
6194 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 10, OCTOBER 2023

Stability of the Gaussian Stationary Point in the
Han–Kobayashi Region for Z-Interference Channels

Jingbo Liu , Member, IEEE

Abstract— The Gaussian stationary point in an inequality
motivated by the Z-interference channel was recently conjectured
by Costa, Nair, Ng, and Wang to be the global optimizer,
which, if true, would imply the optimality of the Han-Kobayashi
region for the Gaussian Z-interference channel. This conjecture
was known to be true for some parameter regimes, but the
validity for all parameters, although suggested by Gaussian
tensorization, was previously open. In this paper we construct
several counterexamples showing that this conjecture may fail
in certain regimes: A simple construction without Hermite poly-
nomial perturbation is proposed, where distributions far from
Gaussian are analytically shown to be better than the Gaussian
stationary point. As alternatives, we consider perturbation along
geodesics under either the L2 or Wasserstein-2 metric, showing
that the Gaussian stationary point is unstable in a certain
regime. Similarity to stability of the Levy-Cramer theorem is
discussed. The stability phase transition point admits a simple
characterization in terms of the maximum eigenvalue of the
Gaussian maximizer. Similar to the Holley-Stroock principle, we
can show that in the stable regime the Gaussian stationary point
is optimal in a neighborhood under the L∞-norm with respect
to the Gaussian measure. Allowing variable power control, we
show that the Gaussian optimizers for the Han-Kobayashi region
always lie in the stable regime. Finally, an amended conjecture
is proposed.

Index Terms— Interference channels, Gaussian optimality,
Han-Kobayashi bound, optimal transport, Levy-Cramer theo-
rem, stability problems.

I. INTRODUCTION

INTERFERENCE channel is a fundamental problem in mul-
tiuser information theory, whose single-letter rate region

has remained open after decades of efforts. A two-user inter-
ference channel consists of two inputs X1 and X2 and two
outputs Y1 and Y2. In general, both Y1 and Y2 are noisy
versions of functions of (X1, X2), and the goal is to find the
maximum transmission rates (R1, R2) achievable by the two
users. For a more precise formulation of the problem, see e.g.,
[9] and [20]. In the special case of Gaussian Z-interference
channel, Y1 is a noisy version only of X1 rather than of
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(X1, X2). With some transformations, the channel model can
be expressed as (see [11])

Y1 = X1 + Z1; (1)
Y2 = X2 +X1 + Z1 + Z2, (2)

where Zi ∼ N (0, NiI), i = 1, 2, and X1, X2, Z1, Z2 are
independent. The Gaussian Z-interference channel is signif-
icant, partly because it is equivalent to several versions of
degraded Gaussian interference channels [9].

Due to the sheer volume, we do not attempt to provide
here a comprehensive review of the all the important work
on the interference channel since the 70’s. Interested readers
may refer to the survey [47] or the more recent papers [5],
[11], [26]. Below, we cite a few properties of the interference
channel relevant to our purpose:
• The multi-letter Han-Kobayashi (HK) inner bound [28]

is tight, whereas the single letter Han-Kobayashi bound
is known to be suboptimal for some discrete channels
where tensorization fails [42].

• When restricted to Gaussian inputs, the HK-region is
known to satisfy the tensorization property [40].

• It is unknown whether Gaussian inputs are optimal for
the HK bound for Gaussian Z-interference channels. If
optimal, this would resolve the longstanding open prob-
lem about the rate region of the Gaussian Z-interference
channel, because of the two itemized properties above.
More or less motivated by this, the Gaussian optimality
problem spurred a lot of research interests recently, e.g.,
[3], [5], [11], [13], [26], [37], and [43]. It was known that
Gaussian inputs are optimal for computing the corners of
the region [5], [9], [11], [24], [25], [26], [45], [46] but
the full region or even the precise slope at Costa’s corner
point remains open [26].

• Gaussian inputs are known to be suboptimal for the
symmetric Gaussian interference channel under constant
power control [1] for some range of parameters, where
the argument was based on perturbations using Hermite
polynomials. Some care needs to be taken in choosing
how to perturb and ensuring that the perturbed density is
still a probability measure.

• Constant power control is suboptimal since they can be
improved by a variable power control scheme known as
“Gaussian noisebergs” [12] (see also [47]).

The second itemized above (Gaussian tensorization) seems
to suggest that Gaussian inputs are optimal for the
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Han-Kobayashi region. Indeed, a neat rotation-invariance argu-
ment usually succeeds in showing Gaussian optimality in
entropic inequalities whenever there is a tensorization property
[23] (see also similar arguments in the context of functional
inequalities [31], [37]). However, the tensorization property in
[40] is for Gaussian inputs rather than general inputs, therefore
Gaussian optimality cannot be settled in this manner.

Since the HK bound is notoriously complicated, it is useful
to formulate simpler necessary and sufficient conditions for
checking its tightness. Recently, Costa, Nair, Ng and Wang
[11] (see also the related [5], [26], [43]) proposed the fol-
lowing conjecture about linear combination of differential
entropies which, if true, would imply Gaussian optimality in
the Han-Kobayashi region.

Conjecture 1 [11]: For u ≥ 0, N1, N2 ≥ 0, and Σ1, A2 ⪰
0, the maximum

max
PX1PX2

E[X2X⊤2 ]⪯A2

{uh(X1 +X2 + Z1 + Z2) + h(X1 + Z1)

− (1 + u)h(X1 + Z1 + Z2)− tr(Σ1E[X1X
⊤
1 ])
}

(3)

where Z1 ∼ N (0, N1I), Z2 ∼ N (0, N2I) and Xi, Zi

(i = 1, 2) are random variables in Rd (d ≥ 1), is attained
by Gaussian X1 and X2.

It is easy to see that if (PX1 , PX2) is the maximizer among
all Gaussian distributions, then it is also a stationary point (i.e.
vanishing gradient) in the space of all probability distributions
(under suitable metric and regularity condition). Indeed, with
a perturbation of a Gaussian density, the first-order change
of the differential entropy depends only on the change of the
covariance (see e.g. (38)), so the stationarity condition is the
same as (PX1 , PX2) having the optimal covariance.

Indications that the conjecture might be true include the
aforementioned Gaussian tensorization property, and the fact
that if either X1 or X2 is Gaussian then the best choice of the
other random variable is also Gaussian [5], [11]. Previously,
the conjecture has been proved for large enough u, which
is enough to evaluate the corner points of the rate region,
even though these corner points were previously established
by other methods; see [26]. However, it was not known
whether it is true for all u, so that one can deduce Gaussian
optimality for the capacity region, which is the central open
problem on Z-interference channels. As a partial converse, [5]
observed that disproving Conjecture 1 around Costa’s corner
point would imply suboptimality of the HK region.

In this paper, we show that Conjecture 1 may fail for some
range of parameters, by constructing counterexamples with
several methods:
• We choose a set of parameters for which (3) is nonpos-

itive with Gaussian inputs, yet strictly positive for some
non-Gaussian inputs (Section II-A). This counterexample
works when (fixing all other parameters) A2 is the
maximum number for which the optimal Gaussian X1

does not have a finite variance. This simple proof is very
different from the existing method of Hermite polynomial
perturbation [1]. In fact, our non-Gaussian inputs have
non-vanishing non-Gaussianness in the proof. Using this
construction, in Section II-B we give a short alternative

proof of the fact that Gaussian inputs with constant
power control is suboptimal for the HK bound, which
was originally shown using a variable power control
Gaussian input called “Gaussian noisebergs” [12]. We
discuss an analogous geometric inequality with non-
isotropic extremals (Section VI).

• Alternatively, a counterexample can be constructed by
perturbing the Gaussian “vertically”, i.e. along a geodesic
under the L2(R) metric (Section III), which works when-
ever the variance K of the optimal Gaussian X1 satisfies

1+u
(K+N1+N2)3

> 1
K+N1

. This counterexample amounts
to computing the Hessian under L2(R), revealing that
the Gaussian stationary point is unstable in a certain
parameter regime. Since differentiation commutes with
convolution, derivatives of the Gaussian density are useful
in constructing the direction of perturbation. which is
closely related the Hermite perturbation approach [1].
Previously, [41] commented that attempts of disproving
Conjecture 1 using the method of [1] were unsuccessful.
We note that in order to ensure nonnegativity of the den-
sity after perturbation, [1] introduced a device of adding
an additional even-order Hermite polynomial (because
odd-order Hermite polynomials are unbounded in both
directions, whereas even-order Hermite polynomials are
bounded below); here we handle the nonnegativity issue
in another way which is simpler for the present problem
(Remark 2). To explain the intuition we observe the
similarity to the stability problem in the Levy-Cramer
theorem (Remark 3).

• A counterexample can also be constructed by comput-
ing the Hessian under the Wasserstein-2 distance, based
on the Otto-Villani framework of viewing the space
of probability measures as an infinite dimensional Rie-
mannian manifold with the Wasserstein-2 metric. Since
this counterexample works for exactly the same set of
parameters as vertical perturbation, we shall leave the
calculations to Appendix B. In standard Riemannian
geometry, the formula of the Hessian in a coordinate
system depends on the second derivative as well as the
product of the connection and the first derivative (see
e.g. [22, (2.6)]), from which one can read off how the
Hessian changes under a change of metric. At a general
point on the manifold, semidefiniteness of the Hessian
depends on the choice of metric, because of the term
of the product of the connection and the first derivative.
However at a stationary point where the first derivative
vanishes, semidefiniteness of the Hessian does not depend
on the choice of metric. In Appendix B we provide
self-consistent calculations confirming that the stability
phase transition point of the Hessian is consistent under
either the L2 or Wasserstein-2 distance. In contrast to
the vertical perturbation method, with the Wasserstein
flow approach we never need to worry about the non-
negativity constraint of the density. Moreover, recently,
first and second order gradient descent methods under
the Wasserstein metric have been used in numerically
solving optimization problems, with convenient particle
flow interpretation and computational advantages over the
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traditional descent methods under the L2 metric [2], [7],
[15], [50].

For parameters of Conjecture 1 giving rise to negative-
definite Hessian at the Gaussian stationary point, we show
that the Gaussian stationary point is stable in the sense that
it is a local maximizer under the L∞-norm with respect to
the Gaussian reference measure (Section V). The choice of
L∞-norm is in the same spirit as the celebrated Holley-Stroock
principle [29, p1184] [30], which is a method of proving
functional inequalities (such as log-Sobolev or Poincare) under
a perturbation. For such a local optimality result, it suffices
to bound h(X1 + X2 + Z1 + Z2) in (3) by the surrogate
1
2 ln[(2πe)d det(cov(X1 +X2 +Z1 +Z2))]. It is well-known
in variational calculus that the choice of topology is critical
for local optimality, and in fact this is precisely the case here:
local optimality (with the surrogate objective function) is not
true under the L∞-norm with respect to the Lebesgue measure;
a similar phenomenon was previous observed concerning the
stability of the log-Sobolev inequality [21, Section 6].

