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Minjia Shi , Hongwei Zhu, and Tor Helleseth, Life Fellow, IEEE

Abstract— The r-th generalized Hamming metric and the
b-symbol metric are two different generalizations of Hamming
metric. The former is used on the wire-tap channel of Type II, and
the latter is motivated by the limitations of the reading process in
high-density data storage systems and applied to a read channel
that outputs overlapping symbols. In this paper, we study the
connections among the three metrics (that is, Hamming metric,
b-symbol metric, and r-th generalized Hamming metric) men-
tioned above and give a conjecture about the b-symbol Griesmer
Bound for cyclic codes.

Index Terms— Hamming metric, b-symbol metric, r-th gener-
alized Hamming metric, unrestricted codes, Griesmer bound.

I. INTRODUCTION

THE concept of r-th generalized Hamming metric
first appeared in the 1970s and was proposed by

Helleseth et al. [17], [22]. Until 1991, in Wei’s research [27] on
wire-tap channel of Type II, Wei mentioned this concept again
and provided a series of excellent conclusions. Subsequently,
many researchers studied the weight hierarchy of several
series of linear codes (e.g. RM codes [16], [27], BCH codes
[5], [13], [14], trace codes [23], cyclic codes [12], [20],
etc.). The bounds, asymptotic behaviour, and the duality under
r-th generalized Hamming metric have been considered in
[1], [18], [19], [22], [26], and [27]. In addition to its appli-
cations in wire-tap channels of type II, the r-th generalized
Hamming metric is also used to address t-resilient functions
and trellis or branch complexity of linear codes [26].

The b-symbol metric is another generalization of the
Hamming metric that has been proposed by Cassuto and
Blaum [2], [3] in recent years. It differs from r-th generalized
Hamming metric in that its research motivation is not derived
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from data storage or cryptography but from other domains
such as molecular biology and chemistry. In these domains,
the information redundancy is so low that the only effective
way to combat errors is to transmit the same message over
and over again (overlapping symbols). Although in practical
applications, consecutive symbols may affect each other, in the
traditional read channel, people always assume that the adja-
cent symbols are individual. However, with the development of
the high-density data storage technologies, this is no longer a
reasonable assumption, and symbols are faced with the need to
be read repeatedly (since the bit size at high-densities is small,
it is hard to read the individual bits). This is why we have to
pay attention to the b-symbol channel, which is a read channel
suitable for the output of overlapping b-symbols. Under this
new metric (or paradigm), errors are no longer single sym-
bolic errors but b-symbolic errors. At present, the research
progress of the b-symbol metric includes the bounds of codes
(e.g. b-symbol Sphere Packing Bound [2], [3], b-symbol
Singleton Bound [6], [10], b-symbol Linear Programming
Bound [11], b-symbol asymptotic bound [4], etc), the decoding
and the constructions. The research on the codes that reach the
b-symbol Singleton Bound (such codes are called b-symbol
MDS codes) is a hot topic, and a lot of relevant research
progress has been achieved [6], [7], [8], [9], [10], [21]. It is
very difficult to determine the b-symbol weight distribution or
the minimum b-symbol distance of linear codes. Nevertheless,
in some special cases, the b-symbol weight distributions are
determined [24], [25], [30].

These two metrics receive wide attention by researchers
because they are generalizations of the Hamming metric. Our
motivation is to investigate the connections and differences
between these two metrics. Since the r-th generalized Ham-
ming metric has a longer history than the b-symbol metric, we
can refer to the research progress of r-th generalized Ham-
ming metric when we consider the b-symbol metric. In this
paper, we first establish the connection between the Hamming
metric and the b-symbol metric. Although the connection
has been considered in [28] and [29], we get better results
(e.g., Theorem 4 is a generalization of Lemma 1 in [28]
and [29], and Theorem 6 is a generalization of Proposition 2
in [28] and [29]). Subsequently, we compare the same lin-
ear codes under the b-symbol metric and r-th generalized
Hamming metric. When C is cyclic, we prove that
db(C) ≥ db(C), where db(C) and db(C) denote the minimum
b-symbol weight and the minimum b-th generalized Hamming
weight of C, respectively. In fact, the two metrics have a lot
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in common when C is cyclic. We also propose a conjecture
on the b-symbol Griesmer Bound for cyclic codes.

The rest of the paper is organized as follows.
In Section II, we introduce some notations and definitions.
In Section III, we show the connections among Hamming
metric, b-symbol metric, and r-th generalized Hamming
metric. Section IV concludes the paper.

II. PRELIMINARIES

Throughout this paper, we assume and fix the following:
• Fq : finite field with q elements.
• F∗q = Fq\{0}.
• p = Char(Fq).
• x,y are two vectors which belong to Fn

q .
• Let α be an element of Fq and let ⟨αi⟩ be the group

generated by αi, where i is an integer.
• If C is an unrestricted code (it may be linear or non-

linear), we use the notation (n, M, db(C))q to denote its
parameters, where n is the length of C, M is the size of
C, db(C) is the b-symbol minimum distance of C, and
q indicates that its alphabet is Fq . If C is a linear code,
we denote its parameters by the notation [n, k, db(C)]q ,
where k denotes the dimension of the C.

