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On the Probabilistic Quantum Error Correction
Ryszard Kukulski , Łukasz Pawela , and Zbigniew Puchała

Abstract— Probabilistic quantum error correction is an error-
correcting procedure which uses postselection to determine if
the encoded information was successfully restored. In this work,
we analyze the probabilistic version of the error-correcting
procedure for general noise. We generalize the Knill-Laflamme
conditions for probabilistically correctable errors. We show that
for some noise channels, the initial information has to be encoded
into a mixed state to maximize the probability of successful error
correction. Finally, the probabilistic error-correcting procedure
offers an advantage over the deterministic procedure. Reducing
the probability of successful error correction allows for correcting
errors generated by a broader class of noise channels. Signifi-
cantly, if the errors are caused by a unitary interaction with an
auxiliary qubit system, we can probabilistically restore a qubit
state by using only one additional physical qubit.

Index Terms— Quantum error correction, postselection,
channel-adapted error correction.

I. INTRODUCTION

QUANTUM error correction (QEC) is an encoding-
decoding procedure that protects quantum information

from errors arising due to quantum noise. Similarly as in
classical computations, this procedure is essential to develop
fully operational quantum computers [1]. The theory of QEC,
initialized by the work of Shor [2], covers a wide range
of coding techniques: Calderbank-Shor-Steane codes [3], [4],
[5], stabilizer codes [6], topological codes [7], subsystem
codes [8], entanglement-assisted quantum error-correcting
codes [9], [10], quantum low-density parity-check (LDPC)
codes [11], quantum maximum distance separable codes [12]
and many more (for a review see [13]).

In this work, we study a particular QEC procedure called
probabilistic quantum error correction (pQEC) [14], [15],
[16]. To outline how the pQEC procedure works, let us present
an example of classical probabilistic error correction. Consider
the scenario when the encoded data is harmed by a single
bit error; that is with the probability p ∈ [0, 1] an arbitrary
bit will be flipped. To secure a single bit of information,
we use two physical bits. If we expect that p ≤ 2

3 , then we
can encode 0 → 00 and 1 → 11. If we receive information
00 at the decoding stage, we are certain the encoded message
was 0 (and 1 for 11). We dismiss the cases 01 and 10 as they
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do not give conclusive answers. Otherwise, if p > 2
3 it would

be beneficial to use encoding 0 → 00 and 1 → 01 with the
accepting states 10 and 11, respectively. It is worth mentioning
that to secure one bit of information perfectly, it is necessary
to use three physical bits, for example, 0 → 000, 1 → 111.

Let us return to the quantum case. At the heart of the
pQEC procedure lies the probabilistic decoding operation [17],
[18]. This operation uses a classical postselection to determine
if the encoded information was successfully restored. The
clear drawback is that the procedure may fail with some
probability. In such a case, we should reject the output
state and ask for retransmission [19]. In the context of
QEC, probabilistic decoding operations have found application
in stabilizer codes [20] especially for iterative probabilistic
decoding in LDPC codes [11], [21], [22], error decoding [23],
[24] or environment-assisted error correction [25]. Moreover,
it was noted that they have the potential to increase the
spectrum of correctable errors [15] and are useful when the
number of qubits is limited [14]. It is also worth men-
tioning that they were used with success in other fields of
quantum information theory, e.g. probabilistic cloning [26],
learning of unknown quantum operations [27] or measurement
discrimination [28].

Even though the pQEC procedure has been studied in the
literature for a while, there is a lack of a formal description
of its application for a general noise model. In this work,
we fill this gap. Inspired by the celebrated Knill-Laflamme
conditions [29], we provide conditions (Theorem 1) to check,
when probabilistic error correction is possible. We discover
that optimal error-correcting codes are not always generated
with the usage of isometric encoding operations. We give
an explicit example of noise channels family (Section V),
such that to maximize the probability of successful error
correction, we need to encode the quantum information into a
mixed state. Moreover, we discuss the advantage of the pQEC
procedure over the deterministic one with a formal statement
in Theorem 7. We show, in Theorem 17, how to correct
noise channels with bounded Choi rank. Also, we observe the
advantage of the pQEC procedure for random noise channels,
which is presented in Theorem 21. Finally, if the errors are
caused by a unitary interaction with an auxiliary qubit system,
we show that it is possible to restore a qubit logical state by
using only two physical qubits. We present a procedure how
to achieve this in Algorithm 1.

The rest of the paper is organized as follows. In Section II
we introduce the notation and define the pQEC protocol.
In Section III we present equivalent conditions for proba-
bilistically correctable noise channels. Then, we investigate a
realization of the pQEC procedure in Section IV. In Section V
we present a family of noise channels for which, it is necessary
to use mixed state encoding to maximize the probability of
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successful error correction. Then, we study the advantage
of the pQEC procedure in Section VI and Section VII.
In Section VIII we define a generalization of the pQEC
protocol. Finally, we place all proofs in Appendix.

II. PRELIMINARIES

A. Mathematical Framework

In this section, we will introduce the notation and recall
necessary basic facts of quantum information theory. We will
denote complex Euclidean spaces by symbols X ,Y, . . .. In a
given space X we distinguish the computational basis {|i⟩ ∈
X : i ∈ {0, . . . ,dim(X ) − 1}}, that is a set of vectors,
whose components are all zero, except one that equals 1,
which span X . The set of linear operators M : X → Y
will be written as M(X ,Y) and M(X ) ..= M(X ,X ). The
identity operators will be denoted by 1lX ∈ M(X ). For any
operator M ∈ M(X ,Y) we will consider its vectorization
|M⟩ ∈ Y ⊗ X , which is defined as

|M⟩ ..=
(
1lY ⊗M⊤) dim(Y)−1∑

i=0

|i⟩ ⊗ |i⟩. (1)

For any A ∈M(X ,Y), B ∈M(Y,Z) and C ∈M(Z, T ) it
holds |CBA⟩ =

(
C ⊗A⊤

)
|B⟩ [30].

In the space M(X ), we distinguish the set of positive
semi-definite operators P(X ), the space of Hermitian oper-
ators H(X ) and the set of unitary operators U(X ). We use
the convention that for non-invertible operator M , by M−1,
we denote its Moore-Penrose pseudo-inverse [30]. The set
of quantum states, that is, the set of positive semi-definite
operators with unit trace will be denoted by D(X ). We say
that a quantum state ρ is a pure state if rank(ρ) = 1, otherwise,
if rank(ρ) > 1, we say that ρ is a mixed state. The maximally
mixed state will be denoted by ρ∗X

..= 1
dim(X )1lX .

We also consider transformations between linear operators.
We denote by IX : M(X ) → M(X ) the identity map.
Let us define the set of quantum subchannels sC(X ,Y) [31].
A quantum subchannel Φ ∈ sC(X ,Y) is a linear map
Φ : M(X ) → M(Y), which is completely positive
[30, Theorem 2.22], i.e.

(Φ⊗ IX )(Q) ∈ P(Y ⊗ X ) for any Q ∈ P(X ⊗ X ) (2)

and trace non-increasing

tr(Φ(ρ)) ≤ 1 for any ρ ∈ D(X ). (3)

In particular, the subchannel Φ which is trace preserving, i.e.

tr(Φ(ρ)) = 1 for any ρ ∈ D(X ) (4)

will be called a quantum channel. We denote by C(X ,Y) the
set of quantum channels Φ : M(X ) → M(Y). We will
also use the following notation, sC(X ) ..= sC(X ,X ) and
C(X ) ..= C(X ,X ).

In this work, we will consider the following representations
of subchannels:
• Kraus representation: Each subchannel Φ ∈ sC(X ,Y)

can be defined by a collection of Kraus operators
(Ki)r

i=1 ⊂ M(X ,Y), such that Φ(X) =
∑r

i=1KiXK
†
i

for X ∈M(X ) and r ∈ N. The operators Ki satisfy the
condition

∑r
i=1K

†
iKi ≤ 1lX . We say that the subchannel

Φ is given in a canonical Kraus representation (Ki)r
i=1,

if it holds that tr(K†
jKi) ∝ δij and Ki ̸= 0 for each

i ≤ r. To represent the subchannel Φ by its Kraus
representation (Ki)r

i=1, we introduce the notation K :
M(X ,Y)×r → sC(X ,Y) given by Φ = K ((Ki)r

i=1).
Finally, the Kraus representation is not unique. It holds
that K ((Ki)r

i=1) = K ((K ′
i)

r
i=1) if and only if there

exists U ∈ U(Cr) such that K ′
i =

∑
j UijKj for any i.

• Choi-Jamiołkowski representation: Each subchannel Φ ∈
sC(X ,Y) can be uniquely described by its Choi-
Jamiołkowski operator J(Φ) ∈ M(Y ⊗ X ), which is
defied as J(Φ) ..= (Φ⊗IX )(|1lX ⟩⟨1lX |). The rank of J(Φ)
is called the Choi rank and it determines the minimal
number r of Kraus operators Ki needed to describe
Φ in the Kraus form Φ = K ((Ki)r

i=1). Therefore,
if the Kraus representation (Ki)r

i=1 is canonical, then
r = rank(J(Φ)).

• Stinespring representation: By the Stinespring Dilatation
Theorem any subchannel Φ ∈ sC(X ,Y) can be defined
as Φ(X) = tr2

(
AXA†

)
for X ∈ M(X ), where A ∈

M(X ,Y ⊗ Cr) and tr2 is the partial trace over the
second subsystem Cr. The minimal dimension r of the
auxiliary system is equal to the Choi rank. In particular,
for Φ ∈ C(X ), the Stinespring representation of Φ can
be written in the form Φ(X) = tr2

(
U(X ⊗ |ψ⟩⟨ψ|)U†

)
,

where |ψ⟩⟨ψ| ∈ D(Cr) and U ∈ U(X ⊗ Cr).

B. Problem Formulation

In this work, we consider the following procedure of proba-
bilistic quantum error correction. We are given a noise channel
E ∈ C(Y) and a Euclidean space X . The goal of pQEC is
to choose an appropriate encoding operation S ∈ sC(X ,Y)
and decoding operation R ∈ sC(Y,X ), such that for any
state ρ ∈ D(X ) we have RES(ρ) ∝ ρ. In this protocol,
the pair (S,R) represents the error-correcting scheme and the
quantity tr (RES(ρ)) represents the probability of successful
error correction. This protocol may fail with the probability
1− tr (RES(ρ)). In such a case, the output state is rejected.
To exclude a trivial, null strategy, we add the constrain that
a valid error-correcting scheme must satisfy tr(RES(ρ)) > 0
for any ρ ∈ D(X ).

In this set-up, the probability of successful error correction
does not depend on the input state ρ (see Lemma 24 in
Appendix A). We use this fact to standardize the definition of
pQEC. From now, we say that E ∈ C(Y) is probabilistically
correctable for X , if there exists an error-correcting scheme
(S,R) such that

0 ̸= RES ∝ IX . (5)

We say that E is correctable perfectly if RES = IX . In this
work, we will denote by pX (E) the maximal probability of
successful error correction for a given E and X , that is

pX (E) ..= max {p : RES = pIX ,
(S,R) ∈ sC(X ,Y)× sC(Y,X )} . (6)
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III. PROBABILISTIC QUANTUM ERROR CORRECTION

To inspect the pQEC procedure, first, we should state
conditions which determine when a given noise channel is
probabilistically correctable. For deterministic QEC, such con-
ditions have been known for a long time as the Knill-Laflamme
conditions [29]. Let E = K ((Ei)i) ∈ C(Y) be a given noise
channel. Then, according to the Knill-Laflamme Theorem,
E is perfectly correctable for X if and only if

S†E†jEiS ∝ 1lX (7)

for all i, j and some isometry operator S ∈ M(X ,Y).
In the following theorem we generalize the above, to cover
probabilistically correctable noise channels.

Theorem 1 (Equivalent Conditions for pQEC): Let E =
K ((Ei)i) ∈ C(Y). The following conditions are equivalent:
(A) There exist error-correcting scheme (S,R) ∈ sC(X ,Y)×

sC(Y,X ) and p > 0 such that

RES = pIX . (8)

(B) There exist S = K ((Sk)k) ∈ sC(X ,Y) and R ∈ P(Y),
such that R ≤ 1lY , for which it holds

K
((√

REiSk

)
i,k

)
= K ((Ai)i) , (9)

where Ai ̸= 0 and A†jAi ∝ δij1lX .
(C) There exist S = K ((Sk)k) ∈ sC(X ,Y), R ∈ P(Y),

such that R ≤ 1lY and a matrix M = [Mjl,ik]jl,ik ̸= 0,
for which it holds

∀i,j,k,l S†l E
†
jREiSk = Mjl,ik1lX . (10)

(D) There exist S∗ ∈ M(X ,Y) and R∗ ∈ M(Y,X ) such
that

∀i R∗EiS∗ ∝ 1lX (11)

and there exists i0, for which it holds R∗Ei0S∗ ̸= 0.
Moreover, if point (A) holds for S = K ((Sk)k) and R =

K ((Rl)l), then R ∈ P(Y) from points (B) and (C) can be
chosen to satisfy R =

∑
lR

†
lRl. It also holds that RlEiSk ∝

1lX for any i, k, l.
The proof of Theorem 1 is presented in Appendix B. Let

us discuss the meaning of the conditions stated in Theorem 1.
The condition (B) presents a general form of probabilistically
correctable noise channels E . Such channels, after applying
post-processing

√
R behave as mixed isometry operations.

They hide parts of an initial quantum system on orthogonal
subspaces. The condition (C) may be used to obtain the
form of a recovery subchannel R in the following way (see
Appendix B):

1) Let M = U†DU be the spectral decomposition of M .
2) Define Aii′ =

∑
a,b Uii′,ab

√
REaSb.

3) For each Aii′ ̸= 0 define αii′ : A†ii′Aii′ = αii′1lX .
4) The recovery subchannel is given as

R = K
((

α
−1/2
ii′ A†ii′

√
R
)

i,i′

)
.

Finally, the condition (D) gives us a simple method to check
if E = K ((Ei)r

i=1) is probabilistically correctable for X .

Fig. 1. Schematic realization of the pQEC procedure for the noise channel E .

Let us compare the point (D) with the Knill-Laflamme con-
ditions. The latter, is a constraint satisfaction problem with
r2 quadratic constrains S†E†jEiS ∝ 1lX for the variable
S ∈ M(X ,Y), which satisfies S ̸= 0. The parameters E†jEi

constitute a †−closed algebra A, such that 1lY ∈ A. In com-
parison, the conditions in the point (D) represent a constraint
satisfaction problem with r bilinear constrains REiS ∝ 1lX
for the variables S ∈ M(X ,Y) and R ∈ M(Y,X ). Addi-
tionally, it must hold REi0S ̸= 0 for some i0 ∈ {1, . . . , r}.
In this problem, the parameters Ei are arbitrary operators
from M(Y), which satisfy span

(
im(E†i ) : i = 1, . . . , r

)
= Y

(although a stronger condition holds
∑

iE
†
iEi = 1lY , we will

see in Section VI, it is more convenient to use the weaker
version).

IV. REALIZATION OF PQEC PROCEDURE

In this section, we will investigate the form of error-
correcting scheme (S,R) which provides the maximal proba-
bility of successful error correction. For perfectly correctable
noise channels, the encoding S can be realized by an isometry
channel. This observation meaningfully reduces the complex-
ity of finding error-correcting schemes – it is enough to
consider a vector representation of pure states. Inspired by
that, we ask if a similar behavior occurs in the probabilistic
quantum error correction. The following proposition gives us
some insight in the form of encoding and decoding.

Proposition 2: For a given channel E ∈ C(Y), let us fix an
error-correcting scheme (S,R) ∈ sC(X ,Y)× sC(Y,X ) such
that RES = pIX , for some p > 0. Then, the following holds:
(A) There exist S̃ ∈ C(X ,Y) and R̃ ∈ sC(Y,X ) such that

R̃ES̃ = pIX .
(B) If R ∈ C(Y,X ), then there exists S̃ = K

(
(S̃)
)
∈

C(X ,Y) such that RES̃ = IX .
(C) If p = 1, then there exist S̃ = K

(
(S̃)
)
∈ C(X ,Y) and

R̃ ∈ C(Y,X ) such that R̃ES̃ = IX .
The proof of Proposition 2 is presented in Appendix C. We

may use Proposition 2 (A) to state a realization of the pQEC
procedure (see Figure 1). For a given noise channel E ∈ C(Y)
let (S,R) ∈ C(X ,Y) × sC(Y,X ) be an error-correcting
scheme for which RES = pIX , where p > 0. The encoding
channel S can be realized using the Stinespring representation
given in the form S(X) = tr2

(
USXU

†
S

)
. The state is then

sent through E . The decoding subchannel R ∈ sC(Y,X ) can
be realized by implementing the channel R̃ ∈ C(Y,X ⊗ C2)
given in the form R̃(Y ) = R(Y ) ⊗ |0⟩⟨0| + Ψ(Y ) ⊗ |1⟩⟨1|,
where Ψ ∈ sC(Y,X ) such that (R + Ψ) ∈ C(Y,X ).
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In summary, the output of the whole procedure consists of a
quantum state σ ∈ D(X ) and a classical label i ∈ {0, 1}. If the
label i = 0 is obtained, we know that σ ∝ RES(ρ) = pρ, and
hence, the output state can be accepted. Otherwise, if i = 1,
the output state σ ∝ ΨES(ρ) should be rejected, as in general
it may differ from ρ.

