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Asymptotic Errors for Teacher-Student Convex
Generalized Linear Models (Or: How to Prove

Kabashima’s Replica Formula)
Cedric Gerbelot, Alia Abbara, and Florent Krzakala

Abstract— There has been a recent surge of interest in the
study of asymptotic reconstruction performance in various cases
of generalized linear estimation problems in the teacher-student
setting, especially for the case of i.i.d standard normal matrices.
Here, we go beyond these matrices, and prove an analytical
formula for the reconstruction performance of convex gener-
alized linear models with rotationally-invariant data matrices
with arbitrary bounded spectrum, rigorously confirming, under
suitable assumptions, a conjecture originally derived using the
replica method from statistical physics. The proof is achieved by
leveraging on message passing algorithms and the statistical prop-
erties of their iterates, allowing to characterize the asymptotic
empirical distribution of the estimator. For sufficiently strongly
convex problems, we show that the two-layer vector approximate
message passing algorithm (2-MLVAMP) converges, where the
convergence analysis is done by checking the stability of an
equivalent dynamical system, which gives the result for such
problems. We then show that, under a concentration assumption,
an analytical continuation may be carried out to extend the result
to convex (non-strongly) problems. We illustrate our claim with
numerical examples on mainstream learning methods such as
sparse logistic regression and linear support vector classifiers,
showing excellent agreement between moderate size simulation
and the asymptotic prediction.

Index Terms— Parametric statistics, estimation error, message
passing, expectation-maximization algorithms, optimization, con-
vergence, convex functions, linear matrix inequalities.
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I. INTRODUCTION

A. Background and Motivation

IN THE modern era of statistics and machine learning, data
analysis often requires solving high-dimensional estimation

problems with a very large number of parameters. Developing
algorithms for this task and understanding their limitations
has become a major challenge. In this paper, we consider this
question in the framework of supervised learning under the
teacher-student scenario: (i) the data is synthetic and labels
are generated by a “teacher”rule and (ii) training is done with
a convex Generalized Linear Model (GLM). Such problems
are ubiquitous in machine learning, statistics, communications,
and signal processing.

The study of asymptotic (i.e. large-dimensional) recon-
struction performance of generalized linear estimation in the
teacher-student setting has been the subject of a significant
body of work over the past few decades [1], [2], [3], [4],
[5], [6], [7], and is currently witnessing a renewal of interest,
especially for the case of identically and independently dis-
tributed (i.i.d.) standard normal data matrices, see e.g. [8], [9],
[10]. The aim of this paper is to provide a general analytical
formula describing the reconstruction performance of such
convex generalized linear models, but for a broader class of
more adaptable matrices.

The problem is defined as follows: we aim at reconstructing
a given i.i.d. weight vector x0 ∈ R

N from outputs y ∈
R
M generated using a training set (fμ)μ=1,...,M and the

“teacher” rule:
y = ϕ(Fx0, ω0) (1)

where ϕ is a proper, closed, continuous function and
ω0 ∼ N (0, δ0Id) is an i.i.d. noise vector. To go beyond the
Gaussian i.i.d. case tackled in a majority of theoretical works,
we shall allow matrices of arbitrary spectrum. We consider
the data matrix F ∈ R

M×N , obtained by concatenating
the vectors of the training set, to be rotationally invariant:
its singular value decomposition reads F = UDVT where
U ∈ R

M×M ,V ∈ R
N×N are uniformly sampled from the

orthogonal groupsO(M) and O(N) respectively. D ∈ R
M×N

contains the singular values of F on its diagonal. Our analysis
encompasses any singular value distribution with compact
support. We place ourselves in the so-called high-dimensional
regime, so that M,N →∞ while the ratio α ≡M/N is kept
finite. Our goal is to study the reconstruction performance of
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the generalized linear estimation method:

x̂ ∈ arg min
x∈RN

{g(Fx,y) + f(x)} (2)

where g and f are proper, closed, convex and separable
functions. This type of procedure is an instance of empirical
risk minimization and is one of the building blocks of modern
machine learning. It encompasses several mainstream methods
such as logistic regression, the LASSO or linear support vector
machines. More precisely, the quantities of interest repre-
senting the reconstruction performance are the mean squared
error E = E

[
1
N �x0 − x̂�22

]
for regression problems, and the

reconstruction angle θx = arccos xT
0 x̂

�x0�2�x̂�2
for classification

problems.

B. Main Contributions

• We provide a set of equations characterizing the asymptotic
statistical properties of the estimator defined by problem (2)
with data generated by (1) in the asymptotic setup, for sep-
arable, convex losses and penalties (including for instance
Logistic, Hinge, LASSO and Elastic net), for rotation-
ally invariant sequences of matrices F. For sufficiently
strongly convex problems (in the sense of Lemma 3),
our assumptions are classical with respect to earlier work.
To extend the result to convex problems however, we require
a concentration assumption that we discuss further in
section III.

• By doing so, we give, under the aforementioned set of
assumptions, a mathematically rigorous proof, of a replica
formula obtained heuristically through statistical physics
for this problem, notably by Kabashima [11]. This is a
significant step beyond the setting of most rigorous work on
replica results, which assume matrices to be i.i.d. random
Gaussian ones.

• Our proof method builds on a detailed mapping between
alternating directions descent methods [12] from convex
optimization and a set of algorithms called multi-layer
vector approximate message-passing algorithms [13], [14].
This enables us to use convergence results from convex
analysis and dynamical systems to study the trajectories of
vector approximate message-passing algorithms.

• Beyond the high-dimensional result on the estimator defined
by the GLM, our convergence analysis provides a generic
condition for the convergence of 2-layer MLVAMP, regard-
less of the randomness of the design matrix and of the
dimensions of the problem, for sufficiently strongly convex
problems.

C. Related Work

The simplest case of the present question, when both f and
g are quadratic functions, can be mapped to a random matrix
theory problem and solved rigorously, as in e.g. [9]. Handling
non-linearity is, however, more challenging. A long history
of research tackles this difficulty in the high-dimensional
limit, especially in the statistical physics literature where this
setup is common. The usual analytical approach in statistical
physics of learning [1], [2], [3] is a heuristic, non-rigorous
but very adaptable technique called the replica method [15],
[16]. In particular, it has been applied on many variations

of the present problem, and laid the foundation of a large
number of deep, non-trivial results in machine learning, signal
processing and statistics, e.g. [17], [18], [19], [20], [21], [22],
[23], [24], [25]. Among them, a generic formula for the present
problem has been conjectured by Y. Kabashima, providing
sharp asymptotics for the reconstruction performance of the
signal x0 [11].

Proving the validity of a replica prediction is a difficult task
altogether. There has been recent progress in the particular
case of Gaussian data, where the matrix F is made of i.i.d.
standard Gaussian coefficients. In this case, the asymptotic
performance of the LASSO was rigorously derived in [26],
and the existence of the logistic estimator discussed in [8].
A set of papers managed to extend this study to a large set
of convex losses g, using the so-called Gordon comparison
theorem [27]. We broaden those results here by proving the
Kabashima formula, valid for the set of rotationally invariant
matrices introduced above and any convex, separable loss g
and sufficiently strongly convex regularizer f under classical
conditions. We extend this result to any convex, separable g
and f under stronger assumptions.

Our proof strategy is based on the use of approximate-
message-passing [28], [29], as pioneered in [4], and is similar
to a recent work [30] on a simpler setting. This family of
algorithms is a statistical physics-inspired variant of belief
propagation [31], [32], [33] where local beliefs are approx-
imated by Gaussian distributions. A key feature of these
algorithms is the existence of the state evolution equations,
a scalar equivalent model which allows to track the asymptotic
statistical properties of the iterates at every time step. A series
of groundbreaking papers initiated with [26] proved that these
equations are exact in the large system limit, and extended
the method to treat nonlinear problems [29] and handle rota-
tionally invariant matrices [34], [35]. We shall use a variant
of these algorithms called multi-layer vector approximate
message-passing (MLVAMP) [14], [36]. The key technical
point in our approach is an analysis of the convergence of
MLVAMP. This is achieved by phrasing the algorithm as a
dynamical system, and then determining sufficient conditions
for convergence with linear rate. Our analysis guarantees
converging trajectories above a threshold value of the strong
convexity parameter of the problem, which is sufficient to
complete the proof in that region. We use an analytic con-
tinuation to extend the result to convex problems, at the cost
of an additional condition discussed after stating our main set
of assumption.

II. BACKGROUND ON MLVAMP

In this section, we present background on the multi-
layer vector approximate message-passing algorithm devel-
oped in [36]. In doing so, we will introduce the key quan-
tities involved in our main theorem. MLVAMP was initially
designed as a probabilistic inference algorithm in multilayer
architectures. Here, we only focus on the 2-layer version
for inference in GLMs, and use the notations of [35]. The
algorithm can be derived in several ways, notably from
expectation-consistent variational inference frameworks such
as expectation propagation [37], where the target posterior
distribution is approximated by a simpler one with moment
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matching constraints. In the maximum a posteriori setting
(MAP), the frequentist optimization framework is recovered,
with additional parameter prescriptions due to the probabilistic
models, as we will see below. The derivation of the algorithm
is, however, not our point of interest. We focus on providing
a self-contained interpretation from the convex optimization
point of view, in particular in terms of variable splitting.

A. Link With Variable Splitting and Proximal Descent

A common procedure to tackle nonlinear optimization prob-
lems involving several functions is variable splitting, so that
each non-linearity may be treated independently. Augmenting
the Lagrangian with a square penalty on the slack variable
equality constraint leads to the family of alternating direction
methods of multipliers (ADMM) [12], where the objective is
iteratively minimized in the direction of each initial variable
and slack variable. The descent steps then take the form
of proximal operators of the non-linearities. For example,
on problem (2), adding a slack variable z = Fx would lead
to the augmented Lagrangian:

g(z,y) + f(x) + θT (z− Fx) +
α

2
�z− Fx�22 (3)

where α > 0 is a free parameter that can enforce strong
convexity of the objective if large enough and θ is a Lagrange
multiplier. Updating x from an update on z amounts to a linear
estimation problem, which can be solved by least squares.
This is implemented, for example, in linearized ADMM [12],
where the proximal descent steps are coupled to least-square
ones.

MLVAMP solves problem (2) by introducing the same
splitting as in (3) with an additional trivial splitting for each
variable: x1,x2, z1, z2 such that x1 = x2, z1 = Fx1, z2 =
Fx2. In the convex optimization framework, parameters like
gradient step sizes, or proximal parameters need to be chosen.
In the expectation propagation framework, they are prescribed
by expectation-consistency constraints, which leads to addi-
tional steps in the algorithm. MLVAMP thus consists in
four descent steps on x1,x2, z1, z2, and the updates on the
parameters of the functions corresponding to those descent
steps. This is shown in the MLVAMP iterations (see (1)
further), where x1, z1 are updated using the proximal operators
of the loss and regularizer, while z2 and x2 are obtained
through least-squares. As mentioned above, the parameters
of proximal operators (or denoisers in the signal processing
literature) and least-squares are set by probabilistic inference
rules (here moment-matching of marginal distributions). It is
shown in [38] that, in the MAP setting, these updates amount
to adapting the parameters to the local curvature of the cost
function.

B. 2-Layer MLVAMP and Its State Evolution

We lay out the full iterations of the MLVAMP algorithm
from [36] applied to a 2-layer network in Algorithm 1. For a
given operator T : X → R

d where d is M or N in our setting,
the brackets �T (x)	 = 1

d

∑d
i=1 T (x)i denote element-wise

averaging operations. For a given matrix M ∈ R
d×d, the

brackets amount to �M	 = 1
dTr(M). For a given function,

Algorithm 1 2-Layer MLVAMP

Require: Initialize h(0)
1x ,h

(0)
2z , Q̂

(0)
1x , Q̂

(0)
2z , number of iterations

T.
for t=0,1…,T do

// Denoising x

x̂(t)
1 = g1x(h

(t)
1x , Q̂

(t)
1x )

χ
(t)
1x =

〈
∂
h

(t)
1x
g1x(. . .)

〉
/Q̂

(t)
1x

Q̂
(t)
2x = 1/χ(t)

1x − Q̂(t)
1x

h(t)
2x = (x̂(t)

1 /χ
(t)
1x − Q̂(t)

1xh
(t)
1x )/Q̂(t)

2x

// LMMSE estimation of z

ẑ(t)
2 = g2z(h

(t)
2x ,h

(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z )

χ
(t)
2z =

〈
∂
h

(t)
2z
g2z(. . .)

〉
/Q̂

(t)
2z

Q̂
(t)
1z = 1/χ(t)

2z − Q̂(t)
2z

h(t)
1z = (ẑ(t)

2 /χ
(t)
2z − Q̂(t)

2z h
(t)
2z )/Q̂(t)

1z

// Denoising z

ẑ(t)
1 = g1z(h

(t)
1z , Q̂

(t)
1z ),

χ
(t)
1z =

〈
∂
h

(t)
1z
g1z(. . .)

〉
/Q̂

(t)
1z

Q̂
(t+1)
2z = 1/χ(t)

1z − Q̂(t)
1z

h(t+1)
2z = (ẑ(t)

1 /χ
(t)
1z − Q̂(t)

1z h
(t)
1z )/Q̂(t+1)

2z

// LMMSE estimation of x

x̂(t+1)
2 = g2x(h

(t)
2x ,h

(t+1)
2z , Q̂

(t)
2x , Q̂

(t+1)
2z )

χ
(t+1)
2x =

〈
∂
h

(t)
2x
g2x(. . .)

〉
/Q̂

(t)
2x

Q̂
(t+1)
1x = 1/χ(t+1)

2x − Q̂(t)
2x

h(t+1)
1x = (x̂(t+1)

2 /χ
(t+1)
2x − Q̂(t)

2xh
(t)
2x )/Q̂(t+1)

1x

end for

return x̂1, x̂2

for example g1x, we use the shorthand g1x(. . .) when the
arguments have been made clear in a line above and are left
unchanged. The denoising functions g1x and g1z can be written
as proximal operators in the MAP setting:

g1x(h
(t)
1x , Q̂

(t)
1x ) = arg min

x∈RN

{
f(x) +

Q̂
(t)
1x

2
�x− h(t)

1x�22
}

= Prox
f/Q̂

(t)
1x

(h(t)
1x ) (4)

g1z(h
(t)
1z , Q̂

(t)
1z ) = arg min

z∈RM

{
g(y, z) +

Q̂
(t)
1z

2
�z− h(t)

1z �22
}

= Prox
g(.,y)/Q̂

(t)
1z

(h(t)
1z ). (5)

The LMMSE denoisers g2z and g2x in the MAP setting read
(see [14]):

g2z(. . .) = FM(t)
1 (Q̂(t)

2xh
(t)
2x + Q̂

(t)
2zF

Th(t)
2z ) (6)

g2x(. . .) = M(t)
2 (Q̂(t)

2xh
(t)
2x + Q̂

(t+1)
2z FTh(t+1)

2z ) (7)

where we defined the matrices M(t)
1 = (Q̂(t)

2zF
TF+Q̂(t)

2x Id)−1,
and M(t)

2 = (Q̂(t+1)
2z FTF + Q̂

(t)
2x Id)−1. As mentioned in the

previous section, MLVAMP returns at each iteration two sets
of estimators (x̂(t)

1 , x̂(t)
2 ) and (ẑ(t)

1 , ẑ(t)
2 ) which respectively
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aim at reconstructing the minimizer x̂ and ẑ = Fx̂. At the
fixed point, we have x̂(t)

1 = x̂(t)
2 and ẑ(t)

1 = ẑ(t)
2 , as proven

in [39]. The intermediate vectors h(t)
1x , h(t)

2x , h(t)
1z and h(t)

2z have
the key feature that they behave asymptotically as Gaussian
centered around x0 and z0 = Fx0, under the set of assump-
tions given in appendix E-B. More precisely, at each iteration,
they converge empirically with second order moment (PL2)
towards Gaussian variables:

lim
M,N→∞

Q̂
(t)
1xh

(t)
1x − m̂(t)

1xx0
PL(2)

=
√
χ̂

(t)
1xξ

(t)
1x

lim
M,N→∞

VT (Q̂(t)
2xh

(t)
2x − m̂(t)

2xx0)
PL(2)

=
√
χ̂

(t)
2xξ

(t)
2x

lim
M,N→∞

UT (Q̂(t)
1z h

(t)
1z − m̂(t)

1z z0)
PL(2)

=
√
χ̂

(t)
1z ξ

(t)
1z

lim
M,N→∞

Q̂
(t)
2zh

(t)
2z − m̂(t)

2z z0
PL(2)

=
√
χ̂

(t)
2z ξ

(t)
2z (8)

where ξ
(t)
1x , ξ

(t)
2x , ξ

(t)
1z , ξ

(t)
2z are i.i.d standard normal random

variables independent of all other quantities. The definition
of PL(2) convergence is reminded in Appendix A, and we

use the notation
PL(2)

= following [34], [36]. We can roughly
say that the Q̂, m̂, χ̂’s parameters characterize the distributions
of the h’s. Using the representation (8) in the iterations
of MLVAMP results in a scalar recursion that tracks the
evolution of the parameters of the aforementioned Gaussian
distributions. This recursion provides the so-called state evo-
lution equations. The existence of state evolution equations
is the reason why we use 2-layer MLVAMP in our proof.
Indeed, they allow the construction of iterate paths that lead
to the solution of problem (1), while knowing their statistical
properties.

III. MAIN RESULT

Our main result characterizes the asymptotic empirical dis-
tribution of the estimator x̂ defined in (2) with data generated
by (1), and of ẑ = Fx̂. We start by stating the necessary
assumptions.

Assumption 1:
(a) the functions f and g are proper, closed, convex and

separable functions.
(b) the cost function g(F.,y) + f(.) is coercive, i.e.

lim�x�→∞ g(Fx,y) + f(x) = +∞.
(c) there exists a finite constant B1 such that 1

N �x̂�22 � B1

almost surely as N → ∞. We also assume that, for any
pseudo-Lipschitz function of order 2, if there exists a
finite constant B2 such that ∀N ∈ N, 1

N

∑N
i=1 φ(x̂i) �

B2, then the limit limN→∞ 1
N

∑N
i=1 φ(x̂i) exists.