A. Hamming Metric
• Hamming weight wH(x): the number of nonzero coordi-

nates in x.
• Hamming distance dH(x,y): the number of coordinates

in which x and y differ.

B. The b-Symbol Metric
Let b be a positive integer with 1 ≤ b ≤ n.
• b-symbol weight wb(x): the Hamming weight of πb(x),

where πb(x) ∈ (Fb
q)

n and

πb(x) = ((x0, . . . , xb−1), (x1, . . . , xb), · · · ,

(xn−1, . . . , xb+n−2(mod n))).

• b-symbol distance db(x,y):

db(x,y) = wb(x− y).
When b = 1, w1(x) = wH(x) and d1(x,y) = dH(x,y).

For convenience, we use w1(x) and d1(x,y) to represent
wH(x) and dH(x,y), respectively.

For λ ∈ Fq and η, ξ ∈ Fq \ {λ}, if η, λ, . . . , λ︸ ︷︷ ︸
m

, ξ appears

in the sequence a, then we say that λ, . . . , λ︸ ︷︷ ︸
m

is a run of λ’s

of length m. Let 0i = (α, 0, . . . , 0︸ ︷︷ ︸
i

, β), where α, β ∈ F∗q .

For any vector a = (a0, a1, . . . , an−1) ∈ Fn
q , we define a

circumferential vector cir(a) as follows:

and Ψ(a,0i) denotes the number of occurrences of 0i on the
circumferential vector cir(a). The 0’s run distribution of a is
defined by {Ψ(a,01), Ψ(a,02), . . . ,Ψ(a,0n)}.

Example 2.1: Let a = (01001000100). Then the 0’s
run distribution of a is {Ψ(a,02) = 1, Ψ(a,03) = 2,
Ψ(a,0i) = 0, i ̸= 2, 3}.

For any vector

c = (c0, c1, . . . , cn−1) ∈ Fn
q ,

by the definition of b-symbol weight, then we have

wb(c) = n−
∣∣∣∣{i|ci = ci+1 = · · ·

= ci+b−1 = 0, 0 ≤ i ≤ n− 1}
∣∣∣∣.

If the 0’s run distribution of a is given, we have the following
formula to calculate the b-symbol weight of c. Sometimes we
just write Ψ(0i), instead of Ψ(a,0i), if the vector a is clear
from the context.

Theorem 2.2: For any vector

c = (c0, c1, . . . , cn−1) ∈ Fn
q ,

we have

wb(c) = n−
n−1∑
i=b

(i− b + 1) ·Ψ(c,0i). (1)

Proof: By the definition of the b-symbol metric, the zero
coordinate of c is b cyclic consecutive zeros. For a

0i = (α, 0, . . . , 0︸ ︷︷ ︸
i

, β),

there are i − b + 1 zero coordinates if i ≥ b and there is no
zero coordinate in 0i if i < b. Counting the number of the
zero coordinates, we obtain the desired result.

From Theorem 2.2, one can induce the following result
directly.

Corollary 2.3: Suppose Ψ(x) = Ψ(y). Then for
1 ≤ b ≤ n, wb(x) = wb(y).

C. Cyclic Codes

A q-ary linear code C of length n is cyclic if C is invariant
under the cyclic shift τ , i.e.,

τ(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2) ∈ C,

where (c0, c1, . . . , cn−1) ∈ C.
For a polynomial f(x) over Fq , the period (or order) of

f(x) is the least positive integer t such that f(x)|(xt − 1),
denoted by per(f) = t.

Let f(x) = anxn + an−1x
n−1 + · · · + a1x + a0 ∈ Fq[x]

with an ̸= 0. The reciprocal polynomial f∗(x) is defined by

f∗(x) = xnf

(
1
x

)
= a0x

n + a1x
n−1 + · · ·+ an−1x + an.
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D. Linear Feedback Shift Register

A shift register is converted into a code generator by
including a feedback loop, which computes a new term for
the left-most stage, based on the n previous terms. The n
q-ary storage elements ai are called the stages of the shift
register, and their contents ξi = (ai, ai+1, . . . , ai+n−1) are
called the states of the shift register. The shift register is run
by an external clock which generates a timing signal every t0
seconds. A delay element stores one bit (from some alphabet)
for one clock cycle, after which the bit is pushed out and
replaced by another bit. A linear shift register is a series of
delay elements; a bit enters at one end of the shift register and
moves to the next delay element with each new clock cycle.
A linear feedback shift register (LFSR for short) is a linear
shift register in which the output is fed back into the shift
register as part of the input.

Let V (Fq) be a set consisting of all infinite sequences whose
elements are taken from Fq; that is,

V (Fq) = {a = (a0, a1, a2, . . .)|ai ∈ Fq}.

More specifically, an LFSR sequence is a sequence
a = (a0, a1, a2, . . .) in V (Fq) whose elements satisfy the
linear recursive relation

an+k =
n−1∑
i=0

ciak+i, k = 0, 1, . . . ,

where ci ∈ Fq . Let ξ0 = (a0, a1, . . . , an−1) be the initial state
of a, we can compute the succession of states of a by the
linear recursive relation.

