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Abstract— This work addresses the problem of learning the
topology of a network from the signals emitted by the network
nodes. These signals are generated over time through a linear
diffusion process, where neighboring nodes exchange messages
according to the underlying network topology, and aggregate
them according to a certain combination matrix. We consider the
demanding setting of graph learning under partial observability,
where signals are available only from a limited fraction of nodes,
and we want to establish whether the topology of these nodes
can be estimated faithfully, despite the presence of possibly many
latent nodes. Recent results examined this problem when the net-
work topology is generated according to an Erdős-Rényi random
model. However, Erdős-Rényi graphs feature homogeneity across
nodes and independence across edges, while, over several real-
world networks, significant heterogeneity is observed between
very connected “hubs” and scarcely connected peripheral nodes,
and the edge construction process entails significant dependen-
cies across edges. Preferential attachment random graphs were
conceived primarily to fill these gaps. We tackle the problem of
graph learning over preferential attachment graphs by focusing
on the following setting: first-order vector autoregressive models
equipped with a stable Laplacian combination matrix, and a net-
work topology drawn according to the popular Bollobás-Riordan
preferential attachment model. The main result established in this
work is that a combination-matrix estimator known as Granger
estimator achieves graph learning under partial observability.

Index Terms— Graph learning, topology inference, preferential
attachment, Bollobás-Riordan graph, partial observability.

I. INTRODUCTION

THIS work deals with the problem of learning the topol-
ogy of a network, i.e., the graph, from the signals

evolving across the network nodes according to discrete-time
diffusion dynamics. The resulting graph learning problem,
a.k.a. topology inference or network tomography, arises across
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many domains, for example, in biology, when one is interested
in revealing how fish in a school coordinate their movements
to escape a predator [2], [3]; in social learning, to discover
how spatially dispersed network agents collaboratively share
information to form their own opinions [4]; in neuroscience,
when the goal is to unveil the relationships between functional
and structural connectivity in the brain [5].

There exist several works addressing the graph learning
problem. We refer the reader to the survey articles [6], [7]
for an overview. Most works assume that signals from all
network nodes can be gathered to estimate the topology [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17]. In contrast, one
distinguishing feature of this work is the challenging scenario
of partial observability, where only signals from a limited
fraction of nodes are available to estimate the topology of the
probed subnetwork.

Useful conditions for graph learning under partial observ-
ability have been obtained in [18], [19] for graphs having
a polytree shape. More general shapes are considered in
[20], [21], where, however, conditions for graph learning are
formulated in terms of detailed local features of the network
topology, which are not particularly suited to the large-scale
setting considered here. In order to circumvent dependence on
specific network structures, an asymptotic approach is consid-
ered in [22], [23], in the context of high-dimensional graphical
models with latent variables. In [22], provable learning guaran-
tees are offered under an appropriate local separation criterion,
whereas in [23] graph learning is shown to be achievable
under the so-called sparsity plus low-rank condition, namely,
when the probed subnetwork is sparsely connected, and the
unobserved subnetwork has suitably bounded size.

However, all the aforementioned works do not consider
the time dynamics of the signals emitted by the nodes, and,
hence, they are not applicable to dynamical systems like
the Vector AutoRegressive (VAR) model considered here —
see Eq. (2) further ahead. For such models, relevant results
under full observability1 are obtained in [24], [25], [26], [27],
while partial observability is addressed in [28], relying on
the aforementioned sparsity plus low-rank assumption used
in [23].

Graph learning under partial observability with the VAR
model considered in this work was recently addressed
in [29], [30], [31], [32], [33], for the case where the

1The partial samples setting considered in [26], [27] is different from the
partial observability setting. In the latter, samples from only a subset of the
network are available, while in [26], [27] samples from the entire network are
available but, at each node, a certain fraction per node can be lost/corrupted.
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dynamical system runs on top of an Erdős-Rényi random
graph [34], [35]. Under reasonable technical assumptions,
it was shown that graph learning is achievable under different
regimes of connectivity. Erdős-Rényi graphs are by far the
most common model adopted by researchers and practition-
ers to get insights about network problems and to validate
network algorithms. The generative model of Erdős-Rényi
graphs draws the edges independently one from the other, and
in a completely homogeneous manner. Owing to this simple
generation rule, these graphs are often unable to represent
faithfully a number of phenomena emerging over real-world
networks. For this reason, going beyond the Erdős-Rényi
model is of critical importance.

In order to overcome the aforementioned limitations, other
random graphs have been proposed in the last decades, among
which a prominent role is played by preferential attachment
graphs. The physical principles underlying the preferential
attachment mechanism were originally discovered in [36],
stimulating the research of several mathematical graph mod-
els, with one of the most popular and elegant being the
Bollobás-Riordan model [37], [38].

These types of graphs were shown to capture several use-
ful characteristics of real-world networks. For example, they
are able to encompass the coexistence between hubs with
many connections and peripheral, scarcely connected nodes.
In contrast, as noticed, Erdős-Rényi graphs are homogeneous
by their own nature [34], [35]. As explained in Sec. III, such
enhanced descriptive power hinges basically on the statistical
dependence enforced between the edges, as opposed to the
edge independence implied by the Erdős-Rényi construction.

In view of this dependence, extending results valid for
Erdős-Rényi graphs to preferential attachments graphs is a
challenging task, which is addressed in this work providing
the following main contributions. First, we formulate a suf-
ficient condition for consistent graph learning under partial
observability in terms of an identifiability gap (Theorem 1).
This condition requires to extend existing results [6] to deal
with the randomness of the identifiability gap that arises from
the preferential attachment construction. Second, we ascertain
that, when the network topology is a Bollobás-Riordan graph
and the exchange of signals between neighboring nodes is
ruled by the Laplacian matrix of the graph, a matrix estimator
known as Granger estimator achieves consistent graph learn-
ing, assuming available an arbitrarily large number of samples
(Theorem 2). Third, we establish that the sample complexity of
the Granger estimator over Bollobás-Riordan graphs is almost
linear in the network size (Theorem 3).

Notation. Matrices are denoted by upper-case letters, vec-
tors by lower-case letters. We use boldface font to denote
random variables, and normal font for their realizations. Sets
and graphs are denoted by upper-case calligraphic letters. For
an N × N matrix Z , the submatrix spanning the rows of Z
indexed by set P ⊆ {1, 2, . . . , N} and the columns indexed by
set T ⊆ {1, 2, . . . , N}, is denoted by ZPT , or alternatively by
[Z]PT . When P = T, the submatrix ZPT is abbreviated as ZP.
Moreover, in the indexing of a submatrix we keep the index set
of the corresponding full matrix. For example, if P = {2, 3}
and T = {2, 4, 5}, the submatrix M = ZPT is a 2× 3 matrix,

indexed as follows:

M =
(

z22 z24 z25

z32 z34 z35

)
=
(

m22 m24 m25

m32 m34 m35

)
. (1)

For a graph G, the corresponding capital letter G is used
to denote its adjacency matrix, which has zero diagonal,
and whose off-diagonal (k, �)-entry gk� is equal to 1 if a
directed edge from � to k exists, and is zero otherwise. The
symbol ‖ · ‖max computes the maximum absolute entry of its
matrix argument, whereas the symbol ‖·‖max-off computes the
maximum absolute off-diagonal entry of its matrix argument.
The symbol

p−→ denotes convergence in probability as the
network size scales to infinity. Likewise, the symbol

a.s.−−→
denotes almost-sure convergence.

II. GRAPH LEARNING UNDER PARTIAL OBSERVABILITY

We consider a random graph defined over N nodes and
denoted by G(N) (bold notation highlights graph random-
ness). The qualification “random” signifies that connections
between nodes are drawn according to some probabilistic
mechanism. Given a certain graph, the actions of the network
nodes are described by a distributed linear dynamical system.
Every node k, at time i = 1, 2, . . . , is driven by a random
input source xk,i(N) and produces the output signal yk,i(N)
according to the following diffusion model, a.k.a. first-order
VAR model [39]:

yk,i(N) =
N∑

�=1

ak�(N)y�,i−1(N) + xk,i(N), (2)

which can be conveniently recast in matrix form as:

yi(N) = A(N)yi−1(N) + xi(N), (3)

where xi(N) and yi(N) stack the entries xk,i(N) and
yk,i(N) into N × 1 column vectors, and where matrix
A(N) = [ak�(N)] collects the nonnegative combination
weights ak�(N).2 The eigenvalues of A(N) are assumed to
lie strictly inside the unit circle to ensure that system (2) is
stable. The combination matrix A(N) reflects the intercon-
nections dictated by graph G(N). Thus, weight ak�(N) is
strictly positive if there is an edge from � to k, and is zero
otherwise. In view of (2), this structure implies that node k
at time i updates its state yk,i(N) by incorporating only
previous-time signals y�,i−1(N) received from nodes � for
which ak�(N) > 0. In general, A(N) need not be symmetric.
For example, we could have ak�(N) > 0 and a�k(N) = 0.
Accordingly, when we talk of “connected/disconnected pairs”,
we refer to ordered pairs with (k, �) being distinct from (�, k).

The stochastic dynamical system in (2) contains different
sources of randomness. All involved random variables are
assumed to lie in a common probability space (Ω, F, P ). One
source of randomness is given by the sequence of random
graphs G(N), for N = 1, 2, . . . We need to specify which
probabilistic mechanism is used to generate such sequence.
In the forthcoming sections we will focus on preferential

2Making explicit the dependence of the combination weights upon N is
critical in our treatment, since we will need to examine the properties of
these weights and related network descriptors as functions of N .
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attachment random graphs, described in Sec. III-C. The com-
bination matrix A(N) is a deterministic function of the
graph G(N). Thus, once a graph realization is fixed, the
combination matrix becomes deterministic, and the system
in (2) evolves according to the randomness of the input signals
xk,i(N), which are independent and identically distributed
(i.i.d.) w.r.t. to node index k, time index i, and network size N .
These signals are statistically independent of the sequence
of graphs, and, without loss of generality, are assumed to
have zero mean and unit variance. The vectors y0(N) that
initialize the recursion (2) are assumed to be square-integrable
random vectors with arbitrary distribution, independent of all
input signals xk,i(N). They are allowed to depend only on
G(N) and, conditionally on G(N), they are independent of
all other graphs in the sequence. The particular distribution
of y0(N) will be mostly immaterial for our results, since
we will be dealing with the steady-state regime where the
number of samples goes to infinity and the initial state does
not play a role. Only when we study the sample complexity,
we will assume a specific distribution for the initial state —
see Theorem 3.

A. Partial Observability

The evolution of the signals yk,i(N) is dictated by repeated
interactions between neighboring nodes, and these interactions
are determined by the graph topology. Thus, it is legitimate to
ask whether the topology can be inferred from observing the
evolution of the signals at the nodes.

However, in practice it is often impossible to collect signals
from all nodes, and one can more likely observe signals
emitted within a subset of nodes. Given a probed subset P

available under partial observability, and an observation time
window i = 1, 2, . . . , T , the collection of signals available to
perform graph learning will be compactly denoted by:

YP(T, N) � {yk,i(N) : k ∈ P, i ∈ [1, T ] }. (4)

Our goal is to estimate the interconnections between nodes
in P, namely, the topology of the partial graph GP(N) relative
to P, starting from the signals in (4). Formally, we need to
build a graph estimator3:

ĜP(T, N) = f(YP(T, N)), (5)

where in the notation we emphasized that the properties of the
graph estimator will depend on the number of samples and the
network size. We will judge the goodness of a graph estimator
in the classical asymptotic framework where the network size
N goes to infinity, and the sample size T = TN to grow
with N . The law TN follows will characterize the so-called
sample complexity of the estimator, namely, how the number
of samples scales with the network size to provide faithful
graph learning. In this analysis, we allow the probed subset to
depend on N , namely, we introduce a deterministic sequence
of subsets:

SN ⊆ {1, 2, . . . , N}, (6)

3Formally, function f in (4) and function g in (9) are allowed to depend
on T , N , and P. This dependence is left implicit for ease of notation.

where SN is the probed subset of the graph of size N . For ease
of notation, when a graph on N nodes or an N × N matrix
is evaluated over subset SN , subscript N will be omitted, for
example, we will write GS(N) in place of GSN

(N). According
to this notation, a graph estimator will be said to be consistent
for the family of random graphs G(N) and for the sequence
of probed subsets SN if:

lim
N→∞

P

[
ĜS(TN , N) = GS(N)

]
= 1. (7)

One meaningful asymptotic regime to quantify the degree
of observability, studied in [29], prescribes that the cardinality
of SN scales with the network size so as to converge to an
asymptotic fraction ξ of probed nodes:

|SN |
N

N→∞−→ ξ ∈ (0, 1). (8)

We will consider this specific regime later in Sec. IV.

B. Achievability of Consistent Graph Learning

In order to build a graph estimator, we start by building an
estimator for the combination submatrix AP(N):

ÂP(T, N) = g(YP(T, N)). (9)

It is seen that the properties of the matrix estimator ÂP(T, N)
will depend on the number of samples and the network
size. We will follow the following roadmap to establish
whether graph learning is possible. First, we disregard sample
complexity issues and consider the limiting case where an
infinite number of samples is ideally available, namely, with
T → ∞ and N fixed. The estimator corresponding to an
infinite number of samples will be referred to as the limiting
estimator ÂP(N), which is formally introduced in Definition 1
further ahead. Second, in Definition 2, we specify when a
limiting estimator is successful in recovering the true graph as
N → ∞. Finally, in Theorem 1 we come full circle and show
that graph learning is achievable when the number of samples
grows together with the network size. Let us now introduce
the notion of limiting matrix estimator.

Definition 1 (Limiting Matrix Estimator): We say that a
matrix estimator ÂP(T, N) converges to a limiting estimator
ÂP(N) if, for any ε > 0:

lim
T→∞

P

[
‖ÂP(T, N) − ÂP(N)‖max > ε|A(N) = A

]
= 0.

(10)

�
We notice that: i) the conditional probability in (10) depends

on the overall combination matrix A(N); and ii) the lim-
iting estimator ÂP(N) inherits the randomness in A(N),
but in (10) we used normal font to denote it since the
realization of A(N) is fixed in the pertinent conditional space.
Condition (10) is a standard condition of consistency achieved
by many empirical estimators, which are convergent as the
number of samples scales to infinity.

If a limiting estimator ÂP(N) exists, it makes sense to
examine whether it allows us to recover faithfully the true
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graph. To this end, it is useful to introduce the following notion
of consistency.

Definition 2 (Universal Local Structural Consistency of the
Limiting Matrix Estimator): Consider a family of random
graphs G(N) and a deterministic sequence of probed sub-
sets SN . If there exist a positive sequence cN and a positive
random variable γ defined on the probability space (Ω, F, P ),
such that:

‖cNÂS(N) − γGS(N)‖max-off
p−→ 0, (11)

then we say that the limiting estimator ÂP(N) achieves
universal local structural consistency for the family of graphs
G(N) and for the sequence of probed subsets SN , with scaling
sequence cN and identifiability gap γ. �

As a matter of terminology: i) the adjective universal is used
because, as we will promptly show, Eq. (11) automatically
enables the possibility of recovering the topology by means
of unsupervised clustering, i.e., without prior knowledge as
regards the network size and other system parameters; ii) the
adjective local comes from the observation that the structure
of the topology connecting nodes in the probed subset will be
faithfully recovered by probing only these particular nodes;
and iii) the adjective structural is used because we estimate
only the structure (i.e., the support graph) underlying the
combination matrix.