(d) for any x ∈ dom(f) and any x� ∈ ∂f(x), there exists a
constant C such that �x��2 � C(1 + �x�2). The same
holds for g on its domain.

(e) there exist sequences of real analytic functions g�, f� such
that for any x, lim�→0 g�(x) = g(x), lim�→0 f�(x) =
f(x), and for all � > 0, g��� and f ��

� belong to the Schwartz
space.

(f) the empirical distributions of the underlying truth x0,
eigenvalues of FTF, and noise vector w0, respec-
tively converge empirically with second order moments,

as defined in appendix A, to independent scalar ran-
dom variables x0, w0, λ with distributions px0 , pλ, pw0 .
We assume that the distribution pλ is not all-zero and has
compact support.

(g) the design matrix F = UDV� ∈ R
M×N is rota-

tionally invariant, as defined in the introduction, where
the elements of the Haar distributed matrices U,V are
independent of the elements of the ground truth vector
x0, noise ω0 and elements of D.

(h) the solution to the set of fixed point equations (9) exists
and is unique, for any convex g and f verifying the
assumptions above

(i) finally assume that M,N → ∞ with fixed ratio
α = M/N .

The coercivity assumption (b) ensures that the minimiza-
tion problem Eq.(2) is feasible and that the estimator exists.
Most machine learning cost functions verify this assump-
tion, including any convex loss which is bounded below
and regularized with a coercive term such as the 
1 or

2 norm, see [40] Corollary 11.15. Non-coercive problems
include unregularized logistic regression and unregularized,
underspecified least-squares for example. The scaling assump-
tions (d) are required for the state evolution equations of the
MLVAMP iteration corresponding to the optimization problem
Eq.(2) to hold, as discussed in appendix E-B. Such condi-
tions are often encountered in high dimensional analysis of
M-estimators, see, e.g. [27], and are verified by the setups pro-
posed in the experiments section. The convergence of averaged
sumes of PL2 observables in assumption (c) and the analytic
approximation in assumption (e) are required for our analytic
continuation to hold, and we show that any combination of
hinge, logistic and square loss with 
1 or 
2 regularization
verifies the latter in Appendix H, subsection H-F. We show
in Lemma 4 that, for sufficiently strongly convex problems,
these two assumptions are not required. The concentration
assumption we require has been proven to hold for a number
of convex problems with Gaussian random design regardless
of the strong convexity of the problem (see the related work
section), and we believe rotationally invariant matrices do not
change this behaviour. However, since we are unable to prove
it below the threshold value of the strong convexity parameter,
it remains an assumption. Additional detail on the notion of
empirical convergence is given in appendix A. This analysis
framework is mainly due to [26] and is related to convergence
in Wasserstein metric as pointed out in [25]. We are now ready
to state our main theorem.

Theorem 1 (Fixed Point Equations): Under assump-
tion 1, consider the ground-truth x0 and let z0 = Fx0,
ρx ≡ �x0�22/N and ρz ≡ �z0�22/M . For a strictly convex
instance of problem (2), let x̂ be its unique solution. For
a convex (non-strictly) instance of problem (2), let x̂ be its
unique least 
2 norm solution. Then let ẑ = Fx̂. Then, for any
real analytic, pseudo-Lipschitz function of order 2 φ whose
second derivative belongs to the Schwartz space, the following
holds:

lim
N→∞

1
N

N∑
i=1

φ(x0,i, x̂i)
a.s.= E[φ(x0, Prox

f/Q̂
(∗)
1x

(Hx))]
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lim
M→∞

1
M

M∑
i=1

φ(z0,i, ẑi)
a.s.= E[φ(z0, Prox

f/Q̂
(∗)
1z

(Hz))]

where Hx =
m̂∗

1xx0+
√
χ̂∗

1xξ1x

Q̂∗
1x

, Hz =
m̂∗

1zz0+
√
χ̂∗

1zξ1z

Q̂∗
1z

and

expectations are taken with respect to the random variables
x0 ∼ px0 , z0 ∼ N (0,

√
ρz), ξ1x, ξ1z ∼ N (0, 1). The

parameters Q̂∗
1x, Q̂

∗
1z, m̂

∗
1x, m̂

∗
1z, χ̂

∗
1x, χ̂

∗
1z are determined by

the fixed point of the system:

Q̂2x = Q̂1x(E
[
η�
f/Q̂1x

(Hx)
]−1

− 1)

Q̂2z = Q̂1z(E
[
η�
g(.,y)/Q̂1z

(Hz)
]−1

− 1)

m̂2x =
E

[
x0ηf/Q̂1x

(Hx)
]

ρxχx
− m̂1x

m̂2z =
E

[
z0ηg(.,y)/Q̂1z

(Hz)
]

ρzχz
− m̂1z

χ̂2x =
E

[
η2
f/Q̂1x

(Hx)
]

χ2
x

− ρx(m̂1x + m̂2x)2 − χ̂1x

χ̂2z =
E

[
η2
g(.,y)/Q̂1z

(Hz)
]

χ2
z

− ρz(m̂1z + m̂2z)2 − χ̂1z

Q̂1x = E

[
1

Q̂2x + λQ̂2z

]−1

− Q̂2x

Q̂1z = αE

[
λ

Q̂2x + λQ̂2z

]−1

− Q̂2z

m̂1x =
1
χx

E

[
m̂2x + λm̂2z

Q̂2x + λQ̂2z

]
− m̂2x

m̂1z =
ρx

αχzρz
E

[
λ(m̂2x + λm̂2z)
Q̂2x + λQ̂2z

]
− m̂2z

χ̂1x =
1
χ2
x

E

[
χ̂2x + λχ̂2z + ρx(m̂2x + λm̂2z)2

(Q̂2x + λQ̂2z)2

]

− ρx(m̂1x + m̂2x)2 − χ̂2x

χ̂1z =
1
αχ2

z

E

[
λ(χ̂2x + λχ̂2z + ρx(m̂2x + λm̂2z)2)

(Q̂2x + λQ̂2z)2

]

− ρz(m̂1z + m̂2z)2 − χ̂2z , (9)

where χx = (Q̂1x + Q̂2x)−1, χz = (Q̂1z + Q̂2z)−1,
and expectations are taken with respect to the random
variables x0 ∼ px0 , z0 ∼ N (0,

√
ρz), y ∼ ϕ(z0, ω0),

ξ1x, ξ1z ∼ N (0, 1), and eigenvalues λ ∼ pλ. η is a shorthand
for the scalar proximal operator:

ηγf (z) = argmin
x∈X

{
γf(x) +

1
2
(x− z)2

}
.

The set of fixed point equations from Theorem 1 naturally
stems from the “replica-symmetric” free energy commonly
used in the statistical physics community [15], [16]. The free
energy depends on a set of parameters, and extremizing it
with respect to all parameters, i.e. writing the zero gradient
condition for each parameter, provides the set of equations (9).
We state this correspondence in the following corollary to
Theorem 1:

Corollary 1 (The Kabashima formula): The fixed point
equations from theorem 1 can equivalently be rewritten as
the solution of the extreme value problem (10), shown at the
bottom of the next page, defined by the replica free energy
from [35].
β is a parameter that corresponds in the physics approach

to an inverse temperature. In the β → ∞ limit (the
so-called zero temperature limit), the integrals defining φx
and φz concentrate on their extremal value. Note that they
are closely related to the Moreau envelopes M [40], [41] of
f and g, which represent a smoothed form of the objective
function with the same minimizers:

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) =
Q̂1x

2
H2
x −M f

Q̂1x

(Hx)

where ∀ γ � 0, Mγf (z) = infx

{
f(x) +

1
2γ
�x− z�22

}
.

We provide details on this correspondence in appendix C.
In the zero-temperature limit we consider, it is possi-
ble to have more precise information on the geometry
of the cost function defining the optimization problem in
Corollary 1. Indeed, it is composed of functions whose
convexity or concavity are staightforward to establish:
linear terms, inverses, logarithms, squares and expecta-
tion of Moreau envelopes. The convexity of the latter is
well documented in [27]. First, note that the parameters
χx, χz, χ̂1x, χ̂2x, χ̂1z, χ̂2z, qx, qz, Q̂1x, Q̂2x, Q̂1z, Q̂2z are pos-
itive so we may restrict their feasibility set to R

+, while
mx,mz , m̂1x, m̂1z, m̂2x, m̂2z can take any value in R. Then,
q∗x = 1

N �x̂�2 and m∗
x = 1

N x�
0 x̂. The Cauchy-Schwarz

inequality thus gives

q∗x � (m∗
x)

2

ρx
.

Similarly with ẑ,

q∗z � (m∗
z)2

ρz
.

We may thus restrict the feasibility sets of qx, qz,mx,mz such
that they verify these inequalities. In these regions, the function
gs is convex in χx, χz , linear in qx, qz and concave in mx,mz .
The terms involving qx, qz,mx,mz, χx, χz in gG and gF are
all linear. Moving to gg, the cost function defining it is convex
in Q̂2x, Q̂2z (negative logarithm and inverse function on R

+),
linear in χ̂2x, χ̂2z and convex in m̂2x, m̂2z . Regarding gF ,
all terms are linear except for the replica potentials. Using
Moreau’s identity, we may write

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) =MQ̂1xf∗

(
m̂1xx0 +

√
χ̂1xξ1x

)
where f∗ is the conjugate of f . Using the properties sum-
marized in [27], the cost function defining gF is convex in
m̂1x, m̂1z, Q̂1x, Q̂1z . The convexity with respect to χ1x, χ1z

is harder to characterize due to the composition of the Moreau
envelope with the square root, and should be studied locally for
more information. The extremization may then be rewritten as
a maximization over the variables in which the cost function is
concave and minimization over the variables in which the cost
function is convex. Note that this does not give information
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on the uniqueness of the solution, which would require joint
strict convexity and strict concavity. As immediate corollaries
to Theorem 1, we can determine the asymptotic errors of the
GLM and the optimal value of the loss function. To charac-
terize the asymptotic reconstruction errors and angles, we can
define the norms of the estimators and their overlaps with the
ground-truth vectors as the limits

m∗
x ≡ lim

N→∞
x̂Tx0

N
m∗
z ≡ lim

M→∞
ẑT z0

M

q∗x ≡ lim
N→∞

�x̂�22
N

q∗z ≡ lim
N→∞

�ẑ�22
M

.

We then have:
Corollary 2: Under the set of Assumptions 1, the squared

norms m∗
x,m

∗
z of estimator x̂ defined by (2) and ẑ = Fx̂,

and their overlaps q∗x, q
∗
z with ground-truth vectors are almost

surely given by:

m∗
x = E

[
x0η f

Q̂∗
1x

(Hx)
]
, q∗x = E

[
η2

f

Q̂∗
1x

(Hx)
]

m∗
z = E

[
z0η g(.,y)

Q̂∗
1z

(Hz)
]
, q∗z = E

[
η2

g(.,y)
Q̂∗

1z

(Hz)
]

with Hx and Hz defined as in Theorem 1.
With the knowledge of the asymptotic overlap m∗

x, and
squared norms q∗x, ρx, most quantities of interest can be
determined. For instance, the quadratic reconstruction error
is obtained from its definition as E = ρx + q∗x − 2m∗

x,
while the angle between the ground-truth vector and the
estimator is θ = arccos(m∗

x/(
√
ρxq∗x)). One can also evaluate

the generalization error for new random Gaussian samples,
as advocated in [3], or compute similar errors for the denoising
of z0.

IV. NUMERICAL RESULTS

Obtaining a stable implementation of the fixed point equa-
tions can be challenging. We provide simulation details in

appendix F along with a link to the script we used to produce
the figures. Theoretical predictions (full lines) are compared
with numerical experiments (points) conducted using standard
convex optimization solvers from [42]. The comparison with
finite size (N ≈ a few hundreds) numerical experiments
shows that, despite being asymptotic in nature, the predictions
are accurate even at moderate system sizes. All experimental
points were done with N = 200 and averaged one hundred
times.

A. Validity of the Replica Prediction

We start with a simple verification of the replica prediction
in Figure1, on a classification problem where data is generated
as y = sign(Fx0). We consider two types of singular value
distributions for F and three types of losses: a square loss,
a linear support vector classification (SVC) loss and a logistic
loss. Technical details and expressions are given in appendix F.
We use ridge regularization with penalty f = λ2

2 �·�22. We plot
the reconstruction angle θ as a function of the aspect ratio
of the problem α in Figure 1. A first plot is done with
a Marchenko-Pastur eigenvalue distribution for FTF corre-
sponding to F being i.i.d Gaussian. We then move out of
the Gaussian setting and change the eigenvalue distribution
for (34), which has a qualitatively similar behaviour: it has
bounded support, and includes vanishing singular values at a
given value α = 1 of the aspect ratio. We recover a result
close to the i.i.d. Gaussian one, including the error peak for
the square loss when α = 1. In both cases, the SVC and the
logistic regression perform similarly. Note that error peaks can
also be obtained for the max-margin solution as shown in [43],
using a more elaborate teacher.

B. Sparse Logistic Regression

We now use the replica prediction to study sparse logistic
regression with i.i.d Gaussian and row-orthogonal data, the

f = − extr
mx,χx,qx,mz,χz,qz

{gF + gG − gS}, (10)

gF = extr
m̂1x,χ̂1x,Q̂1x,m̂1z,χ̂1z ,Q̂1z

{
1
2
qxQ̂1x − 1

2
χxχ̂1x − m̂1xmx − αm̂1zmz +

α

2

(
qzQ̂1z − χzχ̂1z

)
+E

[
φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x)

]
+ αE

[
φz(m̂1z , Q̂1z, χ̂1z; z0, ξ1z)

]}
,

gG = extr
m̂2x,χ̂2x,Q̂2x,m̂2z,χ̂2z ,Q̂2z

{
1
2
qxQ̂2x − 1

2
χxχ̂2x −mxm̂2x − αmzm̂2z +

α

2

(
qzQ̂2z − χzχ̂2z

)

−1
2

(
E

[
log(Q̂2x + λQ̂2z)

]
− E

[
χ̂2x + λχ̂2z

Q̂2x + λQ̂2z

]
−E

[
ρx(m̂2x + λm̂2z)2

(Q̂2x + λQ̂2z)

])}
,

gS =
1
2

(
qx
χx
− m2

x

ρxχx

)
+
α

2

(
qz
χz
− m2

z

ρzχz

)
,

where φx and φz are the potential functions

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) = lim
β→∞

1
β

log
∫
e−

βQ̂1x
2 x2+β(m̂1xx0+

√
χ̂1xξ1x)x−βf(x)dx,

φz(m̂1z, Q̂1z, χ̂1z; z0, χ1z) = lim
β→∞

1
β

log
∫
e−

βQ̂1z
2 z2+β(m̂1zz0+

√
χ̂1zξ1z)z−βg(y,z)dz.
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Fig. 1. Illustration of Theorem 1 in a binary classification problem with data
generated as y = φ(Fx0) with the data matrix F being Left: a Gaussian
i.i.d. matrix and Right: a random orthogonal invariant matrix with a squared
uniform density of singular values. We plot the angle between the estimator
and the ground-truth vector θ = arccos(m∗

x/(
√

ρxq∗x)) as a function of
the aspect ratio α = M/N with three different losses: ridge regression,
a Support Vector Machine with linear kernel and a logistic regression. f is a
�2 penalty with parameter λ2 = 10−3. The theoretical prediction (full line)
is compared with numerical experiments (points) conducted using standard
convex optimization solvers from [42].

latter being ubiquitous in signal processing. Row-orthogonal
data gives rise to a discrete eigenvalue distribution for FTF
of zeroes and ones:

λFT F ∼ max(0, 1− α)δ(0) + min(1, α)δ(1)

and is often found to outperform Gaussian sensing matrices for
recovery tasks, see e.g. [21] or [30]. In what follows, we define
the sparsity ρ of the ground truth vector as the fraction of
non-zero components which are sampled from a standard
normal distribution. Labels are generated with y = sign(Fx0)
as for Figure 1.

1) Effect of Sparsity: In Figure 2, we start by plotting the
reconstruction angle against the aspect ratio of the measure-
ment matrix for different values of the sparsity of the teacher
vector, for 
2 regularization f = λ2

2 �·�22 and 
1 regularization
f = λ1�·�1, and a fixed value of regularization parameters
λ1, λ2. In the case of 
2-regularization, we observe that the
reconstruction performance remains the same whatever the
sparsity of the original teacher vector as all curves collapse
together (top and bottom left). The ridge regularization is thus
unable to differentiate sparse and non-sparse problems. For 
1,
better performance is observed when the sparsity increases.
Comparing the values for 
2 and 
1 also shows that, for a
non-sparse signal, 
2 and 
1 reconstruction perform similarly.

The largest difference is observed at ρ = 0.1, where the

1 penalized logistic regression significantly outperforms the
ridge one. We thus keep this value of the sparsity parameter
for the next figures.

2) Varying the Regularization Parameter at Constant Spar-
sity: In Figure 3, keeping the sparsity of the teacher constant
at ρ = 0.1, we look to tune the regularization strength.
An interesting effect appears in the ridge-regularized case with
row-orthogonal measurements: the curves collapse to a single
one when the aspect ratio goes below α = 1. We find that the
optimal regularization strength for the 
2 penalty lies around
λ2 = 0.01, and for the 
1-penalty around λ1 = 0.1, for both
types of matrices.

3) Comparing Case: In Figure 4, we directly compare
the reconstruction performance of logistic regression on a
sparse problem with previously tuned regularization parameter
of 
2 and 
1 penalties, with the two types of measurement
matrices. We naturally observe that the 
1 penalty leads to
better reconstruction of the sparse vector. Row-orthogonal
matrices outperform the i.i.d. Gaussian ones with both reg-
ularization, although the gap is less significant with the 
1
penalty.

