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One-Shot Triple-Resource Trade-Off
in Quantum Channel Coding

Eyuri Wakakuwa and Yoshifumi Nakata

Abstract— We analyze a task in which classical and quantum
messages are simultaneously communicated via a noisy quantum
channel, assisted with a limited amount of shared entanglement.
We derive direct and converse bounds for the one-shot capacity
region, represented by the smooth conditional entropies and the
error tolerance. The proof is based on the randomized partial
decoupling theorem, which is a generalization of the decoupling
theorem. The two bounds match in the asymptotic limit of
infinitely many uses of a memoryless channel and coincide with
the previous result obtained by Hsieh and Wilde. Direct and
converse bounds for various communication tasks are obtained
as corollaries, both for the one-shot and asymptotic scenarios.

Index Terms— Quantum channel capacity, one-shot,
decoupling.

I. INTRODUCTION

ONE of the major goals of quantum communication
theory is to investigate the ultimate capacities of a noisy

quantum channel for transmitting classical and quantum infor-
mation (see, e.g., [1], [2]). In an asymptotic limit of infinitely
many uses of a memoryless channel, the classical capacity
of a noisy quantum channel was obtained by Holevo [3],
Schumacher and Westmoreland [4]; the quantum capacity by
Lloyd [5], Shor [6] and Devetak [7]; the entanglement-assisted
classical capacity by Bennet et al. [8], [9] and Shor [10]; the
entanglement-assisted quantum capacity by Devetak et al. [11],
[12]; and the capacity of a quantum channel for simultaneously
transmitting classical and quantum messages was obtained by
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Devetak and Shor [13]. One of the most general results in
this direction was shown by Hsieh and Wilde [14], which
provides a complete characterization of the triple trade-off
among the resources of classical communication, quantum
communication, and entanglement in quantum channel coding.
As proved in [14], the capacity theorems in the special cases
mentioned above are obtained from their result as corollaries.

A modern approach addresses the same communication
tasks under the assumption that the channel is used only once,
which is referred to as the one-shot regime. Along this line,
the classical capacity of a noisy quantum channel was first
investigated by Mosonyi et al. [15] and was developed by
Renes et al. [16] and Wang et al. [17]; the quantum capacity
was obtained by Buscemi et al. [18]; the entanglement-assisted
classical and quantum capacities by Datta et al. [19]; and
the capacity region for simultaneously transmitting classical
and quantum information was obtained by Salek et al. [20].
In the asymptotic limit of infinitely many uses of a memoryless
channel, all these results (except [15]) are known to coincide
with the preexisting results presented above. Numerous studies
have been done to develop these approaches further (see
e.g. [21], [22], [23], [24], [25], [26], [27], [28], [29]). However,
the one-shot capacity theorem that reduces in the asymptotic
limit to the result by Hsieh and Wilde [14] has not been
obtained so far.

In this paper, we derive a one-shot generalization of
the three-dimensional rate region obtained in [14]. Namely,
we consider a task in which classical and quantum mes-
sages are transmitted via a noisy quantum channel with the
assistance of a limited amount of shared entanglement, all
in the one-shot scenario. The main result is that we derive
inner and outer bonds for the one-shot rate region, which are
represented in terms of the smooth conditional entropy of the
channel. To our knowledge, this is the first time that trade-off
relations that apply simultaneously to all the three resources
of classical communication, quantum communication, and
shared entanglement has been obtained in the one-shot channel
coding scenario. In the asymptotic limit of infinitely many
uses of the channel, the direct and converse bounds match
and coincide with the achievable rate region obtained in [14].
As proved in [14], the aforementioned capacity theorems in the
special cases, such as the Holevo-Schumacher-Westmoreland
theorem [3], [4] and the Lloyd-Shor-Devetak theorem [5], [6],
[7], are obtained from their result as corollaries. Hence, our
one-shot result also recovers the capacity theorems in the
asymptotic limit in those special cases. Besides, the direct
and converse bounds for various communication tasks in the
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one-shot scenario readily follow from our result. It should be
noted, however, that in special cases, our result is not neces-
sarily as strong as those in the previous literature. To compare
our results quantitatively with those in the previous literature
is left as a future work.

The proof is based on the notion of randomized partial
decoupling [30], which is a generalization of decoupling [31],
[32], [33], [34], [35], [36]. Here, we consider a scenario in
which a bipartite quantum state on system AR is subject to a
unitary operation on A, followed by the action of a linear
completely positive (CP) map. Unlike the usual setting of
decoupling, we assume that the subsystem is decomposed into
a direct-sum form, and the unitary is chosen at random from
the set of unitaries that are block-diagonal under the decompo-
sition. In [30], we proved the randomized partial decoupling
theorem, which shows that the distance between the final
state and the averaged one is bounded in terms of smooth
conditional entropies of the initial state and the channel. The
previous results of the one-shot decoupling theorem [35] and
the dequantization theorem [21] are obtained from this result
as corollaries, up to changes in the smoothing and error para-
meters (see Section III D in [30] for the details). The current
paper applies the randomized partial decoupling theorem to
the channel coding scenario for proving the one-shot capacity
theorems.

This paper is organized as follows. In Section II, we intro-
duce notations and definitions that will be used throughout this
paper. In Section III, we present formulations of the problem
and state the main results. In Section IV, we summarize the
statement of the randomized partial decoupling theorem. The
proofs of the main theorems are provided in Section V and VI.
In Section VII, we apply the one-shot results to the asymptotic
scenario of infinitely many uses of the channel and obtain a
three-dimensional achievable rate region that is equivalent to
the one obtained by Hsieh and Wilde. Proof of the asymptotic
result is provided in Section VIII. In Section IX, we apply our
results to special cases where one or two of the three resources
are assumed to be zero and compare the results to those in the
previous literature. Conclusions are presented in Section X.

II. PRELIMINARIES

We summarize notations and definitions that will be used
throughout this paper.

A. Notations

We denote the set of linear operators and that of Hermitian
operators on a Hilbert space H by L(H) and Her(H), respec-
tively. For positive semidefinite operators, density operators
and sub-normalized density operators, we use the following
notations, respectively:

P(H) = {ρ ∈ Her(H) : ρ ≥ 0}, (1)

S=(H) = {ρ ∈ P(H) : Tr[ρ] = 1}, (2)

S≤(H) = {ρ ∈ P(H) : Tr[ρ] ≤ 1}. (3)

A Hilbert space associated with a quantum system A is
denoted by HA, and its dimension is denoted by dA. A system

composed of two subsystems A and B is denoted by AB.
When M and N are linear operators on HA and HB ,
respectively, we denote M ⊗ N as MA ⊗ NB for clarity.
In the case of pure states, we often abbreviate |ψ〉A⊗|φ〉B as
|ψ〉A|φ〉B . For XAB ∈ L(HAB), XA represents TrB[XAB].
We denote |ψ〉〈ψ| simply by ψ. The maximally entangled state
between A and A′, where HA ∼= HA′

, is defined by

|Φ〉AA
′
:=

1√
dA

dA∑
α=1

|α〉A|α〉A
′

(4)

with respect to a fixed orthonormal basis {|α〉}dA
α=1.

The identity operator is denoted by I . We denote (MA ⊗
IB)|ψ〉AB as MA|ψ〉AB and (MA ⊗ IB)ρAB(MA ⊗ IB)†

as MAρABMA†. When T is a supermap from L(HA) to
L(HB), we denote it by T A→B . When A = B, we use T A for
short. We also denote (T A→B ⊗ idC)(ρAC) by T A→B(ρAC).
When a supermap is given by a conjugation of a unitary UA

or a linear operator WA→B , we denote it by its calligraphic
font as UA(XA) := (UA)XA(UA)† and WA→B(XA) :=
(WA→B)XA(WA→B)†. In that case, the adjoint map of
WA→B is defined by W†B→A(·) := (WA→B)†(·)(WA→B).

For any linear CP map T A→B , there exist a finite dimen-
sional quantum system E and a linear operator ΓA→BE

T such
that T A→B(·) = TrE [ΓT (·)Γ†

T ]. The operator ΓT is called
the Stinespring dilation of T A→B [37], and the linear CP
map defined by TrB[ΓT (·)Γ†

T ] is called the complementary
map of T A→B . With a slight abuse of notation, we denote the
complementary map by T A→E .

B. Norms and Distances

For a linear operator X , the trace norm is defined as
||X ||1 = Tr[

√
X†X]. The trace distance between two unnor-

malized states ρ, ρ′ ∈ P(H) is defined by 1
2‖ρ − ρ′‖1. For

subnormalized states ρ, ρ′ ∈ S≤(H), the generalized fidelity
and the purified distance are defined by

F̄ (ρ, ρ′) := ‖√ρ
√
ρ′‖1 +

√
(1 − Tr[ρ])(1 − Tr[ρ′]), (5)

P (ρ, ρ′) :=
√

1 − F̄ (ρ, ρ′)2, (6)

respectively [38]. The trace distance and the purified distance
are related as

1
2
‖ρ− ρ′‖1 ≤ P (ρ, ρ′) ≤

√
2‖ρ− ρ′‖1 (7)

for any ρ, ρ′ ∈ S≤(H). The epsilon ball of a subnormalized
state ρ ∈ S≤(H) is defined by

Bε(ρ) := {ρ′ ∈ S≤(H)| P (ρ, ρ′) ≤ ε}. (8)

C. One-Shot Entropies

For any subnormalized state ρ ∈ S≤(HAB) and normalized
state ς ∈ S=(HB), define

Hmin(A|B)ρ|ς := sup{λ ∈ R|2−λIA ⊗ ςB ≥ ρAB}, (9)

Hmax(A|B)ρ|ς := log ‖
√
ρAB
√
IA ⊗ ςB‖2

1. (10)
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Fig. 1. One-shot channel coding is depicted. The normal arrows represent quantum systems, and the dotted arrows represent the classical part of the source
state.

The conditional min- and max- entropies (see e.g. [39]) are
defined by

Hmin(A|B)ρ := sup
ςB∈S=(HB)

Hmin(A|B)ρ|ς , (11)

Hmax(A|B)ρ := sup
ςB∈S=(HB)

Hmax(A|B)ρ|ς , (12)

respectively. The smooth conditional min- and max-entropies
are defined by

Hε
min(A|B)ρ := sup

ρ̂AB∈Bε(ρ)

Hmin(A|B)ρ̂, (13)

Hε
max(A|B)ρ := inf

ρ̂AB∈Bε(ρ)
Hmax(A|B)ρ̂ (14)

for a smoothing parameter ε ≥ 0. The properties of the smooth
conditional entropies used in this paper are summarized in
Appendix B.

D. Choi-Jamiolkowski Representation

Let T A→B be a linear supermap from L(HA) to L(HB)
and let ΦAA

′
be the maximally entangled state between A

and A′. A linear operator J(T A→B) ∈ L(HAB) defined by
J(T A→B) := T A′→B(ΦAA

′
) is called the Choi-Jamiołkowski

representation of T [40], [41]. The representation is an iso-
morphism. For an operator XAB ∈ L(HAB), the inverse map
is given by

J−1
A (XAB)(ςA) = dATrA

[
(ςA

T

⊗ IB)XAB
]
, (15)

where AT denotes the transposition of A with respect to
the Schmidt basis of ΦAA

′
. When T is completely positive,

J(T A→B) is an unnormalized state on AB and is called the
Choi-Jamiołkowski state of T .

E. Haar Measure

For a unitary group of finite degree, there exists the unique
left- and right- unitarily invariant probability measure, known
as the Haar measure. We denote it by H. The Haar measure
satisfies the property that, for any unitary U and a set of
unitaries V ,

H(UV) = H(VU) = H(V). (16)

When a unitary U is chosen uniformly at random with respect
to the Haar measure, we denote it by U ∼ H.

III. ONE-SHOT CAPACITY THEOREMS

Consider a noisy quantum channel NA→B . Suppose that
the sender, Alice, transmits c-bits of classical and q-qubits
of quantum messages simultaneously to the receiver, Bob,
through a noisy quantum channel assisted by e-ebits of shared
entanglement (see Figure 1). We assume that Bob initially
has no side information about the messages. Our goal is to
obtain the conditions for this task to be achievable within error
tolerance δ, in terms of c, q and e.

To be more precise, let Mq be a 2q-dimensional quantum
system that represents the quantum message, and Rq be a
reference system with the same dimension that are inaccessible
to Alice and Bob. The quantum message is described by
the maximally entangled state ΦMqRq

2q with Schmidt rank 2q.
With FA and FB being 2e-dimensional quantum registers,
the entanglement resource is given by the maximally entan-
gled state ΦFAFB

2e with Schmidt rank 2e. A communication
protocol is represented by a set of encoding CPTP maps
{EMqFA→A
j }2c

j=1 and a decoding instrument {DBFB→Mq

j }2c

j=1.
Let m and m̂ be the original classical message and the decoded
one, respectively. The probability that the decoded message is
m̂ = k when the original message is m = j is

p(m̂ = k|m = j) = Tr[Dk◦N ◦Ej(ΦMqRq

2q ⊗ΦFAFB
2e )]. (17)

When the decoded message is m̂ = k and the original message
is m = j, the state of the quantum part after the decoding is
given by

Φ̂
MqRq

j,k :=
1

p(m̂ = k|m = j)
Dk◦N ◦Ej(Φ

MqRq

2q ⊗ΦFAFB
2e ). (18)

The average probability of error in decoding the classical
message is calculated to be

δC :=
1
2c

2c∑
j=1

p(m̂ �= j|m = j), (19)

and that for the quantum message is

δQ :=
1
2c

2c∑
j,k=1

p(m̂ = k|m = j)
∥∥∥Φ̂MqRq

j,k −ΦMqRq

2q

∥∥∥
1
. (20)
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Fig. 2. The protocol for communication over the channel N constructed in terms of randomized partial decoupling is depicted. The encoding operation
Eρ,s,U is composed of (i) a linear isometry P MFA→S that embeds the message system M and Alice’s share of the entanglement resource FA to a larger
system S, (ii) the permutation s and the unitary U that appear in randomized partial decoupling, and (iii) a linear CPTP map Eρ that is obtained from ρSA

by the Choi-Jamiolkowski correspondence. The explicit form of the decoder D is left open, because we only prove the existence of a proper decoder D in
the proof of the direct part.

Both the classical and quantum errors shall be small, i.e.,
we want δC and δQ to be below a certain threshold δ > 0.

A rigorous definition of a code is given as follows. Here,
we treat the classical and quantum parts of the message as one
large quantum system, because it is more convenient in our
analysis.

Definition 1: Consider the setting described above. Let
Mc and Rc be 2c-dimensional quantum system with a fixed
orthonormal basis {|j〉}2c

j=1. We denote McMq by M and
RcRq by R for brevity. Let Φ′MR

2c,2q be a source state defined
by

Φ′MR
2c,2q =

1
2c

2c∑
j=1

|j〉〈j|Mc ⊗ |Φ2q〉〈Φ2q |MqRq ⊗ |j〉〈j|Rc . (21)

A pair of an encoding CPTP map EMFA→A and a decoding
CPTP map DBFB→M is called a (c, q, e, δ) code for the
channel N if it holds that∥∥∥D ◦ N ◦ E(Φ′MR

2c,2q ⊗ ΦFAFB
2e ) − Φ′MR

2c,2q

∥∥∥
1
≤ δ (22)

and

EMFA→A = EMFA→A ◦ CMc , (23)

DBFB→M = CMc ◦ DBFB→M , (24)

where C is the completely dephasing operation on Mc with
respect to the basis {|j〉}2c

j=1.
Note that the condition (22) is equivalent to the condition that
δC , δQ ≤ δ, up to a constant multiplication. The correspon-
dence between the encoding and decoding operations is given
by

EMqFA→A
j (·) = EMFA→A(|j〉〈j|Mc ⊗ (·)MqFA), (25)

DBFB→Mq

j (·) = 〈j|McDBFB→M (·)|j〉Mc (26)

and

EMFA→A(·) =
2c∑
j=1

Ej(〈j|Mc(·)|j〉Mc), (27)

DBFB→M (·) =
2c∑
j=1

|j〉〈j|Mc ⊗DBFB→Mq

j (·). (28)

It should be noted that the capacity theorems obtained in
terms of the average probability of error, as in (19), (20)
and (22), are translated into those based on the worst-case

error, up to halving of the message length. See, for example,
Corollary 1 in [18] and Theorem 11 in [19] for the quantum
part and Lemma 1 in [16] for the classical part. The latter is
known as the expurgation trick (see e.g. [1]).

A. Channel Capacity With Limited Entanglement

First, we consider the situation in which the amount of the
resource of shared entanglement is limited.

Definition 2: A triplet (c, q, e) is said to be achievable
within the error δ for the channel NA→B if there exists a
(c, q, e, δ) code for NA→B .
The direct part is represented by the following theorem.
The proof is based on the direct part of randomized partial
decoupling (Theorem 8), and will be provided in Section V.
A protocol that achieves the direct bound is depicted in
Figure 2.

