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Abstract— Integrated Sensing and Communication (ISAC) is
recognized as a promising technology for the next-generation
wireless networks, which provides significant performance gains
over individual sensing and communications (S&C) systems via
the shared use of wireless resources. The characterization of
the S&C performance tradeoff is at the core of the theoretical
foundation of ISAC. In this paper, we consider a point-to-point
(P2P) ISAC model under vector Gaussian channels, and propose
to use the Cramér-Rao bound (CRB)-rate region as a basic
tool for depicting the fundamental S&C tradeoff. In particular,
we consider the scenario where a unified ISAC waveform is
emitted from a dual-functional ISAC transmitter (Tx), which
simultaneously communicates information to a communication
receiver (Rx) and senses targets with the help of a sensing Rx.
In order to perform both S&C tasks, the ISAC waveform is
required to be random to convey communication information,
with realizations being perfectly known at both the ISAC Tx and
the sensing Rx as a reference sensing signal as in typical radar
systems. In this context, we treat the ISAC waveform as a random
but known nuisance parameter in the sensing signal model, and
define a Miller-Chang type CRB for the analysis of the sensing
performance. As the main contribution of this paper, we charac-
terize the S&C performance at the two corner points of the CRB-
rate region, namely, PSC indicating the maximum achievable
communication rate constrained by the minimum CRB, and
PCS indicating the minimum achievable CRB constrained by
the maximum communication rate. In particular, we derive the
high-SNR communication capacity at PSC, and provide lower
and upper bounds for the sensing CRB at PCS. We show that
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these two points can be achieved by the conventional Gaussian
signalling and a novel strategy relying on the uniform distribution
over the set of semi-unitary matrices, i.e., the Stiefel manifold,
respectively. Based on the above-mentioned analysis, we provide
an outer bound and various inner bounds for the achievable
CRB-rate regions. Our main results reveal a two-fold tradeoff in
ISAC systems, consisting of the subspace tradeoff (ST) and the
deterministic-random tradeoff (DRT) that depend on the resource
allocation and data modulation schemes employed for S&C,
respectively. Within this framework, we examine the state-of-the-
art ISAC signalling strategies and study a number of illustrative
examples, which are validated through numerical simulations.

Index Terms— Integrated sensing and communication, Gaus-
sian channels, CRB-rate region, deterministic-random tradeoff,
subspace tradeoff.

I. INTRODUCTION

A. Background and Related Works

IN AN ISAC system, wireless communications and sensing
functionalities are performed by using a single hardware

platform and a common radio waveform over the same
frequency band, which considerably improves the energy-,
spectral-, and hardware-efficiencies [1], [2], [3], [4], [5]. Due
to the substantial performance gain attainable for both S&C
capabilities, ISAC is well-recognized as a key enabler for a
variety of emerging applications including vehicular networks,
smart home, and smart cities. Despite the fact that S&C have
long been considered as two isolated fields, e.g., wireless
networks and radar systems, they are indeed intertwined with
each other as an “odd couple” in an information-theoretic
sense [6].

For decades, S&C researchers are mostly working on a
generic linear Gaussian model, expressed as

Y = HX + Z, (1)

where Y ∈ CN×T , H ∈ CN×M , X ∈ CM×T , and Z ∈ CN×T

denote the received signal, target response/communication
channel, transmitted signal, and Gaussian noise, respectively,
which can be in scalar, vector, or matrix forms. From the
communication perspective, the basic problem is given channel
H to design an optimal transmission strategy X that maxi-
mizes the channel capacity. From the sensing perspective, the
basic problem is to estimate H, or, more relevant to radar
sensing, to estimate the target parameters (e.g., amplitude,
delay, angle, and Doppler) contained in H as accurate as
possible, based on the knowledge of X. Indeed, S&C are
connected with each other given the duality between signals
and linear systems, which are mathematically interchangeable.
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Nonetheless, the distinct physical roles of X and H in S&C and
the resulting performance measures lead to a number of unique
performance tradeoffs and design criteria [7], [8], [9], [10] to
the ISAC signal processing, particularly for simultaneously
realizing S&C functionalities via a unified waveform. Despite
that capacity characterization and parameter estimation limits
have been independently investigated for S&C for years, the
depiction of the inherent information-estimation tradeoff and
the corresponding performance bounds in an ISAC system
remains long-standing open.

The pioneering effort to reveal the fundamental connection
between information and estimation theory can be traced back
to the early results on the I-MMSE equation [11], which states
that for the linear Gaussian model Y =

√
snrHX + Z, the

derivative of the mutual information I (Y;X) with respect to
the signal-to-noise ratio (SNR) is equal to the minimum mean
squared error (MMSE) for estimating HX by observing Y.
While the I-MMSE equation implies maximizing the MMSE
of HX also maximizes the scaling ratio of the mutual infor-
mation I (Y;X), which bridges the information theory and
estimation theory, the equation itself mainly concentrates on
the estimation performance of unknown data symbol X rather
than on the target parameters in H, since H is assumed to be
deterministic and known [11]. Consequently, the connection
between I (Y;X) and the sensing performance limits for H
was not fully investigated. More relevant to this work, one may
model the ISAC channel as a state-dependent channel [12],
which characterizes the information-conveyed signal reflected
by state-varying targets [13]. The goal for such an ISAC
system is to transmit information through the channel while
estimating its state under the minimum distortion. On top
of that, a capacity-distortion (C-D) tradeoff is acquired to
depict the S&C performance bounds [14], [15], [16], [17].
While these studies could capture the S&C tradeoff from
the information-theoretic perspective, the connections among
communication capacity, target channel states, and to-be-
estimated parameters in sensing tasks are still not clearly
indicated.

B. Contribution of This Paper

To gain a better understanding of the interweaved S&C
functionalities, in this paper, we shed light on the fundamental
limits of ISAC by analyzing the tradeoff between the com-
munication capacity and sensing CRB, two key performance
metrics at the cores of information theory and estimation
theory. We consider a general point-to-point (P2P) system
setting, where a random signal X is emitted from an ISAC
Tx and received both at a communication Rx and a sensing
Rx, thus to realize simultaneous S&C functionalities. Since X
encodes useful information intended for the communication
Rx, it is unknown to the communication Rx, yet is perfectly
known to both the ISAC Tx and sensing Rx due to the fact
that they are colocated or collaborative in typical monostatic or
bistatic radar settings. While the P2P communication capacity
is known to be the maximum mutual information over all
possible distributions of X, the optimal achievable sensing
performance is less understood, especially when the signal X

Fig. 1. The ISAC scenarios considered in this paper, where the
dual-functional waveform X is known to the sensing receiver.

is random. To cope with this issue, we propose to treat X as a
random known nuisance parameter in the sensing model, and
resort to a Miller-Chang type CRB to measure the average
sensing performance [18].

Under this framework, our main contributions are summa-
rized as follows:
• We define a Miller-Chang type CRB for measuring the

sensing performance limit in an ISAC system, and show
that its optimum is achieved when the sample covariance
matrix RX = T−1XXH has a deterministic trace, and the
support of the distribution p (RX) (and hence p(X)) is
restricted to the optimal solution set of a deterministic
CRB minimization problem. In particular, if the solution
is unique, the sensing-optimal sample covariance matrix
RX itself should be deterministic;

• We define the CRB-rate region as the set of all achievable
pairs of the communication rate and the sensing CRB, and
propose a pentagon inner bound of the CRB-rate region
that can be achieved through simple time-sharing strategy.
Within this framework, we study the ISAC performance
at the two corner points of the CRB-rate region, namely,
PCS indicating the minimum achievable CRB constrained
by the maximum communication rate, and PSC indicating
the maximum achievable communication rate constrained
by the minimum CRB.

• We derive the high-SNR communication capacity for
the sensing-optimal point PSC, and prove that it can be
asymptotically achieved by a strategy based on uniform
sampling over the set of semi-unitary matrices, i.e., the
Stiefel manifold [19]. As a further step, we provide
lower and upper bounds for the sensing CRB at the
communication-optimal point PCS;

• We reveal that the S&C tradeoff in ISAC systems is
a two-fold tradeoff, namely, the subspace tradeoff (ST)
balancing the resource allocation between the subspaces
spanned by S&C channels, and the deterministic-random
tradeoff (DRT) depicting the exploitable S&C degrees of
freedom (DoFs) in ISAC signals. Based on these two
tradeoffs, we further propose an outer bound and a variety
of inner bounds for the CRB-rate region.

• We unveil the connection between the above funda-
mental tradeoffs and existing ISAC waveform designs,
and provide illustrative examples to demonstrate the
behaviour of ST and DRT in typical ISAC application
scenarios.

To the best of our knowledge, this is the first work
that addresses the fundamental tradeoff in ISAC from both
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information- and estimation-theoretic perspectives. Our hope
is that this paper can serve as a stepping stone towards the fully
characterization of the CRB-rate performance region, as well
as towards the design of bound-achieving ISAC transmission
strategies.

The rest of this paper is organized as follows. The system
model and the performance metrics for both sensing and com-
munication are introduced in Section II. Then, in Section III,
we present our main results characterizing the corner points
PSC and PCS of the CRB-rate region, while the corresponding
proofs are deferred to the Appendices. Based on these results,
we discuss the ST and DRT in Section IV-A, provide some
strategies achieving inner bounds of the CRB-rate region in
Section IV-B, and unveil the connections between the S&C
tradeoff and existing ISAC system designs in Section IV-C.
This is followed by a case study in Section V, where we
discuss the ST and DRT in practical ISAC application sce-
narios. We illustrate and validate the analytical results using
numerical examples in Section VI, and finally conclude the
paper in Section VI.

Notations

Throughout this paper, a, a, A, and A represent random vari-
ables (scalars), random vectors, random matrices and random
sets, respectively; The corresponding deterministic quantities,
are denoted by a, a, A, and A, respectively. The m-by-n
matrix of zeros (resp. ones) is denoted by 0m×n (resp. 1m×n).
The m-dimensional vector of zeros (resp. ones) is denoted by
0m (resp. 1m). The m-by-m identity matrix is denoted by
Im. The Kronecker product between matrices A and B is
denoted by A⊗B. ∥x∥p denotes the lp norm, which represents
the l2 norm by default when the subscript is omitted. The
notation Ex{·} denotes the expectation with respect to x. [·]†
denotes the Moore-Penrose pseudo inverse of its argument,
[·]∗ denotes the complex conjugate of its argument, while [·]H
denotes the Hermitian transpose of its argument. A:,i denotes
the i-th column of A, while Ai,: denotes the i-th row. The
notation diag(·) denotes the matrix obtained by placing its
arguments on the main diagonal of a sqaure matrix, mdiag(·)
denotes the vector consisting of the main diagonal entries of
its argument, while blkdiag(·) denotes the matrix obtained
similarly, but with matrix arguments. A ≽ B implies that
A −B is positive semidefinite. tr{·} stands for the trace of
a square matrix. vec{A} denote the column-stacked vector
of the matrix A, while matM×N{v} denotes the M × N
matrix satisfying vec{matM×N (v)} = v. The subscripts in
the aforementioned notations may be omitted when they are
clear from the context.

II. SYSTEM MODEL AND PERFORMANCE METRICS

A. System Model

Let us consider the general ISAC system model of

Yc = HcX + Zc, (2a)
Ys = HsX + Zs, (2b)

where Hc ∈ CNc×M and Hs ∈ CNs×M denote the commu-
nication channel and the target response matrix, respectively,

Yc ∈ CNc×T and Ys ∈ CNs×T denote the received communi-
cation and sensing signals, respectively. X ∈ CM×T denotes
the transmitted dual-functional waveform emitted from an
ISAC TX for performing both S&C tasks. In this paper,
we assume that X is known to both the ISAC Tx and sensing
Rx, but unknown to the communication Rx. This is an abstrac-
tion of the practical scenarios portrayed in Fig. 1. A more
general scenario where the sensing task can be performed by
the communication receiver itself will be addressed in our
future works. The random matrix Zc ∈ CNc×T denotes the
received communication noise, modelled as independently and
identically distributed (i.i.d.) circularly symmetric complex
Gaussian random variables with zero mean, namely vec(Zc) ∼
CN (0, σ2

cINc×T ). Similarly, we also model the sensing noise
Zc as vec(Zs) ∼ CN (0, σ2

s INs×T ). The communication sub-
system aims for transmitting as much information as possible
(reliably) to the receiver, while the sensing subsystem aims
for estimating the sensing parameters η ∈ RK contained in
Hs satisfying

Hs = g(η)

to the highest possible accuracy, where g(·) is an injective
mapping from RK to CNs×M .1 We consider a block fading
model for both the target response matrix and the commu-
nication channel. Specifically, we assume that parameters η
varies every T symbols in an i.i.d. manner, following a known
distribution pη(η) which has a finite variance, and that the
communication channel Hc also varies every T symbols in
an i.i.d. manner.2 We will refer to T as the coherent sensing
period in the rest of the paper. We limit the average power of
each transmitted symbol to be PT, hence we have

tr
{

R̃X

}
= E{tr {RX}} = PTM, (3)

where R̃X := E{RX} denotes the covariance matrix of X, with
RX := T−1XXH representing the sample covariance matrix.

B. S&C Performance Metrics

The performance of the communication subsystem is con-
ventionally characterized by the ergodic achievable rate (under
certain design constraints), which can be expressed as

RF = max
pX(X)

T−1I(Yc;X|Hc), s.t. pX(X) ∈ F , (4)

where I(Yc;X|Hc) denotes the mutual information between
Yc and X conditioned on Hc, and F denotes the feasibility
region of pX(X) determined by the design constraints. If not
stated otherwise, in the rest of this paper, the feasibility region
F is the set of all pX(X)’s that satisfy the power constraint (3),

1This would impose upper bounds for the maximum number Kmax of
identifiable parameters. A trivial upper bound would be Kmax ⩽ 2MNs.
Tighter bounds may be obtained by incorporating specific knowledge of the
observation model. We refer interested readers to [20].

2These assumptions correspond to the memoryless channel model widely
used in information-theoretical ISAC studies (cf. [17], [21]). This model
mainly aims for portraying practical scenarios in which the sensing target
is relatively close to the sensing link, and hence the sensing parameters vary
synchronously with the communication channel [22]. We note that our analysis
also applies to the case where the communication channel varies every kT
symbols where k ∈ Z+.
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and the subscript F in RF is omitted whenever there is no
confusion.

The performance of the sensing subsystem is typically
characterized by the estimation mean-squared error (MSE) of
the parameters η, given by

MSEη(η̂) := E{∥η− η̂∥2}. (5)

However, this metric depends on the specific choice of the
estimator η̂, which hinders the essential relationship between
the sensing performance and the design of pX(X). To this
end, we consider the Bayesian Cramér-Rao bound (BCRB) of
η, which constitutes a lower bound for the MSE of weakly
unbiased estimators [23], taking the following form:

MSEη(η̂) ⩾ E
(
tr

{
J−1
η|X

})
, (6)

where the expectation is taken with respect to X, and Jη|X
denotes the Bayesian Fisher information matrix (BFIM) of η
given by

Jη|X :=E
{
∂ ln pYs|X,η(Y s|X,η)

∂η

∂ ln pYs|X,η(Y s|X,η)
∂ηT

∣∣∣∣X}
+ E

{
∂ ln pη(η)

∂η

∂ ln pη(η)
∂ηT

}
.