By making explicit the definition of ‖ · ‖max-off , we see
that Definition 2 is equivalent to the definition of Universal
Local Structural Consistency used in [6] for the case of null
bias (which is of interest for the type of graphs studied here),
but for one important novelty: Definition 2 encompasses the
possibility that the identifiability gap is random. Notably,
we will see that randomness in the identifiability gap does
not affect graph learning achievability.

In principle, the nature of the randomness of γ looks rather
abstract from the definition. It is therefore useful to explain
where this randomness comes from in our specific setting.
As we will see in more detail later, the Bollobás-Riordan
preferential attachment procedure produces a sequence of
graphs of increasing size by adding edges at each step of
the procedure. In this way, we obtain a sequence of random
graphs defined on the same probability space. The random
variable γ will arise as a specific limiting value associated
to the sequence of maximum degrees of the graphs obtained
during the preferential attachment procedure.

Let us now give some insight into the practical meaning of
Definition 2. Since γ is positive, from (11) we can write, for
ε > 04:

lim
N→∞

P

[
‖cNÂS(N) − γ GS(N)‖max-off > εγ

]
= 0, (13)

4Given a sequence of random variables e(N) vanishing in probability with
N , and a strictly positive random variable z, for an arbitrary δ > 0 we have:

P[e(N) > z] ≤ P[e(N) > z, z > zδ/2] + P[z ≤ zδ/2]

≤ P[e(N) > zδ/2] + δ/2 < δ, (12)

where zδ/2 > 0 is chosen such that P[z ≤ zδ/2] ≤ δ/2 (a condition that
can be met for any δ since P[z ≤ 0] = 0), and the last inequality holds for
sufficiently large N since e(N) vanishes in probability. The arbitrariness of
δ implies that limN→∞ P[e(N) > z] = 0, and (13) follows from (11) by
setting e(N) = ‖cN

�AS(N) − γ GS(N)‖max-off and z = εγ.

Fig. 1. Graphical illustration of Definition 2. Blue circles denote disconnected
node pairs, whereas red circles denote connected pairs.

which means that, with high probability as N → ∞, for all
k �= �:

cN âk�(N) ∈

⎧⎪⎨⎪⎩
[(1 − ε)γ, (1 + ε)γ], (k, �) conn.

[−εγ, εγ], (k, �) disc.

(14)

We see that, for small ε, the estimated matrix entries are tightly
clustered: i) around a positive value γ for connected node
pairs, and ii) around zero for disconnected node pairs — see
Fig. 1 for a graphical illustration. This property automatically
enables the possibility of clustering the entries of matrix
ÂS(N) so as to classify connected vs. disconnected pairs,
ruling out the trivial case that the probed subgraph is either
fully connected or fully disconnected, i.e., that we have only
one cluster.

It is not difficult to envisage clustering algorithms that can
achieve correct classification of the node pairs under condi-
tion (14). The choice of a particular clustering algorithm could
matter from a practical perspective but, from a theoretical
standpoint, it suffices to know that there exists at least one
algorithm achieving correct clustering. To show that such an
algorithm actually exists, we need to introduce first a formal
definition of correct clustering.

Definition 3 (Correct Clustering): Let A = [αk�] be an S×S
matrix with nonnegative entries and let G the adjacency matrix
corresponding to the support graph of A. The diagonal entries
of G are zero by convention (since we are not interested in
self-loops).

Let Â = [α̂k�] be an estimated matrix fulfilling, for certain
positive values ε and a, and for all k �= �:

α̂k� ∈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[(1 − ε)a, (1 + ε)a], if αk� > 0

(i.e., if (k, �) is connected in G)

[−εa, εa], otherwise

(15)

and let
Ĝ = graphclu(Â) : R

S×S → {0, 1}S×S (16)

be a clustering algorithm that computes an estimated adjacency
matrix Ĝ. Then, algorithm graphclu(·) will be said to be
correct if, when the sets of connected and disconnected pairs
in G are both non-empty, for a sufficiently small ε and
independently of the value of a, we have Ĝ = G. �

As an example of clustering that matches Definition 3, let us
consider an algorithm that computes the midpoint between the
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maximum and minimum off-diagonal entries of the estimated
matrix. Using the bounds in (15) we can write:(

1
2
− ε

)
a ≤ maxk,� α̂k� − mink,� α̂k�

2
≤
(

1
2

+ ε

)
a. (17)

Accordingly, correct clustering will be surely performed if the
lowest admissible value (1 − ε)a for the connected pairs lies
above the threshold, namely if

(1 − ε)a >

(
1
2

+ ε

)
a ⇔ ε <

1
4
, (18)

and if the highest admissible value εa for the disconnected
pairs lies below the threshold, namely if

εa <

(
1
2
− ε

)
a ⇔ ε <

1
4
. (19)

In summary, the simple algorithm that employs an interme-
diate threshold to separate the clusters matches Definition 3,
provided that ε < 1/4. However, it was shown in [33] that
such algorithm, even if provably consistent as the network size
scales to infinity, might suffer for finite network size effects.
For this reason, another clustering algorithm was proposed
in [33], namely, a modified k-means algorithm that: i) first
finds all admissible k-means (with k = 2) cluster configura-
tions, i.e., the configurations guaranteeing that the midpoint
between the cluster centroids separate the clusters [40]); and
ii) then selects the configuration featuring the largest distance
between centroids. It was shown in [33] that this algorithm
satisfies Definition 3 for any ε < 1/6.

From the above arguments, we conclude that a limiting
estimator fulfilling Definition 2, paired with an algorithm
graphclu(·) fulfilling Definition 3, achieves correct classifica-
tion. However, in practice we need to establish that consistent
graph learning is achieved by sample estimators, rather than by
limiting estimators. The next theorem fills this gap, revealing
that looking at the properties of the limiting estimator is in
fact sufficient.

Theorem 1 (Universal Local Structural Consistency of the
Limiting Matrix Estimator Implies Consistency of the Graph
Estimator): Let ÂP(T, N) be an estimator that converges to
the limiting matrix estimator ÂP(N) as T → ∞ according to
Definition 1. Consider a family of graphs G(N) and a sequence
of probed subsets SN such that the probability that GS(N)
is either fully connected or fully disconnected vanishes as
N → ∞. Let the limiting matrix estimator achieve universal
local structural consistency according to Definition 2, and let
graphclu(·) be a correct clustering algorithm according to
Definition 3. Then, the graph estimator:

ĜP(T, N) = graphclu
(
ÂP(T, N)

)
(20)

is consistent for the family of graphs G(N) and for the
sequence of probed subsets SN , namely, there exists a scaling
law TN that ensures:

lim
N→∞

P

[
ĜS(TN , N) = GS(N)

]
= 1. (21)

Proof: See Appendix A.

C. Granger Estimator

Preliminarily, it is necessary to introduce the steady-state
covariance matrix and the one-lag covariance matrix corre-
sponding to model (2), which are, respectively:

R0(N) = lim
i→∞

E
[
yi(N)y�

i (N)
∣∣A(N)

]
, (22)

R1(N) = lim
i→∞

E
[
yi(N)y�

i−1(N)
∣∣A(N)

]
, (23)

where bold notation for the covariance matrices is used
to encompass randomness of the underlying graph. Under
model (2) (with a stable matrix A(N)), it is known that the
covariance matrix is the solution to the discrete-time Lyapunov
equation A(N)R0(N)A�(N) − R0(N) + I = 0, which
is [41]:

R0(N) =
∞∑

i=0

Ai(N)[Ai(N)]�. (24)

Moreover, by exploiting (2) it is readily seen that:

R1(N) = A(N)R0(N), (25)

which implies the following inversion formula:

A(N) = R1(N)R−1
0 (N) ⇒ AP(N) = [R1(N)R−1

0 (N)]P.

(26)

Since covariance matrices can be faithfully estimated through
sample covariance matrices as the number of samples
increases, Eq. (26) suggests that the true matrix AP(N) can
be actually estimated from the samples, which would imply
that consistent graph learning is trivially possible.

However, under partial observability we can only compute
the covariance matrices over the probed subset, [R0(N)]P
and [R1(N)]P. As a result, computation of the inversion
formula (26) is impaired by the unavailability of signals from
the latent nodes. Nevertheless, the limiting estimator (which
actually depends only on the covariances over the probed
subset):

ÂP(N) = [R1(N)]P([R0(N)]P)−1 (27)

is a meaningful choice that, in the context of Granger causality,
is referred to as the Granger estimator or predictor, and
attempts to provide the best linear prediction of the future
samples from the past one-lag samples over the probed subset.
On the other hand, from elementary matrix algebra we know
that:

[R1(N)]P([R0(N)]P)−1 �= [R1(N)R0(N)−1]P, (28)

which gives rise to the question of whether ÂP(N) can be
still profitably used to estimate graph GP(N). We will answer
this question in Sec. IV, with reference to our setting of
preferential attachment Bollobás-Riordan graphs.

Finally, we introduce the sample Granger estimator:

ÂP(T, N) = [R1(T, N)]P([R0(T, N)]P)−1, (29)

which replaces the true covariance matrices appearing in (27)
with the sample covariance matrices R0(T, N) and R1(T, N),
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Fig. 2. One example of iterative construction of a Bollobás-Riordan multigraph with parameter η = 3.

whose (k, �)-entries are defined as:

[Rj(T, N)]k� =
1

T − j

T∑
i=1

yk,i(N)y�
�,i−j(N), j = 0, 1.

(30)
By ergodicity, the sample Granger estimator converges to the
limiting estimator in (27) in the sense of Definition 1.

D. Laplacian Combination Matrix

Once a network graph G(N) is constructed, it is neces-
sary to define a policy to assign the combination matrix
A(N). Combination matrices arise across several domains,
including distributed optimization, adaptation and learning
over networks, social learning, network stochastic control.
In all these domains, the system designer is called to run
an algorithm (e.g., for optimization, learning, control) over
a certain network topology. To this end, he/she devises a dis-
tributed procedure where the network nodes exchange locally
information according to a certain combination matrix. One
popular choice in these contexts is the Laplacian policy [42],
[43], [44], [45], [46], [47]. The graph Laplacian L(N) is a
matrix whose off-diagonal (k, �)-entry is −1 for connected
pairs (k, �) and 0 otherwise, and whose k-th main diagonal
entry is the degree of node k. Starting from L(N), the
Laplacian combination matrix is defined as:

A(N) = ρ × (I − c L(N)), c � λ

1 + μG(N)
, (31)

where μG(N) is the maximal degree of G(N), λ ≤ 1 is a
positive parameter that tunes the relative importance of the
self-weights, and ρ < 1 is a positive parameter that grants
stability of the dynamical system in (2) — see [41]. The
Laplacian combination rule can be conveniently described in
terms of the individual entries as follows, for k �= �:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ak�(N) = 0, (k, �) disconnected,

ak�(N) =
ρλ

1 + μG(N)
, (k, �) connected,

akk(N) = ρ −
N∑

�=1
� �=k

ak�(N).

(32)

III. BOLLOBÁS-RIORDAN MODEL

Preferential attachment graphs are typically obtained
through an iterative process that goes as follows. Starting from
a graph with a certain structure, at each subsequent iteration
one node is added, along with some edges connecting this
node to the graph constructed until that iteration. The term
“preferential attachment” is used because the probability that

the new node is connected to an existing node is proportional
to the degree of the latter. Therefore, nodes that have already
experienced a large amount of connections are favored, giving
rise to a dichotomy in the network, where some nodes emerge
as hubs with most of the connections, whereas the remaining
nodes become peripheral and feature few connections.

The way to build a preferential attachment model is not
unique. Since the pioneering work [36], several preferential
attachment models have been proposed. One of the most popu-
lar variants is the Bollobás-Riordan random graph, which is the
model examined in this work [37], [38]. The Bollobás-Riordan
model provides an elegant mathematical formulation that
allows to capture many features of real-world networks and
to obtain clean analytical results for useful graph descriptors
(e.g., node degrees, minimum and maximal degrees, centrality
measures). Let us delve into the mathematical description of
the Bollobás-Riordan model [37], [38].

First of all, a Bollobás-Riordan graph is a multigraph,
which means that multiple self-loops and multiple edges are
permitted. A random multigraph of size n will be denoted by
M(n) and its adjacency matrix by M(n). Matrix M(n) is
the symmetric (since Bollobás-Riordan graphs are undirected)
n × n matrix whose off-diagonal (k, �)-entry mk�(n) is the
number of edges between nodes k and �, and whose diagonal
entry mkk(n) is the number of self-loops of node k.

Then, the Bollobás-Riordan preferential-attachment model
with parameter η ∈ N generates iteratively a random sequence
of multigraphs M(n), for n = 1, 2, . . . , according to the
following procedure — see Fig. 2 for a graphical illustration.
The initial multigraph M(1) is a deterministic multigraph with
one node and η self-loops. Multigraph M(n) is constructed
starting from M(n − 1) by adding a new node n and η
new connections (edges or self-loops). Specifically, η steps
are performed, and at each step node n is connected to
a node randomly chosen from the set {1, 2, . . . , n}. The
intermediate multigraph obtained at steps s = 1, 2, . . . , η,
is denoted by M(n; s). Accordingly, since after η steps we
obtain the updated multigraph M(n), we have the identity
M(n; η) = M(n). Likewise, we have M(n; 0) = M(n − 1).

Exploiting the procedure shown in Fig. 2 we can argue that
the adjacency matrices possess the following structure:

M(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

m1,n(n)

M(n − 1)
...

mn−1,n(n)
mn,1(n) · · · mn,n−1(n) mn,n(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

(33)
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with M(1) = η. In fact, when passing from M(n − 1) to
M(n) we simply attach η new edges to the new node n, so that
the number of edges mk�(n − 1) between any pair of nodes
k, � < n remains unaltered. In comparison, the adjacency
matrix entries relative to the fresh node n evolve according
to the following rule:

mnk(n) = mkn(n) =
η∑

s=1

I(v(n; s) = k), k ∈ {1, . . . , n}

(34)

where I(·) is the indicator function (which is equal to 1 if
its argument is true and is zero otherwise) and we denote
by v(n; s) the particular node that becomes connected to n
through the edge introduced at step s. For this reason, for any
k ≤ � ≤ n, the (k, �)-entry of the adjacency matrix is actually
determined only at iteration �, and, hence, it makes sense to
drop the dependence on n and write:

mk�(n) = mk�(�) � mk� = m�k. (35)

A. Node Degrees and Preferential Attachment Rule

We adopt the standard convention that the degree of node k,
denoted by dM,k(n), is the number of edges connected to k
plus twice5 the number of self-loops [48]:

dM,k(n) =
n∑

�=1
� �=k

mk� + 2 mkk. (36)

Likewise, we denote by dM,k(n; s) the degree of node k in
the intermediate multigraph M(n; s).

At each step s, the degree of a node k �= n in the
intermediate multigraph M(n; s) increases by 1 if the node
picked at step s is equal to k, namely,

dM,k(n; s) = dM,k(n; s − 1) + I(v(n; s) = k). (37)

In comparison, the degree of the new node n increases by 1 if
the node picked at step s is equal to k < n, while it increases
by 2 if node n itself is picked, since each self-loop is counted
twice in the degree, with the initialization dM,n(n; 0) = 0.

dM,n(n; s) = dM,n(n; s − 1) + 1 + I(v(n; s) = n). (38)

The description of the multigraph construction is now com-
pleted by assigning the probability that a particular node is
picked. Consider first the probability that the new node n is
attached to an existing node k < n, namely,

P [v(n; s) = k|M(n; s − 1)] =
dM,k(n; s − 1)

1 +
∑n

�=1 dM,�(n; s − 1)
.