For a = (a0, a1, a2, . . .) ∈ V (Fq), one defines (left) shift
operator Li as follows: Lia = (ai, ai+1, ai+2, . . .). For any
infinite sequence a ∈ V (Fq), if there exists a non-zero monic
polynomial f(x) ∈ Fq[x] such that

f(L)a = 0,

then a is called a linear recursive sequence. The polynomial
f(x) is called the characteristic polynomial of a over Fq .
The reciprocal polynomial of f(x) is called the feedback
polynomial of a. For any non-zero polynomial f(x) ∈ Fq[x],
we use G(f(x)) to denote the set consisting of all sequences
in V (Fq) with f(L)a = 0.

If there exist integers r > 0 and u > 0 such that ai+r = ai

for all i ≥ u, then the sequence a is said to be ultimately
periodic with parameters (r, u), and the smallest integer r
is called a period of the sequence and denoted by per(a).
If u = 0, then the sequence is said to be periodic. Two periodic
sequences a = {ai} and b = {bi} are called cyclically shift
equivalent if there exists an integer k such that ai = bi+k,
∀i ≥ 0. In this case, we write a = Lkb, or simply a ∼ b.
Otherwise, they are called cyclically shift distinct. It is not
difficult to see that each linear recursive sequence is periodic.

Remark 2.4: Different initial states maybe obtain different
state cycles. For instance, let f(x) = x4 + x3 + x2 + x + 1 ∈
F2[x] be a characteristic polynomial of a over F2. When the
initial state ξ0 = (0001), the next states are ξ1 = (0011),
ξ2 = (0110), ξ3 = (1100). When the initial state ξ0 does not
belong to the first cycle, i.e., ξ0 = (0101), the second cycle

Fig. 1. The state diagram of the 4-stage LFSR.

is obtained. Four cycles are corresponding to different initial
states, as shown in Fig 1.

A set in which all sequences are cyclically shifted equivalent
is called a shift-equivalent class. One cyclically shift equivalent
class of G(f(x)) corresponds to one cycle of states in the state
diagram of the LFSR with characteristic polynomial f(x).

Proposition 2.5 ([15, P.100]): Let f(x) be an irreducible
polynomial over Fq of degree n. Then the number of cyclically
shift equivalent classes of non-zero LFSR sequences in G(f)
is given by qn−1

per(f) .
In the language of the state diagram, this proposition shows

that for an LFSR with an irreducible polynomial, there are
qn−1
per(f) cycles with length per(f) and one cycle of length 1 in
its state diagram.

A parity check matrix Hq,k of the Hamming code Hq,k over
Fq is defined by choosing for its columns a nonzero vector
from each one-dimensional subspace of Fk

q . The duals of the
Hamming codes Hq,k are called simplex codes Sq,k, which
have parameters [ qk−1

q−1 , k, d1 = qk−1]q . In fact, the nonzero
codewords of Sq,k all have Hamming weight qk−1.

Remark 2.6: A linear code C is called a single 0’s run code
if for any c, c′ ∈ C\{0}, c and c′ have the same 0’s run
distribution. For example, Sq,k is a single 0’s run code. For
any c in Sq,k, we have

Ψ(c,0i) =

 (q − 1)qk−2−i, 1 ≤ i ≤ k − 2;
1, i = k − 1;
0, i ≥ k.

Its 0’s run distribution can be deduced from
[15, Page.123, R-2]. By Theorem 2.2, we have the minimum
b-symbol weight of Sq,k is (qb−1)qk

qb(q−1)
. Obviously, Sq,k is also

a constant b-symbol weight linear code.
The single 0’s run codes are of interest in their own right. The
following result gives a class of single 0’s run codes and their
parameters.

Theorem 2.7: Let ∆ be a factor of qk − 1. Let n = qk−1
∆

and C be an irreducible cyclic code over Fq with parity-check
polynomial h(x) of degree deg(h(x)) = k and period (or
order) per(h(x)) = n.

If ∆|q − 1 and gcd(n, ∆) = 1, then C is a single 0’s run
code with parameters [n, k, db(C) = (qb−1)qk

qb∆
]q where 1 ≤

b ≤ k − 1.
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Proof: We use G(h∗(x)) to denote the set consisting of
all sequences with h∗(τ)ā = 0 where ā = (a0, a1, a2, . . .) is
a nonzero sequence and τ denotes the left shift operator. Let
α be a primitive element of Fq . If gcd(per(h(x)), ∆) = 1, we
claim that the codewords x and y are cyclically shift distinct
if there exists δ ∈ ⟨α

q−1
∆ ⟩ \ {1} ⊆ F∗q such that x = δ ·y. The

claim can be proved by showing that for a non-zero sequence
a ∈ G(h∗(x)), it is impossible for both states ξi and ξj of
a such that ξi = δ · ξj where i ̸= j. Assume that there are
two states ξi and ξj of a such that ξi = δ · ξj for some
δ ∈ ⟨α

q−1
∆ ⟩ \ {1}. As it can be seen from the recurrence

relation,

ξi = δ · ξj = δ2 · ξj+j−i

= · · · = δ∆+1 · ξj+∆(j−i) = δ · ξj+∆(j−i),

then

per(h(x))|∆(j − i).

