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Abstract— Secure communication in a potentially hostile
environment is becoming more and more critical. The Arbitrarily
Varying Wiretap Channel (AVWC) provides information-
theoretical bounds on how much information can be exchanged
even in the presence of an active attacker. If the active attacker
has non-causal side information, situations in which a legitimate
communication system has been hacked can be modeled.
We investigate the AVWC with non-causal side information at
the jammer for the case that there exists a best channel to
the eavesdropper. Non-causal side information means that the
transmitted codeword is known to an active adversary before
it is transmitted. By considering the maximum error criterion,
we also allow messages to be known at the jammer before the
corresponding codeword is transmitted. A single-letter formula
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for the Common Randomness (CR)-assisted secrecy capacity
is derived. Additionally, we provide a formula for the CR-
assisted secrecy capacity for the cases where the channel to the
eavesdropper is strongly degraded, strongly noisier, or strongly
less capable with respect to the main channel. Furthermore,
we compare our results to the CR-assisted secrecy capacity for
the cases of maximum error criterion but without non-causal side
information at the jammer (blind adversary), maximum error
criterion with non-causal side information of the messages at the
jammer (semi-blind adversary), and the case of average error
criterion without non-causal side information at the jammer
(blind adversary).

Index Terms— Active eavesdroppers, arbitrarily varying
wiretap channel, non-causal side information at the jammer,
maximum error probability, physical layer secrecy.

I. INTRODUCTION

SECRECY in an adversarial environment is an essential
requirement in modern communication systems. It was

Wyner [3] who considered secure communications over noisy
channels and introduced the Wiretap Channel (WTC). Later,
his work was extended by [4] to the broadcast channel with
confidential messages and in [5] to the Gaussian WTC. In [6],
Ozarow and Wyner introduced the wiretap channel of type II 1.
The secrecy metrics in the works above are considered “weak”.
There exist other secrecy metrics, such as strong secrecy or
semantic secrecy. In [7], the authors investigated the ordinary
WTC2 and the so-called WTC of type II. They provided
achievable semantic secrecy rates for the WTC and gave a
single-letter formula for the semantic secrecy capacity for the
WTC of type II. In [8], the authors presented a generalized
WTC model. This model consists of a mixture of a WTC and
the WTC of type II. During one fraction of the transmission
of one codeword, the eavesdropping channel behaves like
a WTC. In the remaining time instances, it behaves like a
WTC of type II. For this model, [8] contributed a single-letter
secrecy capacity formula under the strong secrecy criterion.
The previous works combat a passive eavesdropper by cleverly
taking the physical properties of the transmission medium
into account and coming up with a coding strategy that
can guarantee information-theoretic security, confidentiality,
and reliable communication simultaneously. By introducing
channel states, active adversaries who can arbitrarily modify

1Essentially, the eavesdropper is able to perfectly receive a fraction of the
transmitted codeword. In contrast to a “random” erasure channel, here the
eavesdropper can choose the exact symbols he wants to obtain.

2Throughout the paper, we use the term WTC when we mean the ordinary
WTC.
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the channel state can be modeled by the Arbitrarily Varying
Channel (AVC). For the AVC, different code concepts are
introduced in [9]. In [10], the discussion of [9] is extended for
different error criteria. It can be shown that the CR-assisted3

capacity of an AVC under the average error criterion equals
its CR-assisted capacity under the maximum error criterion.
The author also stated a dichotomous result (Ahlswede’s
Dichotomy) for the deterministic code capacity under the
average error criterion. The latter equals its CR-assisted
capacity or equals zero. Even though [10] provides a necessary
and sufficient condition for the deterministic code capacity
under the maximum error criterion to be positive, the question
of the exact formula remains an open problem.

In [11], CR-assisted codes for the AVC with a limited
amount of CR are studied. The author limited the amount of
CR to increase only exponentially with respect to the block
length. Furthermore, an exponential error bound is considered.
Additionally, the author provided a sufficient condition for
when the deterministic code capacity is zero. This condition
is called symmetrizability. The author proved that if the sym-
metrizability condition is fulfilled, the (average) error proba-
bility is bounded away from zero and is lower bounded by 1

4 .
In the literature, several cases of side information at the

transmitter and/or the jammer have been considered. In [12],
an AVC is considered, where the jammer has non-causal access
to the channel input and the message. Since the message
is known non-causally at the jammer, the considered error
probability has to be the maximum error probability. The
authors used a list code under the maximum error criterion
approach to prove the CR-assisted capacity for this model.
In [13], the authors investigated the AVC with non-causal
side information at the jammer, i.e., the jammer has non-
causal access to the transmitted codeword and the message.
In contrast to [12] and [13] used random coding arguments
instead of list codes. Furthermore, the authors imposed peak
input and state constraints and derived the CR-assisted code
capacity under the average and the maximum error criteria,
and compared these results. They limited the amount of CR
that is needed to achieve the capacity and stated that non-
causal knowledge of the channel input at the jammer leads to
lower capacity than non-causal knowledge of the messages.
In [14], the situation of “nosy noise” where the channel input
is perfectly known at the jammer [12], is generalized to a
“myopic adversary”, where a jammer has a noisy version of
the channel input as side information. Furthermore, a CR-
assisted capacity formula under the maximum error criterion
is derived. In [15], a version of the AVC is considered, where
the jammer and the transmitter have non-causal knowledge
about the messages and the channel state (here, not controlled
by the jammer). Based on this knowledge, the jammer can
adopt its jamming signal. Simultaneously, the transmitter uses
Gel’fand Pinsker or dirty paper coding to optimize the CR-
assisted capacity under the maximum error criterion. For the
dirty paper AVC, it was shown that a memoryless Gaussian

3In the literature, the terms CR-assisted and random are used, e.g., in [10]
the terms random code and random code capacity are used, while we use the
terms CR-assisted code and CR-assisted capacity

jamming strategy is the jammer’s optimal choice. In [16],
an Arbitrarily Varying Classical-Quantum Channel (AVCQC)
is investigated, where the jammer has side information about
the channel input or both the channel input and the message.
The authors determined the CR-assisted capacity for both
average and maximum error criteria and established a strong
converse. Furthermore, all derived capacities are equal. The
additional knowledge of the message does not decrease the
capacity further.

Various works have considered input and state constraints.
Since we do not consider constraints in our work, we only
mention one fundamental result. In [17], the AVC with
peak constraints is considered. The authors introduced a
“cost”-function and have shown that if the jammer cannot
symmetrize the channel because of his state peak constraint,
the deterministic code capacity might be positive but less than
the CR-assisted capacity. Furthermore, the authors proved that
the symmetrizability condition from [11] is not only sufficient
but also necessary for the deterministic code capacity of an
AVC to be zero.

If confidentiality requirements are combined with active
attacks on communication systems, the AVWC is the correct
channel model. In the case where the channel state is
determined by nature and there are secrecy requirements, the
Compound Wiretap Channel (CWC) is an appropriate model.
In the following, we give a very brief literature overview of
the CWC and the AVWC. In [18], CR-assisted codes for the
AVWC are considered. The authors presented a single-letter
formula for achievable CR-assisted secrecy rates. Furthermore,
the authors provided a single-letter formula for the CR-
assisted secrecy capacity for the strongly degraded case with
independent states. In [19], the AVWC under the average
error criterion is investigated. The authors combined strong
secrecy requirements with Ahlswede’s Elimination Technique
(ET) and were able to derive a single-letter formula for
the CR-assisted achievable secrecy rates. Additionally, the
authors presented a multi-letter formula for the deterministic
code secrecy capacity. In [20], continuity properties of the
secrecy capacities of CWCs and AVWCs are studied. The
authors showed that for the CWC, the secrecy capacity is
continuous with respect to the channel states. In contrast to
the compound case, the authors proved that the deterministic
code secrecy capacity of an AVWC possesses discontinuity
properties with respect to the channel state. The authors
presented an example in which the deterministic code secrecy
capacity is continuous for almost all convex combinations
of channel states (for all λ ∈ (0, 1], where λ is the linear
coefficient of an AVC with two elements, parameterizing the
convex combination of channel matrices). Furthermore, the
authors derived a zero deterministic code secrecy capacity
for λ = 0, while calculating limλ↘0, the deterministic code
secrecy capacity remains strictly lager than zero. In [21], the
AVWC is investigated, and multi-letter formulas for the CR-
assisted and deterministic code secrecy capacities for the case
that the eavesdropper is ignorant about the CR are derived. The
authors proved that even though the deterministic code secrecy
capacity possesses discontinuities, it is still stable around its
positivity points. Furthermore, the authors provided a complete
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characterization of AVWCs, which possess the super-activation
property. In [22], a multi-letter formula for the CR-assisted
secrecy capacity in the general case and a single-letter formula
for the CR-assisted secrecy capacity in the strongly degraded
case are proved. The authors considered both average and
maximum error criteria and showed that the capacities are
equivalent under both criteria.

In the literature, several cases of side information at the
transmitter and/or the jammer have been considered with
secrecy constraints. In [23], the binary WTC of type II
with an active eavesdropper, who observes a fraction of the
transmitted codeword causally, is considered. The authors
specifically investigated the cases, where the eavesdropper
erases his observed symbols, and where the eavesdropper
flips his observed symbols. For these models, achievable
secrecy rates are proved. In [24], an AVWC, where the active
adversary has access to the CR, is studied. This work relates
the dichotomy behavior of the deterministic code capacity
of AVC to the case with secrecy requirements. The authors
showed that the if the AVWC is symmetrizable, then the CR
secrecy capacity of the AVWC with knowledge of the common
randomness at the active adversary equals zero. Otherwise,
it equals the CR secrecy capacity of the AVWC. In [25],
the deterministic list code secrecy capacity of an AVWC is
investigated. The authors provided a multi-letter formula and
presented a symmetrizability condition on the list size for the
secrecy capacity to be zero. In [26], a WTC with non-causal
Channel State Information (CSI)T is investigated. Under the
maximum error and semantic security criteria, a single-letter
formula for the achievable secrecy rate is derived. In [27], the
AVWC with input and state peak constraints is investigated.
The authors derived a multi-letter formula for the achievable
secrecy rate. In [28], the author scrutinized a variation of
the AVWC, in which an adversary receives a fraction of the
codeword perfectly (in terms of WTC of type II) and modifies
another fraction of the codeword, where the adversary can
use his observed side information. The author determined
upper and lower bounds on the semantic secrecy capacity.
In [29], the authors used a strong soft covering lemma to derive
a single-letter formula of the CR-assisted semantic secrecy
capacity of an AVWC with type-constrained states. In [30],
deterministic wiretap-codes for the AVWC with input and state
peak constraints are considered. The authors provided a single-
letter formula for achievable secrecy rates.

A. Contribution

This work considers the AVWC with non-causal side
information at the jammer. Non-causal side information means
that codewords are known at an active adversary before
they are transmitted. We provide the single-letter CR-assisted
secrecy capacity under the maximum error criterion for the
case that there exists a best channel to the eavesdropper.
By considering the maximum error criterion, we also allow
the active attacker to know the messages. We use methods
of [16], hence random coding arguments instead of list
codes [12], which might be an alternative approach. When
considering WTCs, the secrecy capacity formula depends in

general on auxiliary Random Variables (RVs). One of these
RVs can be interpreted as adding a “prefix” channel as part
of the encoding process. We derive a CR-assisted secrecy
capacity formula for the cases in which the eavesdropping
channel is strongly degraded, strongly noisier, or strongly
less capable with respect to the main channel, that does
not depend on such a prefix auxiliary RV. Furthermore,
compare our results to the CR-assisted secrecy capacity for
the cases of maximum error criterion but without any side
information at the jammer (blind adversary), maximum error
criterion with non-causal side information of the messages at
the jammer (semi-blind adversary), and the case of average
error criterion without any side information at the jammer
(blind adversary). By considering this model, we can describe
situations in which a communication system is subject to
two simultaneous attacks, eavesdropping and jamming attacks.
For both, we individually assume worst case scenarios.
By requiring a best channel to the eavesdropper, we also
consider the case of colluding jammer and eavesdropper. Even
though the jammer obtains a perfect version of the channel
input (and also has knowledge about the messages), we can
show by our secrecy analysis that the eavesdropper does not
obtain any information about the messages and can also not
be informed about the channel input by the jammer, using
corresponding state sequences. The complete link between the
messages and the eavesdropper is secured. The eavesdropper
obtains a perfect observation of the CR shared between the
legitimate communication partners. Hence, the CR cannot be
used as a key to encrypt the data. In Table I, we set our
work into context. For this overview, we only considered state
dependent channels with secrecy requirements, whose states
are influenced by an external entity. But keep in mind that
there are publications without secrecy requirements, which are
still highly related to this work, i.e, [12], [13], [14]. Since
our work does not include constraints on the input or states,
we excluded those works from the table, as well.

The paper is organized as follows. We present the system
model in Section II and state our main result in Section III.
Finally, in Section IV, we compare our results to the standard
AVWC, provide an example, and close with a discussion. The
proofs of the main results can be found in the appendices.

Notation: We follow the notation of [22], and a list
of the used symbols and their meanings can be found in
Appendix H. In particular, all logarithms are taken to base 2.
Equivalently, the exp {.} function means 2{.}. Sets are denoted
by calligraphic letters. The cardinality of a set U is denoted
by |U|. The set of all probability measures on a set U is
denoted by P(U). For p ∈ P(U) we define pn ∈ P(Un) as
pn(xn) =

∏
i p(xi). The entropies and mutual information

terms will be written in terms of the involved probability
functions or in terms of the involved random variables. For
example

H(W |p) := −
∑
x,y

p(x)W (y|x) logW (y|x)

I(p;W ) := H(pW )−H(W |p).

Furthermore, let the type of a sequence sn = (s1, s2, . . . , sn)
be the probability measure q ∈ P(S) defined by
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TABLE I
LITERATURE OVERVIEW RELATED TO THE PRESENTED MANUSCRIPT (WITHOUT CONSTRAINTS AND WITH SECRECY REQUIREMENTS). NOTATION: SIDE

INFORMATION - D-CSI (DIFFERENT CSI CASES AT THE TRANSMITTER AND RECEIVER), MII/CII/MCII (MESSAGE / CHANNEL INPUT / MESSAGE
AND CHANNEL INPUT NON-CAUSALLY KNOWN AT THE JAMMER), PCI (A FRACTION OF THE CHANNEL INPUT CAUSALLY KNOWN AT

THE JAMMER). ERROR - A (AVERAGE ERROR CRITERION), M (MAXIMUM ERROR CRITERION). RESULT - SL (SINGLE-LETTER),
ML (MULTI-LETTER), AR (ACHIEVABLE RATE), C (CAPACITY), R (RANDOMNESS ASSISTED), D (DETERMINISTIC),

SD (STRONGLY DEGRADED)

q(a) = 1
nN(a|sn), where N(a|sn) denotes the number

of occurrences of a in the sequence sn. The set of all
possible types of sequences of length n is denoted by Pn0 (S).4

Additionally, for a p ∈ P(X ) and δ > 0, we define the typical
set T np,δ ⊂ Xn as the set of sequences xn ∈ Xn satisfying for
all a ∈ X the conditions∣∣∣∣ 1nN(a|xn)− p(a)

∣∣∣∣ ≤ δ, if p(a) > 0,

and N(a|xn) = 0 if p(a) = 0.

Similarly, for a W ∈ P(Y|X ) and a δ > 0 we define
the conditionally typical set T nW,δ(xn) ⊂ Yn as the set of
sequences yn ∈ Yn satisfying for all a ∈ X , b ∈ Y the
conditions∣∣∣∣ 1nN(a, b|xn, yn)−W (b|a) 1

n
N(a|xn)

∣∣∣∣ ≤ δ, if W (b|a)>0,

N(a, b|xn, yn) = 0 if W (b|a) = 0.

See also [34, Chapter 2] for the method of types and the
definitions of typical sequences.