(39)

Let us ignore for now the term 1 appearing in the denominator.
We see that the probability mass function in (39) matches well
the preferential attachment paradigm, since we see that nodes

5If we sum all degrees over index k in (36), each edge is counted twice
(because mk� = m�k), and each self-loop is counted twice (because of the
factor 2). As a result, with the adopted convention the half-sum of the degrees
in the multigraph is exactly equal to the total number of edges and self-loops.

with higher degrees in M(n; s − 1) are more likely to be
connected to the incoming node n, and so their degrees are
more likely to increase further as the multigraph construction
proceeds, according to “the rich get richer” philosophy.

We switch to the probability that a self-loop is created on
the new node n:

P [v(n; s) = n|M(n; s − 1)] =
1 + dM,n(n; s − 1)

1 +
∑n

�=1 dM,�(n; s − 1)
.

(40)

The term 1 in the numerator corresponds to first attaching one
end of a new edge to the new node and updating the degree of
that node before attaching the other end of the edge [37], [38].
Note that this term grants a nonzero probability of self-loops
(we recall that dM,n(n; 0) = 0) when the new node enters the
system. The term 1 in the denominator is necessary to get an
admissible probability mass function, i.e., to let the sum of
the probabilities in (39) and (40) be equal to 1.

It is useful to provide a more explicit representation for the
denominator in (39) and (40). Since we know (see footnote 5)
that the half-sum of all degrees is equal to the total number
of edges and self-loops, and since at each step the Bollobás-
Riordan construction adds exactly η new connections, we get
the following equality:

1 +
n∑

k=1

dM,k(n; s − 1) = 1 + 2η(n − 1) + 2(s − 1), (41)

which reveals that the denominator of the preferential attach-
ment probability is a deterministic quantity. Finally, by merg-
ing (39) and (40) in a single equation, and using (41) to
represent the denominator, we get, for all k = 1, 2, . . . , n,
the compact representation:

P [v(n; s) = k|M(n; s − 1)] =
δkn + dM,k(n; s − 1)

1 + 2η(n − 1) + 2(s − 1)
,

(42)

where δkn is the Kronecker delta.

B. Maximal Degree

One fundamental graph descriptor that will play a critical
role in our analysis is the maximal degree μM(N). In partic-
ular, we will rely on the asymptotic growth of the maximal
degree with the network size N , which, as formally stated in
Appendix B, was found to be on the order of

√
N , in the

following rigorous sense [49, Th. 8.14, p. 280]:

μM(N)√
N

a.s.−−→ μ, (43)

where
a.s.−−→ denotes almost-sure convergence as N → ∞, and

μ is a certain positive random variable.
The square-root growth of the maximal degree in a

Bollobás-Riordan graph can be related to the well known
power-law or scale-free behavior of these graphs. The
power-law decay refers to the average number of nodes
with degree equal to d, which was shown to scale as an
inverse power of d, precisely as d−3 for Bollobás-Riordan
graphs. It was shown in [38] that such heavy-tailed behavior,
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as opposed, for instance, to the exponential tail corresponding
to an Erdős-Rényi graph, reflects into a faster growth of the
maximal degree, namely, the

√
N growth prescribed by (43).

C. From Multigraph M(N) to Graph G(N)
The multigraph structure was chosen by Bollobás and

Riordan because it was instrumental to prove a number of
theoretical results [37], [38]. The final goal of their model,
however, was to construct a standard (i.e., simple) graph,
with single edges and no self-loops. Actually, the multi-
graphs generated according to the Bollobás-Riordan model are
approximately similar to simple graphs, since it is possible
to show that the fraction of edges that are either repetitions
or self-loops vanishes as N grows, as formally stated in the
following lemma. Before stating the lemma, it is useful to
notice that, by construction, the number of edges in M(n) is
equal to ηn since we start with η loops in M(1) and add η
new edges at a time.

Lemma 1 (Equivalence Between Bollobás-Riordan Multi-
graphs and Simple Graphs): Let M(N) be a Bollobás-
Riordan multigraph of size N , and let m̊(N) and m̈(N) be
the number of self-loops and redundant edges, respectively.
Then, the number of self-loops and redundant edges are
asymptotically negligible w.r.t. the total number of connections
ηN , namely,

lim
N→∞

E[m̊(N) + m̈(N)]
ηN

= 0. (44)

Proof: See Appendix C.
According to Lemma 1, it makes sense to introduce the sim-

ple6 graph G(N) associated to a multigraph M(N), obtained
by uprooting all self-loops and redundant edges from M(N).
The entries of the adjacency matrix G(N) of graph G(N) are:

gkk = 0, gk� = min{mk�, 1} for k �= �. (45)

Likewise, the degree of node k in G(n) and the corresponding
maximal degree are, respectively:

dG,k(N) =
N∑

�=1

gk�, μG(N) = max
k∈[1,N ]

dG,k(N). (46)

The equivalence between M(N) and G(N) holds also in terms
of maximal degrees, as stated in the following lemma.

Lemma 2: Let μM(N) and μG(N) be the maximal degrees
of the multigraph M(N) and of the associated simple graph
G(N), respectively. We have that:

μM(N) − μG(N)√
N

p−→ 0, (47)

which further implies:

μG(N)√
N

p−→ μ, (48)

where μ is the same limiting variable introduced in (43).
Proof: See Appendix C.

In the following, we will refer to graph G(N) as Bollobás-
Riordan simple graph, or simply as Bollobás-Riordan graph.

6In graph theory, the qualification “simple” is used to stress that the graph
has no self-loops and no multiple edges.

IV. STRUCTURAL CONSISTENCY AND SAMPLE

COMPLEXITY OF THE GRANGER ESTIMATOR

In this section we collect the main results established in this
work. First, we ascertain that the limiting Granger estimator
achieves consistent graph learning under partial observability.

Theorem 2 (Universal Local Structural Consistency of the
Limiting Granger Estimator): Let us consider the dynamical
system (2), with Laplacian combination matrix as in (32), and
with network graph G(N) being a simple graph obtained from
a Bollobás-Riordan multigraph M(N) with step parameter η.
Then, the limiting Granger estimator in (27) achieves universal
local structural consistency according to Definition 2 for any
sequence of probed subsets SN , with scaling sequence

√
N

and identifiability gap:

γ � ρλ

μ
, (49)

where μ is given by (43).
Proof: See Appendix F.

Equation (43) reveals that the limiting (scaled) maximal
degree μ is an intrinsic property of the specific Bollobás-
Riordan multigraph instance. In other words, as the Bollobás-
Riordan multigraph construction progresses, the maximal
degree, scaled by

√
N , tends to become stable, and converges

to a certain value μ. However, this value is random, implying
that if we repeat the Bollobás-Riordan multigraph construction
with the same parameters, we would obtain a different value
for μ. In view of (49), this implies that the value of the
identifiability gap that is critical for graph learning purposes
is random as well, i.e., it depends on the particular graph
sequence. This is a fundamental difference that distinguishes
the behavior of Bollobás-Riordan graphs from the behavior of
Erdős-Rényi graphs, where the identifiability gap is instead
deterministic and independent of the particular graph real-
izations. However, and remarkably, we already know from
Theorem 1 that randomness of the gap does not impair the
possibility of consistent graph recovery.7

We observe that the coupling between Bollobás-Riordan
graphs (which are undirected) and the Laplacian rule gives rise
to a symmetric combination matrix. Under this assumption, the
series for the covariance matrix in (24) can be computed as
(I denotes the N × N identity matrix):

R0(N) =
∞∑

i=0

A2i(N) =
(
I − A2(N)

)−1
, (50)

whose structure is exploited in the proofs of our results.
While symmetry is useful to develop these technical argu-
ments, we remark that the Granger estimator is based upon
relation (25), which does not rely on symmetry at all. This
observation, along with the series structure in (24) that is
similar to the structure exploited in Appendix F for the
symmetric case, suggests that the Granger estimator can work
also with non-symmetric matrices, as we will show in Sec. V
by examining a directed version of Bollobás-Riordan graphs.

7The result in Theorem 1 is asymptotic in N . On the other hand, for finite
network sizes, the graph learning performance will depend on the particular
realization, e.g., larger values of γ will imply a better performance.
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In order to conclude the proof of graph learning achievabil-
ity, we need to establish that the sample Granger estimator
in (29) achieves consistent learning. To this end, we notice
that the sample Granger estimator converges to the limiting
Granger estimator by ergodicity. Then, in view of Theorem 1,
the claim in Theorem 2 implies that the graph estimator in (20)
is consistent for any sequence SN such that the sequence
of graphs GS(N) does not end up being trivial (i.e., fully
connected or fully disconnected) as N → ∞. As shown in
Lemma 6 (Appendix B), when the cardinality of SN scales
linearly with N as in (8), these pathological situations are ruled
with high probability as N → ∞, for any nonzero fraction ξ
of probed nodes.

However, the question of how the number of samples T
must scale with N to achieve consistent learning is still
open. To answer this question we need to focus on sample
complexity. First of all, when dealing with covariance-based
estimators, one source of sample complexity comes from how
well-conditioned these matrices are. For this reason, it is
useful to replace (29) with its regularized counterpart, namely,
a matrix ÂP(T, N) constructed as follows. For k ∈ P,
the k-th row of ÂP(T, N) is a solution to the constrained
optimization problem (here x ∈ R

|P| is a row vector, and,
for a matrix M , the notation [M ]kP denotes the k-th row of
submatrix MP):

min
x∈R|P|

‖x [R0(T, N)]P − [R1(T, N)]kP‖∞ s.t. ‖x‖1 ≤ 1.

(51)

We remark that, when the sample covariance matrix is invert-
ible, the non-regularized Granger estimator in (29) is the only
matrix that yields a zero residual in (51). As a result, when
the non-regularized Granger estimator fulfills the constraint
in (51), the two estimators coincide.

We are ready to state our sample complexity result. Fol-
lowing [24], [25], [26], [27], the analysis is performed under
the following classical assumption on the initialization of
system (2).

Assumption 1 (Stationary Gaussian VAR): For the sample
complexity analysis, we assume that the input signals xk,i(N)
are standard Gaussian variables (independent w.r.t. to node
index k, time index i, and network size N ). Under these
conditions, given a realization A(N) = A of the combination
matrix, the VAR process in (2) admits a Gaussian stationary
distribution (which is a function of A) [24], [39]. We assume
that, given A(N) = A, the initial vector y0(N) is distributed
according to the stationary distribution.

Theorem 3 (Sample Complexity of Regularized Granger
Estimator): Let us consider the dynamical system (2) operat-
ing under Assumption 1, with Laplacian combination matrix
as in (32), and with network graph G(N) being a simple graph
obtained from a Bollobás-Riordan multigraph M(N) with step
parameter η. Let the number of samples TN grow with N as:

TN = ωNN log N, (52)

where ωN can be chosen as a positive sequence diverging
in an arbitrarily slow fashion. Then, the graph estimator (20)

obtained by using the regularized Granger estimator in (51) is
consistent for any sequence of probed subsets SN fulfilling (8).

Proof: See Appendix G.
Let us comment on the main ramifications of Theorem 3.

First of all, since the sequence ωN can grow in an arbitrarily
slow fashion, any sample complexity that scales slightly faster
than N log N achieves consistency. Therefore, the bottom line
of Theorem 3 is that the sample complexity of the proposed
estimator is essentially linear. Let us now see where this linear
law originates from.

According to the Laplacian matrix structure in (32), the
growth of the maximal degree determines the way the nonzero
entries of the combination matrix shrink down as N → ∞.
The smaller they are, the higher is the precision required by
the sample estimators to distinguish the nonzero entries from
the zero entries. For this reason, faster scaling laws of the
maximal degree become more demanding in terms of number
of samples. This argument can be made rigorous, and is in
fact exploited in the proof of Theorem 3 to show that the
sample complexity goes essentially (i.e., up to a log N factor)
as μ2

G(N). As a result, the
√

N -growth of the maximal degree
over Bollobás-Riordan graphs reflects into a final sample
complexity that is essentially linear in N .

In summary, from a technical viewpoint we conclude that
the main factor influencing sample complexity is the maximal
degree of the graph. However, it is useful to relate this behavior
to more “physical” attributes of the system, to capture the
factors that play a domineering role on sample complexity.
One important attribute of Bollobás-Riordan graphs is sparsity.
Bollobás-Riordan graphs are very sparsely connected, since,
over a total number of possible N(N − 1)/2 edges, only
ηN edges are drawn, which results into a sparsity ratio
(no. of connected edges over total no. of possible edges)
scaling as 1/N . The sporadic presence of connections might
suggest that the nodes have small degree, which, in the light
of the previous discussion, would suggest a slow growth of
the maximal degree. However, this conclusion is not precise.
To understand why, it is useful to contrast Bollobás-Riordan
graphs against Erdős-Rényi graphs. We consider in particular
Erdős-Rényi graphs under the uniform concentration regime
because under this regime results on sample complexity are
available [6], [33]. Erdős-Rényi graphs are built homoge-
neously (i.e., presence/absence of edges is established in an
i.i.d. manner). This homogeneity implies in particular that
the maximal and average degree of an Erdős-Rényi graph
scale comparably, i.e., μG(N) ∼ Np, where p is the connec-
tion probability. Accordingly, over sparse Erdős-Rényi graphs
where p ≈ (log N)/N , the sample complexity is polyloga-
rithmic in N , whereas over dense graphs with constant p it is
almost-quadratic in N .

Let us see what happens over Bollobás-Riordan graphs.
Notably, the latter graphs are sparser than the sparsest con-
nected Erdős-Rényi graphs! In fact, we observed that the
sparsity ratio of Bollobás-Riordan graphs is 1/N , whereas
for sparse connected Erdős-Rényi graphs we have a sparsity
ratio given by the connection probability ≈ (log N)/N .
However, despite such increased sparsity, the maximal degree
of Bollobás-Riordan graphs grows as

√
N , namely, faster than
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Fig. 3. Illustration of Theorem 2, for two realizations of a Bollobás-Riordan graph with number of nodes N = 100 and parameter η = 3. The plots show
the entries of the limiting Granger estimator in (27), scaled by

√
N , vectorized and rearranged so that entries corresponding to disconnected nodes come first.

The vertical arrow displays the gap γ. In the shown network topologies, probed nodes are displayed in green, while latent nodes in purple, with the circle
radius being proportional to the node degree. The probed subset has cardinality N/2 = 50, and its nodes are randomly picked from {1, 2, . . . , N} without
replacement. The parameters of the Laplacian matrix are ρ = 0.5 and λ = 0.75.

the logarithmic law characterizing sparse Erdős-Rényi graphs.
This difference must be ascribed to the fact that Bollobás-
Riordan graphs are highly inhomogeneous and, hence, even
with a small number of overall connections, there are nodes
with a very large number of neighbors, inducing a faster
growth of the maximal degree.

V. ILLUSTRATIVE EXAMPLES

A. Synthetic Data

We start by illustrating the significance of Theorem 2 by
examining the behavior of the limiting Granger estimator on
synthetic data.