Since

gcd(per(h(x)), ∆) = 1,

we have

per(h(x))|(j − i),

this leads to a contradiction. Therefore, the non-zero code-
words

x, α
q−1
∆ x, (α

q−1
∆ )2x, . . . , (α

q−1
∆ )∆−1x

are from distinct cycles. Since there are ∆ cycles (we ignore
the cycle corresponding to zero sequence), C has one non-zero
b-symbol weight.

We claim that for any non-zero codeword c =
(c0, c1, . . . , cn−1) ∈ C, the 0’s run distribution of c is

Ψ(c,0i) =


(q−1)2

∆ qk−2−i, 1 ≤ i ≤ k − 2;
q−1
∆ , i = k − 1;

0, i ≥ k.

There is no 0’s run with length greater than or equal to k
since a is not a zero state. When 1 ≤ i ≤ k − 2, we add k −
i−2 coordinates (b1, b2, . . . , bk−i−2) behind (a1, 0, . . . , 0︸ ︷︷ ︸

i

, a2),

where a1, a2 ∈ F∗q , bj1 ∈ Fq, 1 ≤ j1 ≤ k − i− 2; i.e.,

(a1, 0, . . . , 0︸ ︷︷ ︸
i

, a2, b1, b2, . . . , bk−i−2).

There are qk−i−2(q− 1)2 choices of {a1, a2, b1, . . . , bk−i−2}.
But there are only qk−i−2(q−1)2

∆ states which cover 0i that
can be obtained in the same non-zero sequence a. When i =
k− 1, let ξ1 = (a, 0, . . . , 0) be a state of a non-zero sequence
a, where a ∈ F∗q . According to the linear recursive relation,
ξ2 = (0, . . . , 0, b), where b ∈ F∗q and b is determined by a.
Similarly, there are only q−1

∆ choices of a such that ξ1 is a
state of a.

For any non-zero codeword c ∈ C, it then follows from
Theorem 2.2 that

wb(c) = n−
n−1∑
i=b

(i− b + 1) ·Ψ(0i)

=
qk − 1

∆
− (q − 1)2

∆
·

k−1∑
j2=b+1

k−j2∑
i2=1

qi2−1

− (q − 1)(k − b)
∆

=
q − 1

∆
(qk−1 + · · ·+ qk−b)

=
(qb − 1)qk

qb∆
.

This completes the proof.
The conditions given by Corollary 2.3 are not necessary.

Here we give a sufficient and necessary condition for the
b-symbol weight of two vectors to be equal. To this end, we
give a generalization of the support of a vector c. We define the
b-symbol support to be

Ib(c) = supp(πb(c)) =
b−1⋃
i=0

supp(τ i(c)),

where supp(c) denotes the support of a vector c and τ denotes
the left shift operator. It is easy to check that wb(c) = |Ib(c)|.

Theorem 2.8: Let x and y be two vectors that belong to
Fn

q , then wb(x) = wb(y) if and only if |Ib(x)| = |Ib(y)|.
Proof: The desired result follows from the definition of

b-symbol metric.

E. The r-th Generalized Hamming Metric

Let C be an [n, k]q linear code. For any subcode D ⊂ C ,
then the support of D is defined to be

χ(D) = {i : 0 ≤ i ≤ n− 1|ci ̸= 0 for some
(c0, c1, . . . , cn−1) ∈ D}.

The r-th generalized Hamming weight of a code C is the
smallest cardinality of the support of an r-dimensional sub-
code of C. To avoid confusion of notation, we use dr(C) for
r-th generalized Hamming distance of C.

The set {dr(C) : 1 ≤ r ≤ k} is called the distance
hierarchy of C. Considering that C is a linear code, this set
is often referred to as the weight hierarchy. To distinguish it
from the later definition, let us call it the generalized weight
hierarchy in the sequel.

III. THE CONNECTIONS AMONG HAMMING METRIC,
b-SYMBOL METRIC, AND r-TH GENERALIZED

HAMMING METRIC

The goal of this section is to show the connections among
Hamming metric, b-symbol metric and r-th generalized Ham-
ming metric.

A. Hamming Metric and b-Symbol Metric
Let Gb(c) be the generator matrix of the code generated by

c and its first b− 1 cyclic shifts.

Gb(c) =


c0 c1 · · · cn−2 cn−1

c1 c2 · · · cn−1 c0
c2 c3 · · · c0 c1
...

...
...

...
...

cb−1 cb+1 · · · cb−3 cb−2

 . (2)
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The following result shows the connection between the
b-symbol weight and Hamming weight for any vector. It is a
generalization of Lemma 1 in [28]. An important observation
is that wb(c) equals the number of nonzero columns of Gb(c).

Theorem 3.1: Let c ∈ Fn
q and denote by Vb(c) the vec-

tors generated by all linear combinations of c and its first
b − 1 cyclic shifts (i.e., generated by all linear combinations
of Gb(c)). Then

wb(c) =
1

qb−1(q − 1)

∑
c′∈Vb(c)

w1(c′).

