracy level ε ≤ min
{
1 −

γ, S
tmix
, 1

(1−γ)tmix

}
, then the sample complexity of Algorithm 2
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Algorithm 4 VR-Q-epoch(T, V , P̃ , bref , s0)

Input: number of iterations T , reference V , transition kernel P̃ , penalty bref , initial state s0.
Initialize: Q0 (s, a) = 0, V0(s) = 0, n0(s, a) = 0 for all (s, a) ∈ S ×A, ι = log ST

δ , H = ⌈ 4ι
1−γ ⌉.

for t = 1 to T do
Draw at−1 ∼ πb(· | st−1), and observe st ∼ P (· | st−1, at−1).
Let nt (st−1, at−1)← nt−1(st−1, at−1) + 1; and nt(s, a)← nt−1(s, a) for all (s, a) ̸= (st−1, at−1).
Set n← nt(s, a), and take ηn = (H + 1)/(H + n).
Set µadv

n (s, a) = µadv
n−1(s, a) and σadv

n (s, a) = σadv
n−1(s, a) for all (s, a) ̸= (st−1, at−1); update

µadv
n (st−1, at−1) = (1− ηn)µadv

n−1 (st−1, at−1) + ηn
[
Vt−1 (st)− V (st)

]
,

σadv
n (st−1, at−1) = (1− ηn)σadv

n−1 (st−1, at−1) + ηn
[
Vt−1 (st)− V (st)

]2
.

Compute sdadv
n (st−1, at−1) = σadv

n (st−1, at−1)−
[
µadv
n (st−1, at−1)

]2
.

Update

Qt (st−1, at−1) = (1− ηn)Qt−1 (st−1, at−1)

+ ηn

{
r (st−1, at−1) + γVt−1 (st)− γV (st) + γ

〈
P̃ (· | st−1, at−1), V

〉
− bn

}
.

and Qt(s, a) = Qt−1(s, a) for all (s, a) ̸= (st−1, at−1), where bt = bref(st−1, at−1) + badv and

badv = Cb

(√
Hι

n

sdadv
n (st−1, at−1)− (1− ηn)sdadv

n−1(st−1, at−1)
ηn

+
H3/4ι3/4

n3/4 (1− γ)
+

Hι

n (1− γ)

)
for some sufficiently large constant Cb > 0.
Update

Vt (st−1) = max
{

max
a∈A

Qt (st−1, a) , Vt−1(st−1)
}
,

and Vt(s) = Vt−1(s) for all s ̸= st−1.
Output: Q-function estimate QT , value function estimate VT , last state sT .

simplifies to

Õ

(
SC⋆

(1− γ)3 ε2

)
. (11)

This bound is essentially unimprovable; in fact, even for the
simpler i.i.d. sampling mechanism described in Remark 2
(which can be viewed as a sample trajectory with tmix = 1),
a lower bound has been established by [10] that coincides
with (11) when C⋆ = O(1).

All this confirms the efficacy of the pessimism principle in
conjunction with variance reduction when running model-free
algorithms.

Let us take a moment to compare our setting and results
with several offline RL papers that are most relevant to
our work. Reference [19] (resp. the concurrent paper [20])
proposed a model-based algorithm called PEVI-ADV (resp. a
model-free algorithm called LCB-Q-ADV) to learn the optimal
policy from a collection of independent episodes of offline
samples, both of which achieve optimal sample complexity
Õ(ε−2H4SC⋆) for finite-horizon MDPs with nonstationary
transition kernels. In comparison, the current paper focuses on
asynchronous Q-learning in a stationary discounted infinite-
horizon MDP with data taking the form of a Markovian sample
trajectory induced by a behavior policy, which is drastically

different from and technically more challenging (e.g. i.i.d. data
vs. Markovian non-i.i.d. data) than [19] and the concurrent
work [20]. In addition, the problem studied in [10] can be
viewed as a special case of our paper, given the i.i.d. nature
of the sampling mechanism assumed therein. Reference [10]
derived a sample complexity upper bound Õ

(
SC⋆

(1−γ)5ε2
)
, which

is suboptimal by a factor of (1−γ)−2 compared to our result in
Theorem 2. Another concurrent paper [21] studied the model-
based approach (i.e. the VI-LCB algorithm), which contrasts
sharply with the model-free algorithms considered herein. It
is als noteworthy that the results in [21] fall short of handling
Markovian non-i.i.d. data.

In addition, the last two terms in our sample complexity
bound (10) rely on the mixing time. To examine the necessity
of the term SC⋆tmix

(1−γ)2ε in (10), we proceed to develop a
minimax lower bound as follows; the proof is postponed
to Appendix F.

Theorem 3: Consider any S ≥ 16, γ ∈ [1/2, 1), and
tmix ≥ 10

1−γ . Define the following set

M :=
{
{M, ρ, πb}

∣∣∣ |S| = S, |A| = 2, ρ ∈ ∆ (S) ,

πb : S → ∆(A), C⋆ ≤ 3, the mixing time of the Markov

Chain induced by πb and M is at most 2tmix

}
.
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There exists some universal constants c1, c2 > 0 such that, for
any ε ∈ (0, c1

1−γ ], if the sample size obeys

T ≤ c2
Stmix

(1− γ) ε
,

then with probability at least 0.5, one has

inf
π̂

sup
M

{
V ⋆ (ρ)− V π̂(ρ)

}
≥ ε.

Here, the infimum is over all policy estimator π̂ for the optimal
policy based on the observed sample trajectory.

In a nutshell, Theorem 3 reveals that when S ≥ 1
1−γ — a

scenario that arises frequently in real-world applications — the
dependence of our sample complexity (10) on the mixing time
is at most loose by a factor of 1

1−γ . Unfortunately, our current
theory falls short of characterizing the tight dependency of the
mixing-time effect on 1

1−γ ; a new suite of analysis tools might
be needed in order to fully settle this issue.

Before concluding this section, let us briefly highlight the
key technical novelty of our analysis. The primary challenge
in establishing Theorems 1 and 2 lies in the development of
suitable concentration results concerning the sample trajectory
of interest. The classical concentration results for Markov
chains (e.g. in [15]) do not readily address concentration of
random variables in the form of

T∑
t=1

(
ft
(
st, at

)
− E(s,a)∼µb

[ft (s, a)]
)
, (12)

where ft : S × A → R might depend on the historical
sample trajectory {(si, ai)}1≤i≤t−1 (so not just (st, at)). To
handle such complicated statistical dependency, we employ a
decoupling argument (cf. Lemma 5) to reduce the concentra-
tion of (12) into the a number of tmix log(T/δ) martingale
concentrations. Then we apply Freedman’s inequality [13,
Theorem 3] to cope with each martingale concentration,
thereby achieving sharp non-asymptotic concentration results
for (12). The interested reader is referred to Step 2.4 in
Appendix B-C for details. It is also worth emphasizing that the
proof techniques developed in the current paper are drastically
different from the ones used in [6] and [8]. In particular, the
techniques introduced in [6] and [8] impose firm requirements
that the data samples cover uniformly all state-action pairs,
which are rarely satisfied under the partial-coverage scenario
studied herein. What is more, minimax lower bounds related
to the mixing time of a Markov chain in the RL context were
previously rarely available. The analysis techniques developed
here for establishing Theorem 3 might shed light on how to
establish lower bounds for other settings that involve in-depth
understanding of the mixing time.

V. RELATED WORKS

A. Offline RL and Pessimism

The principal of pessimism (or conservatism) in the face
of uncertainty has recently been employed and studied
extensively in offline RL (also called batch RL), e.g., [9],
[10], [19], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], and [35]. Among these prior

works, [10] studied offline RL for infinite-horizon MDPs when
the offline data are i.i.d. samples drawn from some distribution
µ satisfying the single policy concentrability condition. They
showed that a model-based value iteration algorithm with LCB
penalization achieves a sample complexity of O( SC⋆

(1−γ)5ε2 ),
which is comparable to our bound for Algorithm 1 (see (8))
and is worse than our bound for Algorithm 2 (see (11)) by
a factor of 1

(1−γ)2 (ignoring the o(ε−2) term and logarithm
factors). Note that the setting considered in [10] is a special
case of our setting by taking tmix = 1. In addition, [9]
proposed a pessimistic variant of the value iteration algorithm,
which achieves appealing performance under the episodic
linear MDP setting. Furthermore, the recent works [19],
[20] proposed several pessimistic variants of RL algorithms
for finite-horizon episodic MDPs. Focusing on offline RL
with episodic data generated using some reference policy
satisfying the single policy concentrability condition, these
algorithms achieve a sample complexity of Õ(H3SC⋆/ε2).
Note, however, that none of these algorithms accommodate the
asynchronous case with a single Markovian trajectory. Finally,
the insights obtained from the studies of offline RL turn out
to be useful for optimal designs of reward-agnostic online
RL [36] and hybrid RL [37] as well.

B. Q-Learning

There are at least two basic forms of Q-learning: the
synchronous version and the asynchronous counterpart. Syn-
chronous Q-learning typically assumes access to a simulator
that generates independent samples for all state-action pairs,
and attempts to update all entries of the Q-function estimates
simultaneously [4], [6], [38], [39], [40], [41], [42]. The current
paper studies the asynchronous form of Q-learning, which
naturally arises when the data is a Markovian trajectory
induced by a behavior policy [2], [3], [4], [6], [7], [8], [43],
[44], [45], [46]. However, most prior works focused on the
case when the observed trajectory is able to cover all state-
action pairs with sufficient frequency [4], [6], [7], [8], [38],
[43]. For instance, the recent work [7] demonstrated that the
sample complexity of asynchronous Q-learning is at most
Õ
(

tmix

µ2
min(1−γ)5ε2

)
, which was subsequently sharpened by [6] to

Õ
(

1
µmin(1−γ)4ε2 + tmix

µmix(1−γ)
)
. It is also worth noting that some

variants of model-free algorithms (e.g., the variant coupled
with upper confidence bounds) have proven effective for online
exploratory RL [13], [17], [47], [48], [49], [50], [51], [52],
[53]; while online RL is beyond the scope of the current
paper, the analysis framework therein based on the optimism
principle shed light on our setting as well. In comparison to
the model-based approach [54], [54], [55], [56], [57], model-
free algorithms like Q-learning often incur lower memory and
computational complexities.

C. Variance Reduction

The idea of variance reduction first appeared in the
stochastic optimization literature [18] and has been recently
employed in RL to speed up various algorithms [8], [11],
[12], [13], [20], [53], [58], [59], [60], [61], [62], [63], [64],
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[65]. Among these works, [11], [60] showed that in the
synchronous case, variance-reduced Q-learning is minimax
optimal, both in tabular MDPs and the ones with function
approximation. [8] showed that the sample complexity of
variance-reduced asynchronous Q-learning algorithm scales as
Õ( tmix

µmin(1−γ)3ε2 ) for small enough accuracy level ε, thereby
matching the lower bound in the synchronous counterpart.

VI. DISCUSSION

In this paper, we have revisited the paradigm of asyn-
chronous Q-learning, which was designed to accommodate
Markovian sample trajectories. Noteworthily, all prior theory
for asynchronous Q-learning becomes vacuous when the
observed sample trajectory falls short of providing uniform
coverage of all state-action pairs, even when the observed
data is produced by an expert that intentionally leaves out
suboptimal actions. To address this issue, we have designed
two algorithms — asynchronous Q-learning algorithms with
LCB penalization and its variance-reduced variant — based
on the principle of pessimism in the face of uncertainty.
The sample complexities of these two algorithms scale as
Õ
(

SC⋆

(1−γ)5ε2
)

and Õ
(

SC⋆

(1−γ)3ε2
)
, respectively, provided that the

target accuracy level ε is sufficiently small; in particular, the
latter one matches the lower bound established for the case
with i.i.d. data and is hence unimprovable. Compared to prior
literature, we have established the first theory that supports the
use of pessimism principle despite the Markovian structure of
data. Moving forward, there are numerous directions that are
worthy of further exploration. For example, the dependency
of our sample complexity on the mixing time scales as
Õ
(
StmixC

⋆

(1−γ)2ε + tmixC
⋆

(1−γ)2ε
)
, while the minimax lower bound we

have developed scales as Ω
(
Stmix

(1−γ)ε
)
; it remains unclear what

the optimal dependency on tmix is, as well as how to achieve
it. Additionally, the current work focuses solely on tabular
MDPs; it would be of interest to extend the current analysis
to accommodate reduced-dimensional function approximation.
Going beyond offline RL, our analysis framework might shed
light on how to improve the sample complexity analysis for
discounted infinite-horizon MDPs in online exploratory RL
(note that the state-of-the-art sample complexity bounds in
this case [53] remain highly suboptimal except for very small
ε (i.e., ε ≤ (1−γ)14

S2A2 )).

APPENDIX A
NOTATION

We now introduce several notation that will be used multiple
times throughout this paper. For any positive integer n,
we define [n] := {1, · · · , n}. For any s ∈ S and a ∈ A,
define

Ps,a = P (· | s, a) ∈ R1×S

to be the (s, a)-th row of a probability transition matrix P ∈
RSA×S . For any t ≥ 0, we define Pt ∈ RSA×S to be an
empirical probability transition matrix such that

Pt
(
s′ | s, a

)
=

{
1, if (s, a, s′) = (st−1, at−1, st)
0, otherwise

(13)

for all s, s′ ∈ S and a ∈ A. For any deterministic policy
π, we introduce two probability transition kernels Pπ : S →
∆(S) and Pπ : S ×A → ∆(S ×A), defined in a way that

Pπ(s′ | s) = P
(
s′ | s, π(s)

)
(14a)

Pπ (s′, a′ | s, a) =

{
P (s′ | s, a) , if a′ = π (s′)
0, otherwise

(14b)

for any (s, a), (s′, a′) ∈ S ×A. In addition, we define ρπ
⋆

to
be a distribution on S ×A such that

ρπ
⋆

(s, a) =

{
ρ (s) , if a = π⋆ (s) ,
0, otherwise.

(15)

For any two vectors a = [ai]ni=1 ∈ Rn and b = [bi]ni=1 ∈ Rn,
we define the Hadamard product a ◦ b = [aibi]ni=1, as well as
the concise notation a2 = a◦a. We also use a ≤ b (resp. a ≥ b)
to denote ai ≤ bi (resp. ai ≥ bi) for all i ∈ [n]. Moreover, for
two vectors a = [a1, · · · , an] and b = [b1, · · · , bn]⊤, we abuse
the notation by letting

⟨a, b⟩ =
n∑
i=1

aibi

even when a is a row vector and b is a column vector. For any
s ∈ S, a ∈ A and any vector V ∈ RS , we define and denote

Vars,a(V ) := Vars′∼P (· | s,a)
(
V (s′)

)
=Ps,a

(
V 2
)
− (Ps,aV )2.

We let f(n) ≲ g(n) or f(n) = O(g(n)) to denote |f(n)| ≤
Cg(n) for some constant C > 0 when n is sufficiently large;
we use f(n) ≳ g(n) to indicate that f(n) ≥ C|g(n)| for some
constant C > 0 when n is sufficiently large; and we let f(n) ≍
g(n) represent the condition that f(n) ≲ g(n) and f(n) ≳
g(n) hold simultaneously. Throughout this paper, we define
0/0 = 0. For any sequence {ai}n2

i=n1
and two integers m1

and m2, we define
m2∑
i=m1

ai =
min{n2,m2}∑
i=max{n1,m1}

ai

if max{n1,m1} ≤ min{n2,m2}, and 0 otherwise.

APPENDIX B
ANALYSIS FOR Q-LEARNING WITH LCB

PENALIZATION (THEOREM 1)

In this section, we present the proof of Theorem 1, which
consists of several steps to be detailed below.

A. Preliminary Facts and Additional Notation

Before proceeding, we first introduce the following
quantities regarding the learning rates:

ηt0 :=
t∏

j=1

(1− ηj) (16a)

and

ηti :=


ηi
∏t
j=i+1 (1− ηj) , if t > i,

ηi, if t = i,

0, if t < i,

(16b)
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where we recall our choice ηj = (H + 1)/(H + j). We make
note of the following results that have been established in prior
works (e.g., [17, Lemma 4.1] and [13, Lemma 1]).

Lemma 1: The learning rates satisfy the following proper-
ties.

1) For any integer t ≥ 1,
∑t
i=1 η

t
i = 1 and ηt0 = 0.

2) For any integer t ≥ 1 and any 1/2 ≤ a ≤ 1,

1
ta
≤

t∑
i=1

1
ia
ηti ≤

2
ta
.

3) For any integer t ≥ 1,

max
i∈[t]

ηti ≤
2H
t

and
t∑
i=1

(
ηti
)2 ≤ 2H

t
.

4) For any integer i ≥ 1,

∞∑
t=i

ηti = 1 +
1
H
.

For any iteration t ≤ T , we remind the reader that nt
represents the number of times (s, a) has been visited prior
to iteration t (see Algorithm 1). For notational simplicity, let
n = nt(s, a) when it is clear from the context, and suppose
that (s, a) has been visited during the iterations k1 < · · · <
kn < t. We also find it convenient to define the (deterministic)
policy estimate πt : S → A recursively as follows:

πt (s) := arg max
a∈A

Qt (st−1, a) (17a)

if s = st−1 and Vt (s) > Vt−1(s), and

πt (s) := πt−1 (s) (17b)

otherwise. If there are multiple a ∈ A that maximize
Qt (st−1, a), we can pick any of these actions.