The two panels in Fig. 3 display the pattern exhibited by
the entries of the limiting Granger estimator, ÂP(N), for two
realizations of the random graph G(N) with a probed subset
P containing half the nodes of the entire network. For both
realizations, the entries of ÂP(N) are scaled by

√
N , and,

for clarity of visualization, they are vectorized and rearranged
so that the entries corresponding to disconnected nodes come
first. The vertical arrow displays the gap γ, which was
estimated using (43), (47) and (49), with reference to the
pertinent graph topology shown in the figure. The following
notable effects are observed. First, in perfect accordance with
Theorem 2, we see the emergence of an identifiability gap
that separates clearly the entries corresponding to disconnected
node pairs from the entries corresponding to connected node
pairs. Second, clustering is definitely visible: the entries per-
taining to disconnected nodes cluster around zero, whereas
the entries corresponding to connected nodes around γ, the
limiting value displayed by the vertical arrow. Last but not
least, by comparing side-by-side the panels in Fig. 3, we see
that the two different realizations correspond to different
values of the gap γ, which confirms that this gap is in fact
random.

We see from (49) that the limiting random variable μ is
one fundamental ingredient of the identifiability gap. It is
therefore useful to examine the statistical distribution of μ,
and in particular its behavior in comparison to the finite-size
(scaled) maximal degree μG(N)/

√
N — see (48). To this

end, in Fig. 4 we display: i) the empirical histograms of the
scaled maximal degree, for three values of N (first three panels
from the left); and ii) the empirical histogram corresponding

to the limiting variable μ (rightmost panel). To obtain the latter
histogram, we exploit the following result.

Theorem 17 in [37]: Let p1, p2, . . . be the points of a
Poisson process with rate η, i.e., equal to the number of
new edges added at each iteration of the Bollobás-Riordan
procedure (see Sec. III). The limiting random variable in (64)
is equal to:

μ = max
n=1,2,...

zn − zn−1. (53)

where, for n = 0, 1, . . . , we defined:

z0 � 0, zn � 2η
√

pηn. (54)

�
According to this theorem, we simulate a Poisson process

with rate η and use the expression of μ provided in (53)
and (54). By comparing the different panels in Fig. 4, we see
that the distribution of the scaled maximal degree approaches
the distribution of μ as N increases, and that the result is
stable yet for the values N = 100 and N = 250. These are
interesting values since, in the range [100, 250], the probability
of correct graph learning is close to 1, as we can appreciate
from the quantitative performance analysis reported in Fig. 5.

More specifically, in Fig. 5 we show the probability of
correct graph learning evaluated empirically over 103 Monte
Carlo runs, as a function of the network size N . Specif-
ically, the dynamical evolution in (2) is simulated over a
network of increasing size N ranging from 50 to 250, and
we consider a subset of probed nodes having cardinality
�ξN�, with ξ = 0.15. The curves displayed with continuous
line refer to the limiting Granger estimator in (27), which is
obtained by using the true covariance matrices. Markers refer
to the regularized Granger estimator in (51), which is instead
computed over the samples. The take-away messages from
Fig. 5 are that: i) for sufficiently large number of samples,
the learning curve of the empirical Granger estimator reaches
the curve of the limiting Granger estimator; and ii) consistent
learning is progressively achieved as N grows.

In Fig. 5, a relatively large number of samples is considered,
and kept constant across all values of the network size N .
Another useful analysis pertains to the effective number of
samples necessary to achieve a target learning probability.
In Fig. 6 we evaluate empirically the number of samples
needed to get a probability equal to 90% of the probability of
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Fig. 4. First three panels. Empirical histograms, obtained over 103 Monte Carlo runs, relative to the scaled maximal degree μG(N)/
√

N . Rightmost panel.
Empirical histogram relative to the limiting random variable μ, obtained by simulating, over 103 Monte Carlo runs, a Poisson process of rate η, and by
exploiting relations (53) and (54).

Fig. 5. Probability of correct graph recovery, computed over 103 Monte
Carlo runs, for different values of the network size N . We remark that
correct graph recovery here means that graphs with even a single wrong
edge are counted as an erroneous experiment. The graphs are generated
according to a Bollobás-Riordan model with parameter η = 3. The sequence
of probed subsets fulfills (8) with ξ = 0.15. We consider: the limiting
estimator (27) obtained by using the true covariances (solid line); and the
empirical estimator (51) obtained by using the sample covariances (markers)
evaluated over T = 3 · 106 samples. The clustering algorithm applied to the
Granger estimator is the modified k-means algorithm proposed in [33]. The
parameters of the Laplacian matrix are ρ = 0.5 and λ = 0.75.

correct learning achieved by the limiting Granger estimator.
The blue curve corresponds to Bollobás-Riordan graphs, and
shows a growth that matches well the almost-linear growth
prescribed by Theorem 3.

It is useful to compare the observed behavior against the
behavior of Erdős-Rényi graphs. The sample complexity laws
relative to Erdős-Rényi graphs mentioned in the previous
section are confirmed by the curves in Fig. 6, revealing in
particular that: i) the intermediate growth rate is given by
Bollobás-Riordan gaphs (blue curve), with almost-linear sam-
ple complexity; ii) the highest sample complexity is quadratic,
and is required by dense Erdős-Rényi graphs (green curve);
and iii) the lowest sample complexity is achieved by sparse
Erdős-Rényi graphs (red curve), and depends on the specific
law chosen for the vanishing connection probability p.

The bottom line is that: i) sparsity of preferential attachment
graphs makes them easier to learn than dense graphs; whereas

Fig. 6. Sample complexity of preferential attachment graphs, compared
against sparse and dense Erdős-Rényi graphs. The curves depict the number
of samples needed by the empirical estimator to attain 90% of the performance
(i.e., probability of correct graph recovery) of the limiting estimator, for
different values of N . The preferential attachment graphs are generated as
Bollobás-Riordan graphs with parameter η = 3. The sparse Erdős-Rényi
graphs are generated with a connection probability p = log N

N
· loglog N ,

whereas for the dense Erdős-Rényi graphs we have p = 0.5. The underlying
probability of correct graph recovery is evaluated over 103 Monte Carlo runs.
The parameters of the Laplacian matrix are ρ = 0.5 and λ = 0.75.

ii) heterogeneity of preferential attachment graphs implies a
power-law behavior that reflects into a

√
N -growth of the

maximal degree, making them harder to learn than sparse
homogeneous graphs.

Finally, we provide some quantitative data as regards the
computational complexity of the graph learning strategy in the
considered examples. To this end, we now report the run times
relative to the XPS 7390 laptop of Dell Inc.®, equipped with
an i7 Intel® processor and a 16GB RAM. The graph learning
algorithm can be decoupled in two steps: i) computing the
Granger estimator; and ii) performing the clustering algorithm
on its entries. The cost associated to the clustering algorithm
is negligible. In the first step, if we use the regularized
Granger estimator, we need an optimization algorithm to
solve numerically (51). In our simulations, we employed the
MATLAB® package CVX [50], [51], which exhibited a run
time ranging from ≈ 3 s to ≈ 8 s when N ranges from
100 to 250, with ξ = 0.15. The run time reduces to less than
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Fig. 7. Experiments over real-world topologies. The parameters of the Laplacian matrix are ρ = 0.5 and λ = 0.75. Left. A simulation run of (2) over a
power-grid network of N = 4941 nodes taken from the web-repository [54]. The plot shows the entries of the regularized Granger estimator in (51), scaled
by

√
N , vectorized and rearranged so that entries corresponding to disconnected nodes come first. In this run we set T = 2 · 105, and consider a subset of

probed nodes having cardinality N/3 = 1647. In the network topology, probed nodes are displayed in green, while latent nodes in purple, with the circle
radius being proportional to the node degree. Right. The same general setting as in the left panel, with reference to a network of N = 100 real-world routers,
whose connection topology was extracted from a bigger network available in the web-repository [54]. In this run we set T = 106 , and consider a subset of
probed nodes having cardinality N/2 = 50.

1 ms if we use instead the non-regularized Granger estimator8

in (29), which in the considered examples was found to
coincide with its regularized counterpart — see the discussion
following (51).

B. Real Networks and Directed Graphs

So far, we tested our results over synthetic network topolo-
gies generated according to the Bollobás-Riordan procedure
described in Sec. III. Since the main motivation behind the
challenging study of these graphs is their similarity to real-
world graphs, in this section we examine some topologies of
existing networks. The examples that we are going to illustrate
should be intended in the following way. We are given the
topology of a real-world network, such as, e.g., a power-grid
network, a network of routers, or a social network, which can
support the implementation of distributed learning algorithms
for different useful purposes. We therefore use the assigned
network topology to build/run on top of it a distributed algo-
rithm, for example, an adaptive distributed detection algorithm,
or a social learning algorithm, which are examples matching
well the considered model — see [6, Sec. V-A], [52], [53].
Then, the focus of topology inference is to solve the reverse
learning problem of retrieving the network graph from partial
observation of the nodes’ output.

We are now ready to illustrate the tests conducted
over two real-world networks provided by a popular web-
repository [54], corresponding to the topologies shown in
Fig. 7. As a preliminary comment, we can see that these
topologies exhibit a dichotomous structure with “hubs” fea-
turing many connections as opposed to “peripheral” nodes
with few connections. Similarly shaped structures match well
the heterogeneity guaranteed by Bollobás-Riordan models,
while they are impossible to mimic through the indepen-
dent/homogeneous Erdős-Rényi generation.

The example in the left panel of Fig. 7 refers to a power-grid
network composed of N = 4941 nodes, connected according
to the displayed topology. Over this topology, we let the VAR

8We remark that no theoretical proof on the sample complexity of the
non-regularized Granger estimator is available.

system (2) run with a Laplacian combination policy, and then
applied our inference algorithm under the case that only one
third of the nodes are probed, with T = 2 · 105 samples. The
results of the test are shown in the left plot in Fig. 7. We see
that the clustering algorithm is able to separate correctly
the disconnected/connected nodes, therefore providing faithful
graph learning. Moreover, we see that the spread exhibited
by the matrix entries of the sample estimator is larger than
the spread exhibited by the limiting estimator, which makes
perfect sense.

The second example, illustrated in the right panel of Fig. 7,
refers to a network of 100 routers connected according to the
shown topology, which was extracted from a bigger network
reported in the web-repository [54]. In this case, 50% of the
nodes are probed, and we have T = 106 available samples.
The results of the test are shown in the right plot in Fig. 7,
where we can appreciate that the graph learning algorithm
successfully classifies the node connections within the probed
subnetwork. In comparison to the left panel, we see that in
the right panel the spread of the sample estimators is reduced,
which is a consequence of the fact that we have a larger
number of samples and a smaller network size.

Finally, we test whether the Granger estimator can achieve
faithful graph learning over directed graphs. While Bollobás-
Riordan graphs are naturally undirected, there are of course
several straightforward ways to devise directed variants
thereof, see, e.g., [37]. Perhaps the simplest way is to perform,
at each step of the preferential attachment construction: i)
the insertion of a directed edge from the new node n to an
existing node, based on an attachment probability ruled by
the in-degree of the existing nodes; and ii) the insertion of
a directed edge from an existing node to the new node n,
based on an attachment probability ruled by the out-degree
of the existing nodes. Such construction is used in Fig. 8,
where we report two realizations relative to the parameters
described in the caption. Regarding the Laplacian matrix,
in the directed case we use definition (32) with the maximal
in-degree. We see that, even in this non-symmetric case,
the limiting Granger estimator is still able to separate well
connected from disconnected pairs.
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Fig. 8. Two realizations of a directed Bollobás-Riordan graph, whose construction is detailed in the main text. We set N = 100 and η = 3. The plots show
the entries of the limiting Granger estimator in (27), scaled by

√
N , vectorized and rearranged so that entries corresponding to disconnected nodes come first.

In the shown network topologies, probed nodes are displayed in green, while latent nodes in purple, with the circle radius being proportional to the node
in-degree. The probed subset has cardinality N/2 = 50, and its nodes are randomly picked from {1, 2, . . . , N} without replacement. The parameters of the
Laplacian matrix are ρ = 0.5 and λ = 0.75.

VI. CONCLUSION

We examined the problem of learning a network graph
from the signals diffusing across the network according to
the VAR model in (2). The distinguishing features of our
work are: i) the network topology is modeled as a preferential
attachment random graph; and ii) only part of the network
is monitored (partial observability). We established that the
Granger estimator under partial observability achieves faithful
graph learning (with high probability as the network grows)
for the class of Bollobás-Riordan graphs when the signals of
neighboring nodes are combined according to the Laplacian
matrix of the graph.

Previous results on consistent graph learning under partial
observability, for diffusion models like (2), were relative to
Erdős-Rényi graphs, which cannot reproduce faithfully the
behavior of several useful real-world networks. In contrast,
preferential attachment graphs were shown to be powerful in
capturing useful real-world effects such as node heterogeneity
and statistical dependence across graph edges. Accordingly,
moving from Erdős-Rényi to Bollobás-Riordan graphs consti-
tutes a useful research advance, which was rather demand-
ing, especially because the multigraph construction relies
on a preferential attachment mechanism, which introduces
significant dependence across the edges, thus preventing from
application of the simpler i.i.d. models adopted for the former
graph models. Exploiting statistical concentration results for
dependent processes, we are able to examine in detail the
limiting properties of these graphs, and to ascertain (The-
orem 2) that the entries of the Granger matrix estimator
computed over the probed subnetwork split into two classes,
separated by an identifiability gap. As a distinguishing feature
of the Bollobás-Riordan model, this gap is a random variable,
which depends on the particular instance of the multigraph
generation, as opposed to the deterministic gap observed for
Erdős-Rényi graphs. We proved that the emergence of the gap
is critical to enable achievable graph learning (Theorem 1),
and characterized the scaling law that relates how the number
of samples must grow with the network size (Theorem 3),
finding that the sample complexity is slightly larger than
N log N .

There are many other open questions that might deserve
attention. For example, achievability is expressed in a
worst-case perspective where perfect graph reconstruction

is required. It would be useful to relax the criterion to
encompass a possible fraction of misclassified edges, and see
how this impacts the performance and the requested number
of samples. Moreover, since classification is performed by
using an unsupervised clustering algorithm, it would be useful
to see whether one could explore side-information to set a
classification threshold, and see how this changes the fraction
of misclassified nodes.

We established that the identifiability gap over Bollobás-
Riordan graphs is random, as opposed to the deterministic
nature that was proved over Erdős-Rényi graphs. This differ-
ence stimulates an open question that concerns the connections
between the nature (deterministic or random) of the identifia-
bility gap and the generative mechanism of the graph.

Also considering that the ubiquity of scale-free networks
is a debated point [55], it would be interesting to consider
other useful graph models, such as the stochastic block model,
Chung-Lu graphs, random dot product or random geometric
graphs. In particular, it would be interesting to ascertain
whether randomness of the identifiability gap is related to the
scale-free property or the preferential attachment mechanism.

