
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023 3759

The Partial-Inverse Approach to Linearized
Polynomials and Gabidulin Codes With

Applications to Network Coding
Jiun-Hung Yu , Member, IEEE, and Hans-Andrea Loeliger , Fellow, IEEE

Abstract— This paper introduces the partial-inverse prob-
lem for linearized polynomials and develops its application to
decoding Gabidulin codes and lifted Gabidulin codes in linear
random network coding. The proposed approach is a natural
generalization of its counterpart for ordinary polynomials, thus
providing a unified perspective on Reed–Solomon codes for the
Hamming metric and for the rank metric. The basic algorithm
for solving the partial-inverse problem is a common parent algo-
rithm of a Berlekamp–Massey algorithm, a Euclidean algorithm,
and yet another algorithm, all of which are obtained as easy
variations of the basic algorithm. Decoding Gabidulin codes can
be reduced to the partial-inverse problem via a key equation
with a new converse. This paper also develops new algorithms
for interpolating crisscross erasures and for joint decoding of
errors, erasures, and deviations in random network coding.

Index Terms— Gabidulin codes, key equation, partial-
inverse problem, partial-inverse algorithm, Euclidean algorithm,
Berlekamp–Massey algorithm.

I. INTRODUCTION

GABIDULIN codes [2], [3], [4] and related codes [5], [6],
[7], [8], [9], [10] have recently received much atten-

tion due to interesting applications in network coding [11],
[12], [13], [14], [15], [16], [17]. Gabidulin codes also have
applications in cryptography and space-time coding [18], [19],
[20], [21]. Such codes may be viewed as Reed–Solomon
codes [22] over linearized polynomials [23], using the rank
metric [2], [3], [4], [5], [6], [7], [8] instead of the Ham-
ming metric. Moreover, linearized Reed–Solomon codes [9],
[10] with sum-rank metric [24] are natural hybrids between
Reed–Solomon codes and Gabidulin codes, and the sum-rank
metric is a hybrid between Hamming metric and rank metric
[9], [10]. Similar code constructions have also been proposed
with skew polynomials [25], cf., e.g.,[9], [26], [27], and [28];

Manuscript received 29 July 2022; revised 9 November 2022;
accepted 10 January 2023. Date of publication 13 January 2023; date of
current version 19 May 2023. The work of Jiun-Hung Yu was supported
in part by the Ministry of Science and Technology of Taiwan under Grant
MOST111-2218-E-A49-024. An earlier version of this paper was presented in
part at the 2019 IEEE International Symposium on Information Theory [DOI:
10.1109/ISIT.2019.8849588]. (Corresponding author: Jiun-Hung Yu.)

Jiun-Hung Yu is with the Department of Electronics and Electrical Engi-
neering, Institute of Communications Engineering, National Yang Ming Chiao
Tung University, Hsinchu 30010, Taiwan (e-mail: yuji@nycu.edu.tw).

Hans-Andrea Loeliger is with the Department of Information Technology
and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland.

Communicated by A.-L. Horlemann-Trautmann, Associate Editor for Cod-
ing and Decoding.

Digital Object Identifier 10.1109/TIT.2023.3236720

the sum-rank metric is also considered in, e.g., [29], [30], [31],
[32], [33], [34], and [35].

In this paper, we are primarily interested in Gabidulin
codes and lifted Gabidulin codes with the rank metric [2], [3],
[4], [7]. Many of the decoding algorithms for these codes are
inspired by the ones for Reed–Solomon codes. E.g., in the
pioneering work [3], a key equation for Gabidulin codes
is derived, and a right Euclidean algorithm for linearized
polynomials is applied to the key equation; this algorithm
may be seen as a generalization of Sugiyama’s algorithm [36]
from the Hamming metric to the rank metric. In [37], a trans-
formed key equation is formulated, and solved by the Euclid-
ean algorithm; the resulting algorithm is a generalization of
Shiozaki–Gao’s algorithm [38], [39], see also [30]. Similar
equations are also developed in [7] and [8], which can be
solved by the shift-register synthesis algorithm for linearized
polynomials [40], [41], [42], which in turn is a generalization
of the Berlekamp–Massey algorithm [43], [44]. Yet another
well-known algorithm is the polynomial-reconstruction-based
decoding algorithm [45], which can be seen as the rank-metric
analog of Welch–Berlekamp algorithm [46].

All of these decoding algorithms can correct errors up to
half the minimum rank distance, and most of them have
complexity O(n2) (in terms of finite-field operations, as a
function of the block length n).

For completeness, we also mention a body of work on inter-
leaved Gabidulin codes, e.g., [30], [47], [48], [49], and [50].
However, the development of the partial-inverse approach for
interleaved Gabidulin codes is not addressed in the present
paper.

Throughout this prior work, both the Euclidean algo-
rithm and the Berlekamp–Massey algorithm play key roles.
However, for these algorithms, the transition from classical
Reed–Solomon codes (with the Hamming metric) to Gabidulin
codes (with the rank metric) is technically far from trivial since
linearized polynomials form a non-commutative ring.

For classical Reed–Solomon codes (for the Hamming met-
ric), it is well known that the Berlekamp–Massey algo-
rithm [43], [44] and the Euclidean decoding algorithm [36],
[38], [39] are related, and nontrivial translations were given
in [56], [57], [58], and [59]. More recently, the partial-inverse
approach [51], [52] derives (versions of) these two algorithms
as specializations or easy variations of a common parent
algorithm. In addition, the partial-inverse approach offers a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1124-7346
https://orcid.org/0000-0001-7153-7145

3760 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

new interface—the partial-inverse problem—between these
algorithms and their applications to decoding. In this paper,
we develop the generalization of the partial-inverse approach
to linearized polynomials and to the decoding of Gabidulin
codes. We will see that, with the proper setup, much of [51]
and [52] generalizes naturally, but new arguments are nonethe-
less needed at many points.

The paper is structured as follows. In Section II, we estab-
lish notation and summarize the required basics of linearized
polynomials. In Section III, we define the partial-inverse
problem for linearized polynomials, and we propose and prove
the basic partial-inverse algorithm for its solution; the proof
is new and simpler than the proof in [52]. In Section IV,
we specialize the partial-inverse algorithm to (a version of) the
Berlekamp–Massey algorithm, to (a version of) the Euclidean
algorithm, and to yet another algorithm (the quotient-saving
algorithm). In Section V, we recall the evaluation transform
and connect it with the rank weight. In Section VI, we recall
the definition of Gabidulin codes, and propose a key equation
with a new converse. It will then be clear that decoding up to
half the minimum rank distance is a partial-inverse problem.
We also generalize multiply-divide interpolation from [51]
and [52] to Gabidulin codes. In Section VII, in preparation
for Section VIII, we propose new interpolation methods for
different forms of erasures, viz., erased rows, erased columns,
and combinations thereof. In Section VIII, we propose new
methods for joint decoding of errors, erasures, and deviations
in network coding.

Some of the proofs are given in the appendices, which
contain also additional material. In Appendix B, we address
minimal partial inverses and further properties of the partial-
inverse problem. Finally, in Appendix C (using results from
Appendix B), we show that every partial-inverse problem
can be transformed into an equivalent partial-inverse problem
with a monomial modulus, to which the Berlekamp–Massey
algorithm can be applied. The proof involves new arguments
since the proof of the corresponding fact in [52, Theorem 2]
does not seem to generalize to linearized polynomials.

II. NOTATION AND PRELIMINARIES

In this section, we establish notation and give the required
basics of linearized polynomials, cf. [6], [23], [43], and [65].

A. Basics of Linearized Polynomials

Let Fq be a finite field with q elements, let L be a positive
integer, and let FqL be an extension field of Fq . For fixed q
and L, a linearized polynomial is a polynomial of the form

a(x) =
n∑

�=0

a�x
q�

(1)

with a� ∈ FqL , � = 0, 1, . . . , n. The sum of two linearized
polynomials a(x) and b(x) is a linearized polynomial, but the
ordinary product a(x)b(x) is not, in general, a linearized poly-
nomial. Instead, the composition of two linearized polynomials

a(x) ◦ b(x) �= a
(
b(x)

)
(2)

is always a linearized polynomial [23]. Note that, in general,
a(x) ◦ b(x) �= b(x) ◦ a(x).

Indeed, with ordinary addition and with the composition (2)
as “multiplication”, the set of linearized polynomials (for fixed
q and L) forms a non-commutative ring with multiplicative
identity x. Throughout the paper, we denote this ring by F [x]◦.

For nonzero a(x), b(x) ∈ F [x]◦ with deg a(x) = qn and
deg b(x) = qm, the degree of a(x) ◦ b(x) is qn+m. The
q-degree of a(x) with deg a(x) = qn is degq a(x) = n, and
degq a(x) ◦ b(x) = degq a(x) + degq b(x). The leading coef-

ficient of a(x) will be denoted by lcf a(x), and lcf 0 �= 0.
For nonzero polynomials a(x), b(x) ∈ F [x]◦, there exist

unique g(x) and r(x) ∈ F [x]◦ such that a(x) = g(x) ◦
b(x) + r(x) with degq r(x) < degq b(x). We refer to the
division as right division of a(x) by b(x), and we denote
the quotient polynomial g(x) by a(x) rdiv◦ b(x), and the
remainder polynomial r(x) by a(x) rmod◦ b(x). A nonzero
polynomial ∈ F [x]◦ of the largest degree that right divides
both a(x) and b(x) will be denoted by rgcd(a(x), b(x)), which
can be found by the right Euclidean algorithm for linearized
polynomials [23].

Analogously, for any nonzero a(x), b(x) ∈ F [x]◦, there
exist unique g(x), r(x) ∈ F [x]◦ such that a(x) = b(x)◦g(x)+
r(x) with degq r(x) < degq b(x). The quotient polynomials
g(x) will be denoted by a(x) ldiv◦ b(x), and the remainder
r(x) will be denoted by a(x) lmod◦ b(x). A nonzero polyno-
mial ∈ F [x]◦ of the largest degree that left divides both a(x)
and b(x) will be denoted by lgcd(a(x), b(x)).

Following a standard convention, we define the notation
x[�] �= xq�

. The polynomial in (1) can then be written as
a(x) =

∑n
�=0 a�x

[�], and the composition in (2) can be
expressed as a

(
b(x)

)
=

∑
�≥0 c�x

[�] where c� =
∑�

i=0 aib
[i]
�−i.

Finally, we note the following simple fact.
Proposition 1: For fixed nonzero b(x) ∈ F [x]◦, the map-

pings F [x]◦ → F [x]◦

a(x) �→ a(x) ◦ b(x) (3)

and

a(x) �→ a(x) rmod◦ b(x) (4)

are linear over FqL . �

B. Linearized Polynomials and Vector Spaces

Linearized polynomials are intimately connected to vector
spaces. We will often refer to vector spaces of the form (5),
where FqL is an extension field of Fq and S = {β0, . . . , βn−1}
is a subset of FqL . Then the subspace of FqL (over Fq) spanned
by S is the set

span(β0, . . . , βn−1)
�=

⎧⎨
⎩

n−1∑
j=0

αjβj : αj ∈ Fq

⎫⎬
⎭ (5)

of all linear Fq combinations of elements in S. The dimension
of (5) will be denoted by dim span(β0, . . . , βn−1).

Linearized polynomials get their name from the following
basic fact [43].

YU AND LOELIGER: PARTIAL-INVERSE APPROACH TO LINEARIZED POLYNOMIALS AND GABIDULIN CODES 3761

Algorithm 1: Linearized-Polynomial Synthesis
Input: β0, . . . , βn−1 from the extension field FqL of Fq .
Output: nonzero a(x) ∈ F [x]◦ that vanishes on the sub-
space spanned by {β0, . . . , βn−1}.