It is well-known that certain practical estimators (e.g.
the maximum a posteriori (MAP) estimator) are capable
of achieving the BCRB in the asymptotic limit of high
SNR [23].3 In light of this, in this paper, we choose the BCRB
of η, namely

ϵ := E
(
tr

{
J−1
η|X

})
, (7)

as the metric of sensing accuracy.
At this point, it is worthwhile to clarify our motivation of

choosing the specific form of BCRB in (7), as well as to
justify this choice. Indeed, there exist multiple versions of the
BCRB when the parameters (or a part of the parameters) are
random [24]. What we are using is in fact the Miller-Chang
type bound [18], which treats X as a nuisance parameter,
and takes the expectation with respect to the conditional
CRB tr

{
J−1
η|X

}
. This specific form is particularly relevant

to the scenario where X is known to the sensing receiver.
To elaborate, let us consider a specific realization of X,
denoted as Xi. Since the sensing receiver always have the full
knowledge about X, the BCRB for this realization is given by
tr

{
J−1
η|X=Xi

}
. Taking the expectation over all realizations of

X, we obtain (7).
To reveal the fundamental S&C performance tradeoff,

we define the CRB-rate region, which is the set of all feasible
ordered pairs (ϵ, R), where R and ϵ are the communication
rate and the sensing CRB, respectively. Typically, we are
interested in the boundary of the CRB-rate region, which
may be viewed as the Pareto front constituted by all optimal
performance tradeoffs. To provide further intuitions about the
boundary, we portray some conceptual CRB-rate regions in

3When the SNR is lower, BCRB is less tight due to the fact that it mainly
exploits the local information of the posterior distribution around the mode.
Therefore, in this paper, we will focus on the analysis of high-SNR scenarios.

Fig. 2. Graphical illustration of various possible CRB-rate regions.

Fig. 2. Specifically, the point (ϵmin, 0) represents the minimum
achievable sensing MSE regardless of the communication
performance, while the point (+∞, Rmax) represents the max-
imum achievable rate regardless of the sensing performance.
The boundary A may be seen in scenarios where the integra-
tion of sensing and communication does not provide additional
performance gain (but we have some a priori knowledge
about the sensing parameters, hence the maximum CRB is
not infinity), while the boundary B may be seen in idealistic
scenarios where both sensing and communication performance
can achieve their optimum without eroding the other. In most
practical scenarios, the boundary of CRB-rate regions may
have a similar shape as that of the boundary C.

III. MAIN RESULTS

In this section, we summarize the main analytical results of
this paper. Before delving into details, we first give a general
description of an inner bound of the CRB-rate region.

Proposition 1 (Pentagon Inner Bound): Any point (ϵ, R)
satisfying the inequalities

ϵ ⩾ ϵmin, (8a)
R ⩽ Rmax, (8b)

ϵ ⩾ ϵmin +
ϵCS − ϵmin

Rmax −RSC
(R−RSC) (8c)

is achievable, where we define

ϵmin := min
pX(X)∈F

ϵ, (9a)

Rmax := max
pX(X)∈F

T−1I(Yc;X|Hc), (9b)

ϵCS := min
pX(X)∈F

ϵ, s.t. T−1I(Yc;X|Hc)=Rmax, (9c)

RSC := max
pX(X)∈F

T−1I(Yc;X|Hc), s.t. ϵ=ϵmin, (9d)

and

PSC := (ϵmin, RSC), PCS := (ϵCS, Rmax). (10)

Proof: The points in (10) are obviously achievable (but
note that in certain scenarios we may have RSC = 0 or
ϵCS = ∞). The line segment connecting PSC and PCS

(characterized by (8c)) can be achieved by using the cele-
brated time-sharing strategy [25, Chap. 4], namely applying
the strategy corresponding to PSC with probability p1, while
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Fig. 3. The pentagon inner bound of CRB-rate regions.

applying the strategy corresponding to PCS with probability
1− p1. This completes the proof.

A. The Structure of Sensing-Optimal Signals

As it can be observed from Fig. 3, the points PSC and PCS

correspond to the sensing-optimal and the communication-
optimal strategies, respectively, which serve as important
control points of the CRB-rate region. Naturally, a detailed
characterization of these points is desired. In particular,
to obtain PSC–achieving strategies, we should first find the
conditions that a sensing-optimal signal X must satisfy. Espe-
cially, the ISAC scenario imposes a unique challenge that
the signal X has to be random for carrying information,
while existing analysis of pure sensing (e.g. radar sensing)
scenarios typically assume deterministic signal or neglect the
randomness. To this end, we derive the general form of the
BFIM as follows.

Proposition 2 (BFIM Structure): The BFIM of η condi-
tioned on X takes the following form

Jη|X =
T

σ2
s

Φ(RX), (11)

where Φ(·) is an affine map characterized by

Φ(A) =
r1∑

i=1

F̃ iA
TF̃

H

i +
r2∑

j=1

G̃jAG̃
H

j + J̃P, (12)

where J̃P = σ2
sT

−1JP, and the term JP is contributed by
the prior distribution pη(η), given by4

JP = E
{
∂ ln pη(η)

∂η

∂ ln pη(η)
∂ηT

}
.

The matrices F̃ i and G̃i are given by (122) and (124).
Furthermore, we have r1, r2 ⩽ KM .

Proof: Please refer to Appendix A.

4In this paper, we consider the scenario where Hs and Hc are not
statistically correlated, although they may be physically correlated in terms
of subspace overlap (as will be detailed in Section IV-A). When they do
have a statistical correlation, the knowledge of Hc may be modelled as an
observation of η via p(Hc|Hs) and Hs = g(η). Let us denote the contribution
of p(Hc|Hs) to the BFIM as Jη|Hc . Since Jη|Hc does not depend on the
transmitted signal X, it can be absorbed into the term JP, and hence the
proposed framework also applies to this case after proper modifications.

When the trace of RX is fixed, we have the following
alternative representation of Φ(·).

Corollary 1: When the trace of RX is fixed, i.e., tr{RX} =
γ, we may express Φ(·) as follows

Φ(A) = Φγ(A) :=
r3∑

i=1

F̄ iAḠ
H
i , (13)

where r3 ⩽ KM , and the matrices F̄ i and Ḡi are given
by (134).

Proof: Please refer to Appendix B.
Using Proposition 2 and Corollary 1, we may now charac-

terize the minimum achievable CRB as follows.
Proposition 3 (Sensing-Optimal RX): The minimum

achievable CRB ϵmin is achieved when the trace of RX is
deterministic, namely when tr {RX} = tr

{
R̃X

}
. Moreover,

the support of p(RX) should be restricted to the optimal
solution set of the following deterministic convex optimization
problem

min
R̃X

tr
{(

ΦPTM (R̃X)
)−1

}
, (14a)

s.t. tr
{

R̃X

}
= PTM, R̃X ≽ 0, R̃X = R̃

H

X . (14b)

Proof: (sketch) We first show that the function

f(γ) := min
R≽0

tr
{
(Φγ(R))−1

}
, s.t. tr {R} = γ, R = RH

is convex. The optimal objective function value of the prob-
lem (14) can then be expressed as f(PTM). Thus for positive
semidefinite Hermitian RX, we obtain

min
p(RX)

E
{
tr

{
[Φ(RX)]−1

}}
, s.t. tr {RX} = PTM

⩾ min
p(γ)

E
{

min
tr{RX}=γ

tr
{
[Φγ(RX)]−1

}}
, s.t. E{γ}=PTM

= min
p(γ)

E {f(γ)} , s.t. E{γ} = PTM

⩾ f(PTM),

where the last line follows from Jensen’s inequality. For a
detailed proof, please refer to Appendix C.

Proposition 3 tells us that the sensing-optimal RX has a
deterministic trace. Moreover, when the problem (14) has a
unique optimal solution, it holds that the sensing-optimal RX

is itself deterministic, namely RX = R̃X. Next, we present a
sufficient and necessary condition for the uniqueness of the
optimal solution of (14).

Proposition 4 (Uniqueness of the Sensing-Optimal RX):
Consider a maximum-rank optimal solution of (14), denoted
as Ropt. It is also the unique optimal solution of (14), if and
only if the matrix Ξ(U∗

opt⊗Uopt) ∈ CK2×r2
has full column

rank, where Ξ ∈ CK2×M2
is given by

Ξ =
r1∑

i=1

(F̃
∗
i ⊗ F̃ i)K +

r2∑
j=1

G̃
∗
j ⊗ G̃j , (15)

r is the rank of Ropt, K is an elementary matrix satisfying
Kvec(A) = vec(AT), Uopt is obtained by the eigendecom-
position of Ropt

Ropt = UoptΛoptU
H
opt, (16)
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and Λopt ∈ Cr×r is a diagonal matrix containing all non-zero
eigenvalues of Ropt.

Proof: (sketch) Observe that the objective function (14a)
is convex with respective to R̃X. Therefore, it suffices to show
that it is strictly convex in a set constituted by R̃X satisfying
the aforementioned conditions. This would in turn require
Φ(·) be an injective map. For a detailed proof, please refer
to Appendix D.

Proposition 4 is both sufficient and necessary for the unique-
ness of the optimal solution, but may not be convenient for
verifying the solution-uniqueness of specific problems, since
it requires the information about the maximum-rank optimal
solutions. In light of this, next we provide some sufficient
conditions.

Proposition 5 (Sufficient Conditions for Uniqueness): The
problem (14) has a unique optimal solution, if any of the
following conditions holds:

1) (Generic) Ξ(U∗
R⊗UR) has full column rank, where UR

contains the eigenvectors corresponding to the maximum
eigenvalue of Φa

PTM (ZA), namely

UH
RΦa

PTM (ZA)UR = I · max
∥v∥=1

vHΦa
PTM (ZA)v, (17)

with ZA being the optimal solution of the following
problem

max
ZA

(
tr

{
Z

1
2
A

} )2

,

s.t. PTMΦa
PTM (ZA)≼I, ZA =ZH

A, ZA ≽0, (18)

where Φa
PTM (·) is the adjoint operator of ΦPTM (·),

characterized by

Φa
PTM (A) =

r3∑
i=1

Ḡ
H
i AF̄ i. (19)

2) (K ⩾ M ) Ξ has full column rank;
3) (K = 1) The eigenspace corresponding to the maximum

eigenvalue of the following matrix

B1 :=
r1∑

i=1

(F̃
H

i F̃ i)T +
r2∑

j=1

G̃
H

j G̃j (20)

has dimensionality 1.
Proof: (sketch) For the K ⩾ M case, it is straightforward

that when Ξ has full column rank, the map Φ(·) is injective.
For the general case, the problem (18) is the dual of the
original problem (14). Since strong duality holds, these two
problems have identical optimal solutions, but the uniqueness
condition derived from the dual problem is more convenient as
it does not involve the maximum-rank solution. The condition
for the K = 1 case follows from a simplification of the general
condition. For a detailed proof, please refer to Appendix E.

When the sensing-optimal covariance matrix is unique,
we have the following result.

Corollary 2: If the sensing-optimal R̃X is unique, its rank
is upper-bounded by

rank(R̃X) ⩽ min{K,M}. (21)

Proof: Please refer to Appendix F.

B. Point PSC–Achieving Strategy

In general, the optimization problem (14) has to be solved
on a case-by-case basis. Considering the limited scope of this
paper, we defer the discussion of the detailed structure of the
optimal solution to our future works, and simply denote the
optimal sample covariance matrices as RSC

X . Note that

I(Yc;X|Hc) = I(Yc;X,RSC
X |Hc), (22)

since RSC
X is a deterministic function of X, and thus using the

chain rule of mutual information, we have

I(Yc;X|Hc) = I(Yc;RSC
X |Hc) + I(Yc;X|Hc,R

SC
X ). (23)

The rate RSC can now be expressed as

RSC =max
pX(X)

1
T

(
I(Yc;RSC

X |Hc)+I(Yc;X|Hc,R
SC
X )

)
, (24a)

s.t. RSC
X ∈ RSC, (24b)

where RSC is the set of optimal solutions of problem (14),
given by

RSC =
{
R|tr

{
(ΦPTM (R))−1

}
= min

R∈D
tr

{
(ΦPTM (R))−1

} }
where D is constituted by all feasible R’s satisfying (14b).
Especially, we observe that when the sensing-optimal sample
covariance matrix is unique, i.e.

RSC
X = R̃

SC

X with probability 1, (25)

the term I(Yc|Hc;RSC
X ) in (24a) is zero, and hence we have

RSC = max
pX(X)

1
T
I
(
Yc;X

∣∣Hc,R
SC
X =R̃

SC

X

)
, (26a)

s.t. R̃
SC

X = argmin
R∈D

tr
{
(ΦPTM (R))−1

}
. (26b)

When (25) holds, we may provide a generic characterization
of the point PSC in the high-SNR regime, as detailed in the
following proposition.

Theorem 1 (Sensing-Limited High-SNR Ergodic Capacity):
When the sensing-optimal sample covariance matrix is unique,
in the high-SNR regime, namely when PT/σ

2
c →∞, the rate

RSC can be expressed as

RSC =E
{(

1−MSC

2T

)
log |σ−2

c HcR̃
SC

X HH
c |+c0

}
+O(σ2

c ).

(27)

where MSC denotes the rank of HcR̃
SC

X HH
c , and the term

c0 =
MSC

T

[(
T−MSC

2

)
log

T

e
−log Γ(T )+log(2

√
π)

]
(28)

converges to zero as T →∞.
Proof: Please refer to Appendix G.

Theorem 1 also enables us to propose a scheme that
asymptotically achieves the point PSC in the high-SNR regime,
as given in the following corollary.

Corollary 3 (Point PSC–Achieving Strategy): In the high-
SNR regime, when (25) holds, the rate RSC may be asymp-
totically achieved by a waveform XSC generated as follows:

XSC =
√
TH†cŨΣ̃Q + X⊥, (29)
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where H†c denotes the Moore-Penrose pseudo-inverse of Hc,
Ũ contains the first MSC columns of U given by the eigende-
composition of HcR̃

SC

X HH
c

HcR̃
SC

X HH
c = UΛUH, (30)

Σ̃ = diag {σ1, . . . ,σMSC}, σi =
√
λi, λi is the i-th largest

eigenvalue of the matrix HcR̃
SC

X HH
c , and X⊥ ∈ CM×T is any

matrix satisfying

X⊥(H†cŨΣ̃Q)H = 0, (31a)

T−1X⊥XH
⊥ + H†cHcR̃

SC

X H†cHc = R̃
SC

X . (31b)

The matrix Q ∈ CMSC×T contains the modulated data, uni-
formly sampled from the following rescaled Stiefel manifold

V =
{
Q ∈ CMSC×T |QQH = IMSC

}
. (32)

Moreover, the uniform sampling over V can be implemented
as follows:

1) Construct A ∈ CMSC×T , in which each column is
independently drawn from the standard circular complex
Gaussian distribution CN (0, IMSC);

2) Obtain Q by performing the LQ decomposition of A,
namely A = LQ, where L is a lower-triangular matrix
with real diagonal entries, and Q is a semi-unitary matrix
satisfying QQH = IMSC .

Proof: Please refer to Appendix I.
A PSC–achieving strategy in the form of (29) seems to rely

on the knowledge of Hc. Next, we show that this knowledge
is not necessary, by providing a specific form of XSC which
does not incorporate Hc.

Corollary 4: One of the possible XSC satisfying (29) is
given by

XSC,1 =
√
TU sΛ

1
2
s Q, (33)

where U s and Λs are obtained from the eigendecomposition
of R̃

SC

X as

R̃
SC

X = U sΛsU
H
s ,

and Q is uniformly sampled from the set V given in (32).
Proof: Please refer to Appendix I.

C. Point PCS–Achieving Strategy

In contrast to that of achieving point PSC, the strategy
of achieving point PCS is well-known in the literature [26].
Specifically, we may simply employ the capacity-achieving
strategy in the communication-only scenario, which gives the
maximum achievable rate

Rmax = max
R̃X

E{log
∣∣I + σ−2

c HcR̃XHH
c

∣∣}, s.t. (3),

= E{log
∣∣I + σ−2

c HcR̃
CS

X HH
c

∣∣}, (34)

where the maximization with respect to R̃X can be carried out
using water filling for each realization of Hc [27, Sec. 9.4],
and each column xi in the PCS–achieving X (denoted by
XCS following the circularly symmetric complex Gaussian

distribution CN (0, R̃
CS

X ). Then, the communication-limited
minimum CRB is given by

ϵCS =
σ2

s

T
E

{
tr

[(
Φ(RCS

X )
)−1

]}
. (35)

Next, we provide an upper bound for ϵCS at the high-SNR
limit.