The conducted analysis does not depend on a specific
selection rule for the subset of probed nodes. Indeed, some of
our results hold for any (deterministic) subset of probed nodes.
For Theorem 3, we just need to impose that the cardinality
of this subset scales linearly with N so as to avoid trivial
(i.e., fully connected or fully disconnected) subgraphs as N →
∞. Regarding the choice of the probed subset, it is interesting
to consider an adversarial perspective where a malicious entity
wants to select it to impair the topology inference algorithm.
In the traditional setting, attacks to network graphs have the
goal of impairing the connectivity properties the network. One
classical attack is the deletion attack, where the attacker has
the freedom of deleting some nodes [56]. The goal is to reduce
the connectivity of the selected subgraph surviving after the
deletion process. In particular, when the attacker leverages
knowledge of the preferential attachment construction, he/she
can delete all the “oldest” nodes to minimize connectivity.
In our context, connectivity of probed nodes is not of interest,
but one way to impair the clustering algorithm would be to
select a subset that is fully connected or fully disconnected.
However, when the cardinality of the probed subset grows
linearly with N , we know that both these extreme situations
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occur with vanishing probability as N grows. The picture
changes if the attack does not rely only on the graph model,
and the adversary has the power of choosing the subset based
on the actual realizations of the graph and/or of the nodes’
output. In this case, the subset becomes statistically dependent
on other random variables, and the statistical properties of
the combination matrix and its estimated counterpart change
due to the dependence introduced between the subset and the
matrix entries. Carrying out the analysis under this scenario
requires a different analysis that is not covered by the results
of this work.

Devising matrix estimators different from (51), exploiting
in particular some other structural constraints such as sparsity
or smoothness can be useful to reduce sample complexity.

Another important aspect pertains to online graph learning
algorithms, for example, one could implement an online ver-
sion of (51) that learns from streaming data, encompassing
the possibility that the graph topology changes due to the
evolutionary mechanism of the Bollobás-Riordan graph itself.

Finally, other useful research advances concern the gener-
alization to higher-order VAR processes, nonlinear models,
or other combination matrices.

APPENDICES

The proofs reported in these appendices are organized as
follows. In Appendix A we prove Theorem 1. In Appendices B
and C we collect several properties on the Bollobás-Riordan
model useful for our analysis. By exploiting these results,
in Appendix D we show how the underlying graph structure
influences the behavior of the Laplacian combination matrix.
Next, in Appendix E we establish some useful properties
of the limiting Granger estimator. Our main results, namely,
Theorems 2 and 3, are proved in Appendices F and G,
respectively. Finally, in Appendix H we collect two auxiliary
results used in our analysis.

APPENDIX A
PROOF OF THEOREM 1

By application of the triangle inequality we can write:

‖cNÂS(T, N) − γGS(N)‖max-off

≤ cN‖ÂS(T, N) − ÂS(N)‖max-off

+ ‖cNÂS(N) − γGS(N)‖max-off . (55)

Let us focus on the first term on the RHS of (55). From
the definition of limiting estimator in (10), we have, for any
N ∈ N and ε > 0:

lim
T→∞

P

[
cN‖ÂS(T, N) − ÂS(N)‖max-off > ε

]
= 0. (56)

By definition of limit, from (56) we conclude that, for any
N ∈ N and any δ, ε > 0, there exists always a value
T0(N, δ, ε) such that for all T ≥ T0(N, δ, ε):

P

[
cN‖ÂS(T, N) − ÂS(N)‖max-off > ε

]
≤ δ. (57)

Let now fN and gN be two positive sequences vanishing with
N with arbitrary laws. Since the reduction of δ and/or ε is
a more demanding condition, the function T0(N, δ, ε) can be

always chosen to be non-increasing w.r.t. both δ and ε, which
implies that for sufficiently large N :

T0(N, fN , gN ) ≥ T0(N, δ, ε), (58)

further implying, in view of (57):

P

[
cN‖ÂS(T0(N, fN , gN ), N) − ÂS(N)‖max-off > ε

]
≤ δ.

(59)

In other words, if the number of samples scales with N as
TN = T0(N, fN , gN), we can write:

cN‖ÂS(TN , N) − ÂS(N)‖max-off
p−→ 0. (60)

Plugging this result into (55) and noticing that the second
term on the RHS of (55) vanishes in probability in view
of Definition 2 (since by assumption the limiting estimator
achieves universal local structural consistency), we conclude
that:

‖cNÂS(TN , N) − γGS(N)‖max-off
p−→ 0, (61)

which implies that, for any ε > 0 and all k �= � we have (see
footnote 4):

cN âk�(TN , N)∈

⎧⎪⎨⎪⎩
[(1 − ε)γ, (1 + ε)γ], (k, �) conn.

[−εγ, εγ], (k, �) disc.

(62)

with high probability as N → ∞. By assumption, there exists
a certain ε > 0 such that the algorithm graphclu(·) achieves
successful classification for all configurations fulfilling (62),
provided that GS(N) is neither fully connected nor fully
disconnected. Thus, the proof is complete because we have
just shown that configurations fulfilling (62) occur with high
probability as N → ∞, and by assumption the probability
that GS(N) is fully connected or fully disconnected vanishes
as N → ∞. �

APPENDIX B
USEFUL RESULTS ON BOLLOBÁS-RIORDAN MULTIGRAPHS

We start by enunciating two properties of the maximal
degree μM(N) that will be critical in our development.

Theorem 8.14 in [49, p. 280]: For N = 1, 2, . . . , let μM(N)
be the maximal degree sequence defined over the multigraph
sequence M(N). For any m ∈ N we have that:

lim sup
N→∞

E

[(
μM(N)√

N

)m]
< ∞. (63)

Moreover, there exists a strictly positive random variable μ
such that:

μM(N)√
N

a.s.−−→ μ, (64)

where
a.s.−−→ denotes almost-sure convergence. �

We continue by proving a lemma that provides a uniform
upper bound on the preferential attachment probability.

Lemma 3 (Bounds on the Preferential Attachment Probabil-
ity): The preferential attachment probability defined in (42)
obeys the following bound:

P [v(n; s) = k|M(n; s − 1)] <
dM,k(n − 1) + 2η

2η (n − 1)
. (65)
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Moreover, for any set T ⊆ {1, 2, . . . , s − 1}, we have that:

P[v(n; s)=k|{v(n; τ)}τ∈T, M(n − 1)]<
dM,k(n − 1)+2η

2η (n − 1)
.

(66)

Proof: First we focus on the numerator in (42). Join-
ing (37) and (38), we can write the degree of node k in
multigraph M(n, s − 1) as:

dM,k(n; s − 1) = dM,k(n; s − 2)+I(v(n; s − 1) = k)+ δkn,

(67)

where δkn is the Kronecker delta. Developing the recursion
in (67) over index s, we get:

dM,k(n; s − 1) = dM,k(n − 1) +
s−1∑
t=1

I(v(n; t) = k)

+ (s − 1)δkn ≤ dM,k(n − 1) + 2(s − 1), (68)

which implies that the numerator in (42) is upper bounded as:

δkn + dM,k(n; s − 1) ≤ dM,k(n − 1) + 2s − 1
< dM,k(n − 1) + 2η, (69)

where the last inequality follows by observing that s ≤ η.
We switch to the analysis of the denominator in (42), which

is lower bounded as:

1 + 2η(n − 1) + 2(s − 1) > 2η (n − 1). (70)

Using (69) and (70) in (42), we get (65). It remains to
prove (66). By applying the law of total probability, we can
write:

P [v(n; s) = k|{v(n; τ)}τ∈T, M(n − 1)]
(a)=
∑
M

P [v(n; s) = k|M(n, s − 1) = M]

× P [M(n, s − 1) = M|{v(n; τ)}τ∈T, M(n − 1)]
(b)
<

dM,k(n − 1) + 2η

2η (n − 1)
. (71)

In the summation, M spans the space of possible multigraphs
M(n, s − 1) compatible with the multigraph M(n − 1) and
the collection of selected nodes {v(n; τ)}τ∈T, and where:
(a) comes from the fact that the preferential attachment rule
is Markovian, namely, the selection at step s depends only on
the previous multigraph M(n; s−1) (regardless of any details
about the previous multigraph evolution); while (b) comes
from (65).

Lemma 4 (Sum of Maximal Degree Powers): For all m ≥
2 we have that:

lim
N→∞

1√
N

N∑
n=1

E

[(
μM(n) + 2η

n

)m]
= 0. (72)

Proof: First we observe that:

1√
N

N∑
n=1

E

[(
μM(n) + 2η

n

)m]

=
∑N

n=1 n−m/2

√
N

N∑
n=1

E

[(
μM(n) + 2η

n

)m]
∑N

n=1 n−m/2
. (73)

From the Stolz-Cesàro theorem, for any two positive sequences
fN and gN with gN → ∞ as N → ∞, we have that
[57], [58]:

lim sup
N→∞

∑N
n=1 fn∑N
n=1 gn

≤ lim sup
N→∞

fN

gN
, (74)

which applied to the last fraction in (73) yields:

lim sup
N→∞

N∑
n=1

E

[(
μM(n) + 2η

n

)m]
∑N

n=1 n−m/2

≤ lim sup
N→∞

E

[(
μM(N) + 2η

N

)m]
N−m/2

= lim sup
N→∞

E

[(
μM(N) + 2η√

N

)m]
< ∞, (75)

where the last inequality follows by (63).
Focusing on the first fraction in (73) we have that,

for m > 2:
∞∑

n=1

n−m/2 = ζ(m/2), (76)

where ζ(·) is the Riemann zeta function (which is finite), while
for m = 2 the summation in (76) is the harmonic number,
which diverges logarithmically as N → ∞. Accordingly,
we conclude that for all m ≥ 2:

lim
N→∞

∑N
n=1 n−m/2

√
N

= 0. (77)

The claim of the lemma now follows by applying (75)
and (77).

Lemma 5 (Correlation Between Degrees): For any 1 ≤ k <
� ≤ N , we have that:

E[mkNm�N |M(N − 1)] <

(
μM(N − 1) + 2η

N − 1

)2

. (78)

Proof: It is convenient to introduce the following binary
random variables:

βks(N) � I(v(N ; s) = k), (79)

for 1 ≤ k ≤ N and 1 ≤ s ≤ η. Using (34), we can write:

E [mkNm�N |M(N − 1)]

= E

[
η∑

s=1

βks(N)
η∑

s=1

β�s(N)

∣∣∣∣∣M(N − 1)

]
=

∑
1≤s,t≤η

s�=t

E [βks(N)β�t(N)|M(N − 1)] , (80)

where the last step holds true since k �= � by assumption. Let
us examine the behavior of the individual term in (80) and
focus, without loss of generality, on the case s > t. Since
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βks(N) and β�t(N) are indicator variables, we have that:

E [βks(N)β�t(N)|M(N − 1)]
= P[v(N ; s) = k, v(N ; t) = �|M(N − 1)]
= P[v(N ; s) = k|v(N ; t) = �, M(N − 1)]
× P[v(N ; t) = �|M(N − 1)]

<
η(η − 1)

2

(
μM(N − 1) + 2η

2η (N − 1)

)2

, (81)

where the last inequality follows from (66), and the claim
follows by observing that η(η − 1)/(8η2) < 1.

APPENDIX C
EQUIVALENCE BETWEEN BOLLOBÁS-RIORDAN

MULTIGRAPHS AND SIMPLE GRAPHS

Proof of Lemma 1: We start with the analysis of the
number of self-loops in M(N), which is equal to:

m̊(N) �
N∑

k=1

mkk. (82)

Given a multigraph M(k − 1), let us consider the η steps,
s = 1, 2, . . . , η, necessary to build the multigraph M(k).
Consider a sequence of nodes v1, v2, . . . , vη selected during
the η steps, with the prescription that exactly m out of the η
nodes are equal to k, i.e., we have m self-loops attached to the
new node k. We denote by Vm the ensemble of configurations
v1, v2, . . . , vη that match such prescription. We note in passing
that the cardinality of Vm is equal to

(
η
m

)
. According to the

adopted notation, the probability of having exactly m self-
loops attached to k admits the following representation:

P[mkk = m |M(k − 1)]

(a)=
∑
Vm

η∏
s=1

P[v(k; s) = vs | {v(k; τ) = vτ}s−1
τ=1, M(k − 1)]

≤
∑
Vm

∏
s:vs=k

P[v(k; s) = k | {v(k; τ) = vτ}s−1
τ=1, M(k − 1)]

(b)≤
(

η

m

)
1

(k − 1)m
, (83)

where (a) follows by the chain rule and (b) follows from (66),
once noticing that dM,k(k − 1) = 0. Now, by exploiting the
definition of M(1), the multigraph made by a single node with
η self-loops, we can write:

m̊(N) = η +
N∑

k=2

mkk, (84)

which, in view of (83) yields:

E[m̊(N) |M(k − 1)] =

η +
N∑

k=2

η∑
m=1

m P[mkk = m |M(k − 1)]

≤ η +
N∑

k=2

η∑
m=1

m

(
η

m

)(
2η

k − 1

)m

≤ η + C(η)
N∑

k=2

1
k − 1

, (85)

where the finite constant C(η) is implicitly defined in the last
step of (85). We immediately see from (85) that:

lim
N→∞

E[m̊(N)]
N

= 0, (86)

since the last summation in (85) is the harmonic number,
which grows logarithmically with N .

We continue by examining the expected number of redun-
dant edges in M(N):

E[m̈(N)] =
N∑

�=1

�−1∑
k=1

E[m̈k�], (87)

where the number of redundant edges between two distinct
nodes k and � in the multigraph M(�) can be conveniently
represented as:

m̈k� � max{mk� − 1, 0}, (88)

We want to show that:

lim
N→∞

E[m̈(N)]
N

= 0. (89)

In order to prove (89), we can call upon the Stolz-Cesàro
theorem, and apply (74) with the choices f� =

∑�−1
k=1 E[m̈k�]

and g� = 1 (which corresponds to apply the Cesàro-mean
theorem), implying that it would suffice to show that:

lim
�→∞

�−1∑
k=1

E[m̈k�] = 0. (90)

Reasoning as done to obtain (83), we have the following
representation:

P[mk� = m |M(� − 1)]

≤
∑
Vm

∏
s:vs=k

P[v(�; s) = k | {v(�; τ) = vτ}s−1
τ=1, M(� − 1)]

≤
(

η

m

)(
dM,k(� − 1) + 2η

2η (� − 1)

)m

, (91)

where in the last step we applied (66). Exploiting (88),
from (91) we can compute the conditional expected value of
m̈k�, obtaning:

E[m̈k� |M(� − 1)] =
η−1∑
m=1

m P[m̈k� = m |M(� − 1)]

=
η∑

m=2

(m − 1) P[mk� = m |M(� − 1)]

≤
η∑

m=2

(m − 1)
(

η

m

)(
dM,k(� − 1) + 2η

2η (� − 1)

)m

(92)

≤
(

dM,k(� − 1) + 2η

2η (� − 1)

)
×

η∑
m=2

(m − 1)
(

η

m

)(
μM(� − 1) + 2η

2η (� − 1)

)m−1

, (93)

where, in the last step the degree of node k has been upper
bounded m − 1 times by the maximal degree. Summing over
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index k, from (93) we get:
�−1∑
k=1

E[m̈k� |M(� − 1)] ≤
∑�−1

k=1 (dM,k(� − 1) + 2η)
2η (� − 1)

×
η∑

m=2

(m − 1)
(

η

m

)(
μM(� − 1) + 2η

2η (� − 1)

)m−1

. (94)

Using (41) and recalling that dM,k(� − 1) = dM,k(� − 1; η),
we have that:

�−1∑
k=1

dM,k(� − 1) = 2η(� − 1), (95)

which, taking expectation w.r.t. to M(� − 1) in (94), yields:
�−1∑
k=1

E[m̈k�]

≤ 2
η∑

m=2

(m − 1)
(

η

m

)
E

[(
μM(� − 1) + η

2η (� − 1)

)m−1
]

, (96)

and the claim in (90) follows by (63), which, further apply-
ing (86), completes the proof of the lemma.