In Proposition 2 (C), we observed that using non-isometric
channels S or formal subchannels R for perfectly correctable
noise channels provides no advantage. Moreover, according
to Theorem 1 (D), to predict if a noise channel is proba-
bilistically correctable, we may consider only single Kraus
encoding operations. However, among all conditions presented
in Proposition 2 there is no condition, which in general allows
us to restrict our attention to an isometry channel realization
of S. Indeed, there is a class of noise channels E for which,
in order to maximize the probability p of successful error
correction, we need to consider a general channel realization
of S. Paraphrasing, to obtain the best performance, we have
to encode the initial state |ψ⟩⟨ψ| ∈ D(X ) into the mixed state
S(|ψ⟩⟨ψ|). In Section V we will present a family of noise
channels for which it is necessary to use mixed state encoding.

V. NEED FOR MIXED STATE ENCODING

In this section, we provide an example of a parametrized
family of noise channels {ER}R for which the mixed state
encoding improves the probability of successful error correc-
tion. In our example we assume that X = C2 and Y = C4.
For each R ∈ P(C4) satisfying R ≤ 1lC4 let us define a noise
channel ER ∈ C(C4) given by the equation

ER(Y ) = |0⟩⟨0| ⊗ tr1
(√

RY
√
R
)

+ |1⟩⟨1| ⊗ tr ([1lC4 −R]Y ) ρ∗2. (12)

For a given R we define the optimal probability p0 of
successful error correction as

p0(R) ..= max {p : RERS = pIC2 ,

(S,R) ∈ sC(C2,C4)× sC(C4,C2)
}
. (13)

We also define the optimal probability p1 of successful error
correction restricted to the pure state encoding:

p1(R) ..= max
{
p : RERS = pIC2 ,R ∈ sC(C4,C2),

S = K ((S)) ∈ sC(C2,C4), S ∈M(C2,C4)
}
.

(14)

Our claim, which we will prove, is that there exists a family
of operators R for which p0(R) > p1(R).

We start with the following lemma, where we show the opti-
mal error-correcting scheme (S,R) and a simplified version
of the maximization problem p0(R).

Lemma 3: Let R ∈ P(C4) and R ≤ 1lC4 . Define ΠR

as a projector on the support of R. For ER defined in (12)
we have the following simplified form of the maximization
problem p0(R):

p0(R) =max
{
tr(P ) : P ∈ P(C2),

tr1
(
R−1(P ⊗ 1lC2)

)
≤ 1lC2 ,

∀X∈M(C2) ΠR(P ⊗X)ΠR = P ⊗X
}
. (15)

An optimal scheme (S,R) which achieves the probability
p0(R), that is RERS = p0(R)IC2 , can be taken as

S(X) =
√
R
−1

(P0 ⊗X)
√
R
−1
,

R(Y ) = tr1 (Y (|0⟩⟨0| ⊗ 1lC2)) , (16)

where P0 is an argument maximizing p0(R) in (15). Moreover,

if there exists another optimal scheme (S̃, R̃), that is R̃ERS̃ =
p0(R)IC2 , then rank(J(S)) ≤ rank(J(S̃)).

The proof of Lemma 3 is presented in Appendix D. Let us
separately consider two cases: rank(R) < 4 and rank(R) = 4.
The first one will be discussed briefly as it will not support
our claim.

Corollary 4: Let us take R ∈ P(C4) such that R ≤ 1lC4 and
rank(R) < 4. Define ΠR as a projector on the support of R.
For the noise channel defined in (12) we have p0(R) = p1(R).
Moreover, it holds
• If rank(R) ≤ 1, then p0(R) = 0.
• If rank(R) = 2,ΠR ̸= |ψ⟩⟨ψ| ⊗ 1lC2 , |ψ⟩ ∈ C2, then
p0(R) = 0.

• If rank(R) = 2,ΠR = |ψ⟩⟨ψ| ⊗ 1lC2 , |ψ⟩ ∈ C2, then
p0(R) = ∥ tr1

(
R−1(|ψ⟩⟨ψ| ⊗ 1lC2)

)
∥−1
∞ .

• If rank(R) = 3,ΠR = 1lC4 − |α⟩⟨α| and |α⟩ ∈ C4 is
entangled, then p0(R) = 0.

• If rank(R) = 3,ΠR = 1lC4 − |ψ⊥⟩⟨ψ⊥| ⊗ |ϕ⟩⟨ϕ|,
where |ψ⊥⟩, |ϕ⟩ ∈ C2, |ψ⟩⟨ψ| ∈ D(C2), then p0(R) =
∥ tr1

(
R−1(|ψ⟩⟨ψ| ⊗ 1lC2)

)
∥−1
∞ .

The proof of Corollary 4 is presented in Appendix E.
In the case when the operator R is invertible, the situation

is more interesting. Let us focus on p0(R) obtained in (15).
As ΠR = 1lC4 , the equation ΠR(P ⊗ X)ΠR = P ⊗ X is
always satisfied. For a given P , we can take ρ ∈ D(C2) such
that P = tr(P )ρ. The inequality tr(P ) tr1

(
R−1(ρ⊗ 1lC2)

)
≤

1lC2 is then equivalent to tr(P ) ≤ ∥ tr1
(
R−1(ρ⊗ 1lC2)

)
∥−1
∞ .

Hence, we get

p0(R) = max
{
∥ tr1

(
R−1(ρ⊗ 1lC2)

)
∥−1
∞ : ρ ∈ D(C2)

}
.

(17)

To calculate p1(R) it will be sufficient to add the constraint
S = K ((S)). According to Lemma 3 the optimal S is of
the form S(X) =

√
R
−1

(P ⊗X)
√
R
−1

. As R is invertible,
S = K ((S)) if and only if P = |ψ⟩⟨ψ| for some |ψ⟩ ∈ C2.
Then, we have

p1(R) = max
{
∥ tr1

(
R−1(|ψ⟩⟨ψ| ⊗ 1lC2)

)
∥−1
∞ :

|ψ⟩⟨ψ| ∈ D(C2)
}
. (18)

Proposition 5: Let us define a unitary matrix U ∈ U(C4)
which columns form the magic basis [32]

U =
1√
2


1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i

 . (19)

Let us also define a diagonal operator D(λ) ..=
∑4

i=1 λi|i⟩⟨i|,
which is parameterized by a 4−dimensional real vector
λ = (λ1, λ2, λ3, λ4), for which it holds 0 < λi ≤ 1. For
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R = UD(λ)U† and the noise channel ER defined in (12) we
have

p0(R) =
4

tr(R−1)
,

p1(R) =
4

tr(R−1) + c
, (20)

where

c = min
{∣∣∣∣ 1
λ1
− 1
λ2
− 1
λ3

+
1
λ4

∣∣∣∣ ,∣∣∣∣∣∣∣∣ 1
λ1
− 1
λ4

∣∣∣∣− ∣∣∣∣ 1
λ2
− 1
λ3

∣∣∣∣∣∣∣∣} . (21)

The proof of Proposition 5 is presented in Appendix F.
We can clearly see that in the case rank(R) = 4, there are
operators R, for which the mixed state encoding improves the
probability of successful error correction over the pure state
encoding, p0(R) > p1(R). In general, the maximization prob-
lem in (17) intuitively supports the inequality p0(R) > p1(R).
The function ρ 7→ ∥ tr1

(
R−1(ρ⊗ 1lC2)

)
∥∞ is convex, so it is

possible, that the minimal value of it will be achieved for some
mixed state ρ. We observed such behavior in Proposition 5
for R given in the spectral decomposition R = UD(λ)U†.
The introduced family of noise channels is parameterized by a
4−dimensional vector λ = (λ1, . . . , λ4), such that λi ∈ (0, 1].
For almost all such λ we have p0(R) > p1(R). The only
exception is the 3−dimensional subset defined by the relation

1
λ1

+
1
λ4

=
1
λ2

+
1
λ3
∨
∣∣∣∣ 1
λ1
− 1
λ4

∣∣∣∣ = ∣∣∣∣ 1
λ2
− 1
λ3

∣∣∣∣ , (22)

which describes the situation, when the pure state encoding
match the mixed state encoding, p0(R) = p1(R). In an
extremal case, e.g. for λ = ( 1

2N ,
1
2 ,

1
2 ,

1
2 ), N ∈ N, we get

p1(R) = 1
N+1 and p0(R) = 2

N+3 . Especially, when
N → ∞ the mixed state encoding provides the advantage,
p0(R)/p1(R) → 2.

The family of parameters R introduced in Proposition 5
is not the only one for which the minimum value of
∥ tr1

(
R−1(ρ⊗ 1lC2)

)
∥∞ is achieved for a mixed state ρ. Let

R−1 ∝ (IC2 ⊗ Φ)(|1lC2⟩⟨1lC2 |) for some Φ ∈ C(C2). Then,
∥ tr1

(
R−1(ρ⊗ 1lC2)

)
∥∞ ∝ ∥Φ(ρ⊤)∥∞. Therefore, the value

of p0(R) is one-to-one related with the maximum value of the
output min-entropy of the channel Φ (see for instance [33]).
Especially, we can see, if the image of the Bloch ball under
Φ is a three dimensional ellipsis and contains the maximally
mixed state ρ∗2 in its interior, then the mixed state encoding
provides benefits.

Finally, the noise channel ER defined for R from
Proposition 5 is perfectly correctable for X = C2 if and
only if R = 1lC4 . Interestingly, this suggests that perfectly
correctable noise channels may constitute only a small subset
of probabilistically correctable noise channels. This behavior
will be the object of our investigation in the next section.

VI. ADVANTAGE OF PQEC PROCEDURE

The goal of this section is to show that the pQEC pro-
cedure corrects a wider class of noise channels than the
QEC procedure based on the Knill-Laflamme conditions (7).

For any Euclidean spaces X ,Y let us define two families of
noise channels: these which are probabilistically correctable
for X , denoted as ξ(X ,Y), and these which are correctable
perfectly for X , denoted as ξ1(X ,Y):

ξ(X ,Y) ..=
{E ∈ C(Y) : ∃(S,R)∈sC(X ,Y)×sC(Y,X ) 0 ̸= RES ∝ IX },
ξ1(X ,Y) ..=
{E ∈ C(Y) : ∃(S,R)∈sC(X ,Y)×sC(Y,X ) RES = IX }. (23)

We begin our analysis with some observations.
Proposition 6: For any X , Y we have the following

properties:
(A) ξ1(X ,Y) ⊂ ξ(X ,Y),
(B) If dim(X ) > dim(Y), then ξ(X ,Y) = ∅,
(C) If dim(X ) ≤ dim(Y), then ξ1(X ,Y) ̸= ∅,
(D) If dim(X ) = dim(Y), then ξ1(X ,Y) = ξ(X ,Y).

The proof of Proposition 6 is presented in Appendix G.
We see that if dim(X ) = dim(Y), then there is no need to con-
sider the pQEC procedure. The situation changes if we encode
the initial information into a larger space, dim(Y) > dim(X ).
In the following theorem, we will show that ξ1(X ,Y) ⫋
ξ(X ,Y) for dim(Y) > dim(X ).

Theorem 7: Let X and Y be Euclidean spaces for which
dim(X ) < dim(Y). Then, the set ξ1(X ,Y) is a nowhere dense
subset of ξ(X ,Y).

The proof of Theorem 7 is presented in Appendix H.

A. Choi Rank of Correctable Noise Channels

The intensity of a noise channel E can be connected with
its Choi rank r = rank(J(E)). Given E in the Stinespring
form, the Choi rank describes the dimension of an environment
system which unitarily interacts with the encoded information.
If the interaction is the weakest (r = 1) we deal with
unitary noise channels, which are always perfectly correctable.
The strongest interaction (r = dim(Y)2) is a property of
noise channels that are difficult to correct. For example, the
maximally depolarizing channel E(Y ) = tr(Y )ρ∗Y , which
can not be corrected, has the maximal Choi rank. In the
following theorem, we investigate the maximum Choi rank
of probabilistically correctable noise channels ξ(X ,Y) and
compare it with the maximum Choi rank for ξ1(X ,Y).

Theorem 8: Let X and Y be some Euclidean spaces such
that dim(Y) ≥ dim(X ). The following relations hold:

max {rank(J(E)) : E ∈ ξ1(X ,Y)}

= dim(Y)2 − dim(Y) dim(X ) +
⌊

dim(Y)
dim(X )

⌋
,

max {rank(J(E)) : E ∈ ξ(X ,Y)}
= dim(Y)2 − dim(X )2 + 1. (24)

The proof of Theorem 8 is presented in Appendix I.
In Proposition 6 we showed that if dim(X ) = dim(Y), then
the the pQEC procedure gives us no advantage. Indeed, the
only reversible noise channels, in this case, are unitary noise
channels, that is channels with the Choi rank equal to one.
We can ask, what is the maximum value of r ∈ N, such that
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all noise channels which Choi rank is less or equal r, can be
corrected perfectly or probabilistically, respectively. Formally
speaking, for any X and Y we define the following quantities:

r1(X ,Y) ..=
max

{
r ∈ N : ∀E∈C(Y)rank(J(E)) ≤ r =⇒ E ∈ ξ1(X ,Y)

}
,

r(X ,Y) ..=
max

{
r ∈ N : ∀E∈C(Y)rank(J(E)) ≤ r =⇒ E ∈ ξ(X ,Y)

}
.

(25)

The quantity r1(X ,Y) for a general noise model was studied
in [34] and [35]. The authors of [34] calculated a lower bound
for r1(X ,Y) by using a technique of noise diagonalization
along with Tverberg’s theorem. They obtained the following
result

r1(X ,Y) ≥ max

r ∈ N : dim(X ) ≤

⌈
dim(Y)

r2

⌉
+ r2

r2 + 1

 .

(26)

It implies that r1(X ,Y) ≥
⌊

4

√
dim(Y)
dim(X )

⌋
. On the other hand,

by using the quantum packing bound [35] we may gain
some insight of the upper bound for r1(X ,Y). If we assume
that we are allowed to use only non-degenerated codes, then
for perfectly correctable E we have a bound of the form
rank(J(E)) ≤ dim(Y)

dim(X ) . In the next part of this section, we will
improve the upper bound of r1(X ,Y) without putting any
additional assumptions. We also will estimate the behavior of
r(X ,Y). In the particular case X = C2 and Y = C4, we will
also show that r1(X ,Y) < r(X ,Y).

Let us start with the following, simple but important prop-
erties, required to study r(X ,Y).

Lemma 9: Let X ,Y be Euclidean spaces. Define Q ∈
M(Y) such that 0 < Q ≤ 1lY . Take E ∈ C(Y) and F ∈ sC(Y)
given by F(Y ) = E(QY Q). Then, E ∈ ξ(X ,Y) if and only
if there exists a scheme (S,R) ∈ sC(X ,Y)× sC(Y,X ) such
that 0 ̸= RFS ∝ IX .

Directly from Lemma 9 we receive the monotonicity of
r(X ,Y) w.r.t. the dimension of Y . Let Y,Y ′ be such Euclidean
spaces that dim(Y) ≤ dim(Y ′). Take E = K ((Ei)i) ∈
C(Y ′). There exist two projectors Π1,Π2 ∈ P(Y ′), such
that rank(Π1) = rank(Π2) = dim(Y) and for F =
K ((Π2EiΠ1)i) we have rank(tr1(J(F))) = dim(Y). Hence,
if there exists a scheme (S,R) such that 0 ̸= RFS ∝ IX ,
then E ∈ ξ(X ,Y ′). Finally, we have

r(X ,Y) ≤ r(X ,Y ′). (27)

B. From Bi-Linear to Linear Problem

In general, the difficulty of finding error-correcting schemes
(S,R) comes from bi-linearity of the problem (11). Calcu-
lating the maximal probability of successful error correction
pX (E) defined in (6) is even harder task. However, if we
fix an encoding operation S (or decoding R), it is possible
to calculate pX (ES) (or pX (RE)) using SDP programming.
In this section, we extend the definition of pX provided
in (6) so that by pX (F), where F ∈ sC(Y,X ) we mean

pX (F) = max
{
p : RFS = pIX , (S,R) ∈

sC(X ,Y) × sC(X )
}
. In the same way, for F ∈ sC(X ,Y)

we will use the notation pX (F) = max
{
p : RFS =

pIX , (S,R) ∈ sC(X )× sC(Y,X )
}
.