Proof: Let Vb(c) be all qb vectors generated by all linear
combinations of Gb(c) and consider these as row vectors in
a qb × n matrix. Then in each nonzero column all elements
occur equally often i.e., qb−1 times each. Then, since in this
matrix, the sum of the weights of all row vectors equals the
sum of the weight of all column vectors, we obtain∑

c′∈Vb(c)

w1(c′) = qb−1(q − 1)wb(c)

which proves the theorem.
Vb(c) may be a multiset. For instance, if we take c =

(1010) ∈ F4
2, then

V2(c) = {0000, 1010, 0101, 1111};
V3(c) = {0000, 1010, 0101, 1111, 0000, 1010,

0101, 1111}.

Observe that if the minimal polynomial of c =
(c0, c1, . . . , cn−1) has degree ρ(c) < b, then wb(c) =
wρ(c)(c). This follows since Gb(c) has the same row space
as Gρ(c)(c) but has each vector with multiplicity qb−ρ(c).

In [10] and [28] the authors gave the connection between
wb(c) and w1(c) for any vector c ∈ Fn

q with 0 < w1(c) ≤
n− (b− 1) as:

w1(c) + b− 1 ≤ wb(c) ≤ b · w1(c). (3)

The following result generalizes Inequality (3) to the general
case and gives an interesting triangle inequality about the
b-symbol metric. To this end, we need the following lemma.

Lemma 3.2: Let c be a vector that belongs to Fn
q . Then

wb(c) ≥ b

n−1∑
i=b

Ψ(0i).

Proof: The result follows since each nonzero element
before the start of a run of b 0’s or more belongs to b nonzero
b-tuples.

Theorem 3.3: (Triangle inequality) Let c ∈ Fn
q be such that

0 < wb(c) ≤ n−m and 0 < wm(c) ≤ n− b. Then we have

max{wb(c) + m, wm(c) + b} ≤ wb+m(c)
≤ min{wb(c) + wm(c), n}. (4)

Proof: Let {Ψ(01), Ψ(02), . . . ,Ψ(0n)} be the 0’s run
distribution of c. According to Theorem 2.2, we have

wb(c) = n−
n−1∑
i=b

(i− b + 1) ·Ψ(0i); (5)

wm(c) = n−
n−1∑
i=m

(i−m + 1) ·Ψ(0i); (6)

wb+m(c) = n−
n−1∑

i=b+m

(i− b−m + 1) ·Ψ(0i). (7)

• If
∑n−1

i=b+m Ψ(0i) = 0, then wb+m(c) = n ≥ wb(c) + m
and by symmetry wb+m(c) = n ≥ wm(c) + b.

• If
∑n−1

i=b+m Ψ(0i) ≥ 1, then

wb+m(c)− wb(c) =

b+m−1∑
i=b

(i− b + 1) ·Ψ(0i)

+m

n−1∑
i=b+m

Ψ(0i) ≥ m.

Therefore, by symmetry, since also wb+m(c) − wm(c) ≥
wb(c) we complete the proof of the inequality on the left-
hand side.

Without loss of generality, assume that b ≤ m.
Let wb(c) + wm(c) − wb+m(c) = (∗). In the light of

Equations (5), (6) and (7), we obtain

(∗) = wb(c) + n−
n−1∑
i=m

(i−m + 1) ·Ψ(0i)

−n +
n−1∑

i=b+m

(i− b−m + 1) ·Ψ(0i)

= wb(c)− b

n−1∑
i=m+b

Ψ(0i)

−
m+b−1∑

i=m

(i−m + 1) ·Ψ(0i)

= wb(c)− b

n−1∑
i=b

Ψ(0i) + b

m+b−1∑
i=b

Ψ(0i)

−
m+b−1∑

i=m

(i−m + 1)Ψ(0i)

=



wb(c) − b
n−1∑
i=b

Ψ(0i) + b
m−1∑
i=b

Ψ(0i)

+
m+b−1∑

i=m
(b + m − 1 − i)Ψ(0i), if b < m

wb(c) − b
n−1∑
i=b

Ψ(0i)

+
m+b−1∑

i=m
(b + m − 1 − i)Ψ(0i), if b = m

≥ 0.

The last inequality (∗) > 0 is obtained according to
Lemma 3.2 and the assumption b ≤ m. Therefore, we get
the desired results.

Remark 3.4: According to Proposition 2.3 in [10], we have
wb+1(c) ≥ wb(c) + 1 if 0 < wb(c) < n. [10, Proposition
2.3] provides a simpler way to prove the left-hand side of the
inequality (4).

From Theorem 3.3, we have the following proposition.
Proposition 3.5: Let c ∈ Fn

q and 0 < wb(c) < n. Let
b =

∑t
i=1 ki, where k1, k2, . . . , kt are positive integers.
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Then we have

max {wk1(c) + b− k1, . . . , wkt(c) + b− kt}

≤ wb(c) ≤ min

{
t∑

i=1

wki
(c), n

}
.

B. b-Symbol Metric and r-th Generalized Hamming Metric

Let G = [s0, s1, · · · , sn−1] be a generator matrix of an
[n, k]q code C with columns si, i = 0, 1, . . . , n− 1. Let U be
a subspace of Fk

q , m(U) = |{i|si ∈ U}| and

Fk,l = {U |dim(U) = l}.