Next we prove the asymptotic equivalence between the
maximal degrees of the multigraph and the associated simple
graph, claimed in Lemma 2.

Proof of Lemma 2: Considering the definition of the
multigraph degree in (36), and separating the contribution of
the redundant edges in (88) from the contribution of the simple
graph term in (45), we can write:

dM,k(N) = 2 mkk +
N∑

�=1
� �=k

mk�

(a)= 2 mkk +
N∑

�=1
� �=k

gk� +
k−1∑
�=1

m̈k� +
N∑

�=k+1

m̈k�

(b)
< 3 η + dG,k(N) +

N∑
�=k+1

m̈k�, (97)

where in (a) we adopt the convention that the second summa-
tion is equal to zero when k = 1, and that the third summation
is equal to zero when k = N ; and in (b) the inequality
follows because the number of self-loops attached to node k
at cycle k, as well as the number of edges connecting node k
to a node � < k, are at most equal to the number of steps η,
namely, mkk ≤ η and

∑k−1
�=1 m̈k� < η. Taking the maximum

over k ∈ [1, N ] in (97) we can write:

0 ≤ μM(N) − μG(N) < 3 η + max
k∈[1,N ]

N∑
�=k+1

m̈k�

= 3 η + max
k∈[1,N−1]

N∑
�=k+1

m̈k�, (98)

where the equality follows because of the summation is zero
when k = N . For any k ≥ 1, let us introduce the sequence:

uk(�) �
{

m̈k�, k < �,
0, otherwise.

(99)

It is readily verified that the family of sequences {uk(�)}�≥1

indexed by the parameter k, matches the hypotheses of
Lemma 13, with the choices Θ = N \ {0}, b = η, and with
the filtration {F(�)}�≥1 generated by the random sequence
{M(�)}�≥1. In particular, for any ε > 0, and for any N ≥ 1,
by choosing T = [1, N ] and u = ε

√
N , we can apply

Lemma 13 and write:

P

[
max

k∈[1,N−1]

N∑
�=k+1

m̈k� > ε
√

N

]

≤ Ne−
3ε
16η

√
N + P

[
max

k∈[1,N−1]
Ck(N) >

ε

2

√
N

]
, (100)

where

Ck(N) =
N∑

�=k+1

E[m̈k�|M(� − 1)]. (101)

On the other hand, for 1 ≤ k ≤ N − 1 we have that:

Ck(N) ≤
N∑

�=2

E[m̈k�|M(� − 1)]

≤
N∑

�=2

η∑
m=2

(m − 1)
(

η

m

)(
dM,k(� − 1) + 2η

2η (� − 1)

)m

≤
N∑

�=2

η∑
m=2

(m − 1)
(

η

m

)(
μM(� − 1) + 2η

2η (� − 1)

)m

, (102)

where in the second inequality we applied (92), whereas the
third inequality follows from the definition of maximal degree.
Applying Markov’s inequality and exploiting (102) we obtain:

P

[
max

k∈[1,N−1]
Ck(N) ≥ ε

2

√
N

]
≤ 2

ε

η∑
m=2

(m − 1)
(

η

m

)
1√
N

N∑
�=1

E

[(
μM(�) + 2η

�

)m]
.

(103)

Substituting (103) into (100) and applying Lemma 4, from (98)
we obtain the convergence in (47). Then, the convergence
in (48) comes directly from (43), and the proof is complete.

Lemma 6 (Subgraphs GP(N) Are Nontrivial): Let G(N) be
the simple graph associated to a Bollobás-Riordan multigraph
M(N), and let GS(N) be the subgraph over a subset sequence
SN fulfilling (8). Then: i) for sufficiently large N , subgraph
GS(N) is not fully connected; and ii) the probability that
GS(N) is fully disconnected vanishes as N → ∞.

Proof: The sum of all degrees in multigraph M(N) grows
linearly with N . In order to have a fully connected subgraph
GS(N), the sum of all degrees of this subgraph should be
equal to |SN |2, which scales as N2 in view of (8). Therefore,
subgraph GS(N) cannot be fully connected as N grows.

We move on to examine the probability that GS(N) is fully
disconnected. Let

SN = {n1, n2, . . . , n|SN |}, V� � {n1, n2, . . . , n�},
(104)

with:
n1 < n2 < . . . < n|SN |. (105)
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We can write:

P[GS(N) is fully disconnected]
≤P
[
v(n2; 1) /∈V1, v(n3; 1) /∈V2, . . . , v(n|SN |; 1) /∈V|SN |−1

]
=

|SN |∏
�=2

P
[
v(n�; 1) /∈ V�−1|{v(nk; 1) /∈ Vk−1}�−1

k=2

]
, (106)

where the inequality follows by considering only the connec-
tions at step s = 1 of the preferential attachment construction,
whereas the equality follows by the chain rule. Now, from (42),
for any k < n we obtain the following lower bound:

P [v(n; 1) = k|M(n − 1)] ≥ η

1 + 2η(n − 1)
≥ 1

2n
. (107)

Accordingly, the individual term in (106) can be upper
bounded as follows:

P
[
v(n�; 1) /∈ V�−1|{v(nk; 1) /∈ Vk−1}�−1

k=2

]
= 1 −

�−1∑
k=1

P
[
v(n�; 1) = nk|{v(nk; 1) /∈ Vk−1}�−1

k=2

]
≤ 1 − � − 1

2n�
≤ 1 − � − 1

2N
. (108)

Using (108) in (106), we finally get9:

P[GSN
(N) is fully disconnected]

≤
|SN |∏
�=2

(
1 − � − 1

2N

)
≤

|SN |∏
�=|SN |/2+1

(
1 − � − 1

2N

)

≤
(

1 − |SN |
4N

)|SN |/2
N→∞−→ 0, (110)

where the second inequality holds because all terms in the
product are smaller than 1, while convergence holds in view
of (8).

APPENDIX D
USEFUL RESULTS ON MATRIX A(N)

Theorem 4 (Correlation Between Matrix Entries): Let

M(N) � max
k,�∈[1,N ]

k<�

N∑
j=1

j �=k,�

ajk(N)aj�(N). (111)

Then we have that:
√

N M(N)
p−→ 0. (112)

9For each multigraph M(n�−1) such that {v(nk ; 1) /∈ Vk−1}�−1
k=2, we can

write:

P

�
v(n�; 1) = nk|{v(nk ; 1) /∈ Vk−1}�−1

k=2, M(n� − 1)
�

= P [v(n�; 1) = nk|M(n� − 1)] . (109)

Since the bound in (107) does not depend on M(n − 1), by applying the
law of total probability, we can use (107) to bound also the probability

P

�
v(n�; 1) = nk|{v(nk ; 1) /∈ Vk−1}�−1

k=2

�
.

Proof: Using (32) in (111) we get:

√
N M(N) =

(
ρλ

√
N

1 + μG(N)

)2
1√
N

max
k,�∈[1,N ]

k<�

N∑
j=1

j �=k,�

gjkgj�

︸ ︷︷ ︸
tN

.

(113)

Since the term
√

N
1+μG(N) converges almost surely to 1/μ,

it is sufficient to show that the term tN in (113) vanishes
in probability as N → ∞. To this aim, it is expedient to work
in terms of the original multigraph M(N) that originates the
simple graph G(N). We have that:

tN ≤ 1√
N

max
k,�∈[1,N ]

k<�

N∑
j=1

j �=k,�

mjkmj�

=
1√
N

max
k,�∈[1,N ]

k<�

�∑
j=1

j �=k,�

mjkmj�

︸ ︷︷ ︸
t′N

+
1√
N

max
k,�∈[1,N ]

k<�

N∑
j=�+1

mjkmj�

︸ ︷︷ ︸
t′′N

. (114)

By construction, mk� ∈ {1, . . . , η}, and using (36), for any
k < � we have:

�∑
j=1

j �=k,�

mjkmj� ≤ η

�∑
j=1

j �=k,�

mj� ≤ η dM,�(�) ≤ 2η2,

(115)

where the last inequality holds because, in the multigraph
M(�), node � has only η edges, and so its degree dM,�(�)
is upper bounded by 2η. Applying (115) to the random
sequence t′N in (114), we conclude that t′N vanishes almost
surely as N → ∞. It remains to show that t′′N in (114)
vanishes in probability. To this end, we call upon Lemma 13,
by introducing the following family of sequences, for any
k, � ∈ N with 1 ≤ k < �:

uk�(j) �
{

mjk mj�, j > �,
0, otherwise.

(116)

Following the notation adopted in Lemma 13, we have a family
of sequences {uk�(j)}j≥1 parameterized by the set:

Θ = {(k, �) ∈ N
2 : 1 ≤ k < �}. (117)

Moreover, we introduce the aggregate variable:

Uk�(N) �
N∑

j=1

uk�(j). (118)

Convergence to zero of the random variable t′′N in (114) is
equivalent to the following statement:

∀ε > 0, lim
N→∞

P

⎡⎣ max
k,�∈[1,N ]

k<�

Uk�(N) > ε
√

N

⎤⎦ = 0. (119)
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Now, for any (k, �) ∈ Θ:

uk�(1) = 0, and ∀j > 1, 0 ≤ uk�(j) ≤ η2, (120)

where the upper bound follows because, in view of (34)
and (35), both mjk and mj� cannot exceed the number of
steps η. From (120) we see that the family of sequences
in (116) meets the hypotheses of Lemma 13 with the filtration
{F(n)}n≥1 generated by the random sequence {M(n)}n≥1.
We conclude that the probability in (119) is upper
bounded by:

N(N − 1)
2

e
− 3

16η2 ε
√

N + P

⎡⎣ max
k,�∈[1,N ]

k<�

Ck�(N) >
ε

2

√
N

⎤⎦ ,

(121)

where:

Ck�(N) �
N∑

j=1

E[uk�(j)|M(j − 1)]. (122)

On the other hand, from Lemma 5 we have that:

max
k,�∈[1,N ]

k<�

Ck�(N) <

N∑
j=1

(
μM(j − 1) + 2η

j − 1

)2

. (123)

Therefore, applying Markov’s inequality and (123) to the
second term in (121), we conclude that this term is upper
bounded by:

2
ε
√

N

N∑
j=1

E

[(
μM(j − 1) + 2η

j − 1

)2
]

, (124)

which vanishes as N → ∞ in view of Lemma 4, concluding
the proof of the theorem.

APPENDIX E
DETERMINISTIC PROPERTIES OF THE LIMITING

GRANGER ESTIMATOR

In this section we obtain an upper bound on the error
of the limiting Granger estimator. To this aim, we start by
proving two auxiliary lemmas that hold for any N ×N scaled
left-stochastic matrix A = [ak�], namely, for any matrix whose
entries satisfy the conditions:

ak� ≥ 0,

N∑
�=1

ak� = ρ. (125)

In the following analysis we denote by a
(i)
k� the (k, �)-entry of

the matrix power Ai, and we use the following quantity:

M � max
k,�∈[1,N ]

k �=�

N∑
j=1

j �=k,�

akjaj�. (126)

Lemma 7 (Bounds on Matrix Powers): Let A be an N ×N
scaled left-stochastic matrix as in (125). For i = 1, 2, . . . , we
have that:
• The main diagonal entries of A2i satisfy the inequalities:

a
(2i)
kk ≤ αi, (127)

where the sequence αi is recursively defined as:

α1 = ρ2, αi+1 = ρ2αi + ρ2(i+1). (128)

• The off-diagonal entries of A2i satisfy the inequalities:

a
(2i)
k� ≤ βi ak� + γi (129)

where βi and γi are two sequences recursively defined as:

β1 =2ρ, βi+1 = 2ρ αi + ρ2 βi, (130)

γ1 =M, γi+1 = Mαi + 3ρMβi + ρ2 γi. (131)

Proof: Preliminary, it is useful to observe that10:

N∑
�=1

a
(i)
k� = ρi. (133)

We start by proving (127) by induction. For i = 1, the
claim follows directly from (133). We shall therefore prove
that (127) holds for i+1, assuming that it holds for i. To this
aim, let us write the diagonal terms of matrix A2(i+1) as:

a
(2i+2)
kk =

N∑
�=1

a
(2i)
k� a

(2)
�k = a

(2i)
kk a

(2)
kk +

N∑
�=1
� �=k

a
(2i)
k� a

(2)
�k . (134)

We observe that (133) implies in particular the following
inequalities:

a
(2)
kk ≤ ρ2, a

(2)
�k ≤ ρ2,

N∑
�=1
� �=k

a
(2i)
k� ≤ ρ2i, (135)

which, applied in (134), yield:

a
(2i+2)
kk ≤ ρ2 a

(2i)
kk + ρ2(i+1). (136)

Since a
(2i)
kk ≤ αi by the induction hypothesis, from (136) we

get:
a
(2i+2)
kk ≤ ρ2 αi + ρ2(i+1) = αi+1, (137)

which corresponds to (127) for the case i + 1, and the claim
for the diagonal entries is proved.

We continue by proving (129) by induction. For any k, � =
1, 2, . . . , N , with k �= �, we have:

a
(2)
k� =

N∑
h=1

akhah� = (akk + a��) ak� +
N∑

h=1
h �=k,�

akhah�

≤ 2ρ ak� + M � β1 ak� + γ1, (138)

where: i) in the inequality we exploited the fact that the
diagonal entries of A are upper bounded by ρ in view of (125),
and we used the definition of M in (126); and ii) in the last
equality we applied the definitions of β1 and γ1 appearing
in (130) and (131), respectively. We conclude from (138) that
the claim in (129) holds for i = 1. Let us now show that, if the

10We can prove this property by induction as follows. For i = 1 the property
is exactly (125), while the induction step comes from:

N�
�=1

a
(i+1)
k� =

N�
�=1

N�
h=1

a
(i)
khah� =

N�
h=1

a
(i)
kh

N�
�=1

ah� = ρiρ. (132)
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claim holds for a generic i, then it holds for i+1. To this aim,
we observe that:

a
(2i+2)
k� =

N∑
h=1

a
(2)
kh a

(2i)
h� = a

(2)
k� a

(2i)
�� +

N∑
h=1
h �=�

a
(2)
kh a

(2i)
h�

≤ a
(2)
k� a

(2i)
�� +

N∑
h=1
h �=�

a
(2)
kh

(
βi ah� + γi

)

≤ αi a
(2)
k� +βi

(
a
(2)
kk ak� +

N∑
h=1

h �=k,�

a
(2)
kh ah�

)
+γi

N∑
h=1
h �=�

a
(2)
kh ,

(139)

where the first inequality follows by applying the induction
hypothesis to term a

(2i)
h� , while in the second inequality we

used (127). Let us now bound the individual terms that
multiply the quantities αi, βi, and γi in (139).

• From (138) we have:

a
(2)
k� ≤ 2ρ ak� + M. (140)

• From (133) we have:

a
(2)
kk ≤ ρ2,

N∑
h=1
h �=�

a
(2)
kh ≤ ρ2. (141)

• We can write:
N∑

h=1
h �=k,�

a
(2)
kh ah� ≤

N∑
h=1

h �=k,�

(2ρ akh + M) ah�

≤ 2ρM + ρM = 3ρM, (142)

where in the first inequality we applied (138), while in
the second inequality we applied (125) and (126).

Using (140), (141), and (142) in (139), we get:

a
(2i+2)
k� ≤ αi

(
2ρ ak� + M

)
+ βi(ρ2ak� + 3ρM) + γi ρ2

= βi+1ak� + γi+1, (143)

where the equality comes from (130) and (131), and the proof
is complete.