Lemma 10: Let F = K
(
(Fi)r−1

i=0

)
∈ sC(Y,X ). Then,

it holds

pX (F)
= max {tr(P ) : P ∈ P(Cr), tr1 (RF (P ⊗ 1lX )) ≤ 1lX ,

(ΠF ⊗ 1lX )(P ⊗ |1lX ⟩⟨1lX |)(ΠF ⊗ 1lX ) = P ⊗ |1lX ⟩⟨1lX |} ,
(28)

where RF = (FF †)−1,ΠF = FF−1 for F =
∑r−1

i=0 |i⟩ ⊗
Fi ∈M(Y,Cr ⊗X ). Moreover, if pX (F) > 0, then

∥RF ∥−1
∞ ≤ pX (F) ≤ ∥R−1

F ∥∞. (29)

The proof of Lemma 10 is presented in Appendix J.
Corollary 11: Let F = K

(
(Fi)r−1

i=0

)
∈ sC(X ,Y). Then,

it holds

pX (F) = max
{

tr(P ) : P ∈ P(Cr), P ⊗ 1lX ≤ F̃ F̃ †,

(ΠF̃ ⊗ 1lX )(P ⊗ |1lX ⟩⟨1lX |)(ΠF̃ ⊗ 1lX ) = P ⊗ |1lX ⟩⟨1lX |
}
,

(30)

where ΠF̃ = F̃ F̃−1 for F̃ =
∑r−1

i=0 |i⟩⊗F
†
i ∈M(Y,Cr⊗X ).

The proof of Corollary 11 is presented in Appendix K. One
can note that it is possible to use a sequence of optimization
procedures presented in Lemma 10 and Corollary 11 to
increase the probability of successful error correction. In more
details, if we have fixed decoding operation R0 we run the
procedure presented in Lemma 10 for R0E to calculate an
encoding operation S0. Then, for ES0 we run the procedure
presented in Corollary 11 to calculate R1, and so on until the
obtained sequence of probability values will converge.

Let us now consider a particular class of noise channels
E ∈ C(Y) satisfying rank(E(1lY)) = dim(X ). For each
such channel E = K ((Ei)i), we may consider an associated
channel F = K

(
(V †Ei)i

)
∈ C(Y,X ), where V ∈ M(X ,Y)

is an isometry operator with the image on the support of
E(1lY). It turns out that for F ∈ C(Y,X ) we can easily rewrite
the bi-linear problem as a linear one and exploit Lemma 10.

Corollary 12: Let F = K
(
(Fi)r−1

i=0

)
∈ C(Y,X ). Define

ΠF = FF−1, where F =
∑r−1

i=0 |i⟩ ⊗ Fi ∈ M(Y,Cr ⊗
X ). Then, it holds pX (F) ∈ {0, 1}. Moreover, F is perfectly
correctable for X if and only if there exists 0 ̸= |ψ⟩ ∈ Cr

such that (ΠF ⊗ 1lX )(|ψ⟩ ⊗ |1lX ⟩) = |ψ⟩ ⊗ |1lX ⟩.
The proof of Corollary 12 is presented in Appendix L.
Proposition 13: Let X and Y be some complex Euclidean

spaces and dim(X ) ≤ dim(Y).
(A) If E ∈ C(Y) is a noise channel such that rank(E(1lY)) =

dim(X ) and rank(J(E)) < dim(Y) dim(X )
dim(X )2−1 , then E ∈

ξ1(X ,Y).
(B) There exists a noise channel E ∈ C(Y) such

that rank(E(1lY)) = dim(X ) and rank(J(E)) ≥
dim(Y) dim(X )

dim(X )2−1 , for which we have E ̸∈ ξ(X ,Y).
The proof of Proposition 13 is presented in Appendix M.
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C. Schur Noise Channels

In this subsection, we restrict our attention to a particular
family of noise channels whose Kraus operators are diagonal
in the computational basis. In the literature, these channels
are referred to as Schur channels [30, Theorem 4.19]. We use
them to study an upper bound for r(X ,Y) and r1(X ,Y).

Lemma 14: Let X and Y be Euclidean spaces such that
dim(Y) ≥ dim(X ). Then, there exists a Schur channel E ∈
C(Y) such that rank(J(E)) =

⌈
dim(Y)

dim(X )−1

⌉
and E ̸∈ ξ(X ,Y).

Moreover, there exists a Schur channel F ∈ C(Y) such

that rank(J(F)) =
⌈√⌈

dim(Y)
dim(X )−1

⌉⌉
and F ̸∈ ξ1(X ,Y).

Especially, that implies

r(X ,Y) <
dim(Y)

dim(X )− 1
,

r1(X ,Y) <

√
dim(Y)

dim(X )− 1
. (31)

The proof of Lemma 14 is presented in Appendix N. The
bounds obtained in Lemma 14 are asymptotically tight for
Schur noise channels with dim(Y) → ∞. To prove the
tightness of the bound for perfectly correctable noise chan-
nels, we may use the construction provided in [34]. Hence,
if we take a Schur channel E = K ((Ei)i) ∈ C(Y), such
that rank(J(E)) ≈

√
dim(Y)

dim(X )−1 , we obtain E ∈ ξ1(X ,Y).
In the following proposition we will prove the tightness for
probabilistically correctable Schur noise channels.

Proposition 15: Let X and Y be Euclidean spaces and
dim(X ) ≤ dim(Y). For any Schur channels E ∈ C(Y), such
that rank(J(E)) < dim(Y)

dim(X )−1 , it holds E ∈ ξ(X ,Y).
The proof of Proposition 15 is presented in Appendix O.

In the case of Schur channels we have a clear separation
between probabilistically and perfectly correctable noise chan-
nels. It is worth mentioning that the proof of Proposition 15
is constructive, that is we provide a method to calculate
S ∈ M(X ,Y) and R ∈ M(Y,X ), such that they satisfy the
condition Theorem 1 (D). It turns out that R can be taken as
a binary matrix, such that in each column there is at most one
non-zero element. If we fix an appropriate decoding matrix R
we can use Lemma 10 and SDP programming to calculate the
lower bound for pX (E).

Corollary 16: Let Y be an Euclidean space such that
dim(Y) ≥ 2 and let E ∈ C(Y) be a Schur channel. Then,
E ∈ ξ(C2,Y) if and only if dim(Y) > rank(J(E)). Moreover,
if E ∈ ξ(C2,Y) then pC2(E) ≥ 1

rank(J(E))2 .
The proof of Corollary 16 is presented in Appendix P.

D. Correctable Noise Channels With Bounded Choi Rank

In this subsection we will study the behavior of r(X ,Y) and
r1(X ,Y). Lower and upper bounds for both quantities will be
summarized in the following theorem.

Theorem 17: Let X and Y be some Euclidean spaces such
that dim(Y) ≥ dim(X ). Then, we have⌊

4

√
dim(Y)
dim(X )

⌋
≤ r1(X ,Y) ≤

⌈√
dim(Y)

dim(X )− 1

⌉
− 1

≤ r(X ,Y) <
dim(Y) dim(X )
dim(X )2 − 1

. (32)

The proof of Theorem 17 is presented in Appendix Q.
Unfortunately, according to this theorem, there is no clear
separation of r(X ,Y) and r1(X ,Y) for arbitrary X and Y .

Let us briefly discuss computability of pQEC codes for
noise channels E = K ((Ei)i) ∈ C(Y) satisfying

rank(J(E))2(dim(X )− 1) < dim(Y). (33)

According to the proof of Theorem 17 we should first diago-
nalize the noise channel E . To do it, let us consider A =

{
s ∈

N : ∃Πs∈P(Y) Πs = Π2
s, rank(Πs) = s, rank(E†(Πs)) =

dim(Y)
}
. We need to find s0 = min(A) and a corresponding

projector Πs0 ∈ P(Y), such that rank(Πs0) = s0 and
rank(E†(Πs0)) = dim(Y). It might be a challenge to find
directly such a projector but we can do it indirectly by
sampling random projectors.

Lemma 18: Let E ∈ C(Y). Assume that there exists a
projector Π0 such that rank(Π0) = s and rank(E†(Π0)) =
dim(Y). Let us consider a random projector Π sampled
according to the Haar measure, such that rank(Π) = s. Then,
almost surely it holds rank(E†(Π)) = dim(Y).

We can use Lemma 18 to find an appropriate projector
Πs0 and use it to diagonalize E according to the proof of
Theorem 17. As a consequence, we will get a Schur subchan-
nel. In the second step of our construction, for the given Schur
subchannel we use directly the proof of Proposition 15 which
is constructive.

For now, we will calculate explicitly r(X ,Y) and r1(X ,Y)
for X = C2 and Y = C3,C4.

Proposition 19: For all E ∈C(C4) satisfying rank(J(E))≤2
we have E ∈ ξ(C2,C4).

The proof of Proposition 19 is presented in Appendix R. By
using Theorem 17 and Proposition 19 we get the following
advantage of the pQEC protocol for X = C2 and Y = C4.

Corollary 20: For X = C2 and Y = C4 we have

r1(X ,Y) < r(X ,Y). (34)

In particular, it holds

r1(C2,C3) = 1 r(C2,C3) = 1
r1(C2,C4) = 1 r(C2,C4) = 2 (35)

E. Random Noise Channels

In this subsection, we will show the advantage of the pQEC
procedure for randomly generated noise channels. We will fol-
low the procedure of sampling quantum channels considered
in [36], [37], and [38].

Let r ∈ N and let (Gi)r
i=1 ⊂ M(Y) be a tuple of random

and independent Ginibre matrices (matrices with independent
and identically distributed entries drawn from standard com-
plex normal distribution). Define Q =

∑r
i=1G

†
iGi. We define

a random channel Er ∈ C(Y) given as

Er = K
(
(GiQ

−1/2))r
i=1

)
. (36)
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This sampling procedure induces the measure P on C(Y)
whose support is defined on {E ∈ C(Y) : rank
(J(E)) ≤ r}.

Theorem 21: Let Er ∈ C(Y) be a random quantum channel
defined according to (36). Then, the following two implica-
tions hold

r <
dim(X ) dim(Y)
dim(X )2 − 1

=⇒ P (Er ∈ ξ(X ,Y)) = 1,

P (Er ∈ ξ1(X ,Y)) = 1 =⇒ r <

√
dim(Y)

dim(X )− 1
. (37)

The proof of Theorem 21 is presented in Appendix S.
Corollary 22: Let Er = K

(
(Ei)r−1

i=0

)
∈ C(Y) be a ran-

dom quantum channel defined according to (36) and assume
that r ≤ dim(Y)

dim(X ) . Define a sequence V1, V2, . . . of random
isometry matrices sampled according to the Haar measure,
such that Vn ∈ M(X ,Y). Let RFn

= (FnF
†
n)−1 for Fn =∑r−1

i=0 |i⟩ ⊗ V †nEi ∈ M(Y,Cr ⊗ X ). Then, almost surely it
holds

pX (Er)
≥ sup

n∈N
max {tr(P ) : P ∈ P(Cr), tr1 (RFn

(P ⊗ 1lX )) ≤ 1lX }

≥max
{
λmin((1lCr ⊗ V †)EE†(1lCr ⊗ V )) :

V ∈M(X ,Y), V †V = 1lX
}
, (38)

where λmin is the smallest eigenvalue and E =
∑r−1

i=0 |i⟩⊗Ei.
The proof of Corollary 22 is presented in Appendix T.

Below, we provide a numerical analysis of a lower bound for
pX (Er), where we calculate maxn=1,...,N max{tr(P ) : P ∈
P(Cr), tr1 (RFn

(P ⊗ 1lX )) ≤ 1lX }. For a given tuple (y, r, x),
where x = dim(X ) and y = dim(Y) we will sample M
random channels Er ∈ C(Y). For each random channel we will
also sample N random isometry matrices V ∈M(X ,Y). As a
result we will obtain a list of probability values L = (pi)M

i=1

calculated with a precision ϵ = 10−5. For each L we will
provide: minimal element min(L), maximal element max(L),
mean mean(L) and quartiles Q1(L), Q2(L), Q3(L) with a
precision ϵ = 10−3.
• (y, r, x) = (4, 2, 2) with N = 10 and M = 1000:

min(L) max(L) mean(L) Q1(L) Q2(L) Q3(L)
0.197 0.819 0.505 0.436 0.498 0.570

• (y, r, x) = (8, 2, 2) with N = 20 and M = 500:

min(L) max(L) mean(L) Q1(L) Q2(L) Q3(L)
0.486 0.790 0.599 0.564 0.597 0.629

• (y, r, x) = (8, 3, 2) with N = 20 and M = 500:

min(L) max(L) mean(L) Q1(L) Q2(L) Q3(L)
0.293 0.541 0.399 0.371 0.396 0.427

• (y, r, x) = (10, 5, 2) with N = 30 and M = 100:

min(L) max(L) mean(L) Q1(L) Q2(L) Q3(L)
0.179 0.284 0.213 0.198 0.209 0.224

• (y, r, x) = (10, 3, 3) with N = 50 and M = 100:

min(L) max(L) mean(L) Q1(L) Q2(L) Q3(L)
0.178 0.329 0.226 0.207 0.220 0.241

VII. EXAMPLE OF PQEC QUBIT CODE

Consider the following scenario. You have a task to transfer
a given qubit state ρ ∈ D(C2) through a quantum communi-
cation line represented by a noise channel E ∈ C(Y) of the
form E(Y ) = tr2

(
U(Y ⊗ |ψ⟩⟨ψ|)U†

)
, where |ψ⟩⟨ψ| ∈ D(C2)

and U ∈ U(Y ⊗ C2). At this point a natural question arises.
What is the minimal size of the communication line, dim(Y),
which is large enough to recover the state ρ with the pQEC
procedure?

To answer this question, observe that the channel E satisfies
rank(J(E)) ≤ 2. In Proposition 19 we noticed that such
channels are probabilistically correctable for a given input
space C2, if dim(Y) = 4 (in fact, from monotonicity for
dim(Y) ≥ 4). Therefore, to correctly transfer a qubit state
through E , we may define an error-correcting scheme with
only two physical qubits.

It is worth mentioning that some channels E ∈ C(C4)
which satisfy rank(J(E)) = 2 are perfectly correctable for
a space C2. If E is not an extreme point in the set of all
channels C(C4), then E is mixed-unitary channel of the form
E(Y ) = pUY U† + (1 − p)V Y V † for some U, V ∈ U(C4)
and p ∈ (0, 1) [39]. In that case, it was shown in [40]
that E ∈ ξ1(C2,C4). Nevertheless, if we consider a random
channel E2 ∈ C(C4) defined according to (36) we will see
that almost surely it is an extremal channel (see Lemma 25 in
Appendix U). What is more, by Theorem 21 we even know
that P

(
E2 ∈ ξ1(C2,C4)

)
< 1. A particular example of a

Schur channel which is not perfectly correctable for C2 was
constructed in the proof of Lemma 14. In fact, it follows
from this construction that almost all Schur channels are not
perfectly correctable.

We provide the following pQEC procedure based on
Proposition 19 to probabilistically correct any E ∈ C(C4)
which satisfy rank(J(E)) = 2.

VIII. GENERALIZATION OF PQEC PROCEDURE

Let us denote by Υ an arbitrary family of noise channels,
that is Υ ⊂ C(Y). In this section, we ask if there exists error-
correcting scheme (S,R), such that all noise channels E ∈ Υ
we have RES = pEIX , for some pE ≥ 0. Note, that pE may
differ for different noise channels E , hence, we shall introduce
a quantity to “globally” control the effectiveness of (S,R).
We propose the following approach.

Let µ be some probability measure defined on the set Υ.
We assume that noise channels E ∈ Υ are probed according to
µ. The scheme (S,R) will be a valid error-correcting scheme
for Υ and µ if in average, the probability of successful error
correction is non zero, that is∫

Υ

pEµ(dE) > 0. (39)

Without loss of the generality we may assume that Υ is
convex. Additionally, we assume that the support of µ is equal
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Algorithm 1 Probabilistic QEC Qubit Code
Input: E ∈ C(C4) such that rank(J(E)) ≤ 2.
Output: The pQEC procedure with success probability

p > 0.

1 Let E = K ((E0, E1)).
2 Define S∗ ∈M(C2,C4) and R∗ ∈M(C4,C2), such that
R∗E0S∗ ∝ 1lC2 , R∗E1S∗ ∝ 1lC2 and
R∗E0S∗ ̸= 0 ∨R∗E1S∗ ̸= 0 according to Appendix R.

3 Define

Q = S†∗S∗,

S = S∗Q
−1/2,

R =
Q1/2R∗

∥Q1/2R∗∥∞
.