Lemma 3.6 [19]: Let C be an [n, k]q linear code. Then

dr(C) = n−max {m(U)|U ∈ Fk,k−r} .

Theorem 3.7: Let C be an [n, k]q linear code. Then

dr(C) = min

{
1

qr−1(q − 1)

∑
c∈R

w1(c)

∣∣∣∣∣R is

an r-dimensional subspace of C

}
(8)

and

db(C) = min

{
1

qb−1(q − 1)

∑
c′∈Vb(c)

w1(c
′)

∣∣∣∣∣∣
c ∈ C

}
. (9)

Proof: The desired result (8) follows from the definition
of the r-th generalized Hamming weight and Lemma 3.6. The
desired result (9) follows from Theorem 3.1.

In the case of b-symbol weight, we need to compute the sum
of the Hamming weights of vectors in Vb(c) for any c, while
for the r-th generalized Hamming weight, this summation
needs to be calculated for all r-dimensional subcodes.

The next goal is to give a very interesting connection
between db(C) and dr(C) if C is cyclic. To this end, we
need the following lemmas.

Lemma 3.8: Let C be an [n, k]q cyclic code. Let c be a
codeword of C. Let b be a positive integer not greater than k.
If Gb(c) has rank ρ(c), then

wb(c) ≥ dρ(c)(C).

Proof: If C is cyclic and Gb(c) has rank ρ(c), then the
code C ′ generated by Gb(c) is a subcode of C and C ′ is a
ρ(c)-dimensional subspace of C. By Theorem 3.1, we have

wb(c) =
1

qb−1(q − 1)

∑
c′∈Vb(c)

w1(c′)

=
qb−ρ(c)

qb−1(q − 1)

∑
c′∈C′

w1(c′)

≥ dρ(c)(C).

Therefore, we obtain the desired result.
Remark: The reason why we need the restriction b ≤ k

is to ensure ρ(c) ≤ k.

Assume that c is a codeword of C. Let ϑ(c) be the maximum
0’s run length of cir(c) and θ = max{ϑ(c)|c ∈ C\{0}}. The
parameter θ is called the maximum 0’s run length of C.

Lemma 3.9: Let C be a linear code over Fq with min-
imum b-symbol weight db(C) < n. Let Cb = {c|c ∈
C and wb(c) = db(C) < n}. Then Rank(Gb(c)) = b for
any c ∈ Cb.

Proof: We claim that ϑ(c) ≥ b for any c ∈ Cb. Assume
that there exists a codeword c′ ∈ Cb such that ϑ(c) ≤ b− 1.
By Theorem 2.2, wb(c′) = n, a contradiction. Since ϑ(c) ≥ b,
for any c ∈ Cb, c is of the form

c = (. . . , α, 0, . . . , 0︸ ︷︷ ︸
ϑ(c)≥b

, β, . . .),

where α and β belong to F∗q . Then the matrix Gb(c) has a b
by ϑ(c) + 2 submatrix of the form

G′ =


α 0 0 · · · 0 0 β
0 0 0 · · · 0 β
...

...
...

...
...

...
...

0 · · · 0 β


b×(ϑ(c)+2)

.

The desired result follows from Rank(G′) = b.
Theorem 3.10: Let C be an [n, k]q cyclic code. Let b be a

positive integer not exceeding k. Then db(C) ≥ db(C).
Proof: The desired result follows from Lemma 3.8 and

Lemma 3.9.
Just as the weight hierarchy of C under the r-th generalized

Hamming metric, we define the weight hierarchy of C under
the b-symbol metric as follows:
b-symbol
• weight hierarchy of C:

{d1(C), d2(C), . . . , dθ(C), dθ+1(C), . . . , dn(C)}.

Theorem 3.11: Let C be an [n, k]q linear code of the
maximum 0’s run length θ. The following hold:

1) 0 < d1(C) < d2(C) < · · · < dθ(C) < dθ+1(C) =
· · · = dn(C) = n.

2) The b-symbol weight hierarchy of C is the same as the
b-symbol weight hierarchy of CDP i, where D is an n
by n diagonal invertible matrix, and

P =


0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . . . . .

...
0 0 · · · 1 0


n×n

and 0 ≤ i ≤ n− 1.
Proof: Let c be a codeword in C of minimum nonzero

b-symbol weight with 2 ≤ b ≤ θ, then

db(C) = wb(c) ≥ wb−1(c) + 1 ≥ db−1(C) + 1.

Note that dθ(C) can not equal n since there exists at least one
codeword in C of b-symbol weight less than n.

Two linear codes C1 and C2 have the same b-symbol weight
hierarchy if they have the same 0’s run distribution for any
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codeword. Therefore, C and CDP i have the same b-symbol
weight hierarchy.
If C is cyclic, then the maximum 0’s run length of C is k−1.
We can get the following corollary directly.

Corollary 3.12: For an [n, k]q cyclic code C, then

d1(C) < d2(C) < · · · < dk−1(C) < dk(C)
= dk+1(C) = · · · = dn(C) = n.