Lemma 8 (Bounds on a Useful Matrix Power Series): Let
A be an N × N scaled left-stochastic matrix as in (125). Let

C � [A2]P′ , H � (IP′ − C)−1 =
∞∑

i=0

Ci, (144)

where we recall that P′ � {1, 2, . . . , N} \ P. Let further

ᾱ � 1 +
ρ2

(1 − ρ2)2
, β̄ � 2ρ

ᾱ

1 − ρ2
, γ̄ � ᾱ + 3ρβ̄

1 − ρ2
. (145)

Then, for i = 1, 2, . . . , we have that:
• The main diagonal entries of matrix H satisfy the

inequalities:
0 < hkk ≤ ᾱ. (146)

• The off-diagonal entries of matrix H satisfy the
inequalities:

0 ≤ hk� ≤ β̄ak� + Mγ̄. (147)

Proof: The fact that hk� ≥ 0 for any k and � is an
immediate consequence of the definition of matrix H in (144),
since the entries of matrix powers Ci are nonnegative for any i.
So in the next we will focus on the upper bounds in (146)
and (147).

As it can be trivially verified by induction, we first note that
for any k, � ∈ P′ and any i = 1, 2, . . .:

c
(i)
k� ≤ a

(2i)
k� , (148)

implying that the upper bounds provided in Lemma 7 are also
valid for the matrix powers Ci. Therefore, by the definition
of H in (144), we have:

hkk ≤ 1 +
∞∑

i=1

αi, hk� ≤
∞∑

i=1

βiak� +
∞∑

i=1

γi, (149)

where the sequences αi, βi and γi are defined in (128), (130)
and (131), respectively. According to (149), to establish the
upper bounds in (146) and (147) it suffices to show that:

1 +
∞∑

i=1

αi = ᾱ,

∞∑
i=1

βi = β̄,

∞∑
i=1

γi = M γ̄. (150)

To this aim, we note that the sequence αi in (128)
matches (212) in Lemma 12 with the choices:

f1 = a = d = ρ2, b = c = 0. (151)

Therefore, we can apply (213) to obtain:

αi = ρ2(i−1)
(
ρ2 + ρ2(i − 1)

)
= i ρ2i, (152)

which, recalling the series
∑∞

i=1 i ai = a
(1−a)2 (for |a| < 1),

allows us to write:

1 +
∞∑

i=1

αi = 1 +
ρ2

(1 − ρ2)2
= ᾱ. (153)

Thus, we proved (146).
Let us move on to prove (147). By substituting (152)

in (130), we get:

βi+1 = ρ2βi + 2ρ2i+1i, (154)

and therefore we see that the sequence βi matches (212) in
Lemma 12 with the choices:

f1 = c = 2ρ, a = ρ2, b = d = 0. (155)

In view of (213), we conclude that:

βi =ρ2(i−1)

(
2ρ + 2ρ

i(i − 1)
2

)
= ρ2i−1

(
i2 − i + 2

)
, (156)

which implies that the series
∑∞

i=1 βi converges. Since we
showed that also the series

∑∞
i=1 αi is convergent, by sum-

ming over index i in (130) we can write:
∞∑

i=1

βi+1 = 2ρ
∞∑

i=1

αi + ρ2
∞∑

i=1

βi, (157)

or ∞∑
i=1

βi − β1 = 2ρ

∞∑
i=1

αi + ρ2
∞∑

i=1

βi, (158)
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which, using β1 = 2ρ and (153), yields:
∞∑

i=1

βi = 2ρ
1 +

∑∞
i=1 αi

1 − ρ2
= 2ρ

ᾱ

1 − ρ2
= β̄. (159)

It remains to examine the behavior of the summation
in (149) involving the sequence γi in (131). Substituting (152)
and (156) in (131) we get:

γi+1 = ρ2γi + Mρ2ii + 3Mρ2i
(
i2 − i + 2

)
= ρ2γi + Mρ2i

(
3i2 − 2i + 6

)
, (160)

which shows that the sequence γi matches (212) in Lemma 12
with the choices:

f1 = M, a = ρ2, b = 3M, c = −2M, d = 6M.

(161)

We conclude that the series
∑∞

i=1 γi is convergent. Thus,
by summing over i in (131), we can write:

∞∑
i=1

γi − γ1 = M
∞∑

i=1

αi + 3M
∞∑

i=1

βi + ρ2
∞∑

i=1

γi, (162)

which, using γ1 = M along with (153) and (159), yields:
∞∑

i=1

γi = M
ᾱ + 3ρβ̄

1 − ρ2
= M γ̄, (163)

and the proof is complete.
We are now ready to apply Lemmas 7 and 8 to obtain a

bound on the error of the limiting Granger estimator. By defin-
ition, the limiting Granger estimator ÂP(N) is a deterministic
function of the combination matrix A(N). In fact, for a
realization A of A(N), the limiting Granger estimator is:

ÂP � [R1]P[R0]−1
P , (164)

with:

R0 �
∞∑

i=0

Ai[Ai]�, R1 � AR0. (165)

When A is symmetric, we have (recall that I denotes the N ×
N identity matrix):

R0 = (I − A2)−1, (166)

and the limiting Granger estimator admits the following
expression [29, App. A, Eq. (66)]:

ÂP = AP + APP′(IP′ − [A2]P′)−1[A2]P′P, (167)

which is critical to prove the following lemma.
Lemma 9 (Bound on the Error of the Limiting Granger

Estimator): Let A be an N ×N scaled left-stochastic matrix
as in (125). If A is symmetric, then we have:

‖ÂP − AP||max-off ≤ κ M ∀P ⊆ {1, 2, . . . , N}, (168)

where κ is a positive constant, and M is defined in (126).
Proof: Since A is symmetric, the limiting Granger estima-

tor admits the representation in (167), which, with the notation
introduced in (144), becomes:

ÂP − AP = APP′H [A2]P′P, (169)

or, in terms of the individual (k, �)-entry:

ek� �
[
APP′H [A2]P′P

]
k�

=
∑

j,m∈P′
akjhjma

(2)
m�

=
∑
j∈P′

akjhjja
(2)
j� +

∑
j,m∈P′

j �=m

akjhjma
(2)
m� . (170)

We note that ek� ≥ 0 since all involved matrices are nonnega-
tive — see (146) and (147) for what concerns H . Therefore,
it suffices to prove that:

ek� ≤ κM, (171)

for some positive constant κ. To this aim, let us consider two
indices k, � ∈ P. Calling upon Lemma 8, we can apply (146)
and (147) in (170), yielding:

ek� ≤ ᾱ
∑
j∈P′

akja
(2)
j� + β̄

∑
j,m∈P′

j �=m

akjajma
(2)
m� + Mγ̄

∑
j,m∈P′

j �=m

akja
(2)
m�.

(172)

The first summation in (172) can be upper bounded as follows:∑
j∈P′

akja
(2)
j� ≤

∑
j∈P′

akj (2ρ aj� + M)

= 2ρ
∑
j∈P′

akjaj� + M
∑
j∈P′

akj

≤ 2ρM + M = 3M, (173)

where in the first inequality we used (138), while in the second
inequality we used the following bounds:∑

j∈P′
akjaj� ≤

N∑
j=1

j �=k,�

akjaj� ≤ M,
∑
j∈P′

akj ≤ ρ. (174)

Here, we remark that the inequality on the left exploits the
fact that k, � ∈ P and j ∈ P′, so we are allowed to extend the
sum across j ∈ P′ to a sum across j ∈ {1, 2, . . . , N} \ {k, �}.

Next we focus on the second summation in (172), which
can be upper bounded as follows:∑
j,m∈P′

j �=m

akjajma
(2)
m� ≤

∑
j,m∈P′

j �=m

akjajm (2ρ am� + M)

= 2ρ
∑

j,m∈P′
j �=m

akjajmam� + M
∑

j,m∈P′
j �=m

akjajm,

≤ 2ρ2M + ρ2M = 3ρ2M, (175)

where in the first inequality we used (138), while in the second
inequality we used (125) and (126) to get:∑
j,m∈P′

j �=m

akjajmam� =
∑
j∈P′

akj

∑
m∈P′
j �=m

ajmam�≤
∑
j∈P′

akjM ≤ ρM,

(176)

and: ∑
j,m∈P′

j �=m

akjajm =
∑
j∈P′

akj

∑
m∈P′
j �=m

ajm ≤
∑
j∈P′

akjρ ≤ ρ2.

(177)
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Finally, the third summation in (172) can be manipulated as
follows:∑

j,m∈P′
j �=m

akja
(2)
m� =

∑
j,m∈P′

j �=m

akj

N∑
h=1

amhah�

=
∑
j∈P′

akj

N∑
h=1

ah�

∑
m∈P′
m �=j

amh ≤ ρ3, (178)

where in the last step we applied repeatedly (125), further
noticing that in view of the symmetry of A we can write:∑

m∈P′
m �=j

amh =
∑

m∈P′
m �=j

ahm ≤ ρ. (179)

Using (173), (175), and (178) in (172), we get:

ek� ≤
(
3ρᾱ + 3ρ2β̄ + ρ3γ̄

)
M � κM, (180)

which proves the claim.

APPENDIX F
PROOF OF THEOREM 2

Since Lemma 9 holds for any symmetric matrix A fulfill-
ing (125) and any subset P ⊆ {1, 2, . . . , N}, in view of (168)
we can write:

‖ÂS(N) − AS(N)||max-off ≤ κ M(N), (181)

where M(N) is the random variable defined in (111). Apply-
ing Theorem 4 to (181), we conclude that:

√
N‖ÂS(N) − AS(N)||max-off

p−→ 0, (182)

for any sequence of probed subsets SN . Now, by applying the
triangle inequality we can write:

‖
√

NÂS(N) − γGS(N)||max-off

≤
√

N‖ÂS(N) − AS(N)||max-off

+ ‖
√

NAS(N) − γGS(N)||max-off . (183)

The first term on the RHS of (183) vanishes in probability in
view of (182). Moreover, in view of (32) we have that:

AS(N) − diag(AS(N)) = ρλ
GS(N)

1 + μG(N)
, (184)

where diag(·) is a diagonal matrix having on the main diagonal
the entries of its matrix argument. Using (184), we see that
the second term on the RHS of (183) is upper bounded by:∣∣∣∣∣ ρλ

√
N

1 + μG(N)
− γ

∣∣∣∣∣ p−→ 0, (185)

where the convergence follows from (64) and (47) since μ is
strictly positive. We conclude that:

‖
√

NÂS(N) − γ GS(N)‖max-off
p−→ 0, (186)

which concludes the proof. �

APPENDIX G
SAMPLE COMPLEXITY ANALYSIS

The following lemmas characterize the rate of convergence
of the sample covariance estimators. Preliminarily, it is con-
venient to introduce the following auxiliary function:

fT (x)�|SN |2e−T/2 + |SN |2e−[
√

Tx−√
2]2 , (187)

and the error matrices, for j ∈ {0, 1}:

Ej �
[
R̂j(T, N) − [Rj(N)

]
SN

. (188)

Lemma 10 (Sample Covariance Errors): Let us consider the
dynamical system (2), with Laplacian combination matrix as
in (32), and with network graph G(N) being a simple graph
obtained from a Bollobás-Riordan multigraph M(N) with step
parameter η. Then, under Assumption 1, there exists a constant
C such that:

P[‖E0‖max > ε]≤3 fT

(
ε C
)

for T >
2

(ε C)2
, (189)

P[‖E1‖max > ε]≤4 fT−1

(
ε C
)

for T > 1 +
2

(ε C)2
. (190)

Proof: In this proof we will often consider conditional
probabilities given A(N) = A. This is tantamount to assuming
that the dynamical system (3) is run with a deterministic
matrix A. In such a scenario, matrix R0(N) becomes deter-
ministic, since according (24) it is a deterministic function
of A(N). Accordingly, we will conveniently denote by the
normal-font symbol R0 the realization of R0(N) correspond-
ing to A. In contrast, the quantity R0(T, N) in (30) will
remain random, since by definition it depends also on the
source of randomness given by {xi(N)}T

i=1 and y0(N).
The proof of (189) and (190) is a slight variation of the

bounding technique used in [25, Lemma 1]. In particular, let
us define for i, j = 0, 1, . . . , with j ≤ i, the conditional
cross-covariance between yi(N) and yj(N), namely,

Σi,j � E
[
yi(N)y�

j (N)|A(N) = A
]

= Ai−jΣj,j = Ai−jR0,

(191)

where the intermediate equality is a classical result on VAR
models [39], while the last equality comes from the sta-
tionarity enforced by Assumption 1. Starting from (191), in
[25, Lemma 1] the following bound is used:

‖Σi,j‖max ≤ ‖Σi,j‖2 ≤ ‖Ai−j‖2‖R0‖2. (192)

In our case we can exploit additional constraints on A to
replace (192) by:

‖Σi,j‖max ≤ ‖Ai−j‖∞‖R0‖max = ρi−j max
k=1,2,...,N

[R0]kk,

(193)

where the inequality comes from the fact that, for any
two matrices M1, M2 of compatible dimensions, we have
‖M1M2‖max ≤ ‖M1‖∞‖M2‖max. The equality in (193)
follows by using (132) and by applying Cauchy-Schwarz
inequality to obtain |[R0]k�| ≤

√
[R0]kk[R0]��.
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Using (193) in place of (192), and leaving other arguments
in the proof of [25, Lemma 1] unaltered, we get, for any T
such that11:

T >
2(

ε ϕ(R0)
)2 , (194)

the following bound:

P[|[E0]k�|>ε|A(N) = A]≤3
(
e−T/2+e−[

√
T ε ϕ(R0)−

√
2]2
)

,

(195)

where:

ϕ(R0) � 1 − ρ

16
√

2

min
k=1,2,...,N

[R0]kk

max
k=1,2,...,N

[R0]2kk

. (196)

From (50), (127), and (153) we have the inequalities:

min
k=1,2,...,N

[R0]kk ≥ 1, max
k=1,2,...,N

[R0]kk ≤ ᾱ, (197)

which can be used to bound the quantity ϕ(R0) in (196) as:

ϕ(R0) ≥ 1
ᾱ2

1 − ρ

16
√

2
� C. (198)

Since the function e−(
√

Tx−√
2)2 is decreasing for any

x >
√

2/T , we conclude from (195) and (198) that, under
the condition on T in (189), we have:

P[|[E0]k�| > ε|A(N) = A] ≤ 3
(
e−T/2 + e−[

√
Tε C−√

2]2
)

,

(199)

which is a bound independent of the current realization A.
Therefore, by applying the law of total probability in (199)
we get:

P [|[E0]k�| > ε] ≤ 3
(
e−T/2 + e−[

√
Tε C−√

2]2
)

. (200)

Now, using the union bound over the set of probed nodes SN

we can write:

P[‖E0‖max > ε] ≤
∑

k,�∈[1,N ]

P [|[E0]k�| > ε]

≤ 3|SN |2
(
e−T/2 + e−[

√
Tε C−√

2]2
)

,

(201)

and the claim in (189) follows from the definition of fT

in (187). In order to obtain (190), we must apply the same
steps shown above to the proof of [25, Lemma 2].