Theorem 2 (Sensing DoF Loss): When the columns in X
are independent of one another, and identically follow a cir-
cularly symmetric complex Gaussian distribution CN (0, R̃X),
if [Φ(RX)− J̃P]−1 exists almost surely and J̃P is invertible,
we may obtain the following bound:

tr
{

Φ(R̃X)−1
}

⩽ E
{
tr

{
Φ(RX)−1

}}
⩽

T · tr
{

Φ(R̃X)−1
}

T −min{K, rank(R̃X)}
. (36)

Proof: Please refer to Appendix J.
To fully unveil the implications of Theorem 2, let us

formally define the concept of sensing DoF. Upon denoting
the SNR as γ, the communication DoF is known to be defined
as the asymptotic ratio [28]

νc = lim
γ→∞

R(γ)
log(1 + γ)

, (37)

where R(γ) denotes the maximum achievable rate given the
SNR γ. Similar to the communication DoF, we define the
sensing DoF as the following high-SNR limit

νs = lim
σs→0

tr
{

[Φ(R̃X)]−1
}

T−1E{tr {[Φ(RX)]−1}}
. (38)

Using this definition, we may now interpret the quantity
min{K, rank(R̃X)} in (36) as an upper bound for the sensing
DoF loss induced by employing the communication-optimal
transmission scheme. Intuitively, when RX = R̃X, the sensing
DoF is T , which may be viewed as the number of independent
observations. In general, for a random RX corresponding to
a sensing DoF of νs, the sensing CRB equals to that of the
deterministic covariance matrix scenario (i.e. RX = R̃X) with
T = νs. This suggests that νs may be interpreted as the
effective number of independent observations. The a priori
knowledge about the sensing parameters clearly improves the
sensing performance, but it does not contribute to the sensing
DoF in general. This can be observed from (12), where the
term J̃P converges to zeros as σs → 0.

The first equality (the best sensing DoF) in (36) is achieved
when RX is deterministic. For the second equality (the worst
case) to be achieved, some sufficient conditions are summa-
rized as follows.

Corollary 5 (Sufficient Conditions for Maximum Sensing
DoF Loss): The second equality in (36) is achieved if either
of the following conditions holds:

1) K ⩽ rank(R̃X), r1 + r2 = 1;
2) The covariance matrix R̃X is invertible, and the matrix

F st = [F̃ 1, . . . , F̃ r1 , G̃1, . . . , G̃r2 ]

is unitary.
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Proof: Please refer to Appendix K.
By presenting Corollary 5, we hope that it may provide

further intuitions regarding the sensing DoF, since in the worst
case we have precise knowledge about the sensing DoF loss.
In Section V-B we will see that, the task of target response
matrix estimation is a typical example of scenarios where the
condition 2) in Corollary 5 is applicable.

IV. DISCUSSIONS

In this section, we discuss the intuitions and implications
of the results presented in Section III.

A. S&C Tradeoff as a Two-fold Tradeoff: ST and DRT

A central implication of the results in Section III is that the
S&C tradeoff is two-fold, detailed as follows.

1) Subspace Tradeoff (ST): According to the discussions in
Section III-B and Section III-C, at point PSC, any sensing-
optimal R̃X has the following structure

R̃X = U sΛsU
H
s , (39)

where U s ∈ CM×r contains the eigenvectors of the maximum-
rank (= r) sensing-optimal RX corresponding to the non-
zero eigenvalues, while Λs is a positive semidefinite Hermitian
matrix that ensures R̃X to be an optimal solution of the prob-
lem (14). In particular, when the sensing optimal R̃X is unique,
Λs is a diagonal matrix containing the non-zero eigenvalues
of R̃X. By contrast, at point PCS, the communication-optimal
R̃X takes the following form

R̃X = U cΛcU
H
c , (40)

where U c ∈ CM×rank(Hc) contains the left-singular vectors
of the communication channel matrix Hc corresponding to
the non-zero singular values, while Λc is a diagonal matrix
determined by the water-filling power allocation strategy.

From the discussion above, we may observe that the matrix
U s characterizes the sensing subspace, while U c character-
izes the communication subspace. Given a specific statistical
covariance matrix R̃X, when its column space is more closely
aligned with the sensing subspace, we may achieve a more
favorable sensing performance at the cost of degraded com-
munication performance, and vice versa. This depicts a part of
the entire picture of the S&C tradeoff, which will be referred
to as the subspace tradeoff (ST).

2) Deterministic-Random Tradeoff (DRT): Given a specific
R̃X, the S&C tradeoff can be further adjusted by controlling
the “degree of randomness” of the signal X. To obtain a
higher communication rate, one should modulate as much
information as possible onto the carrier signal, hence the
transmitted waveform should be “as random as possible”.
However, sensing systems prefer deterministic signals for
achieving a stable sensing performance. This has been an
intuitive insight consistent with both the engineers’ experience
and S&C signal processing theory developed during the past
few decades [29]. Indeed, Proposition 3 tells us that to achieve
the optimal sensing performance, the transmitted waveform
has to be deterministic to a degree, in the sense that its sample
covariance matrix RX should be deterministic. Consequently,

following the notations in (39), any sensing-optimal signal
should take the following form

X =
√
TU sΛ

1
2
s Q, (41)

where Q ∈ Cr×T is a semi-unitary matrix satisfying
QQH = I . Among these sensing-optimal signals, those
achieving the highest communication rate are given by Corol-
lary 3. By contrast, at point PCS, the communication-optimal
signal is given by

X = U cΛ
1
2
c D, (42)

where D ∈ Crank(Hc)×T contains i.i.d. standard circularly
symmetric complex Gaussian entries.

Comparing (41) with (42), it can be observed that the
sensing-optimal signal X sacrifices some communication
DoFs, in the sense that the rows in Q are forced to have
unit norms and to be orthogonal to one another. On the other
hand, as indicated by Theorem 2, the communication-optimal
X also sacrifices some sensing DoFs. We refer to this part of
the S&C tradeoff as the deterministic-random tradeoff (DRT).
A noteworthy issue is that, when the coherent sensing period
T is sufficiently long compared to MSC, the DRT becomes
less prominent, since even a communication-optimal Gaussian
waveform X would have asymptotically orthogonal rows as
T/MSC → ∞ [30]. A related fact is that most existing
contributions on the joint design of ISAC systems treat the
sample covariance matrix RX as a deterministic matrix [7],
[31], [32], [33]. Such designs may now be interpreted as
neglecting the DRT, and hence can be viewed as infinite-T
approximations to the original ISAC design problem.

3) ST and DRT in Terms of DoF: Next, we provide some
quantified characterizations of the ST and DRT. Let us first
take the point PSC as an example. According to (27), the
sensing-limited rate RSC in the high-SNR regime is given by

RSC = E
{(

1− MSC

2T

)
log |σ−2

c HcR̃
SC

X HH
c |+ c0

}
+O(σ2

c ),

(43)

which implies that the number of communication DoFs at
the point PSC is MSC

(
1 − MSC

2T

)
. Hence we may define the

communication DoF efficiency at point PSC as

ζSC := αSC

(
1− MSC

2T

)
, (44)

where αSC = α(R̃
SC

X ) is the communication subspace overlap
coefficient at point PSC, defined as

α(R̃X) =
rank(HcR̃XHH

c )
rank(HcH

H
c )

. (45)

With the definition MCS = rank(HcR̃
CS

X HH
c ), we see that

αSC = MSC/MCS. (46)

Observe that in general, the communication subspace overlap
coefficient α(R̃X) takes value in [αSC, 1], which may be
viewed as an indicator of the ST. The DRT is quantified by
the term (1−MSC/2T ) in (44), which is less than 1 as long
as T is finite.
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Regarding the point PCS, we see from (36) that

E{tr
{
[Φ(RX)]−1

}
} ⩽

T tr
{

[Φ(R̃X)]−1
}

T −min{K, rank(R̃X)}
, (47)

which implies that the sensing DoF is lower bounded by T −
min{K, rank(R̃X)}. Note that at PCS, we have rank(R̃X) =
rank(HcR̃XHH

c ). Thus when K ⩽ rank(R̃X), we may
observe an interesting symmetry between PSC and PCS:
the maximum sensing DoF loss at PCS is MCS, while the
communication DoF loss at PSC is determined by MSC. When
K > rank(R̃X), the maximum sensing DoF loss becomes K.
Intuitively, we may interpret the ratio min{K, rank(R̃X)}/T
as the sensing load, which depicts the number of effective
sensing parameters per unit time. As the sensing load tends
to zero (e.g. T → ∞), we see that the maximum sensing
DoF loss also converges to zero. This corroborates the intu-
ition obtained from the discussion of PSC, namely, the DRT
becomes negligible in the large T regime, where pure Gaussian
signals are sufficient for achieving the Pareto-optimal S&C
performance (i.e. the boundary of the CRB-rate region).

B. Achievable Inner Bounds Connecting PSC and PCS

Besides PSC and PCS, other points on the boundary of
the CRB-rate region are also of significant practical interest.
However, obtaining the genuine boundary would in general
require solving the following complicated functional optimiza-
tion problem:

min
p(X)

E
{
tr

{
[Φ(RX)]−1

}}
− λ · I(Yc;X|Hc)

s.t. tr {RX} = PTM, RX ≽ 0, RX = RH
X ,

which is typically intractable in the vector Gaussian channel
scenario considered in this paper, due to the lack of explicit
form of the mutual information I(Y c;X|Hc) and the com-
plexity of the CRB term. In light of this, in this subsection,
we discuss two strategies that may be applied either separately
or jointly, forming inner bounds of the actual boundary.

1) Time Sharing: In Section III, the time-sharing strategy
has been applied to conceive the pentagon inner bound.
It can be generalized to any pair of given signalling schemes
corresponding to a pair of points in the CRB-rate region,
by employing one of the schemes with probability p and
the other with probability 1 − p. In general, once a specific
achievable inner bound is given, its convex envelope is also
achievable with the aid of time sharing.

2) Statistical Covariance Shaping: It is also possible to
adjust the S&C tradeoff by altering the statistical covariance
matrix R̃X. Specifically, given a realization of Hc, a flexible
tradeoff may be struck by solving the following optimization
problem

min
R̃X

(1− α)tr
{[

ΦPTM (R̃X)
]−1}

− α log
∣∣I + σ−2

c HcR̃XHH
c

∣∣, (48a)

s.t. tr
{

R̃X

}
= PTM, R̃X ≽ 0, R̃X = R̃

H

X , (48b)

where α ∈ [0, 1] controls the preference between the sensing
and the communication performance. This is a convex opti-
mization problem, which may be efficiently solved by off-the-
shelf numerical solvers [34], [35]. Note that when α = 0, the
problem (48) degenerates to the sensing-only problem (14).
An alternative formulation is given by

max
R̃X

log
∣∣I + σ−2

c HcR̃XHH
c

∣∣, (49a)

s.t. tr
{

R̃X

}
= PTM, R̃X ≽ 0, R̃X = R̃

H

X , (49b)

tr
{[

ΦPTM (R̃X)
]−1}

⩽ ϵα, (49c)

where ϵα is the value of tr
{[

ΦPTM (R̃X(α))
]−1}

, with

R̃X(α) being the optimal R̃X of the problem (48) given a
specific value of α.

Once a specific statistical covariance matrix R̃X(α) is
obtained from (48) or (49) for a given α, we can first obtain
a natural outer bound of the CRB-rate region as follows:

Rout(α) = E
{

log
∣∣I + σ−2

c HcR̃X(α)HH
c

∣∣}, (50a)

ϵout(α) =
σ2

s

T
tr

{[
ΦPTM (R̃X(α))

]−1}
. (50b)

Next, we may decide the specific signalling strategy. One of
the possible strategies is to transmit the following signal

X = XG + XG,⊥, (51)

where XG has i.i.d. columns following the circularly sym-
metric complex Gaussian distribution CN (0,H†cHcR̃XH†cHc),
while XG,⊥ ∈ CM×T is any matrix satisfying

T−1XG,⊥XH
G,⊥ + H†cHcR̃XH†cHc = R̃X. (52)

This leads to an achievable inner bound referred to as the
“Gaussian inner bound”, as follows:

Rin,G(α) = Rout(α), (53a)

ϵin,G(α) =
σ2

s

T
E

{
tr

[(
Φ(RX(α))

)−1]}
. (53b)

Another possible strategy is given by

X =
√
TH†cŨΛ̃

1
2 Q + XU,⊥, (54)

where Q ∈ CMU×T contains the modulated data, which is
uniformly sampled from

VR̃X
= {Q ∈ CMU×T |QQH = IMU},

MU = rank(HcR̃XHH
c ), Λ̃ ∈ CMU×MU is a diagonal matrix

consisting of all non-zero eigenvalues of HcR̃XHH
c , and

HcR̃XHH
c = ŨΛ̃Ũ

H
.

The matrix XU,⊥ ∈ CM×T is any matrix satisfying

XU,⊥(H†cŨΛ̃
1
2 Q)H = 0, (55a)

T−1XU,⊥XH
U,⊥ + H†cHcR̃XH†cHc = R̃X. (55b)

This corresponds to another inner bound referred to as the
“semi-unitary inner bound”, characterized by

Rin,U(α) = E
{(

1− MU

2T

)
log |σ−2

c HcR̃X(α)HH
c |
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+ c0,U

}
+O(σ2

c ), (56a)

ϵin,U(α) = ϵout(α), (56b)

where

c0,U =
MU

T

[(
T−MU

2

)
log

T

e
−log Γ(T )+log(2

√
π)

]
.

(57)

Furthermore, we may obtain a refined inner bound on the
basis of the Gaussian inner bound and the semi-unitary inner
bound, by applying the time-sharing strategy. Specifically, this
inner bound, referred to as the “semi-unitary–Gaussian inner
bound”, is constructed by computing the convex envelope of
the union of the Gaussian inner bound and the semi-unitary
inner bound. Each point on this refined inner bound is
achievable by applying a suitable time-sharing strategy, which
interpolates between a signalling scheme adapted from the
Gaussian inner bound and another signalling scheme adapted
from the semi-unitary inner bound.

Regarding the tightness of the semi-unitary–Gaussian inner
bound, we have the following result.

Proposition 6: When the optimal objective function value
of (49) is not identical for all α ∈ [0, 1], the semi-unitary–
Gaussian inner bound is a tighter bound compared to the
pentagon inner bound obtained by connecting PSC and PCS.

Proof: Please refer to Appendix L.
Proposition 6 suggests that, under mild technical assump-

tions, it would be beneficial to combine the time-sharing strat-
egy with statistical covariance shaping, rather than applying
them separately.

C. The Connection Between Existing ISAC Schemes and
PSC– & PCS–Achieving Strategies

In this subsection, we will discuss how the design philoso-
phy of current ISAC systems is related to different CRB-rate
boundary-approaching strategies.

1) Sensing-Centric Designs: Sensing-centric schemes are
typically implemented relying on existing sensing infrastruc-
tures, such as radars [36], [37], [38]. They are designed
aiming for incorporating communication functionalities into
the system, without compromising the sensing performance.