II. SYSTEM MODEL

We consider a CR-assisted AVWC as depicted in Fig. 1.
A transmitter Alice tries to communicate reliably and
securely with a legitimate receiver Bob in the presence
of an eavesdropper Eve. The communication is done via
state dependent Discrete Memoryless Channels (DMCs)
Wn(yn|xn, sn) and V n(zn|xn, sn), where sn is the channel
state, xn is the channel input, and yn and zn are the received
sequences at Bob and Eve, respectively. Alice, Bob, and Eve
have access to a common source of randomness Un, whose

4When emphasizing that p is a single-letter distribution defined by the
empirical distribution of sequences of length n, we equivalently use the
notation p ∈ P0(Sn). However, note that p̃ ∈ P(Sn) is a multi-letter
distribution on Sn.

realization can not be used as a key for encryption, since Eve
also has access to it. The channel state sn is controlled by
an external jammer Jim, who has non-causal access to the
channel input Xn

u . The channel input of length n is dependent
on the the CR realization, and hence indexed by it. Note that
this system model is considered without secrecy constraints
by Sarwate [12], using a connection between deterministic
list codes and CR-assisted codes. Furthermore, this system
model also is considered without secrecy constraints for the
classical-quantum case by Boche et al. [16]. In the latter case,
the authors use random coding arguments.

Remark 1: By requiring a best channel to the eavesdropper,
we can show that the jammer is not able to encode information
about the channel input into the choice of the state sequence.
Hence, if there is no other channel between the jammer and
the eavesdropper, we also cover the situation of colluding
attackers.

Definition 1 (Arbitrarily Varying Wiretap Channel): We
describe an Arbitrarily Varying Wiretap Channel by
(X ,S,W,V,Y,Z). Let X ,S,Y,Z be finite sets. The family
of channels to the legitimate receiver is described by W =
{(Ws : X → P(Y)) : s ∈ S}. The family of channels
to the illegitimate receiver is described by V = {(Vs :
X → P(Z)) : s ∈ S}. The channel is memoryless in the
sense that the probability of receiving the sequences yn =
(y1, y2, . . . , yn) and zn = (z1, z2, . . . , zn), when sending
xn = (x1, x2, . . . , xn) is

Wn(yn|xn, sn) =
n∏
i=1

W (yi|xi, si) =
n∏
i=1

Wsi
(yi|xi)

= Wn
sn(yn|xn),

V n(zn|xn, sn) =
n∏
i=1

V (zi|xi, si) =
n∏
i=1

Vsi(zi|xi)

= V nsn(zn|xn).

By (W,V), we mean the AVWC defined above.
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Fig. 1. System model. Jammer has non-causal knowledge about the channel input.

Definition 2 (Deterministic Wiretap-Code): An (n, Jn)
deterministic wiretap-code Kn consists of a stochastic
encoder E : Jn → P(Xn) and mutually disjoint decoding
sets Dj ⊂ Yn, Dj ∩ Dj′ = ∅, j, j′ ∈ Jn. We define
EWn

sn : Jn → P(Yn) by

EWn
sn(yn|j) =

∑
xn∈Xn

E(xn|j)Wn(yn|xn, sn).

The maximum error e(Kn) for the AVWC can be expressed
as

e(Kn) := max
sn∈Sn

max
j∈Jn

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn, sn)

If the jammer has non-causal knowledge about the channel
input xn, then the maximum error probability has to be
expressed as

ê(Kn) := max
f∈F

max
j∈Jn

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn, f(xn)),

for all deterministic jamming functions F : Xn → Sn.
We define EV nsn : Jn → P(Zn) and EV nf : Jn → P(Zn) by

EV nsn(zn|j) =
∑

xn∈Xn

E(xn|j)V n(zn|xn, sn),

EV nf (zn|j) =
∑

xn∈Xn

E(xn|j)V n(zn|xn, f(xn)).

Definition 3 (Common Randomness Assisted Wiretap-
Code): An (n, Jn,Un, pU ) CR-assisted wiretap-code
Kran
n consists of a family of stochastic encoders

E = {(Eu : Jn → P(Xn)) : u ∈ Un}
and mutually disjoint (for fixed u) decoding sets
Dj,u ⊂ Yn, Dj,u ∩ Dj′,u ̸= ∅, j, j′ ∈ Jn, u ∈ Un
with message set Jn := {1, . . . , Jn}, and pU ∈ P(Un). Note
that for different realizations of the CR Un, u ̸= u′, the
decoding sets do not have to be disjoint, Dj,u ∩ Dj′,u′ ̸= ∅.
The maximum error probability averaged over all possible
randomly chosen deterministic wiretap-codebooks e(Kran

n )
can be written as

e(Kran
n ) := max

sn∈Sn
max
j∈Jn

∑
u∈Un

pU (u)∑
xn∈Xn

Eu(xn|j)Wn(Dcj,u|xn, sn).

Here, the jammer does not know the channel input non-
causally.

We define the channel pXnU |J : Jn → P(Xn × U) as

pXnU |J(xn, u|j) = pXn|JU (xn|j, u)pU (u)=Eu(xn|j)pU (u).

Let F : Xn → Sn describe the family of all deterministic
mappings from Xn to Sn. If the jammer has non-causal
knowledge of the channel input xn, then the maximum error
probability has to be adapted to

ê(Kran
n ) := max

f∈F
max
j∈Jn

∑
xn∈Xn

pXn|J(xn|j)∑
u∈Un

pU |Xn,J(u|xn, j)Wn(Dcj,u|xn, f(xn)).

Remark 2: In contrast to the standard AVWC, here in the
case of non-causal knowledge at the jammer the worst case
choice of sn is done within each term of the sum. Since
the jammer knows the channel input, he can adopt to that
specific codeword choice. Furthermore, let F ′ be the family
of all deterministic mappings Jn × Xn → Sn, and F ′′ be
the family of all deterministic mappings Jn → Sn. From
Lemma 2 below, we have

e(Kn) = max
sn∈Sn

max
j∈Jn

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn, sn)

= max
j∈Jn

max
f ′′∈F ′′

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn, f ′′(j)), and

ê(Kn) = max
f∈F

max
j∈Jn

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn, f(xn))

= max
j∈Jn

max
f ′∈F ′

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn, f ′(xn, j)).

That implies the following statement. Considering the
maximum error probability (with respect to the messages)
corresponds to the case, where the jammer additionally knows
the messages, because the order of maximization can be
exchanged according to Lemma 2 (see also [13]). Furthermore,
the inner optimization is done for fixed parameter of the outer
optimization. That means for each given message j ∈ Jn,
the worst case state sequence will be considered. This implies
the above equalities. Equivalent statements hold for the
CR-assisted codes.
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Definition 4 (Achievable Common Randomness Assisted
Secrecy Rates and Common Randomness Assisted Secrecy
Capacities): A nonnegative number RS is called an achiev-
able CR-assisted secrecy rate for the AVWC if there exists
a sequence (Kran

n )∞n=1 of (n, Jn,Un, pU ) CR-assisted codes
for uniformly distributed messages, such that the following
requirements are fulfilled

lim inf
n→∞

1
n

log Jn ≥ RS , (1)

lim
n→∞

e(Kran
n ) = 0, (2)

lim
n→∞

max
sn∈Sn

max
u∈Un

I(pJ ;EuV nsn) = 0. (3)

A nonnegative number ̂̂RS is called an achievable CR-
assisted secrecy rate for the AVWC with non-causal
knowledge of the channel input at the jammer if there exists
a sequence (Kran

n )∞n=1 of (n, Jn,Un, pU ) CR-assisted codes
for uniformly distributed messages, such that the following
requirements are fulfilled

lim inf
n→∞

1
n

log Jn ≥
̂̂
RS , (4)

lim
n→∞

ê(Kran
n ) = 0, (5)

lim
n→∞

max
f∈F

max
u∈Un

I(pJ ;EuV nf ) = 0. (6)

The supremum of all achievable CR-assisted secrecy rates
for the AVWC is called the CR-assisted secrecy capacity
of the AVWC (W,V) and is denoted by Ĉ ran

S (W,V), when
the jammer has no knowledge about the channel input, and̂̂
C

ran

S (W,V) if the jammer has non-causal knowledge of the
channel input.

The secrecy capacity Ĉ ran
S (W,V) is lower bounded bŷ̂

C
ran

S (W,V). Note that the eavesdropper has access to the CR,
too. Hence, the randomness cannot be used as a key ensuring
secure communication between Alice and Bob. We explicitly
do not bound the cardinality of the CR. In [16], the authors
provide capacity formulas for quantum channels with an
informed jammer but without secrecy constraints. The authors
additionally relate and compare the capacity formulas for the
cases that the jammer knows the messages additionally and
that the jammer does not know the messages.

Lemma 1: Let P(Sn|Xn) be the set of all conditional
probability distributions of the state sequences sn ∈ Sn given
the channel input xn ∈ Xn.

We can, in fact, equivalently consider the maximization over
θ ∈ P(Sn|Xn) or the maximization over all deterministic
mappings F : Xn → Sn.

Proof of Lemma 1: See Appendix E.
Remark 3: Since the mutual information is a convex (row

convex) function with respect to the conditional probability
function of the output given the input for fixed input
distribution, the optimal jamming strategy with respect to the
secrecy constraint is deterministic.

θ∗,n(sn|xn) = 1s∗,n(xn)

In other words, the optimal state sequence (in terms of
the secrecy constraint) results in a boundary point of Ṽn.

Moreover, taking convex combinations of channel states
does not increase the mutual information. The reason for
the equivalence of the consideration of stochastic and
deterministic jamming strategies with respect to the reliability
criterion is as follows. Although the considered space is
larger when allowing stochastic mappings instead of only
deterministic mappings to the state space, the error probability
is upper bounded by the worst case state sequence.

Definition 5 (Convex Closure and Row Convex Clo-
sure [10]): Let p ∈ P(S) and p̂ ∈ P(S|X ) be probability
measures. The convex closure and the row convex closure of
the AVC are defined as

Ŵ :=
{
Wp(·|·) :

∑
s∈S

p(s)W (·|·, s), p ∈ P(S)
}

(7)

̂̂W :=
{
Wp̂(·|x) :

∑
s∈S

p̂(s|x)W (·|x, s),

p̂(s|x) ∈ P(S|X ), x ∈ X ,
}

(8)

Example 1: Let X = Y = S = {0, 1}, and

W (·|·, S = 0) =
(

1 0
0 1

)
, W (·|·, S = 1) =

(
0 1
1 0

)
.

The convex closure and the row convex closure are given
respectively as

Ŵ =
{
W (·|·) :

(
α 1− α

1− α α

)
, α ∈ [0, 1]

}
,

̂̂W =
{
W (·|·) :

(
α 1− α

1− β β

)
, α, β ∈ [0, 1]

}
.

Remark 4 (Notation): With slight abuse of notation,
we use the subscripts of V and W to show the dependence
on the state sequence sn, the deterministic mapping f ∈ F ,
F : Xn → Sn and stochastic mappings θ ∈ P(Sn|Xn).
Since we use certain notations interchangeably, we clarify
them in the following (shown for V ). For the AVC V
to the eavesdropper with channel input xn, and channel
state sn, the probability of obtaining the channel output
zn is denoted by V n(zn|xn, sn) or interchangeably by
V nsn(zn|xn). If the jammer has non-causal access to the
channel input, he can apply the deterministic mapping (or
strategy) f ∈ F , F : Xn → Sn. In that case, we write
V n(zn|xn, f(xn)), or equivalently V nf (zn|xn). If the jammer
uses a stochastic mapping (strategy) θ ∈ P(Sn|Xn) instead
of a deterministic mapping (strategy), we write V nθ (zn|xn),
with V nθ (zn|xn) =

∑
sn∈Sn θ(sn|xn)V n(zn|xn, sn).

Hence, we consider the averaged channel with respect
to the channel state sn in dependence on the channel
input xn. We denote the conditional probability of
obtaining the output sequence zn under the conditions
that we transmitted the secure message j ∈ Jn and that
the jammer applies the deterministic jamming strategy
f ∈ F as V nf,u(z

n|j), with V nf,u(z
n|j) = EuV

n
f (zn|j) =∑

xn∈Xn Eu(xn|j)V n(zn|xn, f(xn)). Since we use the
stochastic encoder Eu, we average with respect to the channel
input xn ∈ Xn. Correspondingly, if the jammer applies a
stochastic jamming strategy θ ∈ P(Sn|Xn) instead of a
deterministic mapping, we write V nθ,u(z

n|j) = EuV
n
θ (zn|j) =
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∑
xn∈Xn Eu(xn|j)

∑
sn∈Sn θ(sn|xn)V n(zn|xn, sn). Since

we use again a stochastic encoder Eu, we average with
respect to the channel input xn and with respect to the
channel states sn.

In the following, we define a best channel to the
eavesdropper. Throughout this work, we assume that such a
best channel to the eavesdropper exists.

Definition 6 (Best Channel to the Eavesdropper): If there
exists a θ∗ ∈ P(S|X ), such that for all n ∈ N the Markov
chain

Xn ↔ Znθ∗,n ↔ Znθ , θ ∈ P(Sn|Xn) (9)

holds with θ∗,n(sn|xn) =
∏n
i=1 θ

∗
i (si|xi) =

∏n
i=1 θ

∗(si|xi),
where Znθ is the output of the channel V nθ , then we say that
there exists a best channel to the eavesdropper and all
channels V nθ are degraded with respect to the channel V nθ∗,n .

Remark 5: In the case of a (semi-) blind adversary, i.e.,
if the channel input is not known non-causally at the jammer,
it is sufficient to require a single-letter condition to hold.
Hence, there exists a best channel to the eavesdropper if there
exists a θ∗ ∈ P(S) such that for all other θ ∈ P(S) the
Markov chain

X ↔ Zθ∗ ↔ Zθ, (10)

holds.
Next, we will introduce the notions of strongly degraded,

strongly noisier, and strongly less capable with independent
states, respectively. Independent states mean that the states in
the main and the eavesdropping channel can be chosen indi-
vidually. If the AVC W from the transmitter to the legitimate
receiver and the AVC V from the transmitter to the eavesdrop-
per fulfill one of the before-mentioned criteria, the CR-assisted
secrecy capacity formula can be simplified compared to the
case that none of the above-mentioned criteria hold. We will
prove the simplification of the CR-assisted secrecy capacity
formula for the strongly less capable criterion, later.

Definition 7 (Strongly Degraded): If there exists a best
channel θ∗ to the eavesdropper according to Definition 6,
then an AVWC is called strongly degraded (with independent
states, see [18]) if the following Markov chain holds

X ↔ Yθ ↔ Zθ∗ , ∀θ ∈ P(S|X ).

Definition 8 (Strongly Noisier With Independent States):
The family of channels to the illegitimate receiver V = {(Vs :
X → P(Z)) : s ∈ S} is strongly noisier with independent
states than the family of channels to the legitimate receiver
W = {(Ws : X → P(Y)) : s ∈ S} if there exists a best
channel θ∗ to the eavesdropper according to Definition 6 and
if for every random variable A such that A↔ X ↔ (Yθ, Zθ′)
we have for all θ ∈ P(S|X )

I(pA;Wθ) ≥ I(pA;Vθ∗).

Definition 9 (Strongly Less Capable With Independent
States): The family of channels to the illegitimate receiver
V = {(Vs : X → P(Z)) : s ∈ S} is strongly less capable
with independent states than the family of channels to the
legitimate receiver W = {(Ws : X → P(Y)) : s ∈ S} if
there exists a best channel θ∗ to the eavesdropper according

Fig. 2. Adapted system model with prefixing at Alice. With CR realization
u, Alice encodes a secure message J into a codeword Ψn

u , of length n. The
codeword serves as the input of a prefix channel ρ(xn|ψn

u), and is mapped
to the channel input Xn. Other parts remain the same.

to Definition 6 and if for every p ∈ P(X ) we have for all
θ ∈ P(S|X )

I(p;Wθ) ≥ I(p;Vθ∗).