Lemma 11 (Scaling Law Useful for Sample Complexity):
Assume the same conditions used in Lemma 10, and consider
the following scaling law for the number of samples:

TN = ωNN log N, (202)

for some positive sequence ωN diverging in an arbitrarily slow
fashion as N → ∞. Then, for any sequence SN satisfying (8),
and for j ∈ {0, 1}, we have that:

√
N‖[Rj(TN , N)]S − [Rj(N)]S‖max

p−→ 0, (203)

11Condition (194) is explicitly stated in [25, Lemma 3], and basically
requires that the function e−(

√
Tx−√

2)2 appearing in (195) is evaluated in
the region where it is decreasing, i.e., for x >

�
2/T .

Proof: We need to show that, for any δ > 0:

lim
N→∞

P

[√
N‖[Rj(TN , N)]S − [Rj(N)]S‖max > δ

]
= 0.

(204)

We will prove the claim with reference to the case j = 0, with
the proof being identical for j = 1. Let us consider Lemma 10
with the choice ε = δ/

√
N . Since Eq. (202) implies that:

TN(ε C)2 = TN
(δ C)2

N

N→∞−→ ∞, (205)

we see that condition on T in (189) is met for N sufficiently
large. We conclude that to prove (204) it suffices to show that,
for any δ > 0:

lim
N→∞

fTN

(
δ C√

N

)
= 0. (206)

Now, the first term on the RHS of (187) converges to zero
since TN in (202) tends to +∞ faster than log |SN |. On the
other hand, the second term on the RHS of (187) can be
written as:

exp

{
−
(√

TN
δ C√

N
−
√

2
)2

+ log |SN |2
}

=exp

⎧⎨⎩−
⎡⎣(√δ2C2

ωN log N

log |SN | − 1√
log |SN |

)2

−1

⎤⎦log|SN |2
⎫⎬⎭,

(207)

and vanishes as N → ∞ in view of (8) and the fact that
ωN → ∞ by assumption.

Proof of Theorem 3: Calling upon Lemma 11 in [33],
we have the following bound:

√
N ‖ÂS(T, N) − ÂS(N)‖max

≤ 2‖[R0]−1
S ‖1

√
N (‖[R0(T, N)]S − [R0(N)]S‖max

+ ‖[R1(T, N)]S − [R1(N)]S‖max) . (208)

Moreover, in [33, Eq. (321)], it was shown that:

‖[R0]−1
S ‖1 ≤ 1 + ρ2. (209)

If we now use (209) in (208), from Lemma 11 we conclude
that: √

N‖ÂS(TN , N) − ÂS(N)‖max
p−→ 0. (210)

Since we know from Theorem 2 that the limiting Granger
estimator fulfills (11), by application of the triangle inequality
we have that:

‖
√

NÂS(TN , N) − γGS(N)‖max-off
p−→ 0, (211)

which in turn implies (see footnote 4) that (62) holds true
with high probability as N → ∞ with the sample scaling law
in (202). This means that the clustering algorithm graphclu
is able to reconstruct correctly the subgraph of probed nodes,
provided that the latter is neither fully connected nor fully
disconnected. However, the probability that GS(N) is fully
connected or fully disconnected vanishes N → ∞ in view of
Lemma 6, and the proof is complete. �
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APPENDIX H
AUXILIARY TECHNICAL RESULTS

Lemma 12: Let fi be the sequence recursively defined as:

fi+1 = afi + ai
(
b i2 + c i + d

)
, i = 1, 2, . . . (212)

with 0 < a < 1 and b, c, d ∈ R. Then we have that:

fi = ai−1

(
f1+b

i(i−1)(2i−1)
6

+c
i(i − 1)

2
+d(i−1)

)
.

(213)

Proof: Unfolding the recursion in (212), we conclude that,
for all i > 1:

fi = ai−1

⎛⎝f1 +
i−1∑
j=1

(
bj2 + cj + d

)⎞⎠ . (214)

Thus, to obtain (213) we use the well-known results:

i−1∑
j=1

j =
i(i − 1)

2
,

i−1∑
j=1

j2 =
i(i − 1)(2i − 1)

6
. (215)

The following lemma is an adaptation of Theorem 2.1
in [59], useful for the proofs of Lemma 2 and Theorem 4.

Lemma 13: Let us consider a family of random sequences
{uθ(n)}n≥1 spanned by the parameter θ ∈ Θ and defined
on the same probability space. Assume that the following
conditions are met for all θ ∈ Θ:

uθ(1) = 0, 0 ≤ uθ(n) ≤ b for all n > 1, (216)

for a positive constant b. Let us further define the first two
conditional moment sequences {νθ(n)}n≥1 and {χθ(n)}n≥1

w.r.t. a given filtration {F(n)}n≥1 of the underlying space:

νθ(1) � 0, νθ(n) � E[uθ(n)|F(n − 1)], (217)

χθ(1) � 0, χθ(n) � E[u2
θ(n)|F(n − 1)], (218)

and finally consider:

Uθ(N) �
N∑

n=1

uθ(n), Cθ(N) �
N∑

n=1

νθ(n), (219)

Qθ(N) �
N∑

n=1

χθ(n), Ūθ(N) � Uθ(N) − Cθ(N).

(220)

Then, for any subset T ⊆ Θ and any u > 0 we have:

P

[
max
θ∈T

Uθ(N) > u

]
≤ |T| e− 3

16 b u + P

[
max
θ∈T

Cθ(N) >
u

2

]
.

(221)

Proof: For any two events E1 and E2, it is true that (Ē2 is
the complement of event E2):

P[E1] = P[E1, E2] + P[E1, Ē2] ≤ P[E1, E2] + P[Ē2], (222)

so that we can write:

P

[
max
θ∈T

Uθ(N)>u

]
≤ P

[
max
θ∈T

Uθ(N)>u, max
θ∈T

Cθ(N)≤ u

2

]
+ P

[
max
θ∈T

Cθ(N) >
u

2

]
. (223)

Let us focus on the first term on the RHS of (223). We have
the following relations:{⋃

θ∈T

{Uθ(N) > u}
}⋂{ ⋂

θ′∈T

{Cθ′(N) ≤ u/2}
}

(a)=

{⋃
θ∈T

{
Ūθ(N)>u − Cθ(N)

}}⋂{ ⋂
θ′∈T

{Cθ′(N)≤u/2}
}

(b)⊆
⋃
θ∈T

{
Ūθ(N) > u − Cθ(N)

} ∩ {Cθ(N) ≤ u/2}

(c)⊆
⋃
θ∈T

{
Ūθ(N) > u − u/2

} ∩ {Cθ(N) ≤ u/2}

(d)⊆
⋃
θ∈T

{
Ūθ(N) > u − u/2

} ∩ {Qθ(N) ≤ bu/2} , (224)

where (a) follows from the definition of Ūθ(N) in (220);
(b) is obtained by retaining only the event corresponding to
θ′ = θ in the interesection; (c) holds since in the intersection
−u/2 ≤ −Cθ(N); and (d) follows by observing that, in view
of (216), (217) and (218) we have χθ(n) ≤ bνθ(n), which
in turn implies, from the definitions in (219) and (220), that
Qθ(N) ≤ b Cθ(N). Using (224) in the first term on the RHS
of (223), and further applying the union bound, we obtain:

P

[
max
θ∈T

Uθ(N) > u, max
θ∈T

Cθ(N) ≤ u

2

]
≤
∑
θ∈T

P

[
Ūθ(N) >

u

2
, Qθ(N) ≤ bu

2

]
. (225)

The sequence {Ūθ(N)}N≥1 is a martingale by construction,
since it is a sum of random variables (i.e., uθ(n)) minus their
conditional expectation (i.e., νθ(n)). Moreover, from (216) we
have the bound:

Ūθ(N + 1) − Ūθ(N) ≤ uθ(N + 1) ≤ b. (226)

Therefore, it can be readily checked that the scaled sequence
{Ūθ(N)/b}N≥1 meets the hypotheses of Theorem 2.1 in [59],
and in particular the upper bound obtained by combining
Eqs. (10), (11) and (15) in [59], which finally yields:

P

[
Ūθ(N) >

u

2
, Qθ(N) ≤ bu

2

]
≤ e−

3
16 b u, (227)

and the proof is complete.

REFERENCES

[1] M. Cirillo, V. Matta, and A. H. Sayed, “Learning Bollobás–Riordan
graphs under partial observability,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Toronto, ON, Canada, Jun. 2021,
pp. 5360–5364.

[2] I. D. Couzin, “Collective cognition in animal groups,” Trends Cogn. Sci.,
vol. 13, no. 1, pp. 36–43, Jan. 2009.

[3] B. L. Partridge, “The structure and function of fish schools,” Sci. Amer.,
vol. 246, no. 6, pp. 114–123, Jun. 1982.



CIRILLO et al.: ESTIMATING THE TOPOLOGY OF PREFERENTIAL ATTACHMENT GRAPHS UNDER PARTIAL OBSERVABILITY 1379

[4] V. Matta, V. Bordignon, A. Santos, and A. H. Sayed, “Interplay between
topology and social learning over weak graphs,” IEEE Open J. Signal
Process., vol. 1, pp. 99–119, 2020.

[5] R. Liégeois, A. Santos, V. Matta, D. Van De Ville, and A. H. Sayed,
“Revisiting correlation-based functional connectivity and its relation-
ship with structural connectivity,” Netw. Neurosci., vol. 4, no. 4,
pp. 1235–1251, Jan. 2020.

[6] V. Matta, A. Santos, and A. H. Sayed, “Graph learning under partial
observability,” Proc. IEEE, vol. 108, no. 11, pp. 2049–2066, Nov. 2020.

[7] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the
dots: Identifying network structure via graph signal processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 16–43, May 2019.

[8] H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data
under Laplacian and structural constraints,” IEEE J. Sel. Topics Signal
Process., vol. 11, no. 6, pp. 825–841, Sep. 2017.

[9] D. Materassi and M. V. Salapaka, “On the problem of reconstructing
an unknown topology via locality properties of the Wiener filter,” IEEE
Trans. Autom. Control, vol. 57, no. 7, pp. 1765–1777, Jul. 2012.

[10] C. J. Quinn, N. Kiyavash, and T. P. Coleman, “Directed information
graphs,” IEEE Trans. Inf. Theory, vol. 61, no. 12, pp. 6887–6909,
Dec. 2015.

[11] J. Etesami and N. Kiyavash, “Measuring causal relationships in dynam-
ical systems through recovery of functional dependencies,” IEEE Trans.
Signal Inf. Process. Netw., vol. 3, no. 4, pp. 650–659, Dec. 2017.

[12] A. Moneta, N. Chlass, D. Entner, and P. Hoyer, “Causal search in
structural vector autoregressive models,” in Proc. Neural Inf. Process.
Syst. (NIPS), Vancouver, BC, Canada, Dec. 2009, pp. 95–118.

[13] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and M. G. Rabbat,
“Characterization and inference of graph diffusion processes from obser-
vations of stationary signals,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 4, no. 3, pp. 481–496, Sep. 2018.

[14] S. Segarra, M. T. Schaub, and A. Jadbabaie, “Network inference from
consensus dynamics,” in Proc. IEEE 56th Annu. Conf. Decis. Control
(CDC), Dec. 2017, pp. 3212–3217.

[15] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network
topology inference from spectral templates,” IEEE Trans. Signal Inf.
Process. Netw., vol. 3, no. 3, pp. 467–483, Sep. 2017.

[16] J. Mei and J. M. F. Moura, “Signal processing on graphs: Causal
modeling of unstructured data,” IEEE Trans. Signal Process., vol. 65,
no. 8, pp. 2077–2092, Apr. 2017.

[17] A. Natali, M. Coutino, E. Isufi, and G. Leus, “Online time-varying
topology identification via prediction-correction algorithms,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Toronto, ON,
Canada, Jun. 2021, pp. 5400–5404.

[18] D. Materassi and M. V. Salapaka, “Network reconstruction of
dynamical polytrees with unobserved nodes,” in Proc. IEEE 51st
Annu. Conf. Decis. Control (CDC), Maui, HI, USA, Dec. 2012,
pp. 4629–4634.

[19] J. Etesami, N. Kiyavash, and T. Coleman, “Learning minimal latent
directed information polytrees,” Neural Comput., vol. 28, no. 9,
pp. 1723–1768, Aug. 2016.

[20] P. Geiger, K. Zhang, M. Gong, D. Janzing, and B. Schölkopf, “Causal
inference by identification of vector autoregressive processes with hidden
components,” in Proc. 32nd Int. Conf. Mach. Learn., Lille, France,
vol. 37, Jul. 2015, pp. 1917–1925.

[21] D. Materassi and M. V. Salapaka, “Identification of network components
in presence of unobserved nodes,” in Proc. IEEE 54th Annu. Conf. Decis.
Control, Osaka, Japan, Dec. 2015, pp. 1563–1568.

[22] A. Anandkumar, V. Y. F. Tan, F. Huang, and A. S. Willsky, “High-
dimensional Gaussian graphical model selection: Walk summability
and local separation criterion,” J. Mach. Learn. Res., vol. 13, no. 1,
pp. 2293–2337, Jan. 2012.

[23] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, “Latent variable
graphical model selection via convex optimization,” Ann. Statist., vol. 40,
no. 4, pp. 1935–1967, Aug. 2012.

[24] J. Bento, M. Ibrahimi, and A. Montanari, “Learning networks
of stochastic differential equations,” in Proc. Neural Inf.
Process. Syst. (NIPS), Vancouver, QC, Canada, Dec. 2010,
pp. 172–180.

[25] F. Han, H. Lu, and H. Liu, “A direct estimation of high dimensional
stationary vector autoregressions,” J. Mach. Learn. Res., vol. 16, no. 1,
pp. 3115–3150, Dec. 2015.

[26] P.-L. Loh and M. J. Wainwright, “High-dimensional regression with
noisy and missing data: Provable guarantees with nonconvexity,” Ann.
Statist., vol. 40, no. 3, pp. 1637–1664, Apr. 2012.

[27] M. Rao, A. Kipnis, M. Javidi, Y. Eldar, and A. Goldsmith, “System
identification with partial samples: Non-asymptotic analysis,” in Proc.
IEEE Conf. Decis. Control (CDC), Las Vegas, NV, USA, Dec. 2016,
pp. 2938–2944.

[28] A. Jalali and S. Sanghavi, “Learning the dependence graph of time series
with latent factors,” in Proc. Int. Conf. Mach. Learn. (ICML), Scotland,
U.K., Jun. 2012, pp. 619–626.

[29] V. Matta and A. H. Sayed, “Consistent tomography under partial
observations over adaptive networks,” IEEE Trans. Inf. Theory, vol. 65,
no. 1, pp. 622–646, Jan. 2019.

[30] A. Santos, V. Matta, and A. H. Sayed, “Local tomography of large
networks under the low-observability regime,” IEEE Trans. Inf. Theory,
vol. 66, no. 1, pp. 587–613, Jan. 2020.

[31] V. Matta, A. Santos, and A. H. Sayed, “Tomography of large adaptive
networks under the dense latent regime: Invited paper,” in Proc. 52nd
Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, USA,
Oct. 2018, pp. 2144–2148.

[32] V. Matta, A. Santos, and A. H. Sayed, “Graph learning with partial
observations: Role of degree concentration,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Paris, France, Jul. 2019, pp. 1312–1316.

[33] V. Matta, A. Santos, and A. H. Sayed, “Graph learning over partially
observed diffusion networks: Role of degree concentration,” IEEE Open
J. Signal Process., vol. 3, pp. 335–371, 2022.
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