From the Hessian computations we see that the stability
phase transition point admits a simple characterization in
terms of the maximum eigenvalue of the covariance matrix
of the Gaussian maximizer in (3). On the other hand, in
Section IV we establish a bound on the maximum eigenvalue
of the covariance matrix of the Gaussian maximizer in the
HK region with (time-varying) power control. Comparing the
two results, we see that our counterexamples are not sufficient
for disproving Gaussian optimality for the HK region with
power control, nor do they prove [5, Hypothesis 1]. The main
message of our counterexamples, however, is that we cannot
expect to prove Gaussian optimality for the HK bound by
proving this for any given power of input signals - a seemingly
plausible approach that might have motivated Conjecture 1.

While stability of stationary points is not sufficient for
global optimality, it is often the first step towards understand-
ing many phase transition problems (e.g. [18]). Our results
suggest that towards the grand goal of settling Gaussian opti-
mality in the HK region with power control, we need to modify
Conjecture 1, or find counterexamples not based on Gaussian
perturbation (under the L∞-norm). For a compact version that
seems to represent much of the challenge, we may consider the
following limiting special case of the optimization problem:
(see Remark 6, Theorem 3, and Lemma 3 for explanations of
the connection):

sup
{
h(X + Y )− h(X)− 1

2
J(X)

}
(4)

where X and Y are independent one-dimensional random
variables, E[Y ] ≤ L, and J(·) denotes the Fisher information
[14]. The best Gaussian X (stationary point) has variance L

L−1
when L > 1. Results of this paper imply that the Gaussian
stationary point is not optimal for 1 < L < 1.5, but local
optimal (stable) for L > 1.5. The true Gaussian maximizer
in the HK bound with power control concerns the region of
L > 2. If the Gaussian stationary point in (4) is not global
optimal for some value of L > 2, we can show that the HK
inner bound is not tight.

Finally, in Section VII we propose an amended conjecture
that takes into account of the stability regime of parameters
(more precisely, it concerns the regime where power control is
not necessary for the Gaussian HK bound). The new conjecture
is nontrivial, since either proving or disproving it would imply
the solution to some other open questions in the literature.

Notation: We denote the differential entropy [14] of a
random variable X ∼ PX by h(X) or h(PX). The unit of
entropy is nat. γK denotes the centered Gaussian measure
with covariance matrix K. When used as a density function,
γK denotes the density with respect to the Lebesgue measure,
unless otherwise stated. The norms with respect to a reference
measure are computed using the density with respect to the
reference measure; for example, ∥γK∥2L2(P ) =

∫
(dγK

dP )2dP .
We use standard Landau notations such as Θ(), ω(), and O().

II. GAUSSIAN SUBOPTIMALITY WITHOUT GAUSSIAN
PERTURBATION

In this section we construct a counterexample to Conjec-
ture 1, and use it to give an alternative proof of the subopti-
mality of Gaussian signaling with constant power control [12].

A. Construction of a Counterexample

We first note the following about the asymptotic expansion
of the differential entropy of convolution, which is similar to
the calculations in the de Bruijn’s inequality (see e.g. [14]).

Lemma 1: Let p and q be smooth density functions on R.
Denote the moments of q by mi :=

∫
xiq(x)dx = 0, i =

1, 2, . . . , and suppose that m1 = 0. Suppose that there are
positive constant c and C such that for any x ∈ R,

q(x) ≤ Ce−cx2
, (5)

p(x) > c e−C|x|, (6)
max{|p′(x)|, |p′′′(x)|, |p′′′′(x)|} < Cp(x). (7)

Let pt be the convolution of p and t−1/2q( ·√
t
). Then for t >

0 small, we have the following estimate for the differential
entropy:

h(pt)− h(p)

= m2(−
1
2

∫
p′′ ln p)t+m3(−

1
6

∫
p′′′ ln p)t3/2 +O(t2)

(8)

where O() hides constants that may depend on p and q.
The proof is given in Appendix A.

Lemma 2: Suppose that Z2 ∼ N (0, N2), N2 > 0. Then the
supremum of

h(X1 + Z2 +X2) + h(X1)− 2h(X1 + Z2) (9)

over the distribution of (X1, X2), where X1, X2, Z2 are inde-
pendent and E[X2

2 ] = N2, is strictly positive. Moreover if X2

is restricted to be Gaussian then the supremum equals 0.
Proof: First, if X2 is Gaussian, then

h(X1 + Z2 +X2)− h(X1 + Z2)
= I(X1 + Z2 +X2;X2) (10)
= I(X1 + Z2 +X2;Z2) (11)
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≤ I(X1 + Z2;Z2) (12)
= h(X1 + Z2)− h(X1), (13)

implying that the supremum is non-positive. Further, taking
X1 to be Gaussian with a large variance we see that the
supremum equals 0.

Now consider the case where X2 is not restricted to
be Gaussian. Choose p and q satisfying the conditions in
Lemma 1 and such that

m3

∫
p′′′ ln p > 0; (14)

m1 = 0; (15)
m2 > 0. (16)

It should be clear that the supremum of (9) is independent
of the choice of N2 (by considering a scaling of the random
variables). For simplicity let us assume that N2 = m2 below.
Let X2 ∼ q and let X1 be such that

√
tX1 ∼ p (in particular,

observe that the distribution of X1 depends on t, but the
distribution of

√
tX1 does not). Note that

E[(Z2 +X2)2] = N2 +m2 = 2m2; (17)

E[(Z2 +X2)3] = E[X3
2 ] = m3. (18)

Then

h(X1 + Z2 +X2)− h(X1)

= h(
√
tX1 +

√
tZ2 +

√
tX2)− h(

√
tX1) (19)

= 2m2(−
1
2

∫
p′′ ln p)t+m3(−

1
6

∫
p′′′ ln p)t3/2

+O(t2); (20)

Similarly, since Z2 is symmetric whose third moment equals
zero, we have

h(X1 + Z2)− h(X1)

= h(
√
tX1 +

√
tZ2)− h(

√
tX1) (21)

= m2(−
1
2

∫
p′′ ln p)t+O(t2). (22)

Then we note that (9) equals (20) minus twice of (22), which is
m3(− 1

6

∫
p′′′ ln p)t3/2+O(t2). Thus the claim about positivity

of the supremum follows when t is sufficiently small. □
Remark 1: Although not necessary for establishing a coun-

terexample to Conjecture 1, let us comment that X2 being
Gaussian implies that Gaussian X1 is optimal. Indeed, this
has been shown using the doubling trick [11], or, even simpler,
using Costa’s entropy power inequality [5].

Clearly Lemma 2 provides a counterexample to Conjec-
ture 1 with u = 1, N1 = 0, N2 = A2, and Σ1 = 0.
While strictly positive N1 sometimes plays a role in analysis
related to interference channels, for example in the proof of
Wasserstein continuity of smoothed entropy [45], it is not
essential in the proof of Gaussian suboptimality. Below, we
show that a counterexample exists for N1 and Σ1 strictly
positive as well:

Theorem 1: Let k = u = N1 = 1. There exists some N2 =
A2 > 0 and Σ1 > 0 for which (3) is strictly positive yet the
supremum restricted to Gaussian X2 is not positive.

Proof: We first provide a proof using a continuity
argument. By replacing X1 in Lemma 2 with X1 + Z1,
Z1 ∼ N (0, N1), and by continuity of the differential entropy
in N1 (see e.g. [3, Lemma A.3.]), we see that the supremum
of

h(X1 + Z1 + Z2 +X2) + h(X1 + Z1)

−2h(X1 + Z1 + Z2)− Σ1E[X2
1 ] (23)

over the distribution of (X1, X2), where X1, X2, Z2 are inde-
pendent and E[X2

2 ] ≤ N2 = var(Z2), is strictly positive
provided that N1 and Σ1 are sufficiently small. Also, it is
clear that the supremum in (23) does not change under the
transformations N ′

1 = 1, A′2 = N ′
2 = N2

N1
, and Σ′1 = Σ1N1

(to see this consider X ′
1 = 1√

N1
X1 and X ′

2 = 1√
N1
X2).

Therefore, equivalently, fixing N1 = 1, we can always find
N2 = A2 > 0 and Σ1 > 0 so that the supremum is positive.
In the meantime, if X2 is restricted to be Gaussian then the
supremum does not exceed 0 as in Lemma 2.

An alternative argument for positivity of (23) was suggested
by Chandra Nair: for X1 ∼ p as in Lemma 1, we can pick
a finite N1 > 0 and verify that X1 + Z1 still satisfies the
assumptions on p in Lemma 1. Then treating X1 + Z1 as the
new X1, the proof of Lemma 2 still shows that (23) is positive
for some Σ1 > 0, N2 = A2 > 0 and X2. □

B. Alternative Proof Gaussian Suboptimality Under Constant
Power Control

Recall that [12] proposed a variable power control scheme
called Gaussian noisebergs showing that Gaussian signaling
with constant power control is suboptimal. In this section we
provide a short alternative proof of this fact using Lemma 1.
The variable power Gaussian signaling construction in [12]
does not rule out the possibility that Gaussian signaling is
optimal for the HK bound evaluated at any given power bud-
get, which might have motivated Conjecture 1 as a plausible
route for establishing the optimality of Gaussian HK region.
The analysis given here rules out such a possibility.