1 a(x) = x, � := 0
2 while � < n begin
3 Δ := a(β�)
4 if Δ �= 0 begin
5 a(x) := a(x)q − Δq−1a(x)
6 end
7 � := �+ 1
8 end

Proposition 2 (Linearity): Let β0, . . . , βn−1 be nonzero
elements of FqL over Fq . Then for any a(x) =

∑n
i=0 aix

[i]

in F [x]◦, it holds that a(β) =
∑

j≥0 αja(βj) for any β =∑
j≥0 αjβj with αj ∈ Fq . �
In consequence, we have
Proposition 3: Let β0, . . . , βn−1 be nonzero elements of

FqL over Fq . Then a(x) ∈ F [x]◦ vanishes on β0, . . . , βn−1

if and only if a(x) vanishes on the subspace of FqL over Fq

spanned by {β0, . . . , βn−1}. �
A polynomial that vanishes on a given subspace can be

computed by Algorithm 1 (see box):
Proposition 4: Algorithm 1 returns a nonzero polynomial

a(x) ∈ F [x]◦ that vanishes on span(β0, . . . , βn−1) with
degq a(x) = dim span(β0, . . . , βn−1). �

Corollary 1: Algorithm 1 returns a nonzero polynomial of
the smallest degree that vanishes on span(β0, . . . , βn−1). �

Conversely, we have (cf. [65])
Corollary 2: Let U be any subspace of FqL over Fq . The

polynomial a(x) �=
∏

β∈U (x − β) is a linearized polynomial
in F [x]◦. Moreover, any nonzero polynomial b(x) ∈ F [x]◦
that vanishes on U satisfies degq b(x) ≥ dimU . �

Finally, we note
Proposition 5 (Null Space Factors): Let β0, . . . , βn−1 be

nonzero elements of FqL and let a(x) ∈ F [x]◦ be a nonzero
linearized polynomial of the smallest degree that vanishes on
β0, . . . , βn−1. Then, b(x) ∈ F [x]◦ vanishes on β0, . . . , βn−1

if and only if b(x) = g(x) ◦ a(x) for some g(x) ∈ F [x]◦. �

III. THE PARTIAL-INVERSE PROBLEM

AND THE BASIC ALGORITHM

Let F [x]◦ denote the ring of linearized polynomials over
the extension field FqL of Fq as in Section II.

A. The Problem

The pivotal concept of this paper is the following problem,
which is the obvious generalization of the partial-inverse
problem of [52] to linearized polynomials.

Partial-Inverse Problem in F[x]◦/m(x): Let b(x) and
m(x) be nonzero linearized polynomials in F [x]◦ with
degq b(x) < degq m(x). For given d ∈ Z with 0 ≤ d ≤
degq m(x), find a nonzero Λ(x) ∈ F [x]◦ of the smallest

degree such that

degq

((
Λ(x) ◦ b(x)) rmod◦m(x)

)
< d. (6)

�
Theorem 1 (Uniqueness and Degree Bound): The partial-

inverse problem for linearized polynomials has a unique solu-
tion (for every d ≥ 0), up to a scale factor in FqL . Moreover,
the solution Λ(x) satisfies

degq Λ(x) ≤ degq m(x) − d. (7)

�
The theorem can be proved by using the argument in [52],

which turns out to apply essentially unchanged to the setting of
this paper. For completeness, the proof is given in Appendix A.

Proposition 6 (Reduced Partial-Inverse Problem): Coeffic-
ients b� of b(x) with � < 2d − degq m(x) and coefficients
m� of m(x) with � ≤ 2d − degq m(x) are irrelevant.

In consequence, let s
�= 2d − degq m(x) > 0 and define

the linearized polynomials b̃(x) and m̃(x) with b̃�
�= b�+s

and m̃�
�= m�+s for � ≥ 0; then the modified partial-inverse

problem with b(x), m(x), and d replaced by b̃(x), m̃(x), and
d̃

�= d − s, respectively, has the same solution Λ(x) as the
original partial-inverse problem. �

The proposition can be proved by (7) and the argument in
[52, Propositions 6 and 7].

B. The Basic Partial-Inverse Algorithm

The partial-inverse problem is solved by the basic algorithm
stated as Algorithm 2 (in the framed box). Lines 7 and 8 of
this algorithm are explained by the following lemma.

Lemma 1 (Remainder Decreasing Lemma): Let m(x) be a
linearized polynomial in F [x]◦ with degq m(x) ≥ 1. For
further polynomials b(x),Λ′(x),Λ′′(x) ∈ F [x]◦, let

r′(x) �=
(
Λ′(x) ◦ b(x)) rmod◦m(x), (8)

r′′(x) �=
(
Λ′′(x) ◦ b(x)) rmod◦m(x), (9)

d1
�= degq r

′(x), κ1
�= lcf r′(x), d2

�= degq r
′′(x), κ2

�=
lcf r′′(x), and assume d1 ≥ d2 ≥ 0. Then

Λ(x) �= κ
[d1−d2]
2 Λ′(x) − κ1x

[d1−d2] ◦ Λ′′(x) (10)

satisfies degq

((
Λ(x) ◦ b(x)) rmod◦m(x)

)
< d1. �

Proof: From (10), we obtain

r(x) �=
(
Λ(x) ◦ b(x)) rmod◦m(x) (11)

= κ
[d1−d2]
2 r′(x) − κ1x

[d1−d2] ◦ r′′(x). (12)

From (12), we have degq r(x) < degq r
′(x) = d1. �

In consequence, the value of d1 is reduced in every execu-
tion of line 8. Note that lines 8 and 12 do not require the com-
putation of the entire polynomial Λ′(x) ◦ b(x) rmod◦m(x).
In particular, lines 8–12 can be replaced by Algorithm 2.A
(see box).

3762 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

Algorithm 2: Basic Partial-Inverse Algorithm
Input: b(x), m(x), and d as in the problem statement.
Output: Λ(x) as in the problem statement.

1 if degq b(x) < d begin
2 return Λ(x) := x
3 end
4 Λ′(x) := 0, d1 := degq m(x), κ1 := lcf m(x)
5 Λ′′(x) := x, d2 := degq b(x), κ2 := lcf b(x)
6 loop begin
7 Λ′(x) := κ

[d1−d2]
2 Λ′(x) − κ1x

[d1−d2] ◦ Λ′′(x)

8 d1 := degq(Λ′(x) ◦ b(x) rmod◦m(x))
9 if d1 < d begin

10 return Λ(x) := Λ′(x)
11 end
12 κ1 := lcf

(
Λ′(x) ◦ b(x) rmod◦m(x)

)

13 if d1 < d2 begin
14 (Λ′(x),Λ′′(x)) := (Λ′′(x),Λ′(x))
15 (d1, d2) := (d2, d1)
16 (κ1, κ2) := (κ2, κ1)
17 end
18 end

See also the refinements (Algorithms 2.A) below.

Algorithm 2.A: Lines 8–12 of Algorithm 2 can be
implemented as follows:

21 repeat
22 d1 := d1 − 1
23 if d1 < d begin
24 return Λ(x) := Λ′(x)
25 end
26 κ1 := coefficient of x[d1] in(

Λ′(x) ◦ b(x)) rmod◦m(x)
27 until κ1 �= 0

C. Preparations for the Proof

In preparation for the proof of the algorithm, we restate
Algorithm 2 with added assertions as Algorithm 3 (see box),
cf. [52]. Note that throughout the algorithm (except at the very
beginning, before the first execution of lines 9 and 13), d1, d2,
κ1, and κ2 are defined as in Lemma 1, i.e., d1 = degq r

′(x),
κ1 = lcf r′(x), d2 = degq r

′′(x), and κ2 = lcf r′′(x) for r′(x)
and r′′(x) as in (8) and (9).

Assertions (A.1)–(A.3) are easily seen to be true, both from
the initialization, and from (A.5) and (A.6).

As for (A.4), after the very first execution of line 8, we still
have d1 = degq m(x) (from line 4), which makes (A.4)
obvious. For all later executions of line 8, (A.4) follows from
Lemma 1.

As for (A.5) and (A.6), we note that line 8 changes the
degree of Λ′(x) as follows:

Algorithm 3: Partial-Inverse Algorithm Restated

1 if degq b(x) < d begin
2 return Λ(x) := x
3 end
4 Λ′(x) := 0, d1 := degq m(x), κ1 := lcfm(x)
5 Λ′′(x) := x, d2 := degq b(x), κ2 := lcf b(x)

Extra:
k := 0 (E.1)

6 loop begin
Assertions:
d1 > d2 ≥ d (A.1)
degq Λ′′(x) = degq m(x) − d1 (A.2)

> degq Λ′(x) (A.3)
Extra:
k := k+1,Δk

�= d1−d2, Λk(x) �= Λ′′(x) (E.2)

7 repeat
8 Λ′(x) := κ

[d1−d2]
2 Λ′(x) − κ1x

[d1−d2] ◦ Λ′′(x)
Assertions:
degq(Λ′(x) ◦ b(x) rmod◦m(x)) < d1

(A.4)
degq Λ′(x) = degq m(x) − d2 (A.5)

> degq Λ′′(x) (A.6)

9 d1 := degq(Λ
′(x) ◦ b(x) rmod◦m(x))

10 if d1 < d begin
11 return Λ(x) := Λ′(x)
12 end
13 κ1 := lcf

(
Λ′(x) ◦ b(x) rmod◦m(x)

)
14 until d1 < d2

15 (Λ′(x),Λ′′(x)) := (Λ′′(x),Λ′(x))
16 (d1, d2) := (d2, d1)
17 (κ1, κ2) := (κ2, κ1)
18 end

• Upon entering the repeat loop, line 8 increases the degree
of Λ′(x) to

degq Λ′′(x) + d1 − d2 = degq m(x) − d2 (13)

> degq Λ′′(x), (14)

which follows from (A.1)–(A.3).
• Subsequent executions of line 8 without leaving the

repeat loop (i.e., without executing lines 15–17) do not
change the degree of Λ′(x).

(A.1) and (A.5) together imply that Λ(x) returned by the
algorithm satisfies (7).

The following lemma refers to Δk and Λk(x) as defined
in (E.2), as well as to

rk(x) �= (Λk(x) ◦ b(x)) rmod◦m(x) (15)

and r0(x)
�= m(x).

Lemma 2 (Degree Difference Lemma): Let Δ1, . . . ,ΔK

and Λ1(x), . . . ,ΛK(x) be the values of Δk and Λk(x),
respectively, throughout the algorithm (i.e., K is the last
value of k in (E.2)). Let ΛK+1(x) be the polynomial Λ(x)

YU AND LOELIGER: PARTIAL-INVERSE APPROACH TO LINEARIZED POLYNOMIALS AND GABIDULIN CODES 3763

returned by the algorithm. Then

Δk = degq rk−1(x) − degq rk(x) (16)

= degq Λk+1(x) − degq Λk(x) (17)

> 0 (18)

for k = 1, . . . ,K . �
Proof: Eq. (16) is obvious from the initialization

(lines 4 and 5) and from line 9 of the algorithm. The point
of the lemma is (17), which follows from the initialization
and (13). Finally, (18) is immediate from (A.1). �

D. Completing the Proof of the Algorithm

It is clear at this point that the algorithm returns a polyno-
mial Λ(x) that satisfies (6). It remains to prove that Λ(x) has
the smallest possible degree.

Let Δk and Λk(x) be defined as in Lemma 2. Any nonzero
Λ̃(x) ∈ F [x]◦ with degq Λ̃(x) < degq Λ(x) can be written as

Λ̃(x) =
K∑

k=1

qk(x) ◦ Λk(x) (19)

with

degq qk(x) < degq Λk+1(x) − degq Λk(x) (20)

= Δk. (21)

Consider

r̃(x) �=
(
Λ̃(x) ◦ b(x)) rmod◦m(x) (22)

=
K∑

k=1

(
qk(x) ◦ rk(x)

)
rmod◦m(x). (23)

From (21) and (16), we have

degq qk(x) + degq rk(x) < degq rk−1(x) (24)

for k = 1, . . . ,K . As a first consequence, (23) becomes

r̃(x) =
K∑

k=1

qk(x) ◦ rk(x). (25)

From (25) and (24), we further obtain

degq r̃(x) ≥ degq r�(x), (26)

where � is the smallest index k ∈ {1, . . . ,K} such that
qk(x) �= 0. But degq rk(x) ≥ d for all k ∈ {1, . . . ,K}; thus
degq r̃(x) ≥ d, which concludes the proof.

E. Remarks

The proof in Section III-D is new and simpler than the proof
in [52]. This new proof also works for the setting of [52].