Theorem 3: Let Sr be a finite dimensional quantum system
and let Sc be a quantum system with a fixed orthonormal basis
{|j〉}dSc

j=1 such that dSc ≥ 2. We denote ScSr by S. Consider
a state in the form of

ρSA =
1
dSc

dSc∑
j=1

|j〉〈j|Sc ⊗ ρSrA
j , (29)

where{ρj}dSc

j=1 is a set of normalized states on SrA such that
ρS is the full-rank maximally mixed state on S. For any such
Sc, Sr, ρSA, any δ1, δ2 > 0 and ε ≥ 0, a triplet (c, q, e) is
achievable within the error

δ = 2
√√

δ1 +
√
δ2 + 4ε (30)

for the channel NA→B if dSc ≥ 2c and the following three
inequalities hold:

q + e ≤ log dSr , (31)

c+ q − e ≤ −Hε
max(S|B)N (ρ)

+ log (dSc − 1) + log δ1, (32)

q − e ≤ −Hε
max(Sr|BSc)N (ρ) + log δ2. (33)

The same statement holds in the cases of (c = 0, dSc = 1) and
(q = e = 0, dSr = 1). In the former case, the condition (32)
is removed and δ1 in (30) is assumed to be zero. In the latter,
the condition (33) is removed and δ2 in (30) is considered to
be zero.
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The converse part is stated by the following theorem, which
will be proved in Section VI based on the converse part for
randomized partial decoupling (Theorem 9).

Theorem 4: Suppose that a triplet (c, q, e) is achievable
within the error δ for the channel NA→B . Then, there exist
a quantum system S satisfying dS ≤ 2c+q+e and a state ρSA

such that the following conditions hold. First, S is composed
of finite dimensional quantum systems Sc and Sr, where Sc
is equipped with an orthonormal basis {|j〉}dSc

j=1. Second, the
state ρSA is in the form of

ρSA =
1
dSc

dSc∑
j=1

|j〉〈j|Sc ⊗ ρSrA
j , (34)

where {ρj}dSc

j=1 is a set of normalized states on SrA and ρS

is the full-rank maximally mixed state on S. Third, for any
ι ∈ (0, 1], it holds that

q + e ≤ log dSr , (35)

c+ q − e ≤ −Hλ
max(S|B)N (ρ) + log dSc − log ι, (36)

q − e ≤ −Hλ′
max(Sr|BSc)N (ρ) − log ι. (37)

The smoothing parameters λ and λ′ are given by

λ :=2
√
ι+ 2x2 + x+ 2x2, (38)

λ′ :=
√

4
√
ι+ 2x+ 2

√
x+ (4

√
ι+ 8 + 24)x (39)

and x := 2 8
√
δ.

B. Channel Capacity With Free Entanglement

Second, we consider the situation in which the resource
of shared entanglement is freely available. Following [19],
we assume that the entanglement resource is given in the form
of the maximally entangled state.

Definition 5: A pair (c, q) is said to be achievable within
the error δ for the channel NA→B with the assistance of
entanglement if there exists e ≥ 0 such that a triplet (c, q, e)
is achievable within the error δ for NA→B .
The direct and converse bounds for the scenario of free
entanglement immediately follow from the direct bound and
the converse bound for the case of limited entanglement, i.e.,
from Theorem 3 and Theorem 4.

Corollary 6: For any ε ∈ [0, 1/2) and δ′ ∈ (0, 1 − 2ε],
a pair (c, q) is achievable within the error

δ = 2
√√

2δ′ +
√
δ′ + 4ε (40)

for the channel NA→B with the assistance of entanglement, if
there exist a quantum system S and a state ρSA such that ρS

is the full-rank maximally mixed state on S and the following
inequality holds:

c+ 2q ≤ log dS −Hε
max(S|B)N (ρ) + log δ′. (41)

Corollary 7: Suppose that a pair (c, q) is achievable within
the error δ for the channel NA→B with the assistance of
entanglement. Then, there exist a quantum system S and a

state ρSA such that ρS is the full-rank maximally mixed state
on S and for any ι ∈ (0, 1], it holds that

c+ 2q ≤ log dS −Hλ
max(S|B)N (ρ) − log ι. (42)

The smoothing parameter λ is given by (38).
Proof of Corollaries: Corollary 7 immediately follows

from Inequalities (35) and (36) in Theorem 4. To prove
Corollary 6 from Theorem 3, suppose that there exists a state
ρSA that satisfies the conditions in Corollary 6. Let S′

c be a
system such that dS′

c
≥ 2c. Define S′

r := S, S′ := S′
cS

′
r and

consider a state

ρ′S
′A :=

1
dS′

c

dS′
c∑

j=1

|j〉〈j|S
′
c ⊗ ρS

′
rA. (43)

Due to the property of the smooth max entropy for product
states (Lemma 24), we have

Hε
max(S

′
r|BS′

c)N (ρ′) = Hε
max(S|B)N (ρ) (44)

≥ Hε
max(S

′|B)N (ρ′) − log dS′
c
. (45)

It follows from (44) and (41) that

q − log dS′
r
≤ −Hε

max(S
′
r|BS′

c)N (ρ′) + log δ′ − c− q. (46)

Thus, there exists e ∈ R such that{
q + e ≤ log dS′

r
,

c+ q − e ≤ −Hε
max(S′

r|BS′
c)N (ρ′) + log δ′.

(47)

We may assume that e ≥ 0, since q ≤ log dS′
r
. This is

because the dimension bound for the smooth max entropy (see
Lemma 25 in Appendix B) imply

2q ≤ log dS −Hε
max(S|B)N (ρ) (48)

≤ 2 log dS + log
(

δ′

1 − 2ε

)
. (49)

The second inequality in (47) leads to

c+ q − e ≤−Hε
max(S

′|B)N (ρ′)+log (dS′
c
−1)+log 2δ′ (50)

due to Inequality (45) and the relation dS′
c
/(dS′

c
−1) ≤ 2, and

to

q − e ≤ −Hε
max(S

′
r|BS′

c)N (ρ′) + log δ′ (51)

since c ≥ 0. Combining (50), (51) and the first inequality in
(47) with Theorem 3, we complete the proof.

IV. RANDOMIZED PARTIAL DECOUPLING

In this section, we briefly review a task that we call
randomized partial decoupling [30] and present the direct
and converse bounds for it. This is a generalization of the
decoupling theorem in the version of [35]. For the details and
proofs, see the paper by the same authors [30].

Randomized partial decoupling is a task in which a bipartite
quantum state ΨAR is transformed by a unitary operation
on A and then is subject to the action of a linear CP map
T A→E . We assume that the Hilbert space HA is decomposed
into a direct-sum form as HA =

⊕J
j=1 HA

j , where each
HA
j (j = 1, · · · , J) has the same dimension r. Let HAc

be a J-dimensional Hilbert space with a fixed orthonormal
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Fig. 3. The procedure used in the randomized partial decoupling is depicted.
For a given initial state ΨAR, a random unitary U in the form of (54) and
a permutation Gs are first applied to A. Then, the system A is mapped to
another one E by T .

basis {|j〉}Jj=1 and HAr be an r-dimensional Hilbert space.
The Hilbert space HA is isomorphic to a tensor product
Hilbert space HAc ⊗ HAr , i.e., A ∼= AcAr. In terms of this
decomposition, any state ΨAR is written as

ΨAR =
J∑

j,k=1

|j〉〈k|Ac ⊗ ΨArR
jk , (52)

where ΨArR
jk := ΠA

j ΨARΠA
k with Πj being the projection onto

HA
j . By properly choosing orthonormal bases, a maximally

entangled state |Φ〉AA
′

is represented by

|Φ〉AA′
=

⎛⎝ 1√
J

J∑
j=1

|j〉Ac |j〉A
′
c

⎞⎠⊗( 1√
r

r∑
α=1

|α〉Ar |α〉A
′
r

)
, (53)

where Ac ∼= A′
c and Ar ∼= A′

r .
Consider a random unitary U on A in the form of

U :=
J∑
j=1

|j〉〈j|Ac ⊗ UAr

j . (54)

where Uj is independently chosen for each j from the Haar
measure H on the unitary group on HAr . For any state ΨAR,
the averaged state after the action of this random unitary is
given by

ΨAR
av := EU1,...,UJ∼H[UA(ΨAR)U †A] (55)

=
J∑
j=1

pj |j〉〈j|Ac ⊗ πAr ⊗ ΨR
j . (56)

Here, πAr is the maximally mixed state on HAr , {pj}Jj=1 is a
probability distribution defined by pj := Tr[〈j|AcΨAR|j〉Ac ],
and ΨR

j is a normalized state on HR defined by ΨR
j :=

p−1
j ΨR

jj . In the following, we denote EU1,...,UJ∼H simply by
EU when there is no ambiguity. Let P be the permutation
group on {1, · · · , J} and define a unitary Gs for each s ∈ P

by

Gs :=
J∑
j=1

|s(j)〉〈j|Ac ⊗ IAr . (57)

The permutation s is chosen at random according to the
uniform distribution on P. Our concern is how close the final
state T A→E ◦GAs ◦UA(ΨAR) is, on average over all U , to the
averaged final state T A→E ◦ GAs (ΨAR

av ), for typical choices of
the permutation s (see Figure 3 as well).

For simplicity of analysis, we assume that R ∼= RcRr,
where Rc is a quantum system with dimension J . We also

assume that ΨAR is decomposed in the form of

ΨAR =
J∑

k,l=1

|k〉〈l|Ac⊗ ψArRr

kl ⊗ |k〉〈l|Rc, (58)

where ψkl ∈ L(HAr ⊗HRr) for each k and l. Such states are
called classically coherent states [21].

The following theorem is the direct part of the randomized
partial decoupling theorem.

Theorem 8 (Theorem 3 in [30]): Consider a linear CP map
T A→E and a state ΨAR ∈ S=(HAR) that is decomposed
as (58). Let U and Gs be random unitaries defined by (54)
and (57), respectively. Define the partial decoupling error
Δs,U (T ,Ψ) by

Δs,U (T ,Ψ) :=
∥∥T A→E ◦ GAs

(
UA(ΨAR) − ΨAR

av )
)∥∥

1
, (59)

where ΨAR
av := EU1,...,UJ∼H[UA(ΨAR)]. Then, for any ε, μ ≥

0, it holds that

Es,U [Δs,U (T ,Ψ)] ≤ θI + θII + 4(ε+ μ+ εμ). (60)

The terms θI and θII are represented by

θI =

{
2−

1
2HI (J ≥ 2)

0 (J = 1)
, θII =

{
2−

1
2HII (dAr ≥ 2)

0 (dAr = 1)
, (61)

where the exponents HI and HII are given by

HI = log (J − 1) +Hε
min(A|R)Ψ −Hμ

max(A|C)C(τ), (62)

HII = Hε
min(A|R)C(Ψ) −Hμ

max(Ar|CAc)C(τ), (63)

respectively. Here, C is the completely dephasing operation
on Ac with respect to the basis {|j〉}Jj=1 and τ is the
Choi-Jamiolkowski state of the complementary map T A→C

of T A→E , i.e. τ = J(T A→C).
In [30], we also obtained a converse bound for randomized

partial decoupling, which is stated by the following theorem.
Theorem 9 (Theorem 4 in [30]): Consider a linear

trace-preserving CP map T A→E and a state ΨAR ∈ S=(HAR)
that is decomposed as (58). Suppose that, for δ > 0, there
exists a normalized state in the form of

ΩER :=
J∑
j=1

pjς
E
j ⊗ ΨRr

j ⊗ |j〉〈j|Rc , (64)

such that ∥∥T A→E(ΨAR) − ΩER
∥∥

1
≤ δ. (65)

Then, for any υ ∈ [0, 1/2) and ι ∈ (0, 1], it holds that

Hλ
min(A|R)Ψ −Hυ

min(BR|C)T ◦C(Ψ) + log J ≥ log ι, (66)

Hλ′
min(A|R)C(Ψ) −Hυ

min(BRr|CRc)T ◦C(Ψ)

≥ log ι+ log (1 − 2υ). (67)

The second terms in the L.H.S.s of (66) and (67) are for a
purification |Ψ〉ABR of ΨAR and the complementary channel
T A→C of T A→E , with C being the completely dephasing
channel on Ac. The smoothing parameters λ and λ′ are
given by

λ :=2
√
ι+ 4

√
20υ + 2δ +

√
2
√

20υ + 2δ
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Fig. 4. The definition of the state |Ψρ〉 given by (87) and its transformation by partial decoupling are depicted. CJ, SD and UT stand for the Choi-Jamiolkowski
correspondense, the Stinespring dilation and Uhlmann’s theorem, respectively. Note that R ≡ RcRq and M ≡ McMq . In composing the encoding operation,
we use the fact that the actions of U , s and P̃ on system R̂ are replaced by those of P̃ , GT

s and UT in this order, on system Ŝ before applying Vρ. This
trick was introduced in [33] to analyze the quantum channel capacity in an asymptotic scenario.

+ 2
√

2δ + 2
√

20υ + 2δ + 3υ, (68)

λ′ :=υ +
√

4
√
ι+ 2x+ 2

√
x+ (4

√
ι+ 8 + 24)x (69)

and x :=
√

2 4
√

24υ + 2δ.

V. PROOF OF THE DIRECT PART

(THEOREM 3)

We prove the direct part of the capacity theorem
(Theorem 3) based on the direct part of the randomized
partial decoupling theorem (Theorem 8). We follow the idea
of Ref. [33] that the problem of finding a good code for a
quantum channel is equivalent to the problem of finding a
good way to decouple a bipartite state constructed from the
channel.

Fix an arbitrary triplet (c, q, e), δ > 0, system S ≡ ScSr
and a state ρSA that satisfy the conditions in Theorem 3.
We prove achievability of the triplet (c, q, e) within the error δ
along the following lines: First, we construct a state Ψρ from
the state ρSA, the channel NA→B and a state obtained by
“purifying” and “extending” the source state and the resource
state. Second, we prove that, if a CP map achieves randomized
partial decoupling of the state Ψρ for a particular choice of s
and U in high precision, there exist an encoder Eρ,s,U and a
decoder D that accomplish the communication with a small
error. Finally, we evaluate the precision of the randomized
partial decoupling based on Theorem 8, by which we complete
the proof of Theorem 3.

A. Definitions of States and Operations

We embed Mc and MqFA into Sc and Sr, respectively.
This is possible because of the conditions dimSc ≥ 2c and
dimSr ≥ 2q+e in Theorem 3. Similarly, we embed Rc and
RqFB to larger systems R̂c and R̂r, respectively, such that
R̂c ∼= Sc and R̂r ∼= Sr. The embeddings are represented
by linear isometries PMc→Sc , PMqFA→Sr , PRc→R̂c and
PRqFB→R̂r . For the simplicity of notations, we denote R̂cR̂r

by R̂. In total, the systems MFA and RFB are embedded into
systems S and R̂ by linear isometries

PMFA→S := PMc→Sc ⊗ PMqFA→Sr , (70)

PRFB→R̂ := PRc→R̂c ⊗ PRqFB→R̂r , (71)

respectively. The adjoint map corresponding to these isome-
tries are given by

P†S→MFA(·) := (PMFA→S)†(·)(PMFA→S), (72)

P†R̂→RFB (·) := (PRFB→R̂)†(·)(PRFB→R̂). (73)

Define a “purified” source-resource state by

|Φpur〉MFARFB := |Φ2c+q〉MR|Φ2e〉FAFB (74)

=
1√
2c

2c∑
j=1

|j〉Mc |j〉Rc |Φ2q〉MqRq |Φ2e〉FAFB . (75)

Note that

CMc(Φpur) = Φ′MR
2c,2q ⊗ ΦFAFB

2e , (76)

where CMc the completely dephasing operation on Mc with
respect to the basis {|j〉}2c

j=1. We also introduce an “extended”
one by

|Φext〉SR̂ :=
1√
dSc

dSc∑
j=1

|j〉Sc |j〉R̂c |ΦdSr
〉SrR̂r . (77)

We properly choose the embedding isometries so that

|Φpur〉MFARFB

=

√
dS

2c+q+e
(PMFA→S ⊗ PRFB→R̂)†|Φext〉SR̂ (78)

and

PMc→Sc |j〉Mc = |j〉Sc , PRc→R̂c |j〉Rc = |j〉R̂c (79)

for any j = 1, · · · , 2c. Using

P̃ R̂→RFB :=

√
dS

2c+q+e
(PRFB→R̂)†, (80)
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the purified source-resource state and the extended one are
simply related as

PMFA→S |Φpur〉MFARFB = P̃ R̂→RFB |Φext〉SR̂. (81)

Let ES→A
ρ and ESr→A

ρj
be linear maps defined by the

Choi-Jamiolkowski correspondence from ρSA and ρSrA
j ,

respectively. That is, ES→A
ρ := J−1

S (ρSA) and ESr→A
ρj

:=
J−1
Sr

(ρSrA
j ). Due to the condition that ρS is the full-rank

maximally mixed state, the two maps are completely positive
and trace-preserving. From the decomposition (29), it follows
that

ES→A
ρ (τ) =

dSc∑
j=1

ESr→A
ρj

(〈j|Scτ |j〉Sc). (82)

We denote by V Sr→AE0
ρj

the Stinespring dilation of ESr→A
ρj

for each j. Introducing a quantum system Ec with a fixed
orthonormal basis {|j〉}dSc

j=1, the Stinespring dilation Vρ of
ES→A
ρ is given by

V S→AE0Ec
ρ =

dSc∑
j=1

|j〉Ec〈j|Sc ⊗ V Sr→AE0
ρj

. (83)

It is straightforward from (82) that

ES→A
ρ ◦ CSc = ES→A

ρ , (84)

with CSc being the completely dephasing operation on Sc with
respect to the basis {|j〉}dSc

j=1.
Let WA→BE

N be the Stinespring dilation of NA→B . Using
the extended source-resource state (77), we define the follow-
ing pure state, where Ē ≡ EcEE0 (see Figure 4):

|Ψρ〉R̂BĒ := WA→BE
N ◦ V S→AE0Ec

ρ |Φext〉SR̂. (85)

Defining the state

|ρj〉R̂rAE0 := V Sr→AE0
ρj

|ΦdSr
〉SrR̂r , (86)

it follows from (83) that

|Ψρ〉R̂BĒ =
1√
dSc

dSc∑
j=1

|j〉R̂c |j〉EcWA→BE
N |ρj〉R̂rAE0 . (87)

We trace out system B to obtain the state ΨR̂Ē
ρ :=

TrB[|Ψρ〉〈Ψρ|].