A representative sensing-centric design is based on index
modulation (IM) [37], [38], in which the communication
information is encoded into the index of the waveform chosen
from a preset codebook. More precisely, the transmitted signal
in the IM-based scheme designed for colocated multiple-input
multiple-output (MIMO) radars takes the following form

X =
√
PTPU , (58)

where U ∈ CM×T represents the radar waveform code-
book, which is a deterministic semi-unitary matrix satisfying
UUH = IM , while P is an M × M permutation matrix
that conveys the communication information. Observe that the
sample covariance matrix RX is given by

RX =
1
T

XXH = PTIM , (59)

which is deterministic. As will be discussed in Section V-B,
this choice yields the optimal sensing performance when

the sensing objective is the entire channel Hs. By contrast,
the maximum communication throughput of this scheme is
log2M ! bits per transmission (i.e. each length-T block), which
is typically lower than the sensing-optimal capacity that is
asymptotically achieved by the uniform distribution over the
entire ensemble of M × T semi-unitary matrices, as detailed
in Corollary 3. In light of this, we may conclude that the
IM-based scheme follows a design philosophy that aims for
achieving the PSC point. However, due to its suboptimal
communication throughput, the scheme would actually achieve
a point right below PSC in the CRB-rate region.

2) Communication-Centric Designs: When an ISAC sys-
tem is built upon commercialized communication networks,
communication-centric designs are practically more attractive,
whose primary objective is to guarantee the communica-
tion performance. Such designs typically rely on existing
communication-oriented protocol stacks, for example, Wi-Fi
and 5G new radio (NR).

A representative approach to communication-centric designs
is to exploit the widely-used orthogonal frequency-division
multiplexing (OFDM)-based waveform [39]. In the absence
of the cyclic prefix (CP), both the communication channel
and the target response matrix can be represented by Toeplitz
matrices in the following form:

H =



h1 0 . . . 0

h2 h1
. . .

...
... h2

. . . 0

hTCIR

...
. . . h1

0 hTCIR

. . . h2

...
. . . . . .

...
0 . . . 0 hTCIR


, (60)

where TCIR is the duration of the channel impulse response
(CIR). When the CP is attached to the data symbols, and it is
longer than the duration of the CIR, the channels can also be
expressed in the form of circulant matrices (with M = Nc =
Ns), and hence could be diagonalized by the discrete Fourier
transform (DFT) matrices as follows

Hc = UH
F,MDcUF,M , (61a)

Hs = UH
F,MDsUF,M , (61b)

where Dc and Ds are diagonal matrices representing the
frequency-domain communication channel and the target
response, respectively, while UF,M denotes the M -point DFT
matrix. Before the transmission, the raw data symbols are
pre-processed by the inverse DFT, and thus can be expressed
as

X = UH
F,MXF, (62)

where each row of XF contains the data symbols modulated on
a single subcarrier. Each data symbol is typically chosen from
a fixed constellation, for example, phase shift keying (PSK)
and quadrature amplitude modulation (QAM), according to the
requirement of communication throughput.
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Let us illustrate the DRT of the OFDM-based scheme by
considering a specific sensing task, namely that of estimating
the CIR, which is a widely-used pre-processing procedure for
delay estimation [39]. In this example, the sensing parameter
is η = UH

F,Mmdiag(Ds). Note that

η = UH
F,MPKUvec(HT

s ), (63)

where KU = UF,M ⊗U∗
F,M , and P ∈ RM2×M2

is a matrix
satisfying P vec(A) = mdiag(A). Thus the linear map Φ(RX)
is given by

Φ(RX)=UF,MPKH
U(I ⊗ RT

X)KUP HUH
F,M

=UF,MP
(
I ⊗UT

F,MRT
XU∗

F,M

)
P HUH

F,M

=UF,Mmat
(
mdiag

(
UT

F,MRT
XU∗

F,M

))
UH

F,M,

(64)

hence the sensing-optimal sample covariance matrix should
satisfy

mat
(
mdiag

(
UT

F,MRT
XU∗

F,M

))
= PTIM , (65)

which implies that

∥[XF]i,:∥2 = TPT, ∀i = 1, . . . ,M. (66)

In other words, the transmit power should be equally allocated
to each subcarrier for achieving the optimal CIR estimation
performance. In a typical communication-oriented OFDM
system, the statistical covariance matrix would in general
be a diagonal matrix corresponding to the specific power
allocation strategy. When the power is equally allocated to
each subcarrier, we have R̃X = PTIM , since the data
symbols are independent of one another. However, the sample
covariance matrix is not necessarily the same as R̃X due to
the randomness of the data. The issue could be resolved by
applying PSK constellations, at the cost of a lower commu-
nication throughput, since the amplitude of the symbols does
not carry information in PSK. By varying the power allocation
strategy as well as the constellation (possibly accompanied by
error-correcting codes for rate adaptation), we may strike a
flexible S&C tradeoff from point PSC to point PCS.

D. Semi-Unitary Signalling: The PSC–Achieving Strategy vs.
Non-Coherent Communication

The PSC–achieving strategy discussed in Section III-B
bears some resemblance to the unitary space-time modulation
(USTM) [40] designed for communicating over non-coherent
channels. To elaborate, let us consider the scenario where the
communication channel Hc follows an entrywise i.i.d. zero-
mean, unit-variance complex Gaussian distribution, namely
vec(Hc) ∼ CN (0, IMNc), and is not known to the either the
transmitter or the receiver. In this context, it has been shown
that the capacity is achieved by signals satisfying5

X = AQ, (67)

5For simplicity of discussion, in the rest of this subsection we assume
T ⩾ 2M . When this is not the case, the analysis becomes tedious and less
relevant to this paper. Interested readers are referred to [41] and [42].

where Q ∈ CM×T is a semi-unitary matrix and A ∈ CM×M

is a diagonal matrix being invariant under permutation of its
diagonal entries, which is asymptotically proportional to an
identity matrix in the high-SNR regime [41]. The specific
designs of the semi-unitary matrix have then been referred
to as USTM schemes, which are related to coding on the
Grassmann manifold GT,M defined as the quotient space
between two Stiefel manifolds ST,M and SM,M under the
equivalence relationship

P = UQ ⇐⇒ P is equivalent to Q, P , Q ∈ ST,M ,

where U ∈ SM,M is a unitary matrix, and the Stiefel manifold
ST,M is defined as

ST,M =
{

Q ∈ CM×T |QQH = I
}
.

Comparing (67) with (41), we see that the USTM and the
PSC–achieving signals are similar in form. Nevertheless, it is
noteworthy that they are substantially different in the following
aspects:
• Precoding: In the non-coherent communication scenario,

the communication channel Hc is isotropic. Conse-
quently, the precoding matrix A in (67) is also isotropic
in terms of its diagonal entries. By contrast, in the PSC–
achieving strategy, the precoding matrix

√
TU sΛ

1
2
s is

determined by the sensing-optimality constraint, which
aligns the signal with the sensing subspace;

• Reason of optimality: An intuitive interpretation for
the optimality of USTM is provided in [42], which
states that in the high-SNR regime, HcX should be
entrywise i.i.d. Gaussian distributed for achieving the
non-coherent channel capacity, which implies that X
should take the form of (67). By contrast, in this
paper, the reason of using semi-unitary signals fol-
lows from the sensing-optimality constraint, while the
communication-optimality is achieved by applying uni-
form sampling over Stiefel manifolds instead of coding
over Grassmann manifolds.

• Communication DoF: In the non-coherent communica-
tion scenario, it has been shown [42] that an alternative
optimal strategy is to estimate the channel using pilot
symbols before transmitting data symbols. This would
impose a pilot cost of MNs symbols since Hc has MNs

unknown entries, and hence results in a communication
DoF loss of M2/T . This may also be inferred from the
fact that the dimensionality of the Grassmann manifold is
M(T−M). By contrast, in this paper, the communication
DoF is determined by the dimensionality of the Stiefel
manifold, which is MSC(T − 1

2MSC). Consequently, the
communication DoF loss of M2

SC
2T , which is half of the

communication DoF loss in the non-coherent communi-
cation scenario when MSC = M .

V. CASE STUDY

A. Target Angle Estimation

Let us first consider the scenario, where the sensing task is
to estimate the angles of targets using a MIMO radar equipped
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with co-located antennas. In this scenario, the target response
matrix Hs admits the following parametrization [43]:

Hs =
NT∑
n=1

αna(θn)vT(θn), (68)

where NT represents the number of targets, θn denotes the
angle of the n-th target relative to the radar, αn denotes the
complex amplitude of the echo received from the n-th target,
while v(·) and a(·) denote the mappings from the angle to
the steering vectors of the transmitting and receiving antennas,
respectively. We assume the transmitting and receiving antenna
arrays are conjugate symmetric. For the simplicity of discus-
sion, we consider the case of NT = 1, which corresponds to
the parameter vector

η = [θ, Re{α}, Im{α}]T,

where θ = θ1, α = α1. According to [43], we have

Jη|X = 2

 Re{f11} Re{f12} −Im{f12}
Re{f12} Re{f22} −Im{f22}
−Im{f12} −Im{f22} Re{f22}

 + JP,

(69)

where

f11 =
T |α|2

σ2
s

(
∥ȧ(θ)∥2tr

{
v(θ)vH(θ)RT

X

}
+2Re

{
ȧH(θ)a(θ)tr

{
v̇(θ)vH(θ)RT

X

}}
+∥a(θ)∥2tr

{
v̇(θ)v̇H(θ)RT

X

})
, (70)

f12 =
Tα∗

σ2
s

(
ȧH(θ)a(θ)tr

{
v(θ)vH(θ)RT

X

}
+∥a(θ)∥2tr

{
v(θ)v̇H(θ)RT

X

})
, (71)

f22 =
T

σ2
s

∥a(θ)∥2tr
{
v(θ)vH(θ)RT

X

}
, (72)

where ȧ(θ) = ∂a(θ)/∂θ, and v̇(θ) = ∂v(θ)/∂θ. Let us
assume that the prior distributions of θ, Re{α} and Im{α}
are independent of one another, and hence

JP = diag
(
JP
θ
, JP

Re{α}, J
P
Im{α}

)
. (73)

Furthermore, we assume that the complex amplitude α is
circularly symmetric, which implies that E{α} = E{α∗} = 0,
and that JP

Re{α} = JP
Im{α} = JP

α
. Since we are only interested

in the angle θ, we consider its equivalent BFIM (by treating
α as a nuisance parameter) given by [44]

Je(θ) = 2E{f11}+ JP
θ

− 4E{f∗12}(2E{f22}+ JP
α

)−1E{f12}, (74)

which equals to the first diagonal entry (corresponding to θ)
in J−1

η|X. Using the assumption that α is circularly symmetric,
we obtain that E{f12} = 0, and thus

Je
θ|X = 2E{f11}+ JP

θ

=
2TE{|α|2}

σ2
s

tr
{
MRX

}
+ JP

θ
, (75)

where M = E{M∗(θ)}, and

M(θ) = ∥ȧ(θ)∥2v(θ)vH(θ) + ȧH(θ)a(θ)v̇(θ)vH(θ)

+ aH(θ)ȧ(θ)v(θ)v̇H(θ) + ∥a(θ)∥2v̇(θ)v̇H(θ). (76)

We may simplify the expression of M(θ) by choosing the
phase reference point of the transmitting and receiving arrays
such that v̇H(θ)v(θ) = 0 and ȧH(θ)a(θ) = 0, and hence

M(θ) = ∥ȧ(θ)∥2v(θ)vH(θ) + ∥a(θ)∥2v̇(θ)v̇H(θ). (77)

1) Sensing DoF: According to Theorem 2, the sensing DoF
in the single-target angle estimation scenario at point PCS is
lower-bounded by

νs ⩾ T −K = T − 1. (78)

In particular, when the communication channel Hc is rank-
1 (e.g. line-of-sight (LoS) MIMO channel), the lower bound
in (78) is achieved. To elaborate, note that when Hc is rank-
1, the communication-optimal covariance matrix R̃

CS

X is also
rank-1. In this case, since we have RX = RCS

X , the term
tr

{
MRX

}
in (75) is given by

tr
{
MRX

}
=
PTMrHMr

T

T∑
i=1

|ni|2, (79)

where r is the eigenvector corresponding to the maxi-
mum eigenvalue of R̃

CS

X , and ni’s are mutually independent
zero-mean circularly symmetric complex Gaussian random
variables with unit variance. Hence tr

{
MRX

}
is proportional

to a chi-squared distributed random variable having DoF 2T ,
which implies that

E
[(

tr
{

MRCS
X

} )−1
]

=
T

(T − 1)tr
{

MR̃
CS

X

} . (80)

Thus the sensing DoF can be calculated as

νs = lim
σs→0

TE
{(

tr
{

MRCS
X

}
+ σ2

s JP
θ

TE{|α|2}

)−1
}

(
tr

{
MR̃

CS

X

}
+ σ2

s JP
θ

TE{|α|2}

)−1

= T − 1, (81)

which indeed achieves the lower bound in (78).
2) Communication DoF: Observe from (75) that, at point

PSC, the columns of RSC
X should be spanned by the subspace

corresponding to the largest eigenvalue of M . Therefore,
when the largest eigenvalue of M has multiplicity 1, the
sensing-optimal sample covariance matrix RSC

X is unique and
rank-1. In this case, the high-SNR sensing-limited capacity is
asymptotically given by

RSC = E
{

2T − 1
2T

log |σ−2
c HcR̃

SC

X HH
c |+ c0

}
+O(σ2

c ),

(82)

when the column space of RSC
X (= R̃

SC

X ) is not orthogonal to
the column space of Hc, otherwise the capacity is zero. We see
from (82) that the communication DoF is (2T − 1)/2T , and
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hence the communication DoF loss induced by the DRT is
1/2T .

To further understand the S&C tradeoff in the task of
target angle estimation, let us consider a simplistic scenario,
where the communication receiver is equipped with a single
antenna. We further assume that the communication channel
is deterministic and denoted as hc, hence the (per antenna)
maximum sensing and communication receiving SNR may be
computed as

SNRs = MPTE{|α|2}σ−2
s , (83a)

SNRc = MPT∥hc∥2σ−2
c , (83b)

respectively. Furthermore, we assume that the maximum
eigenvalue of M has multiplicity 1. Since Nc = 1, we now
see that both the sensing-optimal and the communication-
optimal sample covariance matrices are rank-1. Therefore, the
communication subspace is spanned by hc, while the sensing
subspace is spanned by the sensing-optimal steering vector us

characterized by

Mus = λ1{M}us, (84)

where λ1(·) denotes the maximum eigenvalue of its argument.
In other words, us is the eigenvector corresponding to the max-
imum eigenvalue of M . In this scenario, the overlap between
the communication subspace and the sensing subspace can be
depicted by the following quantity

ρ =
hH

c Mhc

∥hc∥2λ1{M}
. (85)

Under the aforementioned assumptions, besides the pen-
tagon inner bound obtained by employing time-sharing strate-
gies between PSC and PCS, we can also obtain some refined
inner bounds of the CRB-rate region using the statistical
covariance shaping method discussed in Section IV-B, as well
as an outer bound. Specifically, the statistical covariance
shaping problem now takes the following form

max
R̃X

tr
{

MR̃X

}
+ λhH

c R̃Xhc

s.t. tr
{

R̃X

}
= PTM, R̃X ≽ 0, R̃X = R̃

H

X , (86)

where λ ∈ [0,+∞) controls the preference between the
sensing and the communication performance. The solution to
this problem can be expressed as follows:

R̃X(λ) = PTMr(λ)rH(λ), (87)

where r(λ) is the eigenvector corresponding to the largest
eigenvalue of the matrix

M(λ) = M + λhch
H
c . (88)

By employing this Pareto-optimal power allocation strategy
and ignoring the DRT, according to (75), we obtain an outer
bound characterized as follows:

λ ∈ [0,+∞), (89a)

Rout(λ) = log2(1 + ∥hc∥−2Nc|rH(λ)hc|2SNRc), (89b)

ϵout(λ) =
(
2TSNRsr

H(λ)Mr(λ) + JP
θ

)−1

, (89c)

where we have used the base-2 logarithm to ensure that the
rate is in the unit of bit per channel use (bpcu). By contrast,
when we apply the power allocation strategy to the Gaussian
signal, we obtain the following inner bound

Rin,G(λ)=log2(1 + ∥hc∥−2Nc|rH(λ)hc|2SNRc), (90a)

ϵin,G(λ)=E
{(
χ

2
2T SNRsr

H(λ)Mr(λ) + JP
θ

)−1}
=(2SNRsr

H(λ)Mr(λ))−1ζT−1eζΓ(1− T, ζ)

=
(
2(T−1)SNRsr

H(λ)Mr(λ)
)−1

(1+rζ), (90b)

where χ22T is a chi-squared distributed random variable with
DoF 2T , Γ(a, x) =

∫∞
x
ta−1e−tdt denotes the incomplete

Gamma function [45], and ζ = JP
θ

(2SNRsr
H(λ)Mr(λ))−1.