Remark 6: The requirement of an independent and
identically distributed (i.i.d.) best channel to the eavesdropper
is essential to formulate the strongly degraded, the strongly
noisier, and the strongly less capable conditions as single-letter
conditions. For the transmission link between the transmitter
and the legitimate receiver, it has been shown in [35] that the
jammer’s best strategy is to perform a “memoryless attack”.
Hence, knowing the entire codesequence xn non-causally is
as good as knowing the codesymbol xi non-causally at time
i, while knowing the codeword xn causally is as good as no
knowledge at all [9]. For the transmission link between the
transmitter and the eavesdropper, the i.i.d. structure of θ∗,n

allows decomposing the multi-letter expressions into single-
letter ones.

Remark 7: Just as in the stateless case [36], we have the
following implication chain:

Strongly Degraded → Strongly Noisier → Strongly Less Capable.

Here, X → Y means X implies Y , but not vice versa.

III. MAIN RESULTS

In the following, we state our main results. First, we present
the secrecy capacity formulas for the general, and the strongly
less capable cases, respectively, when the jammer has non-
causal knowledge of the channel input. Then we provide the
corresponding secrecy capacity formulas, when the jammer
has no side information or only possesses knowledge of the
messages.

A. Capacity Formulas for the General and the Less Capable
Cases

Theorem 1: If there exists a best channel to the eavesdrop-
per, the CR-assisted secrecy capacity for the AVWC with side

information at the jammer ̂̂C ran

S (W,V) is given by

̂̂
C

ran

S (W,V) = max
pΨ∈P(Ψ),
ρ∈P(X|Ψ)

(
min
W∈̂̂W I(pΨ; ρW )

−max
V ∈̂̂V I(pΨ; ρV )

)
, (11)
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with Ψ as a prefixing random variable and concatenated
channels ρW and ρV , respectively.

Proof of Theorem 1: See Appendix F.
Theorem 2: Let an AVWC (W,V) be given. If for (W,V),

the channel V is strongly less capable with respect to
the channel W and if there exists a best channel to the
eavesdropper, then the CR-assisted code secrecy capacitŷ̂
C

ran

S (W,V) is given by

̂̂
C

ran

S (W,V) = max
pX∈P(X )

(
min
W∈̂̂W I(pX ;W )

−max
V ∈̂̂V I(pX ;V )

)
(12)

Proof of Theorem 2: See Appendix G.

The secrecy capacity ̂̂
C

ran

S (W,V) depends on the row

convex closures ̂̂W and ̂̂V , like in [16] and [35].

B. Capacity Formulas Without Side Information at the
Jammer, or Where the Jammer Only Knows the Messages

Corollary 1: Let an AVWC (W,V) be given. If there exists
a best channel to the eavesdropper and if the adversary is either
blind or semi-blind, then the CR-assisted secrecy capacity
under the maximum error criterion is given by

Ĉ ran
S (W,V) = max

pΨ∈P(Ψ),
ρ∈P(X|Ψ)

(
min
W∈Ŵ

I(pΨ; ρW )

−max
V ∈V̂

I(pΨ; ρV )

)
, (13)

If for the AVWC (W,V), the channel V is strongly less
capable with respect to the channel W , then the CR-assisted
secrecy capacity under the maximum error criterion simplifies
to

Ĉ ran
S (W,V) = max

pX∈P(X )

(
min
W∈Ŵ

I(pX ;W )

−max
V ∈V̂

I(pX ;V )

)
. (14)

The result in (14) is an extension of [22, Corollary 1] to the
strongly less capable case.

Proof of Corollary 1: By simple modifications (especially
due to the fact that the adversary is (semi-) blind, it is sufficient
to require the single-letter condition in Remark 5 to hold) in
Lemma 13, the secrecy analysis, as well as in the converse
proof, it is easy to see that the theorem holds.

The secrecy capacity Ĉ ran
S (W,V) (in contrast tô̂

C
ran

S (W,V)) depends on the convex closures Ŵ and V̂ .

IV. DISCUSSION

A. Input and State Constraints

The extension of the results to the case of input and state
constraints is not straightforward. While the modifications in
the sense of [29] might be possible and may lead to a single-
letter CR-assisted secrecy capacity, the restrictions on the

jammer’s strategy are rigorous. In [29], the jammer is restricted
to a type-constrained jamming strategy. In [37], the authors
considered deterministic wiretap-codes for the AVWC with
input and state peak constraints. The authors derived single-
letter formulas for upper and lower bounds for the secrecy
rate and CR-assisted secrecy rate under input and state peak
constraints, in general, and derived capacity results for the
strongly less noisy case. In [27], a general multi-letter formula
for the achievable CR-assisted secrecy rate with input and state
peak constraints is presented.

B. From Random to Deterministic - Not Elimination

In [10], Ahlswede proposes the Elimination of Correlation
technique to reduce the amount of CR to only n2. He then
uses a prefix code to inform the receiver which realization of
the randomness is used. This leads to the following dichotomy
result: The deterministic code capacity (under the average error
criterion) equals its CR-assisted capacity, or is equal to zero if
the AVC is symmetrizable. Note that this technique cannot
be used in our system model. If a prefix code were used
to inform the receiver which deterministic code is used, the
jammer would obtain this information as well, and we obtain
once again the situation of the maximal error criterion for
deterministic codes.

The authors of [16] present a technique to reduce the
amount of CR. If a polynomial decay of the upper bound
on the error probability is feasible, a polynomial amount of
CR seems sufficient. The authors draw codewords not from the
complete set of typical sequences but a “suitable” subset. This
approach hints at the possibility of reducing the amount of CR
in our scenario, too. However, there is a crucial difference.
For WTCs, the secrecy capacity relies on auxiliary random
variables, in general. One of these RVs can be interpreted as
adding a “prefix” channel as part of the encoding process.
In our case, this RV is represented by Ψ. In our achievability
proof, apart from the requirements that codewords occur in
multiple codebooks, indexed by the realization of the CR, and
are bad only for few, it is important that codewords together
with channel inputs and state sequences possess a Markov
structure with high probability for all jamming strategies.
This is the motivation behind Lemma 11 and Lemma 12.
If the Markov structure holds, we can apply Lemma 13
when upper bounding the probability that an error bound λ
is not met, Appendix F-C. However, since for all possible
jamming strategies (and all messages pairs) the amount of CR
realizations for which the Markov structure property does not
hold has to be small compared to the total amount of CR,
we have to choose an amount of CR which is larger than
log |F|, which is exponentially growing with the blocklength
n. At least for the general case, we do not see how we can
circumvent this fact.

For the special cases that the AVC to the eavesdropper is
strongly degraded, strongly noisier, or strongly less capable,
the CR-assisted secrecy capacity does not rely on auxiliary
RVs anymore. We think, in these cases, the approach of [16]
can be used to upper bound the necessary amount of CR.
The reduction of the amount of CR is meaningful since in
practical implementations, CR might be expensive. Hence,
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from a system design point of view, it makes sense to reduce
the necessary amount of CR. In [35], the authors derived the
CR capacity of an AVC with non-causal knowledge of the
input at the adversary. The authors stated that the necessary
amount of CR is between n2 (the bound of a blind adversary)
and exp {nϵ}.

Unfortunately, this approach does not guarantee that the
amount of CR can grow less than exponentially with respect
to the blocklength. We assume that for the case of a blind
adversary, Ahlswede’s Robustification Technique (RT) and
ET work. Indeed, in [19], the authors applied exactly these
methods, and limited the amount of common randomness to
be polynomial (n3). Furthermore, the authors derived a single-
letter formula for the secrecy capacity for the AVWC, under
the condition that there exists a best channel to the eavesdrop-
per and a worst channel to the legitimate receiver, and under
the condition that strong degradedness holds, [19, Remark 1].
For the general case, the authors derived a multi-letter formula
for the AVWC, under the condition that there exists a best
channel to the eavesdropper, [19, Theorem 5]. Both formulas
are valid if the AVC to the legitimate receiver is not symmetriz-
able (for the case of the average error probability criterion).

In [21, Theorem 2], the authors presented results for the
deterministic secrecy capacity for the AVWC in the presence
of a blind adversary. The authors derived that the deterministic
secrecy capacity equals its CR-assisted secrecy capacity (under
the average error criterion) if the channel to the legitimate
receiver is not symmetrizable. Interestingly, in this work the
authors did not use the ET by Ahlswede. Limiting the amount
of randomness is crucial, as well as deriving a formula for the
deterministic case. However, for the reason mentioned above,
the RT and ET are not applicable for the case of non-causal
information of the channel input at the adversary. And for the
blind adversary, results have been derived in [19] and [21] (for
the case of the average error probability criterion).

However, deriving deterministic code results or a minimal
amount of CR is not the intention of this work. Instead,
we assume that there exists a sufficient amount of CR to
compute fundamental results on the secrecy capacities for
different knowledge scenarios at the jammer.

C. Justification for the Multi-Letter Requirements

We require a multi-letter condition to hold for the best
channel to the eavesdropper in Definition 6 because of the
following reason. Our secrecy analysis in the achievability
part is based on typicality. This typicality approach requires
that the underlying (single-letter) probability functions are
repeated in an i.i.d. manner. Now, assume a single-letter
best channel exists to the eavesdropper (which is essentially
the adversary’s worst case attack strategy). Repeating this
strategy in an i.i.d. manner n times might be suboptimal for
the adversary in general because the spaces spanned by the
n-letter extension of the row convex closure and the row
convex closure of the n-letter extension are not equivalent.
In other words, the adversary’s strategy space is larger when
choosing the strategy from P(Sn|Xn) instead of Pn(S|X ).
In Definition 6, we require explicitly that repeating the single-

letter best channel is optimal for all blocklengths. To further
illustrate this fact, we state the following.

Definition 10 (n-Letter Extension of ̂̂W): The n-letter
extension of ̂̂W is defined as the set

W̃n :=

{
Wn
p̂ (Y n|Xn) :

∑
sn∈Sn

p̂(sn|xn)Wn(·|xn, sn),

p̂(sn|xn) ∈ P(Sn|Xn), xn ∈ Xn

}
(15)

Remark 8: Note that W̃n ̸= ̂̂Wn

. It can be shown that the
operations of the Kronecker product and taking the row convex
closure are not commutative. In other words, the row convex
closure of a n-letter extension is not the n-letter extension of
a row convex closure.

Example 1 (Continued): We have

W (·|·, S = 0)⊗W (·|·, S = 0) =
(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
W (·|·, S = 1)⊗W (·|·, S = 1) =

(
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
W (·|·, S = 0)⊗W (·|·, S = 1) =

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
W (·|·, S = 1)⊗W (·|·, S = 0) =

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
Hence, when taking the row convex closure now, we obtain

W̃2 =

{(
α1 α2 α3 1−α1−α2−α3
β1 β2 β3 1−β1−β2−β3
γ1 γ2 γ3 1−γ1−γ2−γ3
δ1 δ2 δ3 1−δ1−δ2−δ3

)
:

αi, βi, γi, δi ∈ [0, 1], i ∈ {1, 2, 3},
3∑
i=1

αi =
3∑
i=1

βi =
3∑
i=1

γi = 1

}
In contrast, when taking the row convex closure first, and then
calculating the two letter extension, we obtain̂̂
W 1(·|·)⊗

̂̂
W 2(·|·)) =

( α1 1−α1
1−β1 β1

)
⊗
( α2 1−α2

1−β2 β2

)
̂̂W2

={(
α1α2 α1(1−α2) (1−α1)α2 (1−α1)(1−α2)

α1(1−β2) α1β2 (1−α1)(1−β2) (1−α1)β2
(1−β1)α2 (1−β1)(1−α2) β1α2 β1(1−α2)

(1−β1)(1−β2) (1−β1)β2 β1(1−β2) β1β2

)
:

αi, βi ∈ [0, 1], i ∈ {1, 2}

}
.

It is easy to see that the row [ 1
3

1
3

1
3 0 ] is achievable in W̃2 but

not in ̂̂W2

.

D. Relation to the Secrecy Capacity Under Average Error
Criterion

The average error criterion for AVCs has been considered
for example by [17]. In the following, we provide the CR-
assisted secrecy capacity formula under the average error
criterion and set the capacity formulas into relation to each
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Fig. 3. Difference of capacities if the channel input is known or unknown
at the jammer. Depicted are probability functions on [0, 1]. Each conditional
channel output probability is such a probability function. In order to use
the same figure, we use both, δ1 = W (y1|·, ·), δ2 = W (y2|·, ·), and
δ1 = V (z1|·, ·), δ2 = V (z2|·, ·). In both cases, we have δ2 = 1− δ1.

other. Let the achievable CR-assisted secrecy rates and the
CR-assisted secrecy capacity Ĉ ran

S,av(W,V) under the average
error criterion (averaging over the set of messages) be
analogously defined as in Definition 4.

Corollary 2 (Common Randomness Assisted Secrecy
Capacity Under the Average Error Criterion if the Family of
Channels to the Illegitimate Receiver is Strongly Degraded,
Strongly Noisier, or Strongly Less Capable With Independent
States): If for an AVWC the family of channels to the
illegitimate receiver V is strongly degraded, strongly noisier,
or strongly less capable with independent states, then the
CR-assisted secrecy capacity under the average error criterion
for the standard AVWC is given by

Ĉ ran
S,av(W,V) = max

pX

(
min
W∈Ŵ

I(pX ;W )−max
V ∈V̂

I(pX ;V )
)
.

Corollary 3: Let an AVWC (W,V) be given. If there exists
a best channel to the eavesdropper, then

Ĉ ran
S,av(W,V) = Ĉ ran

S (W,V) ≥ ̂̂
C

ran

S (W,V). (16)

Proof: The first equality in (16) follows because of
Theorem 2 and Corollary 2. Furthermore, it is easy to see

that Ŵ ⊂ ̂̂W and V̂ ⊂ ̂̂V .

E. Example

To clarify the fundamental difference between the capacity
formulas mentioned above, and to show that the inclusion can
be strict, we provide an explicit example. First, we define
I(·)(·) as the convex hull of the row of channel matrices as
follows.

Definition 11 ( [10]): For a given x ∈ X , let Iw(x) denote
the convex hull of the set {W (·|x, s) : s ∈ S} of probability
distributions on Y , i.e., Iw(x) = conv (W (·|x, s) : s ∈ S).

Example 2: We consider the following example. Let the
channel matrices be given as follows.

W (·|·, s1) =
(

0.1 0.9
0.7 0.3
0.8 0.2

)
, W (·|·, s2) =

(
0.2 0.8
0.85 0.15
0.9 0.1

)
V (·|·, s1) =

(
0.25 0.75
0.4 0.6
0.6 0.4

)
, V (·|·, s2) =

(
0.3 0.7
0.45 0.55
0.65 0.35

)

From Fig. 3, it is easy to see that this AVWC fulfills the
strongly less capable property for a blind adversary. The
eavesdropping channel possesses for every convex (or row
convex) closure a channel law, that is closer to a uniform
distribution than the legitimate channel (i.e., is closer to the
point (δ1, δ2) = ( 1

2 ,
1
2 )). We have

Ŵ = αW (·|·, s1) + (1− α)W (·|·, s2)

=
(

0.2−0.1α 0.8+0.1α
0.85−0.15α 0.15+0.15α
0.9−0.1α 0.1+0.1α

)
,

V̂ = βV (·|·, s1) + (1− β)V (·|·, s2)

=
(

0.3−0.05β 0.7+0.05β
0.45−0.05β 0.55+0.05β
0.65−0.05β 0.35+0.05β

)
.