B. Construction of Encoding and Decoding Operations

We consider randomized partial decoupling of the “bipar-
tite” state ΨR̂Ē

ρ by a linear CP map TrFB ◦ P̃R̂→RFB : R̂ →
RFB (see Figure 4), where P̃ R̂→RFB is defined by (80). For
a unitary U R̂ =

∑dSc

j=1 |j〉〈j|
R̂c ⊗U R̂r

j and a permutation s on
{1, · · · , dSc}, define the partial decoupling error Δs,U by

Δs,U :=
∥∥∥TrFB ◦P̃R̂→RFB ◦ GR̂s ◦ U R̂(ΨR̂Ē

ρ ) − Ψ̃RĒ
ρ,s

∥∥∥
1
. (88)

Here, we have defined

Ψ̃RĒ
ρ,s := TrFB ◦ P̃R̂→RFB ◦ GR̂s (ΨR̂Ē

ρ,av), (89)

where

ΨR̂Ē
ρ,av := EU [U R̂(ΨR̂Ē

ρ )]. (90)

An evaluation of the partial decoupling error Δs,U will be
given in the next subsection, based on the direct part of the
randomized partial decoupling theorem (Theorem 8). We intro-
duce the operator

P̃ R̂→RFB

s,U := P̃ R̂→RFBGR̂s U
R̂, (91)

by which (88) is simply represented as

Δs,U :=
∥∥∥TrFB ◦P̃R̂→RFB

s,U (ΨR̂Ē
ρ ) − Ψ̃RĒ

ρ,s

∥∥∥
1
. (92)

Let |Ψ̃ρ,s〉MRĒM0 be a purification of Ψ̃RĒ
ρ,s with

MM0 being a purifying system. Due to Uhlmann’s theorem
( [42]; see also e.g. Chapter 9 in [1]) and (92), there exists a
linear isometry Ṽ BFB→MM0 such that∥∥∥ṼBFB→MM0 ⊗ P̃R̂→RFB

s,U (ΨR̂BĒ
ρ ) − Ψ̃MRĒM0

ρ,s

∥∥∥
1

≤ 2
√

Δs,U . (93)

Note that Ṽ BFB→MM0 depends on ρ, s and U in general.
Defining

DBFB→M := (TrM0 ⊗ CMc) ◦ ṼBFB→MM0 , (94)

and tracing out systems Ē and M0 in (93), we obtain∥∥∥DBFB→M ⊗ P̃R̂→RFB

s,U (ΨR̂B
ρ ) − CMc(Ψ̃MR

ρ,s )
∥∥∥

1

≤ 2
√

Δs,U . (95)

To obtain an explicit form of the state Ψ̃MR
ρ,s , we use (87)

and (90) to have

ΨR̂Ē
ρ,av =

1
dSc

dSc∑
j=1

|j〉〈j|R̂c ⊗ |j〉〈j|Ec ⊗ πR̂r ⊗NA→E(ρAE0
j ).

Combining this with (89), and by using (80), we obtain

Ψ̃RĒ
ρ,s =

1
2c

2c∑
j=1

|j〉〈j|Rc ⊗ |s−1(j)〉〈s−1(j)|Ec

⊗ π
Rq

2q ⊗NA→E(ρAE0
s−1(j)). (96)

A purification of this state is given by

|Ψ̃ρ,s〉
MRĒM0 :=

1√
2c

2c∑
j=1

|j〉Mc |j〉Rc |s−1(j)〉Ec |Φ2q 〉MqRq |�s−1(j)〉E0EM0 ,

with |�j〉E0EM0 being a purification of NA→E(ρAE0
j ). Thus,

we trace out ĒM0 to obtain Ψ̃MR
ρ,s = Φ′MR

2c,2q . Substituting this
to (95), and noting that CMc(Φ′MR

2c,2q) = Φ′MR
2c,2q , we arrive at∥∥∥DBFB→M ⊗ P̃R̂→RFB

s,U (ΨR̂B
ρ ) − Φ′MR

2c,2q

∥∥∥
1

≤ 2
√

Δs,U . (97)

The first term in the L.H.S. of (97) is calculated as follows.
Note that the state |Φext〉SR̂ defined by (77) is the maximally
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Fig. 5. Transformation of the protocol for randomized partial decoupling of the state Ψρ into that for communication over the channel N is depicted.
We first trace out Ē in Figure 4 and apply these transformations to obtain Figure 2. (i) is due to the fact that Φext is the maximally entangled state between

S and R̂. (ii) is from Equality (81), and (iii) is because EMFA→A
ρ,s,U = EMFA→A

ρ,s,U ◦ CMc . Note that |Φpur〉M̄R̄ = |Φ2c+q 〉MR|Φ2e〉FAFB as (74). (iv)
follows from (76).

entangled state on SR̂. Thus, from (91) and (81) (see Fig-
ure 5), it holds that

P̃ R̂→RFB

s,U |Φext〉SR̂

= (GsU)S
T ⊗ P̃ R̂→RFB |Φext〉SR̂ (98)

= (GsU)S
T

PMFA→S |Φpur〉MFARFB (99)

= PMFA→S
s,U |Φpur〉MFARFB , (100)

where we have defined a linear isometry

PMFA→S
s,U := US

T

GSs−1PMFA→S . (101)

Note that GS
T

s = GSs−1 . Combining (100) with (85), we obtain

P̃ R̂→RFB

s,U |Ψρ〉R̂BĒ

= WA→BE
N ◦V S→AE0Ec

ρ ◦PMFA→S
s,U |Φpur〉MFARFB. (102)

We now construct an encoding operation Eρ,s,U by

EMFA→A
ρ,s,U := ES→A

ρ ◦ PMFA→S
s,U (103)

= TrE0Ec ◦ VS→AE0Ec
ρ ◦ PMFA→S

s,U . (104)

Tracing out Ē = EE0Ec in (102) yields

P̃R̂→RFB

s,U (ΨR̂B
ρ ) = NA→B ◦ EMFA→A

ρ,s,U (ΦMFARFB
pur ). (105)

Substituting this to (97), we arrive at∥∥∥DBFB→M ◦ NA→B ◦ EMFA→A
ρ,s,U (ΦMFARFB

pur ) − Φ′MR
2c,2q

∥∥∥
1

≤ 2
√

Δs,U . (106)

It remains to prove that the encoding operation defined by
(103) satisfies the condition (23) (see Figure 5), i.e.,

EMFA→A
ρ,s,U = EMFA→A

ρ,s,U ◦ CMc . (107)

From (70), (79) and (101), we have

PMFA→S
s,U =

2c∑
j=1

|s−1(j)〉Sc〈j|Mc⊗US
T
r

s−1(j)P
MqFA→Sr . (108)

Thus, it holds that

PMFA→S
s,U ◦ CMc = CSc ◦ PMFA→S

s,U , (109)

with CSc being the completely dephasing operation on Sc
with respect to the basis {|j〉}Jj=1. Combining this with (84),
we obtain

ES→A
ρ ◦ PMFA→S

s,U ◦ CMc = ES→A
ρ ◦ PMFA→S

s,U , (110)

which implies (107). Substituting this to (106), and by using
the relation (76), we finally arrive at∥∥∥DBFB→M ◦NA→B◦EMFA→A

ρ,s,U (Φ′MR
2c,2q ⊗ΦFAFB

2e )−Φ′MR
2c,2q

∥∥∥
1

≤ 2
√

Δs,U . (111)

The deformations of expressions that we have done in this
subsection are depicted in Figure 5. The figure explains the
way how the communication protocol depicted in Figure 2 is
obtained from the randomized partial decoupling protocol in
Figure 4.

C. Evaluation of the Errors

To evaluate the partial decoupling error Δs,U defined by
(88), we apply the direct part of the randomized partial
decoupling theorem (Theorem 8) under the following corre-
spondence:

Ac, Ar, Rc, Rr → R̂c, R̂r, Ec, EE0 (112)

A,R,E,C → R̂, Ē, R, FB (113)

ΨAR → ΨR̂Ē
ρ (114)
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Fig. 6. The definition of the state ΨE given by (137) and its transformation by partial decoupling are depicted. SD stands for the Stinespring dilation. Note

that R ≡ RcRq , M ≡ McMq and that |Φpur〉M̄R̄ = |Φ2c+q 〉MR|Φ2e〉FAFB .

T A→E → TrFB ◦ P̃R̂→RFB (115)

μ = 0. (116)

It follows that there exist a unitary U R̂ =
∑dSc

j=1 |j〉〈j|
Rc ⊗

U
RqFB

j and a permutation s such that the partial decoupling
error is bounded as

Δs,U ≤

⎧⎪⎨⎪⎩
2−

1
2HI + 2−

1
2HII + 4ε (dSc , dSr ≥ 2)

2−
1
2HI + 4ε (q = e = 0, dSc ≥ 2, dSr = 1)

2−
1
2HII + 4ε (c = 0, dSc = 1, dSr ≥ 2).

(117)

Here, the exponents HI and HII are given by

HI = log (dSc − 1) +Hε
min(R̂|Ē)Ψρ

−Hmax(R̂|FB)C(τ), (118)

HII = Hε
min(R̂|Ē)C(Ψρ) −Hmax(R̂r|FBR̂c)C(τ), (119)

and τ R̂FB is the Choi-Jamiolkowski state of the complemen-
tary channel of TrFB ◦ P̃R̂→RFB . Using (75)-(78), it holds
that

τ R̂FB := TrFB ◦ P̃R̂′→RFB (ΦR̂R̂
′

ext ) (120)

= πR̂c
2c ⊗ π

R̂q

2q ⊗ ΦF̂BFB
2e . (121)

A simple calculation yields

Hmax(R̂|FB)C(τ) = c+ q − e, (122)

Hmax(R̂r|FBR̂c)C(τ) = q − e. (123)

Using the duality of the conditional smooth entropies, we have

Hε
min(R̂|Ē)Ψρ = −Hε

max(R̂|B)Ψρ , (124)

Hε
min(R̂|Ē)C(Ψρ) = −Hε

max(R̂r|BRc)Ψρ . (125)

Noting that R̂c and R̂r are isomorphic to Sc and Sr, respec-
tively, it follows from the definition (87) of Ψρ that

ΨR̂B
ρ

∼= NA→B(ρSA), (126)

which leads to

Hε
max(R̂|B)Ψρ = Hε

max(S|B)N (ρ), (127)

Hε
max(R̂r|BR̂c)Ψρ = Hε

max(Sr|BSc)N (ρ). (128)

Substituting all these equalities to (118) and (119), we obtain

HI = −c− q + e−Hε
max(S|B)N (ρ) + log (dSc − 1),

(129)

HII = −q + e−Hε
max(Sr|BSc)N (ρ). (130)

We now use the conditions (32) and (33) to have

HI ≥ − log δ1, HII ≥ − log δ2. (131)

Substituting these inequalities to (117), we finally arrive at

Δs,U ≤

⎧⎪⎨⎪⎩
√
δ1 +

√
δ2 + 4ε (dSc , dSr ≥ 2)√

δ1 + 4ε (q = e = 0, dSc ≥ 2, dSr = 1)√
δ2 + 4ε (c = 0, dSc = 1, dSr ≥ 2)

(132)

and complete the proof of Theorem 3.

VI. PROOF OF THE CONVERSE PART (THEOREM 4)

We prove the converse part of the capacity theorem (The-
orem 4) based on the converse part of randomized partial
decoupling (Theorem 9). The proof proceeds as follows: First,
we construct a state ΨE from the source state Φ′MR

2c,2q , the
resource state Φ2e , the channel N and an encoding operation
E . Second, we prove that the small error condition (22) implies
that a partial-trace operation achieves partial decoupling of the
state ΨE . Applying the converse part for randomized partial
decoupling, we obtain a set of inequalities represented in
terms of the conditional entropies of the state ΨE . Finally,
we evaluate the entropies of the state to complete the proof of
Theorem 4.
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A. Application of the Converse Bound for Randomized
Partial Decoupling

Suppose that a triplet (c, q, e) is achievable within the error
δ for the channel N . By definition, there exist an encoding
operation EMFA→A and a decoding operation DBFB→M that
satisfy the conditions∥∥∥D ◦ N ◦ E(Φ′MR

2c,2q ⊗ ΦFAFB
2e ) − Φ′MR

2c,2q

∥∥∥
1
≤ δ (133)

and

EMFA→A = EMFA→A ◦ CMc . (134)

Let VBFB→MM0
D and WA→BE

N be the Stinespring dilations of
D and N , respectively. Let Ec be a 2c-dimensional quantum
system with a fixed orthonormal basis {|j〉}2c

j=1. Due to (134),
a Stinespring dilation VMFA→AE0Ec

E of E is given by

VMFA→AE0Ec

E =
2c∑
j=1

|j〉Ec〈j|Mc ⊗ V
MqFA→AE0
E,j , (135)

where VE,j is a linear isometry for each j. We introduce
notations R̄ ≡ RFB , M̄ ≡ MFA, and define a “purified”
source-resource state ΦM̄R̄

pur (see Figure 6) by

|Φpur〉M̄R̄ :=
1√
2c

2c∑
j=1

|j〉Mc |j〉Rc |Φ2q 〉MqRq |Φ2e〉FAFB . (136)

Denoting E0EEc by Ē, we define a pure state |ΨE〉 by

|ΨE〉R̄BĒ := WA→BE
N ◦ V M̄→AE0Ec

E |Φpur〉M̄R̄. (137)

Note that |ΨE〉 is classically coherent in RcEc, in the sense
of (58). A purification of the state D◦N ◦E(Φ′MR

2c,2q ⊗ΦFAFB
2e )

is then given by VBFB→MM0
D (ΨR̄BĒ

E ), with M0Ē being a
purifying system. Due to the small error condition (133) and
Uhlmann’s theorem (see also Lemma 17 in Appendix A), there
exists a purification |Ω〉RĒMM0 of Φ′MR

2c,2q in the form of

|Ω〉= 1√
2c

2c∑
j=1

|j〉Mc |j〉Rc |j〉Ec |ωj〉E0M0E |Φ2q〉MqRq , (138)

where |ωj〉 are normalized pure states, and satisfies∥∥∥VBFB→MM0
D (ΨR̄BĒ

E ) − ΩRĒMM0

∥∥∥
1
≤ 2

√
δ. (139)

Tracing out MM0, it follows that∥∥∥TrFB [ΨR̄Ē
E ] − ΩRĒ

∥∥∥
1
≤ 2

√
δ. (140)

From (138), we have

ΩRĒ =
1
2c

2c∑
j=1

|j〉〈j|Rc ⊗ |j〉〈j|Ec ⊗ ωE0E
j ⊗ πRq

q . (141)

Thus, the condition (140) implies that the map idR ⊗ TrFB :
R̄ → R achieves partial decoupling of the state ΨR̄Ē

E (see
Figure 6).

We apply the converse bound for randomized partial decou-
pling (Theorem 9) under the following correspondence:

Ac, Ar, Rc, Rr → Rc, RqFB, Ec, E0E (142)

A,B,R,E,C → R̄, B, Ē, R, FB (143)

|ΨE〉ABR → |ΨE〉R̄BĒ (144)

T A→E → idR ⊗ TrFB (145)

δ → 2
√
δ (146)

υ = 0. (147)

Noting that the complementary channel of idR⊗TrFB is given
by TrR ⊗ idFB , we obtain

Hλ
min(R̄|Ē)ΨE −Hmin(BĒ|FB)C(ΨE ) + log dRc

≥ log ι, (148)

Hλ′
min(R̄|Ē)C(ΨE) −Hmin(BE0E|FBEc)C(ΨE)

≥ log ι, (149)

where C is the completely dephasing operation on Ec. Sub-
stituting υ = 0 to (68) and (69), the smoothing parameters λ
and λ′ are given by (38) and (39), respectively.