The following lemma provides a useful upper bound on
Q⋆−Qt, and in the meantime, justifies that the value function
estimate Vt is always a pessimistic view of V πt (and hence
V ⋆). The proof of this lemma is postponed to Appendix C-A.

Lemma 2: With probability exceeding 1− δ, for all s ∈ S
and t ∈ [T ], it holds that

Q⋆
(
s, π⋆(s)

)
−Qt

(
s, π⋆(s)

)
≤ γ

n∑
i=1

ηni Ps,π⋆(s)

(
V ⋆ − Vki

)
+ βn

(
s, π⋆(s)

)
,

where n = nt(s, π⋆(s)) and we define

βn
(
s, π⋆(s)

)
≡ βn := 3Cb

√
Hι

n (1− γ)2
;

in addition, we also have

Vt(s) ≤ V πt(s) ≤ V ⋆(s), ∀s ∈ S.

Next, let us define two disjoint sets of state-action pairs,
divided based on the associated occupancy probability induced

by the behavior policy:

I :=
{(
s, π⋆(s)

)
| s ∈ S, µb

(
s, π⋆(s)

)
≥ δ

ST

}
, (18a)

Ic :=
{(
s, π⋆(s)

)
| s ∈ S, µb

(
s, π⋆(s)

)
<

δ

ST

}
. (18b)

It turns out that the state-action pairs in Ic are rarely visited,
as formalized by the following lemma. The proof is deferred
to Appendix C-B.

Lemma 3: With probability exceeding 1− δ, we have

Ic ∩
{
(st, at)

}T
t=tmix(δ)

= ∅.

B. Step 1: Error Decomposition

Before proceeding, let us introduce several quantities that
will play an important role in our analysis in (19), shown at
the bottom of the next page, where we recall the definition of
I in (18).

Let us begin with the following basic inequality:

V ⋆ (ρ)− V π̂ (ρ) =
〈
ρ, V ⋆ − V π̂

〉 (i)
≤ ⟨ρ, V ⋆ − VT ⟩

(ii)
≤ 1
T

T∑
t=1

⟨ρ, V ⋆ − Vt⟩
(iii)=

1
T
α0. (20)

Here, (i) holds true according to Lemma 2; (ii) follows from
the monotonicity of Vt in t (by construction); and (iii) follows
simply from the definition of α0. We then turn attention to
bounding α0, towards which we observe (21), shown at the
bottom of the next page. In (21) the first identity holds since
V ⋆(s) = Q⋆

(
s, π⋆(s)

)
and 0 ≤ V ⋆(s) − Vt(s) ≤ 1/(1 − γ)

for all s ∈ S, the second line relies on the fact that Vt(s) ≥
maxaQt(s, a) ≥ Qt(s, π⋆(s)), while the last line invokes
Lemma 2. With probability exceeding 1 − δ, the first term
ζ can be upper bounded by (22), shown at the bottom of
page 7196, where we remind the reader of our notation ρπ

⋆

in
(15). In (22), (i) is valid (i.e., ρ(st, at)/µb(s, a) is well defined
for t ≥ tmix(δ)) due to Lemma 3; (ii) holds by grouping
the terms in the previous line; and (iii) utilizes Lemma 1
and the property that V ⋆ ≥ Vt (cf. Lemma 2). Therefore,
we arrive at

α0 ≤
tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ ζ + θ0

≤
tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ α1 + ψ0 + ϕ0

+ γ

(
1 +

1
H

)3

⟨+θ0ρPπ⋆ , V ⋆ − V0⟩

= α1 + ξ0 + θ0 + ψ0 + ϕ0,

where we have used the definition of ξ0. Repeat the same
argument to reach

αj ≤ αj+1 + ξj + θj + ψj + ϕj
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for all j ≥ 1. This in turn allows us to conclude that

α0 ≤ lim sup
j→∞

αj︸ ︷︷ ︸
=:α

+
∞∑
j=0

ξj︸ ︷︷ ︸
=:ξ

+
∞∑
j=0

θj︸ ︷︷ ︸
=:θ

+
∞∑
j=0

ψj︸ ︷︷ ︸
=:ψ

+
∞∑
j=0

ϕj︸ ︷︷ ︸
=:ϕ

. (23)

We will then bound the terms α, ξ, θ, ψ and ϕ separately in
the subsequent steps. Before continuing, we make note of a
useful result.

Lemma 4: Recall that H =
⌈

4
1−γ log ST

δ

⌉
for some 0 <

δ < 1. For any vector with non-negative entries V ∈ Rd ,
we have

∞∑
j=0

[
γ

(
1 +

1
H

)3
]j 〈

ρ(Pπ⋆)j , V
〉

≲
1

1− γ
〈
d⋆ρ, V

〉
+

δ

ST 4 (1− γ)
∥V ∥∞ . (24)

Proof: See Appendix C-C. □

C. Step 2: Bounding Each Term in (23)

1) Step 2.1: Bounding α: It is first observed that

α = lim sup
j→∞

[
γ

(
1 +

1
H

)3
]j T∑

t=1

〈
ρ(Pπ⋆)j , V ⋆ − Vt

〉
(i)
≤ T

1− γ
lim sup
k→∞

[
γ

(
1 +

1
H

)3
]k

(ii)= 0.

Here, (i) is valid since ρ(Pπ⋆)j is a probability distribution
over S and 0 ≤ V ⋆−Vt ≤ 1/(1−γ) holds for all 1 ≤ t ≤ T ;
(ii) holds since

γ

(
1 +

1
H

)3

≤ γ
(

1 +
1− γ

4

)2

< 1 (25)

for all γ < 1.

αj :=

[
γ

(
1 +

1
H

)3
]j T∑

t=1

〈
ρ(Pπ⋆)j , V ⋆ − Vt

〉
, (19a)

θj :=

[
γ

(
1 +

1
H

)3
]j T∑

t=1

∑
s∈S

[
ρ(Pπ⋆)j

] (
s, π⋆(s)

)
min

{
βnt(s,π⋆(s))

(
s, π⋆(s)

)
,

1
1− γ

}
, (19b)

ξj :=

[
γ

(
1 +

1
H

)3
]j tmix(δ)∑

t=1

〈
ρ(Pπ⋆)j , V ⋆ − Vt

〉
+

[
γ

(
1 +

1
H

)3
]j+1 〈

ρ(Pπ⋆)j+1, V ⋆ − V0

〉
, (19c)

ψj :=

[
γ

(
1 +

1
H

)3
]j T∑

t=tmix(δ)

[ ∑
s∈S,a∈A

[
ρπ

⋆

(Pπ
⋆

)j
]
(s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)
−
(

1 +
1
H

) [
ρπ

⋆

(Pπ
⋆

)j
]
(st, at)

µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − Vki(st,at)

)]
, (19d)

ϕj := γj+1

(
1 +

1
H

)3j+2 T∑
t=0

1(st,at)∈I

[[
ρπ

⋆

(Pπ
⋆

)j
]
(st, at)

µb (st, at)
Pst,at

(V ⋆ − Vt)

−
(

1 +
1
H

) ∑
s∈S,a∈A

[
ρπ

⋆

(Pπ
⋆

)j
]
(s, a)Ps,a (V ⋆ − Vt)

]
, (19e)

α0 =
tmix(δ)−1∑
t=1

⟨ρ, V ⋆ − Vt⟩+
T∑

t=tmix(δ)

∑
s∈S

ρ (s) min
{
Q⋆
(
s, π⋆(s)

)
− Vt(s),

1
1− γ

}

≤
tmix(δ)−1∑
t=1

⟨ρ, V ⋆ − Vt⟩+
T∑

t=tmix(δ)

∑
s∈S

ρ (s) min
{
Q⋆
(
s, π⋆(s)

)
−Qt

(
s, π⋆(s)

)
,

1
1− γ

}

≤
tmix(δ)∑
t=1

⟨ρ, V ⋆ − Vt⟩+ γ

T∑
t=tmix(δ)

∑
s∈S

ρ (s)
nt(s,π

⋆(s))∑
i=1

η
nt(s,π

⋆(s))
i Ps,π⋆(s) (V ⋆ − Vki

)

︸ ︷︷ ︸
=:ζ

+
T∑
t=1

∑
s∈S

ρ (s) min
{
βnt(s,π⋆(s))

(
s, π⋆(s)

)
,

1
1− γ

}
︸ ︷︷ ︸

= θ0

. (21)
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2) Step 2.2: Bounding ξ: By utilizing (24) and (25), we can
demonstrate that

ξ =
tmix(δ)∑
t=1


∞∑
j=0

[
γ

(
1 +

1
H

)3
]j 〈

ρP jπ⋆ , V ⋆ − Vt
〉

+
∞∑
j=0

[
γ

(
1 +

1
H

)3
]j+1 〈

ρ(Pπ⋆)j+1, V ⋆ − V0

〉
≲

1
1− γ

tmix(δ)∑
t=0

〈
d⋆ρ, V

⋆ − Vt
〉

+
1

ST 4 (1− γ)
tmix(δ) + 1

1− γ

≲
tmix(δ)

(1− γ)2
+

tmix(δ)
T 4 (1− γ)2

≲
tmix

(1− γ)2
log

1
δ

+
tmix

T 4 (1− γ)2
log

1
δ
.

Here, the second line holds due to (24) and the basic fact
0 ≤ V ⋆(s)− Vt(s) ≤ 1

1−γ , the penultimate line makes use of
the fact ∥V ⋆−Vt∥∞ ≤ 1

1−γ once again, whereas the last line
holds since tmix(δ) ≲ tmix log 1

δ .
3) Step 2.3: Bounding θ: When it comes to θ, we can

deduce thatwhere we define, for each s ∈ S,

tburn-in(s) := Cburn-in
tmix

µb

(
s, π⋆(s)

) log
(
ST

δ

)
for some sufficiently large constant Cburn-in > 0. In (26),
shown at the bottom of the next page, (i) relies on (24); (ii)
utilizes [8, Lemma 8]; (iii) follows from the fact that
T∑
t=1

1√
t
≤ 1 +

∫ T

1

1√
x

dx = 1 + 2
(√

T − 1
)
≤ 2
√
T ; (27)

(iv) uses Assumption 2; and (v) invokes the Cauchy-Schwarz
inequality and the fact that

∑
s d

⋆
ρ

(
s, π⋆(s)

)
= 1.

4) Step 2.4: Bounding ψ.: Recall the definition of ψj
in (19). In order to bound ψ, we make the observation (28),
shown at the bottom of the next page. In (28), d̃(·, ·) is defined
such that

d̃ (s, a) :=
∞∑
j=0

γ

[
γ

(
1 +

1
H

)3
]j [

ρπ
⋆

(Pπ
⋆

)j
]
(s, a)

for any (s, a) ∈ S × A. For any tmix(δ) ≤ t ≤ T and any
(s, a) ∈ I, let us define

ft (s, a) =
d̃ (s, a)
µb (s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)
,

allowing us to rewrite

ψ =
T∑

t=tmix(δ)

{
E(s,a)∼µb

[ft (s, a)]−
(

1 +
1
H

)
ft (st, at)

}
.

(29)

Let us take a moment to look at some properties of ft. It is
straightforward to check that

1) when a ̸= π⋆(s), one has ft(s, a) = 0;
2) ft(s, a) is monotonically decreasing in t.

The latter property follows from the non-decreasing property
of Vt in t (by construction), and that ηnt(s,a)

i is decreasing in t,
as well as

∑nt(s,a)
i=1 η

nt(s,a)
i = 1 (cf. Lemma 1). On the other

hand, when a = π⋆(s) and (s, a) ∈ I, we can invoke (24) to
arrive at

d̃
(
s, π⋆(s)

)
≲

1
1− γ

d⋆ρ(s) +
δ

ST 4(1− γ)
, (30)

ζ ≤ γ
T∑

t=tmix(δ)

∑
s∈S

ρ (s)
nt(s,π

⋆(s))∑
i=1

η
nt(s,π

⋆(s))
i Ps,π⋆(s)

(
V ⋆ − Vki(s,π⋆(s))

)
= γ

T∑
t=tmix(δ)

∑
s∈S,a∈A

µb (s, a)
ρπ

⋆

(s, a)
µb (s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,π⋆(s) (V ⋆ − Vki

)

(i)
≤ γ

(
1 +

1
H

) T∑
t=tmix(δ)

1{(st, at) ∈ I}
ρπ

⋆

(st, at)
µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − Vki(st,at)

)
+ ψ0

(ii)= γ

(
1 +

1
H

) T∑
t=tmix(δ)

1{(st, at) ∈ I}
ρπ

⋆

(st, at)
µb (st, at)

 nT (st,at)∑
j=nt(st,at)

ηjnt(st,at)

Pst,at (V ⋆ − Vt) + ψ0

(iii)
≤ γ

(
1 +

1
H

)2 T∑
t=0

1{(st, at) ∈ I}
ρπ

⋆

(st, at)
µb (st, at)

Pst,at (V ⋆ − Vt) + ψ0

= γ

(
1 +

1
H

)3 T∑
t=0

∑
s∈S,a∈A

ρπ
⋆

(s, a)Ps,a (V ⋆ − Vt) + ψ0 + ϕ0

= γ

(
1 +

1
H

)3 T∑
t=0

⟨ρPπ⋆ , V ⋆ − Vt⟩+ ψ0 + ϕ0 ≤ α1 + ψ0 + ϕ0 + γ

(
1 +

1
H

)3

⟨ρPπ⋆ , V ⋆ − V0⟩ , (22)
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and consequently,

ft (s, a) ≲

{
1

1− γ
d⋆ρ (s, a)
µb (s, a)

+
δ

ST 4 (1− γ)
1

µb (s, a)

}
·
nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)
≲

1
1− γ

d⋆ρ (s, a)
µb (s, a)

+
δ

ST 4 (1− γ)
1

µb (s, a)

≤ C⋆

(1− γ)2
+

δ

ST 4 (1− γ)
ST

δ

≤ c10C
⋆

(1− γ)2
:= Cf . (31)

for some constant c10 ≥ 1. Here, the second line follows
from Assumption 2, the properties that

∑nt(s,a)
i=1 η

nt(s,a)
i = 1,

0 ≤ V ⋆(s)−Vt(s) ≤ 1/(1−γ) for all 0 ≤ t ≤ T ; the third line
is valid since µb(s, π⋆(s)) ≥ δ/(ST ) when (s, π⋆(s)) ∈ I.

We now proceed to bound (29). It is worth noting that both
ft and (st, at) depend on s0, a0, s1, . . . , st−1, at−1. To handle

such statistical dependency, we define

K :=
⌊
T

τ

⌋
where τ := tmix(δ/T 2) ≲ tmix log

T

δ
.

Armed with this notation, one can decompose ψ as shown
in (32), shown at the bottom of the next page. In what follows,
we bound κ1, κ2, κ3 and κ4 respectively.
• The term κ4 can be easily bounded using (31) as follows

κ4 ≤

 τ∑
t=tmix(δ)

+
T∑

t=Kτ+1

E(s,a)∼µb
[ft (s, a)]

≤ 2τCf ≍
C⋆tmix

(1− γ)2
log
(
T

δ

)
.

• With regards to κ3, we make the observation that

κ3 =
(

1 +
1
H

) Kτ∑
t=τ+1

[ft−τ (st, at)− ft (st, at)]

(i)
≤
(

1 +
1
H

) Kτ∑
t=τ+1

∑
s∈S,a∈A

[ft−τ (s, a)− ft (s, a)]

θ =
∞∑
j=0

[
γ

(
1 +

1
H

)3
]j T∑

t=1

∑
s∈S

[
ρ(Pπ⋆)j

]
(s) min

{
βnt(s,π⋆(s)),

1
1− γ

}

=
T∑
t=1

∞∑
j=0

[
γ

(
1 +

1
H

)3
]j∑

s∈S

[
ρ(Pπ⋆)j

]
(s) min

{
βnt(s,π⋆(s)),

1
1− γ

}
(i)
≲

1
1− γ

T∑
t=1

∑
s∈S

d⋆ρ (s) min
{
βnt(s,π⋆(s)),

1
1− γ

}
+

1
ST 4 (1− γ)

T

1− γ

≲
∑
s∈S

tburn-in(s)∑
t=1

d⋆ρ (s)

(1− γ)2
+
∑
s∈S

T∑
t=tburn-in(s)+1

d⋆ρ (s)

√
Hι

nt
(
s, π⋆(s)

)
(1− γ)4

+
1

T 3 (1− γ)2

(ii)
≍
∑
s∈S

d⋆ρ (s)
µb (s, π⋆(s))

tmixι

(1− γ)2
+
∑
s∈S

T∑
t=tburn-in(s)+1

d⋆ρ (s)

√
Hι

tµb

(
s, π⋆(s)

)
(1− γ)4

+
1

T 3 (1− γ)2

(iii)
≲

C⋆Stmixι

(1− γ)2
+
∑
s∈S

d⋆ρ
(
s, π⋆(s)

)√ HTι

µb

(
s, π⋆(s)

)
(1− γ)4

+
1

T 3 (1− γ)2

(iv)
≲
C⋆Stmixι

(1− γ)2
+

√
C⋆HTι

(1− γ)4
∑
s∈S

√
d⋆ρ
(
s, π⋆(s)

) (v)
≲
C⋆Stmixι

(1− γ)2
+

√
C⋆STι2

(1− γ)5
, (26)

ψ =
∞∑
j=0

γ

[
γ

(
1 +

1
H

)3
]j T∑

t=tmix(δ)

[ ∑
s∈S,a∈A

[
ρπ

⋆

(Pπ
⋆

)j
]
(s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)
−
(

1 +
1
H

) [
ρπ

⋆

(Pπ
⋆

)j
]
(st, at)

µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − Vki(st,at)

)]

=
T∑

t=tmix(δ)

[ ∑
s∈S,a∈A

d̃ (s, a)
nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)
−
(

1 +
1
H

)
d̃ (st, at)
µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − Vki(st,at)

)]
. (28)
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(ii)=
(

1+
1
H

) Kτ∑
t=τ+1

∑
s∈S

[
ft−τ

(
s, π⋆(s)

)
− ft

(
s, π⋆(s)

)]
=
(

1 +
1
H

){ τ∑
t=1

∑
s∈S

ft
(
s, π⋆(s)

)
−

Kτ∑
t=(K−1)τ+1

∑
s∈S

ft
(
s, π⋆(s)

)}

≤ 2
(

1 +
1
H

)
τSCf ≍

C⋆Stmix

(1− γ)2
log
(
T

δ

Here, (i) holds since ft(s, a) is monotonically decreasing
in t; and (ii) holds since, by definition, f(s, a) = 0 if
a ̸= π⋆(s).