4) Discussion: Several non-trivial effects are observed when
studying the interplay between eigenvalue distribution of the
design matrix, loss function, regularization and structure of
the underlying teacher vector. Looking for analytical sim-
plifications of the fixed point equations from Theorem 1 in
specific cases would be interesting to understand how the key
quantities interact and lead, for example, to the collapsing
observed in 
2-penalized problems. This further motivates the
use of these equations to determine reconstruction limits of
generalized-linear modeling. Some examples include limits of
sparse recovery for different types of measurement matrices,
or finding if optimal losses can be designed to achieve perfor-
mances close to Bayes optimal errors.

V. SKETCH OF PROOF OF THEOREM 1

Our proof follows an approach pioneered in [4] where the
LASSO risk for i.i.d. Gaussian matrices is determined. The
idea is to build a sequence of iterates that provably converges
towards the estimator x̂, while also knowing the statistical
properties of those iterates through a set of equations. We must
therefore concern ourselves with three fundamental aspects:

(i) construct a sequence of iterates with a rigorous sta-
tistical characterization that matches their equations of
Theorem 1 at the fixed point,

(ii) verify that the sequence’s fixed point corresponds to the
estimator x̂,

(iii) check that this sequence is provably convergent, other-
wise the iterates might drift off on a diverging trajectory,
and the fixed point would never be reached. We thus make
sure the statistical characterization indeed applies to the
point of interest x̂.

In short, we have a sequence of estimates (xk)k∈N taking
values in R

N , and their exact asymptotic (in N) distribution for
any k > 0. To show that these statistics extend to x̂, we need
to show that limk→∞ xk = x̂. To do so, we need the sequence



GERBELOT et al.: ASYMPTOTIC ERRORS FOR TEACHER-STUDENT CONVEX GENERALIZED LINEAR MODELS 1831

Fig. 2. Effect of the sparsity of the planted vector. We plot the angle between the estimator and the ground truth in a binary classification problem with
y = sign(Fx0) as a function of α = M/N , for different values of sparsity ρ. We use logistic regression. Figures in the top are for F Gaussian i.i.d., while
figures in the bottom are for F row-orthogonal. Left: we use a �2 penalty with parameter λ2 = 0.1, and notice that the angle is the same for any sparsity.
Right: we use a �1 penalty with parameter λ1 = 0.1. The theoretical prediction (full line) is compared with numerical experiments (points) conducted using
standard convex optimization solvers from [42].

to converge (i.e. point iii), and its fixed point to be x̂ (point ii).
As indicated in the introduction, we will use an instance of
the 2-layer MLVAMP algorithm to construct this sequence.
Note that, for the sake of brevity, we do not verify that
limiting points of 2-layer MLVAMP trajectories limk→∞ xk
converge empirically to the Gaussian distribution prescribed
by the state evolution equations. This point is treated explicitly
in [25].

The following lemma establishes the link between the state
evolution equations and our main theorem.

Lemma 1 (Fixed Point of 2-Layer MLVAMP State Evo-
lution Equations): The state evolution equations of 2-layer
MLVAMP from [36], reminded in appendix E, match the
equations of Theorem 1 at their fixed point.

Proof: See appendix E. �
This confirms that 2-layer MLVAMP is a good choice

to design the sequences that we seek. We know that the
iterates of 2-layer MLVAMP can be characterized by state
evolution equations which correspond, at their fixed point,
to the equations of Theorem 1 by virtue of Lemma 1. The
necessary assumptions for the state evolution equations to hold
are verified in appendix E-B. We must now show that the
estimator of interest defined by (1) and (2) can be reached
using 2-layer MLVAMP. We thus continue with point (ii).

Lemma 2 (Fixed Point of 2-layer MLVAMP): The fixed
point of algorithm (1) matches the optimality condition of the
unconstrained convex problem Eq.(2)

Proof: See appendix D. �
This part is a consequence of the structure of the algorithm

and properties of proximal operators. We now move to point
(iii) and seek to characterize the convergence properties of
2-layer MLVAMP. Instead of directly tackling the convergence
of 2-layer MLVAMP on any convex GLM, we take a detour
and focus on a constrained problem, where functions f and g
are augmented by a 
2 norm with ridge parameters λ2, λ̃2.
The called on intuition is that the algorithm will be more
likely to converge in a strongly convex problem. We start
by showing the convergence of MLVAMP in the constrained
strongly convex setting, for values of λ2 larger than a certain
threshold, and any strictly positive λ̃2.

Lemma 3 (Linear Convergence of 2-Layer MLVAMP for
Strongly Convex Problems): Assume f and g are twice dif-
ferentiable. Define the constrained problem

x̂(λ2, λ̃2) = argmin
x∈RN

{
g̃(Fx,y) + f̃(x)

}
(11)

where f̃(x) = f(x) + λ2
2 �x�22, g̃(x,y) = g(x,y) + λ̃2

2 �x�22.
Consider 2-layer MLVAMP applied to find (11), from which
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Fig. 3. Tuning the regularization parameter. We still plot the angle between the estimator and the ground truth in a binary classification problem with
y = sign(Fx0) as a function of α = M/N , for a fixed sparsity of planted vector ρ = 0.1, for different values of regularization parameters. Figures in the
top are for F Gaussian i.i.d., while figures in the bottom are for F row-orthogonal. Left: �2 penalty with different values of regularization parameter λ2.
Right: �1 penalty with different values of regularization parameter λ1.

we extract at each iteration the vector h(t) =
[
h(t)

2z ,h
(t)
1x

]T
.

Let h∗ be its value at the fixed point of algorithm (1).
We then have that, for any λ̃2 > 0, there exists a value
λ∗2 such that, for any λ2 > λ∗2, there exists a strictly
positive constant c verifying 0 < c < λ2, such that for
any t ∈ N:

�h(t) − h∗�22 �
(
c

λ2

)t
�h(0) − h∗�22,

The convergence of h(t) implies that estimators x̂(t)
1 and x̂(t)

2

returned by 2-layer MLVAMP also converge to the desired
x̂(λ2, λ̃2), i.e., under the conditions listed above

lim
t→∞�x̂

(t) − x̂(λ2, λ̃2)�22 = 0.

Proof: See appendix G. �
For a loss function g̃ with any non-zero strong convexity

constant, and a regularization f̃ with a sufficiently strong
convexity, 2-layer MLVAMP converges linearly towards its
unique fixed point. Note that this convergence result is inde-
pendent from the dimension. We elaborate on this lemma in
the next section. An immediate consequence is the following
lemma, which claims that Theorem 1 holds when 2-layer
MLVAMP converges. Since this result does not rely on an
analytic continuation, the assumptions on the concentration of

Fig. 4. Comparing reconstruction performance for Gaussian i.i.d. and row-
orthogonal matrices. In this figure, we compare the reconstruction angles
between the estimator and the ground-truth for binary classification obtained
with �1 and �2 penalties. We use logistic regression. The sparsity of the sparse
vector is fixed to ρ = 0.1. For both Gaussian i.i.d. and row-orthogonal data
matrices, we see that �1 penalty with λ1 = 0.1 performs better than the
�2 penalty with λ2 = 0.01. For those two penalties, row-orthogonal matrices
allow to obtain smaller reconstruction angles than Gaussian i.i.d. matrices.

PL2 observables of x̂, given by the state evolution property,
and approximation of the cost function by analytic functions
with fast decaying higher order derivatives are not required.
The result can also be stated for any PL2 observable, with
no restriction on its derivability and decay of higher order
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derivatives. We summarize the necessary assumptions in the
following list:

Assumption 2:
(a) the functions f and g are proper, closed, convex and

separable functions.
(b) the cost function g(F.,y) + f(.) is coercive, i.e.

lim�x�→∞ g(Fx,y) + f(x) = +∞.
(c) there exists a constant B1 such that 1

N �x̂�22 � B1 almost
surely as N →∞.

(d) for any x ∈ dom(f) and any x� ∈ ∂f(x), there exists a
constant C such that �x��2 � C(1 + �x�2). The same
holds for g on its domain.

(e) the empirical distributions of the underlying truth x0,
eigenvalues of FTF, and noise vector w0, respec-
tively converge empirically with second order moments,
as defined in appendix A, to independent scalar ran-
dom variables x0, w0, λ with distributions px0 , pλ, pw0 .
We assume that the distribution pλ is not all-zero and has
compact support.

(f) the design matrix F = UDV� ∈ R
M×N is rota-

tionally invariant, as defined in the introduction, where
the elements of the Haar distributed matrices U,V are
independent of the elements of the ground truth vector
x0, noise ω0 and elements of D.

(g) the solution to the set of fixed point equations (9) exists
and is unique for any convex functions f, g verifying the

(h) finally assume that M,N → ∞ with fixed ratio α =
M/N .

Lemma 4 (Asymptotic Error for the Twice Differentiable,
Sufficiently Strongly Convex Problem): Consider the strongly
convex minimization problem with twice differentiable f and
g (11). Under the set of assumptions 2, for any λ̃2 > 0,
there exists a λ∗2 such that, for any λ2 > λ∗2, Then, for any
pseudo-Lipschitz function of order 2 φ, the following holds:

lim
N→∞

1
N

N∑
i=1

φ(x0,i, x̂i)
a.s.= E[φ(x0, Prox

f/Q̂
(t)
1x

(Hx))]

lim
M→∞

1
M

M∑
i=1

φ(z0,i, ẑi)
a.s.= E[φ(z0, Prox

f/Q̂
(t)
1z

(Hz))]

where the scalars Q̂1x, Q̂1z and the random variables Hx, Hz

are defined as in Theorem 1.
Proof: Using the result from Lemma 3, we have

limt→∞ limN→∞ 1
N �x(t) − x̂(λ2, λ̃2)�22 = 0. As proven

in [25], the state evolution parameters will converge to
those of the fixed point of the state evolution equations
along a converging trajectory of 2-layer MLVAMP. Using
the assumption on the bounded averaged norm of x̂, the
state evolution equations to show that the averaged norm of
the iterates are bounded along a converging trajectory, and
the state evolution equations to obtain the exact asymptotics
of each iterate along the converging trajectory, an identical
argument to that of the proof of Theorem 1.5 from [26] gives
Lemma 4. �

We are now left to prove Theorem 1, for any range of para-
meters (λ2, λ̃2). λ̃2 can already be chosen arbitrarily small.
This means we need to relax the threshold value on λ2 for the

validity of the scalar quantities involved in Theorem 1. To do
so, we start by introducing another modification of the original
problem, where the objective functions are assumed to be real
analytic. Lemma 4 naturally holds for real analytic convex
functions. Proving Theorem 1 on the real analytic problem
then boils down to performing an analytic continuation on the
λ2 parameter, and is detailed in Appendix H. We thus have
the following intermediate result:

Lemma 5 (Asymptotics of the Real Analytic Problem):
Consider assumption 1 is verified. Suppose additionally that
f and g are real analytic. Then Theorem 1 holds for any
λ̃2 > 0 and any λ2 > 0.

Theorem 1 can then be proven from Lemma 5 by showing
that the solutions of the original problem and of its real
analytic approximation are arbitrarily close, and by carefully
studying the limits λ̃2 → 0 and λ2 → 0. This is deferred to
Appendix H. Note that the proof of the analytic continuation
presented here makes the one from [30], which was incom-
plete, rigorous.

The remaining technical part is the proof of the convergence
Lemma 3. For this purpose, we use a dynamical system refor-
mulation of 2-layer MLVAMP and a result from control theory,
adapted to machine learning in [44] and more specifically to
ADMM in [45].

VI. CONVERGENCE ANALYSIS OF 2-LAYER MLVAMP

The key idea of the approach pioneered in [44] is to
recast any non-linear dynamical system as a linear one,
where convergence will be naturally characterized by a
matrix norm. For a given non-linearity Õ and iterate v,
we define the variable u = Õ(v) and rewrite the initial
algorithm in terms of this trivial transform. Any property
of Õ is then summarized in a constraint matrix linking v
and u. For example, if Õ has Lipschitz constant ω, then for
all t:

�u(t+1) − u(t)�22 � ω2�v(t+1) − v(t)�22,

which can be rewritten in matrix form:

UT

[
ω2Idv 0

0 −Idu

]
U � 0

where U =
[
v(t+1) − v(t)

u(t+1) − u(t)

]

where Idv , Idu are the identity matrices with dimensions of
v,u, i.e. M or N in our case. Any co-coercivity property (ver-
ified by proximal operators) can be rewritten in matrix form
but yields non block diagonal constraint matrices. We will thus
directly use the Lipschitz constants for our proof, as they lead
to simpler derivations and suffice to prove the required result.
The main theorem from [44], adapted to ADMM in [45],
then establishes a sufficient condition for convergence with
a linear matrix inequality, involving the matrices defining
the linear recast of the algorithm and the constraints. Let
us now detail how this approach can be used on 2-layer
MLVAMP.
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A. 2-Layer MLVAMP as a Dynamical System: Sketch of
Proof of Lemma 3

We start by rewriting 2-layer MLVAMP in a more compact
form:

Initialize h(0)
1x ,h

(0)
2z

h(t+1)
1x = W(t)

1 Õ(t)
1 h(t)

1x

+ W(t)
2 Õ(t)

2 (W(t)
3 h(t)

2z + W(t)
4 Õ(t)

1 (h(t)
1x ))

h(t+1)
2z = Õ(t)

2 (W(t)
3 h(t)

2z + W(t)
4 Õ(t)

1 (h(t)
1x )) (12)

where

W1
(t) =

Q̂
(t)
2x

Q̂
(t+1)
1x

(
1

χ
(t+1)
2x

(Q̂(t+1)
2z FTF + Q̂

(t)
2x Id)−1 − Id

)

W2
(t) =

Q̂
(t+1)
2z

χ
(t+1)
2x Q̂

(t+1)
1x

(Q̂(t+1)
2z FTF + Q̂

(t)
2x Id)−1FT

W3
(t) =

Q̂
(t)
2z

Q̂
(t)
1z

(
1

χ
(t)
2z

F(Q̂(t)
2zF

TF + Q̂
(t)
2x Id)−1FT − Id

)

W4
(t) =

Q̂
(t)
2x

Q̂
(t)
1z χ

(t)
2z

F(Q̂(t)
2zF

TF + Q̂
(t)
2x Id)−1

Õ(t)
1 =

Q̂
(t)
1x

Q̂
(t)
2x

(
1

χ
(t)
1x Q̂

(t)
1x

Prox
f/Q̂

(t)
1x

(·)− Id

)

Õ(t)
2 =

Q̂
(t)
1z

Q̂
(t+1)
2z

(
1

χ
(t)
1z Q̂

(t)
1z

Prox
g(.,y)/Q̂

(t)
1z

(·)− Id

)
. (13)

For the linear recast, we then define the variables:

u(t)
1 = Õ(t)

1 (h(t)
1x ), v(t) = W(t)

3 h(t)
2z + W(t)

4 u(t)
1 ,

u(t)
2 = Õ(t)

2 (v(t)),

s.t. h(t+1)
2z = u(t)

2 ,h(t+1)
1x = W(t)

1 u(t)
1 + W(t)

2 u(t)
2 .

where u1,h1x ∈ R
N ; and v,u2,h2z ∈ R

M . We then define
as new variables the vectors

h(t) =

[
h(t)

2z

h(t)
1x

]
, u(t) =

[
u(t)

2

u(t)
1

]
,

w(t)
1 =

[
h(t)

1x

u(t)
1

]
, w(t)

2 =
[
v(t)

u(t)
2

]
.

This leads to the following linear dynamical system recast
of (12):

h(t+1) = A(t)h(t) + B(t)u(t)

w(t)
1 = C(t)

1 h(t) + D(t)
1 u(t)

w(t)
2 = C(t)

2 h(t) + D(t)
2 u(t) (14)

where

A(t) = 0(M+N)×(M+N) B(t) =
[

IM 0M×N
W(t)

2 W(t)
1

]

C(t)
1 =

[
0N×M IN
0N×M 0N×N

]
D(t)

1 =
[
0N×M 0N×N
0N×M IN

]

C(t)
2 =

[
W(t)

3 0M×N
0M×M 0M×N

]
D(t)

2 =
[
0M×M W(t)

4

IM 0M×N

]
.

O denotes a matrix with only zeros. The next step is to
impose the properties of the non-linearities Õ(t)

1 , Õ(t)
2 through

constraint matrices. The Lipschitz constants ω
(t)
1 , ω

(t)
2 of

Õ(t)
1 , Õ(t)

2 can be determined using properties of proximal
operators [46] and are directly linked to the strong convexity
and smoothness of the cost function and regularization. The
relevant properties of proximal operators are reminded in
appendix B, while the subsequent derivation of the Lipschitz
constants is detailed in appendix G and yields:

ω
(t)
1 =

Q̂
(t)
1x

Q̂
(t)
2x

√√√√1 +
(Q̂(t)

2x )2 − (Q̂(t)
1x )2

(Q̂(t)
1x + λ2)2

ω
(t)
2 =

Q̂
(t)
1z

Q̂
(t)
2z

√√√√1 +
(Q̂(t)

2z )2 − (Q̂(t)
1z )2

(Q̂(t)
1z + λ̃2)2

. (15)

We thus define the constraints matrices

M(t)
1 =

[
(ω(t)

1 )2 0
0 −1

]
⊗ IN , M(t)

2 =
[
(ω(t)

2 )2 0
0 −1

]
⊗ IM

where ⊗ denotes the Kronecker product. We then use a time
dependent form of Theorem 4 from [44] in the appropri-
ate form for 2-layer MLVAMP, as was done in [45] for
ADMM.

Proposition 1 (Time Dependent Version of Theorem
4 from [44]): Consider, at each time step t ∈ N, the following
linear matrix inequality with γ(t) ∈ [0, 1]:

0 �
[
(A(t))TPA(t) − (γ(t))2P (A(t))TPB(t)

(B(t))TPA(t) (B(t))TPB(t)

]
(16)

+

[
C(t)

1 D(t)
1

C(t)
2 D(t)

2

]T [
β

(t)
1 M(t)

1 02N×2M

02M×2N β
(t)
2 M(t)

2

][
C(t)

1 D(t)
1

C(t)
2 D(t)

2

]

If, at each time step, (16) is feasible for some P � 0 and
β

(t)
1 , β

(t)
2 � 0, then for any initialization h(0), h(t) converges

to h∗, the fixed point of (14):

∀t, �h(t) − h∗� �
√
κ(P)(γ∗)t�h(0) − h∗�

where κ(P) is the condition number of P and we defined
γ∗ = supt γ(t).