We first recall some results in [11]. Given two distributions
PX1 , PX2 on Rd, define

Ψ(PX1 , PX2) := uh(X1 +X2 + Z1 + Z2) + h(X1 + Z1)
− (u+ 1)h(X1 + Z1 + Z2), (24)

where Zj ∼ N (0, NjI), j = 1, 2, X1, X2, Z1, Z2 are inde-
pendent, and u ≥ 1. Given PX1 and PX2 , define the concave
envelope by

CX1 [Ψ(PX1 , PX2)] := sup
PX1U

{h(X1 +X2 + Z1 + Z2|U)

+h(X1 + Z1|U) −(u+ 1)h(X1 + Z1 + Z2|U)} (25)

where the supremum is over PX1U compatible with the given
PX1 , and (U,X1) is independent of (X2, Z1, Z2). Define

Fu(PX1 , PX2) := h(X1 +X2 + Z1 + Z2)− h(Z1)
+ CX1 [Ψ(PX1 , PX2)]. (26)

Recall that the d-letter Han-Kobayashi (HK) region for the
Gaussian Z-channel is given by (see e.g. [10])

dR1 ≤ h(X1 + Z1|Q)− h(Z1) (27)
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dR2 ≤ h(X1 +X2 + Z1 + Z2|U1, Q)
− h(X1 + Z1 + Z2|U1, Q) (28)

d(R1 +R2) ≤ h(X1 +X2 + Z1 + Z2|Q)
− h(X1 + Z1 + Z2|U1, Q)
+ h(X1 + Z1|U1, Q)− h(Z1) (29)

where Z1 ∼ N (0, I), Z2 ∼ N (0, N2I). Q is the power
control random variable, and the joint distribution factors as
PQPU1X1|QPX2|QPZ1PZ2 . Following [11], we note that for
u ≥ 0, the HK bound can be expressed using the weighted
form

d(R1 + (1 + u)R2)

≤ sup
PQ1Q2 : E[Qj ]≤qj

EQ1,Q2

[
sup

PXj
: E[∥Xj∥2]≤Qj

Fu(PX1 , PX2)

]
(30)

where the first supremum is over distributions of (Q1, Q2)
which are random non-negative powers satisfying a given
power constraint E[Qj ] ≤ qj , j = 1, 2. For any given Qj ,
j = 1, 2, the second supremum is over (PX1 , PX2) satisfying
the indicated power constraints.

We remark that for u ∈ (−1, 0], it is obvious that Gaussian
variables are optimal for the weighted sum rates. Indeed, (27)
is optimized by Gaussian X1 under a power constraint. Gaus-
sian variables are also optimal for (29) since −h(X1 + Z1 +
Z2|U1, Q)+h(X1+Z1|U1, Q) = −I(X1+Z1+Z2;Z2|U1, Q)
which is maximized by Gaussian variables under a power
constraint (by Gaussian saddle point; see e.g. [14]).

We now show that under constant power control (i.e. Q1

and Q2 are constants) and u = 1, Gaussian variables may be
suboptimal for the weighted sum rate.

Theorem 2: There exist N1 = 1, N2 > 0, u = 1, d = 1,
and some (deterministic) q1, q2 > 0 such that Gaussian PXj

,
j = 1, 2 are not optimal for the following optimization:

sup
PXj

: E[∥Xj∥2]≤qj

Fu(PX1 , PX2). (31)

Proof: Using the argument around (23) we see that there
exists N1 = 1, u = 1 and N2 > 0 such that

sup
PX′1

,PX2 : E[X2
2 ]≤N2

Ψ(PX′1
, PX2) > 0. (32)

Now we consider any X ′
1 and X2 such that Ψ(PX′1

, PX2) =
c > 0 and E[X2

2 ] ≤ N2. Let U ∼ N (0, A) independent of
(X ′

1, X2, Z1, Z2) where A > 0 will be chosen later. Let X1 =
X ′

1 + U . Then we have

CX1 [Ψ(PX1 , PX2)] ≥ Ψ(PX′1
, PX2) = c. (33)

Moreover, by choosing A large enough (while other parame-
ters are kept fixed), we have

h(X1 +X2 + Z1 + Z2)− h(Z1) (34)

≥ 1
2

ln
var(X ′

1) +A+N1 + 2N2

N1
− c

2
. (35)

For such A and with q1 := var(X ′
1) +A, q2 := N2 we have

sup
PXj

: E[X2
j ]≤qj ,j=1,2

Fu(PX1 , PX2)

≥ 1
2

ln
var(X ′

1) +A+N1 + 2N2

N1
+
c

2
. (36)

On the other hand, if the supremum in (36) is restricted to
Gaussian X1, X2 with the same variances, then it was shown
in [11] that Gaussian (U,X1) is optimal in (25). By the result
of Lemma 2 we have that CX1 [Ψ(PX1 , PX2)] ≤ 0. Moreover
under E[X2

j ] ≤ qj , j = 1, 2 it is also obvious that

h(X1 +X2 + Z1 + Z2)− h(Z1)

≤ 1
2

ln
var(X ′

1) +A+N1 + 2N2

N1
. (37)

The same upper bounds holds for the left side of (36) if X1, X2

are restricted to be Gaussian, and the claim of the theorem
follows by comparing it with (36). □

III. GAUSSIAN SUBOPTIMALITY VIA VERTICAL
PERTURBATION

In this section we provide an alternative construction of
counterexample to Conjecture 1 via “vertical perturbation”1 of
Gaussian. This amounts to showing instability of the Gaussian
stationary in a certain power regime. In Appendix B, we
provide an alternative proof of instability in the same regime
via horizontal perturbation.

First, let us observe the following about the differential
entropy under the vertical perturbation.

Proposition 1: Assume that p is probability density func-
tion on Rd, and r is a measurable function on Rd satisfying
supx∈Rd | r(x)

p(x) | <∞ and
∫
r = 0. Then as ϵ→ 0, we have∫

(p+ ϵr) ln(p+ ϵr) =
∫
p ln p+ ϵ

∫
r ln p+

ϵ2

2

∫
r2

p

+O(ϵ3). (38)
Proof: Using the Taylor expansion of the function t 7→

t ln t we see that for ϵ < infx∈Rd |p(x)
r(x) |,

(p+ ϵr) ln(p+ ϵr) = p ln p+ ϵr + ϵr ln p+
ϵ2r2

2ξ
(39)

where the function ξ(x) is between p(x) and p(x) + ϵr(x).
For ϵ < 1

2 infx∈Rd |p(x)
r(x) | we have∣∣∣∣r2ξ − r2

p

∣∣∣∣ = r2|p− ξ|
ξp

≤ 2ϵr3

p2
. (40)

The claim then follows by integrating (39). □
The key result in the construction of counterexample is the
following:

Theorem 3: For any u > 0, L > 0, and T > 0, let
K > u

(1+u)1/3−1
. There exist P ϵ

X1
and P ϵ

X2
(indexed by ϵ

in a neighborhood of 0) such that h(P ϵ
X1
∗ γu ∗ P ϵ

X2
) =

h(γK+u+L) + O(ϵ2T ) and h(P ϵ
X1

) − (u + 1)h(P ϵ
X1
∗ γu) ≥

h(γK)− (u+ 1)h(γK+u) +Aϵ2 for some A > 0, as ε→ 0.
Proof: Define

P ϵ
X1

=γK − ϵD3γK−δ; (41)

1In the literature, “vertical perturbation” usually refers to a linear perturba-
tion of the probability density, whereas a “horizontal perturbation” is along a
Wasserstein geodesic (c.f. Appendix B).
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P ϵ
X2

=
J∑

j=0

ϵjD3jγL−jδ, (42)

where the positive integer J satisfies J + 1 ≥ T , and δ > 0
satisfies K − δ > 0, L − Jδ > 0. Moreover D3γK−δ means
differentiating the Gaussian density 3 times, which yields a
finite measure on R. Thus (41)-(42) define valid probability
measures when ϵ is sufficiently close to 0.

Then for Z2 ∼ N (0, u) we have

P ϵ
X1
∗ γu = (γK − ϵD3γK−δ) ∗ γu (43)

= γK+u − ϵD3γK+u−δ (44)

and

P ϵ
X1
∗ P ϵ

X2

= (γK − ϵD3γK−δ) ∗ (
J∑

j=0

ϵjD3jγL−jδ) (45)

=
J∑

j=0

ϵjD3jγK+L−jδ −
J∑

j=0

ϵj+1D3(j+1)γK+L−(j+1)δ

(46)

= γK+L − ϵJ+1D3(J+1)γK+L−(J+1)δ. (47)

Therefore

P ϵ
X1
∗ γu ∗ P ϵ

X2
= γK+u+L − ϵJ+1D3(J+1)γK+u+L−(J+1)δ.

(48)

Using (38) we have

h(P ϵ
X1

) = h(γK)− ϵ2

2

∫
(D3γK−δ)2

γK
+ o(ϵ2); (49)

h(P ϵ
X1
∗ γu) = h(γK+u)− ϵ2

2

∫
(D3γK+u−δ)2

γK+u
+ o(ϵ2);

(50)

and

h(P ϵ
X1
∗ γu ∗ P ϵ

X2
) = h(γK+u+L)

− ϵ2(J+1)

2

∫
(D3(J+1)γK+u+L−(J+1)δ)2

γK+u+L
+ o(ϵ2(J+1)).

(51)

Clearly the claim of the theorem holds if

−
∫

(D3γK−δ)2

γK
+ (1 + u)

∫
(D3γK+u−δ)2

γK+u
> 0. (52)

By the property of the Hermite polynomial (see e.g. [17]) we
have ∫

(DkγK)2

γK
=

1
Kk

∫
(Dkγ)2

γ
=

1
Kk

k! (53)

for any positive integer k. Thus by dominated convergence we
see that as δ → 0 the left side of (52) converges to − 1

K3 k! +
1+u

(K+u)3 k!. Therefore (52) holds under K > u
(1+u)1/3−1

. □
Remark 2: Setting δ > 0 in (41) ensures that it defines a

valid probability measure with nonnegative density for small
ϵ. Note that if δ = 0 then the density of the perturbation
part (with respect to γK) is a Hermite polynomial of order

three. Previously, Hermite polynomial perturbation has been
used in [1] for proofs of Gaussian suboptimality. In order to
ensure nonnegative density, [1] would add yet another even
degree Hermite polynomial (multiplied by γK) to (41), since
an even degree Hermite polynomial is bounded from below.
The ratio of the odd and even degree polynomials needs be
selected with care, and a similar issue for the perturbation
of X2 would add more restrictions. Here we adopt a simpler
trick without adding an even degree polynomial, but choosing
a smaller Gaussian variance.

Remark 3: The intuition behind Theorem 3 is closely
related to (instability of) the Levy-Cramer theorem. The Levy-
Cramer theorem states that the sum of two independent non-
Gaussian random variables cannot be precisely Gaussian [16].
However, the non-Gaussianness of the sum can be much
smaller than that of the individual summands, and Theo-
rem 3 essentially showed this when the non-Gaussianness is
gauged by regularized relative entropy. The reverse direction
(lower bounding the non-Gaussianness of the sum using non-
Gaussianness of the individual summands) is the problem of
stability of the Levy-Cramer theorem, the regularized entropy
version of which was considered in [6].