The secrecy capacity Ĉ ran
S (W,V) of this AVWC can be

calculated to Ĉ ran
S (W,V) ≈ 0.3 bits per channel use, pX(0) =

pX(2) = 0.5, pX(1) = 0, α = 0.5, β ≈ 1. In contrast to that,
one can easily see that the channelŝ̂

W =
(

0.2 0.8
0.8 0.2
0.8 0.2

) ̂̂
V =

(
0.25 0.75
0.4 0.6
0.65 0.35

)
correspond to the worst and the best channels to Bob and Eve
(for n = 1), respectively, if the channel input is non-causally
known at the jammer. In this case, that the formula for the
secrecy capacity for the AVWC is evaluated with respect to
the row convex closures, we obtain approximately 0.26 bits
per channel use (which is strictly smaller than Ĉ ran

S (W,V)),
with input distribution pX(0) = pX(1) = 0.5, pX(2) = 0.
The second input symbol is used for the case with non-causal
side information at the jammer instead of the third one as for
the AVWC with blind adversary.

F. Summary

In this work, we derive a single-letter formula for the CR-
assisted secrecy capacity under the maximum error criterion
for an active attacker with non-causal side information of
the codewords, provided there exists a best channel to the
eavesdropper. Additionally, we provide a formula for the CR-
assisted secrecy capacity for the case that the eavesdropping
channel is strongly degraded, strongly noisier, or strongly
less capable with respect to the main channel. We further
allow that the messages might also be known at the jammer.
We apply and extend methods of [16] and [22]. We show
that the derived secrecy capacities depend on the row convex
closures of the sets of channels to Bob and Eve for the general
and the strongly degraded cases, respectively, if the input is
non-causally known at the jammer and depend on the convex
closures of the sets of channels if the channel input is not
non-causally known at the jammer.

We compare our results to the CR-assisted secrecy capacity
for the cases of maximum error criterion and blind adversary,
maximum error criterion and semi-blind adversary, and
the standard AVWC (average error probability and blind
adversary). In the considered system model, the worst case
occurs if the codewords (channel inputs) are non-causally
known at the jammer. As we have shown, it does not matter
if the jammer additionally knows the messages. The CR-
assisted secrecy capacity is determined with respect to the
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row convex closures of the channel sets. In contrast, if the
adversary is blind or semi-blind, then the CR-assisted secrecy
capacity under the average or maximum error criterion is
determined with respect to the convex closure of the channel
sets. We provided an example to illustrate this fundamental
difference. It is quite obvious that optimizing over a larger set,
here the row convex closure compared to the convex closure
of the channel sets, may lead to a smaller CR-assisted secrecy
capacity.

From a resource theory point of view, the necessary amount
of CR is of interest. We do not upper bound the amount
of CR. To ensure that codewords occur in sufficiently many
codebooks in order to confuse the jammer, we give a lower
bound on the amount of CR. This CR is known at the
eavesdropper and hence cannot be used as key to achieve a
secure transmission. Secrecy is achieved by wiretap coding.

APPENDIX A
EXCHANGEABILITY OF ORDER OF MAXIMIZATION

Lemma 2: Let the sequence (ai,j)i∈A,
j∈B

, ai,j ∈ R be given,

where A,B ⊂ N are finite sets. Then

max
i∈A

max
j∈B

(ai,j)i∈A,
j∈B

= max
j∈B

max
i∈A

(ai,j)i∈A,
j∈B

.

Proof: Let J ∗ and I∗ be given as

J ∗ =
{

max
i∈A

(ai,j) : j ∈ B
}

I∗ =
{

max
j∈B

(ai,j) : i ∈ A
}

Then it is easy to see that

max
j∈B

J∗ = max
i∈A

I∗

Intuitively, the result follows when imagining a matrix. If the
global maximum is unique, then the operations of collecting
the maximum in each column in the set J ∗ and then taking
the maximal element of J ∗ is equivalent to collecting the
maximum in each row in the set I∗ and then taking the
maximal element of I∗.

If the global maximum is not unique, the result remains the
same, but the indices (i, j) ∈ A× B might change.

APPENDIX B
VARIATION DISTANCE, MARKOV, CHERNOFF, AND

CHERNOFF-HOEFFDING BOUNDS

Definition 12 (Variation Distance): The variation distance
of two distributions P1, P2 on X is defined as

||P1 − P2||V =
∑
x∈X

|P1(x)− P2(x)|. (17)

Lemma 3 ([34, Lemma 2.7]): If ||P1 − P2||V = τ ≤ 1
2 ,

then

|H(P1)−H(P2)| ≤ −τ log
τ

|X |
.

We give a reminder on Markov’s inequality.

Lemma 4 (Markov’s Inequality [38, Lemma 83]): Let X be
a RV with mean E[X] = µ and let a be a positive number.
Then

Pr{X ≥ a} ≤ µ

a
.

Chernoff bounds are given as follows.
Lemma 5 (Chernoff Bounds, [39], [16, Lemma 2]): Let

X1, X2, . . . , Xn be i.i.d. RVs with values in {0, 1}, with
Pr{Xi = 1} = p. For all ϵ ∈ (0, 1) and p0 < p < p1,
the following bounds hold

Pr

{
1
n

n∑
i=1

Xi > (1 + ϵ)p1

}
< expe

{
−ϵ

2

8
np1

}
, (18)

Pr

{
1
n

n∑
i=1

Xi < (1− ϵ)p0

}
< expe

{
−3ϵ2

8
np0

}
. (19)

The Chernoff-Hoeffding bound is widely used in the proof.
Therefore, it shall be stated here.

Lemma 6 (Chernoff-Hoeffding Bounds, [40, Theorem 1.1],
[41]): Let X1, X2, . . . , Xn be i.i.d. RVs with values in [0, b],
where b is a positive number. Further, let E[Xi] = µ, and
0 < ϵ < 1

2 . Then

Pr

{
1
n

n∑
i=1

Xi ̸∈ [(1± ϵ)µ]

}
≤ 2 expe

(
−nϵ

2µ

3b

)
, (20)

where [(1± ϵ)µ] means the interval [(1− ϵ)µ, (1 + ϵ)µ].

APPENDIX C
TYPICAL SETS

We summarize some known facts of typicality properties.
Let δ > 0.

Lemma 7 (Properties of Typical Sets I, [34, Lemma 2.13,
Problem 2.5]): Let xn ∈ T np,δ . Then for any W : X → P(Y)

|T npW,2|X |δ| ≤ exp{n(H(pW ) + f1(δ))},
Wn(yn|xn) ≤ exp{−n(H(W |p)−f2(δ))}, ∀yn∈T nW,δ(xn),

for some functions f1(δ), f2(δ) > 0 with limδ→0 f1(δ) =
0 and limδ→0 f2(δ) = 0.

Lemma 8 (Properties of Typical Sets II, [42, Lemma
III.1.3]): For every p ∈ P(X ), W : X → P(Y) and xn ∈ Xn

pn(T np,δ) ≥ 1− (n+ 1)|X | exp{−ncδ2},
Wn(T nW,δ(xn)|xn) ≥ 1− (n+ 1)|X ||Y| exp{−ncδ2}.

with c = 1
2 ln 2 . Furthermore, there exists an n0 and a c′ > 0,

depending on |X |, |Y| and δ, such that for all n > n0 for each
p ∈ P(X ) and W : X → P(Y)

pn(T np,δ) ≥ 1− exp{−nc′δ2}, (21)

Wn(T nW,δ(xn)|xn) ≥ 1− exp{−nc′δ2}. (22)

Lemma 9 (Properties of Typical Sets III, [34, Lemma 2.2]):
Let Pn0 (S) be the set of all possible types of n-length
sequences on Sn. The cardinality of the set of all possible
types of length n is upper bounded by

|Pn0 (S)| ≤ (n+ 1)|S|.
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Lemma 10 (Properties of Typical Sets IV, [43, Lemma 3]
[31, Lemma 3]): Assume, the distributions p, p ∈ P(X ) and
the two matrices W,W : X → P(Y) are given. For any
positive integer n and sufficiently small δ > 0,

(pW )n(T n
W,δ

(xn)) ≤(n+ 1)|X ||Y|

exp{−n(I(p;W )− f3(δ))},

for all xn ∈ T np,δ holds, with some f3(δ) > 0 and
limδ→0 f3(δ) = 0. Furthermore, there exist an n0 and a ν > 0,
depending on |X |, |Y| and δ, such that for all n > n0,

(pW )n(T n
W,δ

(xn)) ≤ exp{−n(I(p;W )− ν))}. (23)

Lemma 11 (Properties of Typical Sets V, [14, Lemma 2]):
Let the sequences xn ∈ Xn, sn ∈ Sn, and δ, δ̂ > 0 be
given. Further, let (Ψ, X) be distributed according to pΨ,X =
pΨρX|Ψ. Define the channel

θ(s|x) :=
1

N(x|xn)

n∑
i=1

1(si = s, xi = x).

Then,

Pr
{

(Ψn, xn, sn) /∈ T npΨρX|Ψθ,δ
|(Ψn, xn) ∈ T n

pΨρX|Ψ,δ̂

}
≤ exp{−nh(δ)}, (24)

where h(δ) → 0 as δ → 0. Proof: Follows for example
by [34, Lemma 2.10, Lemma 2.12].

Lemma 12: Let f : Xn → Sn be fixed and let
(Ψn, Xn, f(Xn)) ∈ Ψn × Xn × Sn be distributed according
to pnΨρ

n
X|Ψ1f(Xn)(Xn). Let A be defined as the following

event.

A := {∄θ ∈ P0(Sn|Xn) : (Ψn, Xn, f(Xn)) ∈ T npΨρX|Ψθ,δ
}.

Then, we have for some c′ > 0, depending on |Ψ | and |X |,
and δ̂ > 0

Pr{A} ≤exp{−nc′δ̂2}

+(n+ 1)|X ||S| exp
{
−n min

θ∈P0(Sn|Xn)
hθ(δ)

}
,

where hθ(δ) → 0 if δ → 0.
Proof:

Pr{A} = Pr
{

(Ψn, Xn) /∈ T n
pΨρX|Ψ,δ̂

}
Pr
{
A|(Ψn, Xn) /∈ T n

pΨρX|Ψ,δ̂

}
+Pr

{
(Ψn, Xn) ∈ T n

pΨρX|Ψ,δ̂

}
Pr
{
A|(Ψn, Xn) ∈ T n

pΨρX|Ψ,δ̂

}
≤ Pr

{
(Ψn, Xn) /∈ T n

pΨρX|Ψ,δ̂

}
+Pr

{
A|(Ψn, Xn) ∈ T n

pΨρX|Ψ,δ̂

}
(a)

≤ exp{−nc′δ̂2}+ Pr
{
A|(Ψn, Xn) ∈ T n

pΨρX|Ψ,δ̂

}
= exp{−nc′δ̂2}

+
∑

xn∈Xn

Pr
{
A|(Ψn, xn) ∈ T n

pΨρX|Ψ,δ̂

}

Pr
{
Xn = xn|(Ψn, xn) ∈ T n

pΨρX|Ψ,δ̂

}
(b)
= exp{−nc′δ̂2}

+
∑

θ∈P0(Sn|Xn)
xn:f(xn)∈Tθ(xn)

Pr
{

(Ψn, xn, f(xn)) /∈ T npΨρX|Ψθ,δ
|

(Ψn, xn) ∈ T n
pΨρX|Ψ,δ̂

}
Pr
{
Xn = xn|(Ψn, xn) ∈ T n

pΨρX|Ψ,δ̂

}
(c)

≤ exp{−nc′δ̂2}+
∑

θ∈P0(Sn|Xn)

exp {−nhθ(δ)}

∑
xn:f(xn)∈Tθ(xn)

Pr
{
Xn = xn|(Ψn, xn) ∈ T n

pΨρX|Ψ,δ̂

}
(d)

≤ exp{−nc′δ̂2}

+(n+ 1)|X ||S| exp
{
−n min

θ∈P0(Sn|Xn)
hθ(δ)

}
.

(a) follows because of Lemma 8. (b) follows because each
xn invokes together with f(xn) a joint type pθ, with p ∈
P0(Xn) and θ ∈ P0(Sn|Xn). So instead of summing over
all xn ∈ Xn, we can iterate through all conditional types
θ ∈ P0(Sn|Xn) and sum up over all xn leading together with
f(xn) to the conditional type θ ∈ P0(Sn|Xn). (c) follows
because of Lemma 11, and (d) by type counting and bounding
the last term in (c) by 1.

APPENDIX D

Lemma 13: For any conditional type θ ∈ P0(Sn|Xn),
define the probability measure pΨXS as

pΨXS(ψ, x, s) = pΨ(ψ)ρ(x|ψ)θ(s|x).

Let δ > 0 and let pΨXS be a type fulfilling pΨ = pΨ and

||pΨXS − pΨXS ||V ≤ δ. (25)

Moreover, let Ψ′n be uniformly distributed on T npΨ . Then there
exist an n0 and a ν, depending on |X |, |Y|,|Ψ |, |S| and δ, such
that for all n > n0 we have for any (xn, sn) ∈ T npXS

,

E

[
Wn

 ⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψ′n)

∣∣∣∣xn, sn
]

≤ exp
{
−n
(

min
θ∈P0(Sn|Xn)

I(pΨ; ρWθ)− ν

)}
≤ exp

{
−n
(

min
θ∈P(S|X )

I(pΨ; ρWθ)− ν

)}
.

Proof of Lemma 13: We divide the proof into two steps.
First we provide an upper bound, and show then secondly that
this upper bound holds for arbitrary sequences of the same
type.

Let (Ψn, Xn, Sn) be uniformly distributed on T npΨXS
and

independent of Ψ′n. First, we have

E

[
Wn

 ⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψ′n)

∣∣∣∣Xn, Sn

]
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(a)

≤
∑

θ∈P0(Sn|Xn)

E

[
Wn

(
T nρWθ,δ

(Ψ′n)
∣∣∣∣Xn, Sn

)]
(b)
=

∑
θ∈P0(Sn|Xn)

∑
ψ′n∈Ψn

pΨn(ψ′n)

∑
(ψnxnsn)∈Ψn×Xn×Sn

pnΨXS(ψn, xn, sn)

Wn

(
T nρWθ,δ

(ψ′n)
∣∣∣∣xn, sn)

(c)
=

∑
θ∈P0(Sn|Xn)

∑
ψ′n∈Ψn

pΨn(ψ′n)

∑
(ψnxnsn)∈Ψn×Xn×Sn

pnΨ(ψn)ρn(xn|ψn)

θn(sn|xn)Wn

(
T nρWθ,δ

(ψ′n)
∣∣∣∣xn, sn)

(d)
=

∑
θ∈P0(Sn|Xn)

∑
ψ′n∈Ψn

pΨn(ψ′n)

(pΨρWθ)n
(
T nρWθ,δ

(ψ′n)
)

(e)

≤
∑

θ∈P0(Sn|Xn)

exp
{
−n
(
I(pΨ; ρWθ)− ν̂

)}∑
ψ′n∈Ψn

pΨn(ψ′n)

(f)

≤ (n+ 1)|X ||S|

exp
{
−n
(

min
θ∈P0(Sn|Xn)

I(pΨ; ρWθ)− ν̂

)}
(g)

≤ exp
{
−n
(

min
θ∈P0(Sn|Xn)

I(pΨ; ρWθ)− ν

)}
Here, (a) follows by the union bound. (b) follows by
evaluating the expectation. (c) follows by assumption that
pΨXS(ψ, x, s) = pΨ(ψ)ρ(x|ψ)θ(s|x). (d) follows by
expressing the probability function∑

(ψnxnsn)∈Ψn×Xn×Sn

pnΨ(ψn)ρn(xn|ψn)θn(sn|xn)

Wn

((
T nρWθ,δ

(ψ′n
) ∣∣∣∣xn, sn) (26)

as the output probability function (pΨρWθ)n
(
T nρWθ,δ

(ψ′n)
)
.

(e) follows by Lemma 10 with appropriate choice of ν̂, (f),
and (g) follow by Lemma 9.

Next, assume that (Ψn, Xn, Sn) is uniformly distributed on
T npΨXS

and independent of Ψ′n. We will show that the above
inequality also holds in this case up to small terms. Due to (25)
and Lemma 3, we have

H(pΨXS) ≥ H(pΨXS) + δ log
δ

|Ψ ||X ||S|
=: H(pΨXS) + δ′.