Variations of the basic partial-inverse algorithm and a
discussion of their complexity will be given in Section IV.
Concerning the latter, let Nit be the number of executions of
line 26 in Algorithm 2. This quantity is bounded by

Nit ≤ degq m(x) − d+ degq Λ(x), (27)

≤ 2(degq m(x)−d). (28)

Algorithm 4: Reverse Berlekamp–Massey Algorithm
In two important special cases, the computation of line 26
in Algorithm 2.A simplifies as follows.
In the special case where m(x) = x[ν], line 26 amounts to

31 κ1 := Λ′
0b

[0]
d1

+ Λ′
1b

[1]
d1−1 + . . .+ Λ′

τb
[τ]
d1−τ

with τ
�= degq Λ′(x) and where b�

�= 0 for � < 0.
In another special case where m(x) = x[n] − x[0], line 26
becomes

51 κ1 := Λ′
0b

[0]
d1

+ Λ′
1b

[1]
[d1−1] + . . .+ Λ′

τb
[τ]
[d1−τ]

with b[�]
�= b� mod n.

The bound (27) can be proved as in [52], and (28) follows
from (7). The weaker bound (28) can also be proved directly
by noting that, in every iteration, the larger of the remainder
degrees is reduced by at least 1.

Additional properties of the partial-inverse problem are
discussed in Appendix B.

IV. REALIZATIONS OF THE PARTIAL-INVERSE

ALGORITHM

The basic partial-inverse algorithm of the previous section
can be implemented or specialized in different ways, including
(a version of) the Berlekamp–Massey algorithm and (a version
of) the Euclidean algorithm. The generalization of the corre-
sponding algorithms from [52] turns out to be rather obvious.

A. The (Reverse) Berlekamp–Massey Algorithm

In the special cases m(x) = x[ν] and m(x) = x[n] − x[0],
line 26 of Algorithm 2.A can be computed as in Algorithm 4,
which looks very much like, and is as efficient as, the
generalized Berlekamp–Massey algorithm [40], [41], [42].

Following [52], we refer to this algorithm as the reverse
Berlekamp–Massey algorithm because, in applications to
decoding, it processes the syndrome in the reverse order of
the Berlekamp–Massey algorithm.

As stated, the (reverse) Berlekamp–Massey algorithm
applies only to the case m(x) = x[ν] or m(x) = x[n] − x[0].
It is therefore noteworthy that a partial-inverse problem with
general m(x) can always be transformed into an equivalent
partial-inverse problem with m(x) = x[2τ], as shown in
Appendix C.

From (28) and line 31, the complexity of this algorithm is
easily seen to be O(

(ν − d)2
)

with ν
�= degq m(x).

B. The Remainder-Saving Algorithm (= Euclidean
Algorithm)

A variation or implementation of Algorithm 2 for general
m(x) is Algorithm 5 (see box), where we store and update the
remainders r′(x) and r′′(x) in (8) and (9). In consequence, the
computation of line 26 (in Algorithm 2.A) is unnecessary. All
other quantities in the algorithm remain unchanged.

Algorithm 5 may be viewed as a version of the (right)
Euclidean algorithm (for linearized polynomials). The latter

3764 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

Algorithm 5: Remainder Saving Partial-Inverse Algo-
rithm (Linearized Euclidean Algorithm)

1 if degq b(x) < d begin
2 return Λ(x) := x
3 end
4 Λ′(x) := 0, d1 := degq m(x), κ1 := lcf m(x)
5 Λ′′(x) := x, d2 := degq b(x), κ2 := lcf b(x)
6 r′(x) := m(x), r′′(x) := b(x)
7 loop begin
8 Λ′(x) := κ

[d1−d2]
2 Λ′(x) − κ1x

[d1−d2] ◦ Λ′′(x)
9 r′(x) := κ

[d1−d2]
2 r′(x) − κ1x

[d1−d2] ◦ r′′(x)

10 d1 := degq r
′(x)

11 if d1 < d begin
12 return Λ(x) := Λ′(x)
13 end
14 κ1 := lcf r′(x)

15 if d1 < d2 begin
16 (Λ′(x),Λ′′(x)) := (Λ′′(x),Λ′(x))
17 (r′(x), r′′(x)) := (r′′(x), r′(x))
18 (d1, d2) := (d2, d1)
19 (κ1, κ2) := (κ2, κ1)
20 end
21 end

is well known in the literature for both ordinary polynomials
and linearized polynomials, see, e.g., [3], [30], [36], [37], [38],
[39], [52], and [66]. In other words, the well-known Euclidean
algorithm actually solves the partial-inverse problem.

From (28) and line 9, the complexity of this algorithm
is easily seen to be O(ν(ν − d)) with ν

�= degq m(x).
(The computation in line 9 may be reduced by assuming a
reduced partial-inverse problem according to Proposition 6.)
Asymptotically faster versions of the Euclidean algorithm have
been proposed in the literature.

C. The Quotient-Saving Algorithm

By storing and updating also the quotients q′(x) and q′′(x)
defined by

Λ′(x) ◦ b(x) = q′(x) ◦m(x) + r′(x) (29)

Λ′′(x) ◦ b(x) = q′′(x) ◦m(x) + r′′(x) (30)

with r′(x) and r′′(x) as in (8) and (9), the coefficient of x[d1]

of r′(x) (line 26 in Algorithm 2.A) can then be computed as

κ1 :=
τ∑

�=0

Λ′
�b

[�]
d1−� −

ν∑
�=0

q′�m
[�]
d1−� (31)

with τ
�= degq Λ′(x) and ν

�= degq q
′(x), and where both

b�
�= 0 and m�

�= 0 for � < 0. All other quantities in
the algorithm remain unchanged. We then obtain Algorithm 6
(see box), which is a new algorithm of the Berlekamp–Massey
type and achieves a generalization of Algorithm 4 to

Algorithm 6: Quotient Saving Partial-Inverse Algorithm

1 if degq b(x) < d begin
2 return Λ(x) := x
3 end
4 Λ′(x) := 0, d1 := degq m(x), κ1 := lcf m(x)
5 Λ′′(x) := x, d2 := degq b(x), κ2 := lcf b(x)
6 q′(x) := −x, q′′(x) := 0
7 loop begin
8 Λ′(x) := κ

[d1−d2]
2 Λ′(x) − κ1x

[d1−d2] ◦ Λ′′(x)
9 q′(x) := κ

[d1−d2]
2 q′(x) − κ1x

[d1−d2] ◦ q′′(x)

10 repeat
11 d1 := d1 − 1
12 if d1 < d begin
13 return Λ(x) := Λ′(x)
14 end
15 κ1 :=

∑τ
�=0 Λ′

�b
[�]
d1−� −

∑ν
�=0 q

′
�m

[�]
d1−�

16 until κ1 �= 0

17 if d1 < d2 begin
18 (Λ′(x),Λ′′(x)) := (Λ′′(x),Λ′(x))
19 (q′(x), q′′(x)) := (q′′(x), q′(x))
20 (d1, d2) := (d2, d1)
21 (κ1, κ2) := (κ2, κ1)
22 end
23 end

general m(x). The complexity of Algorithm 6 is O(
(ν − d)2

)
with ν

�= degq m(x).

V. PRELIMINARIES FOR GABIDULIN CODES

In this section, we briefly review the rank metric and
the evaluation transform, cf. [2], [3], [4], [5], [8], and
[30]. We conclude with Proposition 7, which appears to
be new.

A. Rank Metric

Let FqL be an extension field of Fq . The notion of rank as
a metric for codes was introduced in [2], [3], and [4]. In this
paper, the rank distance between vectors in (FqL)n will be
defined as follows. For a vector a = (a0, . . . , an−1) ∈ (FqL)n,
let span(a) be the subspace of FqL (over Fq) spanned by
{a0, . . . , an−1} as in (5). The rank weight of a ∈ (FqL)n is
then defined as wR(a) �= dim span(a), i.e., the dimension
of span(a). Note that wR(a) �= 0 if and only if a = 0;
wR(a−b) = wR(b−a) for any a, b ∈ (FqL)n, and wR(a−b) ≤
wR(a) + wR(b). Clearly, wR(·) is a metric for vectors in
(FqL)n. The rank distance between any a, b ∈ (FqL)n can
thus be defined as dR(a, b) �= wR(a− b).

B. Evaluation Transform

We will define Gabidulin codes via the following theorem,
cf. [5], [8], and [30].

YU AND LOELIGER: PARTIAL-INVERSE APPROACH TO LINEARIZED POLYNOMIALS AND GABIDULIN CODES 3765

Theorem 2 (Linearized Evaluation Transform): Let β0, . . . ,
βn−1 be linearly independent elements of FqL over Fq , and let
V be the set of linearized polynomials in F [x]◦ with q-degree
less than n. Then, the mapping

ψ : V → (FqL)n : a(x) �→ (
a(β0), . . . , a(βn−1)

)
(32)

is a linear transform over FqL , i.e., ψ is linear over Fq ,
injective and surjective. The inverse mapping is

ψ−1 :
(
c0, . . . , cn−1

) �→ a(x) =
n−1∑
�=0

c� · m̃�(x) (33)

with coefficients m̃�(x)
�=

(
m�(β�)

)−1
m�(x) where m�(x) is

a monic linearized polynomial ∈ F [x]◦ of the smallest degree
that vanishes on {β0, . . . , βn−1} \ {β�}. �

The inverse mapping (33) can be seen as a generalized
Lagarange interpolation, cf., e.g., [5] and [30]. In the special
case where n = L and B is a normal basis, the transform
reduces to the q-transform of [8].

C. Complementary Rank Weight Property

Let ψ be defined as in (32).
Proposition 7: Let β0, . . . , βn−1 be linearly independent

elements of FqL over Fq , and let U
�= span(β0, . . . , βn−1).

For any a = (a0, . . . , an−1) ∈ (FqL)n with rank weight
wR(a), the polynomial A(x) �= ψ−1(a) with ψ as in (32)
vanishes on some subspace M ⊂ U with dimM = n−wR(a).

�
Proof: Let W

�= span(a0, . . . , an−1) ⊂ FqL . Note that
dimU = n ≥ dimW = wR(a). We then define the mapping
Φ : U → W : β �→ A(β). Clearly, the mapping Φ is linear
over Fq , cf. Proposition 2; in addition, it is surjective since
a� = A(β�) for every �. Therefore, the dimension of the kernel
of Φ is dim kerΦ = dimU − dimW . �

VI. DECODING GABIDULIN CODES

We now develop the partial-inverse approach to Gabidulin
codes. The generalization of the corresponding material of [52]
to linearized polynomials turns out to be straightforward.
However, Proposition 10 and the converse part of Theorem 3
appear to be new results for Gabidulin codes.

A. Gabidulin Codes

Let FqL be an extension field of Fq , and let β0, . . . , βn−1

be linearly independent elements of FqL over Fq . An (n, k)
Gabidulin code C (with blocklength n ≤ L and dimension k)
can be defined via (32) as the set

{c = (c0, . . . , cn−1) ∈ (FqL)n : degq ψ
−1(c) < k}. (34)

It is well known that Gabidulin codes are maximum distance
separable codes in the rank metric [2], [3], [4]. In terms of rank
weight defined in Section V-A, the minimum rank distance
of C in (34) can be defined as dR(C) �= min{wR(c − c′) :
c, c′ ∈ C, c �= c′}, which satisfies

dR(C) = n− k + 1. (35)

Equation (35) is proved in [3] and [30]; another (simple) proof
is given in Appendix D.

B. Error-Span Polynomial and Interpolation

The problem of decoding Gabidulin codes can be described
as follows. Let y = (y0, . . . , yn−1) be a received word, which
we wish to decompose into y = c + e where c ∈ C is a
codeword and e = (e0, . . . , en−1) ∈ (FqL)n is the error with
rank weight wR(e) as small as possible.

Let C(x) �= ψ−1(c), E(x) �= ψ−1(e), and Y (x) �= ψ−1(y)
with ψ as in (32). We then have

Y (x) = C(x) + E(x) (36)

with degq C(x) < k and degq E(x) < n. The task of decoding
is to recover C(x) from Y (x). Toward this end, we wish to
find an error-span polynomial:1

Definition 1 (Error-Span Polynomial): For any vector e =
(e0, . . . , en−1) ∈ (FqL)n, an error-span polynomial Λe(x)
is a nonzero polynomial ∈ F [x]◦ of the smallest degree
that vanishes on the subspace of FqL (over Fq) spanned by
e0, . . . , en−1. �

Proposition 8: The error-span polynomial Λe(x) is
unique up to a scale factor ∈ FqL , and it satisfies
degq Λe(x) = wR(e). �

The proof is immediate from Corollary 2.
Now, let m(x) ∈ F [x]◦ be a nonzero polynomial of the

smallest degree such that m(β�) = 0 for � = 0, . . . , n − 1.
Note that degq m(x) = n by Proposition 3 and Corollary 2.