1) Singleton Bound: Wei [27] established the generalized
Singleton Bound in 1991.

Lemma 3.13 ([27] Generalized Singleton Bound): For an
[n, k, d]q linear code,

dr(C) ≤ n− k + r

for 1 ≤ r ≤ k.
Wei called an [n, k]q code C r-rank maximum distance
separable (r-rank MDS for short) if dr(C) = n− k + r.

Cassuto et al. [4], [10] established the b-symbol Singleton
Bound in 2013.

Lemma 3.14 ([4], [10] b-Symbol Singleton Bound): If C
is an (n, M, db(C))q b-symbol code, then we have

M ≤ qn−db(C)+b.

An (n, M, db(C))q b-symbol code C with M = qn−db(C)+b

is called a b-symbol maximum distance separable (b-symbol
MDS for short) code.

Despite of the different metrics, their Singleton-type Bounds
are the same. The only difference is that when the metric is
the r-th generalized Hamming metric, we need to restrict C
to be linear.

Lemma 3.15 [4], [10], [27]: Let C be an MDS code with
parameters (n, qk) over Fq. Then:
• If C is linear, then C is an r-rank MDS code and

dr(C) = dH(C) + r − 1 for 1 ≤ r ≤ k (see [27]).
• C is a b-symbol MDS code and db(C) = dH(C) + b− 1

for 1 ≤ b ≤ k (see [4], [10]).
The following two theorems give the characterization of

trivial r-rank MDS codes or b-symbol MDS codes.
From [27, Theorem 1], we can easily derive the following

result.
Theorem 3.16: A cyclic code C with parameters [n, k]q is

an r-rank MDS code if r = k.
Proof: By the definition of the r-th generalized Hamming

metric, we have dr(C) = n since C is cyclic. According to
Lemma 3.13, C is r-rank MDS.

Theorem 3.17: A cyclic code C with parameters [n, k]q is a
b-symbol MDS code if b = k. Moreover, db(C) = n if b ≥ k.

Proof: From the proof of Theorem 2.7, there is no 0’s
run with length greater than or equal to k since ā is not
a zero state. According to Lemma 3.14, we get the desired
result.

Remark: (i) Theorem 3.17 proves the stability theorem
in [24] by using a more concise way and does not need the
restriction gcd(n, q) = 1.

(ii) The definition of the b-symbol weight does not restrict
b ≤ k, but if C is cyclic, we only consider the case b ≤ k.
If C is cyclic, we have θ = k − 1. In the sequel, we assume

that b is always less than k if C is cyclic. For the same cyclic
code C, it has two weight hierarchies as follows:
• generalized weight hierarchy:

{d1(C),d2(C), . . . ,dk(C)}.

b-symbol
• weight hierarchy:

{d1(C), d2(C), . . . , dk(C)}.

Further, we have dH(C) = d1(C) = d1(C) and dk(C) =
dk(C) = n.

2) Griesmer Bound: In 1992, Helleseth et al. [19] estab-
lished the generalized Griesmer Bound.

Lemma 3.18 ([19] Generalized Griesmer Bound): Let C
be an [n, k]q linear code. Then

n ≥ dr(C) +
k−r∑
i=1

⌈
q − 1

qi(qr − 1)
dr(C)

⌉
,

and

(qr − 1)dr−1(C) ≤ (qr − q)dr(C).

We naturally expect to give the b-symbol Griesmer Bound
for cyclic codes. There are two reasons why we restrict C to
being cyclic. If C is cyclic, then

1) the maximum 0’s run length of C is less than the
dimension of C;

2) for any codeword c ∈ C, the code generated by Gb(c)
is a subcode of C.

b-consecutive positions are independent if the set of codewords
takes on all qb possible b-tuples equally often when restricted
to these positions.

Lemma 3.19: Let C be a cyclic code with parameters [n, k]
over Fq . Let k = tb + s, where t, s are two integers, t ≥ 1,
and 0 ≤ s < b. Assume that any b-consecutive positions of C
are independent. Then∑

c∈C

wb(c) = nqk−b(qb − 1). (10)

Moreover, we have

db(C) ≤
⌊

qk − qk−b

qk − 1
· n

⌋
, (11)

n ≥

⌈
t−1∑
i=0

db(C)

qbi
+

db(C)(qs − 1)

q(t−1)b+s(qb − 1)

⌉
, (12)

n ≥

⌈
t−1∑
i=0

db(C)

(qb)i

⌉
if b|k. (13)

Proof: The first claim follows by observing that any
b-consecutive positions are information symbols, since this
implies that the cyclic code restricted to these positions
contains any b-tuple equally often, i.e., qk−b times.

According Equality (10), we have

(qk − 1)db(C) ≤ nqk−b(qb − 1).

Then Inequality (10) holds, and

n ≥ db(C) · (qk − 1)
qk−b(qb − 1)
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= db(C) · (qtb+s − 1)
q(t−1)b+s(qb − 1)

= db(C) · (qtb − 1)
q(t−1)b(qb − 1)

+db(C) · (qs − 1)
q(t−1)b+s(qb − 1)

=

⌈
t−1∑
i=0

db(C)
qbi

+
db(C)
q(t−1)b

· qs − 1
qs

· 1
qb − 1

⌉
Therefore, we obtain the desired result.