The correction term rζ is on the order of O(ζ), given by

rζ =
T−2∑
n=1

(−1)nζn∏n
i=1(T − i− 1)

+ (−1)T−1 · e
ζζT−1Γ(0, ζ)
Γ(T − 1)︸ ︷︷ ︸

O(ζT−1 log ζ)

,

which can be derived from [45, Sec. 8.352]. We can also
obtain another inner bound by applying the power allocation
strategy to the semi-unitary signal (a constant-norm vector
in this scenario, since the sensing-optimal sample covariance
matrix is rank-1)

Rin,U(λ) =
2T − 1

2T
log2(Nc∥hc∥−2|rH(λ)hc|2SNRc)

+ c0 +O(σ2
c ), (91a)

ϵin,U(λ) =
(
2TSNRsr

H(λ)Mr(λ)}+ JP
θ

)−1

, (91b)

where the correction term c0 is given by

c0 =
1
T

[(
T− 1

2

)
log

T

e
−log Γ(T )+log(2

√
π)

]
,

and the O(σ2
c ) residual term can be computed numerically.

Moreover, we can obtain a tighter inner bound, by employ-
ing time-sharing strategies between the Gaussian signal and
the semi-unitary signal. This inner bound can be obtained by
numerically computing the convex envelope of the union of
the regions determined by (90) and (91).

B. Target Response Matrix Estimation

Next, let us consider the task of target response matrix
estimation commonly seen in the literature of statistical MIMO
radar [46], where the sensing objective is to estimate the entire
matrix Hs. More precisely, we have

η =
[
Re{vec(HT

s )}T, Im{vec(HT
s )}T

]T

. (92)

We further assume that the a priori distribution of each entry
in Hs is identically CN (0, σ2

p), and hence

JP = σ−2
p I2NsM , J̃P =

σ2
s

σ2
pT

I2NsM .

Note that

η =
1√
2
UHadhs, (93)
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where hs := [vec(HT
s )T, vec(HT

s )H]T, and UHad is a unitary
matrix given by

UHad =
1√
2

[
1 1
ı −ı

]
⊗ INsM .

In light of this, the affine map Φ(·) can be expressed explicitly
as

Φ(RX) = 2UH
Had

(
INs ⊗ blkdiag

(
RT

X ,RX

))
UHad

+
2σ2

s

σ2
pT

I2NsM . (94)

Thus the CRB of η is given by

ϵ = tr
{

E
[
σ2

s

T
[Φ(RX)]−1

]}
=
σ2

sNs

T
tr

{
E

[(
RX +

σ2
s

σ2
pT

I

)−1
]}

, (95)

which follows from the fact that the unitary matrix UHad

preserves trace, and that the transpose operation preserves
trace. Next, let us consider the sensing and communication
performance at points PSC and PCS, respectively.

1) Sensing DoF: At point PSC, the optimal R̃X is obtained
at R̃

SC

X = PTIM . Moreover, we have

tr

{
E

[(
RX +

σ2
s

σ2
pT

I

)−1
]}

= tr

{(
R̃X +

σ2
s

σ2
pT

I

)−1
}

=
M

PT + σ2
s (σ2

pT )−1
, (96)

since the sensing-optimal sample covariance matrix RX in this
scenario is deterministic. Hence the minimum CRB can be
expressed as

ϵmin =
σ2

sNsM

TPT + σ2
sσ
−2
p

. (97)

The sensing DoF at point PSC is clearly νs,max = T . Observe
that the minimum CRB may be alternatively expressed as

ϵmin =
NsM

T
· 1
PTσ

−2
s + (σ2

pT )−1
, (98)

which implies that the a priori knowledge contributes to an
additional effective SNR of (σ2

pT )−1.
By contrast, at point PCS, the minimum achievable CRB is

given by

ϵCS =
σ2

sNs

T
tr

{
E

[(
RCS

X +
σ2

s

σ2
pT

I

)−1
]}

, (99)

where RCS
X is a complex Wishart distributed matrix having

degree of freedom T and scale matrix R̃
CS

X . When RCS
X

follows the complex Wishart distribution CWM (I, T ), it is
known that the eigenvalue distribution of CWM (I, T ) con-
verges to the Marchenko-Pastur distribution as M → ∞,
if β = M/T is a constant [47]. In the same asymptotic limit,
according to the Stieltjes transform of the Marchenko-Pastur
distribution [47], the CRB ϵCS satisfies

ϵCS →
σ2

sNsM

2Tzβ
(β − z − 1 +

√
(z + β − 1)2 + 4z), (100)

Fig. 4. The minimum achievable CRB ϵCS and its Marchenko-Pastur approx-
imation (100) versus the a priori precision σ−2

p , where RCS
X ∼ CWM (I, T ),

σ2
s = 1, and β = M/T is fixed at 1/4.

where z = σ2
s (σ2

pT )−1. As it can be observed from Fig. 4,
this limit serves as an excellent approximation even when M is
rather small (e.g. M = 2). In the more general scenario RCS

X ∼
CWM (Σ, T ), if the eigenvalues of Σ are upper and lower
bounded by some positive constants as M →∞, we have

ϵCS →
σ2

sNs

2Tzβ

M∑
i=1

[
β− z

σi
−1+

√
(
z

σi
+β−1)2 + 4

z

σi

]
,

(101)

where σi is the i-th largest eigenvalue of Σ.
As for the sensing DoF, observe that

νs,CS = lim
σs→0

ϵ−1
CSσ

2
sNstr

{[
R̃

CS

X +
σ2

s

σ2
pT

I

]−1
}

(102a)

= T tr
{

(R̃
CS

X )−1
}
/tr

{
E

[
(RCS

X )−1
]}

(102b)

= T −M, (102c)

when R̃
CS

X has full rank (otherwise the sensing DoF is zero),
where (102c) follows from the fact that

E
[
(RCS

X )−1
]

=
T

T −M
(R̃

CS

X )−1. (103)

Hence we may conclude that the sensing DoF loss in the task
of target response matrix estimation is

νs,max − νs,CS = M, (104)

which achieves the upper bound indicated by Theorem 2.
2) Communication DoF: At the point PCS, the maximum

achievable rate is given by the channel capacity in the absence
of sensing constraints, as follows:

Rmax = E{log |I + σ−2
c HcR̃

CS

X HH
c |}, (105)

where R̃
CS

X is determined by the water-filling strategy. The
communication DoF at the point PCS is MSC.

As for the point PSC, according to Proposition III-B, when
the SNR is high, the corresponding achievable rate may be
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asymptotically expressed as

RSC = E
{(

1− MCS

2T

)
log |PTσ

−2
c HcH

H
c |+ c0

}
+O(σ2

c ),

(106)

where we have used the fact that

MSC = rank(HcR̃
SC

X HH
c ) = rank(HcH

H
c ) = MCS

holds in the high-SNR regime. In this case, the communication
DoF is

νc,SC = MSC

(
1− MSC

2T

)
. (107)

The corresponding communication DoF loss at point PSC is

νc,max − νc,SC =
M2

SC

2T
. (108)

Observe that the communication subspace overlap coefficient
αSC achieves its maximum 1, hence the sensing-induced
communication performance loss is mainly due to the
row-orthogonality of the sensing-optimal coding strategy.

Similar to the target angle estimation problem, we can
also conceive an outer bound based on statistical covariance
shaping, namely solving the following Pareto optimization
problem [33]

min
RX

tr
{(

RX+
σ2

s

σ2
pT

I
)−1}

+α log
∣∣∣I+σ−2

c HcRXHH
c

∣∣∣
s.t. tr {RX} ⩽ PTM, RX ≽ 0, RX = RH

X , (109)

for each realization of Hc, where α ∈ [0,∞) is a parameter
controlling the power allocation strategy. Upon denoting the
optimal solution to (109) as R̃X(α) and the corresponding
sample covariance matrix as Rα, we could obtain the Gaussian
inner bound

Rin,G(α) = E
{

log2

∣∣∣I + σ−2
c HcR̃X(α)HH

c

∣∣∣}, (110a)

ϵin,G(α) =
σ2

sNs

T
tr

{
E

[(
RX(α) + σ2

s (σ2
pT )−1I

)−1
]}

,

(110b)

the semi-unitary inner bound

Rin,U(α) = E
{(

1− Mα

2T

)
log2

∣∣∣I + σ−2
c HcR̃X(α)HH

c

∣∣∣
+ c0

}
+O(σ2

c ), (111a)

ϵin,U(α) =
σ2

sNs

T
tr

{(
R̃X(α) + σ2

s (σ2
pT )−1I

)−1
}
,

(111b)

and the outer bound

Rout(α) = RinG(α), ϵout(α) = ϵinU(α), (112)

following a similar line of reasoning as (89), (90) and (91),
where Mα = rank(HcR̃X(α)HH

c ), and the expectation
in (110b) may be approximated using (101).

Remark 1 (Null Space Completion by Semi-Unitary Sig-
nals): According to (51), when MCS < M , the Gaussian
inner bound–achieving signalling scheme does not send pure

TABLE I
CONFIGURATIONS FOR THE NUMERICAL EXAMPLES

OF THE TARGET ANGLE ESTIMATION PROBLEM

Gaussian signals. To elaborate, in this case, since R̃
CS

X is rank-
deficient, the sensing DoF is zero. In particular, at point PCS,
the ISAC signal cannot provide any information about the
target response matrix in the null space of R̃

CS

X , and hence
we have to rely entirely on the a priori knowledge when
estimating this part of the target response matrix. As we move
from PCS to PSC on the outer bound, R̃X(α) becomes full-
rank. However, the power allocated to the null space of R̃

CS

X

does not contributed to the communication rate. Therefore,
we may transmit semi-unitary signals instead of Gaussian
signals in the null space, without eroding the communication
rate at all.

VI. NUMERICAL RESULTS

A. Target Angle Estimation

We first demonstrate the S&C tradeoff in the task of target
angle estimation discussed in Section V-A. We consider the
scenario where the sensing Rx and the ISAC Tx are co-
located, both equipped with uniform linear arrays. There is
a single target with a bearing angle of θ, for which the
a priori distribution is a von Mises distribution with mean 30◦

and standard deviation of 5◦. The communication channel is
assumed to be a rank-1 LoS channel. The configurations that
are identical across all numerical examples are summarized
in Table I. For all numerical examples in this subsection,
we observe that the maximum eigenvalue of M has multi-
plicity 1, and thus the discussions in Section V-A are fully
applicable.

Let us first fix the bearing angle of the communication Rx at
θc = 42◦, which corresponds to a correlation coefficient of ρ ≈
0.61, and consider the case of T = 3. The outer bound (89),
the Gaussian inner bound (90) and the semi-unitary inner
bound (91), as well as the refined inner bound obtained by
employing the time-sharing strategy between the two inner
bounds, are portrayed in Fig. 5. We have numerically com-
puted the rate of the semi-unitary signalling strategy, accom-
panied by an approximation obtained by neglecting the O(σ2

c )
term in (91). Observe that the approximation error is rather
small, since the SNR is high. A noteworthy phenomenon is
that the semi-unitary–Gaussian inner bound is tighter than the
PSC–PCS inner bound. An intuitive interpretation is that the
semi-unitary–Gaussian inner bound benefits from amalgamat-
ing the time-sharing strategy with power allocation, whereas
the PSC–PCS inner bound only employs the time-sharing
strategy. The vertical dashed line and the horizontal dotted line
depict the ultimate loss of sensing DoF and communication
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Fig. 5. Inner and outer bounds of the CRB-rate region for the task of
single-target angle estimation. The correlation coefficient is ρ ≈ 0.61.

Fig. 6. The outer bound and the unitary-Gaussian time-sharing inner bound
of the CRB-rate region for the task of single-target angle estimation, with
various values of ρ.

DoF caused by employing the Gaussian and the semi-unitary
signalling strategies, respectively.

By varying the bearing angle of the communication Rx
(hence the value of the correlation coefficient ρ), we may
observe the dependence of the ISAC integration gain on the
overlap between the sensing subspace and the communication
subspace, as portrayed in Fig. 6. In this example we also
fix the coherent sensing period at T = 3. We see that as ρ
increases, both the semi-unitary–Gaussian inner bound and the
outer bound tend to become closer to the rectangular boundary,
which corroborates the intuition that the ISAC integration gain
should be higher when sensing subspace has a larger overlap
with the communication subspace. A noteworthy fact is that
the inner bound is not rectangular when ρ ≈ 1. In this case, the
sensing subspace is identical to the communication subspace,
and hence the S&C tradeoff is completely determined by the
DRT. The two corner points of the inner bound correspond to
the sensing-optimal and the communication-optimal signalling
strategies, respectively.

In fact, the gap between the semi-unitary–Gaussian inner
bound and the naïve PSC–PCS time-sharing inner bound
may be viewed as the room of improvement upon the naïve
time-sharing relying on statistical covariance shaping, which

Fig. 7. Comparison between the inner bounds of the CRB-rate region for
the task of single-target angle estimation, with various values of ρ.

Fig. 8. The outer bound and the unitary-Gaussian time-sharing inner bound
of the CRB-rate region for the task of single-target angle estimation, with
various values of T .

corresponds to the optimal adjustment of ST. This is portrayed
in Fig. 7, where the curved shape of the naïve time-sharing
inner bound is due to the logarithmic scale of the abscissa.
We may observe from Fig. 7 that the gap between these two
inner bounds grows as the correlation coefficient ρ decreases.
This suggests that the performance gain of statistical covari-
ance shaping over naïve time-sharing is larger under weaker
S&C subspace correlation.

Next we demonstrate the dependence of the CRB-rate region
on the length T of the coherent sensing period. In this example
we fix the bearing angle of the communication Rx at θc = 50◦,
which corresponds to a correlation coefficient of ρ ≈ 0.22.
As it can be observed from Fig. 8, as T increases, the
gap between the semi-unitary–Gaussian inner bound and the
outer bound vanishes. This suggests that the DRT becomes
less prominent when the coherent sensing period is long.
Ultimately, it would become completely irrelevant to the S&C
tradeoff as T →∞.

Finally, let us investigate the relationship between the
CRB-rate region and the number of antennas. In this example
we choose θc = 42◦. The maximum sensing receiving SNR
is (10 + 10 log10M) dB per antenna, while the maximum
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Fig. 9. The inner and outer bounds of the CRB-rate region for the task of
single-target angle estimation, with various values of M and Ns. The bearing
angle of the communication Rx is θc = 42◦.

TABLE II
CONFIGURATIONS FOR THE NUMERICAL EXAMPLES OF

THE TARGET RESPONSE MATRIX ESTIMATION PROBLEM

communication receiving SNR is (23 + 10 log10M) dB per
antenna. These parameter values are chosen to be consistent
with the example shown in Fig. 5. The inner and outer bounds
obtained under various values of M and Ns are portrayed in
Fig. 9. Observe that as M and Ns increase, the gap between the
semi-unitary–Gaussian inner bound and the naïve time-sharing
inner bound expands, and the rate at point PSC decreases.
These phenomena originate from the fact that the sensing and
communication subspaces become asymptotically orthogonal
to each other as M and Ns tend to infinity, which may be
intuitively interpreted as that the resolution of the system
improves as the number of antennas increases. This may
also be quantitatively depicted by the value of the correlation
coefficient ρ, which decreases from ρ ≈ 0.82 to ρ ≈ 0.61 as
M = Ns increases from 7 to 10. Consequently, the room of
improvement due to ST adjustment also expands as M and Ns

increase, as suggested by the previous discussion about Fig. 7.