Proposition 9 (Error-Locator Equation): The error-span
polynomial Λe(x) satisfies Λe(x) ◦ E(x) = A(x) ◦m(x) for
some A(x) ∈ F [x]◦ of degq A(x) < degq Λe(x). Conversely,
if some nonzero Λ(x) ∈ F [x]◦ satisfies

Λ(x) ◦ E(x) = A(x) ◦m(x) (37)

for some A(x) ∈ F [x]◦, then Λ(x) = g(x) ◦ Λe(x) for some
nonzero g(x) ∈ F [x]◦. �

Proof: Note that Λe

(
E(β�)

)
= 0 for all � ∈ {0, . . . , n−1}.

Therefore, Λe(x)◦E(x) vanishes on {β0, . . . , βn−1}. The first
claim then follows from Proposition 5. As for the converse,
(37) implies that Λ

(
E(β�)

)
= 0 for all � ∈ {0, . . . , n−1}; thus

Λ(x) vanishes on {e0, . . . , en−1}. By Proposition 5, we obtain
Λ(x) = g(x) ◦ Λe(x) for some g(x) ∈ F [x]◦. �

Proposition 10 (Multiply-Divide Interpolation): If Λ(x) =
g(x)◦Λe(x) for some nonzero g(x) ∈ F [x]◦ with degq Λ(x) ≤
n− k, then

C(x) = r(x) ldiv◦ Λ(x) (38)

where

r(x) =
(
Λ(x) ◦ Y (x)

)
rmod◦m(x). (39)

�
Proof: If Λ(x) has the stated properties, then

Λ(x) ◦ Y (x) rmod◦m(x)
= Λ(x) ◦ C(x) rmod◦m(x)+Λ(x) ◦ E(x) rmod◦m(x)
= Λ(x) ◦ C(x), (40)

where the last step follows from Proposition 9. �
1The idea of a key equation with an error span polynomial dates back to [3].

The term “error span polynomial” was introduced in [4].

3766 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

In the special case wherem(x) = x[n]−x[0], computing (39)
amounts to a kind of cyclic convolution as in line 51 of
Algorithm 4.

C. A Key Equation

Following [52, Theorem 6], we have the following theorem,
the converse part of which is new (for linearized polynomials):

Theorem 3 (A Key Equation): If wR(e) ≤ n−k
2 , then the

error-span polynomial Λe(x) satisfies

degq

(
Λe(x) ◦ Y (x) rmod◦m(x)

)
< k + degq Λe(x) (41)

≤ n− (n− k)/2. (42)

Conversely, for any y and e ∈ (FqL)n and t ∈ R with

wR(e) ≤ t ≤ (n− k)/2, (43)

if some nonzero Λ(x) ∈ F [x]◦ with degq Λ(x) ≤ t satisfies

degq

(
Λ(x) ◦ Y (x) rmod◦m(x)

)
< n− t, (44)

then Λ(x) = g(x) ◦ Λe(x) for some g(x) ∈ F [x]◦. �
Corollary 3: If wR(e) ≤ n−k

2 , then Λe(x) is the nonzero
linearized polynomial of the smallest degree (unique up to a
scale factor) that satisfies

degq

(
Λ(x) ◦ Y (x) rmod◦m(x)

)
<
n+ k

2
(45)

�
Note that Λe(x) from (45) is a partial-inverse problem.

Theorem 3 can be proved by using a similar idea as in [52].
However, the proof of the converse requires Proposition 7.

Proof of Theorem 3: (41) is clear from (40) with Λ(x) =
Λe(x); (42) follows from degq Λe(x) = wR(e).

As for the converse, assume (43), (44), and degq Λ(x) ≤ t.
Consider

Λ(x) ◦ Y (x) rmod◦m(x)
= Λ(x) ◦ C(x) + Λ(x) ◦ E(x) rmod◦m(x). (46)

�
Under the stated assumptions, the q-degree of the left-hand
side of (46) is smaller than n− t, and degq

(
Λ(x) ◦ C(x)

)
<

n−t. Thus degq

(
Λ(x)◦E(x) rmod◦m(x)

)
< n−t. Now, let

r(x) �= Λ(x) ◦ E(x) rmod◦m(x), and write r(x) = Λ(x) ◦
E(x)−g(x)◦m(x) for some g(x) ∈ F [x]◦. By Proposition 7,
E(x) vanishes on some subspace M ⊂ span{β0, . . . , βn−1}
with dimM = n − wR(e) ≥ n − t. It follows that r(x) also
vanishes on M and thus degq r(x) ≥ n− t if r(x) �= 0. But
degq r(x) < n − t. Therefore r(x) = 0, i.e., Λ(x) ◦ E(x) =
g(x) ◦m(x). Proposition 9 concludes the proof. �

D. Decoding Algorithms

Determining Λe(x) from (45) is a partial-inverse problem.
We thus arrive at the following decoding procedure:

1) Compute Y (x) = ψ−1(y).
2) Solve the key equation (45) by any of the algorithms in

Section IV.

(If wR(e) ≤ n−k
2 , the polynomial Λ(x) returned by the

algorithm equals Λe(x), up to a scale factor.)
3) Complete decoding by Proposition 10.

For example, if m(x) = x[n] − x[0], Algorithm 4 can be
applied to (45). In this case, computing (39) amounts to the
“cyclic convolution” r� =

∑τ
i=0 ΛiY

[i]
[�−i] with τ

�= degq Λ(x).
Theorem 3 is versatile; along with Proposition 10, it can

also be used to prove the correctness of the Shiozaki–Gao
decoder [30], [37].

We also note that in solving (45), the number of itera-
tions Nit in Algorithm 2 is upper bounded by (n − k)/2 +
wR(e), cf. (27). By contrast, the (standard, not the reverse)
Berlekamp–Massey algorithm requires n−k iterations, which
is typically larger.

Finally, we note that the division in (38) might have a
nonzero remainder (if not all assumptions are satisfied). This
condition should be checked; if it is violated, an uncorrectable
error should be announced.

VII. INTERPOLATION

In this section, we consider erasure decoding and develop
new interpolation methods for different types of erasures. (The
results of this section are independent of the partial-inverse
approach.)

Below, an element in FqL will be viewed as a column vector
of length L over Fq , and a vector a = (a0, . . . , an−1) in
(FqL)n is viewed as a L× n matrix over Fq .

1) Interpolation of Row Erasures: Consider a received word
y = c + e ∈ (FqL)n, where c is a codeword ∈ C as in
Section VI-A. The error e ∈ (FqL)n is called a row(s) erasure
if e corrupts only some rows of c ∈ (FqL)n (viewed as a
matrix over Fq) and the receiver knows the indices of the
rows that are corrupted. In this case, C(x) = ψ−1(c) in (36)
can be recovered as follows.

Let Zr ⊂ {1, . . . , L} be a set consisting of (known) indices
of the corrupted rows, and let δi ∈ FqL (viewed as a column
vector) be the transpose of (0, . . . , 0, 1, 0, . . . , 0) where 1 ∈ Fq

sits at position i. Then, we define ar ∈ (FqL)|Zr| such that
the components of ar are the vectors δi, i ∈ Zr. For example,
if Zr = {2, 5}, then ar

�= (δ2, δ5).
Definition 2 (Row-Span Polynomial): For given ar ∈

(FqL)|Zr|, a row-span polynomial Λr(x) is nonzero polyno-
mial in F [x]◦ of the smallest degree that vanishes on the
subspace spanned by the components of ar. �

Lemma 3: For any rows-erasure e with erasure index set
Zr, it holds that span(e) ⊆ span(ar) and Λr(x) = g(x) ◦
Λe(x) for some nonzero g(x) ∈ F [x]◦. �

Proof: For each ei of e = (e0, . . . , en−1) ∈ (FqL)n, we
have ei ∈ span(ar), and thus span(e) ⊆ span(ar). The
second claim then follows from Proposition 5. �

The polynomial Λr(x) in Lemma 3 can be computed by
Algorithm 1. Note that degq Λr(x) = |Zr|.

Proposition 11: If |Zr| ≤ n− k, then C(x) can be recov-
ered from (38) with Λ(x) = Λr(x). �

The proof is immediate from Lemma 3 and Proposition 10.

YU AND LOELIGER: PARTIAL-INVERSE APPROACH TO LINEARIZED POLYNOMIALS AND GABIDULIN CODES 3767

2) Interpolation of Column Erasures: Let Zc be a subset of
{0, 1, . . . , n−1}. Assume that the error e = (e0, . . . , en−1) ∈
(FqL)n in y = c + e satisfies e� = 0 ∈ FqL for � /∈ Zc and
with arbitrary (not necessarily nonzero) e� for � ∈ Zc. Assume
that Zc is known by the decoder. In this case, the polynomial
C(x) = ψ−1(c) in (36) can be recovered by Proposition 12.

Proposition 12: Let S
�= {0, . . . , n − 1} \ Zc, and let

mS(x) be a nonzero polynomial of the smallest degree that
vanishes on β� for all � ∈ S. If |Zc| ≤ n − k, then C(x) =
Y (x) rmod◦mS(x). �

Proof: Since E(x) �= ψ−1(e) ∈ F [x]◦ satisfies E(β�) = 0
for all � ∈ S, we have E(x) = g(x)◦mS(x) for some g(x) ∈
F [x]◦ by Proposition 5. Note that degq mS(x) = n − |Zc|.
If |Zc| ≤ n− k, then degq C(x) < degq mS(x) and therefore(
C(x) + E(x)

)
rmod◦mS(x) = C(x). �

3) Interpolation of Crisscross Erasures: For given received
word y = c+ e in (FqL)n, suppose that e = r + z ∈ (FqL)n

where r is a rows erasure and z is a columns erasure. For
rows-erasure r, we assume that the set of erasure positions
Zr ⊂ {1, . . . , L} as in Section VII-1 (or ar ∈ (FqL)|Zr | as in
Lemma 3) is known by the decoder. For columns-erasure z,
we assume that the set of column positions Zc ⊂ {0, . . . , n−
1} is known by the decoder: for � ∈ Zc, the symbol y� is
useless and can be ignored; for � �∈ Zc, z�

�= 0 and y� =
c� + r�.

In this case, the polynomial C(x) = ψ−1(c) in (36) can be
recovered by the following proposition.

Proposition 13: Let Λr(x) be a nonzero polynomial of the
smallest degree that vanishes on span(ar), and let mS(x) be
a nonzero polynomial of the smallest degree that vanishes on
β� for all � ∈ {0, . . . , n−1}\Zc. If |Zr|+ |Zc| ≤ n−k, then

C(x) = P (x) ldiv◦ Λr(x) (47)

where P (x) �=
(
Λr(x) ◦ Y (x)

)
rmod◦mS(x). �

Proof: We write Y (x) = C(x)+R(x)+Z(x) with R(x) =
ψ−1(r) and Z(x) = ψ−1(z), and obtain

Λr(x) ◦ Y (x) = Λr(x) ◦
(
C(x) +R(x) + Z(x)

)
. (48)

Note that Λr(x)◦R(x) = A(x)◦m(x) holds for some nonzero
A(x) ∈ F [x]◦ because Λr(R(β�)) = 0 for � = 0, . . . , n − 1.
On the other hand, we have Z(x) = g(x) ◦mS(x) for some
g(x) because Z(β�) = z� = 0 for � /∈ Zc. Thus, mS(x) right
divides both Z(x) and Λr(x)◦R(x). Note that degq mS(x) =
n−|Zc|. If |Zr|+ |Zc| ≤ n−k, then k+ |Zr| ≤ degq mS(x).
Clearly, P (x) = Λr(x) ◦ C(x). �

If Zc is empty, Proposition 13 reduces to Proposition 11;
if r = 0, Λr(x)

�= x and Proposition 13 reduces to
Proposition 12. Note that both Propositions 11 and 12 are
generalizations of [52, Propositions 8 and 9], see also [53],
[54], [55], [67], and [68].