B. Evaluation of Entropies

By using the duality of the smooth conditional
entropies [38] (see also Lemma 27 and 29 in [30]), the
first terms in (148) and (149) are calculated to be

Hλ
min(R̄|Ē)ΨE = −Hλ

max(R̄|B)ΨE , (150)

Hλ′
min(R̄|Ē)C(ΨE ) = −Hλ′

max(RqFB|BRc)ΨE . (151)

To calculate the second term in (148), note that (135), (136)
and (137) imply

CEc(ΨBĒFB

E ) = ΨBĒFB

E (152)

= WA→BE
N ◦ VMFA→AE0Ec

E (Φ′M
2c,2q ⊗ ΦFAFB

2e ). (153)

Thus, due to the isometric invariance of the conditional max
entropy (Lemma 15 in [38]), we have

Hmin(BĒ|FB)C(ΨE)

= Hmin(MFA|FB)Φ′
2c,2q⊗Φ2e (154)

= c+ q − e. (155)

Similarly, the second term in (149) is calculated to be

Hmin(BE0E|FBEc)C(ΨE)

= Hmin(MqFA|FBMc)Φ′
2c,2q⊗Φ2e (156)

= q − e. (157)

Substituting all these equalities into (148) and (149), we arrive
at

−Hλ
max(R̄|B)ΨE − c− q + e+ log dRc ≥ log ι, (158)

−Hλ′
max(RqFB |BRc)C(ΨE) − q + e ≥ log ι. (159)

Finally, we calculate the reduced state of ΨE by using (135)
and (137) to obtain

ΨRBFB

E = CRc(ΨRBFB

E ) (160)

=
1
2c

2c∑
j=1

|j〉〈j|Rc ⊗NA→B(ρRqFBC
j ), (161)



WAKAKUWA AND NAKATA: ONE-SHOT TRIPLE-RESOURCE TRADE-OFF IN QUANTUM CHANNEL CODING 2411

where

ρ
RqFBA
j := EMFA→A(|j〉〈j|Mc ⊗ ΦMqRq

2q ⊗ ΦFAFB
2e ). (162)

We relabel Rc and RqFB by Sc and Sr, respectively,
in which case we have dS ≤ 2c+q+e. Noting that ρRqFB

j

is the maximally mixed state, we complete the proof of
Theorem 4.

VII. APPLICATION TO A MEMORYLESS CHANNEL

In this section, we consider an asymptotic limit of infinitely
many uses of a memoryless channel. We consider a scenario
of transmitting classical and quantum messages with the
assistance of shared entanglement. First, we review a complete
characterization of the achievable rate region, which was
obtained by Hsieh and Wilde [14]. Second, we present another
characterization that is obtained from the direct and converse
bounds for the one-shot scenario presented in Section III
(Theorem 3 and 4). A complete proof of the latter will be
provided in Section VIII. Despite their seeming inconsistency,
the two characterizations are equivalent. A detailed proof
for this equivalence will be provided in Appendix D. In
Section IX, we will apply the achievable rate region obtained
in this section to special cases such as the classical capacity,
the quantum capacity and the entanglement assisted classi-
cal/quantum capacities. We will see that the known results for
each case are recovered from our result.

The definition of a code for the channel N in the scenario
of many uses of the channel follows from Definition 1 by the
correspondence (c, q, e) → (nC, nQ, nE) and N → N⊗n,
where n is the number of the uses of the channel. The three-
dimensional achievable rate region is defined as follows:

Definition 10: A rate triplet (C,Q,E) is achievable if, for
any δ > 0, there exists n0 ∈ N such that for any n ≥ n0, there
exists an (nC, nQ, nE, δ) code for (NA→B)⊗n. The closure
of the set of all achievable rate triplets is called the achievable
rate region, and is denoted by C(N ).

A. Hsieh-Wilde Theorem

Hsieh and wilde [14] analyzed the coding problem described
above and obtained a complete characterization of the achiev-
able rate region as follows:

Definition 11: Let NA→B be a quantum channel. Consider
finite dimensional quantum systems Sc and Sr, the former of
which is equipped with a fixed orthonormal basis {|j〉}dSc

j=1.
We denote ScSr by S. Consider a state ρSA in the form of

ρSA =
dSc∑
j=1

pj |j〉〈j|Sc ⊗ ρSrA
j , (163)

where {pj, ρj}dSc

j=1 is an ensemble of quantum states on SrA.
Let Λ(N , ρ) ∈ R3 be the set of all triplets (C,Q,E) that
satisfy

C + 2Q ≤ I(S : B)N (ρ), (164)

C +Q− E ≤ H(Sc)ρ −H(S|B)N (ρ), (165)

Q− E ≤ −H(Sr|BSc)N (ρ), (166)

C,Q,E ≥ 0, (167)

and define

Λp(N ) :=
⋃

Sc,Sr,ρ

Λ(N , ρ). (168)

Here, the union is taken over all Sc, Sr and ρ that is
decomposed as (163), for which we assume that ρj is a pure
state on SrA for each j. The set Λp(N⊗n) is defined for any
n ∈ N along the same line. The regularized version of Λp is
defined by

Λ∞
p (N ) :=

∞⋃
n=1

1
n

Λp(N⊗n). (169)

Theorem 12: (Theorem 1 in [14]) For any quantum chan-
nel NA→B , it holds that C(N ) = Λ∞

p (N ). Here, the overline
represents the closure of the set.

It was proved in [14] that, in the special cases where one
or two of C, Q or E vanish, the above theorem recovers
the known results cases such as the Holevo-Schumache-
Westmoreland theorem for the classical capacity [3], [4], the
Lloyd-Shor-Devetak theorem for the quantum capacity [5],
[6], [7], the entanglement-assisted classical [8], [9], [10] and
quantum [11], [12] capacity theorems. Note that, due to the
chain rule of the quantum entropies, the R.H.S. of (172) is
equal to I(Sc : B)N (ρ) −H(Sr|BSc)N (ρ).

B. Alternative Expression

We present an alternative expression for the achievable rate
region that is obtained from the one-shot result presented in
Section III.

Definition 13: Let NA→B be a quantum channel. Consider
finite dimensional quantum systems Sc and Sr. Let S be ScSr,
and {|j〉}dSc

j=1 be a fixed orthonormal basis of Sc. Consider a
state ρSA in the form of

ρSA =
dSc∑
j=1

pj |j〉〈j|Sc ⊗ ρSrA
j , (170)

where {pj , ρj}dSc

j=1 is an ensemble of quantum states on SrA.
Let Θ(N , ρ) ⊂ R3 be the set of all triplets (C,Q,E) that
satisfy

Q+ E ≤ H(Sr|Sc)ρ, (171)

C +Q− E ≤ H(Sc)ρ −H(S|B)N (ρ), (172)

Q− E ≤ −H(Sr|BSc)N (ρ), (173)

C,Q,E ≥ 0, (174)

and define

Θπ(N ) :=
⋃

Sc,Sr,ρ

Θ(N , ρ). (175)

Here, the union is taken over all finite dimensional systems
Sc, Sr and all states ρ that is decomposed as (170), for which
we assume that ρS is the full-rank maximally mixed state on
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S. The set Θπ(N⊗n) is defined for any n ∈ N along the same
line. The regularized version of Θπ is defined by

Θ∞
π (N ) :=

∞⋃
n=1

1
n

Θπ(N⊗n). (176)

Theorem 14: For any quantum channel NA→B , it holds
that C(N ) = Θ∞

π (N ). Here, the overline represents the
closure of the set.
A proof of Theorem 14 will be provided in Section VIII.

In Section IX, we will apply Theorem 14 to the special
cases where one or two of C, Q or E vanish. We prove
that the known results for those special cases such as the
Holevo-Schumache-Westmoreland theorem for the classical
capacity [3], [4], the Lloyd-Shor-Devetak theorem for the
quantum capacity [5], [6], [7] and the entanglement-assisted
capacity theorems [8], [9], [10], [11], [12] are recovered from
Theorem 14, in the same way as those are obtained from
Theorem 12.

C. Equivalence of the Two Expressions

The region defined by Definition 13 may look different from
the one defined by Definition 11. But the two regions are
actually the same, i.e., it holds that

Θ∞
π (N ) = Λ∞

p (N ). (177)

The point is that we take the union over Sc, Sr and ρ both
in (175) and in (168). Taking the union eliminate the seeming
mismatch between the conditions (164) and (171).

To be more precise, we introduce two alternative expres-
sions for the achievable rate region. We define

Θ(N ) :=
⋃

Sc,Sr,ρ

Θ(N , ρ), (178)

where Θ(N , ρ) ∈ R3 is given by Definition 13. Here, the
union is taken over all S and ρ that is in the form of (170).
We do not require the condition that ρS is the full-rank
maximally mixed state on S. We also define

Λ(N ) :=
⋃

Sc,Sr,ρ

Λ(N , ρ), (179)

where Λ(N , ρ) is defined in Definition 11. The union is
taken over all S and ρ that is decomposed as (163), but we
do not require that {ρSrA

j }j are pure states. Note that the
only difference between Θ(N , ρ) and Λ(N , ρ) is in one of
the inequality conditions for (C,Q,E). That is, we require
Q+E ≤ H(Sr|Sc)ρ for Θ(N , ρ) and C+2Q ≤ I(S : B)N (ρ)

for Λ(N , ρ) (see Inequalities (171) and (164)). The two sets
are regularized into

Θ∞(N ) :=
∞⋃
n=1

1
n

Θ(N⊗n), (180)

Λ∞(N ) :=
∞⋃
n=1

1
n

Λ(N⊗n). (181)

In appenxid Appendix D, we prove the following proposition
that implies (177):

Proposition 15: For any quantum channel N , it holds that

Θ∞
π (N ) = Θ∞(N ) = Λ∞(N ) = Λ∞

p (N ). (182)

The first equality in (182) implies that the condition that the
reduced state of the state ρ on system ScSr is the completely
mixed state does not impose any restriction on the achievable
rate region. I.e., the rate region does not change when we drop
this condition. In Section IX, we will invoke this fact to show
that the known capacity theorems in special cases are obtained
from Theorem 14.

D. Remark On the Non-Optimality of Time-Sharing Strategies

Ref. [13] addressed the task of simultaneously transmitting
classical and quantum messages through a noisy quantum
channel without the assistance of shared entanglement, i.e. the
case where E = 0 in Definition 10. A strategy for this task is
to use nλ copies of the channel to transmit classical messages
and the remaining n(1 − λ) copies for quantum messages
(0 ≤ λ ≤ 1), which is often referred to as the time sharing
strategy. It achieves the rate pair

(C,Q) = (λC(N ), (1 − λ)Q(N )), (183)

with C(N ) and Q(N ) being the classical and quantum capac-
ities of the channel. Ref. [13] proved that the time sharing
strategy is not optimal in general: For a certain channel N ,
there exists an achievable rate pair (C,Q) that cannot be
represented as (183). In contrast, the time sharing strategy is
optimal when the entanglement resource is freely available.
This is because t > 0 qubits of quantum communication is
converted to 2t bits of classical communication and vice versa,
by means of superdense coding and quantum teleportation.

In the case where a limited amount of shared entanglement
is available, it is not clear whether or not the time sharing strat-
egy is optimal. This problem may be of independent interest
because it would be closely related to the non-additivity of
the classical capacity of a quantum channel under a limited
amount of entanglement assistance [43]. We leave this problem
as an open question.

VIII. PROOF OF THEOREM 14

In this section, we provide a proof for Theorem 14.

A. Proof of the Direct Part

We prove the direct part of Theorem 14, i.e.

C(N ) ⊇ Θ∞
π (N ). (184)

Since C(N ) is a closed set, it suffices to prove that, for any n,
a rate triplet (C,Q,E) is achievable if (C,Q,E) is an inner
point of 1

nΘπ(N⊗n). We only consider the case where n = 1.
It is straightforward to generalize the proof for n ≥ 2. Fix an
arbitrary state ρ that satisfies the condition (170), in addition
to the condition that ρS is the full-rank maximally mixed state
on S. Fix an arbitrary triplet (C,Q,E) that is an inner point
of Θ(N , ρ). Then, there exists ν > 0 such that

Q+ E ≤ H(Sr|Sc)ρ, (185)



WAKAKUWA AND NAKATA: ONE-SHOT TRIPLE-RESOURCE TRADE-OFF IN QUANTUM CHANNEL CODING 2413

C +Q− E ≤ H(Sc)ρ −H(S|B)N (ρ) − 2ν, (186)

Q− E ≤ −H(Sr|BSc)N (ρ) − 2ν. (187)

Fix arbitrary ε, δ > 0 and choose sufficiently large m. Due
to the fully-quantum asymptotic equipartition property ( [44]:
see also Lemma 22 in Appendix B), it holds that

mH(S|B)N (ρ) ≥ Hε
max(S

m|Bm)N (ρ)⊗m −mν, (188)

mH(Sr|BSc)N (ρ) ≥ Hε
max(S

m
r |BmSmc )N (ρ)⊗m −mν. (189)

Combining this with (185)-(187), and noting that
H(Sr|Sc)ρ ≤ log dimSr and H(Sc)ρ = log dSc , we obtain

m(Q+ E) ≤ m log dimSr, (190)

m(C +Q− E) ≤ m log dSc −Hε
max(S

m|Bm)N (ρ)⊗m

−mν, (191)

m(Q− E) ≤ −Hε
max(S

m
r |BmSmc )N (ρ)⊗m

−mν. (192)

We choose m sufficiently large so that we have −mν ≤ log δ.
Denoting mC,mQ,mE by c, q, e, respectively, it follows that

q + e ≤ log dimSmr , (193)

c+ q − e ≤ −Hε
max(S

m|Bm)N⊗m(ρ⊗m)

+ log dmSc
+ log δ, (194)

q − e ≤ −Hε
max(S

m
r |BmSmc )N⊗m(ρ⊗m) + log δ. (195)

We separately consider the cases dmSc
≥ max{2c, 2} and

dmSc
< max{2c, 2}. For the former case, we simply proceed

with (194) to obtain

c+ q − e ≤ −Hε
max(S

m|Bm)N (ρ)⊗m

+ log (dmSc
− 1) + log 2δ, (196)

where we have used dmSc
/(dmSc

− 1) ≤ 2. Combining this
with (193) and (195), it follows from Theorem 3 that there
exists a (c, q, e, δ′) code for the channel N⊗m, where δ′ :=
2
√√

2δ +
√
δ + 4ε. For the latter case, we introduce a system

S′
c such that dmSc

dS′
c
≥ max{2c, 2}. Denoting S′

cS
m
c by Ŝc and

ŜcS
m
r = S′

cS
m by Ŝ, we define the state

ρ̂ŜA
m

m :=
1
dS′

c

dS′
c∑

j′=1

|j′〉〈j′|S
′
c ⊗ ρSA. (197)

Due to the property of the smooth max entropy for product
states (see Lemma 24 in Appendix B), we have

Hε
max(S

m|Bm)N⊗m(ρ⊗m)

≥ Hε
max(Ŝ|Bm)N⊗m(ρ̂m) − log dŜc

, (198)

Hε
max(S

m
r |BmSmc )N⊗m(ρ⊗m)

= Hε
max(S

m
r |BmŜc)N⊗m(ρ̂m). (199)

Thus, Inequalities (194) and (195) yield

c+ q − e ≤ −Hε
max(Ŝ|Bm)N⊗m(ρ̂m)

+ log (dŜc
− 1) + log 2δ, (200)

q − e ≤ −Hε
max(S

m
r |BmŜc)N⊗m(ρ̂m) + log δ, (201)

where we have used dŜc
/(dŜc

−1) ≤ 2 in the first line. These
two inequalities together with (193) imply that there exists a

(c, q, e, δ′) code for the channel N⊗m. Since ε and δ can be
arbitrarily small in both cases, we complete the proof of the
direct part (184).

B. Proof of the Converse Part

The converse part of Theorem 14 is given by

C(N ) ⊆ Θ∞
π (N ), (202)

and is proved as follows. Suppose that a rate triplet (C,Q,E)
is an inner point of C(N ). By definition, for any δ > 0 and
sufficiently large n, there exist a (nC, nQ, nE, δ) code for
the channel N⊗n. Due to Theorem 4, there exists a quantum
system S ≡ ScSr and a state in the form of

ρSA
n

n =
1
dSc

dSc∑
j=1

|j〉〈j|Sc ⊗ ρSrA
n

j , (203)

satisfying dS ≤ 2n(C+Q+E) and ρS = πS , such that for any
ι ∈ (0, 1], it holds that

n(Q+ E) ≤ log dimSr, (204)

n(C +Q− E) ≤ log dSc −Hλ
max(S|Bn) − log ι, (205)

n(Q− E) ≤ −Hλ′
max(Sr|BnSc) − log ι. (206)

The entropies are for the state N⊗n(ρn), and the smoothing
parameters λ and λ′ are given by (38) and (39). Note that
we have ρS = N (ρ)S since N acts only on A. From the
condition ρS = πS , we have log dimSr = H(Sr|Sc). Using
the relation between the smooth max entropy and the von
Neumann entropy (Lemma 26 in Appendix B), we also have

Hλ
max(S|Bn) ≥ H(S|Bn) − η(λ) log dS , (207)

Hλ′
max(Sr|BnSc) ≥ H(Sr|BnSc) − η(λ′) log dS , (208)

where η is a function that satisfies limx→0 η(x) = 0. Com-
bining these inequalities, we arrive at

Q+ E ≤ 1
n
H(Sr|Sc),

C +Q− E ≤ 1
n

(log dSc −H(S|Bn) + η(λ) log dS − log ι),

Q− E ≤ 1
n

(−H(Sr|BnSc) + η(λ′) log dS − log ι).