Proof: see appendix G-A �
We show in appendix G how the additional ridge penalties

from the constrained problem (11) parametrized by λ2, λ̃2 can
be used to make (16) feasible and prove Lemma 3. The core
idea is to leverage on the Lipschitz constants (15), the operator
norms of the matrices defined in (13) and the following upper
and lower bounds on the Q̂ parameters defined by the fixed
point of state evolution equations:

λmin(Hf ) � Q̂
(t)
2x � λmax(Hf )

λmin(Hg) � Q̂
(t+1)
2z � λmax(Hg)

Q̂
(t)
2z λmin(FTF) � Q̂

(t+1)
1x � Q̂

(t)
2z λmax(F

TF)

Q̂
(t)
2x

λmax(FFT )
� Q̂

(t)
1z � Q̂

(t)
2x

λmin(FFT )
,

where Hf ,Hg are the Hessian of the loss and regularization
functions taken at the fixed point. These bounds are obtained
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from the definitions of χx, χz in the state evolution equations
(or equivalently in Theorem 1), and the fact that the deriv-
ative of a proximal operator reads, for a twice differentiable
function:

Dηγf (x) = (Id + γHf (ηγf (x)))−1.

Detail of this derivation can also be found in appendices B
and G. For the constrained problem (11), the maximum and
minimum eigenvalues of the Hessians are directly augmented
by λ̃2, λ2, which allows us to control the scaling of the Q̂
parameters. The rest of the convergence proof is then based
on successive application of Schur’s lemma [47] on the linear
matrix inequality (16); and translating the resulting condi-
tions on inequalities which can be verified by choosing the
appropriate λ̃2, λ2, β

(t)
1 , β

(t)
2 . Convergence of gradient-based

descent methods for sufficiently strongly-convex objectives is
a coherent result from an optimization point of view. This
is corroborated by the symbolic convergence rates derived for
ADMM in [45], where a sufficiently strongly convex objective
is also considered.

B. Numerical Experiments for Lemma 3

Here we provide numerical evidence for the linear conver-
gence condition proved in Lemma 3. We consider a logis-
tic regression penalized with the 
1 norm (λ1 = 0.1) with
an ill-conditioned design matrix, with i.i.d. standard normal
elements. This corresponds to the setting of Figure 3. Since
the logistic loss is strongly convex on any compact space,
we do not need to add λ̃2. We follow the convergence of
2-layer MLVAMP for this problem for increasing values of
an additional ridge penalty λ2 = 0, 0.01, 0.05, 0.1 and plot
the average distance between successive iterates 1

N �h(t+1)
1x −

h(t+1)
1x �22 and the evolution of the reconstruction angle θ

as a function of the number of iterations. We perform two
experiments with aspect ratios α = 1 and α = 0.2. For
α = 1, 2-layer MLVAMP converges without any additional
ridge penalty, and convergence is accelerated by larger values
of λ2. As a sanity check, note that the reconstruction angle
of the estimator returned by the algorithm for λ2 = 0 (grey
line on the lower left plot) converges to the value predicted
at Figure 3 for α = 1, λ1 = 0.1 and a Gaussian matrix. For
α = 0.2n the design matrix is ill-conditioned and we see that
2-layer MLVAMP diverges. Adding the ridge penalty leads
to converging trajectories for a sufficiently large value of λ2,
as shown on the upper right block. Larger values of λ2 again
lead to faster convergence.

APPENDIX A
CONVERGENCE OF VECTOR SEQUENCES

This section is a brief summary of the framework originally
introduced in [26] and used in [36] and [34]. We review
the key definitions and verify that they apply in our setting.
We remind the full set of state evolution equations from [36]
at (27), when applied to learning a GLM, in appendix E,
along with the required assumptions for them to hold in
appendix E-B.

The main building blocks are the notions of vector sequence
and pseudo-Lipschitz function, which allow to define the
empirical convergence with p-th order moment. Consider a
vector of the form

x(N) = (x1(N), . . . ,xN (N))

where each sub-vector xn(N) ∈ R
r for any given r ∈ N

∗. For
r=1, which we use in Theorem 1, x(N) is denoted a vector
sequence.

Given p � 1, a function f : R
r → R

s is said to be pseudo-
Lipschitz continuous of order p if there exists a constant C >
0 such that for all x1,x2 ∈ R

s:

�f(x1)− f(x2)� � C�x1 − x2�
[
1 + �x1�p−1 + �x2�p−1

]
.

Then, a given vector sequence x(N) converges empirically
with p-th order moment if there exists a random variable X ∈
R
r such that:
• E�X�pp <∞; and
• for any scalar-valued pseudo-Lipschitz continuous f :

R
r → R of order p,

lim
N→∞

1
N

N∑
n=1

f(xn(N)) = E[f(X)].

Note that defining an empirically converging singular value
distribution implicitly defines a sequence of matrices F(N)
using the definition of rotational invariance from the introduc-
tion. This naturally brings us back to the original definitions
from [26]. An important point is that the almost sure con-
vergence of the second condition holds for random vector
sequences, such as the ones we consider in the introduc-
tion. Note that the noise vector ω0 must also satisfy these
conditions, and naturally does when it is an i.i.d. Gaussian
one. We also remind the definition of uniform Lipschitz
continuity.

For a given mapping φ(x, A) defined on x ∈ X and
A ∈ R, we say it is uniformly Lipschitz continuous in x at
A = Ā if there exists constants L1 and L2 � 0 and an open
neighborhood U of Ā such that:

�φ(x1, A)− φ(x2, A)� � L1�x1 − x2�
for all x1,x2 ∈ X and A ∈ U ; and

�φ(x, A1)− φ(x, A2)� � L2(1 + �x�)|A1 −A2|
for all x ∈ X and A1, A2 ∈ U .

We discuss the required assumptions for the state evolution
equations to hold in detail, and why they are verified in our
setting, in appendix E-B.

APPENDIX B
CONVEX ANALYSIS AND PROPERTIES

OF PROXIMAL OPERATORS

We start this section with a few useful definitions from
convex analysis, which can all be found in textbooks such
as [40]. We then remind important properties of proximal
operators, which we use in appendix G to derive upper bounds
on the Lipschitz constants of the non-linear operators Õ1, Õ2.
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Fig. 5. Convergence of 2-layer MLVAMP on a logistic regression with �1 penalty with λ1 = 0.1, a Gaussian design matrix and two values of the aspect ratio
α = 1 (left) and α = 0.2 (right). For α = 1, the algorithm converges regardless of the additional ridge penalty and we recover the performance predicted
by Theorem 1 for the plain �1 regularization. For α = 0.2, the plain �1 leads to an unstable iteration and a sufficiently large additional ridge indeed leads to
convergence. In both cases, the larger the additional ridge, the faster the algorithm converges.

In what follows, we denote X the Hilbert space with scalar
inner product serving as input and output space, here R

N or
R
M . For simplicity, we will write all operators as going from
X to X .

Definition 1 (Strong Convexity): A proper closed function
is σ-strongly convex with σ > 0 if f − σ

2 �.�2 is convex. If f
is differentiable, the definition is equivalent to

f(x) � f(y) + �∇f(y), x− y	+ σ

2
�x− y�2

for all x, y ∈ X .
Definition 2 (Smoothness for Convex Functions): A proper

closed function f is β-smooth with β > 0 if β
2 �.�2 − f is

convex. If f is differentiable, the definition is equivalent to

f(x) � f(y) + �∇f(y), x− y	+ β

2
�x− y�2

for all x, y ∈ X .
An immediate consequence of those definitions is the

following second order condition: for twice differentiable
functions, f is σ-strongly convex and β-smooth if and only
if:

σId � Hf � βId.

Definition 3 (Co-coercivity): Let T : X → X and β ∈ R
∗
+.

Then T is β co-coercive if βT is firmly-nonexpansive, i.e.

�x− y, T (x)− T (y)	 � β�T (x)− T (y)�22
for all x,y ∈ X .

Proximal operators are 1 co-coercive or equivalently firmly-
nonexpansive.

Corollary 3 (Remark 4.24 [40]): A mapping T : X → X
is β-cocoercive if and only if βT is half-averaged. This means
that T can be expressed as:

T =
1
2β

(Id + S)

where S is a nonexpansive operator.
Proposition 2 (Resolvent of the Sub-Differential [40]): The

proximal mapping of a convex function f is the resolvent of
the sub-differential ∂f of f :

Proxγf = (Id + γ∂f)−1.

The following proposition is due to [46], and is useful to
determine upper bounds on the Lipschitz constant of update
functions involving proximal operators.

Proposition 3 (Proposition 2 from [46]): Assume that f
is σ-strongly convex and β-smooth and that γ ∈]0,∞[. Then
Proxγf − 1

1+γβ Id is 1
1

1+γβ − 1
1+γσ

-cocoercive if β > σ and 0-

Lipschitz if β = σ. If f has no smoothness constant, the same
holds by taking β = +∞.

We will use these definitions and properties to derive the
Lipschitz constants of Õ1, Õ2 in appendix G.

Lemma 6 (Jacobian of the Proximal): Using proposition 2,
the proximal operator can be written, for any parameter
γ ∈ R

+ and x in the input space X :

Proxγf (x) = (Id + γ∂f)−1 (x).

For any convex and differentiable function f , we have:

Proxγf (x) + γ∇f(Proxγf(x)) = x.
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For a twice differentiable f , applying the chain rule then
yields:

DProxγf (x) + γHf (Proxγf(x))DProxγf (x) = Id

where D is the Jacobian matrix and H the Hessian.
Since f is a convex function, its Hessian is positive semi-
definite, and knowing that γ is strictly positive, the matrix
(Id + γHf(Proxγf )) is invertible. We thus have:

DProxγf (x) = (Id + γHf(Proxγf(x)))−1.

Lemma 7 (Proximal of Ridge Regularized Functions): Since
we consider only separable functions, we can work with scalar
version of the proximal operators. The scalar proximal of
a given function with an added ridge regularization can be
written:

Prox
γ(f+

λ2
2 �.�2

2)
(x) = (Id + γ(∂f + λ2))−1(x)

= ((1 + γλ2)Id+ γf �)−1(x)

where the second equality is true only for differentiable f . If
f is real analytic, we can apply the analytic inverse function
theorem [48] and verify analyticity in λ2 of the proximal.

Finally, we remind a result from [40] describing the
limiting behavior of regularized estimators for vanishing
regularization.

Proposition 4 (Theorem 26.20 from [40]): Let f and h be
proper, lower semi-continuous, convex functions defined on
X . Suppose that arg min f ∩ dom(h) �= ∅ and that h is coer-
cive and strictly convex. Then h admits a unique minimizer
x0 over argmin f and, for every � ∈]0, 1[, the regularized
problem

arg min
x∈X

f(x) + �h(x)

admits a unique solution x�. If we assume further that h is
uniformly convex on any closed ball of the input space, then
lim�→0 x� = x0.

APPENDIX C
FROM REPLICA POTENTIALS TO MOREAU ENVELOPES

Here we show how the potentials defined for the replica free
energy of corollary 1 can be mapped to Moreau envelopes
in the zero temperature limit, i.e. β → ∞ where β is
the inverse temperature. We consider the scalar case since
the replica expressions are scalar. All functions are separa-
ble here, so any needed generalization to the multidimen-
sional case is immediate. We start by reminding the defin-
ition of the Moreau envelope [40], [41] Mγf of a proper,
closed and convex function f for a given γ ∈ R

∗
+ and

any z ∈ R:

Mγf(z) = inf
x∈R

{
f(x) + (1/2γ)�x− z�22

}
.

The Moreau envelope can be interpreted as a smoothed version
of a given objective function with the same minimizer. For 
1
minimization for example, it allows to work with a differ-
entiable objective. By definition of the proximal operator we

have the following identity:

Proxγf(z) = argmin
x∈R

{
f(x) + (1/2γ)�x− z�22

}
,

Mγf(z) = f(Proxγf (z)) +
1
2
�Proxγf (z)− z�22.

We can now match the replica potentials with the Moreau
envelope. We start from the definition of said potentials,
to which we apply Laplace’s approximation:

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x)

= lim
β→∞

1
β

log
∫
e−

βQ̂1x
2 x2+β(m̂1xx0+

√
χ̂1xξ1x)x−βf(x)dx

= − Q̂1x

2
(x∗)2 + (m̂1xx0 +

√
χ̂1xξ1x)x∗ − f(x∗)

where

x∗ = arg min
x

{
− Q̂1x

2
x2 + (m̂1xx0 +

√
χ̂1xξ1x)x− f(x)

}
.

This is an unconstraint convex optimization problem, thus
its optimality condition is enough to characterize its set of
minimizers:

− Q̂1xx
∗ + (m̂1xx0 +

√
χ̂1xξ1x)− ∂f(x∗) = 0

⇐⇒ x∗ = (Id+
1
Q̂1x

∂f)−1

(
m̂1xx0 +

√
χ̂1xξ1x

Q̂1x

)

⇐⇒ x∗ = Prox f

Q̂1x

(
m̂1xx0 +

√
χ̂1xξ1x

Q̂1x

)
.

Replacing this in the replica potential and completing the
square, we get:

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x)

= −f(Proxγf(X))− Q̂1x

2
�X − Proxγf(X)�22 +

X2

2
Q̂1x

= Q̂1x
X2

2
−M 1

Q̂1x
f (X)

where we used the shorthand X = m̂1xx0+
√
χ̂1xξ1x

Q̂1x
.

APPENDIX D
FIXED POINT OF MULTILAYER VECTOR

APPROXIMATE MESSAGE PASSING

Here we show that the fixed point of 2-layer MLVAMP
coincides with the optimality condition of the convex prob-
lem 2, proving Lemma 2. Writing the fixed point of the scalar
parameters of algorithm (1), we get the following prescriptions
on the scalar quantities:

1
χx
≡ 1
χ1x

=
1
χ2x

= Q̂1x + Q̂2x

1
χz
≡ 1
χ1z

=
1
χ2z

= Q̂1z + Q̂2z (17)

Q̂1xχ1x + Q̂2xχ2x = 1

Q̂1zχ1z + Q̂2zχ2z = 1, (18)

and the following ones on the estimates, as proved in [39]
section III:

x̂1 = x̂2 ẑ1 = ẑ2

ẑ1 = Fx̂1 ẑ2 = Fx̂2.
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We would like the fixed point of MLVAMP to satisfy the
following first-order optimality condition

∂f(x̂) + FT ∂g(Fx̂) = 0, (19)

which characterizes the unique minimizer of the unconstraint
convex problem (2). Replacing h1x’s expression inside h2x

reads

h2x =
(

x̂1

χx
− Q̂1xh1x

)
/Q̂2x

=
(

x̂1

χx
−
(

x̂2

χx
− Q̂2xh2x

))
/Q̂2x,

and using (17) we get x̂1 = x̂2, and a similar reasoning
gives ẑ2 = ẑ1. From (6) and (7), we clearly find ẑ2 = Fx̂2.
Inverting the proximal operators in (4) and (5) yields

x̂1 +
1
Q̂1x

∂g(x̂1) = h1x

ẑ1 +
1
Q̂1z

∂g(ẑ1) = h1z . (20)

Starting from the MLVAMP equation on h1x, we write

h1x =
(

x̂2

χx
− Q̂2xh2x

)
/Q̂1x

=

(
x̂2
χx
− (Q̂2zFTF + Q̂2xId)x̂2 + Q̂2zFTh2z

)
Q̂1x

= −

(
Q̂2zFTF + Q̂2x

(
1− 1

χxQ̂2x

)
Id

)
x̂2

Q̂2x

+ FT
(
Q̂1z

(
1

χzQ̂1z

− 1
)

ẑ1 − ∂g(ẑ1)
)

which is equal to the left-hand term in (20). Using this
equality, as well as ẑ1 = Fx̂2 and relations (17) and (18)
yields

∂f(x̂2) + FT ∂g(Fx̂2) = 0.

Hence, the fixed point of MLVAMP satisfies the optimal-
ity condition (19) and is indeed the desired estimator:
x̂1 = x̂2 = x̂.

APPENDIX E
STATE EVOLUTION EQUATIONS

This appendix is intended mainly for completeness, to show
that the fixed point equations from Theorem 1, stemming from
the heuristic state evolution written in [35] are indeed made
rigorous by the results presented in [36].

A. Heuristic State Evolution Equations

The state evolution equations track the evolution of
MLVAMP (1) and provide statistical properties of its iterates.
They are derived in [35] taking the heuristic assumption

that h1x,h1z,h2x,h2z behave as Gaussian estimates, which
comes from the physics cavity approach:

Q̂
(t)
1xh

(t)
1x − m̂(t)

1xx0
PL2=

√
χ̂

(t)
1xξ

(t)
1x

VT (Q̂(t)
2xh

(t)
2x − m̂(t)

2xx0) PL2=
√
χ̂

(t)
2xξ

(t)
2x

UT (Q̂(t)
1z h

(t)
1z − m̂(t)

1z z0) PL2=
√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
2z h

(t)
2z − m̂(t)

2z z0
PL2=

√
χ̂

(t)
2z ξ

(t)
2z (21)

where
PL2= denotes PL2 convergence. U and V come from

the singular value decomposition F = UDVT and are Haar-
sampled; ξ(t)1x , ξ

(t)
2x , ξ

(t)
1z , ξ

(t)
2z are normal Gaussian vectors, inde-

pendent from x0, z0,VTx0 and UT z0. Parameters Q̂(t)
1x , Q̂

(t)
1z ,

Q̂
(t)
2x , Q̂

(t)
2z are defined through MLVAMP’s iterations (1); while

parameters m̂(t)
1x , m̂

(t)
1z , m̂

(t)
2x , m̂

(t)
2z and χ̂

(t)
1x , χ̂

(t)
1z , χ̂

(t)
2x , χ̂

(t)
2z are

prescribed through SE equations. Other useful variables are
the overlaps and squared norms of estimators, for k ∈ {1, 2}:

m
(t)
kx =

x�
0 x̂(t)

k

N
q
(t)
kx =

�x̂(t)
k �22
N

m
(t)
kz =

z�0 ẑ(t)
k

M
q
(t)
kz =

�ẑ(t)
k �22
M

.