• Similarly, κ2 can be bounded by

κ2

=
Kτ∑

t=τ+1

{
E(s,a)∼µb

[ft (s, a)]− E(s,a)∼µb
[ft−τ (s, a)]

}
=

Kτ∑
t=(K−1)τ+1

E(s,a)∼µb
[ft (s, a)]−

τ∑
t=1

E(s,a)∼µb
[ft (s, a)]

≲ τCf ≍
C⋆tmix

(1− γ)2
log
(
T

δ

)
.

• Finally, we turn attention to bounding κ1. For each 1 ≤
i ≤ τ , we will bound

ξi :=
K−1∑
k=1

{
E

(s,a)∼µb

[
f(k−1)τ+i (s, a)

]
−
(

1 +
1
H

)
f(k−1)τ+i (skτ+i, akτ+i)

}

respectively. We need the following lemma to decouple
the complicated statistical dependency.
Lemma 5: One can construct an auxiliary set of random
variables

{(
sik, a

i
k

)
: 1 ≤ k ≤ K − 1

}
satisfying{ (

sik, a
i
k

)
: 1 ≤ k ≤ K − 1

} i.i.d.∼ µb, (33a)

P
{(
sik, a

i
k

)
= (skτ+i, akτ+i) for all 1 ≤ k ≤ K − 1

}
≥ 1− δ

T
, (33b)

and(
sik, a

i
k

)
is independent of

{
(st, at)

: 0 ≤ t ≤ (k − 1) τ + i
}
. (33c)

Proof: See Appendix C-D. □
With the above set of auxiliary random variables{(
sik, a

i
k

)
: 1 ≤ k ≤ K − 1

}
in place, one can obtain

ξi =
K−1∑
k=1

{
E

(s,a)∼µb

[
f(k−1)τ+i (s, a)

]
−
(

1 +
1
H

)
f(k−1)τ+i

(
sik, a

i
k

)}
= −

(
1 +

1
H

)K−1∑
k=1

{
f(k−1)τ+i

(
sik, a

i
k

)
− E

(s,a)∼µb

[
f(k−1)τ+i (s, a)

] }
− 1
H

K−1∑
k=1

E
(s,a)∼µb

[
f(k−1)τ+i (s, a)

]
with probability exceeding 1 − δ/T . Recognizing the
property (33c), we are ready to use the Freedman

ψ =
τ∑
t=1

K−1∑
k=1

{
E(s,a)∼µb

[fkτ+t (s, a)]−
(

1 +
1
H

)
fkτ+t (skτ+t, akτ+t)

}

+

 τ∑
t=tmix(δ)

+
T∑

t=Kτ+1

{E(s,a)∼µb
[ft (s, a)]−

(
1 +

1
H

)
ft (st, at)

}

=
τ∑
i=1

K−1∑
k=1

{
E(s,a)∼µb

[
f(k−1)τ+i (s, a)

]
−
(

1 +
1
H

)
f(k−1)τ+i (skτ+i, akτ+i)

}
︸ ︷︷ ︸

=:κ1

+
τ∑
i=1

K−1∑
k=1

{
E(s,a)∼µb

[fkτ+i (s, a)]− E(s,a)∼µb

[
f(k−1)τ+i (s, a)

]}
︸ ︷︷ ︸

=:κ2

+
(

1 +
1
H

) τ∑
i=1

K−1∑
k=1

[
f(k−1)τ+i (skτ+i, akτ+i)− fkτ+i (skτ+i, akτ+i)

]
︸ ︷︷ ︸

=:κ3

+

 τ∑
t=tmix(δ)

+
T∑

t=Kτ+1

{E(s,a)∼µb
[ft (s, a)]−

(
1 +

1
H

)
ft (st, at)

}
︸ ︷︷ ︸

=:κ4

. (32)
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inequality (cf. [13, Theorem 3]) to bound ξi. Introduce
the random variable

Xk = f(k−1)τ+i(sik, a
i
k)− E

(s,a)∼µb

[
f(k−1)τ+i(s, a)

]
,

(34)

and define a filtration F0 ⊂ F1 ⊂ · · · ⊂ FK−1 with

Fk−1 = σ
{{(

sik, a
i
k

)}k−1

k=1
, {(st, at)}(k−1)τ+i

t=0

}
for 1 ≤ k ≤ K − 1. It is straightforward to verify that

|Xk| ≤ R := Cf , E [Xk | Fk−1] = 0

for all 1 ≤ k ≤ K − 1, and

W :=
K−1∑
k=1

E
[
X2
k | Fk−1

]
≤
K−1∑
k=1

E
[
f2
(k−1)τ+i(s

i
k, a

i
k) | Fk−1

]
≤ Cf

K−1∑
k=1

E
[
f(k−1)τ+i(sik, a

i
k) | Fk−1

]
= Cf

K−1∑
k=1

E
(s,a)∼µb

[
f(k−1)τ+i (s, a)

]
≤ C2

fK. (35)

Invoke the Freedman inequality in [13, Theorem 3] to
show that for any integer m ≥ 1,∣∣∣∣∣

K−1∑
k=1

Xk

∣∣∣∣∣
≤

√√√√8 max

{
W,

C2
fK

2m

}
log

2Tm
δ

+
4
3
R log

2Tm
δ

≤
√

8W log
2Tm
δ

+

√
8
C2
fK

2m
log

2Tm
δ

+
4
3
Cf log

2Tm
δ

≤ 1
2HCf

W + 4HCf log
2Tm
δ

+ Cf

√
8
K

2m
log

2Tm
δ

+
4
3
Cf log

2Tm
δ

=
1

2H

K−1∑
k=1

E(s,a)∼µb

[
f(k−1)τ+i (s, a)

]
+O

(
HCf log

T

δ

)
holds with probability exceeding 1 − δ/T . Here, the
penultimate line relies on the AM-GM inequality,
whereas the last line holds by using (35) and taking
m ≍ logK ≲ log T ≲ T . Consequently, we see that
with probability exceeding 1− δ/T ,

ξi = −
(

1 +
1
H

)K−1∑
k=1

Xk

− 1
H

K−1∑
k=1

E
(s,a)∼µb

[
f(k−1)τ+i (s, a)

]

≤ 2

∣∣∣∣∣
K−1∑
k=1

Xk

∣∣∣∣∣− 1
H

K−1∑
k=1

E
(s,a)∼µb

[
f(k−1)τ+i (s, a)

]
≲ HCf log

T

δ
≲

C⋆ι

(1− γ)3
log

T

δ
.

As a result, with probability exceeding 1 − δ we can
guarantee that

κ1≤
τ∑
i=1

ξi≲
C⋆τι

(1−γ)3
log
(
T

δ

)
≍ C⋆tmixι

(1− γ)3
log2

(
T

δ

)
.

The above bounds taken collectively allow us to conclude that

ψ ≤ κ1 + κ2 + κ3 + κ4

≲
C⋆tmixι

(1− γ)3
log2

(
T

δ

)
+
C⋆Stmix

(1− γ)2
log
(
T

δ

)
.

5) Step 2.5: Bounding ϕ: By replacing ft(s, a) in
Step 4 with

gt (s, a) = Ps,a (V ⋆ − Vt) ,

we can employ an analogous argument to show that ϕ admits
the same bound as ψ, namely,

ϕ ≲
C⋆tmixι

(1− γ)3
log2

(
T

δ

)
+
C⋆Stmix

(1− γ)2
log
(
T

δ

)
.

We omit this part for the sake of brevity.

D. Step 3: Putting All Pieces Together

To finish up, taking the bounds on α, θ, ψ and ϕ collectively
gives

α0 ≤ α+ ξ + θ + ψ + ϕ

≲
C⋆Stmixι

(1− γ)2
+

√
C⋆STι2

(1− γ)5
+

C⋆tmixι

(1− γ)3
log2

(
T

δ

)
+
C⋆Stmix

(1− γ)2
log
(
T

δ

)
≍

√
C⋆STι2

(1− γ)5
+
C⋆Stmixι

(1− γ)2
+

C⋆tmixι

(1− γ)3
log2

(
T

δ

)
.

Consequently, we can invoke (20) to conclude that

V ⋆ (ρ)− V π̂ (ρ) ≤ α0

T

≲

√
C⋆Sι2

T (1− γ)5
+

C⋆Stmixι

T (1− γ)2
+

C⋆tmixι
2

T (1− γ)3
.

APPENDIX C
AUXILIARY LEMMAS FOR THEOREM 1

A. Proof of Lemma 2

Consider any given pair (s, a) ∈ S × A. For notational
simplicity, we write n = nt(s, a), the total number of times
that (s, a) has been visited prior to time t. We also set k0 =
−1, and let

ki := min
{{

0 ≤ k < T : k > ki−1, (sk, ak) = (s, a)
}
, T
}

(36)
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for each 1 ≤ i ≤ T . Clearly, each ki is a stopping time.
In view of the update rule in Algorithm 1, we have

Qt (s, a) =
n∑
i=1

ηni

{
r (s, a) + γVki

(ski+1)− bi (s, a)
}
,

which together with the Bellman optimality equation
Q⋆ = r + γPV ⋆ gives

(Q⋆ −Qt) (s, a) = r (s, a) + γPs,aV
⋆

−
n∑
i=1

ηni

{
r (s, a) + γVki

(ski+1)− bi (s, a)
}

= γPs,aV
⋆ −

n∑
i=1

ηni

{
γVki (ski+1)− bi (s, a)

}
=

n∑
i=1

ηni γPs,a (V ⋆ − Vki)

+
n∑
i=1

ηni γ
((
P − Pki

)
Vki

)
(s, a)

+
n∑
i=1

ηni bi (s, a) , (37)

where the last two lines are valid since
∑n
i=1 η

n
i = 1

(cf. Lemma 1).
From now on we only focus on the case where a = π⋆(s).

Define Fi to be the σ-field generated by {(si, ai)}ki
i=0. It is

straightforward to check that for any 1 ≤ τ ≤ T ,{
1ki<T

((
P − Pki

)
Vki

)(
s, π⋆(s)

)}τ
i=1

is a martingale difference sequence with respect to {Fi}i≥0.
Then, we can invoke the Azuma-Hoeffding inequality together
with the basic bound ∥Vki

∥∞ ≤ 1
1−γ to show that for any fixed

s ∈ S and τ ∈ [T ],∣∣∣∣∣
τ∑
i=1

1ki<T η
τ
i

((
P − Pki

)
Vki

)(
s, π⋆(s)

)∣∣∣∣∣
≲

1
1− γ

√√√√ τ∑
i=1

(ητi )
2 log

ST

δ
≲

√
H

τ (1− γ)2
log

ST

δ

holds with probability exceeding 1−δ/(ST ). Here, the last line
utilizes Lemma 1. Taking the union bound over τ ≤ T allows
us to replace τ with n = nt(s, a) in the above inequality,
namely, for any fixed s ∈ S and a ∈ A, with probability
exceeding 1− δ/S we have∣∣∣∣∣

n∑
i=1

ηni γ
((
P − Pki

)
Vki

)(
s, π⋆(s)

)∣∣∣∣∣ ≲
√

Hι

n (1− γ)2
(38)

holds for all n = nt(s, π⋆(s)) with 1 ≤ t ≤ T . In view of
Lemma 1, for any s ∈ S and a ∈ A we know that

Cb

√
Hι

nt(s, a) (1− γ)2
≤
nt(s,a)∑
i=1

η
nt(s,a)
i bi (s, a)

≤ 2Cb

√
Hι

nt(s, a) (1− γ)2
. (39)

Therefore, when Cb is sufficiently large, it follows that

(Q⋆ −Qt)
(
s, π⋆(s)

)
≤ γ

n∑
i=1

ηni Ps,π⋆(s) (V ⋆ − Vki) + 3Cb

√
Hι

n (1− γ)2
.

Taking the union bound over s ∈ S and defining

βn
(
s, π⋆(s)

)
:= 3Cb

√
Hι

n (1− γ)2
,

we can conclude that with probability exceeding 1− δ,

(Q⋆ −Qt)
(
s, π⋆(s)

)
≤ γ

n∑
i=1

ηni Ps,π⋆(s) (V ⋆ − Vki
) + βn

(
s, π⋆(s)

)
for all s ∈ S and t ∈ [T ].

Additionally, observe that V ⋆ ≥ V πt holds trivially due
to the optimality of V ⋆. We are therefore left with showing
V πt ≥ Vt. Suppose for the moment that with probability
exceeding 1 − δ, for all s ∈ S , t ∈ [T ] and j ∈ [t], it holds
that

(Qπt −Qj)
(
s, πt(s)

)
≥ γPs,πt(s) (V πt − Vj)1

{
nt
(
s, πt(s)

)
≥ 1
}

; (40)

the proof of this claim (40) is deferred to Appendix C-A.1.
As a consequence, for every s ∈ S and t ∈ [T ], there exists
j(t) ∈ [t] such that

(V πt − Vt) (s) (i)= Qπt
(
s, πt(s)

)
−Qj(t)

(
s, πt(s)

)
(ii)= Qπt

(
s, πt(s)

)
−Qj(t)

(
s, πj(t)(s)

)
(iii)
≥ min

{
γPs,πt(s)

(
V πt − Vj(t)

)
, 0
}

(iv)
≥ min

{
γPs,πj(t)(s) (V πt − Vt) , 0

}
.

Here, (i) and (ii) hold since the update rule of Algorithm 1
asserts that there must exist some j(t) ≤ t such that Vt(s) =
Vj(t)(s) = Qj(t)(s, πj(t)(s)) and πt(s) = πj(t)(s); (iii)
utilizes (40); and (iv) follows from the monotonicity of Vt
in t (by construction). By setting

smin := arg min
s∈S

(V πt − Vt) (s) ,

we can deduce that

(V πt − Vt) (smin) ≥ min
{
γPsmin,πj(t)(smin) (V πt − Vt) , 0

}
≥ min

{
γmin
s∈S

(V πt − Vt) (s) , 0
}

= min {γ (V πt − Vt) (smin) , 0} ,

which together with the assumption 0 < γ < 1 immediately
gives

(V πt − Vt) (smin) ≥ 0.

Given that (V πt − Vt) (s) ≥ (V πt − Vt) (smin) for every
s ∈ S, we conclude the proof.
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1) Proof of Inequality (40) : First of all, if nt
(
s, πt(s)

)
= 0,

then for all j ∈ [t], Qj
(
s, πt(s)

)
= 0 since it is never updated;

therefore, (40) holds true. From now on, we shall only focus
on the case when nt

(
s, πt(s)

)
≥ 1.

Consider any s ∈ S , t ∈ [T ] and j ∈ [t]. For the moment,
let us define {ki}Ti=1 w.r.t. the state-action pair

(
s, πt(s)

)
in

the same way as (36). We can then repeat the argument in (37)
to obtain (41), shown at the bottom of the page. In (41), the
last inequality follows from (39), as well as the facts that∑nj(s,πt(s))
i=1 η

nj(s,πt(s))
i = 1 (cf. Lemma 1) and that Vt is

non-decreasing in t. It thus boils down to showing that for
every s ∈ S, t ∈ [T ] and j ∈ [t],

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ

((
P − Pki

)
Vki

)(
s, πt(s)

)
≲

√
Hι

nj
(
s, πt(s)

)
(1− γ)2

. (42)

If this were true and if Cb is sufficiently large, then we could
combine the above two inequalities to conclude the proof
of (40).