Furthermore, because of (25), we have T npΨXS
⊂ T npΨXS ,δ

.
Hence, for any nonnegative function f(ψn, xn, sn), we have

E[f(Ψn, Xn, Sn)]

=
∑

(ψn,xn,sn)∈T n
pΨXS

pn
ΨXS

(ψn, xn, sn)f(ψn, xn, sn)

=
1

|T npΨXS
|

∑
(ψn,xn,sn)∈T n

pΨXS

f(ψn, xn, sn)

≤ (n+ 1)|Ψ ||X ||S| exp{−nH(pΨXS)}
∑

(ψn,xn,sn)∈T n
pΨXS

f(ψn, xn, sn)

≤ (n+ 1)|Ψ ||X ||S| exp{−n(H(pΨXS)− δ′)}∑
(ψn,xn,sn)∈T n

pΨXS,δ

f(ψn, xn, sn)

≤ (n+ 1)|Ψ ||X ||S| exp{nδ′′}∑
(ψn,xn,sn)∈T n

pΨXS,δ

pnΨ(ψn)ρn(xn|ψn)θn(sn|xn)f(ψn, xn, sn)

≤ (n+ 1)|Ψ ||X ||S| exp{nδ′′}∑
(ψn,xn,sn)∈Ψn×Xn×Sn

pnΨ(ψn)ρn(xn|ψn)θn(sn|xn)f(ψn, xn, sn).

With

f(ψn, xn, sn) =
∑

θ∈P0(Sn|Xn)

∑
ψ′n∈Ψn

pΨn(ψ′n)

Wn

((
T nρWθ,δ

(Ψ′n
) ∣∣∣∣xn, sn) ,

this shows

E

[
Wn

 ⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψ′n)

∣∣∣∣Xn, Sn

]

≤ exp
{
−n
(

min
θ∈P0(Sn|Xn)

I(pΨ; ρWθ)− ν

)}
.

Secondly, for an arbitrary permutation of the index set
{1, 2, . . . , n} we have by definition

π
(
T nρWθ,δ

(ψ′n)
)

:=

{
π(yn) ∈ Yn :∣∣∣∣ 1nN(a, b|ψ′n, yn)− ρWθ(b|a)

1
n
N(a|ψ′n)

∣∣∣∣ ≤ δ,

∀a ∈ Ψ , b ∈ Y

}

=

{
yn ∈ Yn :∣∣∣∣ 1nN(a, b|ψ′n, π−1(yn))− ρWθ(b|a)

1
n
N(a|ψ′n)

∣∣∣∣ ≤ δ,

∀a ∈ Ψ , b ∈ Y

}

=

{
yn ∈ Yn :∣∣∣∣ 1nN(a, b|π(ψ′n), yn)− ρWθ(b|a)

1
n
N(a|π(ψ′n))

∣∣∣∣ ≤ δ,

∀a ∈ Ψ , b ∈ Y

}
=: T nρWθ,δ

(π(ψ′n)) .
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Therefore, for a (x̃n, s̃n) with (ψn, x̃n, s̃n) ∈ T npΨXS
and an

arbitrary permutation π, we have

EΨ′n

[
Wn

 ⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψ′n)

∣∣∣∣x̃n, s̃n
]

=
∑

ψ′n∈T n
P

pΨn(ψ′n)

Wn

 ⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(ψ′n)

∣∣∣∣x̃n, s̃n


=
∑

ψ′n∈T n
P

pΨn(ψ′n)

Wn

 ⋃
θ∈P0(Sn|Xn)

π
(
T nρWθ,δ

(ψ′n)
)∣∣∣∣π(x̃n, s̃n)


=

∑
ψ′n∈T n

P

pΨn(ψ′n)

Wn

 ⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(π(ψ′n))

∣∣∣∣π(x̃n, s̃n)


(a)
=

∑
ψ′n∈T n

P

pΨn(ψ′n)

Wn

 ⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(ψ′n)

∣∣∣∣π(x̃n, s̃n)


= EΨ′n

Wn

 ⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψ′n)

∣∣∣∣π(x̃n, s̃n)

 ,
where (a) follows because we sum up over all ψ′n with the
same type5 (hence, pΨn(ψ′n) is identical for all ψ′n of the
same type).

Hence, we can rewrite the expectation as

E

Wn

 ⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψ′n)

∣∣∣∣Xn, Sn


=

∑
(ψn,xn,sn)∈T n

pΨXS

pΨnXnSn(ψn, xn, sn)

EΨ′n

W
 ⋃

θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψ′n)

∣∣∣∣xn, sn


= E

W
 ⋃

θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψ′n)

∣∣∣∣x̃n, s̃n
 ,

for all (ψn, x̃n, s̃n) ∈ T npΨXS
.

APPENDIX E
PROOF OF LEMMA 1

Proof of Lemma 1: We consider both, the error
probability and the information leakage. Let the maximum

5Types are permutation invariant.

error probability and the information leakage, respectively,
be given as

ê(Kn) := max
f∈F

max
j∈Jn

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn, f(xn)),

max
f∈F

max
u∈Un

I(pJn
;EuV nf ).

Using the same (n, Jn) deterministic wiretap-code Kn, as for
the criteria above and considering now the maximization over
θ ∈ P(Sn|Xn) we can express the maximum error probability
of transmitting one codeword as

max
j∈Jn

∑
xn∈Xn

E(xn|j)Wn
θ (Dcj |xn)

= max
j∈Jn

∑
xn∈Xn

∑
sn∈Sn

E(xn|j)θ(sn|xn)Wn(Dcj |xn, sn),

and hence we have

max
j∈Jn

∑
xn∈Xn

∑
sn∈Sn

E(xn|j)θ(sn|xn)Wn(Dcj |xn, sn)

≤ max
j∈Jn

∑
xn∈Xn

max
sn∈Sn

E(xn|j)Wn(Dcj |xn, sn)

= max
f∈F

max
j∈Jn

∑
xn∈Xn

E(xn|j)Wn(Dcj |xn, f(xn))

= ê(Kn)

Hence, even though the set of stochastic jamming strategies
is larger than the set of deterministic jamming strategies, both
will lead to the same error expression. Since

EuV
n
f (zn|j) =

∑
xn∈Xn

Eu(xn|j)V n(zn|xn, f(xn)),

V nθ (zn|xn) =
∑
sn∈Sn

θ(sn|xn)V n(zn|xn, sn),

EuV
n
θ (zn|j) =

∑
xn∈Xn

Eu(xn|j)
∑
sn∈Sn

θ(sn|xn)V n(zn|xn, sn),

for the leakage we can show that

max
f∈F

I(pJn
;EuV nf ) = max

θ∈P(Sn|Xn)
I(pJn

;EuV nθn)

because the mutual information is convex in V n(zn|xn, sn) for
fixed input distribution. Hence, taking convex combinations
of V n(zn|xn, sn) does not increase the leakage term.
Using Jensen’s inequality and the fact that each value of
I(pJn

;EuV nf ) can also be achieved by I(pJn
;EuV nθn), since

the deterministic mappings F are a subset of the stochastic
mappings P(Sn|Xn), F ⊂ P(Sn|Xn), the equality is
established, [18]. In other words, since the mutual information
is a convex (row convex) function with respect to the
conditional probability function of the output given the input
for fixed input distribution, the optimal jamming strategy
with respect to the secrecy constraint is achieved at the
boundary of the probability polytope, i.e., is deterministic,
[44, Proposition 2.4.1].
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APPENDIX F
PROOF OF THEOREM 1

The extension from the standard AVWC to the case where
the jammer additionally knows the channel input is not trivial.
When using standard proof techniques from the AVWC, the
jammer might be able to locate a channel input xn to a specific
deterministic wiretap-codebook Kn. This automatically leads
to the consideration of the deterministic code secrecy capacity
of an AVWC under the maximum error criterion. Even without
secrecy constraints, this problem remains unsolved, [10], [21].
To ensure that the confusion at the jammer with respect to the
used codebook is sufficiently high, even if the channel input
xn is non-causally known, we fulfill an additional requirement
in contrast to the standard AVWC. The used codewords xn

occur in multiple codebooks Kn,Un
, where Un is the set of

codebooks containing xn as a codeword.
We use random coding arguments as in [16] and generate

random sets of deterministic wiretap-codebooks. Note that we
have to take into account that the jammer possesses non-
causal knowledge about the channel input (and we allow
knowledge of the messages, since we consider the maximum
error), which results in a different error probability. When
considering general WTCs, the capacity formulas depend on
auxiliary RVs. One viewpoint to one of these auxiliary RVs
is by introducing a prefix channel as part of the encoding
process. For the prefixing, we follow [4, Lemma 4 and its
proof], or [36, p.97, Addition of prefix channel] with slight
modifications. In the original system model (Figure 1), the
jammer knows the channel input Xn

u . If we concatenate a
channel with the AVWC, and call the prefix variable Ψn

u,
then the jammer does not know the channel input Ψn

u of
the concatenated channel but an intermediate variable Xn,
which is, in fact, the channel input of the original channel.
However, we can adapt the codebook generation and decoding
regions according to the concatenated channels ρW and ρV ,
respectively. For the secrecy analysis, we consider the mutual
information I(pJn ;EuV nθ∗) and we have to show that the
leakage to the eavesdropper vanishes asymptotically. Last,
we show that the probability of obtaining codes for which
both the decoding error probability and the leakage vanish
asymptotically approaches one. For the converse, we modify
the standard converse proof for the WTC.

For reasons that will become clear later in the proof,
we choose an amount of CR that is lower bounded by

|Un| >max

{
8
ϵp̃

log (|Jn||Ln||F|),

exp {n(H(X,Ψ)−R+ δ̃)}(
exp{−nc′δ′}

λ

+
exp

{
−n
(
min

W∈̂̂W I(pΨ; ρW )−R− ν
)}

λ

)−1}
,

(27)

for a p̃ > exp{−nc′δ̂2} + (n + 1)|X ||S| exp{
−nminθ∈P0(Sn|Xn) hθ(δ)

}
(see Lemma 12).

A. Codebook Generation

We assume that for all u ∈ Un, pU (u) = 1
|Un| . Let

p ∈ P(Ψ) be given. Partition the set of typical sequences
T np,δ into disjoint subsets C(j,l) of size |C(j,l)| = |T n

p,δ|
|Jn||Ln| .

Here j ∈ Jn = {1, 2, . . . , Jn} and l ∈ Ln = {1, 2, . . . , Ln}
correspond to the secure and confusing messages, respectively.
We have Jn · Ln = exp {nR}, and the transmission rate R
will determined later. Let the random variable Ψn

ujl denote
the codeword for the message pair (j, l) ∈ Jn × Ln, if the
CR has the realization U = u. The codewords Ψn

ujl and
Ψn
u(jl)′ are independent of each other for all (j, l) ̸= (j, l)′. Let

χ̂ := {Ψn
ujl : j ∈ Jn, l ∈ Ln, u ∈ Un} be the family of RV,

representing the random codewords. We start by generating
a deterministic wiretap-code for each u ∈ Un (still random
in terms of random coding arguments). To indicate that each
codebook at this point is a random variable, we add the
argument χ̂. For each codebook Kn,u(χ̂), we draw Jn · Ln
codewords Ψn

ujl uniformly from the subsets C(j,l). For each
Ψn
ujl we randomly choose Xn uniformly distributed over

T nρ,δ(Ψn
ujl) as the channel input.

B. Decoding Regions

Let D̂′ujl(χ̂) be given as

D̂′ujl(χ̂) =
⋃

θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψn

ujl).

with6 (ρWθ)(y|ψ) =
∑
x∈X
s∈S

ρ(x|ψ)θ(s|x)W )(y|x, s).

Then, we can define the decoding sets D̂ujl(χ̂) as follows.

D̂ujl(χ̂) = D̂′ujl(χ̂)
⋂
 ⋃

(jl)′∈Jn×Ln

(jl)′ ̸=(jl)

D̂′u(jl)′(χ̂)


c

. (28)

For those sequences, which belong to multiple D̂′u·(χ̂) or to
no D̂′u·(χ̂), a decoding error is declared.

C. Codebook Properties for Reliability

As already mentioned, we have to make sure, that every
codeword occurs in multiple codebooks. By generating the
codebooks Kn,u(χ̂), u ∈ Un as above, there are at most

|T np,δ|
Jn · Ln

= exp {n(H(Ψ)−R+ ϵ1(n))}

non-overlapping codebooks in the worst case, where R
corresponds to the code rate of a code with Jn ·Ln messages.
Intuitively, to ensure the occurrence of each codeword in k
codebooks (on average), we should use an amount of CR
which corresponds roughly to

|Un| ≥ k exp {n(H(Ψ)−R+ ϵ1(n))}.

Later, we will derive a lower bound on the amount of CR,
explicitly. We follow and extend the ideas of [16], [19],

6Note that θ(s|x), x ∈ X , s ∈ S is a single-letter distribution on the set
of all possible conditional types of sn given xn.
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and [31]. Here, in contrast to the classical DMC, we have
three error terms:
• given the received sequence Y n, we do not find sequences

Ψn
ujl and a channel input Xn ∈ T nρ,δ(Ψn

ujl), such that Y n

is conditional typical given Ψn
ujl and Xn ∈ T nρ,δ(Ψn

ujl),
• given the received sequence Y n which is conditional

typical given the codeword Ψn
ujl and the channel input

Xn ∈ T nρ,δ(Ψn
ujl), we find another codeword Ψn

u(jl)′

and channel input X ′n ∈ T nρ,δ(Ψn
u(jl)′), such that

Y n is conditional typical given Ψn
u(jl)′ and X ′n ∈

T nρ,δ(Ψn
u(jl)′),

• given the received sequence Y n, there exist too many CR
realizations u, such that for some messages (j, l) ∈ Jn×
Ln, the codeword Ψn

ujl = ψn, the channel input Xn ∈
T nρ,δ(Ψn

ujl), X
n = xn, and the state sequence Sn = sn,

the probability of Y n ∈ D̂cujl(χ̂) is lower bounded by
some λ.

Since we apply random codes, we do actually not know which
codebook realizations (in terms of random coding arguments)
lead to a good error performance. But we know that the error
probability vanishes averaged over a set of codebooks. Since
the codewords occur in multiple codebooks, we have to take
care of the situation that the codewords perform well in some
codebooks, but not so well in others.

First, let us fix a pair (j, l) ∈ Jn ×Ln and a θ ∈ P(S|X ).
Arbitrarily choose a triple (ψn, xn, sn) ∈ TpΨ×ρ×θ,δ , with
ψn ∈ C(j,l), xn ∈ T nρ,δ′(ψn) and sn ∈ T n

θ,δ̃
(xn). We have

to show that if the sequence ψn is a codeword (occurring
in multiple codebooks), then the state sequence is bad only
for few codebooks, such that averaged over all codebooks,
the error probability still vanishes. This has to hold for all
pairs (j, l), sequences ψn ∈ C(j,l), xn ∈ T nρ,δ(ψn), and sn ∈
T n
θ,δ̃

(xn). We now can define the sets U(j, l, ψn, xn, χ̂) and
U0(j, l, ψn, xn, sn, χ̂) as

U(j, l, ψn, xn, χ̂) :=
{
u : Ψn

ujl = ψn, Xn = xn
}
,

U0(j, l, ψn, xn, sn, χ̂) :=
{
u : Ψn

ujl = ψn, Xn = xn, and

Wn(D̂cujl(χ̂)|xn, sn) > λ
}
.

Here, U(j, l, ψn, xn, χ̂) denotes the set of all codebooks, for
which the sequence ψn is the codeword for the message
pair (j, l) and xn is the corresponding channel input, and
U0(j, l, ψn, xn, sn, χ̂) is the set of all codebooks, for which
the sequence ψn is the codeword for the message pair (j, l),
xn is the corresponding channel input, and the error bound λ
is not met.