VIII. JOINT DECODING OF ERRORS,
DEVIATIONS, AND ERASURES

In this section, we address the problem of simultaneously
correcting errors, deviations, and erasures, which appears in
random network coding [7]. Joint decoding of errors and
crisscrosses erasures is included as a special case.

A. Channel Model: Errors, Deviations, and Erasures

Let β0, . . . , βn−1 be linearly independent elements of FqL

over Fq , and let m(x) ∈ F [x]◦ be a nonzero polynomial of
the smallest degree that vanishes on β0, . . . , βn−1. Moreover,
let C be an (n, k) Gabidulin code as in Section VI-A.

As in Section VII, a codeword c ∈ C may be viewed as a
L× n matrix over Fq . By mapping each c ∈ C to a matrix X
of the form X = [I, cT] where I is a n × n identity matrix,
a new code is obtained [7], which is commonly referred to as
a lifted Gabidulin code.

Suppose that X is injected into a network applying network
coding and the network is corrupted by errors, deviations, and
erasures. Then by processing the received “packets” as in [7],
we obtain

y = c+ e+ r + z, (49)

where e ∈ (FqL)n is an error, r ∈ (FqL)n is a deviation,
and z ∈ (FqL)n is a special kind of erasure. The deviation r
in (49) is a vector such that

r = ar ·B, (50)

where ar ∈ (FqL)wR(r) is some vector with rank weight
wR(r), and B is a wR(r) × n matrix over Fq; the vector
ar is known by the receiver, but B is unknown. The erasure
z in (49) is a vector such that

z = az · P, (51)

where az ∈ (FqL)wR(z) is some vector with rank weight
wR(z), and P is a wR(z) × n matrix over Fq; the vector
az is unknown by the receiver, but P is known.

The decoding problem is to recover c from y with the side
information ar and P , which is referred to as the joint errors,
deviations, and erasures decoding of Gabidulin codes. In the
special case where (i) r in (50) is a rows erasure with known
ar as in Section VII-1 and (ii) P in (51) has only wR(z)
nonzero columns, then the problem reduces to joint errors and
crisscrosses-erasures decoding as in [41], [60], and [61].

Below, we develop a new (simple) algorithm for this
decoding problem, which is guaranteed to work correctly (i.e.,
to retrieve c) if

2wR(e) + wR(r) + wR(z) ≤ n− k. (52)

B. Outline of the Proposed Decoding Algorithm

By turning P in (51) into a columns erasure, the decoding
problem (as described above) can be solved by combining the
decoding algorithm of Section VI-D with interpolation as in
Section VII.

In outline, the proposed algorithm goes as follows:
1) Determine the set S according to (55) and compute

mS(x) as described above Lemma 5.
2) Compute Λr as described above (59).
3) Compute Y ′(x) from (59).

At this point, we have a transformed decoding problem
with m(x), Y (x), C(x), n, and k as in (53) replaced by
mS(x), Y ′(x), C′(x), n′, and k′ as in (61)–(63).

3768 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

4) If degq Y
′(x) < k′, then set C′(x) = Y ′(x); otherwise,

solve this transformed decoding problem by the algo-
rithm of Section VI-D.

5) Compute C(x) = C′(x) ldiv◦ Λr(x).

C. Details and Proof of the Proposed Decoding Algorithm

Let Y (x) �= ψ−1(y), C(x) �= ψ−1(c), E(x) �= ψ−1(e),
R(x) �= ψ−1(r), and Z(x) �= ψ−1(z) with ψ as in (32).
Clearly,

Y (x) = C(x) + E(x) +R(x) + Z(x). (53)

The task is to recover C(x) from Y (x).
If z �= 0, then from the given P in (51), let T be an invertible

n× n matrix over Fq such that

PT = P ′ (54)

where P ′ is a wR(z) × n matrix over Fq with only wR(z)
nonzero columns. Note that T is not unique. If z = 0, then T
is an identity matrix.

Then, we let Zc ⊂ {0, 1, . . . , n − 1} denote the indices of
nonzero columns of P ′ with |Zc| = wR(z), and let

S
�= {0, 1, . . . , n− 1} \ Zc. (55)

Moreover, let

(β′
0, . . . , β

′
n−1)

�= (β0, . . . , βn−1) · T (56)

with T in (54).
Lemma 4: Z(x) �= ψ−1(z) satisfies Z(β′

�) = 0 for all
� ∈ S. �

Proof: For z = (z0, . . . , zn−1) ∈ (FqL)n in (51), let

(z′0, . . . , z
′
n−1)

�= (z0, . . . , zn−1) · T (57)

= az · P ′ (58)

where the last step follows from (54). It is clear that z′� = 0 for
all � ∈ S. Note that z′� = Z(β′

�) for all � ∈ {0, . . . , n − 1},
which follows from (56), (57), z� = Z(β�), and Proposition 2.
The lemma then follows. �

For given S and {β′
0, . . . , β

′
n−1} defined in (55) and (56),

let mS(x) ∈ F [x]◦ be a nonzero polynomial of the smallest
degree that satisfies mS(β′

�) = 0 for all � ∈ S. Note that
degq mS(x) = |S| = n− wR(z).

Lemma 5: Z(x) = g(x)◦mS(x) for some g(x) ∈ F [x]◦.�
Proof: It follows from Lemma 4 and Proposition 5. �

Recall that m(x) ∈ F [x]◦ is a nonzero polynomial of the
smallest degree that satisfies m(β�) = 0 for � = 0, . . . , n− 1.
If z = 0, then Z(x) = 0, β′

�
�= β�, and mS(x) �= m(x).

For given ar in (50), let Λr(x) ∈ F [x]◦ be a nonzero
polynomial of the smallest degree that vanishes on span(ar).
Note that degq Λr(x) = wR(r). If r = 0, Λr(x) = x.

Let

Y ′(x) �=
(
Λr(x) ◦ Y (x)

)
rmod◦mS(x) (59)

E′(x) �=
(
Λr(x) ◦ E(x)

)
rmod◦mS(x). (60)

Lemma 6: If (52) is satisfied, Y ′(x) = Λr(x) ◦ C(x) +
E′(x). �

Proof: Write Λr(x) ◦ Y (x) = Λr(x) ◦
(
C(x) + E(x) +

R(x)+Z(x)
)
. Note that Λr(x)◦R(x) satisfies Λr(R(β�)) = 0

for all � ∈ {0, . . . , n− 1} since Λr(x) vanishes on span(r) ⊆
span(ar); we thus have Λr(x) ◦ R(x) = A(x) ◦ m(x) for
some nonzero A(x) (by Proposition 5). Note that mS(x)
right divides m(x) since span({β′

�}) ⊂ span(β0, . . . , βn−1)
from (56). It follows that mS(x) right divides Λr(x) ◦R(x).
Note also that mS(x) right divides Λr(x)◦Z(x) by Lemma 5.
Finally, (52) implies that k + wR(r) ≤ n− wR(z); therefore,
degq(Λr(x) ◦ C(x)) < degq mS(x). The lemma follows. �

Lemma 7: For given S and {β′
0, . . . , β

′
n−1} in (55)

and (56), let e′ ∈ (FqL)|S| be a vector such that every
component of e′ corresponds to a E′(β′

�) for every � ∈ S.
Then, it holds that wR(e′) ≤ wR(e). �

Proof: Let ẽ ∈ (FqL)|S| be a vector such that every
component of ẽ corresponds to a E(β′

�) for every � ∈ S.
Since span({β′

�}) ⊆ span(β0, . . . , βn−1), clearly span(ẽ) ⊆
span(e) and thus wR(ẽ) ≤ wR(e). Now, write Λr(x)◦E(x) =
g(x) ◦ mS(x) + E′(x). Clearly E′(β′

�) = Λr(E(β′
�)) for all

� ∈ S, which implies dim span(e′) ≤ dim span(ẽ) (since
Λr(x) ∈ F [x]◦ is a linear map over Fq). Therefore, wR(e′) ≤
wR(ẽ). �

Now, let

C′(x) �= Λr(x) ◦ C(x), (61)

k′ �= k + wR(r), (62)

n′ �= n− wR(z). (63)

By Lemma 6, (59) amounts to

Y ′(x) = C′(x) + E′(x) (64)

with degq C
′(x) < k′ and degE′(x) < n′ = degq mS(x).

Note that condition (52) becomes 2wR(e) ≤ n′ − k′; By
Lemma 7. E′(x) in (60) satisfies

2wR(e′) ≤ n′ − k′. (65)

If (52) is satisfied and if e = 0, then E(x) = 0 and thus
E′(x) = 0. In this case, Y ′(x) in (59) equals C′(x) in (61),
i.e., Y ′(x) = C′(x) with deg Y ′(x) < k′.

If deg Y ′(x) ≥ k′, recovering C′(x) from Y ′(x) in (59) is
a standard error-decoding problem as in Section VI, i.e., (64)
plays the role of (36).

Theorem 4: Let Λe′(x) ∈ F [x]◦ be a nonzero polynomial
of the smallest degree that vanishes on E′(β′

�) for every
� ∈ S. Propositions 9 and 10, Theorems 3, and Corol-
lary 3 hold with Λe(x), E(x), m(x), Y (x), C(x), n, and k
replaced by Λe′(x), E′(x), mS(x), Y ′(x), C′(x), n′, and k′,
respectively. �

Proof: It follows from Lemmas 6 and 7, (64), and (65).
�

D. Remarks

The problem of joint errors and crisscrosses-erasures decod-
ing was first considered in [41], [60], and [61] and later
generalized in [62] and [63], whose most general form was
considered in [30], which coincides with the problem in [7],
i.e., (49)–(51).

YU AND LOELIGER: PARTIAL-INVERSE APPROACH TO LINEARIZED POLYNOMIALS AND GABIDULIN CODES 3769

The decoding algorithms proposed in [7] and [30] are
based on the Berlekamp–Massey algorithm (for linearized
polynomials) and the Euclidean algorithm, respectively. The
algorithm proposed in this section can be implemented
with any of the Algorithms in Section IV and works for
general m(x).

The proposed decoding method (implemented with Algo-
rithms 4–6) has complexityO(n2) over FqL , which is practical
unless n − k is large. If n − k is very large2, sub-quadratic
decoding can be obtained by using, e.g., the asymptotically
faster operations in [64] for computing Λr(x), Y (x), and
mS(x) in (59), cf. Table I of [64], together with an asymptot-
ically faster Euclidean algorithm (cf. Section IV-B).

IX. CONCLUSION

We have generalized the partial-inverse approach from ordi-
nary polynomials to linearized polynomials, and developed its
application to Gabidulin codes and to lifted Gabidulin codes
in random network coding. As with ordinary polynomials, the
basic partial-inverse algorithm is a common parent algorithm
of the (reverse) Berlekamp–Massey algorithm, the Euclid-
ean algorithm, and the quotient-saving algorithm, and the
partial-inverse problem is a natural common interface between
these algorithms and their applications to decoding. The gener-
alization to linearized polynomials was mostly straightforward,
but new arguments were required for several key points. The
basic partial-inverse algorithm itself was proved by a new and
simpler proof, which also works for ordinary polynomials.

Decoding Gabidulin codes has been reduced to the partial-
inverse problem via a key equation with a new converse.
We have also developed new algorithms for interpolating
crisscross erasures and for joint decoding of errors, erasures,
and deviations in random network coding.

APPENDIX A
PROOF OF THEOREM 1

The following proof of Theorem 1 adapts the proof of
Propositions 1–3 of [52] to linearized polynomials.

Proof of Theorem 1: We first prove uniqueness. Assume
that Λ(1)(x) and Λ(2)(x) are two solutions of the problem,
which implies degq Λ(1)(x) = degq Λ(2)(x) ≥ 0. Define

r(1)(x) �=
(
Λ(1)(x) ◦ b(x)) rmod◦m(x) (66)

r(2)(x) �=
(
Λ(2)(x) ◦ b(x)) rmod◦m(x) (67)

and consider

Λ(x) �=
(

lcf Λ(2)(x)
)
Λ(1)(x) −

(
lcf Λ(1)(x)

)
Λ(2)(x).