Corollary 1: Consider any u > 0 and L > 1 satisfying
L+u
L−1 >

u
(1+u)1/3−1

. There exists some (PX1 , PX2) for which

uh(PX1 ∗ γu ∗ PX2) + h(PX1)− (u+ 1)h(PX1 ∗ γu)
> sup

K>0
{uh(γK+u+L) + h(γK)− (u+ 1)h(γK+u)} . (54)

Proof: We can check that the supremum in (54) is
achieved at K = L+u

L−1 if L > 1. Under the assumption of
the corollary the claim follows from Theorem 3. □

Corollary 1 provides a counterexample to Conjecture 1 for
the case of N1 = Σ1 = 0 and N2 = u. Extension to
the N1,Σ1 > 0 case is possible using a similar continuity
argument as Theorem 1). Alternatively, we can pick finite but
small enough N1 > 0, define P ϵ

X1
= γK−N1 − ϵD3γK−N1−δ ,

and then the argument in Theorem 3 still carries through with
X1 replaced by X1 + Z1.

IV. STRUCTURE OF THE GAUSSIAN EXTREMIZERS

Although counterexamples in the previous sections dis-
proved Conjecture 1, they do not show Gaussian suboptimality
for the Han-Kobayashi (HK) region allowing power control.
The reason is that in Corollary 1 the counterexample exists
only when the Gaussian maximizer PX1 has covariance larger
than u

(1+u)1/3−1
. The purpose of this section is to show

that the Gaussian maximizer for the HK region (allowing
power control) never falls in this regime. Let us remark that
Conjecture 1 is a necessary but not sufficient condition for
Gaussian optimality of the HK region allowing power control,
and it is not clear if Conjecture 1 can be easily amended (e.g.
restricting to the case where the covariance of the Gaussian
optimizer satisfies a certain bound) and remains a necessary
condition.

We define the following quantities that characterize the HK
region (30) restricted to Gaussian signaling: Given u,N1 >
0 and positive semidefinite matrices K and L of the same



6200 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 10, OCTOBER 2023

dimensions, define

ψ(K,L) := u ln det(K +N1I + uI + L) + ln det(K +N1I)
− (u+ 1) ln det(K +N1I + uI). (55)

For positive semidefinite matrices K and L of the same
dimensions, define

ϕ(J, L) := sup
K⪯J

ψ(K,L) (56)

where K is positive semidefinite and of the same dimensions
as J . For q1, q2 ≥ 0 and a positive integer d, define

fd(q1, q2) :=
sup

tr(J)≤q1, tr(L)≤q2

{ln det(J +N1I + uI + L) + ϕ(J, L)},

(57)

where the supremum is over positive semidefinite d × d
matrices J and L satisfying the indicated constraints. For
q1, q2 ≥ 0 define

gd(q1, q2) = sup
E[Q1]≤q1, E[Q2]≤q2

E[fd(Q1, Q2)] (58)

where the supremum is over nonnegative (possibly dependent)
random variables Q1 and Q2 satisfying the indicated bounds.
Obviously fd(q1, q2) ≤ gd(q1, q2), and the inequality may be
strict for some (q1, q2).

A. One Dimensional Case

We first consider the case where the dimension d = 1.
Lemma 3: Suppose that J,K,L > 0, and f1(J, L) =

g1(J, L). Assume that K achieves the supremum in the
definition of ϕ(J, L). Then K +N1 ≤ 1 +

√
1 + u.

Proof: We will assume, without loss of generality, that
N1 = 0, since otherwise either K = 0 or we can make the
substitution K ← K+N1 and the rest of the proof will carry
through.

From the definition of ψ we can verify that given L
and N1,

arg max
K≥0

ψ(K,L) =
{
∞ L ≤ 1;

u+L
L−1 L > 1. (59)

Therefore K := arg max0≤K≤J ψ(K,L) = J ∧ u+L
L−1 if L > 1

and K = J otherwise. Now consider Jt := J+t, Lt := L−t,
where t ∈ R.

Case 1: L > 1 and J > u+L
L−1 . In this case Lt > 1 and

Jt >
u+Lt

Lt−1 for small enough t, so that

0 ≥ ∂2
t f1(Jt, Lt)|t=0 (60)

= ∂2
t ϕ(Jt, Lt)|t=0 (61)

= ∂2
t ψ(u+Lt

Lt−1 , Lt)|t=0 (62)

where the first inequality is implied by f1(J, L) = g1(J, L).
Since

ψ

(
u+ L

L− 1
, L

)
=(u+ 1) ln(u+L)− lnL−(u+ 1) ln(u+ 1),

(63)

by taking the second derivative we see that L ≥
√
u+ 1 + 1

and hence K = u+L
L−1 ≤

√
u+ 1 + 1.

Case 2: either L ≤ 1, or L > 1 and J < u+L
L−1 . In this case,

for small enough t,

0 ≥ ∂2
t f(Jt, Lt)|t=0 (64)

= ∂2
t ϕ(Jt, Lt)|t=0 (65)

= ∂2
t ψ(Jt, Lt)|t=0 (66)

where the first inequality is implied by f1(J, L) = g1(J, L).
By computing the second derivative in (66) we see that − 1

J2 +
1+u

(J+u)2 ≤ 0 and hence K = J ≤ 1 +
√
u+ 1.

Case 3: L > 1 and J = u+L
L−1 . In this case, let us assume (for

proof by contradiction) that K > 1+
√
u+ 1. Then K = J =

u+L
L−1 implies that L < 1 +

√
u+ 1. Since d

dl

(
u+l
l−1

)∣∣∣
l=L

<

d
dl

(
u+l
l−1

)∣∣∣
l=1+

√
u+1

= −1, we see that Jt ≤ u+Lt

Lt−1 for t ≥ 0

and Jt >
u+Lt

Lt−1 for t < 0 (for t in some neighborhood of 0).
We argue that ∂tf1(Jt, Lt) exists and is continuous at t = 0.
Indeed,

∂tf1(Jt, Lt)|t=0+ = ∂tϕ(Jt, Lt)|t=0+ (67)
= ∂tψ(Jt, Lt)|t=0 (68)
= ∂1ψ(K,L)∂tJt|t=0 + ∂2ψ(K,L)∂tLt|t=0

(69)
= ∂2ψ(K,L)∂tLt|t=0 (70)

where the last step used the fact that K = arg maxψ(·, L).
Moreover,

∂tf1(Jt, Lt)|t=0−

= ∂tϕ(Jt, Lt)|t=0− (71)

= ∂t ψ

(
Lt + u

Lt − 1
, Lt

)∣∣∣∣
t=0

(72)

= ∂1ψ(K,L)∂t

(
Lt + u

Lt − 1

)∣∣∣∣
t=0

+ ∂2ψ(K,L)∂tLt|t=0 (73)

= ∂2ψ(K,L)∂tLt|t=0 (74)

Therefore ∂tf1(Jt, Lt)|t=0+ = ∂tf1(Jt, Lt)|t=0− .
The assumption f1(J, L) = g1(J, L) implies that
∂2

t f1(Jt, Lt)|t=0+ ≤ 0, and by a similar calculation as
Case 2, we have K ≤ 1 +

√
u+ 1, a contradiction. Thus we

must have K ≤ 1 +
√
u+ 1. □

B. Vector Case

The goal of this subsection is to extend Lemma 3 to the
vector case and show that any optimal covariance matrix
K, if nonzero, must have top eigenvalue upper bounded
by 1 +

√
1 + u − N1. This essentially relies on the Gaus-

sian tensorization property [40, Theorem 2], which says
that the Gaussian HK region is exhausted by random vec-
tors with diagonal covariance matrices. Note, however, that
[40, Theorem 2] only states that there is one extremal solution
in which the covariance matrices commute; can there be
some other extremal solution in which the covariance matrices
do not commute, which can be perturbed to show Gaussian
suboptimality? We shall carefully revisit the steps of [40] and
show it is not possible. Propositions 2 and 3 are basic facts
from linear algebra, whose short proofs can be found in [40]
or the arXiv version of the present paper.
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Definition 1: Let K be a positive semidefinite matrix. We
say a diagonal matrix K̄ is a decreasing (resp. increasing)
alignment of K if K̄ = Q⊤KQ for some orthogonal Q and
the diagonal entries of K̄ are decreasing (resp. increasing)
from top left to bottom right.

Proposition 2: Suppose that K and L are positive semidef-
inite matrices of the same dimensions, and let K̄ and L̄ be
their decreasing and increasing alignments, respectively. Then
ln det(K + L) ≤ ln det(K̄ + L̄), equality holding only if
K̄ = Q⊤KQ and L̄ = Q⊤LQ for some orthogonal Q.

Proposition 3: Suppose that K and K are positive semidef-
inite matrices of the same dimensions and satisfying K ⪯ K.
Let K̄ and K̄ ′ be their decreasing alignments. Then K̄ ′ ⪯ K̄.

Proposition 4: Suppose that (J, L) achieves the supremum
in the definition of fd(q1, q2) (for some q1, q2 > 0), and K
achieves the supremum in the definition of ϕ(J, L). Let K̄
and J̄ be the decreasing alignments of K and J , and L̄ be the
increasing alignment of L. Then (J̄ , L̄) achieves the supremum
in the definition of fd(q1, q2), and K̄ achieves the supremum
in the definition of ϕ(J̄ , L̄).

Proof: From Proposition 3 and Proposition 2 we see that

ϕ(J̄ , L̄) ≥ ψ(K̄, L̄) ≥ ϕ(J, L). (75)

Using Proposition 2 again we see that ln det(J̄ +N1I +uI +
L̄) + ϕ(J̄ , L̄) ≥ ln det(J + N1I + uI + L) + ϕ(J, L) and
therefore (J̄ , L̄) must achieve the supremum in the definition
of fd(q1, q2). Next we reverse the signs of inequalities in
(75): Since (J, L) achieves the supremum in the definition
of fd(q1, q2), we have

ln(J +N1I + uI + L) + ϕ(J, L)
= fd(q1, q2) (76)
≥ ln(J̄ +N1I + uI + L̄) + ϕ(J̄ , L̄) (77)

which combined with ln(J + N1I + uI + L) ≤ ln(J̄ +
N1I + uI + L̄) shows that ϕ(J, L) ≥ ϕ(J̄ , L̄). This implies
that equalities are achieved in (75), hence K̄ achieves the
supremum in the definition of ϕ(J̄ , L̄). □

One consequence of Proposition 4 is the following ten-
sorization property:

Corollary 2 [40]: Given any positive integer d and q1, q2 ∈
(0,∞), we have gd(dq1, dq2) = dg1(q1, q2).

