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Assessing Interdisciplinary Research Within an
Emerging Technology Network: A Novel Approach

Based on Patents in the Field of Bioplastics
Laura Borge , Michael Wustmans , and Stefanie Bröring

Abstract—Interdisciplinary research is an increasingly crucial
source of emerging technologies like artificial intelligence, or bio-
plastics with the potential to alleviate the grand challenges of the
21st century. Nonetheless, assessing the degree of interdisciplinary
research and resulting emerging technology networks remains
somewhat ambiguous, as integrating and recombining knowledge
from distant domains is a complex phenomenon. By drawing upon
patents, patent citations, and their technology classification, this
article seeks to elucidate how interdisciplinary research can be
assessed, monitored, and visualized by taking technological knowl-
edge areas as the unit of analysis. For our novel approach, we em-
ploy the case of bioplastics as an example of an emerging technology
within the highly interdisciplinary Bioeconomy. We demonstrate,
inter alia, how the importance of interdisciplinarity across tech-
nological knowledge areas has increased over time in the case of
bioplastics, how different technological knowledge areas link up to
form an emerging technology network, and, more generally, how
this novel approach can help scientific and industrial actors to guide
and plan their interdisciplinary research in emerging technologies.
With regard to policy-makers, our novel operationalization of in-
terdisciplinarity provides guidance for developing and monitoring
the impact of science and innovation policies that are able to foster
interdisciplinary research and emerging technologies.

Index Terms—Bioeconomy, emerging technologies, inter-
disciplinary research, patents.

I. INTRODUCTION

INTERDISCIPLINARY research (IDR) is an increasingly
crucial source of emerging technologies, innovations, and

science-based ventures [1]–[4]. Most scholars agree that IDR
can be conceptualized as research that integrates two or more
bodies of specialized knowledge or research practices [5], [6].
Greater appreciation of the relevance of IDR for scientific and
industrial actors is triggered by the empirical observation that the
most impactful technological innovations often emerge from the
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integration of diverse knowledge areas [7]–[11]. Accordingly,
IDR has gained tremendous interest from science policy-makers
given its potential to alleviate the grand challenges of the 21st
century, such as climate change [1], [12], [13]. Prominent
examples of IDR with the potential to foster the emergence
of novel technologies include bioinformatics, nanobiotech, nu-
trigenomics, artificial intelligence, or bioplastics, all of which
are emerging between two or more knowledge areas [12],
[14]–[17]. All these examples represent, and, thus, demonstrate,
the need to pay closer attention to developments at the integration
of two or more knowledge areas.

However, the assessment of emerging technologies from IDR
is a complex phenomenon, which presents numerous challenges
for scientific and industrial actors as well as (science) policy-
makers [14], [18], [19]. Amongst others, one challenge is to
understand the interdisciplinary degree of the involved techno-
logical knowledge areas as well as how interlinkages between
these areas link up to form an emerging technology network [7],
[11], [19], [20].

Evaluating the interdisciplinary character of the involved
technological knowledge areas, and the underlying technology
network of emerging technologies, is pivotal during the highly
uncertain and ambiguous early phase of emergence [14], [18].
Thus, a novel operational approach for assessing, monitoring,
and visualizing the emergence of technology networks formed
by IDR appears especially desirable for scientific and indus-
trial actors. Such approaches have the potential to facilitate
and direct learning processes for actors involved in the de-
velopment of emerging technologies, by identifying which of
the diverse knowledge areas are relevant and providing insight
on how to manage knowledge integration across boundaries
[19], [20].

Yet, despite the potential for better assessment and its increas-
ing relevancy, measures and indicators that can both evaluate
diverse technological knowledge areas and help to monitor
their emerging connections in the form of novel technology
networks—the basis of emerging technologies—are still lacking
in literature. Thus, this article proposes a novel approach that al-
leviates the ambiguities associated with emerging technologies,
by specifically enabling scientific and industrial actors as well
as (science) policy-makers to better assess the interdisciplinary
nature of technological knowledge areas that form emerging
technologies, monitor the respective processes and outcomes,
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and identify and visualize central as well as key bridging tech-
nological knowledge areas for the development of emerging
technologies.

To this end, we draw upon patents, patent citations, and patent
classification codes as proxies used for the development of
indicators enabling assessing, monitoring, and visualizing the
emergence of a novel technology network. We chose bioplastics
as an emerging technology resulting from IDR for a number
of reasons. First, bioplastics (i.e., plastics resulting from re-
newable and biological resources) represent a prominent case
of the so-called knowledge-based Bioeconomy [21], [22], and
one requiring the integration of technological knowledge from
multiple areas like chemistry, biology, or materials science.
Thus, we expect a large amount of interlinkages among different
technological knowledge areas [23], [24]. Second, we highlight
bioplastics as an example of an emerging technology resulting
from IDR that has the potential to alleviate the grand challenges
such as climate change. Third, we expect that this emerging
technology also lends itself to our approach given the increasing
patenting activity. In this way, bioplastics offers an initial case
to validate our approach before, ultimately, applying it to other
emerging technologies where IDR plays a crucial role.