(68)

Then

r(x) �=
(
Λ(x) ◦ b(x)) rmod◦m(x) (69)

=
(

lcf Λ(2)(x)
)
r(1)(x) −

(
lcf Λ(1)(x)

)
r(2)(x). (70)

2Asymptotically faster implementation may require n to be large. E.g.,
by Remark 9 of [64], using the composition in Algorithm 1 of [64] (with
Strassen’s multiplication) has complexity O(n1.91), which can be faster than
the naive implementation O(n2) when n ≥ 7225.

Clearly, (70) implies that Λ(x) also satisfies (6). But (68)
implies degq Λ(x) < degq Λ(1)(x), which is a contradiction
unless Λ(x) = 0. Thus Λ(x) = 0, which means that Λ(1)(x)
and Λ(2)(x) are equal up to a scale factor.

It remains to prove existence and the degree bound. The
case d = degq m(x) is obvious, for which Λ(x) = x will do.

Otherwise, let n
�= degq m(x) and ν

�= degq m(x) − d > 0.
For fixed b(x) and m(x) �= 0 ∈ F [x]◦, consider the mapping

F ν+1
qL → F ν

qL (71)

given by

(Λ0, . . . ,Λν) �→ Λ(x) �= Λ0x
[0] + . . . ,+Λνx

[ν] (72)

�→ r(x) �=
(
Λ(x) ◦ b(x)) rmod◦m(x)

�→ (r0, . . . , rn−1)
�→ (rd, . . . , rn−1).

Clearly, this mapping is linear over FqL by Proposition 1, and
it has a nontrivial kernel by (71). But any nonzero element
in the kernel corresponds (by (72)) to a nonzero Λ(x) that
satisfies (6) and (7). �

APPENDIX B
MORE ABOUT THE PARTIAL-INVERSE PROBLEM

This section generalizes the results in [52, Section III] to
linearized polynomials.

A. Minimal Partial Inverses

Definition (Minimal Partial Inverse): For fixed nonzero b(x)
and m(x) ∈ F [x]◦ with degq b(x) < degq m(x), a nonzero
polynomial Λ(x) ∈ F [x]◦ is a minimal partial inverse of b(x)
rmod◦ m(x) (with respect to composition ◦) if every nonzero
Λ(1)(x) ∈ F [x]◦ with

degq

((
Λ(1)(x) ◦ b(x)) rmod◦m(x)

)

≤ degq

((
Λ(x) ◦ b(x)) rmod◦m(x)

)
(73)

satisfies degq Λ(1)(x) ≥ degq Λ(x). �
In the following, we often refer to the partial-inverse prob-

lem as defined in Section III. Let Λ(x) = Λnull(x) be the
solution of the partial-inverse problem for d = 0.

Proposition 14 (Minimal Partial Inverses Solve Partial-
Inverse Problems): The solution Λ(x) of the partial-inverse
problem is a minimal partial inverse of b(x) rmod◦ m(x).

Conversely, Λ(x) �= Λnull(x) solves the partial-inverse
problem with d = 0; every other minimal partial inverse Λ(x)
of b(x) rmod◦ m(x) solves the partial-inverse problem with

d = degq

((
Λ(x) ◦ b(x)) rmod◦m(x)

)
+ 1. (74)

�
Proposition 14 corresponds to [52, Proposition 4] and can

be proved in the same way.
Proposition 15 (Minimal Partial Inverses of the Same

Degree Are Unique): For fixed nonzero b(x) and
m(x) ∈ F [x]◦ with degq b(x) < degq m(x), let Λ(1)(x)
and Λ(2)(x) be two minimal partial inverses of b(x) with

3770 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

degq Λ(1)(x) = degq Λ(2)(x). Then Λ(1)(x) = αΛ(2)(x) for

some nonzero α ∈ FqL . �
Proposition 15 corresponds to [52, Proposition 5] and can

be proved in the same way.
In consequence, we have
Proposition 16 (Chain of Minimal Partial Inverses): Let

Λ(1)(x), . . . ,Λ(K)(x) denote all the minimal partial inverses
of b(x), and let r(i)(x) �=

(
Λ(i)(x) ◦ b(x)) rmod◦m(x).

Then, degq Λ(K)(x) > . . . > degq Λ(1)(x) if and only if
degq r

(K)(x) < . . . < degq r
(1)(x). �

B. Degree Change Property

Let Λ(1)(x) �= x, and let Λ(1)(x), . . . ,Λ(K)(x) denote
all the minimal partial inverses of b(x) (rmod◦m(x)) as in
Proposition 16. Moreover, let

g(i)(x) �=
(
Λ(i)(x) ◦ b(x)) rdiv◦m(x) (75)

r(i)(x) �=
(
Λ(i)(x) ◦ b(x)) rmod◦m(x) (76)

for i = 1, . . . ,K . Note that Λ(1)(x) �= x and r(1)(x) = b(x);
also, degq r

(K)(x) < . . . < degq r
(1)(x).

Now, we define r(0)(x) �= m(x) and let

Δi
�= degq r

(i−1)(x) − degq r
(i)(x) (77)

for i = 1, . . . ,K . Clearly, Δ1 = degq m(x) − degq b(x), and
Δi > 0 for all i ∈ {1, . . . ,K}.

Lemma 8: If some nonzero Λ(x) satisfies

degq

((
Λ(x) ◦ b(x)) rmod◦m(x)

)
< degq r

(i−1)(x) (78)

for some i ∈ {1, . . . ,K}, then degq Λ(x) ≥ degq Λ(i)(x).
If in addition Λ(x) satisfies

degq Λ(x) < degq Λ(i)(x) + Δi, (79)

then the following (80)–(82) hold for some a(x) ∈ F [x]◦

Λ(x) = a(x) ◦ Λ(i)(x) (80)

r(x) = a(x) ◦ r(i)(x) (81)

g(x) = a(x) ◦ g(i)(x) (82)

where g(x) �=
(
Λ(x) ◦ b(x)) rdiv◦m(x), and where r(x) �=(

Λ(x) ◦ b(x)) rmod◦m(x). �
Proof: It is obvious that degq Λ(x) ≥ degq Λ(i)(x) since

Λ(i)(x) is a nonzero polynomial of the smallest degree that
satisfies (6) for d = degq r

(i−1)(x).
Now, we write Λ(x)◦ b(x) = g(x)◦m(x)+ r(x), and write

Λ(x) = a(x)◦Λ(i)(x)+e(x) for some (unique) a(x) and e(x)
with degq e(x) < degq Λ(i)(x). We then have

(
a(x) ◦ Λ(i)(x) + e(x)

) ◦ b(x) = g(x) ◦m(x) + r(x) (83)

and therefore

a(x) ◦ Λ(i)(x) ◦ b(x) + e(x) ◦ b(x) = g(x) ◦m(x) + r(x).
(84)

Then from Λ(i)(x)◦b(x) = g(i)(x)◦m(x)+r(i)(x), we obtain

e(x) ◦ b(x) =
(
g(x) − a(x) ◦ g(i)(x)

) ◦m(x)

+ r(x) − a(x) ◦ r(i)(x). (85)

The stated assumption (79) implies that degq a(x) < Δi, and
therefore degq

(
a(x)◦r(i)(x)) < degq r

(i−1)(x) by (77). Note
also that degq r(x) < degq r

(i−1)(x) by (78).
It follows that degq

(
r(x)−a(x)◦r(i)(x)) < degq r

(i−1)(x)
and therefore

degq

(
e(x) ◦ b(x) rmod◦m(x)

)
< degq r

(i−1)(x). (86)

But Λ(i)(x) is a nonzero polynomial of the smallest degree
that satisfies (6) for d = degq r

(i−1)(x), and therefore (86)
is not tenable unless e(x) = 0. Therefore e(x) = 0, and we
obtain (80)–(82). �

Proposition 17: Let Λ(0)(x) �= 0. For i = 1, . . . ,K − 1,
let p(i)(x) �= r(i−1)(x) rdiv◦ r(i)(x). Then, it holds that
Λ(i+1)(x) = Λ(i−1)(x) − p(i)(x) ◦ Λ(i)(x). �

Proof: Lemma 8 implies that degq Λ(i+1)(x) ≥
degq Λ(i)(x)+Δi. Indeed, if degq Λ(i+1)(x) < degq Λ(i)(x)+
Δi, then by Lemma 8, r(i+1)(x) = a(x) ◦ r(i)(x), which
contradicts the fact degq r

(i+1)(x) < degq r
(i)(x).

Now, let Λ(x) �= Λ(i−1)(x) − p(i)(x) ◦ Λ(i)(x) Clearly,
degq Λ(x) = degq Λ(i)(x) + Δi since degq p

(i)(x) = Δi.
Note that Λ(x) satisfies degq

((
Λ(x) ◦ b(x)) rmod◦m(x)

)
<

degq r
(i)(x). It turns out that Λ(i+1)(x) = Λ(x). �

Proposition 18 (Degree Change Property): For every i ∈
{1, . . . ,K}, it holds that

degq Λ(i)(x) = degq m(x) − degq r
(i−1)(x). (87)

�
The proof can be based on Lemma 2 or on Lemma 8.

Proof of Proposition 18: First, we note that (87) holds
for i = 1 since degq Λ(1)(x) = 0 and r(0)(x) �= m(x). Now,
we assume that (87) holds for i = j, 1 ≤ j ≤ K − 1; we will
prove that (87) holds for i = j + 1. From Proposition 17, we
have

degq Λ(j+1)(x) = degq Λ(j)(x) + Δj

= degq m(x) − degq r
(j)(x), (88)

where the last step follows from (87) with i = j. �

C. Degree Bound With a Converse

The following Theorem 5 is an amalgam of Lemma 8 and
Proposition 18. Theorem 5 will be used to prove (the converse
part of) Theorem 6, which in turn will be used to prove
Theorem 7.

Theorem 5: For fixed d with 0 ≤ d ≤ degq m(x), let Λ′(x)
be the solution of the partial-inverse problem, and let

r′(x) �=
(
Λ′(x) ◦ b(x)) rmod◦m(x), (89)

g′(x) �=
(
Λ′(x) ◦ b(x)) rdiv◦m(x). (90)

YU AND LOELIGER: PARTIAL-INVERSE APPROACH TO LINEARIZED POLYNOMIALS AND GABIDULIN CODES 3771

If some nonzero Λ(x) and r(x) �= (Λ(x) ◦ b(x)) rmod◦m(x)
satisfy

degq r(x) < d (91)

and

degq Λ(x) ≤ degq m(x) − d, (92)

then the following (93)–(95) hold

Λ(x) = a(x) ◦ Λ′(x) (93)

r(x) = a(x) ◦ r′(x) (94)

g(x) = a(x) ◦ g′(x) (95)

where a(x) is any nonzero polynomial such that (91) and (92)
hold, and where g(x) �=

(
Λ(x) ◦ b(x)) rdiv◦m(x). �

Proof: We will prove the theorem via Lemma 8 and
Proposition 18. Let Λ(1)(x) �= x and let Λ(1)(x),Λ(2)(x),
. . . ,Λ(K)(x) denote all the minimal partial inverses of
b(x) rmod◦m(x). Moreover, let g(i)(x), r(i)(x), and Δi

denote all the corresponding quantities as defined in (75)–(77).
Then by Proposition 14, Λ′(x) equals Λ(i)(x) for some

i ∈ {1, . . . ,K} (up to a scale factor), and degq r
′(x) =

degq r
(i)(x) < d.

Since d ≤ degq r
(i−1)(x), (91) implies that degq r(x) <

degq r
(i−1)(x), which agrees with (78). We next note

from (92) and degq r
(i)(x) < d that

degq Λ(x) < degq m(x) − degq r
(i)(x) (96)

= degq Λ(i)(x) + Δi (97)

where the last step follows from (77) and from degq m(x) =
degq Λ(i)(x)+degq r

(i−1)(x) by Proposition 18. The theorem
then follows from Lemma 8. �

Theorem 6 (Degree Bound with a Converse): For fixed
nonzero b(x) and m(x) ∈ F [x]◦ with degq b(x) < degq m(x),
a nonzero Λ(x) ∈ F [x]◦ is a minimal partial inverse of b(x)
if and only if both

degq Λ(x) + degq

((
Λ(x) ◦ b(x)) rmod◦m(x)

)
< degq m(x)

(98)

and

lgcd
(
Λ(x), g(x)

)
= x, (99)

where g(x) �=
(
Λ(x) ◦ b(x)) rdiv◦m(x). �

In the special case where g(x) = 0, (99) requires Λ(x) =
αx for some nonzero α ∈ FqL . Theorem 6 is a generalization
of [52, Theorem 1] to linearized polynomials, which will be
needed for the proof of Theorem 7. (The converse part of
the proof in [52, Theorem 1] does not seem to generalize to
linearized polynomials.)