We can define the binary random variable
B(u, j, l, ψn, xn, χ̂) as

B(u, j, l, ψn, xn, χ̂) =

{
1 if u ∈ U(j, l, ψn, xn, χ̂)
0 else.

(29)

Pr{B(u, j, l, ψn, xn, χ̂) = 1}
= Pr{Ψn

ujl = ψn}Pr{Xn = xn|Ψn
ujl = ψn}

=
1

|C(j,l)|
1

|T nρ,δ(ψn)|
, ∀u ∈ Un, ∀(j, l) ∈ Jn × Ln.

(30)

It indicates whether the sequences ψn and xn are the prefix
variable and the channel input realizations for the codebook
realization u and the message pair (j, l). By the Chernoff
bound we obtain

Pr
{
|U(j, l, ψn, xn, χ̂)| ≤

(1− ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}
}

= Pr

{ ∑
u∈Un

B(u, j, l, ψn, xn, χ̂) ≤

(1− ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}

}

≤ expe

{
−3ϵ22|Un|Jn · Ln exp{−n(H(X|Ψ) + δ)}

8|T np,δ|

}

≤ expe

{
−3

8
ϵ22|Un| exp{−n(H(X,Ψ)−R+ δ̃)}

}
.

Next, we will upper bound the probability that
|U0(j, l, ψn, xn, sn, χ̂)| exceeds its expected value. We define
the binary random variable B̃(j, l, ψn, xn, sn, u, λ, χ̂) as

B̃(j, l, ψn, xn, sn, u, λ, χ̂)

=

{
1 if u ∈ U0(j, l, ψn, xn, sn, χ̂)

0 else.
(31)

Pr
{
B̃(j, l, ψn, xn, sn, u, λ, χ̂) = 1

}
= Pr{B(u, j, l, ψn, xn, χ̂) = 1}

Pr
{
Wn(D̂cujl(χ̂)|xn, sn) > λ|B(u, j, l, ψn, xn, χ̂) = 1

}
.

(32)

It indicates whether the sequences ψn and xn are the prefix
variable and the channel input realizations for the codebook
realization u and the message pair (j, l), and the error bound
λ is not met.

We consider the case that the error bound is not met for
a fixed u ∈ Un. By the Markov inequality Lemma 4 and by
Lemma 13 we have

Pr
{
Wn(D̂cujl(χ̂)|xn, sn) > λ|B(u, j, l, ψn, xn, χ̂) = 1

}
(a)

≤
E
[
Wn(D̂cujl(χ̂)|xn, sn)|B(u, j, l, ψn, xn, χ̂) = 1

]
λ

≤ 1
λ
E

[(
Wn

(
D̂′cujl(χ̂)|xn, sn

)

+Wn

( ⋃
(j,l)′∈Jn×Ln

(j,l)′ ̸=(j,l)

D̂′u(jl)′(χ̂)|xn, sn
))

∣∣∣B(u, j, l, ψn, xn, χ̂) = 1

]
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(b)

≤ 1
λ

(
exp{−nc′δ′2}

+
∑

(j,l)′∈Jn×Ln

(j,l)′ ̸=(j,l)

E
[(
Wn

(
D̂′u(jl)′(χ̂)|xn, sn

))
∣∣∣B(u, j, l, ψn, xn, χ̂) = 1

])

≤ 1
λ

(
exp{−nc′δ′2}

+
∑

(j,l)′∈Jn×Ln

(j,l)′ ̸=(j,l)

E
[
Wn

((⋃
θ∈P0(Sn|Xn)

T nρWθ,δ
(Ψn

u(jl)′)
)∣∣∣∣xn, sn)

∣∣∣B(u, j, l, ψn, xn, χ̂) = 1
])

(c)

≤ 1
λ

(
exp{−nc′δ′2}

+
∑

(j,l)′∈Jn×Ln

(j,l)′ ̸=(j,l)

exp
{
− n

(
min
W∈̂̂W I(pΨ; ρW )− ν

)})

≤ exp{−nc′δ′2}
λ

+
exp

{
−n
(
min

W∈̂̂W I(pΨ; ρW )−R− ν
)}

λ
.

Here, (a) follows by the Markov inequality (Lemma 4),
(b) follows by Lemma 8 and the union bound, and (c)
follows by Lemma 13 and the fact that Ψn

u(jl)′ and Ψn
ujl are

independent of each other.
Then, identifying p1 in Lemma 5 as

p1 =
exp{−nc′δ′2}

λ

+
exp

{
−n
(
min

W∈̂̂W I(pΨ; ρW )−R− ν
)}

λ
,

we can bound the probability that |U0(j, l, ψn, xn, sn, χ̂)|
exceeds a certain value as

Pr
{
|U0(j, l, ψn, xn, sn, χ̂)| ≥

(1 + ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1

}
= Pr

{ ∑
u∈Un

B̃(j, l, ψn, xn, sn, u, λ, χ̂) ≥

(1 + ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1

}

≤ expe

{
− 1

8
ϵ22|Un| exp{−n(H(X,Ψ)−R+ δ̃)}(

exp{−nc′δ′}
λ

+
exp

{
− n

(
min

W∈̂̂W I(pΨ; ρW )−R− ν
)}

λ

)}
.

Hence for all |Un| fulfilling

|Un| > exp {n(H(X,Ψ)−R+ δ̃)}(
exp{−nc′δ′}

λ

+
exp

{
− n

(
min

W∈̂̂W I(pΨ; ρW )−R− ν
)}

λ

)−1

the probabilities that codewords do not occur in at least
1 − ϵ2 times the expected number of codebooks and that
codewords occur in more than 1 + ϵ2 times the expected
number of codebooks for which the error bound is not met,
vanish super exponentially fast.

The above described events have to hold for all (j, l) ∈
Jn ×Ln, ψn ∈ C(j,l) x

n ∈ T nρ,δ(ψn) and sn ∈ Sn, for which
there exists θ ∈ P0(Sn|Xn) : (ψn, xn, sn) ∈ T npΨρX|Ψθ,δ

.
Hence,

Pr

{ ⋂
(j,l)∈Jn×Ln

⋂
ψn∈C(j,l)

xn∈T n
ρ,δ(ψn)

sn∈Sn

∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n
pΨρX|Ψθ,δ

{
|U0(j, l, ψn, xn, sn, χ̂)| ≤

(1 + ϵ2)|Un| · Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1

}}
= 1− Pr

{( ⋂
(j,l)∈Jn×Ln

⋂
ψn∈C(j,l)

xn∈T n
ρ,δ(ψn)

sn∈Sn

∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n
pΨρX|Ψθ,δ

{
|U0(j, l, ψn, xn, sn, χ̂)| ≤

(1 + ϵ2)|Un| · Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1

})c}
(a)

≥ 1− |Jn||Ln|
|T np,δ|
|Jn||Ln|

|T nρ,δ||Sn|

expe

{
− ϵ22|Un| exp {−n(H(X,Ψ)−R+ ϵ1(n))}

8(
exp{−nc′δ′}

λ

+
exp

{
− n

(
min

W∈̂̂W I(pΨ; ρW )−R− ν
)}

λ

)}
= 1− |T np,δ||T nρ,δ||Sn|

expe

{
− ϵ22|Un| exp {−n(H(X,Ψ)−R+ ϵ1(n))}

8(
exp{−nc′δ′}

λ

+
exp

{
− n

(
min

W∈̂̂W I(pΨ; ρW )−R− ν
)}

λ

)}
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and

Pr

{ ⋂
(j,l)∈Jn×Ln

⋂
ψn∈C(j,l)

xn∈T n
ρ,δ(ψn)

sn∈Sn

∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n
pΨρX|Ψθ,δ

{
|U(j, l, ψn, xn, χ̂)| ≤

(1− ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}
}}

= 1− Pr

{( ⋂
(j,l)∈Jn×Ln

⋂
ψn∈C(j,l)

xn∈T n
ρ,δ(ψn)

sn∈Sn

∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n
pΨρX|Ψθ,δ{

|U(j, l, ψn, xn, χ̂)|

≤ (1− ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}
})c}

(b)

≥ 1− |Jn||Ln|
|T np,δ|
|Jn||Ln|

|T nρ,δ||Sn|

expe

{
− 3ϵ22|Un|Jn · Ln

8|T np,δ||T nρ,δ|

}

= 1− |T np,δ||T nρ,δ||Sn| expe

{
− 3ϵ22|Un|Jn · Ln

8|T np,δ||T nρ,δ|

}
.

Here, (a) and (b) follow by the union bound and summing
over all (j, l) ∈ Jn × Ln, ψn ∈ C(j,l) x

n ∈ T nρ,δ(ψn) and
sn ∈ Sn. Next, we will show that for all (j, l) ∈ Jn × Ln
and all f ∈ F the amount of CR realizations for which
Lemma 12 does not hold is small compared to the total
amount of CR. First, fix a pair (j, l) ∈ Jn × Ln and a
jamming strategy f ∈ F and let ϵ > 0. Furthermore, let p̃ >
exp{−nc′δ̂2}+(n+1)|X ||S| exp

{
−nminθ∈P0(Sn|Xn) hθ(δ)

}
(see Lemma 12). Then by the Chernoff bounds, Lemma 5,
we can compute

Pr
{∣∣∣{u ∈ Un :

∄θ ∈ P0(Sn|Xn) : (Ψn
ujl, X

n, f(Xn)) ∈ T npΨρX|Ψθ,δ

}∣∣∣ >
(1 + ϵ)|Un|p̃

}
< expe

{
− ϵ|Un|p̃

8

}
Furthermore, the probability that this property holds for all
(j, l) ∈ Jn ×Ln and all f ∈ F can be lower bounded by the
union bound to

Pr
{ ⋂

(j,l)∈Jn×Ln

f∈F

{∣∣∣{u ∈ Un :

∄θ ∈ P0(Sn|Xn) : (Ψn
ujl, X

n, f(Xn)) ∈ T npΨρX|Ψθ,δ
}
∣∣∣ ≤

(1 + ϵ)|Un|p̃
}}

= 1− Pr
{( ⋂

(j,l)∈Jn×Ln

f∈F

{∣∣∣{u ∈ Un : ∄θ ∈ P0(Sn|Xn) :

(Ψn
ujl, X

n, f(Xn)) ∈ T npΨρX|Ψθ,δ
}
∣∣∣ ≤ (1 + ϵ)|Un|p̃

})c}

≥ 1−
⋃

(j,l)∈Jn×Ln

f∈F

Pr
{{∣∣∣{u ∈ Un : ∄θ ∈ P0(Sn|Xn) :

(Ψn
ujl, X

n, f(Xn)) ∈ T npΨρX|Ψθ,δ
}
∣∣∣ > (1 + ϵ)|Un|p̃

}}
≥ 1− |Jn||Ln||F| expe

{
− ϵ|Un|p̃

8

}
,

which approaches 1 super exponentially fast in n by our choice
of |Un| in (27).

D. Codebook Realization

Now, let Kran
n be a codebook realization of Kran

n (χ̂), fulfilling
the aforementioned properties (codewords occur in sufficiently
many (deterministic) codebooks, indexed by the realization of
the CR, and are bad only for few, and codewords together with
channel inputs and state sequences possess a Markov structure
with high probability for all jamming strategies), with D′ujl as

D̂′ujl =
⋃

θ∈P0(Sn|Xn)

T nρWθ,δ
(ψnujl).

with7 (ρWθ)(y|ψ) =
∑
x∈X
s∈S

ρ(xψ)θ(s|x)W )(y|x, s) and
decoding sets Dujl, being as follows.

Dujl = D′ujl
⋂
 ⋃

(jl)′∈Jn×Ln

(jl)̸=(jl)′

D′u(jl)′


c

(33)

For those sequences, which belong to multiple D̂′u· or to no
D̂′u·, a decoding error is declared.

E. Adaptation of the Error Criterion

We will modify the error criterion and require that both
the secret message J and the confusing message L should be
successfully decoded at Bob.

Hence, we have

max
j∈Jn,
l∈Ln,
f∈F

∑
u∈Un

pU (u)
∑

ψn∈Ψn

Eu(ψn|j)
∑

xn∈T n
ρ,δ(ψn)

Wn(Dcujl|xn, f(xn))
|T nρ,δ(ψn)|

= max
j∈Jn,
l∈Ln,
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un

pU (u)E(ψn|j, l, u)Wn(Dcujl|xn, f(xn))
|T nρ,δ(ψn)|

= max
j∈Jn

max
l∈Ln

max
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un:
∃θ∈P0(Sn|Xn):(ψn,xn,f(xn))∈T n

pΨρX|Ψθ,δ

pU (u)E(ψn|j,l,u)Wn(Dcujl|xn,f(xn))
|T nρ,δ(ψn)|

+ max
j∈Jn

max
l∈Ln

max
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un:
∄θ∈P0(Sn|Xn):(ψn,xn,f(xn))∈T n

pΨρX|Ψθ,δ

pU (u)E(ψn|j,l,u)Wn(Dcujl|xn,f(xn))
|T nρ,δ(ψn)|

7Note that θ(s|x), x ∈ X , s ∈ S is a single-letter distribution on the set
of all possible conditional types of sn given xn.
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≤ max
j∈Jn

max
l∈Ln

max
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un:
∃θ∈P0(Sn|Xn):(ψn,xn,f(xn))∈T n

pΨρX|Ψθ,δ

pU (u)E(ψn|j,l,u)Wn(Dcujl|xn,f(xn))
|T nρ,δ(ψn)|

+ max
j∈Jn

max
l∈Ln

max
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un:
∃θ∈P0(Sn|Xn):(ψn,xn,f(xn))∈T n

pΨρX|Ψθ,δ

E(ψn|j, l, u)
|T nρ,δ(ψn)|

1
|Un|

∣∣{u ∈ Un : ∄θ ∈ P0(Sn|Xn) :
(ψnujl, x

n, f(xn)) ∈ T npΨ×ρX|Ψ×θ,δ}
∣∣

(a)

≤ max
j∈Jn

max
l∈Ln

max
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un:
∃θ∈P0(Sn|Xn):(ψn,xn,f(xn))∈T n

pΨρX|Ψθ,δ

pU (u)E(ψn|j,l,u)Wn(Dcujl|xn,f(xn))
|T nρ,δ(ψn)|

+
(1 + ϵ)|Un|p̃

|Un|

= max
j∈Jn

max
l∈Ln

max
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un:
∃θ∈P0(Sn|Xn):(ψn,xn,f(xn))∈T n

pΨρX|Ψθ,δ

pU (u)E(ψn|j,l,u)Wn(Dcujl|xn, f(xn))
|T nρ,δ(ψn)|

+ (1 + ϵ)p̃

≤ max
j∈Jn

max
l∈Ln

max
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un:
∃θ∈P0(Sn|Xn):(ψn,xn,f(xn))∈T n

pΨρX|Ψθ,δ

(
pUJLΨnXn(u, j, l, ψn, xn)

Wn(Dcu,j,l|xn, f(xn))
)

+ (1 + ϵ)p̃

= max
j∈Jn

max
l∈Ln

max
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un:
∃θ∈P0(Sn|Xn):(ψn,xn,f(xn))∈T n

pΨρX|Ψθ,δ

(
pU |JLΨnXn(u|j, l, ψn, xn)

pJLΨnXn(j, l, ψn, xn)Wn(Dcujl|xn, f(xn))
)

+ (1 + ϵ)p̃

≤ max
j∈Jn

max
l∈Ln

max
f∈F

∑
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

u∈Un:
∃θ∈P0(Sn|Xn):(ψn,xn,f(xn))∈T n

pΨρX|Ψθ,δ

(
pU |ΨnXnJL(u|ψn, xn, j, l)

Wn(Dcujl|xn, f(xn))
)

+ (1 + ϵ)p̃

≤ max
j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn

∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n
pΨρX|Ψθ,δ

∑
u∈Un

(
pU |ΨnXnJL(u|ψn, xn, j, l)

Wn(Dcujl|xn, sn)
)

+ (1 + ϵ)p̃

:= ˆ̂e(Kran
n )

We first split the error probability into two terms with
respect to those CR realizations for which the sequences
(ψn, xn, f(xn)) fulfill the property of Lemma 12 or not. In the
first term, there exists a θ ∈ P0(Sn|Xn) : (ψn, xn, f(xn)) ∈
TpΨρX|Ψθ,δ , in the second term there does not exist such

a θ ∈ P0(Sn|Xn). Here, we have implicitly shown in
Appendix F-C, that (a) follows with probability approach-
ing 1, where Lemma 12 is applied.