4 Calculate p ∈ (0, 1], such that R
(
E
(
SXS†

))
R† = pX

for any X ∈M(C2).
5 Define US ∈ U(C4) which satisfies US(1lC2 ⊗ |0⟩) = S.
6 Let R = σ1|z1⟩⟨t1|+ σ2|z2⟩⟨t2| be the singular value

decomposition of R. Define UR ∈ U(C4) which satisfies

UR|t1⟩ = |0, 0⟩,
UR|t2⟩ = |1, 0⟩.

7 Define R′ = RU†R(1lC2 ⊗ |0⟩).
8 Define VR ∈ U(C4) which satisfies

(1lC2 ⊗ ⟨0|)VR(1lC2 ⊗ |0⟩) = R′.
9 Run the QEC procedure presented in Figure 2 for
|ψ⟩, US , UR, VR.

10 Let σexp be the output state of the procedure presented in
Figure 2. Use the post-processing of the measurements’
output (i, j) according to the following table:

Labels (i, j) = (0, 0) (i, j) ̸= (0, 0)
Probability p 1−p
Status QEC succeeded QEC failed
Action Accept σexp Reject σexp

Result σexp = |ψ⟩⟨ψ| σexp ? |ψ⟩⟨ψ|

to Υ. Usually, we can take µ as the flat measure, representing
the maximal uncertainty in the process of probing random
noise channels E from Υ. Let us define the average noise
channel of Υ with respect to µ

Ē =
∫

Υ

Eµ(dE). (40)

We will show that we can correct all noise channels from the
family Υ, whenever Ē is probabilistically correctable for X .
We put this statement as the following proposition.

Proposition 23: Let Υ ⊂ C(Y) be a nonempty and con-
vex family of noise channels. Define µ to be a probabil-
ity measure defined on Υ and assume that the support of
µ is equal to Υ. Let Ē =

∫
Υ
Eµ(dE) ∈ C(Y) and fix

(S,R) ∈ sC(X ,Y)× sC(Y,X ). The following conditions are
equivalent:

Fig. 2. The circuit representing the pQEC procedure. We have access to
two physical qubits. The first qubit is in the state |ψ⟩. This state will be
encoded. The second state we set equal to |0⟩. We implement the two-qubit
encoding unitary operator US . Then, the encoded state, US (|ψ⟩ ⊗ |0⟩),
is affected by the noise channel E . After that, we start the decoding procedure.
We implement the two-qubit unitary rotation UR. We measure the second
qubit in the standard basis and obtain a classical label i ∈ {0, 1}. We prepare
a third qubit in the state |0⟩ and implement a two-qubit unitary rotation VR.
We measure the third qubit in the standard basis and obtain a classical label
j ∈ {0, 1}. If (i, j) = (0, 0) we accept the output state, otherwise, we reject
it and request resend.

(A) For each E ∈ Υ there exists pE ≥ 0 such that RES =
pEIX and

∫
Υ
pEµ(dE) > 0.

(B) It holds that 0 ̸= RĒS ∝ IX .
The proof of Proposition 23 is presented in Appendix V.

IX. CONCLUSION

In this work, we analyzed the pQEC procedure for a general
noise model. We established the necessary and sufficient
conditions to check if a given noise channel is probabilistically
correctable. Moreover, we showed that mixed state encoding
should be taken into account when maximizing the proba-
bility of successful error correction. Finally, we pointed the
advantage of the probabilistic error-correcting procedure over
the deterministic one. We saw a clear separation especially
for a correction of Schur noise channels and random noise
channels. We obtained the maximum value of Choi rank of
probabilistically correctable noise channels and provided a
method how to probabilistically correct noise channels with
bounded Choi rank.

There are many directions for further study that still
remain to be explored. It would be interesting to strengthen
Theorem 17 and show the separation between r(X ,Y) and
r1(X ,Y) by improving the proposed proof technique in
Appendix Q. We obtained such separation for X = C2 and
Y = C4 in Corollary 20. Another promising direction is to
propose tools for the numerical analysis of the pQEC proto-
cols, based on Theorem 1. Such tools would help us estimate
the value of r(X ,Y) and gain an insight into probabilistically
correctable noises that require mixed state encoding. Last but
not least, we would like to calculate the worst-case probability
of successful error correction for a given noise intensity r ≤
r(X ,Y). For example, as we showed in Proposition 19, the
errors caused by a unitary interaction with an auxiliary qubit
system (r = 2), can be corrected by using only two physical
qubits (dim(Y) = 4). We can ask, how many times in average
the procedure presented in Algorithm 1 needs to be repeated.

APPENDIX A
CONSTANT PROBABILITY OF SUCCESSFUL

ERROR CORRECTION

Lemma 24: Let E ∈ C(Y), S ∈ sC(X ,Y) and R ∈
sC(Y,X ). If for any pure state |ψ⟩⟨ψ| ∈ D(X ) it holds
RES(|ψ⟩⟨ψ|) ∝ |ψ⟩⟨ψ|, then there exists p ∈ [0, 1] such that
RES = pIX .
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Proof: Let L = RES and for any unitary operator
U ∈ U(X ) and i = 0, . . . ,dim(X ) − 1 define pU,i ∈
[0, 1] by L(U |i⟩⟨i|U†) = pU,iU |i⟩⟨i|U†. We have L(1lX ) =
U (
∑

i pU,i|i⟩⟨i|)U† for any U and hence, there exists p ∈
[0, 1] such that L(1lX ) = p1lX . That means, pU,i = p for any
U and i, so L(|ψ⟩⟨ψ|) = p|ψ⟩⟨ψ| for any |ψ⟩⟨ψ| ∈ D(X ).
We obtain the thesis by noting that spanC(|ψ⟩⟨ψ|) = M(X ).

□

APPENDIX B
PROOF OF THEOREM 1

Theorem 1: Let E = K ((Ei)i) ∈ C(Y). The following
conditions are equivalent:
(A) There exist error-correcting scheme (S,R) ∈ sC(X ,Y)×

sC(Y,X ) and p > 0 such that

RES = pIX . (41)

(B) There exist S = K ((Sk)k) ∈ sC(X ,Y) and R ∈ P(Y),
such that R ≤ 1lY , for which it holds

K
((√

REiSk

)
i,k

)
= K ((Ai)i) , (42)

where Ai ̸= 0 and A†jAi ∝ δij1lX .
(C) There exist S = K ((Sk)k) ∈ sC(X ,Y), R ∈ P(Y), such

that R ≤ 1lY and a matrix M = [Mjl,ik]jl,ik ̸= 0, for
which it holds

∀i,j,k,l S†l E
†
jREiSk = Mjl,ik1lX . (43)

(D) There exist S∗ ∈ M(X ,Y) and R∗ ∈ M(Y,X ) such
that

∀i R∗EiS∗ ∝ 1lX (44)

and there exists i0, for which it holds R∗Ei0S∗ ̸= 0.
Moreover, if point (A) holds for S = K ((Sk)k) and R =

K ((Rl)l), then R ∈ P(Y) from points (B) and (C) can be
chosen to satisfy R =

∑
lR

†
lRl. It also holds that RlEiSk ∝

1lX for any i, k, l.
Proof: In order to show that (A) ⇐⇒ (B) ⇐⇒ (C),

in all implications presented below, we will use the same
encoding S = K ((Sk)k) ∈ sC(X ,Y). Hence, to simplify the
proof, we introduce the notation of F ..= ES given in the
form F = K ((Fi)i).

(B) =⇒ (A)
Let us define αi > 0 to satisfy A†iAi = αi1lX and a map
R : M(Y) →M(X ) given by

R = K
((
α
−1/2
i A†i

√
R
)

i

)
. (45)

We will check that R is a subchannel. First, from the definition
ofR, it follows thatR is completely positive. Second, from the
assumption (B), operators α−1

i AiA
†
i ∈ P(Y) are orthogonal

projectors and hence∑
i

α−1
i

√
RAiA

†
i

√
R =

√
R

(∑
i

α−1
i AiA

†
i

)
√
R

≤ R ≤ 1lY . (46)

It means that R ∈ sC(Y,X ). Finally, it holds

RF = K
((

α
−1/2
j A†j

√
RFi

)
i,j

)
= K

((
α
−1/2
j A†jAi

)
i,j

)
= K

(
(α1/2

i 1lX )i

)
= pIX , (47)

where we introduced p ..=
∑

i αi > 0.
(A) =⇒ (B)
Let R = K ((Rk)k) and take R =

∑
k R

†
kRk ∈ P(Y).

From R ∈ sC(Y,X ) it follows R ≤ 1lY . Define ΠR to
be the projector on the support of R. One can show that
RkΠR = Rk for each k. We define R̃ = K

((
R̃k

)
k

)
,

where R̃k
..= Rk

√
R
−1

. From the definition of R̃ we have∑
k R̃k

†
R̃k =

√
R
−1
R
√
R
−1

= ΠR. Using the assumption
(A) we get pIX = RF = R̃ ◦ K

(
(
√
RFi)i

)
. As we have

p > 0, it follows that K
(
(
√
RFi)i

)
̸= 0. Hence, there

exists a canonical decomposition K
(
(
√
RFi)i

)
= K ((Ai)i),

where Ai ̸= 0 and tr(A†jAi) = 0 for i ̸= j. From the
relationship between Kraus representations, it follows that Ai

satisfy ΠRAi = Ai. Then, by the assumption (A) we get

p|1lX ⟩⟨1lX |=(RF⊗IX )(|1lX ⟩⟨1lX |)=
∑

i

(R̃ ⊗ IX )(|Ai⟩⟨Ai|).

(48)

Therefore, from the extremality of the point |1lX ⟩⟨1lX | in
P(X ⊗ X ) we have R̃kAi ∝ 1lX for any i, k. On the one
hand we get ∑

k

A†jR̃k

†
R̃kAi ∝ 1lX (49)

and on the other hand∑
k

A†jR̃k

†
R̃kAi = A†jΠRAi = A†jAi. (50)

The above conditions provide that A†jAi = cji1lX , for some
cji ∈ C. Then, for i ̸= j we have 0 = tr(A†jAi) = cji dim(X )
and finally A†jAi = 0.

(B) =⇒ (C)
Let us define αk > 0 to satisfy A†kAk = αk1lX . From the
relationship between Kraus decompositions K

(
(
√
RFi)i

)
and

K ((Ai)i), there exists an isometry operator U , such that
√
RFi =

∑
k

UikAk. (51)

Therefore, it holds

F †j RFi =
∑
k,k′

UikUjk′A
†
k′Ak =

∑
k

UikUjkαk1lX . (52)

Let us define a matrix M = [Mj,i]j,i where Mj,i =∑
k UikUjkαk. Note, that

tr(M) =
∑
i,k

|Uik|2αk =
∑

k

αk > 0. (53)

(C) =⇒ (B)
Let F = K ((Fi)r

i=1) for some r ∈ N. Define an operator
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F =
∑r

i=1⟨i| ⊗ Fi ∈ M(Cr ⊗ X ,Y). From the assumption
(C) it follows

F †RF = M ⊗ 1lX . (54)

That implies M ≥ 0. Take the spectral decomposition M =
U†DU and define

Ai =
∑

k

Uik

√
RFk. (55)

Observe that K
(
(
√
RFi)i

)
= K ((Ai)i). We obtain

A†jAi =
∑
k,k′

UikUjk′F
†
k′RFk =

∑
k,k′

UikUjk′Mk′k1lX

=Dji1lX . (56)

This is equivalent to A†jAi ∝ δij1lX . Finally, Ai ̸= 0 if and
only if Dii > 0 and by the fact M ̸= 0 we conclude the set
{Ai : Ai ̸= 0} is non-empty.

(A) =⇒ (D)
Let S = K ((Sk)k) and R = K ((Rl)l). We have

(RES ⊗ IX ) (|1lX ⟩⟨1lX |) =
∑

l,i,k |RlEiSk⟩⟨RlEiSk| =
p|1lX ⟩⟨1lX |. Therefore, from the extremality of the point
|1lX ⟩⟨1lX | in P(X ⊗X ) we obtain RlEiSk ∝ 1lX . There exist
l0, i0, k0 such that Rl0Ei0Sk0 ̸= 0. We can take S∗ = Sk0

and R∗ = Rl0 .

(D) =⇒ (A)
There exist q0, q1 > 0 for which S ..= q0K ((S∗)) ∈ sC(X ,Y)
and R ..= q1K ((R∗)) ∈ sC(Y,X ). One may note that
0 ̸= RES ∝ IX .

(∗)
Assume that S = K ((Sk)k), R = K ((Rl)l) and it holds (A).
From the proof of implications (A) =⇒ (B) and (B) =⇒
(C) it follows that R can be chosen as R =

∑
lR

†
lRl. The

relation RlEiSk ∝ 1lX was proven in (A) =⇒ (D). □

APPENDIX C
PROOF OF PROPOSITION 2

Proposition 2: For a given channel E ∈ C(Y), let us fix an
error-correcting scheme (S,R) ∈ sC(X ,Y)× sC(Y,X ) such
that RES = pIX , for some p > 0. Then, the following holds:
(A) There exist S̃ ∈ C(X ,Y) and R̃ ∈ sC(Y,X ) such that

R̃ES̃ = pIX .
(B) If R ∈ C(Y,X ), then there exists S̃ = K

(
(S̃)
)
∈

C(X ,Y) such that RES̃ = IX .
(C) If p = 1, then there exist S̃ = K

(
(S̃)
)
∈ C(X ,Y) and

R̃ ∈ C(Y,X ) such that R̃ES̃ = IX .
Proof: (A)

Let S = K ((Sk)k) and S =
∑

k S
†
kSk ≤ 1lX . Using

Theorem 1 one can show that there exists k0 for which
rank(Sk0) = dim(X ). Hence, S is invertible. Define S̃ ∈
C(X ,Y), R̃ ∈ sC(Y,X ) given by the equations

S̃(X) = S
(
S−1/2XS−1/2

)
,

R̃(Y ) = S1/2R(Y )S1/2. (57)

We obtain R̃ES̃(X) = S1/2(RES)
(
S−1/2XS−1/2

)
S1/2 = pX.

(B)
Let S = K ((Sk)k) and define Sk(X) = SkXS

†
k. From

Theorem 1 there exists k0 such that RESk0 = pk0IX , for
some pk0 > 0. For any |ψ⟩⟨ψ| ∈ D(X ) it holds then

pk0 = tr (RESk0(|ψ⟩⟨ψ|)) = tr (Sk0(|ψ⟩⟨ψ|))
= ⟨ψ|S†k0

Sk0 |ψ⟩. (58)

Hence, we get S†k0
Sk0 = pk01lX . Define S̃ = 1

pk0
Sk0 ∈

C(X ,Y) and note that RES̃ = IX .
(C)
Let S = K ((Sk)k) and R = K ((Rk)k). For any |ψ⟩⟨ψ| ∈

D(X ) we have

1 = tr(RES(|ψ⟩⟨ψ|)) ≤ tr(S(|ψ⟩⟨ψ|)) ≤ 1. (59)

Therefore, for any |ψ⟩⟨ψ| ∈ D(X ) we get ⟨ψ|
(∑

k

S†kSk

)
|ψ⟩ = 1, which implies S ∈ C(X ,Y). Let R =∑

k R
†
kRk ≤ 1lY . Then, it holds tr ((1lY −R)ES(X) ) = 0.

Define R̃ ∈ C(Y,X ) by the equation

R̃(Y ) = R(Y ) + tr ((1lY −R)Y ) ρ∗X . (60)

Observe that R̃ES = IX . The rest of the proof follows
from (B). □

APPENDIX D
PROOF OF LEMMA 3

Lemma 3: Let R ∈ P(C4) and R ≤ 1lC4 . Define ΠR as a
projector on the support of R. For ER defined as

ER(Y )= |0⟩⟨0|⊗tr1
(√

RY
√
R
)
+|1⟩⟨1|⊗tr ([1lC4−R]Y ) ρ∗2

(61)

we have the following simplified form of the maximization
problem (13):

p0(R) =max
{
tr(P ) : P ∈ P(C2),

tr1
(
R−1(P ⊗ 1lC2)

)
≤ 1lC2 ,

∀X∈M(C2) ΠR(P ⊗X)ΠR = P ⊗X
}
. (62)

An optimal scheme (S,R) which achieves the probability
p0(R), that is RERS = p0(R)IC2 , can be taken as

S(X) =
√
R
−1

(P0 ⊗X)
√
R
−1
,

R(Y ) = tr1 (Y (|0⟩⟨0| ⊗ 1lC2)) , (63)

where P0 is an argument maximizing p0(R) in (62). Moreover,
if there exists another optimal scheme (S̃, R̃), that is R̃ERS̃ =
p0(R)IC2 , then rank(J(S)) ≤ rank(J(S̃)).

Proof: Let us investigate the form of an optimal scheme
(S,R) that maximizes the probability p of successful error
correction, RERS = pIC2 . First, one can note that R must
be of the form R(A ⊗ B) = tr (A|0⟩⟨0|) R̃(B), where
R̃ = K

(
(R̃k)k

)
∈ sC(C2). Let us introduce a map F =

K ((Fi)i) ∈ sC(C2) given by F(X) = tr1
(√

RS(X)
√
R
)

.