We then prove the inequality (42). Notice that for all
(s, πt(s)) such that nt(s, πt(s)) ≥ 1, it must appear at least
once in the sample trajectory. Therefore it suffices to show
that for all 0 ≤ l < T and t ∈ [T ], it holds that

nt(sl,al)∑
i=1

η
nt(sl,al)
i γ

((
P − Pki

)
Vki

)
(sl, al)

≲

√
Hι

nt(sl, al) (1− γ)2
,

where we abuse the notation by defining {ki}Ti=1 for the state-
action pair (sl, al) in the same way as (36). Furthermore,
it suffices to only check those (sl, al) in the sample trajectory
that were visited for the first time, i.e., nl(sl, al) = 0 and

nl+1(sl, al) = 1. It is straightforward to check that, for any
1 ≤ τ ≤ T , {

1ki<T

((
P − Pki

)
Vki

)
(sl, al)

}τ
i=1

is a martingale difference sequence with respect to {Fi}i≥0,
where Fi is the σ-field generated by {(si, ai)}ki

i=0. Then we
can invoke the Azuma-Hoeffding inequality to show that: for
any such (sl, al) and any τ ∈ [T ], with probability exceeding
1− δ/T 2,∣∣∣∣∣

τ∑
i=1

1ki<T η
τ
i

((
P − Pki

)
Vki

)
(sl, al)

∣∣∣∣∣
≲

1
1− γ

√√√√ τ∑
i=1

(ητi )
2 log

T

δ
≲

√
Hι

τ (1− γ)2
.

Taking the union bound over τ ∈ [T ] allows us to replace τ
with nt(sl, al) in the above inequality, namely, this shows that
for any such (sl, al), with probability exceeding 1− δ/T we
have ∣∣∣∣∣∣

nt(sl,al)∑
i=1

η
nt(sl,al)
i

((
P − Pki

)
Vki

)
(sl, al)

∣∣∣∣∣∣
≲

√
Hι

nt(sl, al) (1− γ)2

for all t ∈ [T ]. Taking the union bound over all such (sl, al)
(which are concerned with at most T pairs), we see that with
probability exceeding 1− δ,∣∣∣∣∣∣

nt(sl,al)∑
i=1

η
nt(sl,al)
i

((
P − Pki

)
Vki

)
(sl, al)

∣∣∣∣∣∣
≲

√
Hι

nt(sl, al) (1− γ)2

(
Qπt −Qj

)(
s, πt(s)

)
=
(
r + γPV πt

)(
s, πt(s)

)
−
nj(s,πt(s))∑

i=1

η
nj(s,πt(s))
i

{
r
(
s, πt(s)

)
+ γVki

(ski+1)− bi
(
s, πt(s)

)}

=
nj(s,πt(s))∑

i=1

η
nj(s,πt(s))
i γ

{
Ps,πt(s)V

πt − Vki
(ski+1)

}
+
nj(s,πt(s))∑

i=1

η
nj(s,πt(s))
i bi

(
s, πt(s)

)
=
nj(s,πt(s))∑

i=1

η
nj(s,πt(s))
i γ

{
Ps,πt(s) (V πt − Vki) +

((
P − Pki

)
Vki

)(
s, πt(s)

)}
+
nj(s,πt(s))∑

i=1

η
nj(s,πt(s))
i bi

(
s, πt(s)

)
≥

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i

 γ min
1≤i≤n

Ps,πt(s) (V πt − Vki
) +

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ

((
P − Pki

)
Vki

)(
s, πt(s)

)
+
nj(s,πt(s))∑

i=1

η
nj(s,πt(s))
i bi

(
s, πt(s)

)
≥ γPs,πt(s) (V πt − Vt) +

nj(s,πt(s))∑
i=1

η
nj(s,πt(s))
i γ

((
P − Pki

)
Vki

)(
s, πt(s)

)
+ Cb

√
Hι

nj
(
s, πt(s)

)
(1− γ)2

. (41)



7202 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 11, NOVEMBER 2023

is valid for any 0 ≤ j < T and any t ∈ [T ]. This establishes
the inequality (42), thus concluding the proof.

B. Proof of Lemma 3

For each
(
s, π⋆(s)

)
∈ Ic, we first have

P
{

(st, at) =
(
s, π⋆(s)

)
| (s0, a0) ∼ µb

}
= µb

(
s, π⋆(s)

)
<

δ

ST
,

given that µb is taken to be the stationary distribution of the
sample trajectory. By virtue of the union bound, we obtain

P
(
Ic ∩ {(st, at)}Tt=tmix(δ)

= ∅ | (s0, a0) ∼ µb

)
≥ 1−

T∑
t=tmix

∑
s:(s,π⋆(s))∈Ic

P
{

(st, at)=(s, π⋆(s)) | (s0, a0) ∼ µb

}
> 1− δ.

In addition, for an arbitrary pair (s, a) ∈ S ×A, the definition
of the mixing time gives∣∣∣P({ (st, at)

}T
t=tmix(δ)

⊆ I | (s0, a0) ∼ µb

)
− P

(
{(st, at)}Tt=tmix

⊆ I | (s0, a0) = (s, a)
) ∣∣∣ ≤ δ.

Combine the above results to yield

P
({

(st, at)
}T
t=tmix(δ)

⊆ I | (s0, a0) = (s, a)
)
≥ 1− 2δ

for an arbitrary pair (s, a) ∈ S ×A.

C. Proof of Lemma 4

For any given integer K > 0, one can decompose

∞∑
j=0

[
γ

(
1 +

1
H

)3
]j 〈

ρ(Pπ⋆)j , V
〉

=

K−1∑
j=0

+
∞∑
j=K

[γ (1 +
1
H

)3
]j 〈

ρ(Pπ⋆)j , V
〉

≤
(

1 +
1
H

)3K K−1∑
j=0

γj
〈
ρ(Pπ⋆)j , V

〉
+

∞∑
j=K

[
γ

(
1 +

1
H

)3
]j
∥V ∥∞

≤
(

1 +
1
H

)3K 1
1− γ

〈
d⋆ρ, V

〉
︸ ︷︷ ︸

=:α1

+ γK
(

1 +
1
H

)3K 1

1− γ
(
1 + 1

H

)3 ∥V ∥∞︸ ︷︷ ︸
=:α2

.

Here, the last inequality holds since d⋆ρ = (1 − γ)∑∞
j=0 γ

jρ
(
Pπ⋆

)j
.

By taking

K = H =
⌈

4
1− γ

log
ST

δ

⌉
,

we can derive(
1 +

1
H

)3K

=
(

1 +
1
H

)3H (i)
≤ e3 = O (1)

and

γK = eK log[1−(1−γ)] (ii)
≤ e−K(1−γ) =

δ

ST 4
.

Here, (i) holds since (1 + 1/x)x ≤ e for all x > 0; (ii) is
valid since log(1−x) ≤ −x for all x ∈ (0, 1). It is also worth
noting that

1

1− γ
(
1 + 1

H

)3 ≤ 1

1− γ
(
1 + 1−γ

4

)3
(iii)
≤ 1

1− γ
[
1 + 61

64 (1− γ)
]

=
1

(1− γ)
(
1− 61

64γ
) ≲

1
1− γ

, (43)

where (iii) holds since (1 + x)3 ≤ 1 + 61x/16 for all
0 < x ≤ 1/4. We then immediately arrive at

α1 ≲
1

1− γ
〈
d⋆ρ, V

〉
and

α2 ≲
δ

ST 4 (1− γ)
∥V ∥∞ .

Taking the upper bounds on α1 and α2 collectively leads to
the advertised inequality

∞∑
j=0

[
γ

(
1 +

1
H

)3
]j 〈

ρ(Pπ⋆)j , V
〉

≲
1

1− γ
〈
d⋆ρ, V

〉
+

δ

ST 4 (1− γ)
∥V ∥∞ .

D. Proof of Lemma 5

For notational simplicity, we denote
Xt := (st, at) , 1 ≤ t ≤ T ;

clearly, {Xt}t≥0 forms a Markov chain on X ≜ S ×A, with
stationary distribution µb. In what follows, we demonstrate
how to construct the sequence Y iK−1 = (siK−1, a

i
K−2),

Y iK−2 = (siK−2, a
i
K−2), . . ., Y

i
1 = (si1, a

i
1) so as to satisfy

the desired properties.
Let us start by constructing Y iK−1. Recall from the definition

of the mixing time that: for any fixed state-action pairs
x0, x1, · · · , x(K−2)τ+i ∈ X , one has

TV
(
L
(
X(K−1)τ+i | X0 = x0, . . . , X(K−2)τ+i=x(K−2)τ+i

)
,

µb

)
≤ δ

T 2
.

where L(·) denotes the law of the random variable. In view
of the definition of the total-variation distance, we know
that there exists a random variable Y

x0,...,x(K−2)τ+i

K−1 such
that conditional on the event X0 = x0, . . . , X(K−2)τ+i =
x(K−2)τ+i, the law of Y

x0,...,x(K−2)τ+i

K−1 obeys

L
(
Y
x0,...,x(K−2)τ+i

K−1 | X0 = x0, . . . , X(K−2)τ+i = x(K−2)τ+i

)
= µb,
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and Y
x0,...,x(K−2)τ+i

K−1 is almost identical to X(K−1)τ+i in the
sense that

P
{
X(K−1)τ+i ̸= Y

x0, ..., x(K−2)τ+i

K−1 |

X0 = x0, . . . , X(K−2)τ+i = x(K−2)τ+i

}
≤ δ

T 2
.

As a consequence, we can construct Y iK−1 as follows

Y iK−1 :=
∑

x0,...,x(K−2)τ+i∈X
Y
x0,...,x(K−2)τ+i

K−1

· 1{X0 = x0, . . . , X(K−2)τ+i = x(K−2)tmix+i};
as can be easily verified, for any x0, x1, · · · , x(K−2)tmix+i ∈ X
one has

L
(
Y iK−1 | X0 = x0, . . . , X(K−2)τ+i = x(K−2)τ+i

)
= L

(
Y
x0,...,x(K−2)τ+i

K−1 |
X0 = x0, . . . , X(K−2)τ+i = x(K−2)τ+i

)
= µb.

All this in turn implies that

Y iK−1 ∼ µb and Y iK−1 ⊥⊥
{
X0, X1 . . . , X(K−2)τ+i

}
.

In addition, it is also seen that (44), shown at the bottom of
the page, holds.

Next, we turn to the construction of Y iK−2. Consider any
fixed x0, x1, · · · , x(K−3)τ+i, y

i
K−1 ∈ X . Given that Y iK−1 ⊥⊥

{X0, X1 . . . , X(K−2)τ+i}, the conditional law of X(K−2)τ+i

obeys

L
(
X(K−2)τ+i | X0 = x0, . . . , X(K−3)τ+i = x(K−3)τ+i,

Y iK−1 = yik−1

)
= L

(
X(K−2)τ+i | X0 =x0, . . . , X(K−3)τ+i=x(K−3)τ+i

)
.

This in turn allows one to obtain

TV
(
L
(
X(K−2)τ+i | X0 = x0, . . . , X(K−3)τ+i = x(K−3)τ+i,

Y iK−1 = yiK−1

)
, µb

)
= TV

(
L
(
X(K−2)τ+i | X0 = x0, . . . ,

X(K−3)τ+i = x(K−3)τ+i

)
, µb

)
≤ δ

T 2
.

According to the definition of the total-variation distance,
there exists a random variable Y

x0,x1,··· ,x(K−3)τ+i,y
i
K−1

K−2 such
that: conditional on the event X0 = x0, . . . , X(K−3)τ+i =

x(K−3)τ+i, Y
i
K−1 = yik−1, the law of Y

x0,x1,··· ,x(K−3)τ+i,y
i
K−1

K−2

obeys

L
(
Y
x0,x1,··· ,x(K−3)τ+i,y

i
K−1

K−2 | X0 = x0, . . . ,

X(K−3)τ+i = x(K−3)τ+i, Y
i
K−1 = yiK−1

)
= µb,

and Y
x0,x1,··· ,x(K−3)τ+i,y

i
K−1

K−2 is almost identical to X(K−2)τ+i

in the following sense

P
(
X(K−2)τ+i ̸= Y

x0,x1,··· ,x(K−3)τ+i,y
i
K−1

K−2 | X0 = x0, . . . ,

X(K−3)τ+i = x(K−3)τ+i, Y
i
K−1 = yiK−1

)
≤ δ

T 2
.

With the above set of random variables in mind, we can readily
construct Y iK−2 as follows:

Y iK−2 :=
∑

x0,x1,··· ,x(K−3)τ+i,y
i
K−1∈X

Y
x0,x1,··· ,x(K−3)τ+i,y

i
K−1

K−2

· 1
{
X0 =x0, . . . , X(K−3)τ+i = x(K−3)τ+i, Y

i
K−1 =yik−1

}
.

As can be straightforwardly verified, for any
x0, x1, · · · , x(K−3)τ+i, y

i
K−1 ∈ X we have

L
(
Y iK−2 | X0 = x0, . . . , X(K−3)τ+i = x(K−3)τ+i,

Y iK−1 = yik−1

)
= L

(
Y
x0,x1,··· ,x(K−3)τ+i,y

i
K−1

K−2 | X0 = x0, . . . ,

X(K−3)τ+i = x(K−3)τ+i, Y
i
K−1 = yik−1

)
= µb,

thus implying that Y iK−2 ∼ µb and

Y iK−2 ⊥⊥
{
X0, X1 . . . , X(K−3)τ+i, Y

i
K−1

}
.

This reveals that Y iK−1, Y
i
K−2

i.i.d.∼ µb. In addition, we can also
show that (45), shown at the bottom of the next page, holds.

Moving forward, we can employ similar arguments
to construct Y iK−3, . . . , Y

i
1 sequentially such that

Y i1 , Y
i
2 , . . . , Y

i
K−1

i.i.d.∼ µb, and for all 1 ≤ k ≤ K − 1,

Y ik ⊥⊥
{
X0, X1, . . . , X(k−1)τ+i

}
, P

(
Y ik ̸= Xkτ+i

)
≤ δ

T 2
.

As a result, we arrive at

P
(
Y i1 = Xτ+i, · · · , Y iK−1 = X(K−1)τ+i

)
≥ 1−

K−1∑
k=1

P
(
Y ik = Xkτ+i

)
≥ 1− δ

T
.

This concludes the proof.

APPENDIX D
ANALYSIS FOR VARIANCE-REDUCED Q-LEARNING

WITH LCB PENALIZATION (THEOREM 2)

This section presents the proof of Theorem 2, which
is concerned with the performance of variance-reduced
Q-learning with LCB penalization. Recall that V k+1 = VTk

,
that is, the value estimate in the last iterate of the k-th epoch

P
(
Y iK−1 ̸= X(K−1)τ+i

)
=

∑
x0,...,x(K−2)τ+i∈X

P
(
X0 = x0, . . . , X(K−2)τ+i = x(K−2)τ+i

)
· P
{
X(K−1)τ+i ̸= Y

x0,...,x(K−2)τ+i

K−1 | X0 = x0, . . . , X(K−2)τ+i = x(K−2)τ+i

}
≤ δ

T 2

∑
x0,...,x(K−2)τ+i∈X

P
(
X0 = x0, . . . , X(K−2)τ+i = x(K−2)τ+i

)
=

δ

T 2
. (44)
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is also used as the reference for the (k+1)-th epoch. For each
1 ≤ k ≤ K, we define

Λk :=
∑
s∈S

ρ (s)
(
V ⋆ − V k

)
(s) (46)

Clearly, the proof of Theorem 2 boils down to bounding ΛK .
As we shall see momentarily, obtaining a tight bound on Λk
relies on bounding another closely related quantity ∆K−1,
define for each 1 ≤ k ≤ K as follows:

∆k :=
∑
s∈S

ρ̃ (s)
(
V ⋆ − V k

)
(s) . (47)

Here, we set

ρ̃ :=
d⋆ρ − (1− γ) ρ

γ
. (48)

The sequence {∆k}Kk=1 will be bounded by induction in
the sequel. We shall present our proof by describing three key
steps following some preliminary facts.

A. Preliminary Facts About the k-Th Epoch

Let us first look at what happens in the k-th epoch. For
notational simplicity, we will denote V := V k−1. Similar to
the proof of Theorem 1, for any iterate t ≤ Tk, let n = nt(s, a)
and assume that (s, a) has been visited during the iterations
k1 < · · · < kn < t. We also need to define the policy πt :
S → A as follows

πt (s) := arg max
a∈A

Qt (st−1, a) ,

if s = st−1 and Vt(s) > Vt−1(s), and

πt (s) := πt−1 (s)

otherwise. If there are multiple a ∈ A that maximize
Qt (st−1, a) simultaneously, then we can go with any of them.
We make note of the following lemma.

Lemma 6: With probability exceeding 1− δ, for any s ∈ S
and t ∈ [T ] we have

(Q⋆ −Qt)
(
s, π⋆(s)

)
≤ γ

n∑
i=1

ηni Ps,a (V ⋆ − Vki
) + βn

(
s, π⋆(s)

)
,

where n = nt
(
s, π⋆(s)

)
and

βn (s, a) := 3Cb

√
Hι

n

{
σadv
n (s, a)− [µadv

n (s, a)]2
}

+ 3Cb
H3/4ι3/4

n3/4 (1− γ)
+ 3Cb

Hι

n (1− γ)

+ 3Cb

√
ι

nref (s, a)

{
σref (s, a)− [µref (s, a)]2

}
+ 3Cb

ι3/4

(1− γ) [nref (s, a)]3/4

+ 3Cb
ι

(1− γ)nref (s, a)
. (49)

In addition, it holds that

Vt(s) ≤ V πt(s) ≤ V ⋆(s)

for all s ∈ S and 1 ≤ t ≤ Tk.
Proof: See Appendix E-A. □

Moreover, both σadv
n (s, a) and σref(s, a)− [µref(s, a)]2 play

an important role in determining the variance of the update,
and we are in need of the following bounds on these two
quantities.