Proof of Theorem: 6: Let

r(x) �=
(
Λ(x) ◦ b(x)) rmod◦m(x) (100)

= Λ(x) ◦ b(x) − g(x) ◦m(x). (101)

For the direct part, assume that Λ(x) is a minimal par-
tial inverse of b(x). Then (98) is immediate from Propo-
sition 14 and (7) of Theorem 1. As for (99), assume that
lgcd

(
Λ(x), g(x)

)
= c(x) with degq c(x) > 0, i.e.,

Λ(x) = c(x) ◦ Λ′(x) (102)

for some Λ′(x) ∈ F [x]◦, and g(x) = c(x) ◦ g′(x) for some
g′(x) ∈ F [x]◦. From (101), we then have

r(x) = c(x) ◦ (
Λ′(x) ◦ b(x) − g′(x) ◦m(x)

)
. (103)

It follows that c(x) left divides r(x), i.e.,

r(x) = c(x) ◦ r′(x) (104)

for some r′(x) ∈ F [x]◦, and thus

r′(x) = Λ′(x) ◦ b(x) − g′(x) ◦m(x) (105)

=
(
Λ′(x) ◦ b(x)) rmod◦m(x). (106)

But degq Λ′(x) < degq Λ(x) and degq r
′(x) < degq r(x),

which is impossible because Λ(x) is a minimal partial inverse.
For the converse part, we assume that some nonzero Λ(x)

satisfies (98) and (99). Let r(x) �=
(
Λ(x)◦ b(x)) rmod◦m(x)

and d
�= degq r(x) + 1. Then by (98), degq Λ(x) + d ≤

degq m(x). It then follows from Theorem 5 that

Λ(x) = a(x) ◦ Λ′(x) and g(x) = a(x) ◦ g′(x) (107)

where Λ′(x) is the solution of the partial-inverse problem with
d = degq r(x) + 1. But Λ(x) and g(x) satisfy (99), which
implies a(x) = γx for some nonzero γ ∈ FqL . We therefore
have Λ(x) = γΛ′(x), which is a minimal partial inverse, cf.
Proposition 14. �

APPENDIX C
MONOMIALIZED PARTIAL-INVERSE PROBLEM

Consider a partial-inverse problem with general m(x) (as
stated in Section III) and d < degq m(x). Let n

�= degq m(x)
and τ

�= n−d > 0. Further, let

w(x) �= x[n+2τ−1] ldiv◦m(x) (108)

and

b̃(x) �=
(
b(x) ◦w(x)

)
rdiv◦ x[n−1]. (109)

Theorem 7 (Monomialized Partial-Inverse Problem): The
partial-inverse problem with general m(x) and d < degq m(x)
can be transformed into another partial-inverse problem where
(6) is replaced by

degq

((
Λ(x) ◦ b̃(x)) rmod◦ x[2τ]

)
< τ (110)

with b̃(x) defined in (109). The modified problem (110) has
the same solution Λ(x) as the original problem and we have(
Λ(x) ◦ b(x)) rdiv◦m(x) =

(
Λ(x) ◦ b̃(x)) rdiv◦ x[2τ]. �

Note that w(x) in (108) can be precomputed and
degq w(x) = 2τ − 1. Note also that degq b̃(x) < 2τ .

Proof of Theorem 7: Let Λ(x) be the solution of the orig-
inal partial-inverse problem (which is unique up to a nonzero

3772 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

scale factor), and let r(x) �=
(
Λ(x)◦b(x)) rmod◦m(x), where

degq r(x) < d. We then write

Λ(x) ◦ b(x) = g(x) ◦m(x) + r(x) (111)

for some (unique) g(x) with

degq g(x) < degq Λ(x) ≤ τ, (112)

where the second inequality follows from Theorem 1. Note
that lgcd

(
Λ(x), g(x)

)
= x by Theorem 6 and Proposition 14.

Multiplying both sides of (111) by w(x) defined in (108),
we obtain

Λ(x) ◦ b(x) ◦ w(x) = (g(x) ◦m(x) + r(x)) ◦ w(x). (113)

Note that x[n+2τ−1] = m(x) ◦ w(x) + e(x) for some e(x) ∈
F [x]◦ with degq e(x) < n, and thus

g(x) ◦m(x) ◦ w(x) = g(x) ◦ (
x[n+2τ−1] − e(x)

)
, (114)

and degq

(
g(x)◦ e(x)) < τ +n−1 from (112). Note also that

r(x)◦w(x) in (113) satisfies degq

(
r(x)◦w(x)

)
< d+2τ−1 =

n+ τ − 1. Equation (113) can therefore be written as

Λ(x) ◦ b(x) ◦ w(x) = g(x) ◦ x[n+2τ−1] + r̃(x) (115)

with r̃(x) �= −g(x) ◦ e(x) + r(x) ◦ w(x) and degq r̃(x) <
n+ τ − 1.

We next note that b(x) ◦ w(x) = b̃(x) ◦ x[n−1] + eb(x) for
some eb(x) with degq e(x) < n− 1 from (109), and therefore

Λ(x) ◦ b(x) ◦ w(x) = Λ(x) ◦ (b̃(x) ◦ x[n−1] + eb(x)). (116)

With ẽ(x) �= Λ(x) ◦ eb(x), we then have

Λ(x) ◦ b(x) ◦ w(x) = Λ(x) ◦ b̃(x) ◦ x[n−1] + ẽ(x) (117)

and degq ẽ(x) < τ + n− 1. From (115) and (117), we obtain
Λ(x) ◦ b̃(x) ◦ x[n−1] + ẽ(x) = g(x) ◦ x[n+2τ−1] + r̃(x), and
therefore

Λ(x) ◦ b̃(x) = g(x) ◦ x[2τ] + rb(x) (118)

where rb(x)
�=

(
r̃(x) − ẽ(x)

)
rdiv◦ x[n−1]. Note that

degq rb(x) < τ . Clearly, (110) holds, and by Theorem 6, Λ(x)
is a minimal partial inverse of b̃(x) (with respect to x[2τ]).

We still have to show that Λ(x) is the solution of the partial-
inverse problem (110). In the following, we prove this fact
by contradiction. Assume that Λ(1)(x) is the solution of the
partial-inverse problem (110); we therefore have

degq Λ(1)(x) ≤ degq Λ(x) (119)

and r(1)(x) �=
(
Λ(1)(x) ◦ b̃(x)

)
rmod◦ x[2τ] satisfies

degq r
(1)(x) < τ . By Proposition 14, Λ(1)(x) is a minimal

partial inverse of b̃(x) (with respect to x[2τ]). But Λ(x)
is also minimal partial inverse of b̃(x). If degq Λ(x) >

degq Λ(1)(x), then by Proposition 18 (with m(x) = x[2τ]

and r(i−1)(x) = r(1)(x)) we have degq Λ(x) ≥ 2τ −
degq r

(1)(x) > τ , which contradicts (112). Therefore, (119)
holds only for degq Λ(1)(x) = degq Λ(x). It then follows from
Proposition 15 that Λ(x) = αΛ(1)(x) for some α ∈ FqL .

Finally, from (111) and (118), we clearly have
(
Λ(x) ◦

b(x)
)

rdiv◦m(x) =
(
Λ(x) ◦ b̃(x)) rdiv◦ x[2τ]. �

A. Remarks

This section generalizes most of the results in
[52, Section III] to linearized polynomials and contains also
some results without a counterpart in [52]. In particular,
Lemma 8, Proposition 17, and Theorem 5 are new.
Proposition 18, Theorem 6, and Theorem 7 generalize
their counterparts in [52], but their proofs require different
arguments than in [52].

APPENDIX D
MINIMUM RANK DISTANCE

Let C be a code as in (34). The following fact was proved
in [3].

Proposition 19 (Minimum Rank Distance of Gabidulin
Codes): The minimum rank distance of C

dR(C) �= min{wR(c− c′) : c, c′ ∈ C, c �= c′} (120)

is

dR(C) = min{wR(c) : c ∈ C, c �= 0} (121)

= n− k + 1. (122)

�
An alternative proof was given in [30]. Yet another proof

goes as follows.
Proof of Proposition 19: Eq. (121) is clear since C is

a linear code. It remains to prove (122). By Proposition 7,
for any nonzero c ∈ C, ψ−1(c) vanishes on a subspace of
dimension n − wR(c). It then follows (by Corollary 2) that
degq ψ

−1(c) ≥ n − wR(c). But degq ψ
−1(c) < k, and thus

wR(c) > n− k.
On the other hand, we have

dR(C) ≤ n− k + 1 (123)

from the Singleton bound for linearized polynomials [2], [3];
alternatively, (123) follows from the existence of a(x) ∈ F [x]◦
with degq a(x) = k − 1 that has exactly k − 1 zeros in

{β0, . . . , βn−1} (cf. Alg. 1), i.e., wR(a) ≤ n− (k − 1). �

ACKNOWLEDGMENT

The comments by the anonymous reviewers have been very
helpful for improving the presentation of this article.

REFERENCES

[1] J.-H. Yu and H.-A. Loeliger, “Decoding Gabidulin codes via partial
inverses of linearized polynomials,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Paris, France, Jul. 2019, pp. 2059–2063.

[2] P. Delsarte, “Bilinear forms over a finite field, with applications to coding
theory,” J. Combinat. Theory, A, vol. 25, pp. 226–241, Nov. 1978.

[3] È. M. Gabidulin, “Theory of codes with maximum rank distance,”
Problems Inf. Transmiss., vol. 21, no. 1, pp. 1–12, 1985.

[4] R. M. Roth, “Maximum-rank array codes and their application to
crisscross error correction,” IEEE Trans. Inf. Theory, vol. 37, no. 2,
pp. 328–336, Mar. 1991.

[5] D. Silva and F. R. Kschischang, “Rank-metric codes for priority encod-
ing transmission with network coding,” in Proc. 10th Can. Workshop
Inf. Theory (CWIT), Jun. 2007, pp. 81–84.

[6] R. Koetter and F. R. Kschischang, “Coding for errors and erasures
in random network coding,” IEEE Trans. Inf. Theory, vol. 54, no. 8,
pp. 3579–3591, Aug. 2008.

YU AND LOELIGER: PARTIAL-INVERSE APPROACH TO LINEARIZED POLYNOMIALS AND GABIDULIN CODES 3773

[7] D. Silva, F. R. Kschischang, and R. Koetter, “A rank-metric approach
to error control in random network coding,” IEEE Trans. Inf. Theory,
vol. 54, no. 9, pp. 3951–3967, Sep. 2008.

[8] D. Silva and F. R. Kschischang, “Fast encoding and decoding of
Gabidulin codes,” in Proc. IEEE Int. Symp. Inf. Theory, Seoul, South
Korea, Jun. 2009, pp. 2858–2862.

[9] U. Martínez-Peñas, “Skew and linearized Reed–Solomon codes and
maximum sum rank distance codes over any division ring,” J. Algebr.,
vol. 504, pp. 587–612, Jun. 2018.

[10] U. Martinez-Penas and F. R. Kschischang, “Reliable and secure mul-
tishot network coding using linearized Reed–Solomon codes,” IEEE
Trans. Inf. Theory, vol. 65, no. 8, pp. 4785–4803, Aug. 2019.

[11] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216,
Jul. 2000.

[12] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[13] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[14] T. Ho, R. Koetter, M. Medard, D. R. Karger, and M. Effros, “The benefits
of coding over routing in a randomized setting,” in Proc. IEEE Int. Symp.
Inf. Theory, Yokohama, Japan, Jun./Jul. 2003, p. 442.

[15] P. A. Chou, Y. Wu, and K. Jain, “Practical network coding,” in Proc.
Annu. Allerton Conf. Commun. Control Comput., Monticello, IL, USA
Oct. 2003, pp. 40–49.

[16] T. Ho et al., “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[17] D. Silva and F. R. Kschischang, “Universal secure network coding
via rank-metric codes,” IEEE Trans. Inf. Theory, vol. 57, no. 2,
pp. 1124–1135, Feb. 2011.