KUKULSKI et al.: ON THE PROBABILISTIC QUANTUM ERROR CORRECTION 4631

We obtain pIC2 = RERS = R̃F . From Theorem 1 we have
R̃kFi ∝ 1lC2 and there are k0, i0 such that R̃k0Fi0 ̸= 0.
Hence, for each k we have R̃k ∝ F−1

i0
. That implies the

map R̃ can be written as R̃(X) = R̃XR̃†. Now, consider
another scheme (S ′,R′), where R′(A ⊗ B) = tr (A|0⟩⟨0|)B
and S ′(X) = S

(
R̃XR̃†

)
∈ sC(C2,C4). We get

R′ERS ′(X) = tr1
(√

RS
(
R̃XR̃†

)√
R
)

= F
(
R̃XR̃†

)
=
(
R̃
)−1 (

R̃F
(
R̃XR̃†

))(
R̃†
)−1

= pX.

(64)

Therefore, the scheme (S ′,R′) is also optimal and
rank(J(S ′)) ≤ rank(J(S)).

To sum up, from now, we will consider the optimal scheme
(S,R), where R(Y ) = tr1 (Y (|0⟩⟨0| ⊗ 1lC2)). The equation
RERS = pIC2 can be rewritten as

tr1
(√

RS(X)
√
R
)

= pX, (65)

for any X ∈ M(C2). According to Theorem 1 we have√
RS(X)

√
R =

∑
iAiXA

†
i , where A†jAi ∝ δij1lC2 . Using

Theorem 1 to the equation tr1
(∑

iAiXA
†
i

)
= pX we obtain

that Ai = |vi⟩⊗1lC2 for some orthogonal vectors |vi⟩ ∈ C2. Let
P =

∑
i |vi⟩⟨vi|. We get

√
RS(X)

√
R = P⊗X. Without loss

of the generality we may consider S such that ΠRS(X)ΠR =
S(X) (one can note that rank(J(S)) will not increase).
Hence, the equation

√
RS(X)

√
R = P ⊗X implies S(X) =√

R
−1

(P ⊗X)
√
R
−1
. The condition

√
RS(X)

√
R = P ⊗X

becomes now equivalent to ΠR(P ⊗X)ΠR = P ⊗X . By the
Choi isomorphism the condition S ∈ sC(C2,C4) is then
equivalent to tr1

(
R−1(P ⊗ 1lC2)

)
≤ 1lC2 . Therefore, basing

on (65) we can express the probability p0(R) as:

p0(R) =max {p : RERS = pIC2 ,

(S,R) ∈ sC(C2,C4)× sC(C4,C2)
}

= max
{
p : ∀X∈M(C2) tr1

(√
RS(X)

√
R
)

= pX,

S ∈ sC(C2,C4)
}

= max
{
tr(P ) : P ∈ P(C2),

tr1
(
R−1(P ⊗ 1lC2)

)
≤ 1lC2 ,

∀X∈M(C2) ΠR(P ⊗X)ΠR = P ⊗X
}
. (66)

□

APPENDIX E
PROOF OF COROLLARY 4

Corollary 4: Let us take R ∈ P(C4) such that R ≤ 1lC4 and
rank(R) < 4. Define ΠR as a projector on the support of R.
For the noise channel defined as

ER(Y )= |0⟩⟨0|⊗tr1
(√

RY
√
R
)
+|1⟩⟨1|⊗tr ([1lC4−R]Y ) ρ∗2

(67)

we have p0(R) = p1(R), where p0(R) and p1(R) are defined
in (13) and (14), respectively. Moreover, it holds
• If rank(R) ≤ 1, then p0(R) = 0.

• If rank(R) = 2,ΠR ̸= |ψ⟩⟨ψ| ⊗ 1lC2 , |ψ⟩ ∈ C2, then
p0(R) = 0.

• If rank(R) = 2,ΠR = |ψ⟩⟨ψ| ⊗ 1lC2 , |ψ⟩ ∈ C2, then
p0(R) = ∥ tr1

(
R−1(|ψ⟩⟨ψ| ⊗ 1lC2)

)
∥−1
∞ .

• If rank(R) = 3,ΠR = 1lC4 − |α⟩⟨α| and |α⟩ ∈ C4 is
entangled, then p0(R) = 0.

• If rank(R) = 3,ΠR = 1lC4 − |ψ⊥⟩⟨ψ⊥| ⊗ |ϕ⟩⟨ϕ|,
where |ψ⊥⟩, |ϕ⟩ ∈ C2, |ψ⟩⟨ψ| ∈ D(C2), then p0(R) =
∥ tr1

(
R−1(|ψ⟩⟨ψ| ⊗ 1lC2)

)
∥−1
∞ .

Proof: The proof is based on Lemma 3. Let us investigate
the value of p0(R). We will consider three cases depending
on rank(R).

In the first case, we assume that rank(R) ∈ {0, 1}. Then,
for P satisfying ΠR(P ⊗X)ΠR = P ⊗X we have

2rank(P ) = rank(P ⊗ 1lC2) = rank(ΠR(P ⊗ 1lC2)ΠR)
≤ rank(ΠR) ≤ 1. (68)

Hence, we obtain rank(P ) ≤ 1
2 which implies P = 0. In this

case p0(R) = 0.
In the second case, we assume that rank(R) = 2. Using

the same argumentation for P as in the first case, we get
rank(P ) ≤ 1. We can write P = |x⟩⟨x| for |x⟩ ∈ C2. Note
that, if P ̸= 0, then from the equality ΠR|x, y⟩ = |x, y⟩ for
|y⟩ ∈ C2 we get ΠR = |ψ⟩⟨ψ| ⊗ 1lC2 , for |ψ⟩ = 1

∥x∥ |x⟩.
Therefore, if for all |ψ⟩⟨ψ| ∈ D(C2) it holds ΠR ̸= |ψ⟩⟨ψ| ⊗
1lC2 , we have p0(R) = 0. Otherwise, if ΠR = |ψ0⟩⟨ψ0| ⊗ 1lC2

for |ψ0⟩⟨ψ0| ∈ D(C2), we take P = p|ψ0⟩⟨ψ0| for p ≥ 0.
From the assumption p tr1

(
R−1(|ψ0⟩⟨ψ0| ⊗ 1lC2)

)
≤ 1lC2 we

get p0(R) = ∥ tr1
(
R−1(|ψ0⟩⟨ψ0| ⊗ 1lC2)

)
∥−1
∞ .

In the third case, we assume that rank(R) = 3. Again, P
can be written in the form P = |x⟩⟨x| for |x⟩ ∈ C2. Let
ΠR = 1lC4 − |ξ⟩⟨ξ|, where |ξ⟩⟨ξ| ∈ D(C4). If P ̸= 0, then
from the equality ΠR|x, y⟩ = |x, y⟩ for |y⟩ ∈ C2 we get
⟨ξ|x, y⟩ = 0, for |y⟩ ∈ C2, and hence, |ξ⟩ ∝ |x⊥⟩ ⊗ |y⟩.
Therefore, if |ξ⟩ is entangled, we have p0(R) = 0. Otherwise,
if ΠR = 1lC4 − |ψ⊥0 ⟩⟨ψ⊥0 | ⊗ |ϕ0⟩⟨ϕ0| for |ψ⊥0 ⟩⟨ψ⊥0 |, |ϕ0⟩⟨ϕ0| ∈
D(C2), we take P = p|ψ0⟩⟨ψ0| for p ≥ 0. The assump-
tion p tr1

(
R−1(|ψ0⟩⟨ψ0| ⊗ 1lC2)

)
≤ 1lC2 implies p0(R) =

∥ tr1
(
R−1(|ψ0⟩⟨ψ0| ⊗ 1lC2)

)
∥−1
∞ .

To prove that p0(R) = p1(R) observe that in each case the
argument maximizing p0(R) has the form P0 = p|ψ0⟩⟨ψ0|.
According to Lemma 3 the optimal scheme (S,R) can be
taken as S(X) =

√
R
−1

(P0 ⊗ X)
√
R
−1

and R(Y ) =
tr1 (Y (|0⟩⟨0| ⊗ 1lC2)). As the pair (S,R) belongs to the
optimization domain of (14) we achieve the desired equality.

□

APPENDIX F
PROOF OF PROPOSITION 5

Proposition 5: Let us define a unitary matrix U ∈ U(C4)
which columns form the magic basis

U =
1√
2


1 0 0 i
0 i 1 0
0 i −1 0
1 0 0 −i

 . (69)
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Let us also define a diagonal operator D(λ) ..=
∑4

i=1 λi|i⟩⟨i|,
which is parameterized by a 4−dimensional real vector λ =
(λ1, λ2, λ3, λ4), for which it holds 0 < λi ≤ 1. For R =
UD(λ)U† and the noise channel ER defined as

ER(Y )= |0⟩⟨0|⊗tr1
(√

RY
√
R
)
+|1⟩⟨1|⊗tr ([1lC4−R]Y ) ρ∗2

(70)

we have

p0(R) =
4

tr(R−1)
,

p1(R) =
4

tr(R−1) + c
, (71)

where

c = min
{∣∣∣∣ 1
λ1
− 1
λ2
− 1
λ3

+
1
λ4

∣∣∣∣ ,∣∣∣∣∣∣∣∣ 1
λ1
− 1
λ4

∣∣∣∣− ∣∣∣∣ 1
λ2
− 1
λ3

∣∣∣∣∣∣∣∣} . (72)

Proof: First, we calculate p0(R). Let |x⟩ = (x0, x1)⊤.
Then, we have

(⟨x| ⊗ 1lC2)R−1(|x⟩ ⊗ 1lC2) =
1
2

[
M0,0 M0,1

M0,1 M1,1

]
, (73)

where

M0,0 =
|x0|2

λ1
+
|x1|2

λ2
+
|x1|2

λ3
+
|x0|2

λ4
,

M1,1 =
|x1|2

λ1
+
|x0|2

λ2
+
|x0|2

λ3
+
|x1|2

λ4
,

M0,1 =
x1x̄0

λ1
+
x0x̄1

λ2
− x0x̄1

λ3
− x1x̄0

λ4
. (74)

We obtain tr
(
(⟨x| ⊗ 1lC2)R−1(|x⟩ ⊗ 1lC2)

)
= 1

2

(
1
λ1

+ 1
λ2

+
1
λ3

+ 1
λ4

)
∥x∥22 = 1

2 tr(R−1)∥x∥22. Hence, for any ρ ∈ D(C2)
we have tr

(
R−1(ρ⊗ 1lC2)

)
= 1

2 tr(R−1). Finally, we obtain
the following upper bound

∥ tr1
(
R−1(ρ⊗ 1lC2)

)
∥−1
∞ ≤ 2

(
tr
(
R−1(ρ⊗ 1lC2)

))−1

= 4
(
tr(R−1)

)−1
. (75)

That means, p0(R) ≤ 4
(
tr(R−1)

)−1
. To saturate this bound,

we take the maximally mixed state ρ = ρ∗2 and by using (73)
we calculate

∥ tr1
(
R−1(ρ∗2 ⊗ 1lC2)

)
∥−1
∞ = 2∥ tr1

(
R−1

)
∥−1
∞

= 2
∥∥∥∥1

2
tr(R−1)1lC2

∥∥∥∥−1

∞
= 4

(
tr(R−1)

)−1
. (76)

Therefore, we showed that p0(R) = 4
(
tr(R−1)

)−1
.

In the case of p1(R), to calculate the largest eigenvalue of
tr1
(
R−1(|x⟩⟨x| ⊗ 1lC2)

)
we use (73) for |x⟩ = (|x0|, |x1|α)⊤,

such that |x0|2 + |x1|2 = 1 and |α| = 1. One may calculate
that the largest eigenvalue minimized over α is given by
1
4

(
tr(R−1) +

[((
1
λ1

+ 1
λ4

)
−
(

1
λ2

+ 1
λ3

))2

(|x0|2 − |x1|2)2

+4
(∣∣∣ 1

λ1
− 1

λ4

∣∣∣− ∣∣∣ 1
λ2
− 1

λ3

∣∣∣)2

|x0|2|x1|2
]−1

)
. It turns

out, there are only two situations when this expression is
minimized:
• For |x0| = 0 and |x1| = 1 (or equivalently |x0| = 1 and
|x1| = 0), we obtain

1
4

(
tr(R−1) +

∣∣∣∣ 1
λ1
− 1
λ2
− 1
λ3

+
1
λ4

∣∣∣∣) . (77)

• For |x0| = |x1| = 1√
2

, we obtain

1
4

(
tr(R−1) +

∣∣∣∣∣∣∣∣ 1
λ1
− 1
λ4

∣∣∣∣− ∣∣∣∣ 1
λ2
− 1
λ3

∣∣∣∣∣∣∣∣) . (78)

Hence, the optimal value p1(R) equals p1(R) =
4

tr(R−1)+min
{∣∣∣ 1

λ1
− 1

λ2
− 1

λ3
+ 1

λ4

∣∣∣,∣∣∣∣∣∣ 1
λ1
− 1

λ4

∣∣∣−∣∣∣ 1
λ2
− 1

λ3

∣∣∣∣∣∣} . □

APPENDIX G
PROOF OF PROPOSITION 6

Proposition 6: For any X , Y and ξ(X ,Y), ξ1(X ,Y) defined
in (23) we have the following properties:
(A) ξ1(X ,Y) ⊂ ξ(X ,Y),
(B) If dim(X ) > dim(Y), then ξ(X ,Y) = ∅,
(C) If dim(X ) ≤ dim(Y), then ξ1(X ,Y) ̸= ∅,
(D) If dim(X ) = dim(Y), then ξ1(X ,Y) = ξ(X ,Y).

Proof: (D)
Let us take E = K ((Ei)i) ∈ ξ(X ,Y). From Theorem 1
(D) there exist S∗ ∈ M(X ,Y) and R∗ ∈ M(Y,X ) such
that R∗EiS∗ ∝ 1lX , and there exists i0 for which it holds
R∗Ei0S∗ ̸= 0. It implies that R∗ and S∗ are invertible, so for
all i we have Ei ∝ R−1

∗ S−1
∗ . Hence, rank(J(E)) = 1, so we

can write E(X) = EXE†, for E ∈ U(X ). By taking R = IX
and S = E† we get E ∈ ξ1(X ,Y).

□

APPENDIX H
PROOF OF THEOREM 7

Theorem 7: Let X and Y be complex Euclidean spaces
for which dim(X ) < dim(Y) and let ξ(X ,Y), ξ1(X ,Y) be
defined as in (23). Then, the set ξ1(X ,Y) is a nowhere dense
subset of ξ(X ,Y).

Proof: First, we will prove that ξ1(X ,Y) is a closed
set. Define a sequence (En)n∈N ⊂ ξ1(X ,Y) that converges to
E = lim

n→∞
En ∈ C(Y). From Proposition 2 there exist two

sequences (Sn)n∈N ⊂ C(X ,Y) and (Rn)n∈N ⊂ C(Y,X )
such that RnEnSn = IX for n ∈ N. Both sets C(X ,Y)
and C(Y,X ) are compact, so there exists a subsequence
(nk)k∈N, such that (Snk

)k∈N, (Rnk
)k∈N converge to some

S ∈ C(X ,Y),R ∈ C(Y,X ), respectively. Hence, we obtain
RES = lim

k→∞
Rnk

Enk
Snk

= IX . That ends this part of the
proof.

To show that ξ1(X ,Y) is nowhere dense in ξ(X ,Y), it is
enough to prove int (ξ1(X ,Y)) = ∅. Therefore, for any E ∈
ξ1(X ,Y) we will construct a sequence of channels (En)n∈N ⊂
C(Y) that converges to E and for which En ∈ ξ(X ,Y), and
En ̸∈ ξ1(X ,Y), for n ∈ N.
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Fix E ∈ ξ1(X ,Y). From Proposition 2 there exist S =
K ((S)) ∈ C(X ,Y) and R ∈ C(Y,X ) such that RES = IX .
From Theorem 1 we have

ES = K ((Ai)i) : Ai ̸= 0, A†jAi ∝ δij1lX . (79)

As dim(X ) < dim(Y), there exists |y⟩⟨y| ∈ D(Y) such that
⟨y|A1 = 0. Let us define a sequence of channels En ∈ C(Y)
given by

En(Y ) =
n

n+ 1
E(Y ) +

tr(Y )
n+ 1

|y⟩⟨y|. (80)

One can note that lim
n→∞

En = E . We take Sn = S and Rn =

K
(
(A†1)

)
for n ∈ N and obtain

RnEnSn(X) =
n

n+ 1
A†1ES(X)A1 =

n

n+ 1
∥A1∥4∞ X.