Secondly, we consider the maximization over all terms
(ψn, xn, sn). Our motivation to do so is to reduce the size
of the space, over which should be optimized. The family
F = {f : Xn → Sn} consists of |F| = |Sn||Xn| elements,
hence it grows doubly exponentially with n. By considering
the maximum with respect to xn, it is sufficient to consider
the state sequence sn maximizing the error probability. Hence,
we can reduce the space size used for optimization to Xn×Sn,
which grows only exponentially in n.

F. Error Analysis

For the error probability we can overall conclude

ˆ̂e(Kran
n ) = (1 + ϵ)p̃

+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn:
∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n

pΨρX|Ψθ,δ

∑
u∈Un

(
pU |ΨnXnJL(u|ψn, xn, j, l)

Wn(Dcujl|xn, sn)
)

= (1 + ϵ)p̃+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn:
∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n

pΨρX|Ψθ,δ

(

∑
u∈Uc

0 (j,l,ψn,xn,sn)

(
pU |ΨnXnJL(u|ψn, xn, j, l)Wn(Dcujl|xn, sn)

)

+
∑

u∈U0(j,ψ
n,l,xn,sn)

(
pU |ΨnXnJL(u|ψn, xn, j, l)Wn(Dcujl|xn, sn)

))

≤ (1 + ϵ)p̃+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn:
∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n

pΨρX|Ψθ,δ

(

∑
u∈U0(j,ψ

n,l,xn,sn)

pU |ΨnXnJL(u|ψn, xn, j, l)Wn(Dcujl|xn, sn)
)

≤ (1 + ϵ)p̃+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn:
∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n

pΨρX|Ψθ,δ

(

∑
u∈U0(j,ψ

n,l,xn,sn)

pU |ΨnXnJL(u|ψn, xn, j, l)
)

= (1 + ϵ)p̃+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn:
∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n

pΨρX|Ψθ,δ

(

∑
u∈U0(j,ψn,l,xn,sn)

pUΨnXnJL(u, ψn, xn, j, l)
pΨnXnJL(ψn, xn, j, l)

)
= (1 + ϵ)p̃+ λ+ max

j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn:
∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n

pΨρX|Ψθ,δ

(
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u∈U0(j,ψn,l,xn,sn) pUΨnXnJL(u, ψn, xn, j, l)∑
u′∈U(j,l,ψn,xn) pUΨnXnJL(u′, ψn, xn, j, l)

)
= (1 + ϵ)p̃+ λ+ max

j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn:
∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n

pΨρX|Ψθ,δ∑
u∈U0(j,ψn,l,xn,sn) pU (u)pΨn|UJL(ψn|u, j, l)pXn|Ψn(xn|ψn)∑
u′∈U(j,l,ψn,xn) pU (u′)pΨn|UJL(ψn|u′, j, l)pXn|Ψn(xn|ψn)

= (1 + ϵ)p̃+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn:
∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n

pΨρX|Ψθ,δ∑
u∈U0(j,ψn,l,xn,sn) pU (u)∑
u′∈U(j,l,ψn,xn) pU (u′)

= (1 + ϵ)p̃+ λ+ max
j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn:
∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n

pΨρX|Ψθ,δ

|U0(j, l, ψn, xn, sn)|
|U(j, l, ψn, xn)|

.

In Appendix F-C, we have implicitly shown, that the
probability

Pr

{
|U0(j, l, ψn, xn, sn)|
|U(j, l, ψn, xn)|

≥

(1 + ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1

(1− ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}

}
vanishes super exponentially fast. Hence, with probability 1,
we can upper bound ˆ̂e(Kran

n ) as

ˆ̂e(Kran
n ) ≤ (1 + ϵ)p̃+ λ+ max

j∈Jn

max
l∈Ln

max
ψn∈Ψn

xn∈T n
ρ,δ(ψn)

sn∈Sn

∃θ∈P0(Sn|Xn):(ψn,xn,sn)∈T n
pΨρX|Ψθ,δ

(

(1 + ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}p1

(1− ϵ2)|Un|Pr{B(u, j, l, ψn, xn, χ̂) = 1}

)
= (1 + ϵ)p̃+ λ+

1 + ϵ2
1− ϵ2

(
exp{−nc′δ′}

λ

+
exp

{
− n

(
min

W∈̂̂W I(pΨ; ρW )−R− ν
)}

λ

)
We choose

R ≤ min
W∈̂̂W I(pΨ; ρW )− ν

λ = exp{−nτ
2
},

τ < min

{
c′δ′, min

W∈̂̂W I(pΨ; ρW )−R− ν

}
and have shown an arbitrarily small error probability.

G. Codebook Properties for Secure Communication

We have to show that the leakage to the eavesdropper
vanishes asymptotically. Therefore, we make use of the fact
that there exists a best channel to the eavesdropper and the fact

that the probability that the implied probability distributions
are not in an ϵ region around the expected typical ones can
be upper bounded using Chernoff bounds. Then we apply
Lemma 3. If the variation distance of the channel output
probability distribution and the conditional channel output
probability distribution can be upper bounded, then the leakage
can be upper bounded as well. To upper bound the variation
distance, the triangle inequality will be used in combination
with properties of typical sequences. Note that the existence
of a best channel to the eavesdropper is crucial at this point
to reduce the jammer’s possible choices of jamming sequence
from double exponentially many to exactly one, for the case
of a best channel to the eavesdropper.

Notice that in contrast to the error analysis we do not
average with respect to the CR when considering the leakage.
In other words, the leakage has to vanish for all u ∈ Un,
hence we will omit indexing on u. Operationally, that means
the eavesdropper may have access to the CR. It is sufficient
to consider the best channel to the eavesdropper, invoked by
θ∗,n ∈ Pn(S|X )8, since fulfilling the secrecy requirement
for the best channel to the eavesdropper implies that the
secrecy requirement is fulfilled for all other channels to the
eavesdropper by the data processing inequality, as well.

1) Relation to Total Variation Distance: For a fixed u ∈ Un,
we have

I(pJn
;EuV nθ∗,n) = H(pJn

EuV
n
θ∗,n)−H(EuV nθ∗,n |pJn

)
(= H(Znθ∗,n)−H(Znθ∗,n |J))

=
1
Jn

∑
j∈Jn

(H(pJn
EuV

n
θ∗,n)−H(EuV nθ∗,n |j))

=
1
Jn

∑
j∈Jn

(
H
( 1
Jn

∑
j∈Jn,
ψn∈Ψn,

xn∈Tρ,δ(ψn)

pu(ψn|j)ρ(xn|ψn)Vθ∗,n(·|xn)
)

−H
(∑
ψn∈Ψn,

xn∈Tρ,δ(ψn)

pu(ψn|j)ρ(xn|ψn)Vθ∗,n(·|xn)
))

=
1
Jn

∑
j∈Jn

(
H
(
ρV̄θ∗,n(·)

)
−H

(
ρV̂θ∗,n(·|j)

))
,

where we define

1
Jn

∑
j∈Jn,
ψn∈Ψn

xn∈Tρ,δ(ψn)

pu(ψn|j)
1

|T nρ,δ(ψn)|
Vθ∗,n(·|xn) = ρV̄θ∗,n(·)

∑
ψn∈Ψn,

xn∈Tρ,δ(ψn)

pu(ψn|j)
1

|T nρ,δ(ψn)|
Vθ∗,n(·|xn) = ρV̂θ∗,n(·|j).

Now, if we can show that

||ρV̄θ∗,n(·)− ρV̂θ∗,n(·|j)||V ≤ ϵ3 ≤
1
2

8let θ∗ ∈ P(S|X ) be the single-letter best channel to the eavesdropper in
this section, with θ∗,n =

∏n
i=1 θ

∗
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then we can apply Lemma 3 and obtain

I(pJn
;EuV nθ∗,n) =

1
Jn

∑
j∈Jn

|H(ρV̄θ∗,n(·))−H(ρV̂θ∗,n(·|j))|

≤ −ϵ3 log
ϵ3
|Z|n

We extend [22] to prove that the secrecy requirement is
fulfilled. For some positive measure Ω(·) on Zn that will be
defined later in this section, we have by the triangle inequality

||ρV̄θ∗,n(·)− ρV̂θ∗,n(·|j)||V ≤ ||ρV̂θ∗,n(·|j)− Ω(·)||V
+ ||Ω(·)− ρV̄θ∗,n(·)||V . (34)

We will concentrate on the first term, since

||Ω(·)− ρV̄θ∗,n(·)||V = || 1
Jn

∑
j∈Jn

(
ρV̂θ∗,n(·|j)− Ω(·)

)
||V

≤ 1
Jn

∑
j∈Jn

||ρV̂θ∗,n(·|j)− Ω(·)||V .

2) Construction of Ω(·): We define the set ε1(ψn) and
Ω̃(zn) as

ε1(ψn) = T nρVθ∗ ,δ
(ψn), (35)

Ω̃(zn) = EΨn [ρV nθ∗,n(zn|Ψn)1ε1(Ψn)(zn)], (36)

where we take the expectation over all ψn ∈ T np,δ . Recall the
definition of ρV nθ∗,n(zn|ψn) as

ρV nθ∗,n(zn|ψn) =

( ∑
xn∈T n

ρ,δ(ψn)

1
|Tρ,δ(ψn)|

∑
sn∈Sn

θ∗,n(sn|xn)V n(zn|xn, sn)

)
Further, we define the set

ε2 :=
{
zn ∈ TZθ∗,n ,2|X ||Ψ|δ :

Ω̃(zn) ≥ exp{−nc′δ2} exp{−n(H(Zθ∗) + f1(δ))}
}
,

(37)

with

|TZθ∗,n ,2|X ||Ψ|δ| ≤ exp{n(H(Zθ∗) + f1(δ))},
ϵn = exp{−nc′δ2}.

where the cardinality bound on TZθ∗,n ,2|X ||Ψ|δ and ϵn are
motivated by Lemmas 7 and 8, respectively. We set

Ω(zn) = Ω̃(zn)1ε2(z
n). (38)

By definition, Ω(zn) ≥ ϵn exp{−n(H(Zθ∗) + f1(δ))}, for all
zn ∈ ε2, else Ω(zn) = 0. Note, that when summing up over
all zn ∈ ε2 we get∑
zn∈ε2

Ω(zn) = Ω(ε2)

= Ω̃(ε2)

= Ω̃
(
TZθ∗,n ,2|X ||Ψ|δ

)
− Ω̃

(
TZθ∗,n ,2|X ||Ψ|δ \ ε2

)
≥ 1− 2ϵn,

where the inequality follows by the properties of typical sets
and sequences, Lemma 8, i.e., by Ω̃

(
TZθ∗,n ,2|X ||Ψ|δ

)
≥ 1−ϵn,

and Ω̃
(
TZθ∗,n ,2|X ||Ψ|δ \ ε2

)
≤ ϵn. Similar to [22] we obtain a

modification of ρV nθ∗,n as

Qθ∗,n(zn|ψn) := ρV nθ∗,n(zn|ψn)1ε1(ψn)(zn)1ε2(z
n), (39)

and can define the event

ι1(j, zn) :=

{
1
Ln

Ln∑
l=1

Qθ∗,n(Ψn
jl|zn) ∈ [(1± ϵn)Ω(zn)]

}
(40)

Lemma 14: For τa > 0, the probability that ι1(j, zn) is not
fulfilled can be upper bounded as

Pr{ι1(j, zn)c} ≤ 2 expe

{
−1

3
exp{nτa}

}
(41)

Proof: We will apply a Chernoff-Hoeffding bound,
Lemma 6.

Pr

{
1
Ln

Ln∑
l=1

Qθ∗,n(zn|Ψn
jl) /∈ [(1± ϵn)Ω(zn)]

}

≤ 2 expe

(
−Ln

ϵ2nΩ(zn)
3bn

)
.

We can plug in the bounds for Qθ∗,n(Ψn
jl, z

n) and Ω(zn)
induced by the restrictions to ε1(ψn) and ε2, respectively,

Qθ∗,n(zn|Ψn
jl) ≤ exp{−n(H(Zθ∗ |Ψ)− f2(δ))},

Ω(zn) ≥ ϵn exp{−n(H(Zθ∗) + f1(δ))},

and obtain for the exponent

− Ln
ϵ2nΩ(zn)

3bn
≤

− 1
3
Lnϵ

3
n exp{−n(H(Zθ∗) + f1(δ))}

exp{n(H(Zθ∗ |Ψ)− f2(δ))}

= −1
3
Ln exp

{
− n(H(Zθ∗)−H(Zθ∗ |Ψ)

+ f1(δ) + f2(δ)) + 3c′δ2
}

= −1
3
Ln exp{−n(I(Zθ∗ ; Ψ) + f1(δ) + f2(δ)) + 3c′δ2}.

If we choose Ln to be

Ln ≥ exp{n(I(Zθ∗ ; Ψ) + f1(δ) + f2(δ) + 3c′δ2 + τa)},
lim
δ→0

f1(δ) = lim
δ→0

f2(δ) = lim
δ→0

3c′δ2 = 0,

then the probability that ι1(j, zn) is not fulfilled vanishes
doubly exponentially fast.

We define the event ι0 as the event that ι1(j, zn) holds for
all j ∈ Jn, zn ∈ Zn, and u ∈ Un

ι0 :=
⋂
j∈Jn

⋂
zn∈Zn

⋂
u∈Un

ι1(j, zn). (42)
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We can bound the probability of ι0 from below as

Pr{ι0} = 1− Pr{ιc0}

= 1− Pr

 ⋃
j∈Jn

⋃
zn∈Zn

⋃
u∈Un

ιc1(j, z
n)


≥ 1− 2|Jn||Z|n|Un| expe{−

1
3

exp{nτa}}.

Since |Jn|, |Z|n, and |Un| grow only exponentially fast in n,
but Pr {ιc1(j, zn)} vanishes doubly exponentially fast in n, the
probability that ι0 holds, approaches one.

3) Leakage Analysis: Let Kran
n be a realization of the

random CR-assisted code Kran
n (χ̂), fulfilling the required

properties for guaranteeing secrecy. Furthermore, let ψnjl be the
codeword realization for the message pair (j, l) ∈ Jn×Ln for
the CR-assisted code Kran

n for a specific realization of u ∈ Un.
Keep in mind that the leakage has to vanish for all u ∈ Un,
and that we omit the indexing on u as before. We can bound
the first term in equation (34) for any j ∈ Jn as∥∥∥ρV̂θ∗,n(·|j)− Ω(·)

∥∥∥
V
≤∥∥∥∥∥ 1

Ln

Ln∑
l=1

Qθ∗,n(·|ψnjl)− Ω(·)

∥∥∥∥∥
V

(43)

+

∥∥∥∥∥ 1
Ln

Ln∑
l=1

ρV nθ∗,n(·|ψnjl)1ε1(ψn
jl)

(·)(1Zn(·)− 1ε2(·))

∥∥∥∥∥
V

(44)

+

∥∥∥∥∥ 1
Ln

Ln∑
l=1

ρV nθ∗,n(·|ψnjl)(1Zn(·)− 1ε1(ψn
jl)

(·))

∥∥∥∥∥
V

. (45)

In the following, we bound the right hand side of (43), and
the terms in (44), (45), individually.