Starting from assumptions (21), and following the derivation
of [35] adapted to the iteration order from (1), the heuristic
state evolution equations read:

Initialize Q̂
(0)
1x , Q̂

(0)
2z , m̂

(0)
1x , m̂

(0)
2z , χ̂

(0)
1x , χ̂

(0)
2z > 0.

m
(t)
1x = E

⎡
⎣x0ηf/Q̂(t)

1x

⎛
⎝m̂

(t)
1xx0 +

√
χ̂

(t)
1xξ

(t)
1x

Q̂
(t)
1x

⎞
⎠
⎤
⎦ (22a)

χ
(t)
1x =

1

Q̂
(t)
1x

E

⎡
⎣η�

f/Q̂
(t)
1x

⎛
⎝m̂

(t)
1xx0 +

√
χ̂

(t)
1xξ

(t)
1x

Q̂
(t)
1x

⎞
⎠
⎤
⎦ (22b)

q
(t)
1x = E

⎡
⎣η2

f/Q̂
(t)
1x

⎛
⎝m̂

(t)
1xx0 +

√
χ̂

(t)
1x ξ

(t)
1x

Q̂
(t)
1x

⎞
⎠
⎤
⎦ (22c)

Q̂
(t)
2x =

1

χ
(t)
1x

− Q̂(t)
1x (22d)

m̂
(t)
2x =

m
(t)
1x

ρxχ
(t)
1x

− m̂(t)
1x (22e)

χ̂
(t)
2x =

q
(t)
1x

(χ(t)
1x )2

− (m(t)
1x )2

ρx(χ
(t)
1x )2

− χ̂(t)
1x (22f)

m
(t)
2z =

ρx
α

E

[
λ(m̂(t)

2x + λm̂
(t)
2z )

Q̂
(t)
2x + λQ̂

(t)
2z

]
(22g)

χ
(t)
2z =

1
α

E

[
λ

Q̂
(t)
2x + λQ̂

(t)
2z

]
(22h)

q
(t)
2z =

1
α

E

[
λ(χ̂(t)

2x + λχ̂
(t)
2z )

(Q̂(t)
2x + λQ̂

(t)
2z )2

]

+
ρx
α

E

[
λ(m̂(t)

2x + λm̂
(t)
2z )2

(Q̂(t)
2x + λQ̂

(t)
2z )2

]
(22i)
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Q̂
(t)
1z =

1

χ
(t)
2z

− Q̂(t)
2z (22j)

m̂
(t)
1z =

m
(t)
2z

ρzχ
(t)
2z

− m̂(t)
2z (22k)

χ̂
(t)
1z =

q
(t)
2z

(χ(t)
2z )2

− (m(t)
2z )2

ρz(χ
(t)
2z )2

− χ̂(t)
2z (22l)

m
(t)
1z =E

⎡
⎣z0ηg(y,.)/Q̂(t)

1z

⎛
⎝m̂(t)

1z z0 +
√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
1z

⎞
⎠
⎤
⎦ (22m)

χ
(t)
1z =

1

Q̂
(t)
1z

E

⎡
⎣η�

g(y,.)/Q̂
(t)
1z

⎛
⎝m̂(t)

1z z0 +
√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
1z

⎞
⎠
⎤
⎦ (22n)

q
(t)
1z = E

⎡
⎣η2

g(y,.)/Q̂
(t)
1z

⎛
⎝m̂

(t)
1z z0 +

√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
1z

⎞
⎠
⎤
⎦ (22o)

Q̂
(t+1)
2z =

1

χ
(t)
1z

− Q̂(t)
1z (22p)

m̂
(t+1)
2z =

m
(t)
1z

ρzχ
(t)
1z

− m̂(t)
1z (22q)

χ̂
(t+1)
2z =

q
(t)
1z

(χ(t)
1z )2

− (m(t)
1z )2

ρz(χ
(t)
1z )2

− χ̂(t)
1z (22r)

m
(t+1)
2x = ρxE

[
m̂

(t)
2x + λm̂

(t+1)
2z

Q̂
(t)
2x + λQ̂

(t+1)
2z

]
(22s)

χ
(t+1)
2x = E

[
1

Q̂
(t)
2x + λQ̂

(t+1)
2z

]
(22t)

q
(t+1)
2x = E

[
χ̂

(t)
2x + λχ̂

(t+1)
2z

(Q̂(t)
2x + λQ̂

(t+1)
2z )2

]

+ ρxE

[
(m̂(t+1)

2x + λm̂
(t+1)
2z )2

(Q̂(t)
2x + λQ̂

(t+1)
2z )2

]
(22u)

Q̂
(t+1)
1x =

1

χ
(t+1)
2x

− Q̂(t)
2x (22v)

m̂
(t+1)
1x =

m
(t+1)
2x

ρxχ
(t+1)
2x

− m̂(t)
2x (22w)

χ̂
(t+1)
1x =

q
(t+1)
2x

(χ(t+1)
2x )2

− (m(t+1)
2x )2

ρx(χ
(t+1)
2x )2

− χ̂(t)
2x . (22x)

We are interested in the fixed point of these state evolution
equations, where χ

(t)
1x = χ

(t)
2x = χx, q(t)1x = q

(t)
2x = qx,

m
(t)
1x = m

(t)
2x = mx, χ(t)

1z = χ
(t)
2z = χz , q(t)1z = q

(t)
2z = qz , and

m
(t)
1z = m

(t)
2z = mz are achieved. From there we easily recover

eq. (9). However, these equations are not rigorous since the
starting assumptions are not proven. Therefore, we will turn
to a rigorous formalism to consolidate those results.

B. Necessary Assumptions for the Rigorous State Evolution
Equations

Here we remind the main assumptions needed for the
rigorous state evolution equations to hold, as they are listed for
Theorem 1 of [36], and show they are verified in our setting.

Assumption 3:
• the empirical distributions of the underlying truth x0,

eigenvalues of FTF, and noise vector w0, respectively
converge with second order moments, as defined in
appendix A, to independent scalar random variables
x0, w0, λ with distributions px0 , pλ, pw0 . We assume
that the distribution pλ is not all-zero and has compact
support.

• the design matrix F = UDV� ∈ R
M×N is rota-

tionally invariant, as defined in the introduction, where
the elements of the Haar distributed matrices U,V are
independent of the random variables x0, w0, λ

• assume that M,N → ∞ with fixed ratio α = M/N
independent of M,N .

• the activation function φ(.,w0) from Eq.(1) is
pseudo-Lipschitz of order 2.

• the constants
�
∂
h
(t)
1x

g1x(h
(t)
1x , Q̂

(t)
1x )

�
,
�
∂
h
(t)
1z

g1z(h
(t)
1z , Q̂

(t)
1z )

�
�
∂
h
(t)
2x

g2x(h
(t)
2x ,h

(t+1)
2z , Q̂

(t)
2x , Q̂

(t+1)
2z )

�
�
∂
h
(t)
2x

g2z(h
(t)
2x ,h

(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z )

�
from algorithm (1) are all

in [0, 1].
• the component estimation functions g1x(h

(t)
1x , Q̂

(t)
1x ),

g1z(h
(t)
1z , Q̂

(t)
1z ), g2x(h

(t)
2x ,h

(t+1)
2z , Q̂

(t)
2x , Q̂

(t+1)
2z ),

g2z(h
(t)
2x ,h

(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z ) from algorithm (1) are uni-

formly Lipschitz continuous, at all time steps t, respec-
tively in h(t)

1x at Q̂(t)
1x , in h(t)

1z at Q̂(t)
1z , h(t)

2x at Q̂(t)
2x and in

h(t)
2z at Q̂(t)

2z .
The first four points are included in the set of assumptions 1

and are therefore verified. We need to check the last two points,
starting with the function g1x(h

(t)
1x , Q̂

(t)
1x) = Prox

f/Q̂
(t)
1x

(h(t)
1x ).

Since proximal operators are firmly nonexpansive, they are
1-Lipschitz and we thus have, using the separability of the
function f :

〈
∂
h

(t)
1x
g1x(h

(t)
1x , Q̂

(t)
1x)

〉
=

1
N

N∑
i=1

Prox�
fi/Q̂

(t)
1x

(h(t)
1x,i) ∈ [0, 1]

where each fi : R → R is the same function applied to each
coordinates. Now consider the restriction of g1x(h

(t)
1x , Q̂

(t)
1x) to

its second argument. Its gradient w.r.t. Q̂(t)
1x at a given point

h(t)
1x verifies, assuming the function f is differentiable:

�∇
Q̂

(t)
1x

Prox
f/Q̂

(t)
1x

(h(t)
1x )�2

= �(Id+
1

Q̂
(t)
1x

Hf (Prox
f/Q̂

(t)
1x

(h(t)
1x )))−1∇f(h(t)

1x)�2

� �∇f(h(t)
1x )�2

� C(1 + �h(t)
1x�2)

where the last line is obtained using the scaling conditions
on the subdifferential of f from assumption 1. Then, for any
Q̂

(t)
1x , Q̂

(t′)
1x ,

�Prox
f/Q̂

(t)
1x
− Prox

f/Q̂
(t′)
1x

�2 � C(1 + �h(t)
1x�2)|Q̂(t)

1x − Q̂(t′)
1x |

and g1x(h
(t)
1x , Q̂

(t)
1x ) is uniformly Lipschitz in h(t)

1x at
Q̂

(t)
1x , at any time index t. The argument is identi-

cal for g1z(h
(t)
1z , Q̂

(t)
1z ) = Prox

f/Q̂
(t)
1z

(h(t)
1z ). The functions
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g2x(h
(t)
2x ,h

(t+1)
2z , Q̂

(t)
2x , Q̂

(t+1)
2z ), g2z(h

(t)
2x ,h

(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z ) have

explicit expressions and it is straightforward to check the last
two points using linear algebra and the assumptions on the
spectrum of F�F.

C. Rigorous State Evolution Formalism

We now look into the state evolution equations derived for
MLVAMP in [14]. Those equations are proven to be exact in
the asymptotic limit, and follow the same algorithm as (1).
In particular, they provide statistical properties of vectors
h1x,h2x,h1z,h2z . We can read relations from [36] using the
following dictionary between our notations and theirs, valid at
each iteration of the algorithm:

Q̂1x, Q̂2x, Q̂1z, Q̂2z ←→ γ−0 , γ
+
0 , γ

+
1 , γ

−
1

χ1xQ̂1x, χ2xQ̂2x ←→ α−
0 , α

+
0

χ1zQ̂1z, χ2zQ̂2z ←→ α−
1 , α

+
1

x0, z0, ρx, ρz ←→ Q0
0,Q

0
1, γ

0
0 , γ

0
1

h1x,h2x,h1z ,h2z ←→ r−0 , r
+
0 , r

+
1 , r

−
1 . (23)

Placing ourselves in the asymptotic limit, [36] shows the
following equalities:

r−0 = Q0
0 + Q−

0

r+
0 = Q0

0 + Q+
0

r−1 = Q0
1 + Q−

1

r+
1 = Q0

1 + Q+
1 (24)

where Q−
0 ∼ N (0, γ−0 )N and Q−

1 ∼ N (0, γ−1 )N are i.i.d.
Gaussian vectors. Q+

0 , Q+
1 have the following norms and

non-zero correlations with ground-truth vectors Q0
0,Q

0
1:

γ+
0 ≡

�Q+
0 �22
N

c+0 ≡
Q0T

0 Q+
0

N

γ+
1 ≡

�Q+
1 �22
M

c+1 ≡
Q0T

1 Q+
1

M
.

With simple manipulations, we can rewrite (24) as:

r−0
d= Q0 + Q−

0

VT r+
0

d=
(

1 +
c+0
γ0
0

)
VTQ0

0 + VT Q̃+
0

r−1
d= Q0

1 + Q−
1

UT r+
1

d=
(

1 +
c+1
γ0
1

)
UTQ0

1 + UT Q̃+
1 (25)

where for k ∈ {1, 2} vectors

Q̃+
k = −c

+
k

γ0
k

Q0
k + Q+

k

and Q−
0 ,Q

−
1 have no correlation with ground-truth vectors

Q0
0, Q0

1, UTQ0
0, VTQ0

1. Besides, Lemma 5 from [34] states
that VT Q̃+

0 and UT Q̃+
1 have components that converge

empirically to Gaussian variables, respectively N (0, γ+
0 ) and

N (0, γ+
1 ). Let us now translate this in our own terms, using

the following relations that complete our dictionary with state
evolution parameters:

m̂1x

Q̂1x

←→ 1
m̂2z

Q̂2z

←→ 1

m̂2x

Q̂2x

←→ 1 +
c+0
γ0
0

m̂1z

Q̂1z

←→ 1 +
c+1
γ0
1

χ̂1x

Q̂2
1x

←→ γ−0
χ̂2z

Q̂2
2z

←→ γ−1

χ̂2x

Q̂2
2x

←→ γ+
0 −

(c+0 )2

γ0
0

χ̂1z

Q̂2
1z

←→ γ+
1 −

(c+1 )2

γ0
1

. (26)

Simple bookkeeping transforms equations (25) into a rigorous
statement of starting assumptions (24) from [35]. Since those
assumptions are now rigorously established in the asymptotic
limit, the remaining derivation of state evolution equations (22)
holds and provides a mathematically exact statement.

D. Scalar Equivalent Model of State Evolution

For the sake of completeness, we will provide an overview
of the explicit matching between the state evolution formalism
from [36] which was developed in a series of papers, and
the replica formulation from [35] which relies on statistical
physics methods. Although not necessary to our proof, it is
interesting to develop an intuition about the correspondence
between those two faces of the same coin. We have seen
in the previous subsection that [36] introduces ground-truth
vectors Q0

0,Q
0
1, estimates r±0 , r

±
1 which are related to vectors

Q±
0 ,Q

±
1 . Let us introduce a few more vectors using matrices

from the singular value decomposition F = UDVT . Let sν ∈
R
N be the vector containing all square roots of eigenvalues of

FTF with pν its element-wise distribution; and sμ ∈ R
M the

vector containing all square roots of eigenvalues of FFT with
pμ its element-wise distribution. Note that those two vectors
contain the singular values of F, but one of them also contains
max(M,N) − min(M,N) zero values. pμ and pν are both
well-defined since pλ is properly defined in Assumptions 1.
We also define

P0
0 = VTQ0

0 P+
0 = VTQ+

0 P−
0 = VTQ−

0

P0
1 = UQ0

1 P+
1 = UQ+

1 P−
1 = UQ−

1 .

By virtue of Lemma 5 from [34], the six previous vectors have
elements that converge empirically to a Gaussian variable.
Hence, all defined vectors have an element-wise separable
distribution, and we can write the state evolution as a scalar
model on random variables sampled from those distributions.
To do so, we will simply write the variables without the bold
font: for instance Z0

0 ∼ px0 , sν ∼ pν , and Q−
0 refers to

the random variable distributed according to the element-wise
distribution of vector Q−

0 . The scalar random variable state
evolution from [36] now reads:

Initialize γ−(0)
1 , γ

−(0)
0 , γ

−(0)
0 , γ

−(0)
1 , (27a)

Q
−(0)
0 ∼ N (0, γ−(0)

0 ), Q−(0)
1 ∼ N (0, γ−(0)

1 ), α−(0)
0 , α

−(0)
1

Initial pass (ground truth only)

sν ∼ pν , sμ ∼ pμ, Q0
0 ∼ px0 (27b)
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γ0
0 = E[(Q0

0)
2] P 0

0 ∼ N (0, γ0
0 ) (27c)

Q0
1 = sμP

0
0 γ0

1 = E[(sμP 0
0 )2] = E[(sμ)2]γ0

0 (27d)

P 0
1 ∼ N (0, γ0

1 ) (27e)

Forward Pass (estimation):

α
+(t)
0 = E

[
η�
f/γ

−(t)
0

(Q0
0 +Q

−(t)
0 )

]
(27f)

γ
+(t)
0 =

γ
(t)
0

α
+(t)
0

− γ−(t)
0 (27g)

Q
+(t)
0 =

1

1− α+(t)
0

{
η
f/γ

−(t)
0

(Q0
0 +Q

−(t)
0 ) (27h)

−Q0
0 − α+

0 Q
−(t)
0

}

K+(t)
0 = Cov

(
Q0

0, Q
+(t)
0

)
(27i)(

P 0
0 , P

+(t)
0

)
∼ N

(
0,K+(t)

0

)
(27j)

α
+(t)
1 = E

[
s2μγ

−(t)
1

γ
−(t)
1 s2μ + γ

+(t)
0

]
(27k)

γ
+(t)
1 =

γ
−(t)
1

α
+(t)
1

− γ−(t)
1 (27l)

Q
+(t)
1 =

1

1− α+(t)
1

{
s2μγ

−(t)
1

γ
−(t)
1 s2μ + γ

+(t)
0

(Q−(t)
1 +Q0

1) (27m)

+
sμγ

+(t)
0

γ
−(t)
1 s2μ + γ

+(t)
0

(P+(t)
0 + P 0

0 )−Q0
1 − α+(t)

1 Q
−(t)
1

}

K+(t)
1 = Cov

(
Q0

1, Q
+(t)
1

)
(27n)(

P 0
1 , P

+(t)
1

)
∼ N

(
0,K+(t)

1

)
(27o)

Backward Pass (estimation):

α
−(t+1)
1 = E

[
η
g(y,.)/γ

+(t)
1

(P 0
1 + P

+(t)
1 )

]
(27p)

γ
−(t+1)
1 =

γ
+(t)
1

α
−(t+1)
1

− γ+(t)
1 (27q)

P
−(t+1)
1 =

1

1− α−(t+1)
1

{
η
g(y,.)/γ

+(t)
1

(P 0
1 + P

+(t)
1 ) (27r)

− P 0
1 − α−(t+1)

1 P
+(t)
1

}

γ
−(t+1)
1 = E

[
(P−(t+1)

1 )2
]

(27s)

Q
−(t+1)
1 ∼ N (0, γ−(t+1)

1 ) (27t)

α
−(t+1)
0 = E

[
γ

+(t)
0

γ
−(t+1)
1 s2ν + γ

+(t)
0

]
(27u)

γ
−(t+1)
0 =

γ
+(t)
0

α
−(t+1)
0

− γ+(t)
0 (27v)

P
−(t+1)
0 =

1

1−α−(t+1)
0

{
sνγ

−(t)
1

γ
−(t+1)
1 s2ν+γ+(t)

0

(Q−(t+1)
1 +Q0

1)

+
γ

+(t)
0

γ
−(t+1)
1 s2ν + γ

+(t)
0

(P+(t)
0 + P 0

0 )− P 0
0 −α−(t+1)

0 P
+(t)
0

}
(27w)

γ
−(t+1)
0 = E

[
(P−(t+1)

0 )2
]

(27x)

Q
−(t+1)
0 ∼ N (0, γ−(t+1)

0 ). (27y)

E. Direct Matching of the State Evolution Fixed Point
Equations

To be consistent, we should be able to show that equa-
tions (27) allow us to recover equations (22) at their fixed
point. Although somewhat tedious, this task is facilitated using
dictionaries (23) and (26). We shall give here an overview of
this matching through a few examples.