By taking the limit of n → ∞ and ι, δ → 0, we obtain
(C,Q,E) ∈ Θ∞

π (N ) and complete the proof.

IX. COMPARISON TO PREVIOUS RESULTS

IN SPECIAL CASES

In this section, we apply the results presented in Section III
and Section VII to the special cases where one or two of C, Q
and E is/are equal to zero and compare the results with those
in the previous literature. That is, we investigate the classi-
cal capacity, the quantum capacity, the entanglement-assisted
classical capacity, the entanglement-assisted quantum capacity
and the simultaneous capacity for classical and quantum
information without the entanglement assistance, and discuss
the relation with the existing results. We consider a quantum
channel N with the input system A and the output system B.
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For the one-shot scenario, we will invoke Theorem 3, Theo-
rem 4, Corollary 6 and Corollary 7. The smoothing parameters
ε(δ, δ′), λ(δ, ι) and λ′(δ, ι) are set to be ε(δ, δ′) := δ2/16 −√
δ′/4, (38) and (39), respectively. When we write ŝup,

the supremum is taken over all finite dimensional quantum
systems S ≡ ScSr and all classical-quantum states ρScSrA

between Sc and Sr such that ρScSr is the full-rank maximally
mixed state. For each of the special cases, we compare our
results with several results in the previous literature. We,
however, do not provide quantitative comparisons because all
the results, including ours, involve complex optimizations,
which makes quantitative analyses intractable. All the one-shot
results presented or reviewed in this section shall coincide with
the known coding theorems in the asymptotic limit of infinitely
many uses of a memoryless channel.

For the asymptotic scenario, we invoke Theorem 14 and
prove that the known capacity theorems proved in the previous
literature are recovered. As mentioned in the discussion below
Proposition 15, and as proved in Appendix D-A in detail, the
restriction in Definition 13 that the reduced state of ρ on S is
the completely mixed state does not impose any restriction
on the achievable rate region. Therefore, in the following
subsections, we assume that this restriction is removed. It is
convenient to note that the R.H.S.s of (171)-(173) are evalu-
ated as

H(Sr|Sc)ρ ≥ max{0,−H(Sr|BSc)ρ}, (209)

H(Sc)ρ −H(S|B)N (ρ) ≥ −H(Sr|BSc)N (ρ). (210)

A. Classical Capacity Without Entanglement Assistance

The δ-classical capacity c(N , δ) of a channel N is defined
as the supremum of c such that the triplet (c, q = 0, e = 0) is
achievable within the error δ for the channel N . Lower and
upper bounds on the δ-classical capacity are obtained from
Theorem 3 and Theorem 4 by letting q = e = 0. We have

ŝup
Sc,ρ

sup
δ′∈(0,δ4/16]

[
log dSc −Hε(δ,δ′)

max (Sc|B)N (ρ) + log 2δ′
]

≤ c(N , δ) ≤

ŝup
Sc,Sr,ρ

inf
ι∈(0,1]

[
log dSc−Hλ(δ,ι)

max (ScSr|B)N (ρ)−log ι
]
, (211)

where the map C is the completely dephasing operation on S
with respect to a fixed orthonormal basis.

Dupuis et al. [21] addressed the one-shot classical capacity
of a channel N ′A→B with classical input and quantum output
(the classical-quantum channel), namely a channel that sat-
isfies N ′A→B = N ′A→B ◦ CA with C being the completely
dephasing map on A with respect to a fixed orthonormal basis.
Based on the ‘dequantizing theorem’ (Theorem 3.1 in [21]),
they obtained a lower bound that holds for any 0 < δ < 1:

c(N ′, δ) ≥ sup
ε∈[0,δ2/8)]

[log (dA − 1) −Hε
max(A|B)ω

+2 log (δ2 − 8ε)− 1
]
, (212)

where ω is the Choi-Jamiołkowski state of N ′. Renes
et al. [16] addressed the same task and obtained both lower and
upper bounds (see Theorem 1 in [16]). The channel is modeled

by an input alphabet X and the set of output quantum states
{θx}x∈X . They obtained lower and upper bounds that yield

max
PX

[
H
δ/8
min(X)ϑ −Hδ/8

max(X |B)ϑ + 4 log δ − 16
]

≤ c(N , δ) ≤ max
PX

[
Hmin(X)ϑ −H

√
2δ

max(X |B)ϑ
]

(213)

for any δ > 0, where the maximization is taken over all
probability distribution PX on alphabet X and the entropies
are for the state ϑ =

∑
x∈X px|x〉〈x|

X ⊗ θBx . From both
results, by taking supremum over all sets of output states of
the form {N (ρx)}x∈X , we obtain one-shot lower bounds that
are similar to (212). The upper bounds in (211) and (213)
are different in that (211) includes system Sr. We shall see
below that this seeming mismatch vanishes in the asymptotic
scenario.

Wang et al. [17] addressed the same task in terms of the
hypothesis testing approach and obtained lower and upper
bounds that yield

sup
PX

D
δ/2
H (ϑXB‖ϑX ⊗ ϑB) + log ε− 4

≤ c(N , δ) ≤ sup
PX

Dδ
H(ϑXB‖ϑX ⊗ ϑB). (214)

Here, DH is the hypothesis testing relative entropy and ϑ is
defined in the same way as above. The hypothesis testing
approach to this problem was further improved by Datta
et al. [23] and Matthews et al. [24]. In particular, the result in
Ref. [23] for the one-shot scenario recovers the strong converse
rate [45], [46] when applied to the asymptotic scenario.

In the asymptotic limit, we obtain from (172) and (176) that

C(N ) ≤ lim
n→∞

1
n

sup
Sc,Sr,ρ

[H(Sc)ρ −H(S|Bn)N⊗n(ρ)] (215)

= lim
n→∞

1
n

sup
Sc,Sr,ρ

[I(Sc : Bn)N⊗n(ρ) −H(Sr|BnSc)N⊗n(ρ)],

where the supremum is taken over all finite-dimensional
quantum systems Sc, Sr and all classical-quantum states ρ
between Sc and SrA. Due to the argument in [1] (see the
argument after Theorem 24.2.2 therein), we may, without loss
of generality, assume that Sr is a trivial (one-dimensional)
system. Hence, if C is below the R.H.S. of (215), both the
conditions (171) and (173) are satisfied as well. Therefore
the inequality (215) is achievable and we recover the Holevo-
Schumacher-Westmoreland theorem [3], [4], which yields

C(N ) = lim
n→∞

1
n

sup
Sc,ρ

[I(Sc : Bn)N⊗n(ρ)]. (216)

B. Quantum Capacity Without Entanglement Assistance

The δ-quantum capacity q(N , δ) of a channel N is defined
as the supremum of c such that the triplet (c = 0, q, e = 0) is
achievable within the error δ for the channel N . Lower and
upper bounds on the δ-quantum capacity are obtained from
Theorem 3 and Theorem 4 by letting c = e = 0, which yields

ŝup
Sr ,ρ

sup
δ′∈(0,δ4/16]

[
−Hε(δ,δ′)

max (Sr|B)N (ρ) + log δ′
]

≤ q(N , δ) ≤
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ŝup
Sr,ρ

inf
ι∈(0,1]

[
−Hλ′(δ,ι)

max (Sr|B)N (ρ) − log ι
]
. (217)

Datta et al. [22] and Buscemi et al. [18] addressed this
task based on the decoupling approach. Ref. [22] defines the
one-shot δ-error quantum capacity q

(1)
δ (N ) in terms of the

entanglement transmission fidelity (see Definition 11 therein)
and obtained the following lower and upper bounds that holds
for any 0 < δ ≤ 1:

max
M⊆HA

[
−Hε

max(Sr|B)N (ΦM)

]
+ 2 log

(
ε+
√

4
√
ε− 4ε

)
≤ q

(1)
δ (N ) ≤ max

M⊆HA

[
−Hδ

max(Sr|B)N (ΦM)

]
. (218)

Here, the maximization is taken over all subspaces M ⊆ HA,
|ΦM〉 ∈ M ⊗ HSr is the maximally entangled state with
Schmidt rank dimM, and ε > 0 is chosen so that δ = 2(5(ε+√

4
√
ε− 4ε))1/2 +2

√
ε. A comparison of this result with the

one in [18] was discussed in Section 3.3 of [22]. Besides the
values of the smoothing parameters, the difference between
(217) and (218) is in whether the supremum over the states is
limited to the maximally entangled state or not. Tomamichel
et al. [26] addressed the same task from the hypothesis-testing
approach.

In the asymptotic limit, we have

Q(N ) = lim
n→∞

1
n

sup
Sc,Sr,ρ

[−H(Sr|BnSc)N⊗n(ρ)], (219)

where the supremum is taken over all finite-dimensional quan-
tum systems Sc, Sr and a classical-quantum state ρ between
Sc and SrA. Since the von Neumann entropy conditioned
by a classical system is equal to the entropy averaged over
the values of the classical system, without loss of generality
we can assume that Sc is a trivial (one-dimensional) system.
Thus, we recover the Lloyd-Shor-Devetak theorem [5], [6],
[7], which yields

Q(N ) = lim
n→∞

1
n

sup
Sr,ρ

[−H(Sr|Bn)N⊗n(ρ)]. (220)

One can also obtain (220) directly from (217).

C. Classical Capacity With Free Entanglement Assistance

The entanglement-assisted δ-classical capacity ce(N , δ) is
defined as the supremum of c such that there exists e > 0 and
the triplet (c, q = 0, e) is achievable within the error δ for the
channel N . Lower and upper bounds on the entanglement-
assisted δ-classical capacity is obtained from Corollary 6 and
Corollary 7 by letting q = 0, which yields

ŝup
S,ρ

sup
δ′∈(0,δ4/16]

[
log dS −Hε(δ,δ′)

max (S|B)N (ρ) + log δ′
]

≤ ce(N , δ) ≤

ŝup
S,ρ

inf
ι∈(0,1]

[
log dS −Hλ′(δ,ι)

max (S|B)N (ρ) − log ι
]
. (221)

Datta et al. [19] investigated this task and obtained lower
and upper bounds based on the decoupling approach. Their
proof is based on the fact that the classical capacity is twice
as large as the quantum capacity if entanglement resource

is freely available. They defined the one-shot entanglement-
assisted classical capacity c(1)ea,ε(N ) in terms of the worst-case
error probability (see Definition 13 in [19]) and obtained
lower and upper bounds thereof. They proved that for any
0 < ε < 1 and ε′′ such that ε = 2 4

√
2
√

27ε′′ + 27ε′′, it holds
that

max
�∈S(HA)

[
Hε′′

min(S)N (φ) −Hε′′
max(S|B)N (φ)

]
+ 4 log ε′′ − 2

≤ c(1)ea,ε(N ) ≤

max
�∈S(HA)

[
H4ε

min(S)N (φ) −H
8ε+4

√
2
√
ε

max (S|B)N (φ)

]
+ log

1
2
√

2ε
, (222)

where φSA is a purification of � ∈ S(HA).
Datta et al. also addressed this task from the hypothesis

testing approach and obtained a lower bound in terms of the
average error probability [25]. Namely, they proved that for
any 0 < δ < 1 and 0 < ε < δ/2, it holds that

ce(N , δ) ≥ Dδ−2ε
H (NA′→B(ϑAA

′
)‖NA′→B(κAA

′
))

− log
1 − δ

ε2
, (223)

where ϑAA
′

is an arbitrary pure state that can be represented as
a superposition of the maximally entangled state in orthogonal
subspaces and κ is the probabilistic mixture of the maximally
mixed state in those subspaces. Matthews et al. [24] obtained
a converse bound from the hypothesis testing approach, which
yields

ce(N , δ)≤ max
ρ∈S(HA′ )

min
σ∈S(HB)

Dδ
H(NA′→B(φAA

′
)‖ρA⊗σB),

(224)

where φ is a purification of ρ. These two bounds are more
general than ours, in that they do not assume that the resource
state is the maximally entangled state. The hypothesis testing
approach to the entanglement-assisted quantum capacity has
further been developed based on the convex splitting and
position based coding [27], [28], [29].

In the asymptotic limit, the conditions (171)-(174) are
equivalent to{

C ≤ H(Sc)ρ −H(S|B)N (ρ) + E,

H(Sr|BSc)+N (ρ) ≤ E ≤ H(Sr|Sc)ρ,
(225)

where

H(Sr|BSc)+N (ρ) := max{H(Sr|BSc)N (ρ), 0}. (226)

The two-dimensional achievable rate region in this scenario
was originally proved by Shor [10], which is represented by
the condition {

C ≤ I(ScSr : B)N (�),

E ≥ H(Sr|Sc)�.
(227)

The regions (225) and (227) coincide with each other by taking
the union over all classical-quantum states ρ and �′ between
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Sc and SrA. To show this, observe that the nontrivial vertices
of the region (225) are given by

(C1, E1) = (I(ScSr : B)N (ρ), H(Sr|Sc)ρ), (228)

(C2, E2) = (I(Sc : B)N (ρ), H(Sr|BSc)+N (ρ)). (229)

In both cases, there exists a state � such that Ci ≤ I(ScSr :
B)N (�) and E ≥ H(Sr|Sc)�. For (C2, E2), we may choose
� = |0〉〈0|Sr ⊗ρScA. Conversely, let (C∗, E∗) be the nontrivial
vertex of the region defined by (227), i.e., let C∗ and E∗ be
equal to the R.H.S.s of (227). It is straightforward to verify
that (C∗, E∗) satisfies the condition (225). Thus, by taking the
union over all ρ in (225) and by regularizing it, we obtain the
two-dimensional achievable rate region proved by Shor [10].

As proved in [10], the single-letter formula for the
entanglement-assisted classical capacity by Bennet et al. [8],
[9] is obtained from (227). An alternative proof is obtained
from Theorem 14 as follows. One can see if a pair (C,E)
satisfies the conditions (171)-(173) (which is equivalent to
(225) when Q = 0), it holds that

C ≤ I(Sr : B|Sc)N (ρ). (230)

Conversely, if the above inequality holds, we have

C −H(Sc)ρ +H(S|B)N (ρ) ≤ H(Sr|Sc)ρ. (231)

Since the R.H.S. of the above inequality is nonnegative, there
exists E ≥ 0 that satisfies the conditions (171)-(174). Hence,
we have

Ce(N ) = lim
n→∞

1
n

sup
Sc,Sr,ρ

I(Sr : B|Sc)N⊗n(ρ), (232)

where the supremum is taken over all finite-dimensional quan-
tum systems Sc, Sr and a classical-quantum state ρ between
Sc and SrA

n. Since the von Neumann entropy conditioned
by a classical system is equal to the entropy averaged over
the values of the classical system, without loss of generality
we can assume that Sc is a trivial (one-dimensional) system.
Thus, we have

Ce(N ) = lim
n→∞

1
n

sup
Sr,ρ

I(Sr : B)N⊗n(ρ). (233)

It is known that the mutual information of quantum channels is
additive, and that it is sufficient to take the supremum over all
pure states (see e.g. Section 12.4 in [1]). Thus, we arrive at the
entanglement-assisted classical capacity theorem by Bennet
et al. [8], [9], which yields

Ce(N ) = sup
|φ〉AA′

I(Sr : B)N (φ). (234)

D. Quantum Capacity With Free Entanglement Assistance

The entanglement-assisted δ-quantum capacity qe(N , δ) is
defined as the supremum of q such that there exists e > 0 and
the triplet (c = 0, q, e) is achievable within the error δ for the
channel N . Lower and upper bounds on the entanglement-
assisted δ-quantum capacity is obtained from Corollary 6 and
Corollary 7 by letting c = 0, which yields

1
2
ŝup
S,ρ

sup
δ′∈(0,δ4/16]

[
log dS −Hε(δ,δ′)

max (S|B)N (ρ) + log δ′
]

≤ qe(N , δ) ≤
1
2
ŝup
S,ρ

inf
ι∈(0,1]

[
log dSr −Hλ′(δ,ι)

max (S|B)N (ρ) − log ι
]
. (235)

A similar result was obtained in Datta et al. [19] based
on the decoupling approach. They define the one-shot
entanglement-assisted quantum capacity q

(1)
ea,ε in terms of

the entanglement transmission fidelity (see Definition 6 and 7
therein) and obtained lower and upper bounds thereof. They
proved that for any 0 < ε < 1 and ε′ such that ε =
2
√

2
√

27ε′ + 27ε′, it holds that

max
�∈S(HA)

1
2

[
Hε′

min(S)N (φ) −Hε′
max(S|B)N (φ)

]
+ 2 log ε′

≤ q(1)ea,ε(N ) ≤

max
�∈S(HA)

1
2

[
Hε

min(S)N (φ) −H2ε+4 4√ε
max (S|B)N (φ)

]
+ log

√
2
ε
,

(236)

where φSA is a purification of � ∈ S(HA). They also
proved that similar bounds hold for the entanglement-assisted
quantum capacity defined in terms of the minimum output
fidelity (see Theorem 11 in [19]).