(81)

As A1 ̸= 0, it follows that En ∈ ξ(X ,Y). Now, for
each n ∈ N, let S̃n ∈ C(X ,Y) and R̃n ∈ sC(Y,X ) be
arbitrary maps satisfying 0 ̸= R̃nEnS̃n ∝ IX . It holds that
R̃n(|y⟩⟨y|) = 0. Finally, for any |ψ⟩⟨ψ| ∈ D(X ) we have
tr
(
R̃nEnS̃n(|ψ⟩⟨ψ|)

)
= n

n+1 tr
(
R̃nES̃n(|ψ⟩⟨ψ|)

)
≤ n

n+1 .

Hence, we obtain En ̸∈ ξ1(X ,Y). □

APPENDIX I
PROOF OF THEOREM 8

Theorem 8: Let X and Y be some Euclidean spaces such
that dim(Y) ≥ dim(X ). The following relations hold:

max {rank(J(E)) : E ∈ ξ1(X ,Y)}

= dim(Y)2 − dim(Y) dim(X ) +
⌊

dim(Y)
dim(X )

⌋
,

max {rank(J(E)) : E ∈ ξ(X ,Y)}
= dim(Y)2 − dim(X )2 + 1. (82)

Proof: Let us define d = dim(X ), s = dim(Y) and
k =

⌊
s
d

⌋
.

Take E = K ((Ei)r
i=1) ∈ ξ1(X ,Y), where r = rank(J(E)).

From Proposition 2 there exist S = K ((S)) ∈ C(X ,Y) and
R ∈ C(Y,X ) such that RES = IX . According to Theorem 1
it holds

K ((EiS)r
i=1) = K

(
(Ai)r′

i=1

)
: Ai ̸= 0, A†jAi ∝ δij1lX .

(83)

If r′ < r, then let us define Ai = 0 for i = r′ + 1, . . . , r.
As K

(
(Ai)r′

i=1

)
= K ((Ai)r

i=1), there exists a Kraus decom-
position E = K ((E′i)

r
i=1) such that Ai = E′iS for each i ≤ r.

For Ai ̸= 0 images of Ai are orthogonal and rank(Ai) = d.
Hence, r′d ≤ s which is equivalent to r′ ≤ k. For i > r′ it
holds that

(
1lY ⊗ S⊤

)
|E′i⟩ = 0. Note that the Kraus operators

E′i are linearly independent and it holds

dim(ker(1lY ⊗ S⊤)) = s2 − rank(1lY ⊗ S⊤)

= s2 − rank(1lY)rank(S) = s2 − sd.

(84)

Therefore, we get r − r′ = dim(span(E′i, i > r′)) ≤
dim(ker(1lY ⊗S⊤)) = s2−sd and eventually r ≤ s2−sd+k.
To saturate this bound, let us define E ∈ C(Y) given by

E(Y ) =
k−1∑
i=0

EiY E
†
i + tr ((1lY −Π)Y ) ρ∗Y , (85)

where

Ei =
1√
k

d−1∑
j=0

|j + id⟩⟨j| ∈ M(Y), for i = 0, . . . , k − 1,

Π =
d−1∑
j=0

|j⟩⟨j| ∈ P(Y). (86)

Note that Π =
∑k−1

i=0 E
†
iEi and (1lY ⊗ Π)|Ei⟩ = |Ei⟩.

Therefore, we obtain

rank(J(E)) = rank

(
k−1∑
i=0

|Ei⟩⟨Ei|+ ρ∗Y ⊗ (1lY −Π)

)

= rank

(
k−1∑
i=0

|Ei⟩⟨Ei|

)
+rank

(
ρ∗Y ⊗ (1lY −Π)

)
= s2 − sd+ k. (87)

Finally, let us define S = K ((S)) ∈ C(X ,Y), where
S =

∑d−1
j=0 |j⟩Y⟨j|X , and R ∈ sC(Y,X ) given by R(Y ) =

kS†
(∑k−1

i=0 E
†
i Y Ei

)
S. We can observe that RES = IX ,

so E ∈ ξ1(X ,Y).
Now, take E = K ((Ei)r

i=1) ∈ ξ(X ,Y), where r =
rank(J(E)). According to Theorem 1 (D) there exist S∗ ∈
M(X ,Y) and R∗ ∈ M(Y,X ) such that R∗EiS∗ ∝ 1lX , and
there exists i0 for which it holds R∗Ei0S∗ ̸= 0. We may
assume that ∥R∗∥∞ ≤ 1 and ∥S∗∥∞ ≤ 1. Hence, according
to Theorem 1 (B) we get

K
((√

R†∗R∗EiS∗

)r

i=1

)
= K

(
(Ai)r′

i=1

)
(88)

for Ai ̸= 0, A†jAi ∝ δij1lX . If r′ < r, then let us define

Ai = 0 for i = r′+1, . . . , r. As K
(
(Ai)r′

i=1

)
= K ((Ai)r

i=1),

there exists a Kraus decomposition E = K ((E′i)
r
i=1) such that

Ai =
√
R†∗R∗E

′
iS∗ for each i ≤ r. Let Π be the projector

on the support of R†∗R∗. Observe that rank(Π) = d. Then,
for each i ≤ r we have ΠAi = Ai and for i ≤ r′ we have
rank(Ai) = d. The relation A†jAi ∝ δij1lX implies that there
exists exactly one Ai ̸= 0, hence r′ = 1. For i > 1 we have(√

R†∗R∗ ⊗ S⊤∗

)
|E′i⟩ = 0. Note that the Kraus operators E′i

are linearly independent and it holds

dim
(

ker
(√

R†∗R∗ ⊗ S⊤∗

))
= s2−rank

(√
R†∗R∗ ⊗ S⊤∗

)
= s2 − d2. (89)

Therefore, we obtain r − 1 = dim(span(E′i, i > 1)) ≤

dim
(

ker
(√

R†∗R∗ ⊗ S⊤∗

))
= s2 − d2 and eventually
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r ≤ s2 − d2 + 1. To saturate this bound, we define E ∈ C(Y)
given by

E(Y ) =
ΠYΠ + tr (ΠY ) (1lY −Π)

s−d+ 1
+ tr ((1lY −Π)Y ) ρ∗Y ,

(90)

where Π =
∑d−1

j=0 |j⟩⟨j| ∈ P(Y). Note, that

rank(J(E))

=rank
(
|Π⟩⟨Π|+ (1lY −Π)⊗Π

s− d+ 1
+ ρ∗Y ⊗ (1lY −Π)

)
=rank(|Π⟩⟨Π|) + rank((1lY −Π)⊗Π)

+rank(ρ∗Y ⊗ (1lY −Π)) = s2 − d2 + 1. (91)

Define S = K ((S)) ∈ C(X ,Y), where S =
∑d−1

j=0 |j⟩Y⟨j|X
and R ∈ sC(Y,X ) given by R(Y ) = S†Y S. We can observe
that RES = IX

s−d+1 , so E ∈ ξ(X ,Y). □

APPENDIX J
PROOF OF LEMMA 10

Lemma 10: Let F = K
(
(Fi)r−1

i=0

)
∈ sC(Y,X ). Then,

it holds

pX (F)
= max {tr(P ) : P ∈ P(Cr), tr1 (RF (P ⊗ 1lX )) ≤ 1lX ,

(ΠF ⊗ 1lX )(P ⊗ |1lX ⟩⟨1lX |)(ΠF ⊗ 1lX ) = P ⊗ |1lX ⟩⟨1lX |} ,
(92)

where RF = (FF †)−1,ΠF = FF−1 for F =
∑r−1

i=0 |i⟩ ⊗
Fi ∈M(Y,Cr ⊗X ). Moreover, if pX (F) > 0, then

∥RF ∥−1
∞ ≤ pX (F) ≤ ∥R−1

F ∥∞. (93)

Proof: This proof is an extension of the proof of
Lemma 3 presented in Appendix D. Let us fix F =
K
(
(Fi)r−1

i=0

)
∈ sC(Y,X ). Assume that for some S̃ ∈

sC(X ,Y) and R̃ ∈ sC(X ) it holds R̃FS̃ = pIX ̸= 0. Then,
we know that R̃ = K

(
(R̃)
)

and FS̃R̃ = pIX . Therefore,
pX (F) = max {p : FS = pIX ,S ∈ sC(X ,Y)} . Define

F =
r−1∑
i=0

|i⟩ ⊗ Fi ∈M(Y,Cr ⊗X ),

ΠF = FF−1,

RF = (FF †)−1. (94)

We can write F(Y ) = tr1(FY F †). If for some S ∈ sC(X ,Y)
it holds tr1(FS(X)F †) = pX , then according to Theorem 1
we have FS(X)F † = P ⊗ X , where P ∈ P(Cr). S which
satisfies this equation is equal to S(X) = F−1(P⊗X)(F−1)†.
Moreover it holds ΠF (P ⊗ X)ΠF = P ⊗ X for all X and
p = tr(P ). Eventually, we obtain

pX (F)
= max {p : FS = pIX ,S ∈ sC(X ,Y)}
= max {tr(P ) : P ∈ P(Cr),

S(·) = F−1(P ⊗ ·)(F−1)† ∈ sC(X ,Y),
∀X ΠF (P ⊗X)ΠF = P ⊗X}

= max {tr(P ) : P ∈ P(Cr), tr1 (RF (P ⊗ 1lX )) ≤ 1lX ,
(ΠF ⊗ 1lX )(P ⊗ |1lX ⟩⟨1lX |)(ΠF ⊗ 1lX ) = P ⊗ |1lX ⟩⟨1lX |} .

(95)

Assume now that pX (F) > 0, that is, we can find 0 ̸= P ∈
P(Cr) satisfying (ΠF ⊗ 1lX )(P ⊗ |1lX ⟩⟨1lX |)(ΠF ⊗ 1lX ) =
P ⊗ |1lX ⟩⟨1lX | and tr1 (RF (P ⊗ 1lX )) ≤ 1lX . Let P = pρ for
ρ ∈ D(Cr) and define P̃ = ∥tr1 (RF (ρ⊗ 1lX ))∥−1

∞ ρ. Observe
that P̃ also belongs to the optimization domain of pX (F).
Hence, we get

pX (F) ≥ ∥tr1 (RF (ρ⊗ 1lX ))∥−1
∞ ≥ ∥RF ∥−1

∞ . (96)

On the other hand, it holds ∥R−1
F ∥−1

∞ ΠF ≤ RF . Hence, for
any P which belongs to the optimization domain of pX (F) it
holds

∥R−1
F ∥−1

∞ tr(P )1lX ≤ tr1 (RF (P ⊗ 1lX )) ≤ 1lX . (97)

It implies that pX (F) ≤ ∥R−1
F ∥∞. □

APPENDIX K
PROOF OF COROLLARY 11

Corollary 11: Let F = K
(
(Fi)r−1

i=0

)
∈ sC(X ,Y). Then,

it holds

pX (F) = max
{

tr(P ) : P ∈ P(Cr), P ⊗ 1lX ≤ F̃ F̃ †,

(ΠF̃ ⊗ 1lX )(P ⊗ |1lX ⟩⟨1lX |)(ΠF̃ ⊗ 1lX ) = P ⊗ |1lX ⟩⟨1lX |
}
,

(98)

where ΠF̃ = F̃ F̃−1 for F̃ =
∑r−1

i=0 |i⟩⊗F
†
i ∈M(Y,Cr⊗X ).

Proof: This proof is based on the proof of Lemma 10
presented in Appendix J. Let us define F̃ =

∑r−1
i=0 |i⟩ ⊗

F †i ∈ M(Y,Cr ⊗ X ) and ΠF̃ = F̃ F̃−1 for a given F =
K
(
(Fi)r−1

i=0

)
∈ sC(X ,Y). One may note that RF = pIX if

and only if F†R† = pIX . Therefore, we obtain

pX (F) = max
{
p : F†R† = pIX ,R ∈ sC(Y,X )

}
= max

{
tr(P ) : P ∈ P(Cr),R†(·) = F̃−1(P ⊗ ·)(F̃−1)†,

R ∈ sC(Y,X ), ∀X ΠF̃ (P ⊗X)ΠF̃ = P ⊗X
}

= max
{

tr(P ) : P ∈ P(Cr), F̃−1(P ⊗ 1lX )(F̃−1)† ≤ 1lY ,

∀X ΠF̃ (P ⊗X)ΠF̃ = P ⊗X
}

= max
{

tr(P ) : P ∈ P(Cr), P ⊗ 1lX ≤ F̃ F̃ †,

(ΠF̃ ⊗ 1lX )(P ⊗ |1lX ⟩⟨1lX |)(ΠF̃ ⊗ 1lX ) = P ⊗ |1lX ⟩⟨1lX |
}
.

(99)

□

APPENDIX L
PROOF OF COROLLARY 12

Corollary 12: Let F = K
(
(Fi)r−1

i=0

)
∈ C(Y,X ). Define

ΠF = FF−1, where F =
∑r−1

i=0 |i⟩ ⊗ Fi ∈ M(Y,Cr ⊗
X ). Then, it holds pX (F) ∈ {0, 1}. Moreover, F is perfectly
correctable for X if and only if there exists 0 ̸= |ψ⟩ ∈ Cr

such that (ΠF ⊗ 1lX )(|ψ⟩ ⊗ |1lX ⟩) = |ψ⟩ ⊗ |1lX ⟩.
Proof: Let us assume that for a given F =

K
(
(Fi)r−1

i=0

)
∈ C(Y,X ) there exists error-correcting scheme

(S,R) ∈ sC(X ,Y) × sC(X ) such that RFS = pIX ̸= 0.



KUKULSKI et al.: ON THE PROBABILISTIC QUANTUM ERROR CORRECTION 4635

From the proof of Lemma 10, without loss of the generality
we may take R = IX . Hence, from Proposition 2 we have
pX (F) = 1. Now, from Lemma 10 we know that pX (F) > 0
if and only if there exists 0 ̸= P ∈ P(Cr) such that
(ΠF ⊗ 1lX )(P ⊗ |1lX ⟩⟨1lX |)(ΠF ⊗ 1lX ) = P ⊗ |1lX ⟩⟨1lX |. This
condition is equivalent to (ΠF⊗1lX )(|ψ⟩⊗|1lX ⟩) = |ψ⟩⊗|1lX ⟩
for some 0 ̸= |ψ⟩ ∈ Cr. □

APPENDIX M
PROOF OF PROPOSITION 13

Proposition 13: Let X and Y be some complex Euclidean
spaces and dim(X ) ≤ dim(Y).
(A) If E ∈ C(Y) is a noise channel such that rank(E(1lY)) =

dim(X ) and rank(J(E)) < dim(Y) dim(X )
dim(X )2−1 , then E ∈

ξ1(X ,Y).
(B) There exists a noise channel E ∈ C(Y) such

that rank(E(1lY)) = dim(X ) and rank(J(E)) ≥
dim(Y) dim(X )

dim(X )2−1 , for which we have E ̸∈ ξ(X ,Y).
Proof: (A)

Let us take E ∈ C(Y) and denote r = rank(J(E)).
Assume that rank(E(1lY)) = dim(X ) and r <
dim(Y) dim(X )

dim(X )2−1 . Consider an associated to E channel
F = K

(
(Fi)r−1

i=0

)
∈ C(Y,X ). Define ΠF = FF−1,

where F =
∑r−1

i=0 |i⟩ ⊗ Fi ∈ M(Y,Cr ⊗ X ). Observe that
dim(ker ((1lCr⊗X −ΠF )⊗ 1lX )) = dim(Y) dim(X ) and
dim(span(|ψ⟩ ⊗ |1lX ⟩ : |ψ⟩ ∈ Cr)) = r. Therefore,
as dim(Y) dim(X ) + r > r dim(X )2 there exists
0 ̸= |ψ⟩ ∈ Cr, such that (ΠF ⊗1lX )(|ψ⟩⊗|1lX ⟩) = |ψ⟩⊗|1lX ⟩.
It follows from Corollary 12 that E ∈ ξ1(X ,Y).

(B)
Let us take F = K

(
(Fi)r−1

i=0

)
∈ C(Y,X ) defined as in the

part (A) of the proof. We have that E ∈ ξ(X ,Y) if and only
if there exists S ∈M(X ,Y) such that FiS = ci1lX and ci0 ̸=
0 for some i0. Let F =

∑r−1
i=0 |i⟩ ⊗ Fi ∈M(Y,Cr ⊗X ) and

|c⟩ =
∑r−1

i=0 ci|i⟩. Hence, E ∈ ξ(X ,Y) if and only if it holds
FS = |c⟩ ⊗ 1lX ̸= 0. This is equivalent to

E ̸∈ ξ(X ,Y)⇐⇒ ((F⊗1lX )|S⟩= |c⟩⊗|1lX ⟩ =⇒ |S⟩=0) .
(100)

Therefore, in this proof, we will construct appropriate
operator F . Formally, the operator F should be an isometry
operator, but by Lemma 9, it is enough to define F such that
rank(F ) = dim(Y).