Remark 4: fd(dq1, dq2) = df1(q1, q2) is not true in general.
Remark 5: Proposition 4 goes slightly further than [40]: we

not only show that the value of the supremum tensorizes,
but also that all the maximizers (the matrices achieving
the supremum) must tensorize, which will be used in our
Theorem 4.

Theorem 4: Suppose that (q1, q2) satisfies fd(q1, q2) =
gd(q1, q2), (J, L) achieves the supremum in the definition of
fd(q1, q2), and K achieves the supremum in the definition of
ϕ(J, L). If K is nonzero then its eigenvalues are all upper
bounded by 1 +

√
1 + u−N1.

Proof: Let J̄ and K̄ be the decreasing alignments of J
and K, respectively, and let L̄ be the increasing alignment of
L. We have

d∑
i=1

g1(J̄ii, L̄ii) ≤ gd(q1, q2) (78)

= fd(q1, q2) (79)

≤
d∑

i=1

f1(J̄ii, L̄ii) (80)

≤
d∑

i=1

g1(J̄ii, L̄ii) (81)

where (78) can be seen from the definition of gd; (79)
is by the assumption of the theorem; (80) follows since
Proposition 4 shows that (J̄ , L̄) achieves the supremum in
the definition of fd(q1, q2), and K̄ achieves the supremum
in the definition of ϕ(J̄ , L̄). Then equalities are therefore
achieved throughout, and since f1 ≤ g1 we must have
f1(J̄11, L̄11) = g1(J̄11, L̄11). Since K̄ achieves the supremum
in the definition of ϕ(J̄ , L̄), K̄11 must achieve the supremum
in the definition of ϕ(J̄11, L̄11). Then by Lemma 3 we have
K̄11 +N1 ≤ 1 +

√
1 + u unless K̄11 = 0. □

V. LOCAL GAUSSIAN OPTIMALITY

Results in the previous sections show that our counterexam-
ples are not sufficient for establishing Gaussian suboptimality
for the Han-Kobayashi (HK) region allowing power control.
Note that the counterexample in Corollary 1 relies on pertur-
bation along a geodesic line in L2(R) and uses the order-3
Hermite polynomial; one might wonder if the result can be
improved by perturbing along a more sophisticated “curve”
and using lower order Hermite polynomials. This is not
possible, as the Hessian calculations already suggest. However,
since the Hessian is not necessarily “continuous” with respect
to the same metric it is calculated with, semidefiniteness of the
Hessian at a single point does not provide a rigorous proof of
local optimality.

In this section, we show that in the (interior of the) regime
where the Hessian at the Gaussian stationary point is negative
definite, local maximum is indeed achieved. The proof is based
on showing that the Hessian is negative semidefinite in an
L∞(γK) neighborhood.

The L∞(γK) metric appears to be natural for this setting;
the celebrated Holley-Stroock perturbation principle (see e.g.
[29, p1184] [30], [44]) provides a method of controlling the
best constants in functional inequalities such as the Poincare
inequality (also concerning a bound on the spectrum of a self-
adjoint operator), under perturbation in the L∞-norm. This
method is simple yet avoids assumption of bounds on higher
derivatives. Our argument may fail if other metrics are used
(see Remark 6).

Recall the functional Ψ defined in (24), which played a
role in the expression of the Han-Kobayashi region. With an
abuse of notation, in this section we shall define the following
functional:

Ψ(PX , L) := sup
PY : cov(PY )⪯L

uh(PX ∗ γuI ∗ PY ) + h(PX)

− (1 + u)h(PX ∗ γuI), (82)

where u > 0 and positive integer d are given, PX is a
distribution on Rd, and L is a d × d positive semidefinite
matrix. Here we have taken N1 = 0, which is without loss of
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generality for the purpose proving local optimality, since the
general case easily follows by taking X1 +Z1 as the new X1.
Also, we have taken the covariance of Z2 to be uI , which is
without loss of generality by a scaling argument.

We define the following as a simpler proxy for Ψ(PX , L):

Θ(PX , L) :=
u

2
ln[(2πe)d det(cov(PX) + uI + L)]

+ h(PX)− (1 + u)h(PX ∗ γuI). (83)

Note that Ψ(PX , L) ≤ Θ(PX , L), with equality achieved only
if PX is Gaussian (the only part follows from the Levy-Cramer
theorem [16]). Define

Φ(L) := sup
K

Θ(γK , L) (84)

where the supremum is over all positive semidefinite matrices
K with the same dimensions as L. Observe that the supremum
in (84) can be achieved if and only if the least eigenvalue of
L is strictly larger than 1; in that case the maximizer is

K = (L− I)−1(L+ uI). (85)

Moreover, the Hessian at the maximizer K is strictly negative
definite: Indeed, by rotation invariance of the log determinant
function, we can assume without loss of generality that L
agrees with its increasing alignment (Definition 1), in which
case K agrees with its decreasing alignment. For ∆ of the
same dimensions as K and whose Frobenius norm ∥∆∥ is
sufficiently small, we have

Θ(γK+∆, L)−Θ(γK , L) ≤ Θ(γK+∆̃, L)−Θ(γK , L) (86)

≤ −
d∑

i=1

ai∆̃2
ii + o(∥∆∥2) (87)

≤ − min
1≤i≤d

ai∥∆∥2 + o(∥∆∥2)

(88)

where ∆̃ is a diagonal matrix whose diagonal entries are
some permutation of the eigenvalues of ∆, (86) follows from
Proposition 2, and ai > 0 is a function of Lii. Thus strict
negative definiteness of the Hessian is proved.

The main result of this section is the following:
Theorem 5: Given u > 0 and a positive semidefinite matrix

L, suppose that K is a maximizer in (84). Suppose that the top
eigenvalue of K is strictly smaller than u

(1+u)1/3−1
. Then exist

ϵ > 0 such that for all PX satisfying ∥PX − γK∥L∞(γK) ≤ ϵ
and

∫
xdPX(x) = 0, we have Θ(PX , L) ≤ Φ(L), and

consequently Ψ(PX , L) ≤ Φ(L).
The result of Theorem 5 can be extended (with the same

u
(1+u)1/3−1

bound on the top eigenvalue) to the case where the
supremum in (84) is restricted to K satisfying K ⪯ J , where
J is a positive semidefinite matrix that commutes with L; we
omit the details of the analysis. Together with Theorem 4,
Theorem 5 shows that if Gaussian distributions (PUX1 , PX2)
is a Gaussian stationary point for the supremum in (30), then
the expression to the right of the supremum in (25) cannot be
improved by local (in the sense described by the Theorem 5)
perturbation.

Remark 6: The Theorem may fail if L∞(γK) is replaced
by other metrics. For example, take d = 1 and consider the

Gaussian mixture P ϵ
X = (1 − ϵ)γK + ϵN (0, ϵ−2K). Then

limϵ↓0 ∥P ϵ
X −γK∥L∞(R) = 0 but limϵ↓0 ∥P ϵ

X −γK∥L∞(γK) =
∞, where L∞(R) denotes the L∞-norm with respect to the
Lebesgue measure. Using the chain rule of entropy we can
show that |h(P ϵ

X) − h(PX)| = O(ϵ ln 1
ϵ ) and |h(P ϵ

X ∗ γu) −
h(PX ∗ γu)| = O(ϵ ln 1

ϵ ), but var(P ϵ
X) = var(PX) + Θ(ϵ−1).

Therefore Θ(P ϵ
X , L) > Φ(L) for small ϵ. We remark that a

similar counterexample has been previously proposed for the
stability of the log-Sobolev inequality [21]. In fact, (83) is
closely related to the stability of log-Sobolev inequality, since
given PX ,

lim
u→∞

1
u

[h(PX)− (1 + u)h(PX ∗ γuI)] = −1
2
J(PX)− h(PX)

(89)

where J(PX) denotes the Fisher information (see e.g. [14]).
Proof: [Proof of Theorem 5] Pick an arbitrary r such

that ∥r∥L∞(γK) ≤ ϵ (ϵ < 1 to be chosen later),
∫
r = 0, and∫

xr = 0. Define pt := γK + tr and qt := pt ∗ γuI , where
t ∈ [0, 1]. By assumption K is the maximizer in (85) and hence
a stationary point, calculations show that d

dtΘ(pt, L)|t=0 = 0
(even though pt is not necessarily Gaussian). Thus to prove the
theorem it remains show the negativity of the second derivative
for t ∈ [0, 1]. We have

d

dt
cov(pt) =

d

dt

∫
xx⊤pt (90)

=
∫
xx⊤r (91)

and d2

dt2 cov(pt) = −2
∫
xr ·

∫
x⊤r. Therefore

d

dt
ln det(cov(pt) + uI + L)

= tr
(

(cov(pt) + uI + L)−1 d

dt
cov(pt)

)
(92)

and
d2

dt2
ln det(cov(pt) + uI + L)

= − tr
(
(cov(pt) + uI + L)

−1 d
dt cov(pt)(cov(pt) + uI + L)

−1 d
dt cov(pt)

)
(93)

≤ − 1
(1+tϵ)2

tr

(
(K + uI + L)

−1
∫

xx
⊤

r(K + uI + L)
−1

∫
xx
⊤

r

)
(94)

where we used the fact that cov(pt) =
∫
xx⊤pt ≤

∫
xx⊤(1+

tϵ)γK ≤ (1 + tϵ)K. Moreover, from (38) we obtain

d2

dt2
h(pt) = −

∫
r2

pt
(95)

≤ − 1
1 + tϵ

∫
r2

γK
(96)

and similarly

d2

dt2
h(qt)

= −
∫

(r ∗ γuI)2

pt ∗ γuI
(97)

≥ − 1
1− tϵ

∫
(r ∗ γuI)2

γK+uI
(98)
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where we used (1 − tϵ)γK(x) ≤ pt(x) ≤ (1 + tϵ)γK(x), for
all x ∈ Rd.