• Recovering Eq. (22e)

Let us start from the rigorous scalar state evolution, in par-
ticular Eq. (27h) that defines variable Q+

0 . We get rid of
time indices here since we focus on the fixed point. We first
compute the correlation

c+0 = E
[
Q0

0Q
+
0

]
=

1
1− α+

0

{
E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
]
− γ0

0

}
(28)

where we have used E[(Q0
0)

2] = γ0
0 . At the fixed

point, we know from MLVAMP or simply translating equa-
tions (17), (18) that

1−α+
0 = α−

0 ,
1
α−

0

=
γ−0 + γ+

0

γ+
0

, γ+
0 α

+
0 = γ−0 α

−
0 .

Simple manipulations take us to

c+0 =
E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
]

α−
0

− γ0
0 (1 +

γ−0
γ+
0

)

(
1 +

c+0
γ0
0

)
γ+
0 =

E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
]
γ+
0

γ0
0α

−
0

− γ−0 . (29)

Now let us translate this back into our notations. The term
E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
]

simply translates into m1x, and the
rest of the terms can all be changed according to our dictio-
nary. (29) exactly becomes

m̂2x =
m1x

ρxχx
− m̂1x,

hence we perfectly recover equations (22e) at the fixed point.

• Recovering Eq. (22f)

We start again from (27h) and square it:

E
[
(Q+

0 )2
]

=
1

(1− α+
0 )2

{
E

[
η2
f/γ−

0
(Q0

0 +Q−
0 )
]

+ (α+
0 )2E

[
(Q−

0 )2
]− 2E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
]

− 2α+
0 E

[
Q−

0 η
2
f/γ−

0
(Q0

0 +Q−
0 ) + E

[
(Q0

0)
2
]]}

γ+
0 =

1
(1 − α+

0 )2

{
E

[
η2
f/γ−

0
(Q0

0 +Q−
0 )
]

+ γ0
0

+ (α+
0 )2γ−0 − 2E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
]

− 2α+
0 E

[
Q−

0 η
2
f/γ−

0
(Q0

0 +Q−
0 )
]}

. (30)



1842 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 3, MARCH 2023

Since Q−
0 is a Gaussian variable, independent fromQ0

0, we can
use Stein’s lemma and use Eq. (27f) to get

E

[
Q−

0 η
2
f/γ−

0
(Q0

0 +Q−
0 )
]

= α+
0 γ

−
0 . (31)

Moreover, from (28) we have

(c+0 )2(α−
0 )2 =

(
E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
]
− γ0

0

)2

,

(c+0 )2(α−
0 )2

γ0
0

−
(E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
]
)2

γ0
0

= −2E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
]

+ γ0
0 . (32)

Replacing (31) and (32) into (30), we reach(
γ+
0 −

(c+0 )2

γ0
0

)
(α−

0 )2 = E

[
η2
f/γ−

0
(Q0

0 +Q−
0 )
]

−
(
E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
])2

γ0
0

− (α+
0 )2γ−0 , (33)

(
γ+
0 −

(c+0 )2

γ0
0

)
(γ+

0 )2 =
E

[
η2
f/γ−

0
(Q0

0 +Q−
0 )
]
(γ+

0 )2

(α−
0 )2

−
(
E

[
Q0

0ηf/γ−
0

(Q0
0 +Q−

0 )
])2

(γ+
0 )2

γ0
0 (α−

0 )2
− (γ−0 )2γ−0 .

Notice that E

[
η2
f/γ−

0
(Q0

0 +Q−
0 )
]

simply translates into our
variable q1x from its definition (22c), and our dictionary
directly transforms (33) into Eq. (22f):

χ̂2x =
q1x
χ2

1x

− m2
1x

ρxχ2
1x

− χ̂1x.

• Recovering Eq. (22s)

We first note that for any function h,

E[h(sν)] = min(1, α)E[h(sμ)] + max(0, 1− α)h(0).

and s2ν ∼ pλ. Applying this to h(s) =
γ−1 s

2

γ−1 s2 + γ+
0

and starting

from (27m), we rewrite

α+
1 = E

[
γ−1 s

2
μ

γ−1 s2μ + γ+
0

]

=
1
α

E

[
γ−1 λ

γ−1 λ+ γ+
0

]

with λ ∼ pλ, which translates into Eq. (22s):

χ2z =
1
α

E

[
λ

Q̂2x + λQ̂2z

]
.

In a similar fashion, we can recover all equations (22) by
writing variances and correlations between scalar random
variables defined in (27), and using the independence prop-
erties established in [36]; thus directly showing the matching
between the two state evolution formalisms at their fixed point.

APPENDIX F
NUMERICAL IMPLEMENTATION DETAILS

The plots were generated using the toolbox available at
https://github.com/cgerbelo/Replica_GLM_orth.inv.git

Here we give a few derivation details for implementation
of the equations presented in Theorem 1. We provide the
Python script used to produce the figures in the main body
of the paper as an example. The experimental points were
obtained using the convex optimization tools of [42], with a
data matrix of dimension N = 200,M = αN , for α ∈ [0.1, 3].
Each point is averaged 100 times to get smoother curves.
The theoretical prediction was simply obtained by iterating
the equations from Theorem 1. This can lead to unstable
numerical schemes, and we include a few comments about
stability in the code provided with this version of the paper.
For Gaussian data, the design matrices were simply obtained
by sampling a normal distribution N (0,

√
1/M), effectively

yielding the Marchenko-Pastur distribution [49] for averaging
on the eigenvalues of FTF in the state evolution equations:

λFT F ∼ max(0, 1−α)δ(λ− 0)+α

√
(0, λ− a)+(0, b− λ)+

2πλ

where

a =

√
1−

(
1
α

)2

, b =

√
1 +

(
1
α

)2

,

and (0, x)+ = max(0, x). For the example of orthogonally
invariant matrix with arbitrary spectrum, we chose to sam-
ple the singular values of F from the uniform distribution
U(
[
(1− α)2, (1 + α)2

]
). This leads to the following distribu-

tion for the eigenvalues of FTF:

λFT F ∼ max(0, 1− α)δ(0) + min(1, α)d(λ, α) (34)

where I is the indicator function and

d(λ, α)=
(

1
2((1+α)2−(1−α)2)

I{√λ∈[(1−α)2,(1+α)2]}
1√
λ

)
.

The only quantities that need additional calculus are the
averages of proximals, squared proximals and derivatives of
proximals. Here we give the corresponding expressions for the
losses and regularizations that were used to make the figures.
Note that the stability and convergence of the state evolution
equations closely follow the result of Lemma 3. For example,
a ridge regularized logistic regression, which is a strongly
convex objective in both the loss (on compact spaces) and
regularization will lead to more stable iterations than a LASSO
SVC.

A. Regularization: Elastic Net

For the elastic net regularization, we can obtain an exact
expression, avoiding any numerical integration. The proximal
of the elastic net reads:

Prox 1
Q̂1x

(λ1|x|1+ λ2
2 �x�2

2)
(.) =

1
1 + λ2

Q̂1x

s

(
.,
λ1

Q̂1x

)
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where s
(
., λ1

Q̂1x

)
is the soft-thresholding function:

s

(
r1k,

λ1

Q̂1x

)
=

⎧⎪⎨
⎪⎩

r1k + λ1

Q̂1x
if r1k < − λ1

Q̂1x

0 if − λ1

Q̂1x
< r1k <

λ1

Q̂1x

r1k − λ1

Q̂1x
if r1k >

λ1

Q̂1x
.

We assume that the ground-truth x0 is pulled from a
Gauss-Bernoulli law of the form:

φ(x0) = (1− ρ)δ(0) + ρ
1√

2πσ2
exp (−x2

0/(2σ
2)).

Note that we did our plots with ρ = 1, but this form can
be used to study the effect of sparsity in the model. Writing
X = (m̂1xx0 +

√
χ̂1xξ1x)/Q̂1x, and remembering that ξ1x ∼

N (0, 1), some calculus then shows equations (35)-(37), shown
at the bottom of the next page. We now turn to the loss
functions.

B. Loss Functions

The loss functions sometimes have no closed form, as is the
case for the logistic loss. In that case, numerical integration
cannot be avoided, and we recommend marginalizing all the
possible variables that can be averaged out. In the present
model, if the teacher y is chosen as a sign, one-dimensional
integrals can be reached, leading to stable and reasonably fast
implementation (a few minutes to generate a curve comparable
to those of Figure 1 for the non-linear models, the ridge
regression being very fast). The interested reader can find
the corresponding marginalized prefactors in the code jointly
provided with this paper.

a) Square loss: The square loss is defined as:

f(x, y) =
1
2
(x − y)2,

its proximal and partial derivative then read:

Prox 1
γ f

(p) =
γ

1 + γ
p+

1
1 + γ

y

∂

∂p
Prox 1

γ f
(p) =

γ

1 + γ
.

Using this form with a plain ridge penalty (elastic net with

1 = 0) leads to great simplification in the equations of
Theorem 1 and we recover the classical expressions obtained
for ridge regression in papers such as [9], [30].

b) Hinge loss: The hinge loss reads:

f(x, y) = max(0, 1− yx).
Assuming y ∈ {−1,+1}, its proximal and partial derivative
then read:

Prox 1
γ f

(p) =

⎧⎨
⎩

p+ y
γ if γ(1− yp) � 1

y if 0 � γ(1− yp) � 1
p if γ(1− yp) � 0

∂

∂p
Prox 1

γ f
(p) =

⎧⎨
⎩

1 if γ(1− yp) � 1
0 if 0 � γ(1− yp) � 1
1 if γ(1− yp) � 0.

c) Logistic loss: The logistic loss reads:

f(x, y) = log(1 + exp(−yx))
Its proximal (at point p) is the solution to the fixed point
problem:

x = p+
y

γ(1 + exp(yx))
,

and its derivative, given that the logistic loss is twice differ-
entiable, reads:

∂

∂p
Prox 1

γ f
(p) =

1
1 + 1

γ
∂2

∂p2 f(Prox 1
γ f

(p))

=
1

1 + 1
γ (2 + 2cosh(Prox 1

γ f
(p)))−1

.

APPENDIX G
PROOF OF LEMMA 3: CONVERGENCE

ANALYSIS OF 2-LAYER MLVAMP

In this section, we give the detail of the convergence proof of
2-layer MLVAMP.

A. Proof of Proposition 1

This proof is quite straightforward and close to the
one of Theorem 4 from [44]. Let δht = δh(t) − h(t−1),
δut = δu(t) − u(t−1), δwt = w(t) −w(t−1).

Multiplying Eq.(16) on the left and right by
[(δht)� (δut)�] and its transpose respectively, we get

(A(t)(δht) + B(t)(δut))�P(A(t)(δht) + B(t)(δut))

− (γ(t))2(δht)�P(δht)

+ β
(t)
1 (C(t)

1 (δht) + D1(δut))�M(t)
1 (C(t)

1 (δht) + D1(δut))

+ β
(t)
2 (C(t)

2 (δht) + D2(δut))�M(t)
2 (C(t)

2 (δht) + D2(δut))
� 0.

Using the definition of iteration (14), this simplifies to

(δht+1)�P(δht+1)− (γ(t))2(δht)�P(δht)

+ β1(δwt
1)

�M(t)
1 (δwt

1) + β2(δwt
2)

�M(t)
2 (δwt

1) � 0.

Owing to the Lipschitz properties of Õ(t)
1 , Õ(t)

2 and the defi-
nitions of w(t)

1 ,w(t)
2 , the terms factoring β1, β2 are both non-

negative. We thus have, at each time step t:

(δht+1)�P(δht+1) � γ(t)(δht)�P(δht).

Letting γ∗ = supt γ(t), an immediate induction concludes the
proof.

B. Bounds on Q̂(t+1)
1x , Q̂

(t)
1z , Q̂

(t)
2x, Q̂

(t+1)
2z

We remind that, since the functions f and g are separable,
their Hessians are diagonal matrices. For any time index t, the
following bounds hold:

• On Q̂(t)
2x

Q̂
(t)
2x = 1/χ(t)

1x − Q̂(t)
1x where χ

(t)
1x =

〈
∂
h

(t)
1x
g1x(. . .)

〉
/Q̂

(t)
1x ,

then
1

Q̂
(t)
2x + Q̂

(t)
1x

=
1
N

(
Tr
[
(Q̂(t)

1xId+Hf (Prox))−1
])
,

Q̂
(t)
1x + λmin(Hf ) � Q̂

(t)
1x + Q̂

(t)
2x � Q̂

(t)
1x + λmax(Hf ).
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• On Q̂(t+1)
2z

Q̂
(t+1)
2z = 1/χ(t)

1z − Q̂(t)
1z where χ

(t)
1z =

〈
∂
h

(t)
1z
g1z(. . .)

〉
/Q̂

(t)
1z ,

then
1

Q̂
(t+1)
2z + Q̂

(t)
1z

=
1
M

(
Tr
[
(Q̂(t)

1z Id+Hg(Prox))−1
])
,

Q̂
(t)
1z + λmin(Hg) � Q̂

(t)
1z + Q̂

(t+1)
2z � Q̂

(t)
1z + λmax(Hg).

• On Q̂(t)
1z

Q̂
(t)
1z = 1/χ(t)

2z − Q̂(t)
2z where χ

(t)
2z =

〈
∂
h

(t)
2z
g2z(. . .)

〉
/Q̂

(t)
2z ,

then
1

Q̂
(t)
1z + Q̂

(t)
2z

=
1
M

Tr

[
FF�

(
Q̂

(t)
2zFF� + Q̂

(t)
2xId

)−1
]
.

The matrices on the r.h.s. of the previous equation are all
diagonalizable in the same basis. Then each eigenvalue has
the form

λk(FF�)

Q̂
(t)
2z λk(FF�) + Q̂

(t)
2x

which leads to the bound

Q̂
(t)
2z +

Q̂
(t)
2x

λmax(FF�)
� Q̂

(t)
1z + Q̂

(t)
2z � Q̂

(t)
2z +

Q̂
(t)
2x

λmin(FF�)
.

• On Q̂(t+1)
1x

Q̂
(t+1)
1x =1/χ(t+1)

2x − Q̂(t)
2x where χ(t+1)

2x =
〈
∂
h

(t)
2x
g2x(. . .)

〉
/Q̂

(t)
2x ,

then
1

Q̂
(t+1)
1x + Q̂

(t)
2x

=
1
N

Tr

[(
Q̂

(t+1)
2z F�F + Q̂

(t)
2xId

)−1
]
,

which leads to

Q̂
(t)
2x + λmin(F�F)Q̂(t+1)

2z � Q̂
(t+1)
1x + Q̂

(t)
2x

� Q̂
(t)
2x + λmax(F�F)Q̂(t+1)

2z .

C. Operator Norms and Lipschitz Constants

1) Operator Norms of W1
(t),W2

(t),W3
(t),W4

(t): The
norms of the linear operators W1

(t), W2
(t), W3

(t), W4
(t)

can be computed or bounded with respect to the singular
values of the matrix F. The derivations are straightforward
and do not require any specific mathematical result. Denoting
�W� the operator norm of a given matrix W, we have the
following:

�W1
(t)� =

Q̂
(t)
2x

Q̂
(t+1)
1x

max
( |Q̂(t+1)

1x − Q̂(t+1)
2z λmin(FTF)|

Q̂
(t)
2x + Q̂

(t+1)
2z λmin(FTF)

,

|Q̂(t+1)
1x − Q̂(t+1)

2z λmax(FTF)|
Q̂

(t)
2x + Q̂

(t+1)
2z λmax(FTF)

)

�W2
(t)� =

Q̂
(t+1)
2z

χ
(t+1)
2x Q̂

(t+1)
1x

√
λmax(FTF)

Q̂
(t)
2x + Q̂

(t+1)
2z λmin(FTF)

�W3
(t)� =

Q̂
(t)
2z

Q̂
(t)
1z

max
( |Q̂(t)

2x − Q̂(t)
1z λmin(FFT )|

Q̂
(t)
2x + Q̂

(t)
2z λmin(FFT )

,

|Q̂(t)
2x − Q̂(t)

1z λmax(FFT )|
Q̂

(t)
2x + Q̂

(t)
2z λmax(FFT )

)

�W4
(t)� =

Q̂
(t)
2x

χ
(t)
2z Q̂

(t)
1z

√
λmax(FTF)

Q̂
(t)
2x + Q̂

(t)
2z λmin(FTF)

.

2) Lispchitz Constants of Õ(t)
1 , Õ(t)

2 : We now derive upper
bounds of the Lipschitz constants of Õ(t)

1 , Õ(t)
2 using the

convex analysis reminder in appendix B. We give detail for
Õ(t)

1 , the derivation is identical for Õ(t)
2 . Let (σ1, β1) ∈ R

∗2
+

be the strong-convexity and smoothness constants of f , if they
exist. If f has no strong convexity constant, we set σ1 = 0,
and if it holds no smoothness assumption, we set β1 = +∞.
Note that, from the upper and lower bounds obtained in
appendix G-B, we have σ1 � Q̂

(t)
2x � β1.