Let d = dim(X ), s = dim(Y) and fix r ∈ N, such that
r ≥ sd

d2−1 . We start with the case s = kd for k ∈ N. Consider
the decomposition F =

∑r−1
i=0 |i⟩⊗Fi, where Fi ∈M(Y,X ).

For i = 0, . . . , k − 1 we define

Fi = ⟨i| ⊗ 1lX . (101)

Let
{

1lX , (Mj)d2−2
j=0

}
⊂M(X ) be a basis of M(X ). For each

i = k, . . . , r − 1 we define

Fi =
d2−2∑
j=0

δ(j+(i−k)(d2−1)<k)⟨j+(i−k)(d2 − 1)|⊗Mj .

(102)

Observe, that rank(F ) = s. Let us take S which satisfies
FiS ∝ 1lX for each i. Basing on the equations with indices i =
0, . . . , k−1 we get S = |c⟩⊗1lX for some |c⟩ =

∑k−1
j=0 cj |j⟩.

Note, that if for any i = k, . . . , r− 1 it holds FiS ∝ 1lX , then
cj = 0 for each j = (i−k)(d2−1), . . . , d2−2+(i−k)(d2−1).
From the assumption r ≥ sd

d2−1 we have (r− k)(d2− 1) ≥ k,
hence, all entries cj are zeroed. It implies S = 0.

The case s = kd+ l for l = 1, . . . , d−1 is more technically
engaging than the previous case but it is based on the same
idea. It will be only briefly discussed. For i = 0, . . . , k −
1 we can define Fi similarly as in the previous case, that is
Fi ∼ ⟨i| ⊗ 1lX . The operator Fk has a special form, Fk ∼
(⟨k| ⊗

∑l−1
j=0 |j⟩⟨j|) +N , where the image of N is contained

in span(|j⟩ : j ≥ l). Here, the operator S which satisfy FiS ∝
1lX has the form S ∼ |c⟩ ⊗ 1lX for some |c⟩ =

∑k
j=0 cj |j⟩.

We can choose N such that d(d− l) entries cj will be zeroed
if FkS ∝ 1lX . Finally, operators Fi for i = k+1, . . . , r−1 has
the analogous form as (102) – each nullify (d2 − 1) entries.
In total, the number of entries cj which can be zeroed is not
less than k + 1. Indeed, it holds

d(d− l) + (r − k − 1)(d2 − 1) ≥ k + 1. (103)

Therefore, S = 0, which ends the proof. □

APPENDIX N
PROOF OF LEMMA 14

Lemma 14: Let X and Y be Euclidean spaces such that
dim(Y) ≥ dim(X ). Then, there exists a Schur channel E ∈
C(Y) such that rank(J(E)) =

⌈
dim(Y)

dim(X )−1

⌉
and E ̸∈ ξ(X ,Y).

Moreover, there exists a Schur channel F ∈ C(Y) such that

rank(J(F)) =
⌈√⌈

dim(Y)
dim(X )−1

⌉⌉
and F ̸∈ ξ1(X ,Y). This

implies

r(X ,Y) <
dim(Y)

dim(X )− 1
,

r1(X ,Y) <

√
dim(Y)

dim(X )− 1
. (104)

Proof: Let d = dim(X ), s = dim(Y) and s = k(d −
1) − w, where k =

⌈
s

d−1

⌉
and w ∈ {0, . . . , d − 2}. First,

we will show that r(X ,Y) < k. Define a Schur channel E =
K
(
(Ei)k−1

i=0

)
∈ C(Y) given by

Ei =
d−2∑
j=0

|j + (d− 1)i⟩⟨j + (d− 1)i|, i = 0, . . . , k − 2,

Ek−1 =
d−2−w∑

j=0

|j + (d− 1)(k − 1)⟩⟨j + (d− 1)(k − 1)|.

(105)

Observe that rank(J(E)) = k. From Theorem 1 (D) we know
that E ∈ ξ(X ,Y) if and only if there exist S∗ ∈M(X ,Y) and
R∗ ∈ M(Y,X ), such that R∗EiS∗ ∝ 1lX for all i and there
exists i0 for which it holds R∗Ei0S∗ ̸= 0. As rank(Ei) ≤
d− 1, if we have R∗EiS∗ ∝ 1lX , then R∗EiS∗ = 0 for all i.
That implies E ̸∈ ξ(X ,Y).



4636 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 7, JULY 2023

Now, let us define l =
⌈√

k
⌉

. We will prove that
r1(X ,Y) < l. Due to the relation spanC

(
|ψ⟩⟨ψ| : |ψ⟩⟨ψ| ∈

D(Cl)
)

= M(Cl), we may define unit vectors |ψa⟩, for
a = 0, . . . , l2 − 1, such that spanC ({|ψa⟩⟨ψa|}a) = M(Cl).
Let us define Fi ∈M(Y) for i = 0, . . . , l − 1 given by

Fi =
k−1∑
a=0

⟨ψa|i⟩Ea, (106)

for Ea defined in (105). Observe that Fi are linearly indepen-
dent. We have that

l−1∑
i=0

F †i Fi =
l−1∑
i=0

k−1∑
a,b=0

⟨i|ψb⟩⟨ψa|i⟩E†bEa

=
l−1∑
i=0

k−1∑
a=0

⟨i|ψa⟩⟨ψa|i⟩Ea =
k−1∑
a=0

Ea = 1lY .

(107)

Now, we introduce a Schur channel F = K
(
(Fi)l−1

i=0

)
∈ C(Y).

Assume indirectly that F ∈ ξ1(X ,Y). Then, according to
Proposition 2 and Theorem 1 there exists S ∈ M(X ,Y),
which satisfies S†S = 1lX and M ∈ M(Cl), such that
S†F †j FiS = Mji1lX . Therefore, we get

M ⊗ 1lX =
∑
j,i

|j⟩⟨i| ⊗ S†F †j FiS

=(1l⊗ S†)
∑
j,i

(
|j⟩⟨i| ⊗

k−1∑
a=0

⟨j|ψa⟩⟨ψa|i⟩Ea

)
(1l⊗ S)

=
k−1∑
a=0

|ψa⟩⟨ψa| ⊗ S†EaS. (108)

For each a = 0, . . . , k−1 we can use Gram-Schmidt orthogo-
nalization to define Xa, such that tr(Xa|ψa⟩⟨ψa|) ̸= 0 and
tr(Xa|ψb⟩⟨ψb|) = 0 whenever a ̸= b. Hence, we obtain
tr(XaM)1lX = tr(Xa|ψa⟩⟨ψa|)S†EaS. As rank(Ea) ≤
d − 1 we get S†EaS = 0 for all a. It implies that 0 =∑k−1

a=0 S
†EaS = S†S = 1lX , which gives the contradiction.

That means F ̸∈ ξ1(X ,Y). It is enough to observe that
r1(X ,Y) < rank(J(F)) = l. □

APPENDIX O
PROOF OF PROPOSITION 15

Proposition 15: Let X and Y be Euclidean spaces and
dim(X ) ≤ dim(Y). For any Schur channels E ∈ C(Y), such
that rank(J(E)) < dim(Y)

dim(X )−1 , it holds E ∈ ξ(X ,Y).
Proof: Let ∆ ∈ C(Y) be the maximally dephasing

channel, that is ∆(Y ) =
∑

i |i⟩⟨i|Y |i⟩⟨i|. Let us fix r such that
r < dim(Y)

dim(X )−1 . We will show that if E = K ((Ei)) ∈ C(Y),
such that Ei = ∆(Ei) for each i and rank(J(E)) ≤ r, then
E ∈ ξ(X ,Y). Observe that the thesis is true in two particular
situations:
• For dim(X ) = 1 and dim(Y) ≥ 1.
• For r = 1 and dim(Y) ≥ dim(X ).
Let us take E = K ((Ei)) ∈ C(Y), such that rank(J(E)) ≤

r and Ei = ∆(Ei) for each i. We may assume that
rank(J(E))=r. Therefore, there exists a projector Π ∈ P(Y),

such that rank(Π) = r and ∆(Π) = Π, and for which
the operators ΠEiΠ are linearly independent. Let us consider
the map F = K

(
(Π⊥EiΠ⊥)r

i=1

)
. Define X ′ = Cdim(X )−1.

By the recurrence and Theorem 1 for F there exist S′∗ ∈
M (X ′,Y) and R′∗ ∈M (Y,X ′), such that R′∗Π

⊥EiΠ⊥S′∗ =
ci1lX ′ and ci0 ̸= 0 for some i0. Let |s⟩ ∈ C(Y) be the flat
superposition. As ΠEiΠ are diagonal and linearly indepen-
dent, there exists the vector |r⟩ such that ⟨r|ΠEiΠ|s⟩ = ci.
We may define an encoding operator S∗ by adding a column
Π|s⟩ to the operator Π⊥S′∗. In the same manner, we may
construct R∗ by adding a row ⟨r|Π to the operator R′∗Π

⊥.
It is easy to check that S∗, R∗ satisfy Theorem 1 (D), so E ∈
ξ(X ,Y). □

APPENDIX P
PROOF OF COROLLARY 16

Corollary 16: Let Y be an Euclidean space such that
dim(Y) ≥ 2 and let E ∈ C(Y) be a Schur channel. Then,
E ∈ ξ(C2,Y) if and only if dim(Y) > rank(J(E)). Moreover,
if E ∈ ξ(C2,Y) then pC2(E) ≥ 1

rank(J(E))2 .

Proof: Let r = rank(J(E)). If dim(Y) > r, then
from Proposition 15 if follows E ∈ ξ(C2,Y). Assume now
that dim(Y) = r. Let E = K ((Ei)r

i=1) and define M =
[Mi,j ]i,j=1,...,r such that rank(M) = r. Fix S ∈ M(C2,Y)
and R ∈M(Y,C2) and observe that the following conditions
are equivalent:
• For all i it holds REiS = ci1lC2 and ci0 ̸= 0 for some
i0.

• For all i it holds R
∑

j Mi,jEjS = di1lC2 and di0 ̸= 0 for
some i0.

Since E is a Schur channel we can take M such that for all i
it holds

∑
j Mi,jEj = |i⟩⟨i|. It implies that E ̸∈ ξ(C2,Y).

Now, we will prove that pC2(E) ≥ 1
rank(J(E))2 for

dim(Y) > r. It is enough to show this inequality for Y =
Cr+1. Let us fix a Schur channel E = K

(
(Ei)r−1

i=0

)
∈

C(Cr+1). For i ∈ {0, . . . , r} define

|xi⟩ ..=
r−1∑
j=0

(Ej)i,i|j⟩. (109)

Observe that ⟨xi|xi⟩ = 1 for all i. First we will show that there
exist i0 ∈ {0, . . . , r} and a vector |vi0⟩ = [(vi0)i]i ̸=i0 such
that |xi0⟩ =

∑
i ̸=i0

(vi0)i|xi⟩ and ⟨vi0 |vi0⟩ ≤ r. Naturally,
this statement is true for r = 1. By induction, we assume
that this statement is true for r − 1 and we will show that it
implies its validity for r. In the first case, assume that there is
i0 ∈ {0, . . . , r} such that vectors |xi⟩ for i ̸= i0 are linearly
dependent. That means, we have r vectors |xi⟩, i ̸= i0 which
belong to a some subspace Cr−1. We may use the induction
step to prove the correctness of our statement. In the second
case, we assume that for all i0 the vectors |xi⟩ for i ̸= i0 are
linearly independent. That means, for each i0 ∈ {0, . . . , r} the
vector |xi0⟩ can be uniquely expressed as a linear combination
of |xi⟩ for i ̸= i0 with coefficients [(vi0)i]i ̸=i0 . Let us define
Q =

∑r
i=0 |xi⟩⟨xi| and Qi = Q−|xi⟩⟨xi| > 0. One can show

that ⟨vi|vi⟩ = ⟨xi|Q−1
i |xi⟩ for all i. We obtain

⟨vi|vi⟩ = tr(Q−1
i |xi⟩⟨xi|) = tr(Q−1

i (Q−Qi))
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= tr(
√
QQ−1

i

√
Q)−r

= tr
((√

Q
−1

(Q− |xi⟩⟨xi|)
√
Q
−1
)−1

)
− r

= tr
((

1lCr −
√
Q
−1
|xi⟩⟨xi|

√
Q
−1
)−1

)
−r

=
⟨xi|Q−1|xi⟩

1− ⟨xi|Q−1|xi⟩
. (110)

On the other hand, we have
∑r

i=0⟨xi|Q−1|xi⟩ = tr(Q−1Q) =
r. There exists i0 ∈ {0, . . . , r} such that ⟨xi|Q−1|xi⟩ ≤

r
r+1 and hence, ⟨vi0 |vi0⟩ ≤ r which ends the proof of our
statement.

Now, without loss of generality we assume that there is a
vector |v⟩ =

∑r
i=1 vi|i⟩ such that |x0⟩ =

∑r
i=1 vi|xi⟩ and

⟨v|v⟩ ≤ r. Define c = max(1, ∥v∥2) and let us take

R =
1√
rc
|0⟩⟨0|+ 1√

r
|1⟩

(
r∑

i=1

⟨i|

)
∈M(Cr+1,C2),

S = |0⟩⟨0|+ 1
c
|v⟩⟨1| ∈ M(C2,Cr+1). (111)

Observe that ∥S∥∞, ∥R∥∞ ≤ 1 and for any j ∈ {0, . . . , r−1}
we have REjS = (Ej)0,0√

rc
1lC2 . Eventually, we obtain

pC2(E) ≥
r−1∑
j=0

|(Ej)0,0|2

rc2
=

1
rc2

≥ 1
r2
. (112)

□

APPENDIX Q
PROOF OF THEOREM 17

Theorem 17: Let X and Y be some Euclidean spaces such
that dim(Y) ≥ dim(X ). Then, we have⌊

4

√
dim(Y)
dim(X )

⌋
≤ r1(X ,Y) ≤

⌈√
dim(Y)

dim(X )− 1

⌉
− 1

≤ r(X ,Y) <
dim(Y) dim(X )
dim(X )2 − 1

. (113)

Proof: The inequality
⌊

4

√
dim(Y)
dim(X )

⌋
≤ r1(X ,Y) fol-

lows directly from [34]. The inequalities r1(X ,Y) ≤⌈√
dim(Y)

dim(X )−1

⌉
− 1 and r(X ,Y) < dim(Y) dim(X )

dim(X )2−1 follow from

Lemma 14 and Proposition 13, respectively.

Now, we will show that
⌈√

dim(Y)
dim(X )−1

⌉
− 1 ≤ r(X ,Y).

Take arbitrary E ∈ C(Y) such that rank(J(E))2(dim(X ) −
1) < dim(Y). We will show E ∈ ξ(X ,Y). Let us denote
r = rank(J(E)). Consider a Kraus representation E =
K
(
(Ej)r

j=1

)
and define the following set

A =
{
s ∈ N : ∃Πs∈P(Y) Πs = Π2

s, rank(Πs) = s,

rank(E†(Πs)) = dim(Y)
}
. (114)

Observe that dim(Y) ∈ A and if some s ∈ A, then
sr ≥ dim(Y). Define s0 = min(A) and consider a cor-
responding projector Πs0 ∈ P(Y), such that rank(Πs0) =
s0 and rank(E†(Πs0)) = dim(Y). Let us take a orthonormal
collection of vectors |vi⟩, where i = 1, . . . , s0 for which

we have Πs0 =
∑s0

i=1 |vi⟩⟨vi|. From the assumption s0 =
min(A), for any i we get rank(E†(Πs0−|vi⟩⟨vi|)) < dim(Y).
Therefore, we may define vectors Y ∋ |wi⟩ ̸= 0 such
that E†(Πs0 − |vi⟩⟨vi|)|wi⟩ = 0. Observe that for each i,
there exists Ej for which ⟨vi|Ej |wi⟩ ̸= 0. Let us define
Fj = [⟨va|Ej |wb⟩]a,b=1,...,s0 for j = 1, . . . , r. Note, that
Fj are diagonal operators and it holds

∑
j F

†
j Fj > 0. From

r2(dim(X )− 1) < dim(Y) and s0r ≥ dim(Y) we have

r(dim(X )− 1) <
dim(Y)

r
≤ s0. (115)

Utilizing Proposition 15, Lemma 9 and Theorem 1 there exist
S∗ ∈M(X ,Cs0) and R∗ ∈M(Cs0 ,X ), such that R∗FjS∗ ∝
1lX and there exists j0, for which it holds R∗Fj0S∗ ̸= 0. That
implies E ∈ ξ(X ,Y). □

APPENDIX R
PROOF OF PROPOSITION 19

Proposition 19: For all E ∈ C(C4) satisfying rank(J(E)) ≤
2 we have E ∈ ξ(C2,C4).