Lemma 7: With probability exceeding 1− δ, for all s ∈ S
and t ∈ [Tk] we have

σadv
nt(s,π⋆(s))

(
s, π⋆(s)

)
≤ Ps,π⋆(s)

(
V ⋆ − V

)2
+O

(
1

(1− γ)2

√
Hι

nt
(
s, π⋆(s)

))
and

σref
(
s, π⋆ (s)

)
−
[
µref
(
s, π⋆ (s)

)]2
= Vars,π⋆(s)(V ) +O

(
1

(1− γ)2
√

ι

nref
(
s, π⋆(s)

)) .
In addition, it holds that∑
s∈S,a∈A

d⋆ρ (s, a) Vars,a(V ⋆ − V ) ≤ 1
1− γ

∆k−1;

∑
s∈S,a∈A

d⋆ρ (s, a) Vars,a(V ) ≤ 8
1− γ

+
2

1− γ
∆k−1.

Proof: See Appendix E-B. □

B. Step 1: Connecting Λk With ∆k−1

In this step, we aim to establish a connection between Λk
(cf. (46)) and ∆k−1 (cf. (47)). In view of the monotonicity of
Vt in t (by construction) and Lemma 6, we can derive

Λk =
〈
ρ, V ⋆ − VTk

〉
≤ 1
Tk

Tk∑
t=1

⟨ρ, V ⋆ − Vt⟩ . (50)

Before continuing, we find it convenient to introduce a set
of quantities in (51), shown at the bottom of the next page,

P
(
Y iK−2 ̸= X(K−2)τ+i

)
=

∑
x0,x1,··· ,x(K−3)τ+i,y

i
K−1∈X

P
(
X0 = x0, . . . , X(K−3)τ+i = x(K−3)τ+i, Y

i
K−1 = yiK−1

)
· P
(
X(K−2)τ+i ̸= Y

x0,x1,··· ,x(K−3)τ+i,y
i
K−1

K−2 | X0 = x0, . . . , X(K−3)τ+i = x(K−3)τ+i, Y
i
K−1 = yiK−1

)
≤ δ

T 2

∑
x0,x1,··· ,x(K−3)τ+i,y

i
K−1∈X

P
(
X0 = x0, . . . , X(K−3)τ+i = x(K−3)τ+i, Y

i
K−1 = yiK−1

)
=

δ

T 2
. (45)
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similar to our proof for Theorem 1.Repeat the same analysis
as in Step 1 of the proof of Theorem 1 (which we omit here
for brevity) to yield

α0 ≤ lim sup
j→∞

αj︸ ︷︷ ︸
=:α

+
∞∑
j=0

ξj︸ ︷︷ ︸
=:ξ

+
∞∑
j=0

θj︸ ︷︷ ︸
=:θ

+
∞∑
j=0

ψj︸ ︷︷ ︸
=:ψ

+
∞∑
j=0

ϕj︸ ︷︷ ︸
=:ϕ

,

as well as the properties that α = 0,

ξ ≲
2tmix

1− γ
log

1
δ

+
tmix

T 4 (1− γ)2
log

1
δ
,

ψ ≲
C⋆tmixι

(1− γ)3
log2

(
T

δ

)
+
C⋆Stmix

(1− γ)2
log
(
T

δ

)
,

ϕ ≲
C⋆tmixι

(1− γ)3
log2

(
T

δ

)
+
C⋆Stmix

(1− γ)2
log
(
T

δ

)
.

It then comes down to bounding θ, which is different from
what has been done in the proof of Theorem 1. Towards this,
we first invoke Lemma 4 to reach

θ =
Tk∑
t=1

∞∑
j=0

[
γ

(
1 +

1
H

)3
]j∑

s∈S

[
ρ(Pπ⋆)j

] (
s, π⋆(s)

)
·min

{
βnt(s,π⋆(s))

(
s, π⋆(s)

)
,

1
1− γ

}
≲

1
1− γ

Tk∑
t=1

∑
s∈S

d⋆ρ(s) min
{
βnt(s,π⋆(s))

(
s, π⋆(s)

)
,

1
1− γ

}
+

1
ST 4 (1− γ)

T

1− γ
. (52)

To proceed, let us use the definition of βn(s, a) (cf. (49)) to
achieve the decompose (53), shown at the bottom of the next

page, where we define, for each s ∈ S, that

tburn-in(s) := Cburn-in
tmix

µb

(
s, π⋆(s)

) log
(
ST

δ

)
for some sufficiently large constant Cburn-in > 0.

Before continuing, we first collect a few immediate and
useful results of [8, Lemma 8]: with probability exceeding
1− δ, we have

nt
(
s, π⋆ (s)

)
≳ tµb

(
s, π⋆(s)

)
(54)

for all s ∈ S and tburn-in(s) ≤ t ≤ Tk; in addition, when
T ref
k ≍ Tk ≥ tburn-in(s), one has

nref
(
s, π⋆(s)

)
≳ T ref

k µb

(
s, π⋆(s)

)
, ∀s ∈ S, (55)

provided that Cburn-in is large enough. We then bound the terms
ω0, . . . , ω6 separately.
• The first bound ω0 can be easily bounded by

ω0 ≤
∑
s∈S

tburn-in(s)d⋆ρ (s)
1

1− γ

≲
∑
s∈S

tmixι

µb

(
s, π⋆(s)

)d⋆ρ(s, π⋆(s)) 1
1− γ

≤
∑
s∈S

C⋆tmixι

1− γ
≍ C⋆Stmixι

1− γ
,

where the last line follows from Assumption 2.
• To control ω1, we observe that

ω1 ≲
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ(s)

×
√

Hι

nt
(
s, π⋆(s)

)σadv
n

(
s, π⋆(s)

)

αj :=

[
γ

(
1 +

1
H

)3
]j Tk∑

t=1

〈
ρ(Pπ⋆)j , V ⋆ − Vt

〉
,

θj :=

[
γ

(
1 +

1
H

)3
]j Tk∑

t=1

∑
s∈S

[
ρ(Pπ⋆)j

] (
s, π⋆(s)

)
min

{
βnt(s,π⋆(s))

(
s, π⋆(s)

)
,

1
1− γ

}
,

ξj :=

[
γ

(
1 +

1
H

)3
]j tmix(δ)∑

t=1

〈
ρ(Pπ⋆)j , V ⋆ − Vt

〉
+

[
γ

(
1 +

1
H

)3
]j+1 〈

ρ(Pπ⋆)j+1, V ⋆ − V0

〉
,

ψj :=

[
γ

(
1 +

1
H

)3
]j T∑

t=tmix(δ)

[ ∑
s∈S,a∈A

[
ρπ

⋆

(Pπ
⋆

)j
]
(s, a)

nt(s,a)∑
i=1

η
nt(s,a)
i Ps,a

(
V ⋆ − Vki(s,a)

)
−
(

1 +
1
H

) [
ρπ

⋆

(Pπ
⋆

)j
]
(st, at)

µb (st, at)

nt(st,at)∑
i=1

η
nt(st,at)
i Pst,at

(
V ⋆ − Vki(st,at)

)]
,

ϕj := γj+1

(
1 +

1
H

)3j+2 Tk∑
t=0

1(st,at)∈I

[[
ρπ

⋆

(Pπ
⋆

)j
]
(st, at)

µb (st, at)
Pst,at

(V ⋆ − Vt)

−
(

1 +
1
H

) ∑
s∈S,a∈A

[
ρπ

⋆

(Pπ
⋆

)j
]
(s, a)Ps,a (V ⋆ − Vt)

]
. (51)
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≲
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ (s)

√
Hι

nt
(
s, π⋆(s)

)Ps,π⋆(s)

(
V ⋆ − V

)2
︸ ︷︷ ︸

=:ω1,1

+
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ(s)
H3/4ι3/4

(1− γ)n3/4
t

(
s, π⋆(s)

)︸ ︷︷ ︸
=:ω1,2

,

where the last inequality follows from Lemma 7. The first
term ω1,1 admits the following bound

ω1,1

(i)
≍
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ
(
s, π⋆(s)

)
·
√

Hι

tµb

(
s, π⋆(s)

)Ps,π⋆(s)

(
V ⋆ − V

)2
(ii)
≲
∑
s∈S

Tk∑
t=1

√
C⋆Hι

t
d⋆ρ
(
s, π⋆(s)

)
Ps,π⋆(s)

(
V ⋆ − V

)2
(iii)
≲
√
C⋆HιTk

∑
s∈S

√
d⋆ρ
(
s, π⋆(s)

)
Ps,π⋆(s)

(
V ⋆ − V

)2
(iv)
≲
√
C⋆SHιTk

√∑
s∈S

d⋆ρ
(
s, π⋆(s)

)
Ps,π⋆(s)

(
V ⋆ − V

)2
≍
√
C⋆SHιTk

√ ∑
s∈S,a∈A

d⋆ρ (s, a)Ps,a
(
V ⋆ − V

)2
(v)
≲

√
C⋆Sι2Tk

(1− γ)2
√

∆k−1.

Here, (i) follows from (54); (ii) utilizes Assumption 2;
(iii) arises from (27); (iv) applies the Cauchy-Schwarz

inequality; and (v) comes from Lemma 7 and the
definition of H (i.e., H ≍ ι

1−γ ). The other term ω1,2

is identical to ω3, which we shall bound momentarily.
• When it comes to ω2, we apply Lemma 7 to reach

ω2 ≲
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ (s)
√

ι

nref
(
s, π⋆(s)

)Vars,π⋆(s)(V )

︸ ︷︷ ︸
=:ω2,1

+
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ (s)
ι3/4

(1− γ)
[
nref
(
s, π⋆(s)

)]3/4︸ ︷︷ ︸
=:ω2,2

.

Regarding ω2,1, we make the observation that

ω2,1
(i)
≍
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ
(
s, π⋆(s)

)
·
√

ι

Tkµb

(
s, π⋆(s)

)Vars,π⋆(s)(V )

(ii)
≲
√
C⋆ιTk

∑
s∈S

√
d⋆ρ
(
s, π⋆(s)

)
Vars,π⋆(s)(V )

≍
√
C⋆ιTk

∑
s∈S,a∈A

√
d⋆ρ (s, a) Vars,a(V )

(iii)
≲
√
C⋆SιTk

√ ∑
s∈S,a∈A

d⋆ρ (s, a) Vars,a(V )

(iv)
≲
√
C⋆SιTk

√
1

1− γ
+

∆k−1

1− γ

≍

√
C⋆SιTk
1− γ

+

√
C⋆SιTk
1− γ

√
∆k−1.

∑
s∈S

Tk∑
t=1

d⋆ρ (s) min
{
βnt(s,π⋆(s))

(
s, π⋆(s)

)
,

1
1− γ

}

≲
∑
s∈S

tburn-in(s)∑
t=1

d⋆ρ (s)
1

1− γ︸ ︷︷ ︸
=:ω0

+
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ (s)

√
Hι

nt
(
s, π⋆(s)

) {σadv
n

(
s, π⋆(s)

)
−
[
µadv
n

(
s, π⋆(s)

)]2}
︸ ︷︷ ︸

=:ω1

+
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ (s)

√
ι

nref
(
s, π⋆(s)

) {σref
(
s, π⋆(s)

)
−
[
µref
(
s, π⋆(s)

)]2}
︸ ︷︷ ︸

=:ω2

+
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ (s)
H3/4ι3/4

n
3/4
t

(
s, π⋆(s)

)
(1− γ)︸ ︷︷ ︸

=:ω3

+
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ (s)
Hι

nt
(
s, π⋆(s)

)
(1− γ)︸ ︷︷ ︸

=:ω4

+
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ (s)
ι3/4

(1− γ)
[
nref
(
s, π⋆(s)

)]3/4︸ ︷︷ ︸
=:ω5

+
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ(s)
ι

(1− γ)nref
(
s, π⋆(s)

)
︸ ︷︷ ︸

=:ω6

, (53)
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Here, (i) relies on (55); (ii) invokes Assumption 2; (iii)
utilizes the Cauchy-Schwarz inequality; and (iv) follows
from Lemma 7. The other term ω2,2 is the same as ω5,
which will be bounded momentarily.

• Regarding ω3, we have

ω3
(i)
≍
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ
(
s, π⋆(s)

)
H3/4ι3/4

(1− γ) t3/4µ3/4
b

(
s, π⋆(s)

)
(ii)
≲

(C⋆)3/4H3/4ι3/4

1− γ
∑
s∈S

Tk∑
t=1

[
d⋆
(
s, π⋆(s)

)]1/4
t3/4

(iii)
≲ T

1/4
k

(C⋆)3/4H3/4ι3/4

1− γ
∑
s∈S

[
d⋆
(
s, π⋆(s)

)]1/4
(iv)
≲ T

1/4
k

(C⋆)3/4H3/4ι3/4

1− γ
S3/4

(∑
s∈S

d⋆
(
s, π⋆(s)

))1/4

≍ T 1/4
k

(C⋆)3/4S3/4ι3/2

(1− γ)7/4
.

Here, (i) follows from (54); (ii) utilizes Assumption 2;
(iii) follows from the fact that for any T ≥ 1,

T∑
t=1

1
t3/4

≤ 1 +
∫ T

1

x−3/4dx ≤ 4T 1/4; (56)

(iv) follows from Hölder’s inequality; and the last line
holds since

∑
s d

⋆
ρ

(
s, π⋆(s)

)
= 1.

• Regarding ω4, we have

ω4
(i)
≍
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ
(
s, π⋆(s)

) Hι

(1− γ) tµb

(
s, π⋆(s)

)
(ii)
≲
C⋆Hι

1− γ
∑
s∈S

Tk∑
t=1

1
t

(iii)
≲

C⋆Sι2 log Tk
(1− γ)2

.

Here, (i) utilizes (54); (ii) relies on Assumption 2; and
(iii) follows from the fact that for any T ≥ 1,
T∑
t=1

1
t
≤ 1 +

∫ T

1

x−1dx = 1 + (log T − 1) ≤ log T ; (57)

• Moving on to ω5, we develop the following upper bound:

ω5
(i)
≍
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ
(
s, π⋆(s)

)
ι3/4

(1− γ) (T ref
k )3/4µ3/4

b

(
s, π⋆(s)

)
(ii)
≲

(C⋆)3/4ι3/4

1− γ
∑
s∈S

Tk∑
t=1

[
d⋆ρ
(
s, π⋆(s)

)]1/4
(T ref
k )3/4

(iii)
≍ T

1/4
k

(C⋆)3/4ι3/4

1− γ
∑
s∈S

[
d⋆ρ
(
s, π⋆(s)

)]1/4
(iv)
≲ T

1/4
k

(C⋆)3/4S3/4ι3/4

1− γ
.

Here, (i) follows from (55); (ii) results from Assump-
tion 2; (iii) holds since T ref

k ≍ Tk; and (iv) invokes
Hölder’s inequality and

∑
s d

⋆
ρ

(
s, π⋆(s)

)
= 1 once again.

• We are left with bounding the last term ω6, towards which
we observe

ω6
(i)
≍
∑
s∈S

Tk∑
t=tburn-in(s)

d⋆ρ
(
s, π⋆(s)

) ι

(1− γ)T ref
k µb

(
s, π⋆(s)

)
(ii)
≲

C⋆ι

1− γ
∑
s∈S

Tk
T ref
k

(iii)
≍ C⋆Sι

1− γ
.

Here, (i) follows from (55); (ii) utilizes Assumption 2;
and (iii) holds since T ref

k ≍ Tk.
Taking the preceding bounds on ω0, ω1, ω2, ω3, ω4, ω5 and
ω6 together with (52) and (53) yields

θ ≲
1

1− γ

Tk∑
t=1

∑
s∈S

d⋆ρ(s) min
{
βnt(s,π⋆(s)),

1
1− γ

}
+

1
ST 4 (1− γ)

T

1− γ

≲
1

1− γ
(ω0 + ω1 + ω2 + ω3 + ω4 + ω5 + ω6)

+
1

ST 4 (1− γ)
T

1− γ

≲
C⋆Stmixι

(1− γ)2
+

√
C⋆Sι2Tk

(1− γ)4
√

∆k−1 +

√
C⋆SιTk

(1− γ)3

+ T
1/4
k

(C⋆)3/4S3/4ι3/2

(1− γ)11/4
+
C⋆Sι2 log Tk

(1− γ)2

≲
C⋆Stmixι

(1− γ)2
+

√
C⋆Sι2Tk

(1− γ)4
√

∆k−1 +

√
C⋆SιTk

(1− γ)3

+
C⋆Sι3

(1− γ)4
,

where the last line has invoked the AM-GM inequality:

2T 1/4
k

(C⋆)3/4S3/4ι3/2

(1− γ)11/4

= 2
T

1/4
k (C⋆)1/4S1/4

(1− γ)3/4
· (C

⋆)1/2S1/2ι3/2

(1− γ)2

≤
T

1/2
k (C⋆)1/2S1/2

(1− γ)3/2
+

C⋆Sι3

(1− γ)4
.