E[Prox2
f/Q̂1x

(X)]

=

(
1

1 + λ2

Q̂1x

)2
⎡
⎣(1− ρ)

⎛
⎝λ2

1 + χ̂1x

(Q̂1x)2
erfc

(
λ1√
2χ̂1x

)
−
λ1

√
2χ̂1x exp(− λ2

1
2(χ̂1x) )√

π

⎞
⎠ (35)

+ ρ

⎛
⎝λ2

1 + χ̂1x + σ2m̂2
1x

(Q̂1x)2
erfc

(
λ1√

2(χ̂1x + σ2m̂2
1x)

)
−
λ1

√
2(χ̂1x + σ2m̂2

1x) exp(− λ2
1

2(Q̂1x)2(χ̂1x+σ2m̂2
1x)

)
√
π

⎞
⎠
⎤
⎦ .

Similarly, we have

E[Prox
′

f/Q̂1x
(X)] =

1
1 + λ2

Q̂1x

[
(1− ρ) erfc

(
λ1√
2χ̂1x

)
+ ρ erfc

(
λ1√

2(χ̂1x + σ2m̂2
1x)

)]
(36)

and

E[x0Proxf/Q̂1x
(X)] =

ρ|σm̂1x|
Q̂1x + λ2

erfc

(
λ1√

2(χ̂1x + σ2m̂2
1x)

)
. (37)



GERBELOT et al.: ASYMPTOTIC ERRORS FOR TEACHER-STUDENT CONVEX GENERALIZED LINEAR MODELS 1845

a) Case 1: 0 < σ1 < β1: Proposition 3 gives the
following expression:

Prox 1

Q̂
(t)
1x

f =
1
2

(
1

1 + σ1/Q̂
(t)
1x

+
1

1 + β1/Q̂
(t)
1x

)
Id

+
1
2

(
1

1 + σ1/Q̂
(t)
1x

− 1

1 + β1/Q̂
(t)
1x

)
S1

where S1 is a non-expansive operator. Replacing in the expres-
sion of Õ1 leads to:

Õ(t)
1 =

Q̂
(t)
1x

Q̂
(t)
2x

((
1

2χ(t)
1x

(
1

Q̂
(t)
1x + σ1

+
1

Q̂
(t)
1x + β1

)
− 1

)
Id

+
1

2χ(t)
1x

(
1

Q̂
(t)
1x + σ1

− 1

Q̂
(t)
1x + β1

)
S1

)
. (38)

Knowing that Q̂(t)
1x + Q̂

(t)
2x = 1/χ(t)

1x , and separating the case
where the first term of the sum in Eq.(38) is negative or
positive, Õ1 has Lipschitz constant:

ω
(t)
1 =

Q̂
(t)
1x

Q̂
(t)
2x

max

(
Q̂

(t)
2x − σ1

Q̂
(t)
1x + σ1

,
β1 − Q̂(t)

2x

Q̂
(t)
1x + β1

)
. (39)

b) Case 2: 0 < σ1 = β1: In this case, we have from
Proposition 3:

�Prox 1

Q̂
(t)
1x

f (x)−Prox 1

Q̂
(t)
1x

f (y)�22 =

(
1

1+σ1/Q̂
(t)
1x

)2

�x−y�22.

With the firm non-expansiveness of the proximal operator
gives, we reach for any x, y ∈ R Eq. (40), shown at the
bottom of the next page, detailed below. The upper bound
on the Lipschitz constant is therefore:

ω1 =
Q̂

(t)
1x

Q̂
(t)
2x

√√√√1 +
((Q̂(t)

2x )2 − (Q̂(t)
1x )2)

(Q̂(t)
1x + σ1)2

. (41)

c) Case 3: no strong convexity or smoothness assumption:
This setting is not necessary for our proof, because we only
handle penalty functions which have a strictly positive strong
convexity constant, by adding a ridge term. However, we list
it for completeness. In this case, the only information we have
is the firm nonexpansiveness of the proximal operator, which
leads us to the same derivation as the previous one up to (40),
where the first term in the sum can be positive or negative.
This yields the Lipschitz constant:

ω
(t)
1 =

Q̂
(t)
1x

Q̂
(t)
2x

max

(
1,
Q̂

(t)
2x

Q̂
(t)
1x

)
.

d) Recovering (15): In our proof, we make no assump-
tion on the strong-convexity or smoothness of the function,
but adding the ridge penalties λ2, λ̃2 brings us for both Õ(t)

1

and Õ(t)
2 to either the first of the second case above. It is

straightforward to see that the Lipschitz constant (41) is an
upper bound of (39). We thus use (41) for generality, and

recover the expressions (15) shown in the main body of the
paper.

ω
(t)
1 =

Q̂
(t)
1x

Q̂
(t)
2x

√√√√1 +
(Q̂(t)

2x )2 − (Q̂(t)
1x )2

(Q̂(t)
1x + λ2)2

ω
(t)
2 =

Q̂
(t)
1z

Q̂
(t)
2z

√√√√1 +
(Q̂(t)

2z )2 − (Q̂(t)
1z )2

(Q̂(t)
1z + λ̃2)2

.

D. Dynamical System Convergence Analysis

We are now ready to prove Lemma 3.
We will use the bounds derived above to prove the con-

vergence lemma. Since we have proved the required bounds
at any time step, we drop the time indices in the remainder
of this proof for simplicity. The choice of additional regu-
larization is λ2 arbitrarily large, and λ̃2 fixed but finite and
non-zero. Q̂2x, Q̂1z can thus be made arbitrarily large, and
Q̂2z, Q̂1x remain finite. We write the corresponding linear
matrix inequality (16) and expand the constraint term. Some
algebra shows that:

CT
1 M1C1 =

[
0M×M 0M×N
0N×M ω2

1IN×N

]

CT
2 M2C2 =

[
ω2

2W
T
3 W3 0M×N

0N×M 0N×N

]
CT

1 M1D1 = 0(M+N)×(M+N)

DT
1 M1C1 = 0(M+N)×(M+N)

CT
2 M2D2 =

[
0M×M ω2

2W
T
3 W4

0N×M 0N×N

]

DT
2 M2C2 =

[
0M×M 0M×N

ω2
2W

T
4 W3 0N×N

]

DT
1 M1D1 =

[
0M×M 0M×N
0N×M −IN×N

]

DT
2 M2D2 =

[−IM×M 0M×N
0N×M ω2

2W
T
4 W4

]

where all the matrices constituting the blocks have been
defined in section VI. This gives the following form for the
constraint matrix: [

H1 H2

HT
2 H3

]

where

H1 =
[
β1ω

2
2W

T
3 W3 0M×N

0N×M β0ω
2
1IN×N

]

H2 =
[
0M×M β1ω

2
2W

T
3 W4

0N×M 0N×N

]

H3 =
[−β1IM×M 0M×N

0N×M −β0IN×N + β1ω
2
2W

T
4 W4

]
/

Thus the LMI (16) becomes:

0 �
[−γ2P + H1 H2

HT
2 BTPB + H3

]
.
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We take P as block diagonal:

P =
[

P1 0M×N
0N×M P2

]

where P1 ∈ R
M×M and P2 ∈ R

N×N are posi-
tive definite (no zero eigenvalues) and diagonalizable in
the same basis as FTF, which is also the eigenbasis of
W1,W3,WT

2 W2,WT
4 W4. We then have:

BTPB =
[
P1 + WT

2 P2W2 WT
2 P2W1

WT
1 P2W2 WT

1 P2W1

]
.

We are then trying to find the conditions for the following
problem to be feasible with 0 < γ < 1:

[
γ2P−H1 −H2

−HT
2 −(BTPB + H3)

]
� 0. (42)

Schur’s lemma then gives that the strict version of (42), which
we will consider, is equivalent [47] to:

− (BTPB + H3) � 0 and

γ2P−H1 + H2(BTPB + H3)−1HT
2 � 0.

(43)

Let us first consider −(BTPB + H3).
1) Conditions for −(BTPB + H3) � 0: Expanding
−(BTPB+H3) � 0 and applying Schur’s lemma again gives
the equivalent problem:

β1IN×N − β2ω
2
2W

T
4 W4 −WT

1 P2W1 � 0 and (44)

β2IM×M −P1 −WT
2 P2W2

−WT
2 P2W1K1WT

1 P2W2 � 0. (45)

where K1 = (β1IN×N − β2ω
2
2W

T
4 W4 − WT

1 P2W1)−1.
We start with (44). A sufficient condition for it to hold true
is:

β1 > β2ω
2
2λmax(W

T
4 W4) + λmax(P2)λmax(WT

1 W1).

Using the bounds from appendix G-C, we have:

λmax(WT
1 W1) �

(
Q̂2x

Q̂1x

)2

×max

(
|Q̂1x−Q̂2zλmin(FTF)|
Q̂2x+Q̂2zλmin(FTF)

,
|Q̂1x − Q̂2zλmax(FTF)|
Q̂2x + Q̂2zλmax(FTF)

)2

� max

⎛
⎝
(
1− Q̂2z

Q̂1x

λmin(FTF)

)2

,

(
1− Q̂2z

Q̂1x

λmax(FTF)

)2
⎞
⎠

= b1,

and

ω2
2λmax(W

T
4 W4)�

(
Q̂1z

Q̂2z

)2 (
Q̂2x

χ2zQ̂1z

)2

×
(

1 +
(Q̂2z)2 − (Q̂1z)2

(Q̂1z + λ̃2)2

)
λmax(FTF)

(Q̂2x + Q̂2zλmin(FTF))2

� Q̂1z

(
2λ̃2 +

λ̃2
2

Q̂1z

+
(Q̂2z)2

Q̂1z

)

×
(

Q̂1z + Q̂2z

Q̂2z(Q̂1z + λ̃2)

)2

λmax(FTF).

For arbitrarily large Q̂1z , the quantity(
2λ̃2 +

λ̃2
2

Q̂1z

+
(Q̂2z)2

Q̂1z

)(
Q̂1z + Q̂2z

Q̂2z(Q̂1z + λ̃2)

)2

λmax(FTF)

is trivially bounded above whatever the value of λ̃2, Q̂2z . Let
b2 be such an upper bound independent of λ2, Q̂2x, Q̂1z . The
sufficient condition for (44) to hold thus becomes:

β1 > β2Q̂1zb2 + λmax(P2)b1 (46)

where b1, b2 are constants independent of λ2, Q̂2x, Q̂1z .
We now turn to (45). A sufficient condition for it to hold

is:

β2 > λmax(P1) + λmax(WT
2 W2)λmax(P2) (47)

+
(λmax(P2))2λmax(WT

2 W2)λmax(WT
1 W1)

β1 − β2ω2
2λmax(W

T
4 W4)− λmax(P2)λmax(WT

1 W1)
.

�Õ(t)
1 (x) − Õ(t)

1 (y)�22 =

(
Q̂

(t)
1x

Q̂
(t)
2x

)2 (
1

(Q̂(t)
1x )2(χ(t)

1x )2
�Prox 1

Q̂
(t)
1x

f (x) − Prox 1

Q̂
(t)
1x

f (y)�22

− 2
1

Q̂
(t)
1xχ

(t)
1x

〈
x− y, Prox 1

Q̂
(t)
1x

f (x)− Prox 1

Q̂
(t)
1x

f (y)
〉

+ �x− y�22
)

�
(
Q̂

(t)
1x

Q̂
(t)
2x

)2 ((
1

(Q̂(t)
1x )2(χ(t)

1x )2
− 2

1

Q̂
(t)
1xχ

(t)
1x

)
�Prox 1

Q̂1x
f (x) − Prox 1

Q̂
(t)
1x

f (y)�22 + �x− y�22
)

=

(
Q̂

(t)
1x

Q̂
(t)
2x

)2
⎛
⎝
(

1

(Q̂(t)
1x )2(χ(t)

1x )2
− 2

1

Q̂
(t)
1xχ

(t)
1x

)(
1

1 + σ1/Q̂
(t)
1x

)2

+ 1

⎞
⎠ �x− y�22

=

(
Q̂

(t)
1x

Q̂
(t)
2x

)2 (
(Q̂(t)

2x )2 − (Q̂(t)
1x )2

(Q̂(t)
1x + σ1)2

+ 1

)
�x− y�22.

(40)
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Note that condition (44) ensures that the denominator in (47)
is non-zero. We then have:

λmax(WT
2 W2) �

(
Q̂2z

χ2xQ̂1x

)2
λmax(FTF)

(Q̂2x + Q̂2zλmin(FTF))2

�

⎛
⎝Q̂2z(1 + Q̂1x

Q̂2x
)

Q̂1x

⎞
⎠

2

λmax(FTF).

This quantity can be bounded above by a constant independent
of λ2, Q̂2x, Q̂1z for arbitrarily large Q̂2x. Let b3 be such a
constant. Then a sufficient condition for condition (45) to hold
is:

β2 > λmax(P1) + b3λmax(P2)

+
b1b3(λmax(P2))2

β1 − β2Q̂1zb2 − λmax(P2)b1
. (48)

We see that β1 must scale linearly with Q̂1z which is one
of the parameters that is made arbitrarily large. Then β1 also
needs to become arbitrarily large for the conditions to hold.
We choose β1 = 2β2Q̂1zb2 + λmax(P2)b1 for the rest of
the proof. Condition (46) is then verified, and β2 needs to be
chosen according to condition (48), which becomes:

β2 > λmax(P1) + b3λmax(P2) +
b1b3λ

2
max(P2)

β2Q̂1zb2
.

This has a bounded solution for large values of Q̂1z . We now
turn to the second part of (43).

2) Conditions for γ2P−H1+H2(BTPB+H3)−1HT
2 � 0:

We need to study the term −H2(BTPB + H3)−1HT
2 (with

the minus sign since the middle matrix is negative definite
from conditions (44,45) which are now verified). As we will
see, because of the form of H2, we don’t need to explicitly
compute the whole inverse. Let

Z = −(BTPB + H3)−1 =
[
Z1 Z2

ZT2 Z3

]
.

Z has the same block dimensions as (BTPB+H3). We then
have:

−H2(BTPB + H3)−1HT
2 = H2ZHT

2

=
[
β2

2ω
4
2W

T
3 W4Z3WT

4 W3 0M×N
0N×M 0N×N

]
.

We thus only need to characterize the lower right block of
Z. It is easy to see that conditions (44) and (45) also enforce
that both the Schur complements associated with the upper
left and lower right blocks of −(BTPB+H3) are invertible,
thus giving the following form for Z3 using the block matrix
inversion lemma [47]:

Z3 = (β1IN − β2ω
2
2W

T
4 W4

−WT
1 P2W1 −WT

1 P2W2K2WT
2 P2W1)−1.

where K2 = (β1IM −P1−WT
2 P2W2)−1. We thus have the

following upper bound on the largest eigenvalue of Z3:

λmax(Z3) � 1
β1 − β2Q̂1zb2 − λmax(P2)b1 − k

,

where

k =
b1b3λ

2
max(P2)

β2 − λmax(P1)− b2λmax(P2)
.

Using the prescription β1 = 2β2Q̂1zb2+λmax(P1)b1, we get:

λmax(Z3) =
1

β1Q̂1zb2 − b1b3λ2
max(P2)

β1−λmax(P1)−b2λmax(P2)

� b4

Q̂1z

where b4 is a constant independent of the arbitrarily large para-
meters λ2, Q̂2x, Q̂1z . Thus λmax(Z3) can be made arbitrarily
small by making λ2 arbitrarily large.

We now want to find conditions to ensure

γ2P−H1 + H2(BTPB + H3)−1HT
2 � 0,

which is equivalent to:

γ2P1 − β2ω
2
2W

T
3 W3 − β2

2ω
4
2W

T
3 W4Z3WT

4 W3 � 0

γ2P2 − β1ω
2
1IN � 0. (49)

We start with the upper matrix inequality, for which a sufficient
condition is:

γ2λmin(P1)− β2ω
2
2λmax(W

T
3 W3)

− β2
2ω

4
2λmax(W

T
3 W3)λmax(WT

4 W4)λmax(Z3) > 0.

Using the bounds from appendix G-C, we have:

ω2
2λmax(W

T
3 W3)

�
(
Q̂1z

Q̂2z

)2 (
1 +

(Q̂2z)2 − (Q̂1z)2

(Q̂1z + λ̃2)2

)
λmax(WT

3 W3)

� 2λ̃2Q̂1z + λ̃2
2 + (Q̂2z)2

(Q̂1z + λ̃2)2

×max

⎛
⎝
(
1− Q̂1z

Q̂2x

λmin(FTF)

)2

,

(
1− Q̂1z

Q̂2x

λmax(FTF)

)2
⎞
⎠

� 1
Q̂1z

(
2λ̃2 +

(λ̃2
2 + (Q̂2z)2)
Q̂1z

)

×max

⎛
⎝
(
1− Q̂1z

Q̂2x

λmin(FTF)

)2

,

(
1− Q̂1z

Q̂2x

λmax(FTF)

)2
⎞
⎠.

Thus there exists a constant b5, independent of λ2, Q̂1z, Q̂2x

such that, for sufficiently large Q̂1z:

ω2
2λmax(W

T
3 W3) � b5

Q̂1z

.

Remember that we had:

ω2
2λmax(W

T
4 W4) � Q̂1zb2,

which gives the following sufficient condition for the upper
left block in (49):

γ2λmin(P1)− β2
b5

Q̂1z

− β2
2

b2b5b4

Q̂1z

> 0.

A sufficient condition for the lower right block in (49) then
reads:

γ2λmin(P2)− β1ω
2
1 > 0,
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where we have:

β1ω
2
1 =

(
Q̂1x

Q̂2x

)2 (
1 +

(Q̂2x)2 − (Q̂1x)2

(Q̂1x + λ2)2

)

× (2β1Q̂1zb2 + λmax(P2)b1)

=
1
Q̂2x

(Q̂1x)2
(

1 +
(Q̂2x)2 − (Q̂1x)2

(Q̂1x + λ2)2

)

×
(

2β1
Q̂1z

Q̂2x

b2 + λmax(P2)
b1

Q̂2x

)
.