Proof: Let us fix E = K ((E0, E1)) ∈ C(C4). From
the equality E†0E0 + E†1E1 = 1lC4 we may write the singular
decomposition of E0, E1 in the form: E0 = U0D0V and E1 =
U1D1V , where U0, U1, V ∈ U(C4) and D0, D1 ∈ P(C4) are
diagonal operators satisfying D2

0+D2
1 = 1lC4 . In order to show

that E ∈ ξ(C2,C4) we will use Theorem 1 (D). We will prove
that there exist S∗ ∈M(C2,C4) and R∗ ∈M(C4,C2), such
that R∗E0S∗ = c01lC2 , R∗E1S∗ = c11lC2 for some c0, c1 ∈ C
satisfying (c0, c1) ̸= (0, 0). Let us introduce the following
notation

|xi⟩ = (D0)iiU0|i⟩, i = 0, . . . , 3,
|yi⟩ = (D1)iiU1|i⟩, i = 0, . . . , 3. (116)

Note that vectors |xi⟩ are orthogonal (the same holds for |yi⟩)
and for each i = 0, . . . , 3 we have |xi⟩ ≠ 0 or |yi⟩ ≠ 0.
We may write S∗ and R∗ in the following form

S∗ = V †(|S0⟩⟨0|+ |S1⟩⟨1|),
R∗ = |0⟩⟨R0|+ |1⟩⟨R1|, (117)

for some vectors |S0⟩, |S1⟩, |R0⟩, |R1⟩ ∈ C4. The rest of the
proof will be divided into three cases.

In the first case, we assume there exists i3 ∈ {0, . . . , 3}
such that vectors |xi3⟩, |yi3⟩ are linearly independent.
Define indices i0, i1, i2 ∈ {0, . . . , 3} as the remain-
ing labels, such that {i0, . . . , i3} covers the whole set
{0, . . . , 3}. Let (a0, a1, a2)⊤ ∈ C3 be a normalized vec-
tor orthogonal to vectors (⟨yi3 |xi0⟩, ⟨yi3 |xi1⟩, ⟨yi3 |xi2⟩)† and
(⟨xi3 |yi0⟩, ⟨xi3 |yi1⟩, ⟨xi3 |yi2⟩)†. Take |S1⟩ = |i3⟩ and |S0⟩ =
a0|i0⟩+a1|i1⟩+a2|i2⟩. Define |x⟩ = a0|xi0⟩+a1|xi1⟩+a2|xi2⟩
and |y⟩ = a0|yi0⟩+ a1|yi1⟩+ a2|yi2⟩. We obtain

E0S∗ = |x⟩⟨0|+ |xi3⟩⟨1|,
E1S∗ = |y⟩⟨0|+ |yi3⟩⟨1|. (118)

It is not hard to observe that |x⟩ ̸= 0 or |y⟩ ̸= 0. If |x⟩ ̸=
0, take |R0⟩ = |x⟩, else take |R0⟩ = |y⟩. As the vectors
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|xi3⟩, |yi3⟩ are linearly independent we may define

(b0, b1)⊤ ..=
[
⟨xi3 |xi3⟩ ⟨yi3 |xi3⟩
⟨xi3 |yi3⟩ ⟨yi3 |yi3⟩

]−1

(⟨R0|x⟩, ⟨R0|y⟩)⊤.(119)

Take |R1⟩ = b̄0|xi3⟩ + b̄1|yi3⟩. Finally, we may check that it
holds

R∗E0S∗ = (|0⟩⟨R0|+|1⟩⟨R1|)(|x⟩⟨0|+ |xi3⟩⟨1|)=⟨R0|x⟩1lC2 ,

R∗E1S∗ = (|0⟩⟨R0|+|1⟩⟨R1|)(|y⟩⟨0|+ |yi3⟩⟨1|)=⟨R0|y⟩1lC2 .

(120)

In the second case, we assume that there exists a pair of
vectors |yi0⟩, |yi1⟩ for i0 ̸= i1, such that |yi0⟩ = |yi1⟩ =
0. Then, the vectors |xi0⟩, |xi1⟩ are orthonormal. We simply
define |S0⟩ = |i0⟩, |S1⟩ = |i1⟩, |R0⟩ = |xi0⟩ and |R1⟩ = |xi1⟩.
One can calculate that R∗E0S∗ = 1lC2 and R∗E1S∗ = 0.

In the third case, for all i ∈ {0, . . . , 3} vectors |xi⟩, |yi⟩ are
not linearly independent and there is at most one zero vector
|yi3⟩ for some i3 ∈ {0, . . . , 3}. Define indices i0, i1, i2 ∈
{0, . . . , 3} as the remaining labels, such that {i0, . . . , i3}
covers the whole set {0, . . . , 3}. Define the matrix

M =
[
⟨yi0 |xi0⟩ ⟨yi1 |xi1⟩ ⟨yi2 |xi2⟩
⟨yi0 |yi0⟩ ⟨yi1 |yi1⟩ ⟨yi2 |yi2⟩

]
. (121)

In the first sub-case we assume that rank(M) = 1. Define
b = ⟨yi1 |yi1 ⟩

⟨yi0 |yi0 ⟩
. We can take |S0⟩ = |i0⟩, |S1⟩ = |i1⟩, |R0⟩ =

|yi0⟩ and |R1⟩ = 1
b |yi1⟩. One can calculate that R∗E0S∗ =

⟨yi0 |xi0⟩1lC2 and R∗E1S∗ = ⟨yi0 |yi0⟩1lC2 .
In the second sub-case we assume that rank(M) = 2.

Define indices j1, j2 ∈ {0, 1, 2}, such that

rank
([

M0,j1 M0,j2

M1,j1 M1,j2

])
= 2. (122)

Define j0 ∈ {0, 1, 2} as the remaining label, such that
{j0, j1, j2} covers the whole set {0, 1, 2}. Take |S0⟩ = |ij0⟩,
|R0⟩ = |yij0

⟩ and define

(b1, b2)⊤ ..=
[
⟨yij1

|xij1
⟩ ⟨yij2

|xij2
⟩

⟨yij1
|yij1

⟩ ⟨yij2
|yij2

⟩

]−1( ⟨yij0
|xij0

⟩
⟨yij0

|yij0
⟩

)
.

(123)

We may take |S1⟩ = |ij1⟩+|ij2⟩ and |R1⟩ = b̄1|yij1
⟩+b̄2|yij2

⟩.
Direct calculations reveal that R∗E0S∗ = ⟨yij0

|xij0
⟩1lC2 and

R∗E1S∗ = ⟨yij0
|yij0

⟩1lC2 . □

APPENDIX S
PROOF OF THEOREM 21

Theorem 21: Let Er ∈ C(Y) be a random quantum channel
defined according to (36). Then, the following two implica-
tions hold

r <
dim(X ) dim(Y)
dim(X )2 − 1

=⇒ P (Er ∈ ξ(X ,Y)) = 1,

P (Er ∈ ξ1(X ,Y)) = 1 =⇒ r <

√
dim(Y)

dim(X )− 1
. (124)

Proof: For r ∈ N satisfying r < dim(X ) dim(Y)
dim(X )2−1 , let

(Gi)r
i=1 ⊂ M(Y) be a tuple of random and independent

Ginibre matrices and Q =
∑r

i=1G
†
iGi. Define the projector

Π =
∑dim(X )−1

i=0 |i⟩⟨i| and consider the set

A =

{
(Gi)r

i=1 : rank(Q) = dim(Y),

rank

(
r∑

i=1

G†iΠGi

)
= min{r dim(X ),dim(Y)}

}
.

(125)

One can observe that P((Gi)r
i=1 ∈ A) = 1. Let Er ∈ C(Y) be

a random channel defined according to (36) for (Gi)r
i=1 ∈ A,

that is Er(Y ) =
∑r

i=1

(
GiQ

−1/2
)
Y
(
GiQ

−1/2
)†
. Define

S = Q1/2S̃ for S̃ ∈ M(X ,Y) and R = R̃Π for R̃ ∈
M(Y,X ). We obtain RGiQ

−1/2S = R̃ΠGiS̃. Utilizing
Lemma 9, Proposition 13 and Theorem 1 (D) for Ẽ =
K ((ΠGi)r

i=1) ∈ sC(Y), there exist S̃, R̃, such that R̃ΠGiS̃ ∝
1lX and R̃ΠGi0 S̃ ̸= 0 for some i0. Finally, Er ∈ ξ(X ,Y).

Now, for a given r ∈ N let us define B = {Er : Er ∈
ξ1(X ,Y)}. From the assumption P(B) = 1, we obtain that
B is a dense subset of {E ∈ C(Y) : rank(J(E)) ≤ r}.
Imitating the proof of Theorem 7, we get that if E ∈ C(Y)
and rank(J(E)) ≤ r, then E ∈ ξ1(X ,Y). That implies
r ≤ r1(X ,Y). By using Lemma 14 we obtain the desired
inequality. □

APPENDIX T
PROOF OF COROLLARY 22

Corollary 22: Let Er = K
(
(Ei)r−1

i=0

)
∈ C(Y) be a random

quantum channel defined according to (36) and assume that
r ≤ dim(Y)

dim(X ) . Define a sequence V1, V2, . . . of random isometry
matrices sampled according to the Haar measure, such that
Vn ∈ M(X ,Y). Let RFn = (FnF

†
n)−1 for Fn =

∑r−1
i=0 |i⟩ ⊗

V †nEi ∈M(Y,Cr ⊗X ). Then, almost surely it holds

pX (Er)
≥ sup

n∈N
max {tr(P ) : P ∈ P(Cr), tr1 (RFn

(P ⊗ 1lX )) ≤ 1lX }

≥max
{
λmin((1lCr ⊗ V †)EE†(1lCr ⊗ V )) :

V ∈M(X ,Y), V †V = 1lX
}
, (126)

where λmin is the smallest eigenvalue and E =
∑r−1

i=0 |i⟩⊗Ei.
Proof: For r ∈ N satisfying r dim(X ) ≤ dim(Y), let

(Gi)r−1
i=0 ⊂ M(Y) be a tuple of random and independent

Ginibre matrices and Q =
∑r−1

i=0 G
†
iGi. Define a sequence

V1, V2, . . . of random isometry matrices sampled according to
the Haar measure, such that Vn ∈ M(X ,Y). Consider the
following sets

A0 ={
(
(Gi)r−1

i=0 , (Vn)n∈N
)

: rank(Q) = dim(Y)},
Am ={

(
(Gi)r−1

i=0 , (Vn)n∈N
)

:

rank

(
r−1∑
i=0

G†iVmV
†
mGi

)
= r dim(X )}. (127)

One can observe that P(
⋂

n≥0An) = 1. For n ∈ N let RFn
=

(FnF
†
n)−1,ΠFn

= FnF
−1
n , where Fn =

∑r−1
i=0 |i⟩ ⊗ V †nEi ∈

M(Y,Cr ⊗X ). Utilizing Lemma 10 we obtain

pX (Er)
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≥ sup
n∈N

max {tr(P ) : P ∈ P(Cr), tr1 (RFn
(P ⊗ 1lX )) ≤ 1lX ,

(ΠFn ⊗ 1lX )(P ⊗ |1lX ⟩⟨1lX |)(ΠFn⊗1lX )=P⊗|1lX ⟩⟨1lX |} .
(128)

It holds that F †nFn = Q−1/2
∑r−1

i=0 G
†
iVnV

†
nGiQ

−1/2. Hence,
almost surely rank(Fn) = r dim(X ) which implies that
ΠFn = 1lCr⊗X . Therefore, we get

pX (Er)
≥ sup

n∈N
max {tr(P ) : P ∈ P(Cr), tr1 (RFn(P ⊗ 1lX )) ≤ 1lX } .

(129)

To prove the second inequality note that
max {tr(P ) : P ∈ P(Cr), tr1 (RFn

(P ⊗ 1lX )) ≤ 1lX } > 0 for
each n ∈ N. By Lemma 10 and the fact that RFn

> 0 for
each n ∈ N we get

sup
n∈N

max {tr(P ) : P ∈ P(Cr), tr1 (RFn
(P ⊗ 1lX )) ≤ 1lX }

≥ sup
n∈N

∥RFn
∥−1
∞ = sup

n∈N
∥((1lCr ⊗ V †n )EE†(1lCr ⊗ Vn))−1∥−1

∞ .

= sup
n∈N

λmin((1lCr ⊗ V †n )EE†(1lCr ⊗ Vn))

= max
{
λmin((1lCr ⊗ V †)EE†(1lCr ⊗ V )) :

V ∈M(X ,Y), V †V = 1lX
)
, (130)

where in the last equality we used the fact that the subset
{Vn : n ∈ N} is almost surely dense in the set of isometry
matrices and the fact that λmin is a continuous function. □

APPENDIX U
EXTREMALITY OF RANDOM CHANNELS

Lemma 25: Let r ∈ N and let Er ∈ C(Y) be a random
quantum channel defined according to (36). Then, almost
surely it holds
• rank(J(Er)) = min(r, dim(Y)2),
• rank(J(E†rEr)) = min(r2,dim(Y)2).

In particular, if r ≤ dim(Y), then Er is almost surely an
extremal channel.

Proof: The channel Er ∈ C(Y) is given as Er =
K
(
(GiQ

−1/2))r
i=1

)
, where Q =

∑r
i=1G

†
iGi and (Gi)r

i=1 ⊂
M(Y) is a tuple of random and independent Ginibre matrices.
As rank(Q) = dim(Y) almost surely, then

rank(J(Er)) = rank

(
r∑

i=1

|GiQ
−1/2⟩⟨i|

)

=rank

(
r∑

i=1

|Gi⟩⟨i|

)
= min(r, dim(Y)2). (131)

Similarly, we get

rank(J(E†rEr)) = rank

 r∑
i,j=1

|Q−1/2G†jGiQ
−1/2⟩⟨j, i|


=rank

 r∑
i,j=1

|G†jGi⟩⟨j, i|



=rank

dim(Y)−1∑
a=0

r∑
i,j=1

(G†j |a⟩ ⊗G†i |a⟩)⟨j, i|


=rank

dim(Y)−1∑
a=0

Ka ⊗Ka

 , (132)

where (Ka)dim(Y)−1
a=0 ⊂ M(Cr,Y) is a tuple of random

and independent Ginibre matrices. As rank(Ka) =
min(r, dim(Y)) it follows that rank(J(E†rEr)) =
min(r2,dim(Y)2). □

APPENDIX V
PROOF OF PROPOSITION 23

Proposition 23: Let Υ ⊂ C(Y) be a nonempty and convex
family of noise channels. Define µ to be a probability measure
defined on Υ and assume that the support of µ is equal to Υ.
Let Ē =

∫
Υ
Eµ(dE) ∈ C(Y) and fix (S,R) ∈ sC(X ,Y) ×

sC(Y,X ). The following conditions are equivalent:
(A) For each E ∈ Υ there exists pE ≥ 0 such that RES =

pEIX and
∫
Υ
pEµ(dE) > 0.

(B) It holds that 0 ̸= RĒS ∝ IX .
Proof: (B) =⇒ (A)

Let us assume that RĒS = pIX for p > 0. There exists a k
dimensional affine subspace L such that Υ ⊂ L and int(Υ) ̸=
∅. Take an arbitrary E0 ∈ Υ. There exist E1, . . . , Ek ∈ Υ
such that convex hull of points E0, . . . , Ek is a k-dimensional
simplex ∆k. For any state |ψ⟩⟨ψ| ∈ D(X ) it holds

p|ψ⟩⟨ψ| = RĒS(|ψ⟩⟨ψ|) =
∫

Υ

RES(|ψ⟩⟨ψ|)µ(dE)

≥
∫

∆k

RES(|ψ⟩⟨ψ|)µ(dE). (133)

Inside ∆k each E can be uniquely represented as∑k
i=0 qi(E)Ei, where (qi(E))k

i=0 is a probability vector which
depends on E . Hence,

p|ψ⟩⟨ψ| ≥
k∑

i=0

∫
∆k

qi(E)REiS(|ψ⟩⟨ψ|)µ(dE)

≥
(∫

∆k

q0(E)µ(dE)
)
RE0S(|ψ⟩⟨ψ|). (134)

There exists ϵ small ball Bϵ around E0, such that for
each channel E ∈ Bϵ ∩ ∆k it holds q0(E) ≥ 1

2 . Hence,∫
∆k

q0(E)µ(dE) ≥ 1
2µ (Bϵ ∩∆k) > 0, where in the last

inequality we used the fact that the support of µ is equal
to Υ. Therefore, it holds that for any |ψ⟩⟨ψ| ∈ D(X ) we
have RE0S(|ψ⟩⟨ψ|) ∝ |ψ⟩⟨ψ| and from Lemma 24 there exists
pE0 ≥ 0 such that RE0S = pE0IX . The instant relation∫
Υ
pEµ(dE) = p > 0 ends the proof. □
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