B. Target Response Matrix Estimation

Next, let us consider the task of target response matrix esti-
mation discussed in Section V-B. We assume that the a priori
distributions of each entry in the target response matrix Hs

are independent of one another, and are identically given by
CN (0, 1), which implies that σ2

p = 1. The configurations of
other parameters are summarized in Table II.

We first consider the scenario where the communication
channel is subject to spatially uncorrelated Rayleigh fading,
namely that each entry in Hc is independent of one another,
and follows the distribution of CN (0,M−1). For the sake of

Fig. 10. Inner and outer bounds of the CRB-rate region for the task of target
response matrix estimation, where the communication channel is subject to
spatially uncorrelated Rayleigh fading.

Fig. 11. Inner and outer bounds of the CRB-rate region for the task of target
response matrix estimation, where the communication channel is a rank-1 LoS
channel.

illustration, we normalize the CRB as follows

ϵnormalized =
ϵ

MNs
.

In this example, we set the coherent sensing period as T =
4M = 16. The outer bound and the inner bounds of the
CRB-rate region are portrayed in Fig. 10, accompanied by
the approximated Gaussian inner bound computed according
to (101). Observe that the outer bound is rather close to
a rectangle in this scenario, which is reminiscent of the
ρ = 1 scenario in the target angle estimation task. We may
understand this phenomenon intuitively, by noticing that both
the communication channel and the target response matrix
have full rank, and that the communication-optimal water-
filling strategy becomes similar to the sensing-optimal uniform
power allocation strategy in the high SNR regime.

To further validate this intuition, let us consider another
scenario, where the communication channel is a rank-1 LoS
channel taking the form of

Hc = αavT,
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where a ∈ CNs and v ∈ CM are the steering vectors of
the communication receiver and the transmitter, respectively,
in which every entry has amplitude 1. Note that in this
example, the Gaussian inner bound is achieved by the null
space completing technique discussed in Remark 1. Indeed,
here we have MCS = 1 < M . Consequently, the null space
has a dimensionality of M − 1, in which semi-unitary signals
are transmitted. We assume that the amplitude α is a random
variable following CN (0, 1), and set the coherent sensing
period as T = M = 4. From the CRB-rate region plotted in
Fig. 11 we may see that the boundaries are obviously non-
rectangular. This corroborate the aforementioned intuition,
since the communication subspace in this scenario is only one-
dimensional. Consequently, the overlap between the sensing
and the communication subspaces is significantly smaller than
the one in the previous scenario of the spatially uncorrelated
Rayleigh channel.

VII. CONCLUSION

In this paper, we have proposed a general framework for
the analysis of the S&C performance tradeoff. In particular,
we have introduced the CRB-rate region for characterizing the
S&C tradeoff, and have shown that it has a pentagon inner
bound obtained by connecting the communication-optimal
point PCS and the sensing-optimal point PSC. Especially for
PSC, we have shown that it is achieved when the transmitted
waveform has a sample covariance matrix with deterministic
trace. In particular, when the CRB minimization problem has a
unique solution, the sample covariance matrix is deterministic,
and hence the ISAC waveform should be modulated by sym-
bols generated based on the uniform distribution of the Stiefel
manifold. For PCS, we have shown that the maximum sensing
DoF loss is determined by the number of sensing parameters
K, as well as the rank of the statistical covariance matrix
R̃X. We have also conceived signalling strategies based on
statistical covariance shaping, which are shown to be capable
of achieving more favorable S&C tradeoffs than the pentagon
inner bound when applied in conjunction with time sharing.

Based on these analytical results, we have highlighted that
the S&C performance trade-off is two-fold, in the sense that
it is determined by the subspace alignment of the transmitted
waveform in general, and also by the deterministic-random
tradeoff in the finite coherent sensing period regime, which
may shed light on the design of practical Pareto-optimal ISAC
signalling strategies.

APPENDIX A
PROOF OF PROPOSITION 2

Proof: The sensing model (2b) may be rewritten as

vec(YT
s ) = (INs ⊗ XT)vec(HT

s ) + vec(ZT
s ). (113)

For the moment, let us ignore the contribution of the prior
distribution pη(η) to the BFIM. To facilitate further derivation,
we define an extended parameter vector

θ :=
[

(INs ⊗ XT)vec(HT
s )

(INs ⊗ XH)vec(HH
s )

]
,

whose BFIM can be expressed as

Jθ = σ−2
s I2NsT . (114)

Hence the BFIM of hs := [vec(HT
s )T, vec(HT

s )H]T can be
written as

Jhs|X = Ehs

{ (
∂θ

∂hs

)∗
Jθ

(
∂θ

∂hs

)T }
=

T

σ2
s

[
INs ⊗ RT

X 0
0 INs ⊗ RX

]
, (115)

according to the convention in [48]. Let us denote F := ∂h∗s
∂η ∈

CK×2NsM , and partition F in the following form

F = [F1, . . . , F2Ns ],

where each Fi has a dimensionality of K ×M .
Now, taking the contribution of the prior distribution back

into account, we have

Jη|X =
T

σ2
s

Eη
{

F

[
INs ⊗ RT

X 0
0 INs ⊗ RX

]
FH

}
+JP

=
T

σ2
s

Eη
{ Ns∑

i=1

FiR
T
XFH

i +FNs+iRXFH
Ns+i

}
+JP. (116)

Let us define a pair of linear super-operators Φ1(·) and Φ2(·),
characterized by

Φ1(A) =
Ns∑
i=1

FiAFH
i , (117a)

Φ2(A) =
Ns∑
i=1

FNs+iAFH
Ns+i. (117b)

Without loss of generality, in the following discussion, we will
focus on Φ1(·). Observe that the following matrix

Ψ1 =
M∑
i=1

M∑
j=1

Eij ⊗Φ1(Eij) (118)

is a faithful representation of Φ1 (known as the Choi represen-
tation, according to the Choi-Jamiołkowski isomorphism [49],
[50]), where Eij is an M × M matrix with its (i, j)-th
entry equals to 1, while all other entries are zero. According
to (117a), we have

Ψ1 =
Ns∑
i=1

vec(Fi)vec(Fi)H, (119)

which implies that

Ψ̃1 := E{Ψ1} =
Ns∑
i=1

E
{
vec(Fi)vec(Fi)H

}
.

Consider the eigendecomposition of Ψ̃1 as follows

Ψ̃1 = U (1)Λ(1)(U (1))H

=
r1∑

i=1

(√
λ

(1)
i u

(1)
i

)(√
λ

(1)
i u

(1)
i

)H

(120)

where

U (1) = [u(1)
1 , . . . , u

(1)
KM ], Λ(1) = diag(λ(1)

1 , . . . , λ
(1)
KM ).
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We assume that λ(1)
1 ⩾ λ

(1)
2 ⩾ . . . ⩾ λ

(1)
KM , and the number

of non-zero eigenvalues is denoted as r1. Since there exist a
linear one-to-one correspondence between every realization of
Φ1 and its Choi representation Ψ1, we see that Ψ̃1 = E{Ψ1}
is also the Choi representation of E{Φ1(A)}, and thus

E{Φ1(A)} =
r1∑

i=1

F̃ iAF̃
H

i , (121)

where r1 is the rank of Ψ̃1, and

F̃ i =
√
λ

(1)
i mat(u(1)

i ). (122)

Similar arguments also apply to Φ2(·), and hence we have

E{Φ2(A)} =
r2∑

i=1

G̃iAG̃
H

i , (123)

where

G̃i =
√
λ

(2)
i mat(u(2)

i ), (124)

under the corresponding definitions of λ(2)
i and u

(2)
i . Conse-

quently, we obtain

Jη|X =
T

σ2
s

( r1∑
i=1

F̃ iR
T
X F̃

H

i +
r2∑

j=1

G̃jRXG̃
H

j

)
+ JP, (125)

Finally, it is obvious that r1 ⩽ KM and r2 ⩽ KM , since
Ψ̃1 and Ψ̃2 are of the size KM ×KM . Hence the proof is
completed.

APPENDIX B
PROOF OF COROLLARY 1

Proof: First let us consider the following decomposition

Φγ(A) = Φ1(ΦT(A)) + Φ2(A) + ΦP(γ,A), (126)

where

ΦT(A) = AT =
M∑
i=1

M∑
j=1

EijAEH
ji, (127a)

Φ1(A) =
r1∑

i=1

F̃ iAF̃
H

i , (127b)

Φ2(A) =
r2∑

i=1

G̃iAG̃
H

i , (127c)

ΦP(γ,A) =
tr{A}
γ

JP. (127d)

From (127a) and (127b), we have

Φ1(ΦT(A)) =
r1∑

i=1

M∑
j=1

M∑
k=1

F̃ iEjkAEH
kjF̃

H

i , (128)

which has the following Choi representation

Ψ̃1T =
r1∑

i=1

M∑
j=1

M∑
k=1

vec(F̃ iEjk)vec(F̃ iEkj)H. (129)

As for the term ΦP(γ,A), we note that its Choi representation
is given by

Ψ̃P(γ) =
1
γ

I ⊗ JP. (130)

Now, we may write the Choi representation of Φγ(A) as
follows

Ψ̃γ = Ψ̃1T + Ψ̃2 + Ψ̃P(γ), (131)

where Ψ̃2 denotes the Choi representation of Φ2(A), given
by

Ψ̃2 =
r2∑

j=1

vec(G̃j)vec(G̃j)H. (132)

Note that Ψ̃γ is not Hermitian, since Ψ̃1T and Ψ̃P are
not. Therefore, the eigendecomposition in (120) is no longer
applicable, and we have to resort to the singular value decom-
position of Ψ̃γ

Ψ̃γ = UγΣγV H
γ , (133)

where Uγ = [u1, . . . , uKM ], V γ = [v1, . . . , vKM ],
and Σγ = diag(σ1, . . . , σKM ). We may then obtain the
representation in (13), where

F̄ i =
√
σimat(ui), Ḡi =

√
σimat(vi). (134)

Finally, we have r3 ⩽ KM , since Ψ̃ ∈ CKM×KM .

APPENDIX C
PROOF OF PROPOSITION 3

Proof: The problem of finding the distribution for the
sensing-optimal RX may be formulated as

min
p(RX)

ERX{tr
{
[Φ(RX)]−1

}
}, (135a)

s.t. tr {E(RX)} = PTM, RX ≽ 0, RX = RH
X , (135b)

Observe that

min
p(RX)

E{tr
{
[Φ(RX)]−1

}
}

= min
p(RX)

E
{

E
{
tr

{
[Φγ(RX)]−1

}
|tr {RX} = γ

}}
⩾ min

p(γ)
E

{
min

tr{RX}=γ
tr

{
[Φγ(RX)]−1

} }
(136)

holds under the constraints (135b), when the following deter-
ministic optimization problem

min
R

tr
{(

Φγ(R)
)−1

}
(137a)

s.t. tr {R} = γ, R ≽ 0, R = RH (137b)

has valid optimal solutions for every positive γ. Furthermore,
we have

Ef(γ) ⩾ f(E{γ}), (138)

where

f(γ) := min
R≽0

tr
{
(Φγ(R))−1

}
, s.t. tr {R} = γ, R = RH.

(139)
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The result (138) follows from the following lemma.
Lemma 1: The function f(γ) is convex.
Proof: Consider the optimal R1 corresponding to f(γ1)

and the optimal R2 corresponding to f(γ2), which satisfy

αf(γ1) + (1− α)f(γ2) ⩾ tr
{
[Φ(αR1 + (1− α)R2)]−1

}
(140)

for α ∈ [0, 1], since tr
{
[Φγ(A)]−1

}
is a convex function of

A. Furthermore, we have

tr
{
[Φγ(αR1 + (1− α)R2)]−1

}
⩾ f(αγ1 + (1− α)γ2),

(141)

which follows from the definition of f(γ) in (139), and the
fact that

tr {αR1 + (1− α)R2} = αγ1 + (1− α)γ2.

Hence the proof is completed.
The equality in (138) is achieved when γ is determinis-

tic, namely when tr {RX} = tr
{

R̃X

}
. Due to the power

constraint of tr
{

R̃X

}
= PTM , we see that the optimal

distribution p(RX) may now be simplified as p(RX|tr {RX} =
PTM). Furthermore, p(RX) should be defined over the set of
optimal solutions of the problem (137) with γ = PTM . Thus
the proof is completed.

APPENDIX D
PROOF OF PROPOSITION 4

Proof: We will first show the sufficiency, and then show
the necessity.

1) Sufficiency: Since Ropt is a maximum-rank solution,
we can express any optimal solution as follows

R = UoptDUH
opt, (142)

where D ∈ Cr×r is a Hermitian matrix. Otherwise, if we have
any other solution R′ that cannot be represented as (142), then
(Ropt +R′)/2 is also an optimal solution, but rank{(Ropt +
R′)/2} > rank{Ropt}, which contradicts to the assumption
that Ropt is a maximum-rank optimal solution.

Next, note that the function tr
{
X−1

}
is strictly convex

with respect to X . Therefore, the optimal solution is unique,
when the linear map from D to ΦPTM (UoptDUH

opt) is
injective. Observe that

vec(ΦPTM (UoptDUH
opt))

= Ξ(U∗
opt ⊗Uopt)vec(D) + vec(J̃P), (143)

hence the map is indeed injective if Ξ(U∗
opt⊗Uopt) has full

column rank.
2) Necessity: If Ropt is the unique optimal solution, there

does not exist any R taking the form of (142) corresponding
to a zero-trace D that satisfies

Ξvec(R) = 0. (144)

Otherwise, one may construct another optimal solution R′ =
Ropt + αR, where α ∈ R is chosen to ensure that R′ is
positive semidefinite. This implies that the subspace

V={(U∗
opt⊗Uopt)vec(D)|D ∈ Cr×r,D=DH, tr {D}=0}

is orthogonal to the null space of Ξ. Moreover, we see
that dim(V) = r2 − 1, since the complex vector vec(D)
is linearly independent of its complex conjugate vec(D)∗,
and the zero-trace constraint tr {D} = 0 only reduces the
dimensionality by 1. Furthermore, vec(I) is never in the
null space of Ξ (otherwise we would have Φ(I) = 0
implying that Jη|X = 0 for all RX), hence the column rank
of Ξ(U∗

opt ⊗ Uopt) is r2, which is exactly the full column
rank.

APPENDIX E
PROOF OF PROPOSITION 5

Proof:
1) (Generic): According to Proposition 4, to prove the

sufficiency of condition 1), it suffices to show that

Span{Uopt} ⊆ Span{UR}. (145)

Let us first rewrite problem (14) as follows

min
A,R̃X

tr
{
A−1

}
,

s.t. A = ΦPTM (R̃X),

tr
{

R̃X

}
= PTM, R̃X ≽ 0, R̃X = R̃

H

X . (146)

The Karush-Kuhn-Tucker (KKT) conditions of problem (146)
can be expressed as

Φa
PTM (A−2) = λI −ZR, (147a)

ΦPTM (R̃X) = A, tr
{

R̃X

}
= PTM, R̃X ≽ 0, (147b)

tr
{

ZRR̃X

}
= 0, (147c)

ZR ≽ 0. (147d)

From (147a), (147c) and (147d), we see that

Φa
PTM (A−2)R̃X = λR̃X, (148)

and that λ is the maximum eigenvalue of Φa
PTM (A−2).