In the rest of the proof assume without loss of generality
that K is diagonal with k1, . . . , kd being the diagonal entries.
Consider the expansion r =

∑
α∈{0,1,... }d λαD

αγK , and plug
it into the right sides of (94),(96),(98). It is easy to see using
(53) that we have

d2

dt2
Θ(pt, L) ≤

∑
α

Iα−
1

2(1+tϵ)2
tr
(
(K + L)−1Λ(K + L)−1Λ

)
,

(99)

where the notations above are explained as follows: Λ :=
[(1 + δij)λei+ej

]i,j , with ei ∈ {0, 1, . . . }d being the vector
with only the i-th coordinate equal to 1 and the other d − 1
coordinates equal to 0; moreover for each multi-index α =
(α1, . . . , αd) ∈ {0, 1, . . . }d we defined

Iα = − 1
1 + tϵ

λ2
α

d∏
i=1

αi!
kαi

i

+
1 + u

1− tϵ
λ2

α

d∏
i=1

αi!
(ki + u)αi

. (100)

For each multi-index α (viewed as a vector in Rd) we define
its norm |α| as the sum of its coordinates. Then since

∫
r = 0

and
∫
xr = 0, for |α| ≤ 1 we must have λα = 0 and hence

Iα = 0. Now we claim that if ϵ is chosen small enough (the
choice depending only on u,K,L and not on (λα)), we have∑
α : |α|=2

Iα −
1

2(1 + tϵ)2
tr
(
(K + L)−1Λ(K + L)−1Λ

)
≤ 0

(101)

and

Iα ≤ 0, ∀α : |α| ≥ 3. (102)

Clearly these claims would establish d2

dt2 Θ(pt, L) ≤ 0 for t ∈
[0, 1] and hence the conclusion of the theorem.

To see (101), it suffices to show that

(1 + ϵ)2

1− ϵ
≤

inf
(λα)

∑
|α|=2 λ

2
α

∏d
i=1

αi!
k

αi
i

+ 1
2 tr((K + L)−1Λ(K + L)−1Λ)

(1 + u)
∑
|α|=2 λ

2
α

∏d
i=1

αi!
(ki+u)αi

(103)

where the infimum is over all (λα)α : |α|=2 such that the
denominator in (103) is positive. Since both the numerator and
the denominator in (103) are 2-homogeneous in (λα)α : |α|=2

(note that Λ is also a function of (λα)α : |α|=2), the infimum
can be restricted to a compact set, and hence it can be
achieved by some (λα)α : |α|=2. By simple calculations we can
show that the strict negativity of the Hessian in the Gaussian
optimization problem (103) is in fact equivalent to the right
side of the infimum in (103) being strictly larger than 1 for
each (λα) (to see this, consider a perturbation of K in the
direction of Λ and compute the second derivatives). Therefore
(103) and hence (101) is true for all ϵ ≤ ϵ1 where ϵ1 > 0 is
some constant depending only on u,K, and L.

To see (102), it suffices to show that

1− ϵ
1 + ϵ

≥ (1 + u)
d∏

i=1

(
ki

ki + u

)αi

, ∀α : |α| = 3. (104)

The assumption of ki <
u

(1+u)1/3−1
implies that the right side

of (104) is strictly less than 1, and hence (104) holds for all
ϵ ≤ ϵ2 where ϵ2 depends only on u,K,L. The claim of the
theorem then follows by taking ϵ = min{ϵ1, ϵ2}. □

VI. A GEOMETRIC INEQUALITY ANALOGOUS
TO LEMMA 2

In this section we discuss an analogous convex geometric
inequality with a non-isotropic extremal, which may be of
independent interest. The similarities between entropic and
geometric inequalities are well-known (e.g. [4], [19]) and
sometimes can be employed to prove new results in network
information theory [34]. Intuitively, differential entropy can be
seen as analogous to the logarithmic volume of a set, and the
sum of random variables is analogous to the Minkowski sum of
sets. Therefore, we may consider an analogue of the inequality
in Conjecture 1 by replacing the entropy of independent sum
with the log volume of the Minkowski sum.

Recall that the meanwidth of a convex body C ⊆ Rd is
defined by

W (C) := E[sup
u∈C
⟨u,X⟩ − inf

u∈C
⟨u,X⟩] (105)

where X has a uniform distribution on the unit sphere in Rd.
We will replace the power constraint in the entropic inequality
by a meanwidth constraint for a convex body.

Theorem 6: Let B be the ball of radius 1/2 in Rd (so that
its meanwidth equals 1). The maximum of

vol1/2(K +B + L) vol1/2(K)
vol(K +B)

(106)

over all convex body K and all convex body L satisfying the
meanwidth bound W (L) ≤ 1 is strictly larger than 1. On the
other hand, if we restrict L = B, then the supremum of the
same quantity equals 1.

Proof: We first prove the claim for L = B. Note
that by the Brunn-Minkowski inequality (vol(αA + βB) ≥
volα(A) volβ(B)), we see that (106) is bounded above by 1.
Moreover, (106) approaches 1 if we take K = tK where K
is any convex body and t→∞.

Next, we show that the supremum can be strictly larger
than 1 without the restriction that L = B. Let us consider the
case of k = 2 for simplicity. (See Remark 7 for more general
settings.) Let K be the unit cube (similar idea actually works
for any convex body K). Let L be π

4K rotated by π/4. Note
that the meanwidths

W (L) = W (B) = 1. (107)

However, for ϵ small we have

vol(K + ϵL) = 1 + 4ϵ · π
√

2
4

+O(ϵ); (108)

vol(K + ϵB) = 1 + 4ϵ+O(ϵ2). (109)

Therefore vol(K+ϵL) > vol(K+ϵB) for small enough ϵ > 0.
Now let K = tK and let t→∞. We have

vol(K +B)
vol(K)

= 1 + 4t−1 +O(t−2); (110)
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vol(K +B + L)
vol(K +B)

= 1 + π
√

2t−1 +O(t−2). (111)

Therefore (106) equals

1 +
π
√

2− 4
2

t−1 +O(t−2) (112)

which is positive for t large enough. □
Remark 7: More generally, consider the supremum of

volu(K +B + L) vol(K)
vol1+u(K +B)

(113)

where u > 0, and suppose that the convex bodies are in Rd.
In the above argument we can consider K to be a cube of
growing size and let L be the cross-polytope with diameter of
order

√
d

ln d (so that the mean-width is order of a constant).
Then

vol(K +B)
vol(K)

= 1 + Θ(dt−1); (114)

vol(K +B + L)
vol(K +B)

≈ vol(K + L)
vol(K)

(115)

= 1 + Θ(dt−1

√
d

ln d
). (116)

Therefore the supremum is positive if dt−1 << udt−1
√

d
ln d ,

or equivalently u >>
√

ln d
d . On the other hand, the supremum

over ball L is 0 iff u ≤ 1. Therefore in the regime of u between
1 and ω(

√
ln d
d ) the supremum is not achieved by balls.

VII. DISCUSSION

It seems that simple amendments of Conjecture 1, such as
taking the concave envelope in X2 or restricting to parameters
in the stability regime, no longer fulfill its original purpose of
implying Gaussian optimality for the HK region. However, it
is still possible to imply Gaussian optimality for some parts
of the region. For example, the special case of Conjecture 1
in [5] concerning Costa’s corner point still appears to be a
valid approach towards the slope of the corner point. Here we
slightly generalize the observation therein to a larger part of
the rate region.

Theorem 7: Suppose that N1, N2, u, q1, q2 ∈ (0,∞) are
such that the maximum of

uh(X1+X2+Z1+Z2)+h(X1+Z1)− (1 + u)h(X1 + Z1 + Z2)

(117)

over independent random variables X1, X2 ∈ Rd,
E[∥Xi∥22] ≤ dqi, i = 1, 2 is achieved by isotropic Gaussian
distributions (possibly degenerate with zero covariance), for
any positive integer d. Then the HK bound (30) with Gaussian
inputs is tight for the weighted sum rate R1 + (1 + u)R2.

Proof: The proof is essentially the same as [5, Lemma 4];
we can split the optimization problem into two, which achieve
the supremum simultaneously:

R1 + (1 + u)R2

≤ lim
d→∞

1
d

sup {I(X1;Y1) + (1 + u)I(X2;Y2)} (118)

≤ lim
d→∞

1
d
{suph(Y2)+sup[uh(Y2)−(1+u)h(Y2|X2)+h(Y1)]

−h(Y1|X1)} (119)

≤ 1
2

ln
q1 + q2 +N1 +N2

N1
+

1
2

sup
K≤q1

ψ(K, q2) (120)

where the suprema are over independent X1, X2 ∈ Rd satisfy-
ing E[∥Xi∥22] ≤ dqi, i = 1, 2; Y1 and Y2 are defined in (1)-(2);
ψ(K, q2) was defined in (55) (with dimension one); (118)
follows by Fano’s inequality; (120) follows by the assumption
of Theorem 7. Note that (120) is upper bounded by the HK
bound (30) (in dimension one with Gaussian inputs), therefore
the claim of the theorem follows. □

The set of (N1, N2, u, q1, q2) satisfying the assumption in
Theorem 7 always falls in the setting of Lemma 3, and the
latter always falls in the regime of stable Gaussian stationary
points. The set is not empty, as the sufficient condition in [26]
shows. A more precise characterization of this set remains an
open question. In particular, a concrete new conjecture can be
formulated as follows:

Conjecture 2: The set of (N1, N2, u, q1, q2) satisfying
the isotropic condition in Theorem 7 equals the set of
(N1, N2, u, q1, q2) for which 1-letter HKGS without power
control matches 1-letter HKGS with power control.

In Conjecture 2, 1-letter HKGS means the Han-Kobayashi
bound (30) in dimension one with Gaussian signaling, and
with/without power control means (Q1, Q2) in (30) is ran-
dom/constant. The first mentioned set in Conjecture 2 is
contained in the second, by the proof of Theorem 7. Proving
Conjecture 2 would prove the conjecture about the slope at
Costa’s point in [5]. On the other hand, disproving Conjec-
ture 2 would imply that HKGS with variable power control is
suboptimal for parts of the capacity region. Indeed, suppose
that HKGS is optimal, then by the Gaussian tensorization the
best sum rate is achieved by 1-letter HKGS. If the conjecture
is false then there is some (N1, N2, u, q1, q2) in the second
set but not the first set in Theorem 7, and the best sum
rate for this (N1, N2, u, q1, q2) is achieved by 1-letter HKGS
without power control due to the membership in the second
set. But this implies the membership in the first set as well, a
contradiction.

VIII. ACKNOWLEDGMENT

The author would like to thank Professors Ramon van Han-
del, Chandra Nair, and Max Costa for inspiring discussions and
comments on the manuscript, which were helpful in improving
the presentations and the formulation of Conjecture 2.