Putting all of the above results together, we can conclude
that

Λk ≤
1
Tk
α0 ≤

1
Tk

(α+ ξ + θ + ψ + ϕ)

≲

√
C⋆Sι2

Tk (1− γ)4
√

∆k−1 +

√
C⋆Sι

Tk (1− γ)3
+

C⋆Sι3

Tk (1− γ)4

+
C⋆Stmixι

Tk (1− γ)2
+

C⋆tmixι
2

Tk (1− γ)3
. (58)

C. Step 2: Bounding ∆k by Induction

Thus far, we have established an intimate connection
between Λk and ∆k (see (58)). In order to bound ∆k−1,
we find it helpful to look at an auxiliary test distribution

ρ̃ =
d⋆ρ − (1− γ) ρ

γ
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instead of ρ. The following property about ρ̃ plays an
important role in the subsequent analysis.

Lemma 8: Suppose that 1/2 ≤ γ < 1. It holds that

∞∑
j=0

[
γ

(
1 +

1
H

)3
]j 〈

ρ̃(Pπ⋆)j , V
〉

≲
1

1− γ
〈
d⋆ρ, V

〉
log

ST

δ
+

δ

ST 4 (1− γ)
∥V ∥∞ . (59)

Proof: See Appendix E-C. □
Armed with Lemma 8, we can repeat the same analysis in

Step 1 to bound each ∆k. The difference between (24) and (59)
requires us to replace d⋆ρ in Step 1 with d⋆ρ log(ST/δ), which
leads to

∆k ≲

√
C⋆Sι4

Tk (1− γ)4
√

∆k−1 +

√
C⋆Sι3

Tk (1− γ)3
+

C⋆Sι4

Tk (1− γ)4

+
C⋆Stmixι

2

Tk (1− γ)2
+

C⋆tmixι
3

Tk (1− γ)3

for each 1 ≤ k ≤ K. The above inequality can be expressed
as follows

∆k ≤ αk∆1/2
k−1 + βk,

where

αk = C

√
C⋆Sι4

Tk (1− γ)4
= 2−kA with A = C

√
C⋆Sι4

(1− γ)4

and

βk = C

√
C⋆Sι3

Tk (1− γ)3
+ C

C⋆Sι4

Tk (1− γ)4
+ C

C⋆Stmixι
2

Tk (1− γ)2

+ C
C⋆tmixι

3

Tk (1− γ)3

for some sufficiently large constant C > 0. In addition, it is
also observed that

∆0 ≤
1

1− γ
.

By induction, for each 1 ≤ j ≤ K we have

∆j ≤ βj︸︷︷︸
=:δj

+αjβ
1/2
j−1︸ ︷︷ ︸

=:δj−1

+αjα
1/2
j−1β

1/4
j−2︸ ︷︷ ︸

=:δj−2

+ · · ·

+ αjα
1/2
j−1α

1/4
j−2 · · ·α

1/2j−2

2 β
1/2j−1

1︸ ︷︷ ︸
=:δ1

+ αjα
1/2
j−1α

1/4
j−2 · · ·α

1/2j−2

2 α
1/2j−1

1 ∆1/2j

0︸ ︷︷ ︸
=:δ0

.

In the sequel, we bound each term δi, 0 ≤ i ≤ j separately.
• Let us begin with δ0, which can be calculated as

follows

δ0 = A2−1/2j−1
2−j−

j−1
2 − j−2

4 −···− 1
2j−1 ∆1/2j

0 .

Note that

j +
j − 1

2
+
j − 2

4
+ · · ·+ 1

2j−1
=

j−1∑
k=0

j − k
2k

= j

j−1∑
k=0

1
2k
−
j−1∑
k=0

k

2k
= j

(
2− 1

2j−1

)
− 2 +

j + 1
2j−1

= 2j − 2 +
1

2j−1
,

where the penultimate line holds since

j−1∑
k=0

k

2k
=

j−1∑
k=1

k

2k−1
−
j−1∑
k=0

k

2k
=

j−2∑
k=0

k + 1
2k
−
j−1∑
k=0

k

2k

=
j−2∑
k=0

1
2k
− j − 1

2j−1
= 2− j + 1

2j−1
.

Therefore we have

δ0 = A2−1/2j−1
4−j+1−1/2j

∆1/2j

0

≍ 1
4j

[
C

√
C⋆Sι4

(1− γ)4

]2−1/2j−1 (
1

1− γ

)1/2j

≲
1
Tj

[
C⋆Sι4

(1−γ)4

]1−1/2j (
1

1− γ

)1/2j

≲
C⋆Sι4

Tj (1− γ)4
.

• Next, we develop a uniform bound on every δi, 1 ≤ i ≤
j − 1. We first observe that

δi = αjα
1/2
j−1α

1/4
j−2 · · ·α

1/2j−i−1

j+1 β
1/2j−i

i

= A2−1/2j−i−1
2−j−

j−1
2 − j−2

4 −···− i+1
2j−i−1 β

1/2j−i

i ,

and

j +
j − 1

2
+
j − 2

4
+ · · ·+ j − j

2j
= 2j − 2 +

2− i
2j−i

≥ 2j − i

2j−i
− 2.

These properties allow one to derive

δi

≤ A2−1/2j−i−1
4−j+i/2

j−i+1+1β
1/2j−i

i

≍ 4−j+i/2
j−i+1

(
C⋆Sι4

(1− γ)4

)1−1/2j−i

β
1/2j−i

i

≍ 1
Tj

(
C⋆Sι4

(1− γ)4

)1−1/2j−i (√
C⋆Sι3

(1− γ)3

)1/2j−i

+
4−j/2

j−i+1

Tj

(
C⋆Sι4

(1− γ)4

)1−1/2j−i(
C⋆Sι4

(1− γ)4

)1/2j−i

+
4−j/2

j−i+1

Tj

(
C⋆Sι4

(1− γ)4

)1−1/2j−i(
C⋆Stmixι

2

(1− γ)2

)1/2j−i

+
4−j/2

j−i+1

Tj

(
C⋆Sι4

(1− γ)4

)1−1/2j−i(
C⋆tmixι

3

(1− γ)3

)1/2j−i
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≲
C⋆Sι4

Tj (1− γ)4
+

1
Tj

√
C⋆Sι3

(1− γ)3
+

C⋆Stmixι
2

Tj (1− γ)2

+
C⋆tmixι

3

Tj (1− γ)3
.

Here, the last line has used the weighted AM-GM
inequality that αx+ βy ≥ (α+ β)xα/(α+β)yβ/(α+β) for
all α, β, x, y > 0.

Armed with the above results, we can readily conclude that

∆j ≤ δ0 + δj + j max
1≤i≤j−1

δi = δ0 + βj + j max
1≤i≤j−1

δi

≲
C⋆Sι4j

Tj (1− γ)4
+

j

Tj

√
C⋆Sι3

(1− γ)3
+
C⋆Stmixι

2j

Tj (1− γ)2

+
C⋆tmixι

3j

Tj (1− γ)3
+

√
C⋆Sι3

Tk (1− γ)3

≲

√
C⋆Sι3

Tj (1− γ)3
+

C⋆Sι4j

Tj (1− γ)4
+
C⋆Stmixι

2j

Tj (1− γ)2

+
C⋆tmixι

3j

Tj (1− γ)3
, (60)

where the last line relies on the fact that T 1/2
j ≍ 2j ≳ j.

D. Step 3: Putting All This Together

Recall from (58) that

ΛK ≲

√
C⋆Sι2

T (1− γ)4
√

∆K−1 +

√
C⋆Sι

T (1− γ)3
+

C⋆Sι3

T (1− γ)4

+
C⋆Stmixι

T (1− γ)2
+

C⋆tmixι
2

T (1− γ)3
,

which invokes the fact that TK ≍ T . From (60) and the fact
that TK−1 ≍ T , K ≍ log T , we see that

∆K−1 ≲

√
C⋆Sι3

T (1− γ)3
+
C⋆Sι4 log T
T (1− γ)4

+
C⋆Stmixι

2 log T
T (1− γ)2

+
C⋆tmixι

3 log T
T (1− γ)3

,

which in turn allows one to deduce that√
C⋆Sι2

T (1− γ)4
√

∆k−1

≲

(
C⋆Sι2

T (1− γ)4

)1/2(
C⋆Sι3

T (1− γ)3

)1/4

︸ ︷︷ ︸
=:ζ1

+

(
C⋆Sι2

T (1− γ)4

)1/2(
C⋆Sι4 log T
T (1− γ)4

)1/2

︸ ︷︷ ︸
=:ζ2

+

(
C⋆Sι2

T (1− γ)4

)1/2(
C⋆Stmixι

2 log T
T (1− γ)2

)1/2

︸ ︷︷ ︸
=:ζ3

+

(
C⋆Sι2

T (1− γ)4

)1/2(
C⋆tmixι

3 log T
T (1− γ)3

)1/2

︸ ︷︷ ︸
=:ζ4

≲

√
C⋆Sι

T (1− γ)3
+
C⋆Sι3 log T
T (1− γ)4

+
C⋆Stmixι

T (1− γ)2

+
C⋆tmixι

2

T (1− γ)3
.

Here, the last step follows by applying the AM-GM inequality
as follows:

ζ1 ≲
C⋆Sι3

T (1− γ)4
+

√
C⋆Sι

T (1− γ)3
,

ζ2 ≲
C⋆Sι3

√
log T

T (1− γ)4
,

ζ3 ≲
C⋆Sι3 log T
T (1− γ)4

+
C⋆Stmixι

T (1− γ)2

ζ4 ≲
C⋆Sι3 log T
T (1− γ)4

+
C⋆tmixι

2

T (1− γ)3
.

The above bounds taken collectively demonstrate that

ΛK ≲

√
C⋆Sι

T (1− γ)3
+
C⋆Sι3 log T
T (1− γ)4

+
C⋆Stmixι

T (1− γ)2

+
C⋆tmixι

2

T (1− γ)3
.

To finish up, combine the preceding bound with (50) to
reach

V ⋆ (ρ)− V π̂ (ρ) =
〈
ρ, V ⋆ − V π̂

〉 (i)
≤ ⟨ρ, V ⋆ − VTK

⟩
(ii)
≤ 1
TK

TK∑
t=1

⟨ρ, V ⋆ − Vt⟩ = ΛK

≲

√
C⋆Sι

T (1− γ)3
+
C⋆Sι3 log T
T (1− γ)4

+
C⋆Stmixι

T (1− γ)2
+

C⋆tmixι
2

T (1− γ)3
,

where (i) holds true according to Lemma 6, and (ii) follows
due to the monotonicity of Vt in t. This concludes the proof
of Theorem 2.

APPENDIX E
AUXILIARY LEMMAS FOR THEOREM 2

A. Proof of Lemma 6

Consider any state-action pair (s, a) ∈ S ×A, and let n =
nt(s, a). For each 1 ≤ i ≤ Tk, define

ki := min
{{

0 ≤ j < Tk | j > ki−1, (sj , aj) = (s, a)
}
, Tk

}
,

and denote k0 = 0. Clearly, each ki is a stopping time. From
the update rule in Algorithm 3, we can write

Qt (s, a) =
n∑
i=1

ηni

[
r (s, a) + γVki

(ski+1)− γV (ski+1)

+ γP̃s,aV − bi (s, a)
]
.
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This taken together with the elementary fact∑n
i=1 η

n
i = 1 gives

(Q⋆ −Qt) (s, a)

= (r + γPV ⋆) (s, a)−
n∑
i=1

ηni

[
r (s, a) + γVki

(ski+1)

− γV (ski+1) + γP̃s,aV − bi (s, a)
]

= γ

n∑
i=1

ηni Ps,a (V ⋆ − Vki)

+ γ

n∑
i=1

ηni
(
(P − Pki

)
(
Vki
− V

))
(s, a)︸ ︷︷ ︸

=:α1

+ γ

n∑
i=1

ηni

((
P − P̃

)
V
)

(s, a)︸ ︷︷ ︸
=:α2

+
n∑
i=1

ηni bi(s, a). (61)

From the update rules in Algorithms 3-4 as well as Lemma 1,
we see that

n∑
i=1

ηinbi(s, a) ∈
[
β̃n (s, a) , 2β̃n (s, a)

]
, (62)

where

β̃n (s, a) := Cb

√
Hι

n

{
σadv
n

(
s, π⋆ (s)

)
−
[
µadv
n

(
s, π⋆ (s)

)]2}
+ Cb

H3/4ι3/4

n3/4 (1− γ)
+ Cb

Hι

n (1− γ)

+ Cb

√
ι

nref (s, a)

{
σref (s, a)− [µref (s, a)]2

}
+ Cb

ι3/4

(1−γ) [nref(s, a)]3/4
+Cb

ι

(1− γ)nref (s, a)
.

From now on, we shall focus on the case where a = π⋆(s).
The terms α1 and α2 are controlled separately in the following.
• Regarding α1, we first define a filtration {Fi}Tk−1

i=0 as

Fi := σ
{{(

skj , a
k
j

)
: 1 ≤ j ≤ ki

}
,∪kj=1Dref

j ,∪k−1
j=1Dj

}
.

Here, (sji , a
j
i ) (resp. (sj,refi , aj,refi )) is defined to be the i-

th state-action pair used to update the Q-function estimate
(resp. construct the empirical transition kernel) within the
j-th epoch; and we set

Dref
j :=

{(
sj,refi , aj,refi

)
: 0 ≤ i < T ref

j

}
, (63a)

Dj :=
{(
sji , a

j
i

)
: 0 ≤ i < Tj

}
. (63b)

It is straightforward to check that for any 1 ≤ τ ≤ T ,{
1ki<T

(
(P − Pki

)
(
Vki
− V

)) (
s, π⋆(s)

)}τ
i=1

is a martingale difference sequence with respect to
{Fi}i≥0. Then we can invokethe Freedman inequality to

obtain: for any fixed s ∈ S and τ ∈ [T ], with probability
exceeding 1− δ/(ST ),∣∣∣∣∣

τ∑
i=1

1ki≤Tk
ητi
(
(P − Pki

)
(
Vki
− V

)) (
s, π⋆(s)

)∣∣∣∣∣
≲

√√√√ τ∑
i=1

(ητi )
2 Vars,π⋆(s)

(
Vki − V

)
ι

+
1

1− γ
max
1≤i≤τ

ητi ι

≲

√√√√Hι

τ

τ∑
i=1

ητi Vars,π⋆(s)

(
Vki − V

)
+

Hι

(1− γ) τ
.

Invoke the union bound to show that with probability at
least 1−δ, the above inequality holds simultaneously for
all τ ∈ [T ] and s ∈ S. Replacing τ with n = nt(s, π⋆(s))
yields that, with probability exceeding 1− δ,

|α1| ≲

√√√√Hτ

n

n∑
i=1

ηni Vars,π⋆(s)

(
Vki
− V

)
+

Hτ

(1− γ)n

(64)

holds for all s ∈ S and t ∈ [Tk], where n = nt(s, π⋆(s)).
In addition, the update rules in Algorithm 2 tell us that

µadv
n (s, a) =

n∑
i=1

ηni
[
Vki (ski+1)− V (ski+1)

]
=

n∑
i=1

ηni

(
Pki

(
Vki
− V

))
(s, a)

and

σadv
n (s, a) =

n∑
i=1

ηni
[
Vki

(ski+1)− V (ski+1)
]2

=
n∑
i=1

ηni

(
Pki

(
Vki − V

)2)
(s, a) . (65)

Recognizing that
n∑
i=1

ηni Vars,a
(
Vki
− V

)
=

n∑
i=1

ηni Ps,a
(
Vki
− V

)2 − n∑
i=1

ηni
[
Ps,a

(
Vki
− V

)]2
,

we can connect Vars,a
(
Vki
− V

)
with µadv

n and σadv
n as

in (66), shown at the bottom of the next page, leaving us
with two terms α1,1 and α1,2 to control.

– The first term α1,1 can be bounded by the
Azuma-Hoeffding inequality. We can employ similar
arguments as used when proving (38) and invoke
the Azuma-Hoeffding inequality to show that: with
probability exceeding 1 − δ/S, for all s ∈ S and
t ∈ [Tk], it holds that

|α1,1| ≲
√

Hι

n (1− γ)4
. (67)
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– Moving on to the second term α1,2, we invoke the
identity

∑n
i=1 η

n
i = 1 to deduce that

α1,2

=

[
n∑
i=1

ηni
(
Pki

(
Vki − V

)) (
s, π⋆(s)

)]2

−

(
n∑
i=1

ηni

)
n∑
i=1

ηni
[
Ps,π⋆(s)

(
Vki
− V

)]2
(i)
≤

[
n∑
i=1

ηni
(
Pki

(
Vki − V

)) (
s, π⋆(s)

)]2

−

[
n∑
i=1

ηni Ps,π⋆(s)

(
Vki − V

)]2

=

[
n∑
i=1

ηni
(
(Pki − P )

(
Vki − V

)) (
s, π⋆(s)

)]

·

[
n∑
i=1

ηni
(
(Pki

+ P )
(
Vki
− V

)) (
s, π⋆(s)

)]
(ii)
≤ 1

1− γ

∣∣∣∣∣
n∑
i=1

ηni
(
(Pki

− P )
(
Vki
− V

)) (
s, π⋆(s)

)∣∣∣∣∣
(iii)
≲

√
Hι

n (1− γ)4
.