II. FOUNDATIONS OF EMERGING TECHNOLOGIES:
INTERDISCIPLINARY RESEARCH, TECHNOLOGY KNOWLEDGE

AREAS, AND EMERGING TECHNOLOGY NETWORKS

The integration and recombination of various scientific and
technological knowledge fields within IDR often lead to the
emergence of new technologies [7], [11], [19], [20]. According
to Rotolo et al. [14], five attributes qualify a technology as an
emerging technology, namely 1) radical novelty, 2) relatively fast
growth, 3) coherence, 4) prominent impact, and 5) uncertainty
and ambiguity. Understanding the developments of emerging
technologies and thereby reducing 5) the involved uncertainty
and ambiguity is of key interest for a broad range of actors [25].
More precisely, one particular challenge is the identification of
the origins of emerging technologies [14], [18]. In this regard,
Rotolo et al. [14] provided an overview of methods and frame-
works for operationalizing emerging technologies, which can
be grouped into five main categories: 1) indicators and trend
analysis, 2) citation analysis, 3) coword analysis, 4) overlay
mapping, and 5) hybrid approaches (combination of two or more
of the above). To this end, various data sources can be used for
the assessment of emerging technologies, such as publications
or patent data [26], [27].

Moreover, Burmaoglu et al. [18] carried out an extensive
review of the concept of technology emergence from the view-
point of the philosophy of science and complexity. Accordingly,
Burmaoglu et al. [18] examined the concept of technology
emergence from three different theoretical backgrounds: philos-
ophy of science, complexity theory, and evolutionary economics
[18]. Through this extensive review, five aspects characterize
technological emergence, namely 1) qualitative novelty, 2) qual-
itative synergistic, 3) irregular trend, 4) high functionality, and
5) continuity. Burmaoglu et al. [18] focused on understanding
the individual technology in microstate (microperspective) [18],

while Rotolo et al., 2015 focused on understanding emerging
technologies from a macroperspective, when different techno-
logical areas are combined in one field [14].

The focus of existing studies is mainly on detecting rather
than on characterizing emerging technologies [14], [18], [26].
In addition, we see a particular challenge for the assessment (as
well as monitoring and visualization) of emerging technologies
resulting from IDR, as such a task requires the identification
of the combined technological knowledge areas, i.e., the un-
derlying technology network forming the bases of emerging
technologies. Accordingly, this article seeks to complement
existing approaches by focusing on the involved technological
knowledge areas that form a technology network. While as-
sessing the emerging technology network, actors are enabled to
better understand the development of the emerging technology,
enhance their awareness of the relevant technological knowledge
areas, and more efficiently anticipate the future impact of the
emerging technology on an organization’s current knowledge
base. More precisely, such an assessment supports the learning
capacity of the involved actors by enabling them to timely
become aware of knowledge gaps and identify partners with
complementary knowledge at an earlier stage [19].

In what follows, we use the term IDR1 from a technological
innovation perspective, defined as the integration of knowledge
from two or more areas [3], [5]. Thus, along with its empiri-
cal relevancy—that technological innovations often arise from
the integration of diverse knowledge areas [7], [9], [11], [19],
[20]—IDR is also increasingly receiving attention from manage-
ment scholars [6], [17], [28]–[30]. The concepts of IDR and tech-
nology convergence are related, the first refers to a rather tem-
porary interdisciplinary action and not necessarily reflecting a
long-lasting convergence process [31], whereas technology con-
vergence or technology fusion describe a type of phenomenon
that leads to novel (merged) functions by combining at least
two or more existing technologies into hybrid technologies [32],
[33]. This article does not analyze the subsequent convergence
process, but it aims at characterizing emerging technologies
resulting from IDR. The evolving research stream on IDR
has examined the more general features of interdisciplinarity,
including the particularities of IDR, such as resource comple-
mentarity [17] or its potential disadvantages with regard to,
e.g., peer-review evaluations, which tend to favor disciplinary
excellence [34]. Moreover, as IDR is becoming more signifi-
cant, there is growing appreciation of the need to manage and
facilitate knowledge integration, especially between and among
the diverse actors aiming to leverage the insights of IDR [9],
[19], [35].