In the asymptotic limit, one can see that if there exists
(Q,E) satisfying the conditions (171) and (173), it holds
that {

Q ≤ 1
2I(Sr : B|Sc)N (ρ),

Q− E ≤ −H(Sr|BSc)N (ρ).
(237)

Conversely, if both of the above inequality hold, there exists
Δ ≥ 0 such that

Q+ E ≤ H(Sr|Sc)N (ρ) + Δ, (238)

Q− E ≤ −H(Sr|BSc)N (ρ) − Δ. (239)

Indeed, letting Δ = Q+ E −H(Sr|Sc)N (ρ) yields

−H(Sr|BSc)N (ρ) − Δ = I(Sr : B|Sc)N (ρ) −Q− E

≥ Q− E, (240)

where the second line follows from the first condition in (237).
For any m ∈ N, let Sm be an 2�mΔ�-dimensional quantum
system, πm be the maximally mixed state thereon, and �m ≡
πm ⊗ ρ. Denoting SmSmr ≡ Ŝr, we obtain

Q+ E ≤ 1
m

[H(Ŝr|Smc )N⊗m(�m) + 1], (241)

Q− E ≤ − 1
m
H(Ŝr|BnSnc )N⊗n(�m). (242)

Taking the limit of m to infinity, we observe that the pair
(Q,E) belongs to the region defined by Definition 13 for C =
0. Thus, we obtain the two-dimensional rate region obtained
by Devetak et al. [12] (Theorem 7.7 in [12]). I.e., the region
obtained from the set of all pairs (Q,E) satisfying{

Q ≤ 1
2I(A : B)N (φ),

Q− E ≤ −H(A|B)N (φ),
(243)

by taking the union over all pure states |φ〉AA′
and by regular-

izing it. Note that the region defined in [12] is convex because
of regularization. Hence, the conditioning by a classical system
Sc does not change the rate region.
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E. Simultaneous Capacity of Classical and Quantum
Information Without Entanglement Assistance

We consider the one-shot capacity region for simultane-
ously transmitting classical and quantum messages through the
channel without entanglement assistance. The δ-simultaneous
capacity region of a channel N is defined as the set of all pairs
(c, q) ∈ R2

≥ such that the triplet (c, q, e = 0) is achievable
within the error δ for the channel N . We denote the achievable
rate region by Γδ(N ), and assume that δ ∈ (0, 2]. For an
arbitrary system S ≡ ScSr and an arbitrary state ρSA that is
diagonal in Sc with respect to a fixed orthonormal basis, let
Γin
δ,δ′,ε(N , ρ) be the set of all pairs (c, q) ∈ R2

≥ that satisfy{
c+ q ≤ −Hε(δ,δ′)

max (S|B)N (ρ) + log (dSc − 1) + log δ′,

q ≤ −Hε(δ,δ′)
max (Sr|BSc)N (ρ) + log δ′(1 − 2ε(δ, δ′))

and let Γout
δ,ι (N , ρ) be the one that satisfy{

c+ q ≤ −Hλ(δ,ι)
max (S|B)N (ρ) + log dSc − log ι,

q ≤ −Hλ′(δ,ι)
max (Sr|BSc)N (ρ) − log ι.

(244)

It follows from Theorem 3 and Theorem 4 that⋃
S,ρ

⋃
δ′

Γin
δ,δ′(N , ρ) ⊆ Γδ(N ) ⊆

⋃
S,ρ

⋂
ι

Γout
δ,ι (N , ρ). (245)

Here, the union over δ′ and the intersection over ι are taken
in the intervals δ′ ∈ (0, δ4/16] and ι ∈ (0, 1], respectively.
The union over ρ is taken over all classical-quantum states ρ
between Sc and SrA such that ρS is the full-rank maximally
mixed.

The same communication task has been analyzed by Salek
et al. [20] for the one-shot scenario based on the hypothesis-
testing approach. They first proved the inner and outer bounds
on the two-dimensional capacity region for simultaneously
transmitting public and private messages (see Theorem 2 and
3 therein). Then they apply the argument by Devetak et al. [7],
which states that the private classical capacity of a quantum
channel is equal to the quantum capacity. The outer bound is
given as the union, over all states ρ, of the set of rate pairs
(c, q) satisfying{

c ≤ IδH(X : B)�
q ≤ I

√
δ

H (Y : B|X)� − I
√

2δ′
max (Y : E|X)�

. (246)

Here, IH and Imax are the hypothesis testing mutual informa-
tion and the max mutual information, and δ and δ′ are the error
parameters for the classical message and the quantum message,
respectively. The mutual informations are for the state of the
form � =

∑
x,y p(x, y)|x〉〈x|⊗|y〉〈y|⊗NA→B,E(ρx,y), where

NA→E is the complementary channel of NA→B . The inner
bound is given in a similar form, with the additional terms
on the R.H.S.s of the two inequality that depends only on the
smoothing parameters and the errors.

One may think that our bound (245) is not consistent with
those obtained (246). The condition (246) defines a rectangle,
while (244) defines a trapezoid. Note, however, that the actual
bounds are obtained by taking the union over states ρ in both
cases, which resolves this seeming mismatch.

In the asymptotic limit, we obtain from the conditions
(171)-(173) that{

C +Q ≤ H(Sc)ρ −H(S|B)N (ρ),

Q ≤ −H(Sr|BSc)N (ρ),
(247)

which is equivalent to the conditions obtained by Hsieh and
Wilde in [14] (see Theorem 5). Originally, Devetak and
Shor [13] addressed this problem and obtained the achievable
rate region which is characterized by the following conditions:{

C ≤ I(Sc : B)N (ρ),

Q ≤ −H(Sr|BSc)N (ρ).
(248)

As discussed in [14], by taking the union over all state ρ and
by regularizing it, the above regions coincide with each other.

X. CONCLUSION

In this paper, we analyzed the task of simultaneously
transmitting classical and quantum messages through a noisy
quantum channel assisted by a limited amount of shared
entanglement in the one-shot scenario. We have derived direct
and converse bounds for the one-shot achievable rate region.
To our knowledge, this is the first time that trade-off rela-
tions that apply simultaneously to all the three resources
of classical communication, quantum communication, and
shared entanglement has been obtained in the one-shot channel
coding scenario. We then applied the one-shot result to the
asymptotic scenario of infinitely many uses of a memoryless
channel. We obtained a complete characterization of the triple
resource trade-offs, which coincides with the prior result
by Hsieh and Wilde [14]. Numerical calculations of the
achievable rate region for specific qubit channels are given
in [47]. In [48], we analyzed quantum state redistribution for
a classical-quantum hybrid source in the one-shot scenario
in terms of randomized partial decoupling. To investigate
relations between these two tasks is left as future work.

To investigate quantum channel coding problems in the
one-shot scenario, an approach from hypothesis testing (see
e.g. [15], [17], [20], [23], [24], [25], [26], [49]) is complemen-
tary to the one based on decoupling. The hypothesis-testing
approach has an advantage over the decoupling approach
in that it recovers the optimal asymptotic results not only
in the i.i.d. setting but also in the non-i.i.d. (information
spectrum) setting. This approach has been widely used for
quantum channel coding problems e.g. to investigate the strong
converse bounds and the second-order asymptotics. Along this
line, the concepts of convex splitting [50] and position-based
coding [28] have recently proved useful in various settings of
one-shot quantum channel coding [20], [27], [28], [29], [51],
[52], [53], [54], [55], [56], [57], [58]. One future direction
is to apply the hypothesis-testing approach to the problem
addressed in this paper and obtain triple-resource trade-off
bounds that are asymptotically tight in the non-i.i.d. setting.

APPENDIX A
TECHNICAL LEMMAS

We introduce some technical lemmas that are used in the
main text.
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Lemma 16: Consider two states ρ and σ in the form of

ρ =
1
K

K∑
k=1

|k〉〈k|X ⊗ |k〉〈k|Y ⊗ ρAk , (249)

σ=
1
K

K∑
k=1

|k〉〈k|X⊗
(

K∑
k′=1

p(k′|k)|k′〉〈k′|Y ⊗σAkk′
)
, (250)

where {|k〉}k is an orthonormal basis of HX and HY ,
{p(k′|k)}Kk′=1 is a conditional probability distribution, and ρk
and σkk′ are normalized states on A for each k and k′. Suppose
that we have

1
K

K∑
k=1

(1 − p(k|k)) ≤ δ

3
, (251)

1
K

K∑
k=1

∥∥∥∥∥ρk −
K∑
k′=1

p(k′|k)σkk′
∥∥∥∥∥

1

≤ δ

3
(252)

for δ > 0. Then, it holds that

‖ρ− σ‖1 ≤ δ. (253)

Proof: Using the properties of the trace distance (see
e.g. Section 9.1 in [1]), we have

‖ρ− σ‖1

=
1
K

K∑
k=1

∥∥∥∥∥|k〉〈k|Y ⊗ ρAk −
K∑
k′=1

p(k′|k)|k′〉〈k′|Y ⊗σAkk′
∥∥∥∥∥

1

=
1
K

K∑
k=1

∥∥ρAk − p(k|k)σAkk
∥∥

1

+
1
K

K∑
k=1

∑
k′ �=k

p(k′|k)
∥∥σAkk′∥∥1 (254)

≤ 1
K

K∑
k=1

∥∥∥∥∥ρAk −
K∑
k′=1

p(k′|k)σAkk′
∥∥∥∥∥

1

+
2
K

K∑
k=1

∑
k′ �=k

p(k′|k)
∥∥σAkk′∥∥1 (255)

=
1
K

K∑
k=1

∥∥∥∥∥ρAk −
K∑
k′=1

p(k′|k)σAkk′
∥∥∥∥∥

1

+
2
K

K∑
k=1

(1 − p(k|k))

≤ δ, (256)

where Inequality (255) follows due to the triangle inequality.

Lemma 17: Consider a state ρ on XA and a pure state |φ〉
on XYAB that take the forms of

ρ =
∑
k

pk|k〉〈k|X ⊗ �Ak , (257)

|φ〉 =
∑
k

√
pk|k〉X |k〉Y |ϕk〉AB, (258)

where {pk}k is a probability distribution, �k is a state on A
and |ϕk〉 is a pure state on AB for each k. Suppose that∥∥φXA − ρXA

∥∥
1
≤ δ. (259)

Then, there exists a purification |Ψ〉XYAB of ρ that takes the
form of

|Ψ〉 =
∑
k

√
pk|k〉X |k〉Y |ψk〉AB , (260)

and satisfies ‖|Ψ〉〈Ψ| − |φ〉〈φ|‖1 ≤ 2
√
δ.

Proof: Any purification |Ψ′〉 of ρ is represented as

|Ψ′〉 =
∑
k

√
pk|k〉X |ψ′

k〉
Y AB

, (261)

where |ψ′
k〉 is a purification of �k for each k. It follows that

|〈Ψ′|φ〉| =

∣∣∣∣∣∑
k

pk〈ψ′
k|
Y AB|k〉Y |ψk〉AB

∣∣∣∣∣ (262)

≤
∑
k

pk

∣∣∣〈ψ′
k|
Y AB|k〉Y |ψk〉AB

∣∣∣ (263)

≤
∑
k

pk max
ψ′′

k

|〈ψ′′
k |ψk〉| (264)

=
∑
k

pk|〈ψ∗
k|ψk〉|, (265)

where we have defined

|ψ∗
k〉 := arg max

|ψ′′
k 〉

|〈ψ′′
k |ψk〉|. (266)

The maximization in the fourth line is taken over all purifica-
tions |ψ′′

k 〉
AB of �Ak . We consider a state

|Ψ〉 =
∑
k

√
pk|k〉X |k〉Y |ψ∗

k〉
AB
. (267)

Due to (265), it holds that

F (ρXA, φXA) = max
|Ψ′〉

|〈Ψ′|φ〉| = |〈Ψ|φ〉| = F (|Ψ〉, |φ〉),

where F is the fidelity defined by F (σ, τ) := ‖
√
σ
√
τ‖1. The

maximization is taken over all purifications of ρXA and the
first equality follows from Uhlmann’s theorem [42]. By using
the relation between the trace distance and the fidelity (see
e.g. Section 9.2.3 in [2]), we obtain

1 − F (φXA, ρXA) ≤
∥∥φXA − ρXA

∥∥
1
≤ δ, (268)

‖|Ψ〉〈Ψ| − |φ〉〈φ|‖1 ≤ 2
√

1 − F (|Ψ〉, |φ〉). (269)

Combining these all together, we complete the proof.

APPENDIX B
PROPERTIES OF ENTROPIES

In this section, we summarize properties of quantum
entropies that are used in the proofs of the main results.
Note that the set of positive semidefinite operators, normalized
states and subnormalized states are defined by

P(H) = {ρ ∈ Her(H) : ρ ≥ 0}, (270)

S=(H) = {ρ ∈ P(H) : Tr[ρ] = 1}, (271)

S≤(H) = {ρ ∈ P(H) : Tr[ρ] ≤ 1}. (272)

Lemma 18 (Definition 14, Equality (6) and Lemma
16 in [38]): For any subnormalized pure state |ψ〉 on system
ABC, and for any ε > 0, Hε

max(A|B)ψ = −Hε
min(A|C)ψ .
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Lemma 19 (Corollary of Theorem 18 in [38]): For any
state ρAB ∈ S=(HAB), any CPTP map EA→B and any ε ≥ 0,
it holds that

Hε
max(A|B)ρ ≤ Hε

max(A|C)E(ρ). (273)

Lemma 20 (Corollary of Lemma 20 in [38]): For any
ρAB ∈ S≤(HAB), it holds that

− log dA ≤ Hmax(A|B)ρ − log Tr[ρAB] ≤ log dA. (274)

Lemma 21 (Lemma A.2 in [35]): For any ρAB ∈
S=(HAB), σCD ∈ S=(HCD) and any ε, ε′ ≥ 0, it holds that

Hε+ε′
min (AC|BD)ρ⊗σ ≥ Hε

min(A|B)ρ+Hε′
min(C|D)σ . (275)

Lemma 22 (Theorem 1 in [44]): For any ρ ∈ S=(HAB) and
0 < ε < 1, it holds that

lim
n→∞

1
n
Hε

max(A
n|Bn)ρ⊗n = H(A|B)ρ. (276)

Lemma 23 (Corollary of Lemma 2 in [44]): For any ρ ∈
S=(HAB), it holds that

Hmax(A|B)ρ ≥ H(A|B)ρ. (277)

Lemma 24: For any ρAB ∈ S=(HAB) and ξC ∈ S=(HC),
it holds that

Hε
max(A|BC)ρ⊗ξ = Hε

max(A|B)ρ, (278)

Hε
max(AC|B)ρ⊗ξ ≤ Hε

max(A|B)ρ + log dC . (279)

Proof: To prove Equality (278), define an operation
EB→BC
ξ by Eξ(τB) = τB ⊗ ξC . Due to the monotonicity

of the smooth max entropy (Lemma 19) under EB→BC
ξ and

the partial trace operation, it holds that

Hε
max(A|B)ρ ≤ Hε

max(A|BC)Eξ(ρ)

= Hε
max(A|BC)ρ⊗ξ ≤ Hε

max(A|B)ρ, (280)

which implies (278). To prove (279), note that Lemma 21 and
the duality relation (Lemma B) imply, for any η ∈ S=(HD),

Hε+ε′
max (AC|BD)ρ⊗ξ⊗η
≤ Hε

max(A|B)ρ +Hε′
max(C|D)ξ⊗η . (281)

We particularly choose ε′ = 0. Due to Inequality (278), the
L.H.S. is equal to Hε

max(AC|B)ρ⊗ξ . From Lemma 20, the
second term in the R.H.S. is bounded as Hmax(C|D)ξ⊗η ≤
log dC , which completes the proof.

Lemma 25: For any ρAB ∈ S=(HAB) and ε ≥ 0, it holds
that

− log dA ≤ Hε
max(A|B)ρ − log (1 − 2ε). (282)

Proof: Let ρ̂AB ∈ Bε(ρ) be such that Hε
max(A|B)ρ =

Hmax(A|B)ρ̂. Due to Lemma 20, it holds that

− log dA ≤ Hmax(A|B)ρ̂ − log Tr[ρ̂AB]. (283)

Using the triangle inequality for the trace distance, we have

Tr[ρ̂AB] = ‖ρ̂AB‖1 ≥ ‖ρAB‖1 − ‖ρAB − ρ̂AB‖1 ≥ 1 − 2ε,

where the last inequality follows from the relation between the
trace distance and the purified distance (7). Substituting this
to (283), we complete the proof.

Lemma 26: For any 0 ≤ ε < 1 and any state ρ ∈ S=(HAB),
it holds that

Hε
max(A|B)ρ ≥ H(A|B)ρ − η(ε) log dA, (284)

where η is a function that satisfies limx→0 η(x) = 0 and is
independent of the dimensions of the systems.

Proof: Let ρ̂ ∈ Bε(ρ) be a subnormalized state such that
Hε

max(A|B)ρ = Hε
max(A|B)ρ̂. From Lemma 23, it holds that

Hmax(A|B)ρ̂/Tr[ρ̂] ≥ H(A|B)ρ̂/Tr[ρ̂]. (285)

Thus, Inequality (284) follows due to the Alicki-Fannes
inequality ( [59], see also Inequality (89) in [60]).