Here, (i) arises from the Cauchy-Schwarz inequality;
(ii) follows from the fact that 0 ≤ Vki

−V ≤ 1/(1−
γ) and the identity

∑n
i=1 η

n
i = 1; and (iii) follows

by repeating the argument used to establish (38) and
invoking the Azuma-Hoeffding inequality (which we
omite here for the sake of brevity).

With the preceding bounds in place, we conclude that
with probability exceeding 1−O(δ),
n∑
i=1

ηinVars,π⋆(s)

(
Vki
− V

)
≤ σadv

n

(
s, π⋆(s)

)
−
[
µadv
n

(
s, π⋆(s)

)]2
+ α1,1 + α1,2

≤ σadv
n

(
s, π⋆(s)

)
−
[
µadv
n

(
s, π⋆(s)

)]2
+O

(√
Hι

n (1− γ)4

)

holds for all s ∈ S and t ∈ [Tk]. Putting the above
results together and using the fact σadv

n

(
s, π⋆(s)

)
≥[

µadv
n

(
s, π⋆(s)

)]2
(due to Jensen’s inequality) reveal that

with probability exceeding 1−O(δ),

|α1| ≲

√√√√Hι

n

n∑
i=1

ηni Vars,π⋆(s)

(
Vki
− V

)
+

Hι

(1− γ)n

≲

√
Hι

n

{
σadv
n

(
s, π⋆ (s)

)
−
[
µadv
n

(
s, π⋆(s)

)]2}
+

H3/4ι3/4

n3/4 (1− γ)
+

Hι

n (1− γ)

holds for all s ∈ S and t ∈ [Tk].
• Regarding α2, we first recall that nref(s, a) denotes the

number of visit to (s, a) among the samples used to
compute P̃ . Let k0 = −1, and for each 1 ≤ i ≤ T ref

k ,
define

ki

:= min
{
{0≤k<T ref

k |k > ki−1, (sk, ak)=(s, a)}, T ref
k

}
.

Akin to how we establish (64), we can use the Freedman
inequality to show that: for any fixed s ∈ S, with
probability exceeding 1− δ/S,

|α2| =
∣∣∣γ ((P − P̃ )V ) (s, π⋆(s))∣∣∣

= γ

∣∣∣∣∣ 1
nref
(
s, π⋆(s)

) T ref
k∑
i=0

(
P − P ref

i

)
s,a
V

· 1
{
(srefi , a

ref
i ) =

(
s, π⋆(s)

)}∣∣∣∣∣
= γ

∣∣∣∣∣∣ 1
nref
(
s, π⋆(s)

) nref(s,π⋆(s))∑
i=0

(
P − P ref

ki

)
s,π⋆(s)

V

∣∣∣∣∣∣
≲

√
Vars,π⋆(s)(V )
nref
(
s, π⋆(s)

) ι+ ι

(1− γ)nref
(
s, π⋆ (s)

) .
n∑
i=1

ηni Vars,π⋆(s)

(
Vki − V

)
−
{
σadv
n

(
s, π⋆(s)

)
−
[
µadv
n

(
s, π⋆(s)

)]2}
=

n∑
i=1

ηni Ps,π⋆(s)

(
Vki − V

)2 − n∑
i=1

ηni
[(
P
(
Vki − V

)) (
s, π⋆(s)

)]2
−

n∑
i=1

ηni

(
Pki

(
Vki
− V

)2) (
s, π⋆(s)

)
+

[
n∑
i=1

ηni
(
Pki

(
Vki
− V

)) (
s, π⋆(s)

)]2

=
n∑
i=1

ηni

(
(P − Pki

)
(
Vki
− V

)2) (
s, π⋆(s)

)
︸ ︷︷ ︸

=:α1,1

+

[
n∑
i=1

ηni
(
Pki

(
Vki
− V

)) (
s, π⋆(s)

)]2

−
n∑
i=1

ηni
[
Ps,π⋆(s)

(
Vki
− V

)]2
︸ ︷︷ ︸

=:α1,2

,

(66)
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Here, the first line results from the identity
∑n
i=1 η

n
i = 1.

It follows from the update rule in Algorithm 2 that

µref (s, a) =
1

nref (s, a)

nref(s,a)∑
i=1

V (ski+1)

=
1

nref (s, a)

nref(s,a)∑
i=1

(
Pki

V
)
(s, a) ,

and

σref (s, a) =
1

nref (s, a)

nref(s,a)∑
i=1

V
2
(ski+1)

=
1

nref (s, a)

nref(s,a)∑
i=1

(
Pki

V
2)

(s, a) ,

allowing us to deduce (68), shown at the bottom of the
page. Using the similar argument in proving (38) and
the Azuma-Hoeffding inequality, we can show that with
probability exceeding 1− δ/S,

α2,1 ≲
1

(1− γ)2
√

ι

nref (s, a)
.

The second term α2,2 can be bounded by

α2,2

=

∣∣∣∣∣ 1
nref(s, π⋆ (s))

nref(s,π⋆(s))∑
i=1

(
(Pki − P )V

) (
s, π⋆(s)

)∣∣∣∣∣
·

∣∣∣∣∣ 1
nref
(
s, π⋆(s)

)nref(s,π⋆(s))∑
i=1

(
(Pki

+ P )V
) (
s, π⋆(s)

)∣∣∣∣∣
≤ 2

1− γ

∣∣∣∣∣ 1
nref
(
s, π⋆(s)

)nref(s,π⋆(s))∑
i=1

(
(Pki − P )V

) (
s, π⋆(s)

)∣∣∣∣∣
≲

1
(1− γ)2

√
ι

nref
(
s, π⋆(s)

) .
Here, the penultimate line follows from the fact that 0 ≤
V (s) ≤ 1/(1−γ) for all s ∈ S, whereas the last line can
be proved by using the similar argument used to establish
(38) and invoking the Azuma-Hoeffding inequality. These
bounds taken collectively allow us to derive

Vars,π⋆(s)(V ) = σref
(
s, π⋆(s)

)
−
[
µref
(
s, π⋆(s)

)]2
+O (α2,1 + α2,2)

= σref
(
s, π⋆(s)

)
−
[
µref
(
s, π⋆(s)

)]2
+O

(
1

(1− γ)2
√

ι

nref
(
s, π⋆(s)

)) .
(69)

Consequently, it is immediately seen that: with probabil-
ity exceeding 1−O(δ),

|α2|

≲

√
ι

nref
(
s, π⋆(s)

) {σref
(
s, π⋆(s)

)
−
[
µref
(
s, π⋆(s)

)]2}
+

ι3/4

(1−γ)
[
nref
(
s, π⋆(s)

)]3/4 +
ι

(1− γ)nref
(
s, π⋆(s)

)
holds simultaneously for all s ∈ S.

With the above bounds on α1 and α2 in place, we can take
these together with (62) to obtain

0 ≤
n∑
i=1

ηni bi
(
s, π⋆(s)

)
+ α1 + α2

≤ 3β̃n
(
s, π⋆(s)

)
= βn

(
s, π⋆(s)

)
,

with the proviso that Cb > 0 is sufficiently large. Substitution
into (61) then gives: with probability exceeding 1−O(δ),

(Q⋆ −Qt)
(
s, π⋆(s)

)
≤ γ

n∑
i=1

ηni Ps,π⋆(s) (V ⋆ − Vki) + βn
(
s, π⋆(s)

)
holds for all s ∈ S and t ∈ [Tk].

The second part of the lemma — namely, Vt(s) ≤ V πt(s) ≤
V ⋆(s) for all s ∈ S and t ∈ [Tk] — can be proved in a way
similar to the proof of the second part of Lemma 2. We omit
it here for brevity.

B. Proof of Lemma 7

In view of (65), we can deduce that

σadv
n

(
s, π⋆(s)

)
=

n∑
i=1

ηni

(
Pki

(
Vki
− V

)2) (
s, π⋆(s)

)
=

n∑
i=1

ηni Ps,π⋆(s)

(
Vki
− V

)2
∣∣∣Vars,π⋆(s)(V )− σref

(
s, π⋆(s)

)
+
[
µref
(
s, π⋆(s)

)]2∣∣∣ = ∣∣∣Ps,π⋆(s)(V
2
)− (Ps,π⋆(s)V )2 − σref

(
s, π⋆(s)

)
+
[
µref
(
s, π⋆(s)

)]2∣∣∣
≤

∣∣∣∣∣∣Ps,π⋆(s)(V
2
)− 1

nref
(
s, π⋆ (s)

) nref(s,π⋆(s))∑
i=1

(
PkiV

2
) (
s, π⋆(s)

)∣∣∣∣∣∣︸ ︷︷ ︸
=:α2,1

+

∣∣∣∣∣∣∣
 1
nref
(
s, π⋆(s)

) nref(s,π⋆(s))∑
i=1

(
Pki

V
) (
s, π⋆(s)

)2

−
(
Ps,π⋆(s)V

)2∣∣∣∣∣∣∣︸ ︷︷ ︸
=:α2,2

. (68)
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+
n∑
i=1

ηni

(
(Pki

− P )
(
Vki
− V

)2) (
s, π⋆(s)

)
≤ Ps,π⋆(s)

(
V ⋆ − V

)2
+

n∑
i=1

ηni

(
(Pki

− P )
(
Vki
− V

)2) (
s, π⋆(s)

)
≤ Ps,π⋆(s)

(
V ⋆ − V

)2
+O

(√
Hι

n (1− γ)4

)
.

Here, the penultimate line follows from the fact that Vt is non-
decreasing in t and V ≤ Vt ≤ V ⋆, while the last inequality
invokes the upper bound on α1,1 (cf. (67)) derived in Lemma 6.
In addition, we observe that

σref
(
s, π⋆(s)

)
−
[
µref
(
s, π⋆(s)

)]2
= Vars,π⋆(s)(V ) +O

(
1

(1− γ)2
√

ι

nref
(
s, π⋆(s)

)) ,
which follows directly from (69).

Next, we turn to bounding the sum
∑
s,a d

⋆
ρ(s, a)Vars,a(V ),

which can be decomposed into∑
s,a

d⋆ρ (s, a) Vars,a(V ) =
∑

s∈S,a∈A
d⋆ρ (s, a) Vars,a(V ⋆)︸ ︷︷ ︸

=:α1

+
∑
s,a

d⋆ρ (s, a)
[
Vars,a(V )− Vars,a(V ⋆)

]
︸ ︷︷ ︸

=:α2

. (70)

This leaves us with two terms α1 and α2 to control.
• With regards to α1, we first define a vector
v = [vs]s∈S ∈ RS obeying

vs := Vars,π⋆(s) (V ⋆) for all s ∈ S,

which clearly satisfies

v = Pπ⋆ [V ⋆ ◦ V ⋆]− (Pπ⋆V ⋆) ◦ (Pπ⋆V ⋆)

= Pπ⋆ (V ⋆ ◦ V ⋆)− 1
γ2

(r − V ⋆) ◦ (r − V ⋆)

= Pπ⋆ (V ⋆ ◦ V ⋆)− 1
γ2
r ◦ r − 1

γ2
V ⋆ ◦ V ⋆ + 2V ⋆ ◦ r

≤ 1
γ2

(
γ2Pπ⋆ − I

)
(V ⋆ ◦ V ⋆) + 2V ⋆ ◦ r. (71)

Here, the second identity follows from the Bellman
optimality equation V ⋆ = r+γPπ⋆V ⋆. Recognizing that
d⋆ρ(s, a) = d⋆ρ(s)1{a = π⋆(s)} and d⋆ρ = (1 − γ)ρ(I −
γPπ⋆)−1, we obtain (72), shown at the bottom of the
next page. In (72), (i) follows from (71); (ii) relies on
the triangle inequality as well as the Bellman optimality
equation V ⋆ = (I − γPπ⋆)−1r; and (iii) arises from the
property 0 ≤ V ⋆(s) ≤ 1/(1− γ) for all s ∈ S as well as
the assumption that γ ≥ 1/2.

• Regarding α2, we make the observation that

α2

=
∑

s∈S,a∈A
d⋆ρ (s, a)

{
Ps,aV

2 −
[
Ps,aV

]2 − Ps,a(V ⋆2)
+ [Ps,aV ⋆]

2
}

=
∑

s∈S,a∈A
d⋆ρ (s, a)

{
Ps,aV

2 − Ps,a
(
V ⋆2

)}
+
∑
s,a

d⋆ρ (s, a)
{

[Ps,aV ⋆]
2 −

[
Ps,aV

]2}
≤
∑
s,a

d⋆ρ (s, a)Ps,a
(
V ⋆ − V

)
Ps,a

(
V ⋆ + V

)
≤ 2

1− γ
∑

s∈S,a∈A
d⋆ρ (s, a)Ps,a

(
V ⋆ − V

)
, (73)

where the third line holds since V
2 ≤ V ⋆2, and the last

line is valid since ∥Ps,a∥1 = 1 and ∥V ∥∞ ≤ ∥V ⋆∥∞ ≤
1

1−γ . Recognizing that

d⋆ρ = (1− γ)ρ+ γd⋆ρPπ⋆ , (74)

we can use the fact d⋆ρ (s, a) = d⋆ρ (s)1{a = π⋆(s)} to
derive∑
s∈S,a∈A

d⋆ρ (s, a)Ps,a
(
V ⋆ − V

)
=
∑
s∈S

d⋆ρ(s)Ps,π⋆(s)

(
V ⋆ − V

)
=
〈
d⋆ρPπ⋆ , V ⋆ − V

〉
=
〈d⋆ρ − (1− γ) ρ

γ
, V ⋆ − V

〉
=
〈
ρ̃, V ⋆−V

〉
=∆k−1.

Substitution into (73) leads to

α2 ≤
2

1− γ
∆k−1.

• Take the preceding bounds on α1 and α2 together
with (70) to yield∑
s,a

d⋆ρ (s, a) Vars,a(V ) ≤ α1+α2 ≤
8

1−γ
+

2
1− γ

∆k−1.

Finally, we turn attention to
∑
s,a d

⋆
ρ (s, a) Vars,a(V ⋆−V ).

This sum can be bounded as follows∑
s,a

d⋆ρ (s, a) Vars,a(V ⋆ − V )

≤
∑

s∈S,a∈A
d⋆ (s, a)Ps,a

(
V ⋆ − V

)2
=
∑
s∈S

d⋆ (s)Ps,π⋆(s)

(
V ⋆ − V

)2
=
〈
d⋆ρ − (1− γ) ρ

γ
,
(
V ⋆ − V

)2〉
=
∑
s∈S

d⋆ (s)− (1− γ) ρ (s)
γ

(
V ⋆ − V

)2
(s)

=
〈
ρ̃,
(
V ⋆ − V

)2〉 ≤ ∥∥V ⋆ − V ∥∥∞〈ρ̃, V ⋆ − V 〉
≤ 1

1− γ
∆k−1,

where the first identity holds since d⋆ (s, a) = d⋆ (s)1{a =
π⋆(s)}, and the second line invokes (74).
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C. Proof of Lemma 8

Recall that

ρ̃ :=
d⋆ρ − (1− γ) ρ

γ
,

which is clearly also a probability vector. To prove the
lemma, we find it helpful to introduce the following occupancy
distribution induced by ρ̃:

d⋆ρ̃ (s) := (1− γ)
∞∑
t=0

γtP (st = s | π⋆, s0 ∼ ρ̃) .

Repeating the argument used to establish (24), we can easily
see that: for any vector V ∈ Rd with non-negative entries,
it holds that

∞∑
j=0

[
γ

(
1 +

1
H

)3
]j 〈

ρ̃P jπ⋆ , V
〉

≲
1

1− γ
〈
d⋆ρ̃, V

〉
+

δ

ST 4 (1− γ)
∥V ∥∞ . (75)

Consequently, it boils down to analyzing the distribution d⋆ρ̃.
For any integer K ≥ 0, employ the identity

d⋆ρ = ρ
∑∞
i=0 γ

i(Pπ⋆)i to deduce (76), shown at the bottom
of the next page. In (76), (i) and (ii) make use of the
identity d⋆ρ = (1−γ)ρ

∑∞
j=0 γ

j(Pπ⋆)j and the assumption that
γ ≥ 1/2. By choosing

K :=
⌈
CK

1− γ
log

ST

δ

⌉
for some constant CK > 0, we can guarantee that

d⋆ρ̃ (s) ≤ 4CKd⋆ρ(s) log
ST

δ
+ e (s) . (77)

This inequality further motivates us to bound e(s). Towards
this, note that e(s) satisfies∑
s∈S

e (s) =
(1− γ)2

γ

∞∑
i=K

iγiρ(Pπ⋆)i1

=
(1− γ)2

γ

∞∑
i=K

iγi =
1− γ
γ

( ∞∑
i=K

iγi − γ
∞∑
i=K

iγi

)

=
1− γ
γ

( ∞∑
i=K

iγi −
∞∑

i=K+1

(i− 1) γi
)

=
1− γ
γ

(
KγK +

∞∑
i=K+1

γi

)

=
1− γ
γ

(
KγK +

γK+1

1− γ

)
≤ 2CKγK−1 log

ST

δ
+ γK ≲

δ

ST 4
(78)

with 1 the all-one vector, where the second line holds
since ρ(Pπ⋆)i remains a probability vector (and hence
ρ(Pπ⋆)i1 = 1). Here, the last line follows from our assumption
that γ ≥ 1/2 and the fact that

γK = eK log[1−(1−γ)] ≤ e−K(1−γ) ≤ e−CK log(ST/δ)

=
(

δ

ST

)−CK

≤ δ2

S2T 5
,

provided that CK ≥ 5.
We are now ready to establish the claim of this lemma.