Applying (148) to the maximal-rank solution Ropt, we have

UH
optΦ

a
PTM (A−2)Uopt = λI. (149)

From (149), we see that it now suffices to show that

UH
RΦa

PTM (A−2)UR = λIrA , (150)

where rA is the multiplicity of the maximum eigenvalue of
Φa

PTM (A−2). To this end, we write the Lagrange dual function
of problem (146) as follows

g(λ̃,ZA,ZR)

= inf
A,R̃X

{
tr

{
A−1

}
+ tr {ZAA} − tr

{
ZRR̃X

}
− tr

{
ZAΦPTM (R̃X)

}
+ λ̃

(
tr

{
R̃X

}
− PTM

)}
= inf

A,R̃X

{
tr

{
A−1

}
+ tr {ZAA} − λ̃PTM

+ tr
{

R̃X

(
−ZR −Φa

PTM (ZA) + λ̃I
)} }

=

{
2tr

{
Z

1
2
A

}
− λ̃PTM, Φa

PTM (ZA) = λ̃I −ZR;
−∞, otherwise.
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Hence the dual problem of (146) can be written as

max
λ̃,ZA

2tr
{

Z
1
2
A

}
− λ̃PTM

s.t. Φa
PTM (ZA)− λ̃I ≼ 0, ZA ≽ 0, ZA = ZH

A, (151)

which is equivalent to (18) after a maximization over λ̃, while
λ is the optimal value of λ̃. Obviously, strong duality holds
for the primal-dual pair (146) and (18), which implies that

Φa
PTM (ZA) = Φa

PTM (A−2), (152)

if A is an optimal solution of (146) and ZA is an optimal
solution of (18). Since λ is the maximum eigenvalue of
Φa

PTM (ZA), we have

UH
RΦa

PTM (ZA)UR = λIrA , (153)

which implies (150).
2) (K ⩾ M ): Note that Ξ ∈ CK2×M2

, therefore, it is
indeed possible that Ξ has full column rank when K ⩾ M .
When this is true, we also have that

rank{Ξ(U∗
R ⊗UR)} = r2, (154)

which implies that rank{Ξ(U∗
R ⊗ UR)} has full column

rank, since r2 ⩽ M2 ⩽ K2. Thus we can conclude that
problem (14) has a unique optimal solution according to
Proposition 4.

3) (K = 1): When K = 1, the optimal ZA of the dual
problem (18) is a scalar, denoted as z. Furthermore, Ξ is
now a row-vector, denoted as ξT. Hence the generic sufficient
condition for solution-uniqueness becomes

(U∗
R ⊗UR)Hξ ̸= 0, (155)

where UR contains the eigenvectors corresponding to the max-
imum eigenvalue of Φa

PTM (z), which can now be expressed
as (according to (19))

Φa
PTM (z) = z

r3∑
i=1

Ḡ
H
i F̄ i. (156)

Furthermore, since JP is now a scalar (denoted as JP), the
Choi representation of ΦP(γ,A) is now given by

Ψ̃P(γ) =
JP

γ
I, (157)

which has no impact on the eigenspace structure of Ψ̃γ . As for
the transpose map ΦT(·), we now have

Φ1(ΦT(A)) =
r1∑

i=1

F̃
∗
i AF̃

T

i , (158)

according to (128), since F̃ i’s are now row-vectors. Hence we
obtain

Φa
PTM (z) = k

( r1∑
i=1

(F̃
H

i F̃ i)T +
r2∑

j=1

G̃
H

j G̃j

)
= kB1, (159)

where k is a positive constant with respect to B1. Finally,
let us consider the case when UR has a single column,

which implies that the eigenspace corresponding to the max-
imum eigenvalue of Φa

PTM (z) has dimensionality 1. In this
case, (155) always holds, otherwise the optimal solution
of (14) would be unbounded, since ΦPTM (R̃X) is not invert-
ible. Thus the proof is completed.

APPENDIX F
PROOF OF COROLLARY 2

Proof: It is straightforward that rank(R̃X) ⩽ M when
K ⩾ M . Hence it suffices to consider the case of K < M
only. Consider the eigendecomposition of the optimal R̃X as
follows

R̃X = UoptΛoptU
H
opt. (160)

According to Appendix D, when the optimal solution of (14) is
unique, the column rank of Ξ(U∗

opt⊗Uopt) is (rank(R̃X))2,
which implies that

r2 ⩽ K2, (161)

since Ξ(U∗
opt ⊗Uopt) ∈ CK2×(rank(R̃X))2 .

APPENDIX G
PROOF OF THEOREM 1

Proof: Under the aforementioned assumptions, rate RSC

may be expressed as

RSC = max
pX(X)

1
T
I(Yc;X|Hc), s.t. XXH =T R̃

SC

X . (162)

Consider the singular value decomposition of HcX:

HcX =
√
TUΣVH

HX. (163)

Note that only VH
HX is not yet determined, since we have

HcR̃
SC

X HH
c = T−1HcXXHHH

c

= UΣΣHUH,

which does not depend on VH
HX. Let us denote the first MSC

columns of U corresponding to the non-zero singular values as
Ũ. Without loss of generality, we may apply a linear combiner
Ũ

H
at the receiver side, and obtain

Ũ
H
Yc =

√
T Σ̃Ṽ

H

HX + Ũ
H
Zc, (164)

where Ũ
H
Zc ∈ CMSC×T has i.i.d. entries which are circularly

symmetric complex Gaussian distributed, Σ̃ ∈ CMSC×MSC

denotes the MSC × MSC submatrix containing non-zero sin-
gular values, and ṼHX contains the first MSC columns of
VHX. Note that Ũ

H
Yc is a sufficient statistic of Yc for the

estimation of X, hence the mutual information I(Yc|Hc;X)
may be expressed as

I(Yc;X|Hc) = I(Ũ
H
Yc;X|Hc)

= h(Ũ
H
Yc|Hc)− h(Ũ

H
Yc|Hc,X). (165)

Upon denoting Ỹc = Ũ
H
Yc, X̃ =

√
T Σ̃Ṽ

H

HX, and Z̃c =
Ũ

H
Zc, from (164) we have

Ỹc = X̃ + Z̃c, (166)
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and hence

I(Yc;X|Hc) = I(Ỹc;X|Hc) (167a)

= h(Ỹc|Hc)− h(Ỹc|Hc,X). (167b)

From (167b) we obtain

max
pX(X)

I(Yc;X|Hc)

= max
pX(X)

(
h(Ỹc|Hc)− h(Ỹc|Hc,X)

)
= max

pX(X)
h(Ỹc|Hc)− TMSC log(πeσ2

c ). (168)

Next, we provide estimates of h(Ỹc|Hc) based on the follow-
ing lemma.

Lemma 2: The logarithmic volume of the rescaled complex
Stiefel manifold

S =
{√

T Σ̃Q|Q ∈ CMSC×T , QQH = IMSC

}
=

{
Q̃ ∈ CMSC×T |Q̃Q̃

H
= T Σ̃

2}
(169)

is given by

log Vol(S) =
(
T − 1

2
MSC

)
log

∣∣∣T Σ̃2
∣∣∣ + log VT,MSC , (170)

where VT,MSC denotes the volume of the complex Stiefel
manifold (without rescaling), given by

VT,MSC =
T∏

k=T−MSC+1

2πk

(k − 1)!
. (171)

The result (171) is known in [42].
Proof: Please refer to Appendix H.

Now, let us consider the following set

Sϵ =
{

A + ϵB|A ∈ S, ∥B∥F ⩽ 1
}
, (172)

which is known as the ϵ-tube about the manifold S [51].
According to Theorem 9.23 in [51], for a small ϵ, the volume
of the ϵ-tube can be approximated as follows

Vol(Sϵ) =
(πϵ2)

1
2M2

SC

Γ( 1
2M2

SC + 1)
Vol(S)(1 +O(ϵ2)). (173)

Hence we have

log
∂Vol(Sϵ)

∂ϵ
= log Vol(S)− log Γ

(1
2
M2

SC + 1
)

+
1
2
M2

SC log π +
1
2
(M2

SC − 1) log ϵ2

+ log M2
SC +O(ϵ2). (174)

According to (166), the maximum differential entropy can be
expressed as

max
pX(X)

h(Yc|Hc) =
∫

log
∂Vol(Sϵ)

∂ϵ
f(ϵ)dϵ︸ ︷︷ ︸

h(Yc|Hc,ε)

+h(ε),

where ε is a random variable such that x = 2ε2σ−2
c is a

chi-squared distribution having DoF M2
SC,6 whose probability

6The random variable ε represents ∥Z̃⊥c ∥F, where Z̃
⊥
c is the component

of Z̃c being orthogonal to the tangent space of S at X. The dimensionality
of Z̃

⊥
c is M2

SC.

density function is given by

f(x) =
1

2M2
SC/2Γ(M2

SC/2)
xM2

SC/2−1e−x/2.

We may now express the maximum differential entropy
h(Ỹc|Hc) as follows

max
pX(X)

h(Ỹc|Hc) =
∫

log
∂Vol(Sϵ)

∂ϵ
f(ϵ)dϵ+ h(ε)

= log Vol(S)−log Γ
(1

2
M2

SC+1
)
+

1
2
M2

SC log π+log M2
SC

+
1
2
(M2

SC − 1)
(
E{log x}+ log

σ2
c

2

)
+ h

(√
x
)

+
1
2

log(σ2
c/2) +O(σ2

c )

=
(
T − 1

2
MSC

)
log

∣∣∣T Σ̃2
∣∣∣ +

1
2
M2

SC log π + log VT,MSC

− log Γ
(1

2
M2

SC+1
)
+

1
2
(M2

SC−1)
∫
f(x) log(xσ2

c/2)dx

+
1
2

(
[M2

SC−(M2
SC−1)ψ(M2

SC/2)] log e+log(σ2
c/2)

)
+ log Γ(M2

SC/2) + log M2
SC −

1
2

log 2 +O(σ2
c ), (175)

where

ψ(x) = −γ − 1
x

+
∞∑

n=1

(
1
n
− 1
n+ x

)
is the digamma function [45], with γ = 0.572 . . . being the
Euler-Mascheroni constant. Note that∫

f(x) log xdx = ψ(M2
SC/2) log e+ log 2, (176)

and thus we obtain

max
pX(X)

h(Ỹc|Hc) =
(
T − 1

2
MSC

)
log

∣∣∣T Σ̃2
∣∣∣ + log VT,MSC

+
1
2
M2

SC log(πeσ2
c ) +O(σ2

c ), (177)

after some simplification, which implies that

max
pX(X)

I(Yc;X|Hc) (178)

= E
{(
T − 1

2
MSC

)
log

∣∣∣σ−2
c Σ̃

2
∣∣∣} + log VT,MSC

+ E
{

MSC

(
T − 1

2
MSC

)
log

( T
πe

)}
+O(σ2

c ). (179)

Next, we will show that the term

c1 := log VT,MSC + MSC

(
T − 1

2
MSC

)
log

( T
πe

)
(180)

is on the order of o(T ) as T →∞. To see this, we first note
that

log VT,MSC =
MSC∑
i=1

log VT−i+1,1, (181)

which implies that

log VT,MSC = MSC log 2 + MSC

(
T − 1

2
MSC

)
log π

+
1
2
MSC log π −

MSC∑
i=1

T−1∑
j=1

log j, (182)
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and hence

c1 = MSC

(
T − 1

2
MSC

)
log T/e−

MSC∑
i=1

T−1∑
j=1

log j (183)

+ MSC log(2
√
π)

= MSC

[(
T − MSC

2

)
log T/e−

T−1∑
j=1

log j + log(2
√
π)

]
.

(184)

Now we have

c1

T
= MSC

[(
1− MSC

2T

)
log T/e− 1

T

T−1∑
j=1

log j +
log(2

√
π)

T

]
→ MSC

[
log T/e− 1

T
log Γ(T )

]
→ 0, (185)

as T →∞, where the last line follows from the fact that

lim
T→∞

lnT − 1
T

ln Γ(T ) = lim
T→∞

1 + lnT − ψ(T )

= 1, (186)

Thus we arrive at

RSC = E
{(

1− MSC

2T

)
log

∣∣∣σ−2
c Σ̃

2
∣∣∣− MSC

T
log Γ(T )

+ MSC

[(
1− MSC

2T

)
log

T

e
+

log(2
√
π)

T

]}
+O(σ2

c ).

(187)

Hence the proof is completed.

APPENDIX H
PROOF OF LEMMA 2

Proof: Let us first consider the Riemannian metric tensor
on S, which can be written in a matrix form in the tangent
space TQ̃S at each point Q̃ ∈ S, denoted as GQ̃. The volume
of V can then be computed as [19, Sec. 1.2]

Vol(S) =
∫

S

√
|GQ̃|(dQ̃)∧, (188)

where dQ̃ can be viewed as a tangent vector in the tangent
space TQ̃S, the term

√
|GQ̃|(dQ̃)∧ is a differential form

known as the volume form [19, Sec. 1.2] on the manifold
S induced by its Riemannian metric GQ̃, and (dQ̃)∧ is the
exterior product over all components in dQ̃, which serves as
a volume form on the tangent space (as a Euclidean space).
According to [19, Sec. 1.2], (169) may be viewed as an
alternative parametrization of the original Stiefel manifold

V =
{
Q ∈ CMSC×T |QQH = IMSC

}
. (189)

Upon denoting the Riemannian metric of V at Q as G̃Q,
we have

Vol(V) =
∫
V

√
|G̃Q|(dQ)∧, (190)

and hence

Vol(S) =
∫

S

√
|GQ̃|(dQ̃)∧

=
∫
V

∣∣JQ,Q̃

∣∣√|G̃Q|(dQ)∧, (191)

where |JQ,Q̃| is the Jacobian determinant of the transforma-
tion from Q on V to Q̃ on S. Especially, when the Jacobian
determinant does not depend on the specific points Q and
Q̃, in the sense that

∣∣JQ,Q̃

∣∣ = |J | for all Q ∈ V and the
corresponding Q̃ ∈ S, we have

Vol(S) = |J |Vol(V). (192)

Next, let us consider the structure of dQ and dQ̃. For the
differential dQ, we see that

d(QQH) = 0

= (dQ)QH + QdQH. (193)

Without loss of generality, we consider the tangent space at
Q0 = [I, 0MSC×(T−MSC)]. Thus from (193) we have

dQ0 = [∆∥, ∆⊥], (194)

where ∆∥ ∈ CMSC×MSC is a skew-Hermitian matrix, and
∆⊥ ∈∈ CMSC×(T−MSC) is an arbitrary matrix. As for the
tangent space at an arbitrary Q ∈ V , we have Q = Q0U ,
where U is a T × T unitary matrix, and hence

dQ = (dQ0)U = [∆∥, ∆⊥]U . (195)

Similarly, the matrix Q̃0 ∈ S corresponding to Q0 takes the
form of

Q̃0 = [
√
T Σ̃, 0MSC×(T−MSC)]. (196)

Its differential
dQ̃0 = [∆̃∥, ∆̃⊥]

satisfies

∆̃∥ =
√
T Σ̃∆∥, (197a)

∆̃⊥ =
√
T Σ̃∆⊥. (197b)

For a generic Q̃ ∈ S, we also have

dQ̃ = (dQ̃0)U = [∆̃∥, ∆̃⊥]U . (198)

Note that the inner product between matrices is preserved by
right-multiplying unitary matrices, and thus the Riemannian
metric of V at Q is equal to that at Q0, namely we have GQ =
GQ0

. Moreover, the exterior product is also preserved by
right-multiplying unitary matrices. Consequently, the volume

form
√
|G̃Q|(dQ)∧ on V is preserved by right-multiplying

unitary matrices. Similarly, the volume form
√
|GQ̃|(dQ̃)∧

on S at Q̃ = Q̃0U should be equal to that at Q̃0 as well.
Thus the result (192) is now applicable, and we have

Vol(S) =
∣∣JQ̃0,Q̃0

∣∣Vol(V). (199)

In order to obtain the Jacobian determinant
∣∣JQ0,Q̃0

∣∣,
we consider the real vector representations of dQ0 and dQ̃0.
Naturally, we may choose the vector representation of dQ0 as

dq0 = [v∥, Re{vec(∆⊥)}, Im{vec(∆⊥)}]T, (200)
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where v∥ ∈ RM2
SC is characterized by

Bv∥ = vec(∆∥), (201)

B is a matrix constituted by orthonormal columns forming a
basis of the space of all MSC×MSC skew-Hermitian matrices.
Specifically, we may express B as follows

B:,i =


1√
2
vec(Ejk −Ekj), i = jMSC + k;

√
−1√
2

vec(Ejk + Ekj), i =
MSC(MSC−1)

2
+ jMSC + k;

1√
2
vec(Ekk), i = MSC(MSC − 1) + k,

(202)

where j < k. Now, we may write the vector representation of
dQ̃0 as

dq̃0 = [ṽ∥, Re{ṽ⊥}, Im{ṽ⊥}]T, (203)

where

ṽ∥ = BH(IMSC ⊗
√
T Σ̃)Bv∥ (204a)

ṽ⊥ = (IT−MSC ⊗
√
T Σ̃)vec(∆⊥). (204b)

Thus we obtain the Jacobian determinant as follows∣∣JQ0,Q̃0

∣∣ = |BH(IMSC ⊗
√
T Σ̃)B| · |IT−MSC ⊗

√
T Σ̃|2

= |IMSC ⊗
√
T Σ̃| · |IT−MSC ⊗

√
T Σ̃|2

=
∣∣∣T Σ̃2

∣∣∣T− 1
2MSC

, (205)

where the second line follows from the fact that B ∈
CM2

SC×M2
SC is constituted by orthonormal columns, and that

it is a square matrix, hence B is unitary.
Finally, using (199), we arrive at

Vol(S) =
∣∣∣T Σ̃2

∣∣∣T− 1
2MSC

Vol(V), (206)

which implies (170).