[18] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Ideals over a
non-commutative ring and their application in cryptology,” in Eurocrypt
1991: Advances in Cryptology. Brighton, U.K.: Springer, Apr. 1991,
pp. 482–489.

[19] K. Gibson, “The security of the Gabidulin public key cryptosystem,” in
Eurocrypt 1996: Advances in Cryptology. Saragossa, Spain: Springer,
May 1996, pp. 212–223.

[20] P. Lusina, È. M. Gabidulin, and M. Bossert, “Maximum rank distance
codes as space-time codes,” IEEE Trans. Inf. Theory, vol. 49, no. 10,
pp. 2757–2760, Oct. 2003.

[21] H.-F. Lu and P. V. Kumar, “A unified construction of space-time codes
with optimal rate-diversity tradeoff,” IEEE Trans. Inf. Theory, vol. 51,
no. 5, pp. 1709–1730, May 2005.

[22] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[23] O. Ore, “On a special class of polynomials,” Trans. Amer. Math. Soc.,
vol. 35, no. 3, pp. 559–584, Jul. 1933.

[24] R. W. Nobrega and B. F. Uchoa-Filho, “Multishot codes for network
coding using rank-metric codes,” in Proc. 3rd IEEE Int. Workshop
Wireless Netw. Coding, Jun. 2010, pp. 1–6.

[25] O. Ore, “Theory of non-commutative polynomials,” Ann. Math., vol. 34,
no. 3, pp. 480–508, 1933.

[26] D. Boucher and F. Ulmer, “Linear codes using skew polynomials with
automorphisms and derivations,” Des., Codes Cryptogr., vol. 70, no. 3,
pp. 405–431, 2014.

[27] S. Liu, F. Manganiello, and F. R. Kschischang, “Construction and
decoding of generalized skew-evaluation codes,” in Proc. IEEE 14th
Can. Workshop Inf. Theory (CWIT), St. John’s, NL, Canada, Jul. 2015,
pp. 9–13.

[28] D. Boucher, “An algorithm for decoding skew Reed–Solomon codes
with respect to the skew metric,” in Proc. Workshop Coding Cryptogr.,
2019, pp. 1991–2005.

[29] A. Wachter, V. Sidorenko, M. Bossert, and V. Zyablov, “Partial unit
memory codes based on Gabidulin codes,” in Proc. IEEE Int. Symp. Inf.
Theory Proc., Saint Petersburg, Russia, Jul. 2011, pp. 2487–2491.

[30] A. Wachter-Zeh, “Decoding of block and convolutional codes in rank
metric,” Ph.D. dissertation, Inst. Commun. Eng., Univ. Ulm, Ulm,
Germany, 2013.

[31] A. Wachter-Zeh, M. Stinner, and V. Sidorenko, “Convolutional codes in
rank metric with application to random network coding,” IEEE Trans.
Inf. Theory, vol. 61, no. 6, pp. 3199–3213, Jun. 2015.

[32] R. Mahmood, A. Badr, and A. Khisti, “Convolutional codes with
maximum column sum rank for network streaming,” IEEE Trans. Inf.
Theory, vol. 62, no. 6, pp. 3039–3052, Jun. 2016.

[33] R. Mahmood, A. Badr, and A. Khisti, “Streaming codes for
multiplicative-matrix channels with burst rank loss,” IEEE Trans. Inf.
Theory, vol. 64, no. 7, pp. 5296–5311, Jul. 2018.

[34] D. Napp, R. Pinto, and V. Sidorenko, “Concatenation of convolutional
codes and rank metric codes for multi-shot network coding,” Des., Codes
Cryptogr., vol. 86, no. 2, pp. 303–318, Feb. 2018.

[35] H. Bartz, T. Jerkovits, S. Puchinger, and J. Rosenkilde, “Fast decoding
of codes in the rank, subspace, and sum-rank metric,” IEEE Trans. Inf.
Theory, vol. 67, no. 8, pp. 5026–5050, Aug. 2021.

[36] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “A method
for solving key equation for decoding Goppa codes,” Inf. Control,
vol. 27, pp. 87–99, Jan. 1975.

[37] A. Wachter-Zeh, V. Afanassiev, and V. Sidorenko, “Fast decoding of
Gabidulin codes,” Des., Codes Cryptogr., vol. 66, pp. 57–73, Jan. 2013.

[38] A. Shiozaki, “Decoding of redundant residue polynomial codes using
Euclid’s algorithm,” IEEE Trans. Inf. Theory, vol. IT-34, no. 5,
pp. 1351–1354, Sep. 1988.

[39] S. Gao, “A new algorithm for decoding Reed–Solomon codes,” in Com-
munications, Information and Network Security, vol. 712, V. Bhargava,
H. V. Poor, V. Tarokh, and S. Yoon, Eds. Norwell, MA, USA: Kluwer,
2003, pp. 55–68.

[40] A. V. Paramonov and O. V. Tretjakov, “An analogue of Berlekamp–
Massey algorithm for decoding codes in rank metric,” presented at the
Moscow Inst. Phys. Technol. (MIPT), Moscow, Russia, 1991.

[41] G. Richter and S. Plass, “Error and erasure decoding of rank-codes with
a modified Berlekamp–Massey algorithm,” in Proc. ITG Conf. Source
Channel Coding, Erlangen, Germany, Jan. 2004, pp. 249–256.

[42] V. Sidorenko, G. Richter, and M. Bossert, “Linearized shift-register
synthesis,” IEEE Trans. Inf. Theory, vol. 57, no. 9, pp. 6025–6032,
Sep. 2011.

[43] E. R. Berlekamp, Algebraic Coding Theory. New York, NY, USA:
McGraw-Hill, 1968.

[44] J. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans.
Inf. Theory, vol. IT-15, no. 1, pp. 122–127, Jan. 1969.

[45] P. Loidreau, “A Welch–Berlekamp like algorithm for decoding Gabidulin
codes,” in Proc. Int. Workshop Coding Cryptogr., O. Ytrehus, Ed. Berlin,
Germany: Springer, 2006, pp. 36–45.

[46] E. R. Berlekamp and L. Welch, “Error correction of algebraic block
codes,” U.S. Patent 4 633 470 A, Dec. 12, 1986.

[47] P. Loidreau and R. Overbeck, “Decoding rank errors beyond the error-
correcting capability,” in Proc. 10th Int. Workshop Algebr. Combinat.
Coding Theory (ACCT), 2006, pp. 186–190.

[48] V. Sidorenko, L. Jiang, and M. Bossert, “Skew-feedback shift-register
synthesis and decoding interleaved Gabidulin codes,” IEEE Trans. Inf.
Theory, vol. 57, no. 2, pp. 621–632, Feb. 2011.

[49] A. Wachter-Zeh and A. Zeh, “List and unique error-erasure decoding of
interleaved Gabidulin codes with interpolation techniques,” Des., Codes
Cryptogr., vol. 73, no. 2, pp. 547–570, 2014.

[50] S. Puchinger, J. R. Nielsen, W. Li, and V. Sidorenko, “Row reduction
applied to decoding of rank-metric and subspace codes,” Des., Codes
Cryptogr., vol. 82, nos. 1–2, pp. 389–409, 2017.

[51] J.-H. Yu and H.-A. Loeliger, “Reverse Berlekamp–Massey decoding,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Istanbul, Turkey, Jul. 2013,
pp. 1212–1216.

[52] J.-H. Yu and H.-A. Loeliger, “Partial inverses mod m(x) and reverse
Berlekamp–Massey decoding,” IEEE Trans. Inf. Theory, vol. 62, no. 12,
pp. 6737–6756, Dec. 2016.

[53] J.-H. Yu and H.-A. Loeliger, “An algorithm for simultaneous partial
inverses,” in Proc. 52nd Annu. Allerton Conf. Commun., Control, Com-
put. (Allerton), Monticello, IL, USA, Sep. 2014, pp. 928–935.

[54] J.-H. Yu and H.-A. Loeliger, “Decoding of interleaved Reed–Solomon
codes via simultaneous partial inverses,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Hong Kong, Jun. 2015, pp. 2396–2400.

[55] J.-H. Yu and H.-A. Loeliger, “Simultaneous partial inverses and decod-
ing interleaved Reed–Solomon codes,” IEEE Trans. Inf. Theory, vol. 64,
no. 12, pp. 7511–7528, Dec. 2018.

[56] J. L. Dornstetter, “On the equivalence between Berlekamp’s and Euclid’s
algorithms (Corresp.),” IEEE Trans. Inf. Theory, vol. IT-33, no. 3,
pp. 428–431, May 1987.

[57] A. E. Heydtmann and J. M. Jensen, “On the equivalence of the
Berlekamp–Massey and the Euclidean algorithms for decoding,” IEEE
Trans. Inf. Theory, vol. 46, no. 7, pp. 2614–2624, Nov. 2000.

[58] M. Bras-Amorós and M. E. O’Sullivan, “From the Euclidean algo-
rithm for solving a key equation for dual Reed–Solomon codes to
the Berlekamp–Massey algorithm,” in Proc. AAECC (Lecture Notes in
Computer Science), vol. 5527, M. Bras-Amorós and T. Høholdt, Eds.
New York, NY, USA: Springer, Jun. 2009, pp. 32–42.

3774 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 6, JUNE 2023

[59] T. D. Mateer, “On the equivalence of the Berlekamp–Massey and
the Euclidean algorithms for algebraic decoding,” in Proc. 12th Can.
Workshop Inf. Theory, Kelowna, BC, Canada, May 2011, pp. 139–142.

[60] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, “Rank errors
and rank erasures correction,” in Proc. 4th Int. Colloq. Coding Theory,
Dilijan, Armenia, Oct. 1991, pp. 11–19.

[61] G. Richter and S. Plass, “Fast decoding of rank-codes with rank errors
and column erasures,” in Proc. Int. Symp. Inf. Theory (ISIT), Chicago,
IL, USA, 2004, p. 398.

[62] E. M. Gabidulin and N. I. Pilipchuk, “Error and erasure correcting
algorithms for rank codes,” Des., Codes Cryptogr., vol. 49, no. 1,
pp. 105–122, Dec. 2008.

[63] E. B. Gabidulin, M. Bossert, and N. I. Pilipchuk, “Correcting general-
ized matrix erasures with applications to random network coding,” in
Proc. Int. ITG Conf. Source Channel Coding (SCC), Siegen, Germany,
Jan. 2010, pp. 1–7.

[64] S. Puchinger and A. Wachter-Zeh, “Fast operations on linearized polyno-
mials and their applications in coding theory,” J. Symb. Comput., vol. 89,
pp. 194–215, Nov./Dec. 2018.

[65] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: Elsevier, 1977.

[66] J. Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed.
Cambridge, U.K.: Cambridge Univ. Press, 2013.

[67] J.-H. Yu and H.-A. Loeliger, “On irreducible polynomial remainder
codes,” in Proc. IEEE Int. Symp. Inf. Theory, Saint Petersburg, Russia,
Jul. 2011, pp. 1190–1194.

[68] J.-H. Yu and H.-A. Loeliger, “On polynomial remainder codes,” 2012,
arXiv:1201.1812.

Jiun-Hung Yu (Member, IEEE) received the M.S. degree in communication
engineering from National Chiao Tung University, Hsinchu, Taiwan, in 2003,
and the Ph.D. degree in electrical engineering from ETH Zürich, in 2014.
From 2003 to 2008, he was with Realtek Semiconductor Cooperation,
Hsinchu. From 2008 to 2017, he was with the Signal and Information
Processing Laboratory, ETH Zürich. Since 2017, he has been with National
Yang Ming Chiao Tung University. He is currently an Assistant Professor.
His research interests include communication theory, error-correcting codes,
and statistical signal processing.

Hans-Andrea Loeliger (Fellow, IEEE) received the Diploma degree in
electrical engineering from ETH Zürich, Switzerland, and the Ph.D. degree
from ETH Zürich in 1992. From 1992 to 1995, he was with Linköping
University, Linköping, Sweden. From 1995 to 2000, he was a Technical
Consultant and the Co-Owner of consulting company. Since 2000, he has been
a Professor with the Department of Information Technology and Electrical
Engineering, ETH Zürich. His research interests have been in the broad areas
of signal processing, machine learning, information theory, communications,
error correcting codes, electronic circuits, quantum systems, and neural
computation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