The right hand side of (43) can be bounded by the result of
Lemma 14 to∥∥∥∥∥ 1

Ln

Ln∑
l=1

Qθ∗,n(·|ψnjl)− Ω(·)

∥∥∥∥∥
V

=
∑

zn∈Zn

∣∣∣∣∣ 1
Ln

Ln∑
l=1

Qθ∗,n(zn|ψnjl)− Ω(zn)

∣∣∣∣∣
≤

∑
zn∈Zn

ϵnΩ(zn)

≤ ϵn

For (44), we obtain∥∥∥∥∥ 1
Ln

Ln∑
l=1

ρV nθ∗,n(·|ψnjl)1ε1(ψn
jl)

(·)(1Zn(·)− 1ε2(·))

∥∥∥∥∥
V

=
∑

zn∈Zn

∣∣∣∣∣ 1
Ln

Ln∑
l=1

ρV nθ∗,n(zn|ψnjl)1ε1(ψn
jl)

(zn)

(
1Zn(zn)− 1ε2(z

n)
)∣∣∣∣∣

=
1
Ln

Ln∑
l=1

∑
zn∈Zn

ρV nθ∗,n(zn|ψnjl)1ε1(ψn
jl)

(zn)1Zn(zn)

−
∑

zn∈Zn

1
Ln

Ln∑
l=1

ρV nθ∗,n(zn|ψnjl)1ε1(ψn
jl)

(zn)1ε2(z
n)

≤ 1−
∑

zn∈Zn

1
Ln

Ln∑
l=1

Qθ∗,n(zn|ψnj,l)

≤ 1−
∑

zn∈Zn

(1− ϵn)Ω(zn)

≤ 1− (1− ϵn)(1− 2ϵn)

≤ 3ϵn − 2ϵ2n
≤ 3ϵn.

For (45), we obtain∥∥∥∥∥ 1
Ln

Ln∑
l=1

ρV nθ∗,n(·|ψnjl)(1Zn(·)− 1ε1(ψn
jl)

(·))

∥∥∥∥∥
V

(a)
=

1
Ln

Ln∑
l=1

ρV nθ∗,n(εc1(ψ
n
jl)|ψnjl)

(b)
=

1
Ln

∑
l∈Ln

ρV nθ∗,n(T cρVθ∗,n,δ
(ψnjl)|ψnjl)

(c)

≤ 1
Ln

∑
l∈Ln

exp{−nc′δ2}

(d)
= ϵn.

Here, (a) follows by summing up only over zn ∈ εc1(·). (b)
follows by the definition of ε1(ψnjl). (c) follows since the
probability of not obtaining a conditional typical zn can be
upper bounded. (d) follows since the upper bound in (c) is
valid for all ψnjl.

Therefore, for (34) we obtain

||ρV̄θ∗,n(Zn)− ρV̂θ∗,n(Zn|j)||V ≤ 10ϵn
I(pJn

;EuV nθ∗,n) ≤ 10 nϵn log (|Z|)− 10ϵn log (10ϵn) ,

which vanishes as n goes to infinity because ϵn vanishes
exponentially in n.

H. Existence of Codes Fulfilling Both the Error and the
Secrecy Requirement

It remains to show that there exist codes fulfilling the error
requirement and the secrecy requirement simultaneously.

Therefore, we define the following event.

ι̃ :=

{
ˆ̂e(Kran

n ) ≤

(1 + ϵ)p̃+ λ+
1 + ϵ2
1− ϵ2

(
exp{−nc′δ′}

λ

+
exp

{
− n

(
min

W∈̂̂W I(pΨ; ρW )−R− ν
)}

λ

)}
ι̂ := ι0 ∩ ι̃

Here, we can apply the union bound and obtain

Pr{ι̂} = 1− Pr{ι̂c}
= 1− Pr{ιc0 ∪ ι̃c}
≥ 1− Pr{ιc0} − Pr{ι̃c},
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where both, Pr{ιc0} and Pr{ι̃c} vanish super exponentially
fast. Hence, there exist codes fulfilling the aforementioned
criteria simultaneously. Finally, we get the achievable CR-
assisted code secrecy rate as

̂̂
R
ran

S ≤ max
Ψ↔X↔(Y,Z)

(
min

θ∈P(S|X )
I(Ψ;Yθ)

− max
θ∈P(S|X )

I(Ψ;Zθ)

)

= max
pΨ∈P(Ψ),ρ∈P(X|Ψ)

(
min
W∈̂̂W I(pΨ; ρW )

− min
V ∈̂̂V I(PΨ; ρV )

)
.

I. Converse

What remains is to show the converse. We modify the
standard converse of the WTC. As usual, we assumed strong
secrecy in the achievability part and show in the converse, that
even with weak secrecy the upper and lower bounds match.

Let nϵ ≥ maxu∈Un
I(J ;Znθ∗ |U = u). We consider

a sequence (Kran
n )∞n=1 of (n, Jn,Un, pU ) wiretap-codes for

which e(Kran
n ) ≤ ϵ̂ and for an ϵ, ϵ̂ > 0, as n→∞.

nRs = H(J)
(a)

≤ min
θ∈P(Sn|Xn)

I(J ;Y nθ |U) + 1 + ϵ̂H(J),

→ nRs ≤
1

1− ϵ̂

(
min

θ∈P(Sn|Xn)
I(J ;Y nθ |U)− I(J ;Znθ∗ |U)

+ max
u∈U

I(J ;Znθ∗ |U = u) + 1
)

(c)

≤ 1
1− ϵ̂

(
min

θ∈P(Sn|Xn)
I(J ;Y nθ |U)− I(J ;Znθ∗ |U)

+ nϵ+ 1
)

(d)
=

1
1− ϵ̂

(
min

θ∈P(Sn|Xn)
I(J, U ;Y nθ |U)− I(J, U ;Znθ∗ |U)

+ nϵ+ 1
)

(e)
=

1
1− ϵ̂

(
min

θ∈P(Sn|Xn)
I(Ψ̃n;Y nθ |U)− I(Ψ̃n;Znθ∗ |U)

+ nϵ+ 1
)

(f)

≤ 1
1− ϵ̂

(
max
u∈Un

(
min

θ∈P(Sn|Xn)
I(Ψ̃n;Y nθ |U = u)

− I(Ψ̃n;Znθ∗ |U = u) + nϵ+ 1
))

(g)
=

1
1− ϵ̂

(
min

θ∈P(Sn|Xn)
I(Ψ̂n;Y nθ )− I(Ψ̂n;Znθ∗)

+ nϵ+ 1
)

(h)

≤ 1
1− ϵ̂

(
min

θn∈Pn(S|X )
I(Ψ̂n;Y nθn)− I(Ψ̂n;Znθ∗)

+ nϵ+ 1
)

=
1

1− ϵ̂

(
min

θn∈Pn(S|X )

n∑
i=1

I(Ψ̂n;Yi,θi
|Y i−1
θi−1)

−
n∑
i=1

I(Ψ̂n;Zi,θ∗i |Z
n
i+1,θn,∗

i+1
) + nϵ+ 1

)
=

1
1− ϵ̂

(
min

θn∈Pn(S|X )

n∑
i=1

(
I(Ψ̂n, Zni+1,θn,∗

i+1
;Yi,θi

|Y i−1
θi−1)

−I(Zni+1,θn,∗
i+1

;Yi,θi |Ψ̂n, Y i−1
θi−1)

)
−

n∑
i=1

I(Ψ̂n;Zi,θ∗i |Z
n
i+1,θn,∗

i+1
) + nϵ+ 1

)
=

1
1− ϵ̂

(
min

θn∈Pn(S|X )

n∑
i=1

(
I(Ψ̂n, Zni+1,θn,∗

i+1
;Yi,θi

|Y i−1
θi−1)

−I(Zni+1,θn,∗
i+1

;Yi,θi |Ψ̂n, Y i−1
θi−1)

)
−

n∑
i=1

(
I(Ψ̂n, Y i−1

θi−1 ;Zi,θ∗i |Z
n
i+1,θn,∗

i+1
)

+ I(Y i−1
θi−1 ;Zi,θ∗i |Ψ̂

n, Zni+1,θn,∗
i+1

)
)

+ nϵ+ 1
)

(i)
=

1
1− ϵ̂

(
min

θn∈Pn(S|X )

n∑
i=1

I(Ψ̂n, Zni+1,θn,∗
i+1

;Yi,θi|Y i−1
θi−1)

−
n∑
i=1

I(Ψ̂n, Y i−1
θi−1 ;Zi,θ∗i |Z

n
i+1,θn,∗

i+1
)

+ nϵ+ 1
)

=
1

1− ϵ̂

(
min

θn∈Pn(S|X )

n∑
i=1

(
I(Zni+1,θn,∗

i+1
;Yi,θi |Y i−1

θi−1)

+ I(Ψ̂n;Yi,θi
|Y i−1
θi−1 , Z

n
i+1,θn,∗

i+1
)

− I(Y i−1
θi−1 ;Zi,θ∗i |Z

n
i+1,θn,∗

i+1
)

− I(Ψ̂n;Zi,θ∗i |Z
n
i+1,θn,∗

i+1
, Y i−1
θi−1)

)
+ nϵ+ 1

)
(j)
=

1
1− ϵ̂

(
min

θn∈Pn(S|X )

n∑
i=1

(
I(Ψ̂n;Yi,θi |Y i−1

θi−1 , Z
n
i+1,θn,∗

i+1
)

− I(Ψ̂n;Zi,θ∗i |Z
n
i+1,θn,∗

i+1
, Y i−1
θi−1)

)
+ nϵ+ 1

)
(k)
=

1
1− ϵ̂

(
min

θn∈Pn(S|X )

n∑
i=1

(
I(Ψ̂n;Yi,θi

|Vi)− I(Ψ̂n;Zi,θ∗i |Vi)
)

+ nϵ+ 1
)

=
1

1− ϵ̂

(
min

θn∈Pn(S|X )
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n∑
i=1

(
I(Ψ̂n, Vi;Yi,θi

|Vi)

− I(Ψ̂n, Vi;Zi,θ∗i |Vi)
)

+ nϵ+ 1
)

(l)
=

1
1− ϵ̂

(
min

θn∈Pn(S|X )

n∑
i=1

(
I(Ψ′i;Yi,θi

|Vi)− I(Ψ′i;Zi,θ∗i |Vi)
)

+ nϵ+ 1
)

(m)
=

1
1− ϵ̂

(
min

θn∈Pn(S|X )

n(I(Ψ′Q;YQ,θQ
|VQ, Q)

− I(Ψ′Q;ZQ,θ∗Q |VQ, Q))

+ nϵ+ 1
)

=
1

1− ϵ̂

(
min

θn∈Pn(S|X )
n(I(Ψ′;Yθ|V )

− I(Ψ′;Zθ∗ |V )) + nϵ+ 1
)

≤ 1
1− ϵ̂

(
min

θn∈Pn(S|X )
nmax
V=v

(I(Ψ′;Yθ|V = v)

− I(Ψ′;Zθ∗ |V = v)) + nϵ+ 1
)

≤ 1
1− ϵ̂

(
max

Ψ↔X↔(Yθ,Zθ∗ )(
n min
θ∈P(S|X )

I(Ψ′;Yθ)− nI(Ψ′;Zθ∗)
)

+ nϵ+ 1
)

⇒ Rs ≤
1

1− ϵ̂

(
max

Ψ′↔X↔(Y,Z)(
min

θ∈P(S|X )
I(Ψ′;Yθ)− I(Ψ′;Zθ∗)

)
+

1
n

+ ϵ
)

Here, (a) follows by Fano’s inequality, where ϵ̂ approaches
zero as n → ∞, (b) follows by the definition of the leakage
to the eavesdropper, (c) follows because the leakage to the
eavesdropper vanishes with n. Now, (d) follows because J and
U are independent, (e) by defining Ψ̃ = (J, U), (f) follows
naturally. (g) follows because Ψ̃ ↔ Xn ↔ (Y nθ , Z

n
θ∗) forms

a conditional Markov chain, given u ∈ U . To see this we
evaluate the following term.

pΨ̃,Xn,Y n
θ ,Z

n
θ∗ |U

(·|u)

= pΨ̃|U (·|u)pXn|Ψ̃,U (·|·, u)pY n
θ ,Z

n
θ∗ |Xn,Ψ̃,U (·|·, u)

(n)
= pΨ̃|U (·|u)pXn|Ψ̃(·|·)pY n

θ ,Z
n
θ∗ |Xn(·|·)

(n) follows because Xn and (Y nθ , Z
n
θ∗) are connected through

a memoryless channel. Remember that when upper bounding
the capacity, only the marginals are of interest. Then, we can
invoke the same marginals property and can describe the input
output relation between Xn and (Y nθ , Z

n
θ∗) by the channels

Wn
θ (yn|xn), V nθ∗(zn|xn). Furthermore, we see that

pΨ̂,Xn,Y n
θ ,Z

n
θ∗

(·) = max
u∈Un

pΨ̃|U (·|u)pXn|Ψ̃(·|·)pY n
θ ,Z

n
θ∗ |Xn(·|·).

Finally, (h) follows since minθ∈P(Sn|Xn) I(Ψ̃n;Y nθ ) ≤
minθn∈Pn(S|X ) I(Ψ̃n;Y nθn), with θn(sn|xn) =∏n
i=1 θi(si|xi). (i) and (j) follow because of Csiszar’s

Sum Identity, because
n∑
i=1

I(Zni+1,θn,∗
i+1

;Yi,θi
|Ψ̃n, Y i−1

θi−1)

=
n∑
i=1

I(Y i−1
θi−1 ;Zi,θ∗i |Ψ̃

n, Zni+1,θn,∗
i+1

),

n∑
i=1

I(Zni+1,θn,∗
i+1

;Yi,θi
|Y i−1
θi−1)

=
n∑
i=1

I(Y i−1
θi−1 ;Zi,θ∗i |Z

n
i+1,θn,∗

i+1
).

(k) follows by identifying Vi = (Zn
i+1,θn,∗

i+1
, Y i−1
θi−1), (l) by

identifying Ψ′i = (Ψ̃n, Vi), and (m) follows by introducing
a uniformly distributed time sharing variable Q.

APPENDIX G
PROOF OF THEOREM 2

A. Achievability

We use the same approach as in [36], and have

I(X;Yθ) ≥ I(X;Zθ∗),
I(Ψ;Yθ) = I(Ψ, X;Yθ)− I(X;Yθ|Ψ)

= I(X;Yθ) + I(Ψ;Yθ|X)
− I(X;Yθ|Ψ)

= I(X;Yθ)− I(X;Yθ|Ψ),
I(Ψ;Zθ∗) = I(X;Zθ∗)− I(X;Zθ∗ |Ψ),

I(Ψ;Yθ)− I(Ψ;Zθ∗) = I(X;Yθ)− I(X;Zθ∗)
+ I(X;Zθ∗ |Ψ)− I(X;Yθ|Ψ),

where we can upper bound

I(X;Zθ∗ |Ψ)− I(X;Yθ|Ψ)
≤ max

pΨX

(I(X;Zθ∗ |Ψ)− I(X;Yθ|Ψ))

= max
pΨX

(∑
ψ∈Ψ

pΨ(ψ)I(X;Zθ∗ |Ψ = ψ)

− I(X;Yθ|Ψ = ψ)

)
= max

pX

(I(X;Zθ∗)− I(X;Yθ))

≤ 0.

Hence, in total we obtain the following

max
pΨ,ρX|Ψ

(I(Ψ;Yθ)− I(Ψ;Zθ∗))

≤ max
pX

(I(X;Yθ)− I(X;Zθ∗)),

with equality if we choose Ψ = X as the channel input.
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TABLE II
NOTATION, SYMBOLS AND MEANINGS
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(Continued.) NOTATION, SYMBOLS AND MEANINGS
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TABLE II
(Continued.) NOTATION, SYMBOLS AND MEANINGS

APPENDIX H
NOMENCLATURE

See Table II.
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