The following lemma was given in [24]. A nice relation
between db(C) and db−1(C) was established, and it is the
same as the relation between dr(C) and dr−1(C) which is
given in Lemma 3.18.

Lemma 3.20 ([24, Inequality (42)]): Let C be a cyclic
code with parameters [n, k] over Fq . Then

(qb − q)db(C) ≥ (qb − 1)db−1(C). (14)

By Lemma 3.20, we have

db(C) ≥
⌈

qb − 1
qb − q

db−1(C)
⌉

. (15)

Yaakobi et al. proved dH(C) ≤
⌊

2n
3

⌋
over F2 in

[29, Theorem 1] to ensure that the lower bound on d2(C) does
not exceed n. Notice that the lower bound on db(C) given in
(15) can not be greater than n since

db−1(C) ≤
⌊

qk − qk−b+1

qk − 1
· n

⌋
.

Further, we have

db(C) ≥

⌈
b−1∑
i=0

d1(C)
qi

⌉
. (16)

In fact, the lower bound (16) can be further reinforced into
the following result.

Theorem 3.21: Let C be a cyclic code with parameters
[n, k] over Fq . Then

db(C) ≥
b−1∑
i=0

⌈
d1(C)

qi

⌉
. (17)

Proof: Let c be a codeword with b-symbol weight
wb(c) = db(C). By Lemma 3.9, the rank of Gb(c) equals
b. Let C1 be the linear code generated by Gb(c). Since
Rank(Gb(c)) = b, the parameters of C1 are [n, b, d1(C1)]
with d1(C1) ≥ d1(C). Assume that

Gb(c) =
(

r1 r2 · · · rn

)
b×n

,

where ri are the columns of Gb(c) with 1 ≤ i ≤ n. Let

G′b(c) =
(

rj1 rj2 . . . rjm

)
b×m

,

where rj1 , . . . , rjm are all the nonzero columns of Gb(c).
Since the number of all the nonzero columns of Gb(c) equals
wb(c), m = wb(c). Then the parameters of the linear code C2

generated by G′b(c) are [wb(c), b, d1(C2) = d1(C1) ≥ d1(C)].
By the Griesmer Bound, we have

db(C) = wb(c) ≥
b−1∑
i=0

⌈
d1(C)

qi

⌉
.

Therefore, we obtain the desired result.
Assume that b|k and k = tb. By the preceding theorem, we

have
t−1∑
i=0

⌈
db(C)
qbi

⌉
≥

t−1∑
i=0


∑b−1

j=0

⌈
d1(C)

qj

⌉
qbi

 . (18)

From the Griesmer Bound, we have

n ≥
tb−1∑
i=0

⌈
d1(C)

qi

⌉

=
t−1∑
i=0

b−1∑
j=0

⌈
d1(C)
qib+j

⌉

=
t−1∑
i=0

b−1∑
j=0

⌈
d1(C)

qj

qbi

⌉
. (19)

Combining the Inequalities (18) and (19), a natural moti-
vation for us is to explore the relation between n and∑t−1

i=0

⌈
db(C)

qbi

⌉
. Then we have the following conjecture.

Conjecture 1: (b-Symbol Griesmer Bound for cyclic codes)
Assume that b|k and k = tb. If C is a cyclic code with
parameters [n, k] over Fq , then

n ≥
t−1∑
i=0

⌈
db(C)
(qb)i

⌉
. (20)

Inequality (20) holds if b = k or b = 1 from Theorem 3.17 and
the Griesmer Bound. The reader is warmly invited to attack
Conjecture 1 when b > 1 and t > 1.

IV. CONCLUSION AND OPEN PROBLEMS

Many results in this paper generalize the previous work
(e.g., Theorem 3.1, Theorem 3.3). In this paper, the b-symbol
weight of a vector c is first calculated by calculating the
0’s run distribution of c (Theorem 2.2). This provides a new
way to calculate the b-symbol weight distribution of linear
codes (e.g., in Remark 2.6 and Theorem 2.7 we calculated the
b-symbol weight distribution of some special codes based on
their 0’s run distributions). However, for general linear codes
(or cyclic codes), it is still a difficult task to determine their
0’s run distributions. A potential direction is to determine the
b-symbol weight distributions of some special linear codes by
exploring their 0’s run distributions.

Another highlight of this paper is that we first studied the
connections and differences between b-symbol metric and r-th
generalized Hamming metric. As two different generalizations
of Hamming metric, they have a lot in common. When C is
cyclic, a very important relation between db(C) and db(C) is
given (Theorem 3.10). It is a pity that this paper fails to give
the b-symbol Griesmer Bound for cyclic codes and only gives a
conjecture (Conjecture 1). It is important to note that b-symbol
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Griesmer bound (if Conjecture 1 is true) does not apply to
arbitrary linear codes (this is one of the differences from
Griesmer Bound and generalized Griesmer Bound). However,
the b-symbol Griesmer Bound is not restricted to cyclic codes;
in fact, it is also applicable to constacyclic codes.
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