APPENDIX I
PROOF OF COROLLARY 3 AND COROLLARY 4

A. Proof of Corollary 3

Proof: Observe that Σ̃Q in (29) has an identical dis-
tribution as that of the optimal Σ̃Ṽ

H

HX in Appendix G that
maximizes the mutual information I(Ũ

H
Yc;X) in the high-

SNR regime. Hence the PSC–achieving X satisfies

HcX =
√
T ŨΣ̃Q. (207)

One of the solutions to (207) is

X = Xinf + X⊥, (208a)

Xinf =
√
TH†cŨΣ̃Q, (208b)

where Xinf denotes the part of the signal that actually carries
the information, while X⊥ serves as a non-informative padding
in a subspace of Col(R̃

SC

X ) that is orthogonal to Col(HcX),
which can be any matrix that satisfies

X⊥XH
inf = 0, (209a)

T−1(X⊥XH
⊥ + XinfX

H
inf) = R̃

SC

X . (209b)

This is exactly the signalling scheme given in (29).
As for the uniform sampling procedure detailed in Corol-

lary 3, it is a well-known method for obtaining a random sam-
ple from uniform distribution with respect to the Haar measure
over the complex Stiefel manifold V defined in (32) [52]. Thus
the proof is completed.

B. Proof of Corollary 4

Proof: First let us introduce the following lemma.
Lemma 3 (Unitary Equivalence of Hermitian Square

Roots): Given a positive semidefinite Hermitian matrix H ∈
Cm×m, any pair of its square roots A ∈ Cm×n and B ∈
Cm×n (where m ≤ n) satisfying AAH = BBH = H , are
equivalent up to a unitary transformation, in the sense that
there exists a unitary matrix U ∈ Cn×n satisfying A = BU .

Proof: Consider the singular value decomposition of A
and B as follows

A = UAΣAV H
A, B = UBΣBV H

B, (210)

where UA ∈ Cm×rH , UB ∈ Cm×rH , V A ∈ Cn×rH , V B ∈
Cn×rH are semi-unitary matrices, rH is the rank of H , while
ΣA ∈ CrH×rH and ΣB ∈ CrH×rH are positive definite
diagonal matrices. Since AAH = BBH, we have

UAΣ2
AUH

A = UBΣ2
BUH

B, (211)

and hence

UAΣAUH
A = UBΣBUH

B. (212)

We can now rewrite A and B as

A = PW A, B = PW B, (213)

where P = UAΣAUH
A = UBΣBUH

B , while W A =
UAV H

A ∈ Cm×n and W B = UBV H
B ∈ Cm×n are semi-

unitary matrices. We may then construct the following aug-
mented matrices

W̃ A = [W T
A ∆T

A]T, W̃ B = [W T
A ∆T

B]T, (214)

such that W̃ A and W̃ B are unitary. Let U = W̃
H

BW̃ A, we see
that W̃ A = W̃ BU , and U is a unitary matrix. This also
implies that W A = W BU , and hence we obtain A = BU
according to (213). This completes the proof.

Now, observe that

(H†cHcXSC,1)(H†cHcXSC,1)H

= (
√
TH†cŨΣ̃Q)(

√
TH†cŨΣ̃Q)H

= TH†cHcR̃
SC

X (H†cHc)H.

According to Lemma 3, we have

H†cHcXSC,1U =
√
TH†cHcU sΛ

1
2
s QU =

√
TH†cŨΣ̃Q, (215)

for some unitary matrix U . We see that
√
TH†cHcU sΛ

1
2
s QU

has the same distribution as
√
TH†cHcU sΛ

1
2
s Q does, since Q

is sampled from the Haar measure on the complex Stiefel
manifold V , which is invariant under multiplication of unitary
matrices. Finally, we may choose X⊥ as follows

X⊥ = (I −H†cHc)XSC,1,

which ensures that XSC,1 is a valid candidate of XSC.
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APPENDIX J
PROOF OF THEOREM 2

Proof: First, let us denote

Φ̃(A) = Φ(A)− J̃P. (216)

According to (12), Φ̃(·) is a positive linear map characterized
by

Φ̃(A) =
r1∑

i=1

F̃ iA
TF̃

H

i +
r2∑

j=1

G̃jAG̃
H

j . (217)

Consider the eigendecomposition of R̃X

R̃X = UΛUH, (218)

where Λ ∈ Rrank(R̃X)×rank(R̃X) is a diagonal matrix containing
all non-zero eigenvalues of R̃X, and U ∈ CM×rank(R̃X)

is a semi-unitary matrix constituted by the corresponding
eigenvectors. Now, observe that the sample covariance matrix
RX may be expressed as

RX = UΛ
1
2 WΛ

1
2 UH, (219)

where W satisfies TW ∼ CWrank(R̃X)(I, T ), namely TW
is complex Wishart distributed. Next, we construct the linear
map

Φunital(W) = L−1Φ̃(UΛ
1
2 WΛ

1
2 UH)(LH)−1, (220)

which L is obtained by the Cholesky decomposition

LLH = Φ̃(R̃X). (221)

The inverse L−1 exists since Φ(R̃X) is invertible. Note that
Φunital is a unital map in the sense that

Φunital(I) = L−1Φ̃(R̃X)(LH)−1 = I. (222)

Moreover, Φunital maps one positive semidefinite matrix to
another, and hence it is a positive unital linear map. According
to Choi [53], such a map satisfies

[Φunital(W)]−1 ≼ Φunital(W−1), (223)

which implies that

LH[Φ̃(RX)]−1L ≼ Φunital(W−1), (224)

and hence

[Φ̃(RX)]−1 ≼ [Φ̃(R̃X)]−1Φ̃(UΛ
1
2 W−1Λ

1
2 UH)[Φ̃(R̃X)]−1.

(225)

Since TW ∼ CWrank(R̃X)(I, T ), we obtain

E{W−1} = TE{(TW)−1} =
T

T − rank(R̃X)
I. (226)

Thus we have

E{[Φ̃(RX)]−1}
≼ [Φ̃(R̃X)]−1Φ̃(UΛ

1
2 E(W−1)Λ

1
2 UH)[Φ̃(R̃X)]−1

=
T

T − rank(R̃X)
[Φ̃(R̃X)]−1Φ̃(R̃X)[Φ̃(R̃X)]−1

=
T

T − rank(R̃X)
[Φ̃(R̃X)]−1. (227)

Next, we will show that when K ⩽ rank(R̃X), we have

E{[Φ̃(RX)]−1} ≼
T

T −K
[Φ̃(R̃X)]−1. (228)

Observe that

Φunital(A) =
r1∑

i=1

F iA
TF H

i +
r2∑

j=1

GjAGH
j , (229)

where F i = L−1F̃ iUΛ
1
2 , Gi = L−1G̃iUΛ

1
2 . Using the

singular value decompositions

F i = U iΣiV
H
i , Gi = U i+r1Σi+r1V

H
i+r1

, (230)

where for all i, U i ∈ CK×K , Σi ∈ CK×K , and V i ∈
Crank(R̃X)×K , we obtain an alternative representation of
Φunital(A) as follows

Φunital(A) = FV (A)F H, (231)

where

F = [U1Σ1, . . . , U r1+r2Σr1+r2 ],

V (A) = blkdiag(V H
1 ATV 1, . . . , V H

r1+r2
AV r1+r2).

(232)

Since A = I implies V (A) = I , Φunital(A) may also
be viewed as a unital positive linear map of V (A), based
on (220). Thus we have

[Φunital(W)]−1 = [FV (W)F H]−1

≼ F [V (W)]−1F H. (233)

Note that

E{[V (W)]−1} =
T

T −K
Ir1+r2 ⊗ IK , (234)

since each diagonal block in V (W) satisfies

TV H
i WTV i ∼ CWK(I, T ), (235a)

TV H
i WV i ∼ CWK(I, T ). (235b)

Hence

E{[Φ̃(RX)]−1} ≼ L−1F E{[V (W)]−1}F H(LH)−1

=
T

T −K
L−1Φunital(I)(LH)−1

=
T

T −K
[Φ̃(R̃X)]−1, (236)

which implies (228). Combining (227) and (228), we obtain

E{[Φ̃(RX)]−1} ≼
T [Φ̃(R̃X)]−1

T −min{K, rank(R̃X)}
. (237)

Next, let us consider the spectral decomposition of J̃P

J̃P = UPΛPUH
P . (238)

Using (238), we obtain

E
{

tr
[(

Φ̃(RX) + J̃P

)−1]}
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= E
{

tr
[(

UH
PΦ̃(RX)UP + ΛP

)−1]}
= E

{
tr

[
Λ
− 1

2
P

(
Φ̃0(RX) + I

)−1

Λ
− 1

2
P

]}
= tr

{
Λ
− 1

2
P E

[(
Φ̃0(RX) + I

)−1]
Λ
− 1

2
P

}
, (239)

where Φ̃0(RX) = Λ
− 1

2
P UH

PΦ̃(RX)UPΛ
− 1

2
P . Note that now it

suffices to show that

E
[(

Φ̃0(RX) + I
)−1]

≼
T

(
Φ̃0(R̃X) + I

)−1

T −min{K, rank(R̃X)}
.

Let us define

Φ̃1(RX) = Φ̃0(RX) + αI, (240)

which is a positive linear map, with the notation α =
tr

[
RX

]
/E

{
tr

[
RX

]}
. Using again the previous arguments,

we obtain

E{[Φ̃1(RX)]−1} ≼
T [Φ̃1(R̃X)]−1

T −min{K, rank(R̃X)}

=
T [Φ̃0(R̃X) + I]−1

T −min{K, rank(R̃X)}
. (241)

Next we will show that

E
[(

Φ̃0(RX) + I
)−1]

≼ E{[Φ̃1(RX)]−1},

which can be rewritten as

E
[(

Φ̃0(RX) + E(α)I
)−1]

≼ E
[(

Φ̃0(RX) + αI
)−1]

.

(242)

To this end, we consider the quantity

E
[(

Φ̃0(RX) + E(α)I
)−1

−
(
Φ̃0(RX) + αI

)−1]
=E

[
(α−E(α))

[(
Φ̃0(RX)+I

)(
Φ̃0(RX)+αI

)]−1
]

=cov
{
αI,

[(
Φ̃0(RX)+I

)(
Φ̃0(RX)+αI

)]−1
}

=cov
{
αI,E

{[(
Φ̃0(RX)+I

)(
Φ̃0(RX)+αI

)]−1|α
}}

,

(243)

where cov(·, ·) is defined as cov(A,B) = E(AB)−E(A)E(B),
and the quantity

E
{[(

Φ̃0(RX)+I
)(

Φ̃0(RX)+αI
)]−1|α

}
can be seen to be a matrix-valued monotonically decreasing
function of α. Next, note that cov {A(α),B(α)} ≽ 0 when
A(α) and B(α) are mutually commuting matrix-valued mono-
tonically increasing functions of α [54]. Correspondingly,
when A(α) is increasing and B(α) is decreasing, we would
have cov {A(α),B(α)} ≼ 0. This implies that

E
[(

Φ̃0(RX) + E(α)I
)−1

−
(
Φ̃0(RX) + αI

)−1]
≼ 0,

and hence the proof is completed.

APPENDIX K
PROOF OF COROLLARY 5

Proof: From (231) we see that, when K ⩽ rank(R̃X),
the equality in (36) is achieved if

E{[FV (W)F H]−1} = E{F [V (W)]−1F H}. (244)

Note that FF H = I since Φunital is unital with respect to
V (W). Thus when r1 + r2 = 1, we have that F ∈ CK×K ,
which implies that F is unitary, and hence (244) holds.

Next, since J̃P can be neglected in the limit of σs → 0, let
us assume that J̃P = 0 and obtain

Φ(A) = F st

[
I ⊗AT 0

0 I ⊗A

]
(F st)H. (245)

Therefore, if F st is unitary, we may conclude that

E{[Φ(RX)]−1}

= F st

[
I ⊗ (E{R−1

X })T 0
0 I ⊗ E{R−1

X }

]
(F st)H

=
T

T −M
[Φ(R̃X)]−1, (246)

where the last line follows from the fact that

TRX ∼ CWM (R̃X, T ).

This implies the equality in (36), since rank(R̃X) = M when
R̃X is invertible.

APPENDIX L
PROOF OF PROPOSITION 6

Proof: To prove this proposition, it suffices to show that
there exists at least one point (ϵ, R) on the Gaussian inner
bound or the semi-unitary inner bound that lies above the line
segment connecting PSC and PCS. Once we found such a point
P = (ϵ, R), we see that the time-sharing strategies between
P , PSC and PCS readily constitute a tighter inner bound than
the pentagon inner bound.

Next we show that there do exist such points, under mild
assumptions. To this end, let us consider the slope of the semi-
unitary–Gaussian inner bound at a specific value of α. For
our purpose, it suffices to show that at PSC (resp. PCS), the
slope of the semi-unitary–Gaussian inner bound is larger (resp.
smaller) than the slope of the line segment connecting PSC and
PCS. First note that, as long as the optimal objective function
value is not identical for all α ∈ [0, 1], the slope of the outer
bound (50) at a specific value of α is given by

∂Rout(α)
∂ϵout(α)

=
T

σ2
s

· λα, (247)

where λα is the optimal Lagrange dual variable corresponding
to the constraint (49c). According to the correspondence
between the formulations (48) and (49) (c.f. [55, Sec. 5.3.3]),
λα can be explicitly obtained as

λα =
1− α

α
, (248)
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which tends to infinity as α → 0. Now, the slope of the
semi-unitary inner bound can be expressed as

∂Rin,U(α)
∂ϵin,U(α)

=
(
1− MU

2T

) (1− α)T
ασ2

s

+O(σ2
c ), (249)

which also tends to infinity as α → 0. Since the semi-
unitary–Gaussian inner bound equals to the semi-unitary inner
bound around PSC, we may conclude that the slope of the
semi-unitary–Gaussian inner bound at PSC is positive infinity.
Following a similar line of reasoning, we can show that the
slope at PCS is zero. Therefore, no matter what the slope of the
line segment connecting PSC and PCS is, it should be upper
and lower bounded by that of the semi-unitary–Gaussian inner
bound at PSC and PCS, respectively, completing the proof.
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