We remind the reader that Q̂1z, Q̂2x grow linearly with λ2.
Thus the dominant scaling at large λ2 is (exchanging Q̂2x

with Q̂1z up to a constant) reads:

β1ω
2
1 � b6

Q̂1z

,

where b6 is a constant independent of the arbitrarily large
quantities. The final condition becomes:

γ2λmin(P1)− β2
b5

Q̂1z

− β2
2

b2b5b4

Q̂1z

> 0

γ2λmin(P2)− b6

Q̂1z

> 0

where we want γ < 1. We now choose γ2 = c̃/Q̂1z with a
constant c̃ independent of λ2, Q̂1z, Q̂2x that verifies

c̃ > max
(
β2b5 + β2

2b2b5b4
λmin(P1)

,
b6

λmin(P2)

)
,

such that:
c̃

Q̂1z

λmin(P1)− β2
b5

Q̂1z

− β2
2

b2b5b4

Q̂1z

> 0

c̃

Q̂1z

λmin(P2)− b6

Q̂1z

> 0.

Since β2 is bounded for large values of Q̂1z , and the bi
and c are constants independent of λ2, Q̂2x, Q̂1z , we can
then enforce c̃ < Q̂1z using the additional ridge penalty
parametrized by λ2 on the regularization to obtain γ < 1
and a linear convergence rate proportional to

√
c̃/λ2. We see

that the eigenvalues of the matrix P are of little importance as
long as they are non-vanishing. We choose P as the identity.
In the statement of Lemma 3, we write c the exact constant
which comes linking Q̂1z to λ2.

This proves Lemma 3.

APPENDIX H
ANALYTIC CONTINUATION

In this section, we prove the validity of the analytic con-
tinuation and approximation argument used to prove Theo-
rem 1, under the required set of assumptions 1. According
to Lemma 4, for any λ̃2 > 0 and λ2 > λ∗2, any scalar
pseudo-Lipschitz observable of order 2 φ, we have almost
surely

lim
N→∞

1
N

N∑
i=1

φ(x0,i, x̂i(λ2))=E[φ(x0 , Prox
f/Q̂

(t)
1x

(Hx))] (50)

where Hx = (m̂∗
1xx0 +

√
χ̂∗

1xξ1x)/Q̂1x is defined in Theo-
rem 1. We would like to show that this equality still holds for
any λ2 > 0. To do so we will show that, for a real analytic
approximation of problem Eq.(2), both sides of Eq.(50) are
real analytic in λ2. We may then use the real analytic con-
tinuation theorem, as given in [48] to extend to any λ2 > 0.
We will treat the case λ2 = 0 separately. In what follows,
we will write the dependency in λ2 of the estimator explicitly,
i.e., x̂ = x̂(λ2).

A. Real Analyticity of the Left Hand Side of Eq.(50)

We remind a useful characterization of real analytic func-
tions from [48]:

Proposition 5 (Proposition 1.2.10 from [48]): Let f ∈
C∞(I) for some open interval I. The function f is in fact real
analytic on I if and only if, for each α ∈ I , there are an open
interval J, with α ∈ J ⊂ I , and finite constants C > 0 and
R > 0 such that the derivatives of f satisfy:

|f (j)(α)| � C
j!
Rj
, ∀α ∈ J.

We also remind the formula for the higher order derivatives
of a composition of two infinitely differentiable functions:

Proposition 6 (Faa di Bruno’s Formula, [48] Theorem
1.3.2.): Consider two scalar functions f and g defined on an
open interval I ∈ R. Assume that both functions are infinitely
differentiable on I and taking value in I . Then the derivatives
of h = g ◦ f are given by

h(n)(t) =
∑ n!

k1!k2! . . . kn!
g(k) (f(t))

(
f (1)(t)

1!

)k1 (
f (2)(t)

2!

)k2
. . .

(
f (n)(t)
n!

)kn

where k = k1 + k2 + . . . + kn and the sum is taken over all
k1, k2, . . . , kn for which k1 + 2k2 + . . .+ nkn = n.

The following lemma establishes bounds on the higher order
derivatives of x̂(λ2) with respect to λ2.

Lemma 8: x̂(λ2) is infinitely differentiable w.r.t. λ2 and,
for any integer p, there exists a constant K � such that its ele-
mentwise p-th derivative, denoted D(p)

λ2
x̂(λ2) verifies, almost

surely
1
N
�D(p)

λ2
x̂(λ2)�22 � K � (51)

Furthermore, D(p)
λ2

x̂(λ2) is a Lipschitz function of x̂(λ2).
Proof: Recall the strongly convex problem, for any finite

N,

x̂(λ2, λ̃2) = arg min
x∈X

g̃(Fx,y) + f(x) +
λ2

2
�x�22

where we absorbed λ̃2 in g̃ as we are only interested in
prolonging on λ2.

The optimality condition then uniquely defines x̂(λ2) of
each value of λ2 and reads:

F�∇g̃(Fx̂(λ2),y) +∇f(x̂(λ2)) + λ2x̂(λ2) = 0.

The function F�∇g̃(F·,y) +∇f(·) + λ2· is real analytic in
R
N and its Jacobian F�Hg̃F + Hf + λ2IN is non singular

since f and g̃ are convex. The implicit function theorem [48]
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then ensures that, at any finite N > 0, the function x̂(λ2) is
elementwise real analytic in λ2. We can now prove the lemma
by induction.

a) Initialization: Owing to assumption 1, we have almost
surely

lim
N→∞

1
N
�x̂(λ2)�22 � K �

and the identity is a Lipshchitz function of x̂(λ2). The function
of λ2 defined by:

λ2 �→ ∇g̃(Fx̂(λ2),y) +∇f(x̂(λ2)) + λ2x̂(λ2)

is always zero valued from the definition of x̂(λ2), thus all its
derivatives are zero. Taking the first derivative with respect to
λ2 yields:

(FTHg̃(Fx̂(λ2),y)F +Hf (x̂(λ2)) + λ2IN )Dx̂(λ2)
+ x̂(λ2) = 0 (52)

where Dp is the (N × 1) dimensional element-wise p-th
differential of x̂(λ2). We then define the operator

O :
{

R→ R
N×N

λ2 �→ FTHg̃(Fx̂(λ2),y)F +Hf (x̂(λ2)) + λ2IN .

We obtain a simple expression for Dx̂(λ2)

Dx̂(λ2) = −O−1(λ2)x̂(λ2).

Since f and g are convex, the operator norm of O−1(λ2) is
bounded with probability one, and Dx̂(λ2) is a Lipschitz func-
tion of x̂(λ2) where 1

N �Dx̂(λ2)�22 is almost surely bounded.
b) Induction step: Assume the property is verified up to

p− 1. For higher order derivatives, applying Leibniz’s rule on
Eq.(52) gives, denoting O(i)(λ2) the i-th derivative of O(λ2),
for the (p-1)-th derivative of (52):

p−1∑
i=0

(
p− 1
i

)
O(i)(λ2)D(p−i)x̂(λ2) +D(p−1)x̂(λ2) = 0,

such that
p−1∑
i=1

(
p− 1
i

)
O(i)(λ2)D(p−i)x̂(λ2) +O(λ2)D(p)x̂(λ2)

+D(p−1)x̂(λ2) = 0.

We obtain the recursion on the differentials of x̂(λ2):

Dpx̂(λ2) = −O−1(λ2)
( p−1∑
i=1

(
p− 1
i

)
O(i)(λ2)D(p−i)x̂(λ2)

+D(p−1)x̂(λ2)
)
,

where the matrix inverse O−1(λ2) is well defined for any
λ2 > 0 since f and g are convex. Using proposition 6, the
assumption on the fast decay of the higher-order (larger than 2)
derivatives of f and g, the bounded spectrum of the matrix F,
and the induction hypothesis, the operator norm of O(p)(λ2)
is bounded with probability one for any p ∈ N, D(p)x̂(λ2)
is a Lipschitz function of x̂(λ2) as a finite sum of Lipschitz
functions of x̂(λ2), and its averaged squared norm is bounded
almost surely. This concludes the induction. �

Lemma 9: Under assumption 1, the function ψ(λ2) defined
as

ψ : R→ R

λ2 → lim
N→∞

1
N

N∑
i=1

φ(x0,i, x̂i(λ2))

is real analytic for λ2 > 0.
Proof: Since φ is pseudo Lipschitz of order 2, there exists

a constant Cφ such that, for any x ∈ R, φ(x) � Cφ(1 + x2).
Thus:

lim
N→∞

|ψ(λ2)| � lim
N→∞

Cφ
N

(1 + �x̂(λ2)�22)
which is almost surely bounded. By assumption, the bound-
edness of ψ is enough to obtain its convergence. For the first
derivative, the pseudo-Lipschitz property ensures that there
exists a constant C�

φ such that, for any x ∈ R,

|dφ
dx

(x)| � C�
φ(1 + |x|).

Then

| d
dλ2

φ(x̂(λ2))| � C
′
φ|

d

dλ2
x̂(λ2)| (1 + |x̂|(λ2)) ,

so there exists a constant C�
ψ such that

lim
N→∞

Dψ(λ2)

� lim
N→∞

1
N
C�
ψ (�Dx̂(λ2)�2 + �Dx̂(λ2)�2�x̂(λ2)�2)

which is almost surely bounded. We have also proved in
the previous lemma that Dx̂(λ2) is a Lipschitz function of
λ2, thus Dψ(λ2) is a PL2 function of x̂(λ2) and its limit
exists according to Assumption 1 (c). For the higher order
derivatives, we use proposition 6 to obtain, for any coordinate
1 � i � n:

| d
(p)

dλ
(p)
2

φ(x̂i(λ2))| =
∑ p!

k1!k2! . . . kp!
φ(k) (x̂i(λ2))

(
x̂

(1)
i (λ2)

1!

)k1 (
x̂

(2)
i (λ2)

2!

)k2
. . .

(
x̂

(p)
i (λ2)
p!

)kp

.

The assumption on the higher order derivatives of φ from
Theorem 1 and Lemma 8 implies that the term

φ(k) (x̂i(λ2))

(
x̂

(1)
i (λ2)

1!

)k1 (
x̂

(2)
i (λ2)

2!

)k2
. . .

(
x̂

(p)
i (λ2)
p!

)kp

has bounded absolute value with probability one, for all coor-
dinates i. Using the characterization of real analytic functions
and assumption 1 (c) from proposition 5, this concludes the
proof. �

B. Analytic Continuation to (λ̃2, λ2) ∈ R
∗
+ × R

∗
+

From assumption 1, the set of fixed point equations from
Theorem 1 admit a unique solution for any λ2, λ̃2. Addition-
ally, the implicit function theorem [48] can also be applied to
the set of fixed point equations from Theorem 1 regarding the
dependencies in λ2, λ̃2 to show that each quantity involved
is real analytic in λ2, λ̃2. At this point, we have two analytic
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functions, the observable and the one defined by the fixed
point of the state evolution equations, that coincide for any
λ2 ∈ [λ∗2,+∞[ and any λ̃2 > 0. We can now use the analytic
continuation theorem [48] to show that these functions remain
equal for any λ2 > 0 and for λ̃2 > 0. This concludes the proof
of Lemma 5.

C. Real Analytic Approximation of Strongly Convex Problems

Consider

x̂�(λ2) = argmin
x∈RN

g̃�(Fx,y) + f�(x) +
λ2

2
�x�22

x̂(λ2) = arg min
x∈RN

g̃(Fx,y) + f(x) +
λ2

2
�x�22

where g�, f� are real analytic approximations of the loss g and
regularizer f verifying assumption 1(e). To relax the analytic
approximation, we need to prove the following equality.

lim
�→0

lim
N→∞

1
N

N∑
i=1

φ(x̂�,i(λ2)) = lim
N→∞

1
N

N∑
i=1

φ(x̂i(λ2)).

Under assumption 1 (c) and owing to the definition of PL2
functions, it is sufficient to prove

lim
�→0

lim
N→∞

1
N
�x̂�(λ2)− x̂(λ2)�22 = 0.

Denote C the cost function g̃(F.,y)+f(.) and its real analytic
counterpart C� the cost function g̃�(F.,y) + f�(.).

∀x ∈ R
d lim

�→0
C�(x) = C(x).

Since minimizers of convex functions are fixed points of the
corresponding proximity operators, it holds that

1
N
�x̂�(λ2)− x̂(λ2)�22

=
1
N
�ProxCε(.)+

λ2
2 �.�2

2
(x̂�(λ2))− ProxC(.)+

λ2
2 �.�2

2
(x̂(λ2))�22

� 1
N
�ProxCε(.)+

λ2
2 �.�2

2
(x̂�(λ2))− ProxCε(.)+

λ2
2 �.�2

2
(x̂(λ2))�22

+
1
N
�ProxCε(.)+

λ2
2 �.�2

2
(x̂(λ2))− ProxC(.)+

λ2
2 �.�2

2
(x̂(λ2))�22.

The results from appendix G-C.2 show that proximity opera-
tors of strongly convex functions are contractions, thus their
exists a positive constant Lλ2 < 1 such that for any realisation
of F,x0,ω0

1
N
�x̂�(λ2)− x̂(λ2)�22 � 1

N
Lλ2�x̂�(λ2)− x̂(λ2)�22

+
1
N
�ProxCε(.)+

λ2
2 �.�2

2
(x̂(λ2))− ProxC(.)+

λ2
2 �.�2

2
(x̂(λ2))�22.

Furthermore, the function ProxCε(.)+
λ2
2 �.�2

2
(.) converges uni-

formly to ProxC(.)+
λ2
2 �.�2

2
(.) when �→ 0, and thus

lim
�→0

lim
N→∞

1
N

× �ProxCε(.)+
λ2
2 �.�2

2
(x̂(λ2))− ProxC(.)+

λ2
2 �.�2

2
(x̂(λ2))�22=0

which gives

lim
�→0

lim
N→∞

1
N
�x̂�(λ2)− x̂(λ2)�22
� Lλ2 lim

�→0
lim
N→∞

1
N
�x̂�(λ2)− x̂(λ2)�22.

Since Lλ2 < 1, this implies

lim
�→0

lim
N→∞

1
N
�x̂�(λ2)− x̂(λ2)�22 = 0.

D. Continuous Extension to λ̃2 = 0

Making the dependence on λ̃2 explicit, define

x̂(λ̃2, λ2)=arg min
x∈RN

g(Fx,y) + f(x) +
λ2

2
�x�22 +

λ̃2

2
�Fx�22

x̂(0, λ2) = arg min
x∈RN

g(Fx,y) + f(x) +
λ2

2
�x�22.

Both cost functions defining x̂(λ̃2, λ2), x̂(0, λ2) are strongly
convex for any λ2 > 0. We can then use the same argument
as in the previous subsection C to conclude

lim
λ̃2→0

lim
N→∞

1
N
�x̂(λ̃2, λ2)− x̂(0, λ2)�22 = 0.

E. Continuous Extension to λ2 = 0

For λ̃2 = 0, the estimator x̂(λ2) is still unique for any
λ2 > 0. We now need to study the limiting ridgeless estimator

lim
λ2→0

argmin
x∈X

g(Fx,y) + f(x) +
λ2

2
�x�22

for functions f, g that may not be strictly convex. To do so
we will use Theorem 26.20 from [40], which is reminded
in appendix B, proposition 4. Under assumption 1 and
since the l2 norm is strongly convex thus uniformly convex,
we have, denoting x̂0 the unique least l2 norm element in
argminx∈X g(Fx,y) + f(x),

lim
λ2→0

x̂(λ2) = x̂0.

We can therefore uniquely define the continuous extension of
any continuous observable φ of x̂(λ2) such that φ(λ2 = 0) =
φ(x̂0). Then this observable and the corresponding function
implicitly defined by the set of fixed point equations are
continuous on [0,+∞[ and equal for any λ2 ∈]0,+∞[, and
thus also equal at λ2 = 0 using the definition of continuity
and the fact that ]0,+∞[ is dense in [0,+∞[.

F. Real Analytic Approximation of Usual Cost Functions
With Fast Decaying Higher-Order Derivatives

In this section, we show that any combination of the square,
logistic and hinge loss with 
1 or 
2 verifies Assumption 1
(e), i.e. they can be approximated with real analytic functions
whose second derivatives have higher-order derivatives that
decrease faster than any polynomial. The square loss and 
2
immediately verify these assumptions. Assuming y = 1 with-
out loss of generality, the second derivative of the logistic loss
is given by

g��(x) =
exp(x)

(1 + exp(x))
.

All higher order derivatives will be a polynomial in exp(x)
divided by a higher order polynomial in exp(x) plus one.
Thus, for any sign of x, higher-order derivatives of the logistic
loss will decrease exponentially fast when the absolute value
of x goes to infinity. We now turn to the 
1 penalty. Real
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analytic approximations of functions may be constructed by
considering their convolution with a Gaussian kernel, which is
also known as the Weierstrass transform. DenotingW� [f ] the
Weierstrass transform of a function f with parameter � > 0,
we obtain for the 
1 penalty

W� [|.|] (x) =
1√
2π�

∫ +∞

−∞
|u| exp

(
− 1

2�
(u− x)2

)
du

=
1√
2π�

(
2� exp

(
− 1

2�
x2

)
+ 2x

∫ x

0

exp
(
− 1

2�
u2

)
du

)

whose second derivative reads

d2

dx2
W� [|.|] (x) =

√
2√
π�

exp
(
− 1

2�
x2

)
,

thusW� [|.|)] is strongly convex and its higher order derivatives
all decay faster than any finite order polynomial. A similar
computation shows that, for the hinge loss,

W� [max(0, 1− .)] (x)

=
1√
2π�

∫ +∞

−∞
max(0, 1− u) exp

(
− 1

2�
(u − x)2

)
du

=
1√
2π�

(
(1− x)

√
π�

2
+ � exp

(
− 1

2�
(1− x)2

)

+ (1− x)
∫ x

0

exp
(
− 1

2�
(1− x)2

)
du

)

whose second derivative reads

d2

dx2
W� [max(0, 1− .)] (x) =

1√
2π�

exp
(
− 1

2�
(1− x)2

)
.

Thus the hinge loss and 
1 penalty verify Assumption 1 (e).
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