APPENDIX A
PROOF OF LEMMA 1

Using the Taylor expansion, we have

pt(y) =
∫
p(
√
tu+ y)q(u)du (121)

=
∫ [

p(y) +
√
tup′(y) +

1
2
tu2p′′(y)

+
1
6
t3/2u3p′′′(y) +

1
24
t2u4p′′′′(ξy,u)

]
q(u)du (122)
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where ξy,u is a value between y and y +
√
tu. Therefore for

any t < 1,∣∣∣∣pt(y)− p(y)−
1
2
tm2p

′′(y)− 1
6
t3/2m3p

′′′(y)
∣∣∣∣

=
1
24
t2
∣∣∣∣∫ u4p′′′′(ξy,u)q(u)du

∣∣∣∣ . (123)

≤ t2

24
p(y)

∫
u4

(
sup

v : |v−y|≤
√

t|u|

|p′′′′(v)|
p(y)

)
q(u)du (124)

≤ Ct2p(y)
∫
u4eC

√
t|u|q(u)du (125)

≤ C2t2p(y)
∫
u4eC|u|−cu2

du (126)

≤ c1t2p(y) (127)

where here and below c1, c2, . . . are positive constants depend-
ing on p and q but not on t. To see (125), note that (7) implies
for |(ln p(x))′| < C and hence

sup
v : |v−y|≤

√
t|u|

|p′′′′(v)|
p(y)

≤ sup
v∈R

|p′′′′(v)|
p(v)

· sup
v : |v−y|≤

√
t|u|

p(v)
p(y)
(128)

≤ CeC
√

t|u|. (129)

Next define ∆t(y) := pt(y) − p(y). By the Taylor expansion
of the function x 7→ x lnx around p(y), we have

|pt(y) ln pt(y)− p(y) ln p(y)−∆t(y)−∆t(y) ln p(y)|

≤ ∆2
t (t)
2 ξ

(130)

≤ 1
2
· ∆2

t (y)
pt(y) ∧ p(y)

(131)

where ξ denotes a number between p(y) and pt(y) (from
the Lagrange remainder) and ∧ denotes the minimum value.
Noting

∫
∆t = 0, we have∣∣∣∣∫ pt ln pt −

∫
p ln p−

∫
∆t ln p

∣∣∣∣ ≤ ∫ ∆2
t

pt ∧ p
. (132)

By (127), for t < 1 we have

|∆t(t)| ≤
1
2
tm2|p′′(y)|+

1
6
t3/2m3|p′′′(y)|+ c1t

2p(y)

≤ c2tp(y). (133)

Thus for t < 1
2c2
∧1 we have t−2∆2

t (y)
pt(y)∧p(y) ≤

t−2∆2
t (y)

1
2 p(y)

≤ 2c22p(y)
and ∫

∆2
t

pt ∧ p
≤ 2c22t

2. (134)

Moreover, by multiplying ln p(y) to (127) and integrating, we
find that for t < 1

2c2
∧ 1,∣∣∣∣∫ ∆t ln p− 1

2
tm2

∫
p′′ ln p− 1

6
t3/2m3

∫
p′′′ ln p

∣∣∣∣ ≤ c3t2.
(135)

Comparing (132), (134) and (135) we establish (8).

APPENDIX B
GAUSSIAN SUBOPTIMALITY VIA WASSERSTEIN FLOW

In this section we provide another approach of estab-
lishing Gaussian suboptimality by showing that the Hessian
under the Wasserstein-2 metric at the stationary point fails
to be negative semidefinite. The choice of metric is in fact
immaterial to the stability of a stationary point, as we shall
explain. Nevertheless, it seems to be an interesting direction
for future research to leverage the recent developments on
optimization in the Wasserstein space [2], [7], [15], [50].
Let us also remark that optimal transportation has previously
been used in proving Costa’s corner point for the interference
channels [45]. Moreover, changing the metric can sometimes
simplify entropic optimization problems; see e.g. the geodesic
convexity of the Brascamp-Lieb inequality [48].

A. Preparations

It is useful to first recall how Hessian is related to stability
at a stationary point in the simpler setting of optimization in
the Euclidean space. Suppose that the goal is to maximize
f(x) over x ∈ Rd subject to the constraint g(x) ≤ 0, where
f and g are both smooth functions on Rd. Then x∗ ∈ Rd is
a stationary point of the constrained optimization problem if
and only if there exists λ ≥ 0 such that g(x∗) ≤ 0 and

∇f(x∗)− λ∇g(x∗) = 0 ∈ Rd. (136)

Moreover, a necessary condition for local optimality is that
the restricted Hessian satisfies

Hess |C(f − λ∇g)(x∗) ⪯ 0 ∈ R(d−1)×(d−1) (137)

where λ is as in (136), C = {x ∈ Rd : (x − x∗)⊤∇g(x∗) =
0} is a codimension one subspace, and we assumed that
∇g(x∗) ̸= 0. Indeed, it suffices to consider the nontrivial case
of λ > 0, and if (137) is not true, then there exists a smooth
curve (−1, 1)→ C, t 7→ x̄(t) satisying x̄(0) = x∗ and

(f − λg)(x̄(t)) ≥ (f − λg)(x∗) + at2 + o(t2) (138)

≥ f(x∗) + at2 + o(t2) (139)

for some a > 0. Assuming ∇g(x∗) ̸= 0, we can find a smooth
curve (−1, 1)→ {x : g(x) = 0}, t 7→ x(t) satisfying ∥x(t)−
x̄(t)∥ = O(t2). Then since ∇(f − λg)(x∗) = 0 and ∥x̄(t) −
x∗∥ = O(t), we have ∥∇(f − λg)(x(t))∥ = O(t) and

f(x(t)) = (f − λg)(x(t)) (140)

≥ (f − λg)(x̄(t)) +O(t3) (141)

≥ f(x∗) + at2 + o(t2) (142)

implying that x∗ is not a local maximum of the constrained
optimization problem.

Let us review the basics about the formal Riemannian
structure associated with the optimal transport distance; more
background on this topic can be found in, e.g., [2], [15], and
[44]. Let P2(Rd) be the set of absolutely continuous probabil-
ity measures with finite second moments. The Wasserstein-2
distance induces a local inner product structure, which can be
viewed as generalization of the standard (finite dimensional)
metric tensor in the classical Riemannian geometry. More
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precisely, at any point P ∈ P2(Rd), the tangent space is given
by

{∇ϕ : ϕ ∈ C∞c (Rd)}
L2(P )

, (143)

i.e., the L2(P )-closure of the gradients of smooth, compactly
supported functions.2 Taking the closure ensures that the
tangent space is complete with respect to the inner product
defined below. Given a tangent vector ∇ϕ, a constant speed
geodesic is the curve t 7→ Pt where Pt is the push-forward of
the map x 7→ x+ t∇ϕ(x). Note that ∇ϕ as a vector field on
Rd is curl-free, which ensures that such a map is an optimal
transport for small enough t. We define the following inner
product on the tangent space at P :

⟨∇ϕ,∇ψ⟩ :=
∫

Rd

∇ϕ(x) · ∇ψ(x)dP (x), (144)

which is consistent with the Wasserstein-2 distance since
∥∇ϕ∥ :=

√
⟨∇ϕ,∇ϕ⟩ = d

dtW2(Pt, P )|t=0. Furthermore,
given a function f on P2(Rd), its gradient and Hessian at
P (if exist) satisfy

f(Pt) = f(P ) + t ⟨grad f(P ),∇ϕ⟩+ t2

2
Hess f(P )(∇ϕ,∇ϕ)

+ o(t2) (145)

for any ∇ϕ, where Hess f(P ) is a bilinear form which sends
two tangent vectors to a real number.

Under a change of the inner product on the tangent space
at P , the gradient at P changes linearly. For example, if
δf
δP denotes the gradient with respect to L2(Rd), then the
W2-gradient is given by grad f(P ) = ∇ δf

δP . On the other
hand, the Hessian depends on the second order behavior of
the geodesic and therefore depends not only on the metric
tensor at P but also on the connection (how a tangent vector is
parallel transported in a neighborhood). As such, with a change
of metric, the transformation of the Hessian depends on the
connection and the gradient and therefore semidefiniteness is
not preserved. However, at a stationary point, semidefiniteness
does not depend on the choice of metric.

In the rest of the section we shall focus on the setting of
d = 1, which is enough for constructing a counterexample to
Conjecture 1. On R, the vector field ∇ϕ can be thought of as
a smooth, compactly supported function, which we denote by
U(·) or V (·). The constraint

∫
U(x)dx =

∫
∇ϕ(x)dx = 0 can

be dropped since we will take the closure in L2(P ). We shall
first derive a lemma about the W2-gradient and Hessian of the
differential entropy of convolution of measures h(p ∗ q ∗ r),
where p and q are viewed as variables whereas r is a fixed
probability measure. The subscripts of grad and Hess denote
the variables which are differentiated in (a formal definition
can be given using a formula similar to (145)).

B. Hessian Calculation

Lemma 4: Let r be a fixed probability distribution on R,
and consider h(p∗q∗r) as a functional of a pair of probability

2Here we adopt the notations of [8], where a tangent vector is identified
with the velocity field. It is worth mentioning that some authors [49] instead
identified a tangent vector with the rate of change in the density which is
−div(P∇ϕ) by the continuity equation.

distributions (p, q). Denote by µ := p ∗ q ∗ r, viewed as a
probability density function on R. Let Z = X + Y + R, and
let U = U(X) and V = V (Y ) be two arbitrary smooth,
compactly supported functions of X and Y , respectively. Then
we have

gradp h(p ∗ q ∗ r) = −E[∇ lnµ(Z)|X]; (146)

gradq h(p ∗ q ∗ r) = −E[∇ lnµ(Z)|Y ], (147)

and

Hesspp h(p ∗ q ∗ r)(U,U)

= −E[U2∆ lnµ(Z)]− E

[(
∇(E[U |Z]µ(Z))

µ(Z)

)2
]

; (148)

Hessqq h(p ∗ q ∗ r)(V, V )

= −E[V 2∆ lnµ(Z)]− E

[(
∇(E[V |Z]µ(Z))

µ(Z)

)2
]

; (149)

Hesspq h(p ∗ q ∗ r)(U, V )

= −E[UV∆ lnµ(Z)]− E
[
∇(E[U |Z]µ(Z))∇(E[V |Z]µ(Z))

µ2(Z)

]
.