Lemma 27: Let {Πm}Mm=1 be a complete set of orthogonal
projectors on a finite dimensional Hilbert space HA, and
let X be a quantum system with a fixed orthonormal basis
{|m〉}Mm=1. Consider a map E : A→ XA defined by

E(·) :=
M∑
m=1

|m〉〈m|X ⊗ Πm(·)ΠA
m. (286)

For any state ρ on system AB, it holds that

H(A|B)ρ ≤ H(XA|B)E(ρ), (287)

H(A|BX)E(ρ) ≤ H(A|B)ρ + logM. (288)

Proof: The first inequality follows from the isomet-
ric invariance of the conditional quantum entropy and its
monotonicity under the completely dephasing operation (see
e.g. Corollary 11.9.4 in [1]). Note that the map E is represented
as E = CX ◦VA→XA, where V is a linear isometry defined by
V :=

∑M
m=1 |m〉X ⊗ ΠA

m and C is the completely dephasing
operation on X with respect to the basis {|m〉}Mm=1. To prove
the second inequality, let X ′ be a M -dimensional Hilbert space
with a fixed orthonormal basis {|m〉}Mm=1. Define a linear
isometry V : HA → HX ⊗HX′ ⊗HA by

V :=
M∑
m=1

|m〉X ⊗ |m〉X
′
⊗ ΠA

m. (289)

A Stinespring dilation of the map E is given by E = TrX′ ◦V .
It holds that

H(A|B)ρ (290)

= H(XX ′A|B)V(ρ) (291)

≥ H(X |B)V(ρ) +H(A|BX)V(ρ)

+H(X ′|ABX)V(ρ) (292)

≥ H(A|BX)V(ρ) − log dimX (293)

= H(A|BX)E(ρ) − logM, (294)

where the first line follows from the isometric invariance
of the conditional quantum entropy, the second line from
the chain rule, the third line due to H(X |B)V(ρ) ≥ 0 and
H(X ′|ABX)V(ρ) ≥ − log dimX , and the last line from
V(ρ)AB = E(ρ).

Lemma 28: Let {px, ρx}x∈X be an ensemble of states on
system A, and suppose that there exists a POVM {Mx}x∈X
such that ∑

x∈X
pxTr[Mxρx] ≥ 1 − ε. (295)
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Then, for the state

ρXA :=
∑
x∈X

px|x〉〈x|X ⊗ ρAx , (296)

it holds that

H(X |A)ρ ≤ η(ε) log |X |, (297)

where η is a function that satisfies limε→0 η(ε) = 0 and is
independent of the dimensions of the systems.

Proof: Let X̂ be a quantum system with a fixed orthonor-
mal basis {|x〉}x∈X , and define a CPTP map M : A→ X̂ by

M(·) := Tr[Mx(·)]|x〉〈x|X̂ . It follows that

ρ̃XX̂ := idX ⊗M(ρXA) (298)

=
∑

x,x′∈X
px|x〉〈x|X ⊗ px′|x|x′〉〈x′|X̂ , (299)

where {px′|x}x′∈X is a conditional probability distribution
defined by px′|x = Tr[Mx′ρx]. Thus, due to the monotonicity
of the conditional quantum entropy, we have

H(X |A)ρ ≤ H(X |X̂)ρ̃. (300)

With a slight abuse of notation, let (X, X̂) be a pair of random
variables that takes values in X × X according to a joint
probability distribution P ≡ {p(x, x̂)}, where p(x, x̂) :=
pxpx′|x. Due to the condition (295), it holds that

P (X �= X̂) =
∑

x,x′∈X
x �=x′

p(x, x̂)=
∑
x∈X

px(1 − px|x) ≤ ε. (301)

Thus, due to Fano’s inequality (see e.g. Theorem
2.10.1 in [61]), it follows that

H(X |X̂)ρ̃ = H(X |X̂)P ≤ η(ε) log |X |. (302)

Combining this with (300), we complete the proof.

APPENDIX C
METHOD OF TYPES AND TYPE SUBSPACES

In this section, we briefly review the definitions and prop-
erties of types and type subspaces. For the details, see e.g.
Section 13.7 and 14.3 in [1]. The properties of type subspaces
presented in this section will be used in Appendix D to prove
the equivalence between the achievable rate region for the
asymptotic limit given by Theorem 14 in the main text and
the one obtained in Ref. [14]

Let X be a finite alphabet and n ∈ N. A probability
distribution {t(x)}x∈X is called a type of length n if nt(x) ∈
N for all x ∈ X . Let xn ≡ x1 · · ·xn be a sequence of variables
of length n such that xi ∈ X for each i. The sequence xn is
said to be of type t if

1
n
N(x|xn) = t(x) (303)

for all x ∈ X , where N(x|xn) is the number of the symbol
x ∈ X that appears in the sequence xn. The type class
corresponding to the type t of length n, which we denote by
T nt , is the set of all sequences whose type is t. Let T(X , n)

be the set of all types of length n on the alphabet X . It holds
that

T nt ∩ T nt′ = ∅ (t �= t′), Xn =
⋃

t∈T(X ,n)

T nt . (304)

The size of T(X , n) is bounded above by a polynomial
function of n as

|T(X , n)| ≤ (n+ 1)|X |. (305)

By definition, any two sequences in the same type class are
transformed with each other by permuting the elements. That
is, for any t ∈ T(X , n) and xn, x′n ∈ T nt , there exists a
permutation s such that x′i = xs(i) for any 1 ≤ i ≤ n.

Let H be a Hilbert space with a fixed orthonormal basis
{|x〉}x∈X . For any n ∈ N, the type subspace corresponding
to the type t of length n is defined by

Hn
t := span{|xn〉 : xn ∈ T nt } ⊆ H⊗n, (306)

where |xn〉 = |x1〉 · · · |xn〉, and the type projector is defined
by

Πn
t :=

∑
xn∈Tn

t

|xn〉〈xn|. (307)

It follows from (304) that

Πn
t Πn

t′ = 0 (t �= t′), I =
∑

t∈T(X ,n)

Πn
t . (308)

Consider a state ρ ∈ S=(H) and suppose that the eigen decom-
position of ρ is given by ρ =

∑
x∈X px|x〉〈x|. By definition,

it holds that

Πn
t ρ

⊗nΠn
t =

∑
xn∈Tn

t

pxn |xn〉〈xn| = qtΠn
t , (309)

where

qt :=
∏
x∈X

pnt(x)x . (310)

The projectors {Πn
t }t∈T(X ,n) are called the type projectors

corresponding to the state ρ⊗n.
Consider an ensemble {pj , ρj}Jj=1, where J ∈ N, ρj ∈

S=(H), and fix arbitrary n ∈ N. For any type t of length n
over [J ] := {1, · · · , J}, define a sequence of length n by

jt := 11 · · ·1︸ ︷︷ ︸
nt(1)

22 · · ·2︸ ︷︷ ︸
nt(2)

· · ·JJ · · · J︸ ︷︷ ︸
nt(J)

. (311)

For each j ∈ [J ], let {Πνj}νj∈T(X ,nt(j)) be the set of type
projectors corresponding to the state ρj

⊗nt(j). We define a
projector on H⊗n by

Π�ν|jt
:= Πν1 ⊗ · · · ⊗ ΠνJ (312)

for each �ν := ν1 · · · νJ ∈
⊗J

j=1 T(X , ntj). Using (305), the
number of conditional type projectors is bounded above by

J∏
j=1

|T(X , nt(j))| ≤
J∏
j=1

(nt(j) + 1)|X | ≤ (n+ 1)2dimH.

(313)
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As mentioned above, for any t ∈ T(J, n) and j ∈ T nt ,
there exists a permutation s such that ji = jt,s(i) for each
1 ≤ i ≤ n, where jt,s(i) is the s(i)-th element of the sequence
jt defined by (311). Let Ps be a unitary that acts on H⊗n as

Ps(|ϕ1〉 ⊗ · · · ⊗ |ϕn〉) = |ϕs(1)〉 ⊗ · · · ⊗ |ϕs(n)〉. (314)

We define the set of conditional type projectors {Π�ν|j}�ν on
H⊗n by

Π�ν|j = PsΠ�ν|jt
P †
s . (315)

By definition, it holds that

Tr[Π�ν|jρj ] = Tr[PsΠ�ν|jP †
sPsρjP

†
s ] = Tr[Π�ν|jt

ρjt
]. (316)

Note that the number of conditional type projectors for the
sequences j is equal to that for j′ if the two sequences belong
to the same type class.

APPENDIX D
PROOF OF PROPOSITION 15

In this appendix, we prove Proposition 15 in Section VII.
For the simplicity of notations, we denote dSc by J .

A. Proof of Θ∞
π (N ) = Θ∞(N )

By definition, it is straightforward to verify that Θ∞
π (N ) ⊆

Θ∞(N ). Thus, it suffices to prove the converse relation
Θ∞
π (N ) ⊇ Θ∞(N ). We prove this by showing that

Θ∞
π (N ) ⊇ 1

nΘ(N⊗n, ρ) for any n and any state ρ in the
form of

ρSA
n

=
J∑
j=1

pj |j〉〈j|Sc ⊗ ρSrA
n

j , (317)

where we do not require that ρS = πS . We only consider the
case where n = 1. It is straightforward to generalize the proof
for n ≥ 2.

1) Construction of States: Fix an arbitrary ε > 0 and choose
sufficiently large m. Let T(J,m) be the set of all types of
length m over [J ] := {1, · · · , J}, and T nt ⊂ [J ]×m be the type
class corresponding to a type t ∈ T(J,m) (see Appendix C
for the definitions and properties of types and type subspaces).

For any t ∈ T(J,m) and �j ∈ T nt , let {Πς|�j}
θ(�j)
ς=1 be the set of

conditional type projectors on (HSr )⊗m with respect to ρS
m
r

�j
.

Here, θ(�j) is the number of the conditional type subspaces.
Note that θ(�j) = θ(�j′) if �j and �j′ belong to the same type
class. Thus, we will denote θ(�j) also as θ(t) if �j ∈ T nt . Define

probability distributions {pt}t∈T(J,m) and {pς|�j}
θ(�j)
ς=1 for each

�j ∈ J×m by

pt :=
∑
�j∈Tn

t

p�j , pς|�j := Tr[Πς|�jρ
Sm

r

�j
]. (318)

Due to the properties of the conditional type projectors,
it holds that pς|�j = pς|�j′ for any �j and �j′ in the same type set t,
which we denote by pς|t. We define a probability distribution
{pς,t}ς∈[θ(t)],t∈T(J,m) by

pς,t = pt · pς|t. (319)

Let Y and Y ′ be quantum systems with dimensions
|T(J,m)| and θ∗ := maxt∈T(J,m) |θ(t)|, respectively. Con-
sider states

ρ
Sm

r A
m

ς,�j
:= p−1

ς|�jΠ
Sm

r

ς|�j ρ
Sm

r A
m

�j
ΠSm

r

ς|�j , (320)

ρS
mAm

ς,t :=
1

|T nt |
∑
�j∈Tn

t

|�j〉〈�j|S
m
c ⊗ ρ

Sm
r A

m

ς,�j
(321)

and define

ρY Y
′SmAm

m :=
∑

t∈T(J,m)

pt|t〉〈t|Y ⊗ 1
|T nt |

∑
�j∈Tn

t

|�j〉〈�j|S
m
c

⊗
θ(�j)∑
ς=1

pς|�j |ς〉〈ς|
Y ′

⊗ ρ
Sm

r A
m

ς,�j
. (322)

By the definition of the type subspaces, it is straightforward
to verify that ρS

m

ς,t has a flat distribution on its support, that
is,

ρS
m

ς,t =
1

|T nt |
∑
�j∈Tn

t

|�j〉〈�j|S
m
c ⊗

ΠSm
r

ς,�j

Tr[Πς,�j ]
. (323)

By using (319) and (321), the state (322) is rewritten into

ρY Y
′SmAm

m =
∑

t∈T(J,m)

θ(t)∑
ς=1

pς,t|ς, t〉〈ς, t|Y Y
′
⊗ ρS

mAm

ς,t .

For the later convenience, we introduce a map E�j : Smr →
Y ′Smr by

E�j(·) =
θ(�j)∑
ς=1

|ς〉〈ς|Y
′
⊗ ΠSm

r

ς|�j (·)ΠSm
r

ς|�j (324)

for each �j, which leads to

θ(�j)∑
ς=1

pς|�j|ς〉〈ς|
Y ′

⊗ ρ
Sm

r A
m

ς,�j
= E�j(ρ

Sm
r A

m

�j
). (325)

A useful relation which follows from the properties of the
conditional type projectors is that for any �j and �j′ in the same
type set, there exits a permutation s such that

ρ
Sm

r

ς,�j′
= PS

m
r

s (ρS
m
r

ς,�j
) (326)

and

(NA→B)⊗m(ρS
m
r A

m

ς,�j′
)

= PS
m
r

s ⊗ PB
m

s ◦ (NA→B)⊗m(ρS
m
r Am

ς,�j
). (327)

These properties will be used in the following subsections to
calculate the entropies of the states.

2) Calculation of Entropies: Let us calculate entropies and
mutual informations of the state defined above. We use the
definition of the state ρm given by (322) and the fact that
(ρScA)⊗m = ρ

Sm
c A

m

m . Due to the properties of the quantum
mutual information, we have

mI(Sc : B)N (ρ) (328)

= I(Smc : Bm)N⊗m(ρ⊗m) (329)
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= I(Smc : Bm)N⊗m(ρm) (330)

≤ I(Y Y ′Smc : Bm)N⊗m(ρm) (331)

= I(Y Y ′ : Bm)N⊗m(ρm)

+ I(Smc : Bm|Y Y ′)N⊗m(ρm) (332)

≤ I(Smc : Bm|Y Y ′)N⊗m(ρm) +H(Y Y ′) (333)

≤
∑

t∈T(J,m)

θ(t)∑
ς=1

pς,tI(Smc : Bm)N⊗m(ρς,t)

+ log θ∗|T(J,m)|. (334)

We also have

mH(Sr|BSc)N (ρ) (335)

= H(Smr |BmSmc )N⊗m(ρ⊗m) (336)

=
∑

�j∈[J]×m

p�jH(Smr |Bm)N⊗m(ρ�j)
(337)

≥
∑

�j∈[J]×m

p�j [H(Smr |BmY ′)N⊗m⊗Ej(ρ�j) − log θ(�j)] (338)

≥
∑

�j∈[J]×m

p�jH(Smr |BmY ′)N⊗m⊗Ej(ρ�j) − log θ∗, (339)

where (338) follows from Lemma 27 in Appendix B. Using
(325) and (321), the first term in (339) is calculated as∑
�j∈[J]×m

p�jH(Smr |BmY ′)N⊗m⊗Ej(ρ�j)
(340)

=
∑

�j∈[J]×m

p�j

θ(�j)∑
ς=1

pς|�jH(Smr |Bm)N⊗m(ρς,�j) (341)

=
∑

t∈T(J,m)

∑
�j∈Tn

t

pt
|T nt |

θ(t)∑
ς=1

pς|tH(Smr |Bm)N⊗m(ρς,�j)
(342)

=
∑

t∈T(J,m)

θ(t)∑
ς=1

pς,t ·
1

|T nt |
∑
�j∈Tn

t

H(Smr |Bm)N⊗m(ρς,�j) (343)

=
∑

t∈T(J,m)

θ(t)∑
ς=1

pς,t ·H(Smr |BmSmc )N⊗m(ρς,t). (344)

Here, the last line follows from the fact that the entropies
of the state N⊗m(ρς,�j) depends only on ς and the type of
�j, because of the local unitary equivalence (327). Similarly,
we have

mH(Sr|Sc)ρ = H(Smr |Smc )ρ⊗m =
∑

�j∈[J]×m

p�jH(Smr )ρ�j

≤
∑

�j∈[J]×m

p�jH(Smr Y
′)E�j(ρ�j) (345)

=
∑

�j∈[J]×m

p�j[H(Y ′)E�j(ρ�j) +H(Smr |Y ′)E�j(ρ�j)] (346)

≤
∑

�j∈[J]×m

p�j[log θ(�j) +H(Smr |Y ′)E�j(ρ�j)
] (347)

≤
∑

�j∈[J]×m

p�jH(Smr |Y ′)E�j(ρ�j) + log θ∗ (348)

=
∑

t∈T(J,m)

θ(t)∑
ς=1

pς,t ·H(Smr |Smc )ρς,t + log θ∗. (349)

The second line follows from Lemma 27 in Appendix B, and
the last line from the similar argument as in (344), for which
we use the local unitary equivalence (326). The cardinalities
of the type sets T(J,m) and θ∗ are bounded from above by

|T(J,m)| ≤ (m+ 1)J , θ∗ ≤ (m+ 1)2dA . (350)

Consider an arbitrary inner point (C,Q,E) of Θ(N , ρ) and
choose sufficiently large m. Combining Inequalities (334),
(339), (344), (349) and (350) with the conditions (171)-(173),
it follows that

Q+ E ≤ 1
m

∑
ς,t

pς,tH(Smr |Smc )ρς,t , (351)

C +Q− E ≤ 1
m

∑
ς,t

pς,t[H(Smc )ρς,t

−H(Sm|Bm)N⊗m(ρς,t)], (352)

Q− E ≤ − 1
m

∑
ς,t

pς,tH(Smr |BmSmc )ρς,t . (353)

Here, we have used the fact that the chain rule of quantum
enrtopies implies

I(Sc : B)N (ρ) −H(Sr|BSc)N (ρ)

= H(Sc)ρ −H(S|B)N (ρ) (354)

and

I(Smc : Bm)N⊗m(ρς,t) −H(Smr |BmSmc )N⊗m(ρς,t)

= H(Smc )ρς,t −H(Sm|Bm)N⊗m(ρς,t). (355)

Thus, we arrive at

(C,Q,E) ∈
∑
ς,t

pς,t ·
1
m

Θπ(N⊗m, ρς,t) (356)

⊂ conv
1
m

Θπ(N⊗m) (357)

⊂ convΘ∞
π (N ) ⊆ Θ∞

π (N ), (358)

where the last line follows from the convexity of Θ∞
π (N )

(see the next subsection). This completes the proof of
1
nΘ(N⊗n, ρ) ⊆ Θ∞

π (N ) for n = 1. The proofs for n ≥ 2 are
obtained along the same line.