Substituting the bounds (77) and (78) into (75) leads to〈
d⋆ρ̃, V

〉
≲
〈
d⋆ρ, V

〉
log

ST

δ
+
∑
s∈S

e (s) ∥V ∥∞

≲
〈
d⋆ρ, V

〉
log

ST

δ
+

δ

ST 4
∥V ∥∞ .

As a result, one can readily conclude that

∞∑
j=0

[
γ

(
1 +

1
H

)3
]j 〈

ρ̃P jπ⋆ , V
〉

≲
1

1− γ
〈
d⋆ρ, V

〉
log

ST

δ
+

δ

ST 4 (1− γ)
∥V ∥∞ .

APPENDIX F
ANALYSIS FOR THE MINIMAX LOWER

BOUND IN THEOREM 3

Without loss of generality, we assume throughout the proof
that S is an odd number.

Construction of Hard MDP Instances: For any vector
θ = [θs]1≤s≤S ∈ RS with ∥θ∥∞ ≤ 1/2, define an MDP
Mθ = {S,A, γ, Pθ, r} parameterized by θ with the state

α1 =
∑
s∈S

d⋆ρ (s) Vars,π⋆(s)(V ⋆) =
〈
d⋆ρ, v

〉
= (1− γ) ρ (I − γPπ⋆)−1

v

≤ (1− γ) ∥ρ∥1
∥∥∥(I − γPπ⋆)−1

v
∥∥∥
∞

= (1− γ)
∥∥∥(I − γPπ⋆)−1

v
∥∥∥
∞

(i)
≤ 1− γ

γ2

∥∥∥(I − γPπ⋆)−1 (
γ2Pπ⋆ − I

)
(V ⋆ ◦ V ⋆)

∥∥∥
∞

+ 2 (1− γ)
∥∥∥(I − γPπ⋆)−1 (V ⋆ ◦ r)

∥∥∥
∞

=
1− γ
γ2

∥∥∥(I − γPπ⋆)−1 [(1− γ) I + γ (I − γPπ⋆)] (V ⋆ ◦ V ⋆)
∥∥∥
∞

+ 2 (1− γ) ∥V ⋆∥∞
∥∥∥(I − γPπ⋆)−1

r
∥∥∥
∞

(ii)
≤ (1− γ)2

γ2

∥∥∥(I − γPπ⋆)−1 (V ⋆ ◦ V ⋆)
∥∥∥
∞

+
1− γ
γ
∥V ⋆ ◦ V ⋆∥∞ + 2 (1− γ) ∥V ⋆∥2∞

≤ (1− γ)2

γ2

1
1− γ

∥V ⋆∥2∞ +
1− γ
γ
∥V ⋆∥2∞ + 2 (1− γ) ∥V ⋆∥2∞

(iii)
≤ 8

1− γ
. (72)
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space S =
{
0,±1, . . . ,±S−1

2

}
and the action space A =

{±1}. Several key elements are constructed as follows.
• We first define the initial state distribution as

ρ(s) =
(

1− 1
τmix

)
1(s = 0) +

1
(S − 1)τmix

1(s ̸= 0)

for all s ∈ S, where τmix is defined to be

τmix =
16c2

(1− γ) ε
.

It is self-evident that as long as c1 ≤ 32c2, we have
τmix ≥ 2 and hence ρ is well-defined.

• The transition probability kernel is constructed such that

Pθ (s′ | s, a) =
(

1− 1
tmix

)[(
1
2

+ θsa

)
1 {s′ = s}

+
(

1
2
− θsa

)
1 {s′ = −s}

]
+

1
tmix

ρ (s′)

for any (s, a, s′) ∈ S ×A× S .
• The reward function is taken to be

r (s, a) =

{
1, if s > 0;
0, if s ≤ 0.

• The behavior policy is chosen to be

πb(a | s) =
1
2
, ∀ (s, a) ∈ S ×A.

• Furthermore, we shall define

Θ :=
{
θ ∈ RS : θs ∈

{
± 1

2

}
for s > 0, and

θs = 0 for s ≤ 0
}
,

and we consider a class of MDP given by {Mθ : θ ∈ Θ}.
In what follows, we shall also let U represent the uniform
distribution over Θ.

Useful Properties About the Constructed MDP: Next, for
any θ ∈ Θ, we gather a couple of basic properties about Mθ

and the Markov chain induced by the behavior policy πb.
• The stationary distribution µb of the Markov chain

induced by πb is given by

µb (s, a) = ρ (s)πb (a | s) =
1
2
ρ (s) . (79)

for all (s, a). The mixing time of this Markov chain is at
most 2tmix, since it is clear that

dTV

(
P tθ (· | s0, a0) , µb

)
≤
(

1− 1
tmix

)t
≤ 1

4

for all (s0, a0) ∈ S ×A, as long as t ≥ 2tmix.
• For any policy π, it can be verified that

dπρ (s) ≤ 3
2
ρ (s) (80)

for any (s, a) ∈ S ×A. The proof of (80) is deferred to
Appendix F-A. This immediately gives

C⋆ = sup
(s,a)∈S×A

d⋆ρ (s, a)
µb (s, a)

(i)
≤ 2 sup

(s,a)∈S×A

d⋆ρ (s, a)
ρ (s)

(ii)
≤ 3,

where (i) follows from (79), and (ii) utilizes (80).
• The optimal policy π⋆θ is given by

π⋆θ (s) = sign (θs) , ∀ s > 0, (81)

and π⋆θ(s) can be either 1 or −1 for s ≤ 0. In addition,
for any s > 0 and any policy π that is independent of θs,
we can show that

E
Mθ:θ∼U

[V ⋆θ (s)− V π (s)] ≥ 1
35 (1− γ)

. (82)

The proof of (81) and (82) can be found in Appendix F-B.
Proof of the Claimed Lower Bound: Let

X1, . . . , XT
i.i.d.∼ Bernoulli(1/tmix)

d⋆ρ̃ (s) = (1− γ)

[ ∞∑
i=0

γi
d⋆ρ − (1− γ) ρ

γ
(Pπ⋆)i

]
(s) (i)=

(1− γ)2

γ

 ∞∑
i=0

∞∑
j=0

γi+jρ(Pπ⋆)i+j

 (s)− (1− γ)2

γ

[ ∞∑
i=0

γiρ(Pπ⋆)i
]

(s)

=
(1− γ)2

γ

ρ( ∞∑
l=0

γl(Pπ⋆)l
)2
 (s)− (1− γ)2

γ

[ ∞∑
i=0

γiρ(Pπ⋆)i
]

(s)

=
(1− γ)2

γ

[ ∞∑
i=0

(i+ 1) γiρ(Pπ⋆)i
]

(s)− (1− γ)2

γ

[ ∞∑
i=0

γiρ(Pπ⋆)i
]

(s) =
(1− γ)2

γ

[ ∞∑
i=0

iγiρ(Pπ⋆)i
]

(s)

=
(1− γ)2

γ

[
K−1∑
i=0

iγiρ(Pπ⋆)i
]

(s) +
(1− γ)2

γ

[ ∞∑
i=K

iγiρ(Pπ⋆)i
]

(s)

≤ K (1− γ)2

γ

[
K−1∑
i=0

γiρ(Pπ⋆)i
]

(s) +
(1− γ)2

γ

[ ∞∑
i=K

iγiρ(Pπ⋆)i
]

(s)

(ii)
≤ 2K (1− γ) d⋆ρ(s) +

(1− γ)2

γ

[ ∞∑
i=K

iγiρ(Pπ⋆)i
]

(s)︸ ︷︷ ︸
=:e(s)

. (76)
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and

Y1, . . . , YT
i.i.d.∼ Bernoulli(1/τmix)

be two independent sequences of Bernoulli random variables.
Let ST be the number of different state pairs {±s} visited by
the sample trajectory. From the construction of the Markov
chain, we know that ST is stochastically dominated by 1 +∑T
t=1XtYt. In view of this, we have

E [ST ] ≤ E

[
1 +

T∑
t=1

XtYt

]
= 1 +

T

tmixτmix

≤ 1 + c
S

(1− γ) τmixε
≤ S

8
,

where the last relation holds since τmix = 16c2
(1−γ)ε and S ≥ 16.

This implies that with probability at least 0.5, ST ≤ S/4. Then
for any estimator π, with probability at least 0.5 we have

max
Mθ:θ∈Θ

V ⋆ (ρ)− V π (ρ)

≥ E
Mθ:θ∼U

[V ⋆ (ρ)− V π (ρ)]

=
∑
s∈S

ρ (s) E
Mθ:θ∼U

[V ⋆ (s)− V π (s)]

(i)
≥
(
S − 1

2
− ST

)
1

(S − 1)τmix

γ

35 (1− γ)
(ii)
≥ ε

4800c2
.

Here, (i) holds since there are at least (S−1)/2−ST states s
satisfying s > 0 and the state pair {±s} is not visited by the
sample trajectory. For any such state s, any estimator based on
the observed sample trajectory is independent of θs. Then (i)
follows from (82). In addition, (ii) holds as long as ST ≤ S/4,
S ≥ 16 and γ ≥ 1/2. By replacing ε with 4800c2ε, we arrive
at the desired lower bound.

A. Proof of Equation (80)

Let Pπθ : S → S be the probability transition kernel defined
as

Pπθ (s′ | s) =
∑
a∈A

Pθ(s′ | s, a)π(a | s), ∀ (s, a) ∈ S ×A.

For any policy π and any ν ∈ ∆(S) satisfying ν(s)+ν(−s) =
ρ(s) + ρ(−s) = 2ρ(s) for all s ∈ S, we have (83), shown at
the bottom of the page, for any s′ ∈ S. In (83) the last relation

follows from ν(s)+ν(−s) = 2ρ(s). Therefore for any s ∈ S,
we have

|(νPπθ ) (s)− ρ (s)| ≤ 1
2
∥θ∥∞ ν (s) +

1
2
∥θ∥∞ ν (−s)

= ∥θ∥∞ ρ (s) .

We can then employ standard induction arguments to verify
that for any n ≥ 0,

[ρ(Pπθ )n](s) + [ρ(Pπθ )n](−s) = 2ρ(s).

This immediately gives

dπρ (s) = (1− γ)
∞∑
j=0

γj
[
ρ (Pπθ )j

]
(s)

= ρ (s) + (1− γ)
∞∑
j=0

γj
[
ρ (Pπθ )j − ρ

]
(s)

≤ ρ (s) + (1− γ)
∞∑
j=0

γj ∥θ∥∞ ρ (s)

= (1 + ∥θ∥∞) ρ (s) ≤ 3
2
ρ (s) .

B. Proof of Equations (81) and (82)

For any policy π, the Bellman equations assert that

Qπ (s, a) = r (s, a) + γ

{
1
tmix

V π (ρ) +
(
1− 1

tmix

)
·
[(1

2
+ θsa

)
V π (s) +

(1
2
− θsa

)
V π (−s)

]}
and

V π (s) = π (1 | s)Qπ (s, 1) + π (−1 | s)Qπ (s,−1)

for any (s, a) ∈ S × A. For any given s > 0, denote by
x = V π(s) and y = V π(−s). Since θ−s = 0, we have
Qπ(−s, 1) = Qπ(−s,−1) = V π(−s) = y. Then the above
Bellman equations give (84), shown at the bottom of the next
page. Solving the system of equations (84) with respect to
x and y gives (85), shown at the bottom of the next page.
Similarly, we can also derive

V π (0) =
1

1− γ
(
1− 1

tmix

) γ

tmix
V π (ρ) .

(νPπθ ) (s′) =
∑
s

ν (s) [π (1 | s)Pθ (s′ | s, 1) + π (−1 | s)Pθ (s′ | s,−1)]

=
∑
s

ν (s)
[
π (1 | s)

(
1− 1

tmix

)[(
1
2

+ θs

)
1 {s′ = s}+

(
1
2
− θs

)
1 {s′ = −s}

]
+ π (−1 | s)

(
1− 1

tmix

)[(
1
2
− θs

)
1 {s′ = s}+

(
1
2

+ θs

)
1 {s′ = −s}

]
+

1
tmix

ρ (s′)
]

=
(

1− 1
tmix

)[
1 + θs′ (2π (1 | s′)− 1)

2
ν (s′) +

1− θ−s′ (2π (1 | − s′)− 1)
2

ν (−s′)
]

+
1
tmix

ρ (s′)

= ρ (s′) +
(

1− 1
tmix

)[
θs′ (2π (1 | s′)− 1)

2
ν (s′)− θ−s′ (2π (1 | − s′)− 1)

2
ν (−s′)

]
(83)
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Then it boils down to determining V π(ρ), for which we have

V π (ρ) = E
s∼ρ

[V π (s)]

=
(

1− 1
τmix

)
V π (0) +

∑
s̸=0

1
(S − 1)τmix

V π (s)

=
1− 1

τmix

1− γ
(
1− 1

tmix

) γ

tmix
V π (ρ) +

∑
s>0

1
(S − 1)τmix

· 1

1− γ
(
1− 1

tmix

) 1

1− θsγ
(
1− 1

tmix

)
(2π (1 | s)− 1)

.

This further leads to (86), shown at the bottom of the page. By
taking together (85) and (86), one can check that the optimal
policy π⋆θ is given by

π⋆θ (s) = sign(θs)

for any s > 0. The choice of π⋆θ(s) for s ≤ 0 does not affect
the value function and can be chosen aribtrarily.

Let

C0 :=
2− γ

(
1− 1

tmix

)
2− 2γ

(
1− 1

tmix

) =
1
2

+
1
2

1
1− γ + γ

tmix

≥ 5
11 (1− γ)

, (87)

where the last step holds since tmix ≥ 10/(1− γ). Then (85)
implies that

V π (s) =
C0

1− θsγ
(
1− 1

tmix

)
(2π (1 | s)− 1)

+Rπ

where

0 ≤ Rπ ≤ 1
(1− γ)2 tmix

.

It is straightforward to compute

E
Mθ:θ∼U

[V ⋆θ (s)] =
C0

1− 1
2γ
(
1− 1

tmix

) + E
Mθ:θ∼U

[
Rπ

⋆
θ (s)

]
.

For any policy π that is independent of θs, we can also
compute

E
Mθ:θ∼U

[V π (s)]

=
1
2

C0

1− 1
2γ
(
1− 1

tmix

)
(2π (1 | s)− 1)

+
1
2

C0

1 + 1
2γ
(
1− 1

tmix

)
(2π (1 | s)− 1)

+ E
Mθ:θ∼U

[Rπ (s)]

=
C0

1− 1
4γ

2
(
1− 1

tmix

)2

(2π (1 | s)− 1)2
+ E
Mθ:θ∼U

[Rπ (s)]

≤ C0

1− 1
4γ

2
(
1− 1

tmix

)2 + E
Mθ:θ∼U

[Rπ (s)] .

Therefore, we can conclude that

E
Mθ:θ∼U

[V ⋆θ (s)− V π (s)]

≥ C0

1
2γ
(
1− 1

tmix

)
1− 1

2γ
(
1− 1

tmix

) + E
Mθ:θ∼U

[
Rπ

⋆
θ (s)

]
− E
Mθ:θ∼U

[Rπ (s)]

≥ 45
341 (1− γ)

− 1
(1− γ)2 tmix

≥ 1
35 (1− γ)

,

x = π (1 | s)
[
1 + γ

{(
1− 1

tmix

)[(
1
2

+ θs

)
x+

(
1
2
− θs

)
y

]
+

1
tmix

V π (ρ)
}]

+ π (−1 | s)
[
1 + γ

{(
1− 1

tmix

)[(
1
2
− θs

)
x+

(
1
2

+ θs

)
y

]
+

1
tmix

V π (ρ)
}]

= γ

(
1− 1

tmix

){[
1
2

+ (2π (1 | s)− 1) θs

]
x+

[
1
2
− (2π (1 | s)− 1) θs

]
y

}
+ 1 +

γ

tmix
V π (ρ) (84a)

y = γ

(
1− 1

tmix

)(
1
2
x+

1
2
y

)
+

γ

tmix
V π (ρ) . (84b)

V π (s) =

 2− γ
(
1− 1

tmix

)
2− 2γ

(
1− 1

tmix

)
 1

1− θsγ
(
1− 1

tmix

)
(2π (1 | s)− 1)

+
1

1− γ
(
1− 1

tmix

) γ

tmix
V π (ρ) (85a)

V π (−s) =
γ
(
1− 1

tmix

)
2− 2γ

(
1− 1

tmix

) 1

1− θsγ
(
1− 1

tmix

)
(2π (1 | s)− 1)

+
1

1− γ
(
1− 1

tmix

) γ

tmix
V π (ρ) . (85b)

V π (ρ) =
1

1− γ
(
1− 1

tmix

)
−
(
1− 1

τmix

)
γ
tmix

· 1
(S − 1)τmix

·
∑
s>0

1

1− θsγ
(
1− 1

tmix

)
(2π (1 | s)− 1)

. (86)
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where the last two relations follow from (87) and the
assumptions that γ ≤ 1/2 and tmix ≥ 10/(1− γ).
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