(150)
Proof: Let X , Y , R, U , V be as in the statement of the

lemma. Define for each s ≥ 0, t ≥ 0,

Zst := X + sU + Y + tV +R = Z + sU + tV. (151)

Denote by µst the distribution of Zst. We have

d

ds
h(µst) = − d

ds

∫
µst lnµst (152)

= −
∫
dµst

ds
lnµst (153)

=
∫
∇(E[U |Zst]µst) lnµst (154)

= −
∫

E[U |Zst]∇(lnµst)µst (155)

= −E[U∇ lnµst(Zst)] (156)

where (156) used

d

ds
µst = −∇(E[U |Zst]µst) (157)

which can be shown by the following method:3 Consider an
arbitrary smooth test function f ; we have∫

fµst = E[f(Zst)]. (158)

Differentiating on both sides,∫
f
d

ds
µst = E[f ′(Zst)U ] (159)

= E[f ′(Zst)E[U |Zst]] (160)

= −
∫
f(Zst)∇(E[U |Zst]µst) (161)

where the last step used integration by parts. Since f is
arbitrary we have confirmed (157) and hence (146) is proved.

3The functional representation approach is of course well-known in analy-
sis; an exploration of this viewpoint for information theory problems can be
found in [32], [33], [36], [38], and [39].
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Next, we have

d2

ds2
h(µst)

= −
∫
d2µst

ds2
lnµst −

∫
µst

(
d lnµst

ds

)2

(162)

= −
∫

∆(E[U2|Zst]µst) lnµst −
∫

[∇(E[U |Zst]µst)]2
1
µst

(163)

= −
∫

E[U2|Zst]µst∆ lnµst −
∫

[∇(E[U |Zst]µst)]2
1
µst

,

(164)

where (163) used (157) and

d

ds
(E[U |Zst]µst) = −∇(E[U2|Zst]µst), (165)

and (165) can be shown as follows: Let f be an arbitrary
smooth test function; we have

d

ds

∫
E[U |Zst = z]f(z)µst(z)dz

=
d

ds
E[Uf(Zst)] (166)

= E[Uf ′(Zst)U ] (167)

=
∫

E[U2|Zst = z]f ′(z)µst(z)dz (168)

which implies (165) via integration by parts. Now taking s, t =
0 in (164) establishes the formula for Hesspp h(p∗q∗r)(U,U)
claimed in the lemma, and the proofs for the other Hessian
components are similar. □

Remark 8: If we take Y, V,R to be constants, we recover
the following formula for the Hessian of differential entropy

Hessh(µ)(U,U) = −
∫
U2µ∆ lnµ−

∫
[∇(Uµ)]2

1
µ

(169)

= −
∫
U2µ∆ lnµ+

∫
Uµ∇

(
∇(Uµ)
µ

)
(170)

=−
∫
U2µ∆ lnµ+

∫
Uµ∇ (∇U+U∇ lnµ)

(171)

=
∫
Uµ(∆U +∇U∇ lnµ) (172)

= −
∫

(∇U)2µ (173)

which is well-known in literature (e.g. [44, p13]).
Remark 9: In Lemma 4, while U denotes an arbitrary

perturbation of X , it can also be thought of as a random
variable jointly distributed with X , which allows us to express
the gradient and the Hessian conveniently using expectation
notations (e.g. (146)(148)). A similar method of expressing
gradient and Hessian in terms of expectations of a random
variable parameterizing an arbitrary perturbation was previ-
ously adopted in Amin Gohari’s thesis [27] for the derivation
of cardinality bounds in network information theory. A differ-
ence, though, is that the perturbation in [27] is vertical rather
than horizontal.

Using the same method we can compute the W2 gradient and
the Hessian of the variance functional (details omitted):

Lemma 5: Let p be a probability density function on R
with zero mean, and let U be a smooth, compactly supported
function on R.

grad var(p) = 2x; (174)
Hess var(p)(U) = 2 var(U). (175)

Theorem 8: Given any u > 0 and λ ≥ 0, define the
functionals

Ψ(p, q) = uh(p ∗ q ∗ γu) + h(p)− (1 + u)h(p ∗ γu);
(176)

Ψλ(p, q) = Ψ(p, q)− λ var(q). (177)

Suppose that K > 0 and L > 0 are such that (K,L) is a
stationary point of the function (K,L) 7→ Ψλ(γK , γL). Then
Hess Ψλ(γK , γL) restricted on the subspace

C := {(U, V ) :
∫
x2V (x2)γL(x2)dx2 = 0} (178)

is negative-semidefinite if and only if K ≤ u
(1+u)1/3−1

. In
particular, if K > u

(1+u)1/3−1
then (γK , γL) is not a local

maximum of Ψ(p, q) subject to var(q) ≤ L.
Similar to Corollary 1, Theorem 8 provides a counterexam-

ple to Conjecture 1 for the case where N1 = Σ1 = 0 and
N2 = u (extension to the N1,Σ1 > 0 case is possible using a
similar continuity argument as Theorem 1). Proof: [Proof
of Theorem 8] Let us assume the expansions

U =
∑

α∈{0,1,2,... }

Aα
DαγK

γK
, (179)

V =
∑

α∈{0,1,2,... }

Bα
DαγL

γL
. (180)

Although the Hessians are calculated in Lemma 4 for smooth
and compactly supported U(·) and V (·), they can be extended
to a larger class of functions, say U(·) and V (·) bounded in
a norm defined by ∥(U, V )∥∗ := E1/2[(1 + X2)U2(X)] +
E1/2[|∇U(X)|2] + E1/2[(1 + Y 2)V 2(Y )] + E1/2[|∇V (Y )|2].
We will set Aα and Bα nonzero for only finitely many α so
that ∥(U, V )∥∗ < ∞, and we can check that the Hessian as
a bilinear form is continuous with respect to ∥∥∗, so that it
can be extended to all (U, V ) satisfying ∥(U, V )∥∗ < ∞ by
passing to a limit.

We can now explicitly compute Hess Ψλ(γK , γL) using the
following facts about Hermite polynomials (see [17]):∫ (

DαγK

γK

)2

γK =
α

Kα
, ∀α = 0, 1, 2, . . . (181)

and

E
[
DαγK(X1)
γK(X1)

∣∣∣∣ X̂1

]
=
DαγK+u(X̂1)
γK+u(X̂1)

, (182)

where X1 ∼ γK , X̂1 = X1 +Z2, and Z2 ∼ γu is independent
of X1. We have

Hess11 Ψλ(γK , γL)(U,U)

=
u

K + u+ L

∑
α≥0

A2
α

α!
Kα
− u

∑
α≥0

A2
α

(α+ 1)!
(K + u+ L)α+1
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+
1
K

∑
α≥0

A2
α

α!
Kα
−
∑
α≥0

A2
α

(α+ 1)!
Kα+1

− 1 + u

K + u

∑
α≥0

A2
α

α!
Kα

+ (1 + u)
∑
α≥0

A2
α

(α+ 1)!
(K + u)α+1

(183)

where the subscript of Hess11 means that the function is dif-
ferentiated in the first argument twice. Since K is a stationary
point, the first, third, and fifth summations cancel out, and the
α = 0 summands in the other three summations cancel out.
We are left with

Hess11 Ψλ(γK , γL)(U,U) = −u
∑
α≥1

A2
α

(α+ 1)!
(K + u+ L)α+1

−
∑
α≥1

A2
α

(α+ 1)!
Kα+1

+ (1 + u)
∑
α≥1

A2
α

(α+ 1)!
(K + u)α+1

.

(184)

Next, since B1 = 0 by (178), we have

Hess22 Ψλ(γK , γL)(V, V )

=
u

K + u+ L

∑
α̸=1

B2
α

α!
Lα
− u

∑
α̸=1

B2
α

(α+ 1)!
(K + u+ L)α+1

− 2λ
∑
α̸=1

B2
α

α!
Lα

+ 2λB2
0 (185)

=
u

K + u+ L

∑
α≥2

B2
α

α!
Lα
− u

∑
α≥2

B2
α

(α+ 1)!
(K + u+ L)α+1

− 2λ
∑
α≥2

B2
α

α!
Lα

(186)

= −u
∑
α≥2

B2
α

(α+ 1)!
(K + u+ L)α+1

(187)

where the last step follows since ∂LΨλ(γK , γL) = 0 implies
λ = u

K+u+L . Finally

Hess12 Ψλ(γK , γL)(U, V )

=
u

K + u+ L
A0B0 − u

∑
α̸=1

AαBα
(α+ 1)!

(K + u+ L)α+1

(188)

= −u
∑
α≥2

AαBα
(α+ 1)!

(K + u+ L)α+1
. (189)

Now we can write

Hess Ψλ(γK , γL)(U, V )
= Hess11 Ψλ(γK , γL)(U,U) + Hess22 Ψλ(γK , γL)(V, V )

+ 2 Hess12 Ψλ(γK , γL)(U, V ) (190)

=
∑
α≥1

Iα (191)

where we defined

I1 := − 2uA2
1

(K + u+ L)2
− 2A2

1

K2
+

2(1 + u)A2
1

(K + u)2
; (192)

and for α ≥ 2,

Iα
(α+ 1)!

:= − uA2
α

(K + u+ L)α+1
− A2

α

Kα+1
+

(1 + u)A2
α

(K + u)α+1

− uB2
α

(K + u+ L)α+1
− 2uAαBα

(K + u+ L)α+1
. (193)

Note that I1 ≤ 0, which follows since ∂2
KΨλ(γK , γL) < 0 at

the maximizer K. Moreover given Aα we have

Iα
(α+ 1)!

≤ − A2
α

Kα+1
+

(1 + u)A2
α

(K + u)α+1
(194)

with equality achieved only when Bα = −Aα. Then the first
claim of the theorem follows, noting that K = u

(1+u)1/3−1

is the solution to − 1
K3 + 1+u

(K+u)3 = 0. The case where
Hess Ψλ is not negative-semidefinite can be seen by choosing
B2 = −A2 ̸= 0 and Aα = Bα = 0 for α ̸= 2. Once the
restricted Hessian is not negative-semidefinite, we can show
that the stationary point does not achieve local maximum with
arguments similar to (142): we consider (pt, qt) where pt and
qt are Wasserstein geodesics satisfying p0 = γK , q0 = γL,
d
dt

∫
x2qt|t=0 = 0 and d2

dt2 Ψλ(pt, qt)|t=0 > 0. We can assume
without loss of generality that the corresponding tangent vec-
tors (143) come from gradients of smooth compactly supported
functions. Then let q̄t be a rescaling of qt so that var(qt) = L,
t > 0. Then the same argument as in (142) shows that (pt, q̄t)
beats the Gaussian stationary point for small t > 0, mutatis
mutandis. □
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