3) Proof of convΘ∞
π (N ) ⊆ Θ∞

π (N ): We prove that the
convex hull of Θ∞

π (N ) is a subset of Θ∞
π (N ). Fix arbitrary

λ1, λ2 > 0 such that λ1 + λ2 = 1, and suppose that
(C(i), Q(i), E(i)) ∈ Θ∞

π (N ) for i = 1, 2. By definition, for
any sufficiently large n, there exist quantum systems S(i) ≡
S

(i)
c S

(i)
r and a quantum state ρi on S(i)Cnλi such that ρS

(i)

i

is the maximally mixed state, and it holds that

ni(Q(i)+E(i)) ≤ H(S(i)
r |S(i)

c )ρi , (359)

ni(C(i)+Q(i)−E(i)) ≤ H(S(i)
c )ρi

−H(S(i)|Bnλi)N⊗ni (ρi), (360)

ni(Q(i)−E(i)) ≤ −H(S(i)
r |BnλiS(i)

c )N⊗ni (ρi) (361)
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Fig. 7. The two dimensional regions of (Q, E) satisfying inequalities (164)-(166) in the case of −H(Sr |BSc)N (ρ) > 0 are depicted. The figures (a),
(b) and (c) are for 0 ≤ C ≤ I(Sc : B), I(Sc : B) ≤ C ≤ I(Sc : B) − H(Sr |BSc) and I(Sc : B) − H(Sr |BSc) ≤ C ≤ I(S : B), respectively. Lines
�1, �2 and �3 represent the boundaries represented by inequalities (164)-(166). The points of intersection of the three lines and the axes are denoted by u1,
u2, u3, t2, t′2 and t3. At C = 0, both u1 and u2 are on the right than u3. Thus u3 and t3 are vertices of the region that yield P+

1 and P2, respectively.
The two points u1 and u2 approaches to the origin as C increases. At C = I(Sc : B), the point u2 coincides u3, in which case the points u2 = u3 and
t2 = t3 are the vertices P+

3 and P4. In C = H(Sc) − H(S|B), the point u2 meets the origin, and yields P5. Finally, the point u1 coincides the origin at
C = I(S : B), in which case the point of u′

2 = t2 yields P6.

Fig. 8. The two dimensional regions of (Q, E) satisfying inequalities
(164)-(166) in the case of −H(Sr |BSc)N (ρ) < 0 are depicted. The figure
(a) is for 0 ≤ C ≤ I(Sc :B), and (b) is for I(Sc :B) ≤ C ≤ I(S :B). Lines
�1, �2 and �3 represent the boundaries represented by inequalities (164)-(166),
respectively, and the crossing points are denoted by u1, u′

2, u′
3, t2 and t3. At

C = 0, the point u′
2 is below u′

3, in which case u′
3 and t3 are vertices of the

region that yield P−
1 and P2, respectively. The point u′

2 approaches u′
3 as C

increases, and coincides it at C = I(Sc : B). In this case, the points u′
2 = u′

3
and t2 = t3 correspond to the vertices P−

3 and P4. At C = I(S : B), the
point u1 coincides the origin, where the point u′

2 = t2 yields P6.

for i = 1, 2, where n1 := �nλ1� and n2 := �nλi�. Define
Sc ≡ S

(1)
c S

(2)
c , Sr ≡ S

(1)
r S

(2)
r , S ≡ ScSr and consider a

quantum state ρ̄ on SAn defined by

ρ̄ SA
n

:= ρ S
(1)An1

1 ⊗ ρ S
(2)An2

2 . (362)

It is straightforward to verify that the state is diagonal on
Sc with respect to a fixed basis, and that ρ̄S is the full-rank
maximally mixed state on S. Due to the additivity of the
conditional quantum entropy, we have

H(Sr|Sc)ρ̄ = H(S(1)
r |S(1)

c )ρ1 +H(S(2)
r |S(2)

c )ρ2 (363)

and so forth. Define

(Cn, Qn, En) ≡
∑
i=1,2

ni(C(i), Q(i), E(i)). (364)

It follows from (359)-(361) that

Qn + En ≤ H(Sr|Sc)ρ̄ (365)

Cn +Qn − En ≤ H(Sc)ρ̄ −H(S|Bn)N⊗n(ρ̄) (366)

Qn − En ≤ −H(Sr|BnSc)N⊗n(ρ̄), (367)

which implies (Cn, Qn, En) ∈ Θπ(N⊗n). Furthermore, it is
straightforward to verify that

lim
n→∞

1
n

(Cn, Qn, En) = (C̄, Q̄, Ē) (368)

:=
∑
i=1,2

λi(C(i), Q(i), E(i)). (369)

This implies (C̄, Q̄, Ē) ∈ Θ∞
π (N ), and completes the

proof.

B. Proof of Θ∞(N ) = Λ∞(N )

Suppose that a triplet (C,Q,E) belongs to Θ(N , ρ), which
is defined by Inequalities (171)-(174). Noting that ρS =
N (ρ)S , Inequalities (171) and (172) implies (164). Thus,
we have Θ(N , ρ) ⊆ Λ(N , ρ), which leads to Θ∞(N ) ⊆
Λ∞(N ).

To prove the converse relation Θ∞(N ) ⊇ Λ∞(N ), we show
that Θ∞(N ) ⊇ Λ(N , ρ) for any state ρ. Note that Λ(N , ρ) is a
convex polytope such that (C,Q,E+ΔE) ∈ Λ(N , ρ) for any
(C,Q,E) ∈ Λ(N , ρ) and any ΔE > 0 (see Definition 11).
Thus, it suffices to prove that (i) all vertices of Λ(N , ρ)
belongs to Θ∞(N ), and that (ii) if (C,Q,E) ∈ Θ∞(N ), then
(C,Q,E + ΔE) ∈ Θ∞(N ) for any ΔE > 0.

1) Vertices of Λ(N , ρ): Consider the following points in R3,
where all entropies and mutual informations are for the state
N (ρ):

P0 := (0, 0, 0)
P+

1 := (0, −H(Sr|BSc), 0)
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P−
1 := (0, 0, H(Sr|BSc))

P2 :=
(

0,
1
2
I(S : B),

1
2
I(S :B) +H(Sr|BSc)

)
P+

3 := (I(Sc : B), −H(Sr|BSc), 0)
P−

3 := (I(Sc : B), 0, H(Sr|BSc))

P4 :=
(
I(Sc :B),

1
2
I(Sr :D|Sc),

1
2
I(Sr :D|Sc)+H(Sr|BSc)

)
P5 := (H(Sc) −H(S|B), 0, 0)
P6 := (I(S :B), 0, H(Sr|Sc))

The vertices of Λ(N , ρ) are P0, P
+
1 , P2, P

+
3 , P4, P5, P6 in the

case of −H(Sr|BSc)N (ρ) > 0 and P−
1 , P2, P

−
3 , P4, P6 when

−H(Sr|BSc)N (ρ) < 0 (Figures 7 and 8: see also Section VI
in [14]). Note that, by the chain rule of the mutual information,
it holds that

H(Sc)ρ −H(S|B)N (ρ)

= I(Sc : B)N (ρ) −H(Sr|BSc)N (ρ) (370)

= I(S : B)N (ρ) −H(Sr|Sc)N (ρ). (371)

By a simple calculation, it is straightforward to verify that
all of the above points except P2 belong to Θ(N , ρ), and
consequently to Θ∞(N ).

2) Proof of P2 ∈ Θ∞(N ): Consider the point P2 repre-
sented by the coordinate (C2, Q2, E2), where

C2 = 0, Q2 =
1
2
I(S : B)N (ρ), (372)

E2 =
1
2
I(S : B)N (ρ) +H(Sr|ScB)N (ρ). (373)

A simple calculation yields

Q2 + E2 = H(Sr|Sc)N (ρ) + I(Sc : B)N (ρ), (374)

C2 +Q2 − E2 = −H(Sr|ScB)N (ρ), (375)

Q2 − E2 = −H(Sr|ScB)N (ρ). (376)

Fix arbitrary ε, δ > 0 and choose sufficiently large n. Due to
the data compression theorem for classical information source
with quantum side information (Theorem 1 in [62]), there exist
a countable set Yn,δ satisfying

|Yn,δ| ≤ 2n(H(Sc|B)N(ρ)+δ), (377)

a function f : [J ]×n → Yn,δ and for each y ∈ Yn,δ , there
exists a measurement {My

�j
}�j∈[J]×n on Bn that satisfies∑

�j∈[J]×n

p�jTr
[
My
�j
(NA→B)⊗n(ρA

n

�j
)
]
≥ 1 − ε. (378)

We introduce a |Yn,δ|-dimensional quantum system Y and
define a state

ρY S
nAn

n :=
∑

�j∈[J]×n

p�j|f(�j)〉〈f(�j)|Y ⊗ |�j〉〈�j|S
n
c ⊗ ρ

Sn
r A

n

�j
.

We denote the system Snc S
n
r by Ŝr. It is straightforward to

verify that

ρY S
nAn

n = (ρSA)⊗n. (379)

Using the properties of quantum entropies and (379),
we have

H(Ŝr|Y )ρn

= H(Snc S
n
r |Y )ρn (380)

= H(Snc Y )ρn −H(Y )ρn +H(Snr |Snc Y )ρn (381)

= H(Snc )ρn −H(Y )ρn +H(Snr |Snc )ρn (382)

≥ H(Snc )ρn − |Yn,δ| +H(Snr |Snc )ρn (383)

= nH(Sc)ρ − |Yn,δ| + nH(Sr|Sc)ρ (384)

≥ nI(Sc : B)N (ρ) + nH(Sr|Sc)ρ − nδ, (385)

where η is a function that satisfies limε→0 η(ε) = 0 and is
independent of the dimensions of the systems. From (378),
(379) and Lemma 28 in Appendix B, we also have

H(Ŝr|Y Bn)N⊗n(ρn)

= H(Snc S
n
r |Y Bn)N⊗n(ρn) (386)

= H(Snc |Y Bn)N⊗n(ρn) +H(Snr |Snc Y Bn)N⊗n(ρn) (387)

= H(Snc |Y Bn)N⊗n(ρn) +H(Snr |Snc Bn)N⊗n(ρn) (388)

= H(Snc |Y Bn)N⊗n(ρn) + nH(Sr|ScB)N (ρ) (389)

≤ nH(Sr|ScB)N (ρ) + 2nη(ε) log dSc . (390)

In addition, a simple calculation using the chain rule yields

H(Y )ρn −H(Y Ŝr|Bn)N⊗n(ρn)

= −H(Ŝr|Y Bn)N⊗n(ρn) + I(Y : Bn)N⊗n(ρn) (391)

≥ −H(Ŝr|Y Bn)N⊗n(ρn). (392)

Combining these relations with (374)-(376), we arrive at

Q2 + E2 ≤ 1
n
H(Ŝr|Y )N⊗n(ρn) + δ, (393)

C2 +Q2 − E2 ≤ 1
n

[H(Y )ρn −H(Y Ŝr|Bn)N⊗n(ρn)]

+ 2η(ε) log dSc , (394)

Q2 − E2 ≤ − 1
n
H(Ŝr|Y Bn)N⊗n(ρn)

+ 2η(ε) log dSc . (395)

Since these relations hold for any small ε, δ > 0 and suffi-
ciently large n, we obtain P2 ∈ Θ∞(N ).

3) Proof of (C,Q,E+ΔE) ∈ Θ∞(N ) for Any ΔE > 0 and
(C,Q,E) ∈ Θ∞(N ): We complete the proof of Θ∞(N ) ⊇
Λ(N , ρ) by showing that, if (C,Q,E) ∈ Θ∞(N ), then
(C,Q,E + ΔE) ∈ Θ∞(N ) for any ΔE > 0. It suffices
to prove that for any n ∈ N and ΔE > 0, it holds that
(C,Q,E + ΔE) ∈ Θ∞(N ) if (C,Q,E) ∈ 1

nΘ(N⊗n).
We only consider the case where n = 1. It is straightforward
to generalize the proof for n ≥ 2.

Consider a triplet (C,Q,E) ∈ Θ(N ), and fix arbitrary
ΔE > 0 and m ∈ N. By definition, there exist finite
dimensional quantum systems Sc, Sr and a state in the form of

ρSA =
J∑
j=1

pj |j〉〈j|Sc ⊗ ρSrA
j , (396)

such that

Q+ E ≤ H(Sr|Sc)ρ, (397)
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C +Q− E ≤ H(Sc)ρ −H(S|B)N (ρ), (398)

Q− E ≤ −H(Sr|BSc)N (ρ). (399)

Define ΔEm := �mΔE�, and let S′
r be a quantum system

with dimension 2ΔEm . Consider a state

ρ
SmS′

rA
m

m = (ρSA)⊗m ⊗ πS
′
r , (400)

where π is the full-rank maximally mixed state on S′
r. Rela-

belling Smc by Ŝc, Smr S
′
r by Ŝr and ŜcŜr by Ŝ, the above

state is represented as

ρŜA
m

m :=
∑

�j∈[J]×m

p�j |�j〉〈�j|
Ŝc ⊗ ρ̂ŜrA

m

�j
, (401)

where

ρ̂ŜrA
m

�j
:= ρ

Sm
r A

m

�j
⊗ πS

′
r (402)

and

p�j := pj1 · · · pjm , ρ�j := ρj1 ⊗ · · · ⊗ ρjm (403)

for �j = j1 · · · jm. Noting that

H(Ŝr|Ŝc)ρm = mH(Sr|Sc)ρ + ΔEm (404)

and so forth, it follows from (397)-(399) that

m(Q+ E) + ΔEm ≤ H(Ŝr|Ŝc)ρm , (405)

m(C +Q− E) − ΔEm ≤ H(Ŝc)ρ
−H(Ŝ|Bm)N⊗m(ρm), (406)

m(Q− E) − ΔEm ≤ −H(Ŝr|BmŜc)N⊗m(ρm). (407)

This implies (C,Q,E + ΔEm/m) ∈ Θ∞(N ). Noting that
limm→∞(ΔEm/m) = ΔE, this implies (C,Q,E + ΔE) ∈
Θ∞(N ) and completes the proof.

C. Proof of Λ∞(N ) = Λ∞
p (N )

It is straightforward to verify that Λ∞(N ) ⊇ Λ∞
p (N ). Thus,

we prove Λ∞(N ) ⊆ Λ∞
p (N ) by showing that Λ(N⊗n) ⊆

Λp(N⊗n) for any n. We only consider the case n = 1. It is
straightforward to generalize the proof for n ≥ 2.

Fix an arbitrary state ρ in the form of (163), and suppose
that (C,Q,E) ∈ Λ(N , ρ). For each j, let {qk|j , |φj,k〉}k
be an ensemble of pure states on SrA such that ρj =∑

k qk|j |φj,k〉〈φj,k|. We denote pjqk|j by pjk. Let Y be a finite
dimensional quantum system with a fixed orthonormal basis
{|k〉}k, and define a state ρ̃Y SA by

ρ̃Y SA :=
J∑
j=1

∑
k

pjk|k〉〈k|Y ⊗ |j〉〈j|Sc ⊗ |φj,k〉〈φj,k|SrA.

It is straightforward to verify that ρ̃SA = ρSA. Denoting Y Sc
by Ŝc and ŜcSr by Ŝ, the data processing inequality yields

I(S : B)N (ρ) ≤ I(Ŝ : B)N (ρ̃), (408)

−H(Sr|BSc)N (ρ) ≤ −H(Sr|BŜc)N (ρ̃), (409)

in addition to

H(Sc)ρ −H(S|B)N (ρ)

= I(Sc : B)N (ρ) −H(Sr|BSc)N (ρ) (410)

≤ I(Ŝc : B)N (ρ̃) −H(Sr|BŜc)N (ρ̃) (411)

= H(Ŝc)ρ̃ −H(Ŝ|B)N (ρ̃). (412)

Combining these inequalities with (164)-(166), we have
(C,Q,E) ∈ Λ(N , ρ̃), which implies Λ(N , ρ) ⊆ Λ(N , ρ̃).
By taking the union over all ρ, we arrive at Λ(N ) ⊆ Λp(N )
and complete the proof.
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