Hence, we consider knowledge integration as a crucial process
within IDR in order for scientific and industrial actors as well
as (science) policy-makers to benefit from the newly combined
and subsequently integrated areas of hitherto distant areas of

1Recent studies suggest closely connected concepts for IDR and collabora-
tions, such as multidisciplinary or transdisciplinary. The concept of multidis-
ciplinary is defined as collaboration with a low degree of integration across
disciplines or knowledge (Klein, 2008), transdisciplinary is defined as collab-
oration between not only disciplines but also integrating nonscientific actors
(Klein, 2008).
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Fig. 1. IDR integrates technological knowledge areas that form a technology
network and results in an emerging technology.

knowledge [7], [9], [19]. Here, we follow the definition of
Tell et al. [19], who describe knowledge integration as the
“coordination and recombination of knowledge from different
individuals, disciplines, technologies, and functions” [19, p. 6].
Additionally, since “knowledge integration is not only a process
of combining and fusing different knowledge bases but also a
process of creating new knowledge needed for this integration
to succeed” [36, p. 7], we consider knowledge recombination
[7], [9], [37] as a synonym for knowledge integration within the
context of IDR. To sum up, knowledge integration within IDR
leads to interlinkages between diverse knowledge areas, which,
as a result, form a technology network building the foundation
of an emerging technology.

As depicted in Fig. 1, we conceptualize an emerging tech-
nology network with regard to the interlinkages of hitherto-
unrelated technological knowledge areas. Triggered by IDR,
these different technological knowledge areas are increasingly
integrated and build technological networks, ultimately resulting
in the formation of emerging technologies. Despite IDR often
results in the formation of new technologies [1]–[4], it needs
to be pointed out that not every collaborative research leads
to an emerging technology. In this regard, IDR might lead to
knowledge integration and interlinkages between diverse knowl-
edge areas, which does only result in an emerging scientific
field without being observed at technological level. On the other
side, emerging technologies may involve a potential dark side
that can be manifested by harmful effects on the environment or
on human health or by unintended consequences (e.g., security
threats or implications on privacy) [38].

For the most part, extant studies attempting to assess IDR have
focused on the level of integrating different scientific knowledge
areas measured, inter alia, in terms of research publications [6],
[14]. Given the aforementioned potential of IDR for innovation,
however, it seems evident that a mere assessment of interdis-
ciplinarity at the level of scientific knowledge alone is unlikely
to suffice. Although scientific knowledge forms the basis of
emerging technologies, it is ultimately the new combinations
of technological knowledge, which potentially trigger the
emergence of technology networks and resulting emerging
technologies. Thus, a novel approach is required that enables
actors to assess IDR at the level of technological knowledge
areas.

III. ASSESSMENT OF INTERDISCIPLINARY RESEARCH AT THE

LEVEL OF SCIENTIFIC AND TECHNOLOGICAL KNOWLEDGE

Given that the ability to transfer technology across knowledge
areas is necessary for the benefits of IDR to be realized, a
number of methodological and conceptual advances are cur-
rently being pursued. Nonetheless, the ability to assess and
understand IDR remains somewhat ambiguous [6]. To structure
the present research, we distinguish between assessment of IDR
at the level of a) scientific knowledge and b) technological
knowledge (compare Table I).

A. Assessing Interdisciplinary Research at (a) the Level of
Scientific Knowledge

Extant research has largely focused on assessing IDR at the
level of scientific knowledge [6], [39]–[41]. As listed in Table I,
common approaches use coauthorship analysis [39], [40], a
method that employs departmental/institutional affiliation of
authors, or coclassification analysis, an approach that analyzes
the assignment (classification) of articles to different journal
categories. The more recent approaches to assess IDR make use
of cocitation analysis, a method that draws upon citations of
publications outside their own scientific knowledge area as an
indicator for interdisciplinarity. Cocitation analyses were found
to capture the interdisciplinary knowledge more accurately than
coauthorship analysis or coclassification analysis [39], [42].
Additionally, text (semantic) analyses to identify frequently used
words across publications, have also been employed [43].

Furthermore, a high number of studies have combined coc-
itation analysis of publications with additional indicators. For
instance, network indicators (e.g., betweenness centrality) were
used to assess IDR [28], [44]. Morillo et al. 2001 described
relationships among scientific knowledge areas according to
the quantity of their links (number of related areas) and their
quality (with close or distant areas, diversity, and strength of
links) by using coauthorship and cocitations analyses [45]. The
Shannon entropy and the Simpson index, indices that reflect
the distribution of the cited references in different scientific
knowledge areas, were used by [46], [47] as indicators for IDR.
Porter et al. [39] developed a knowledge integration indicator
based on publications that accounts not only for the distribution
of the cited references in different scientific knowledge areas but
also for the degree to which those areas are closely related. Porter
and Rafols [2] used several indicators, e.g., variation, integration
index, citations within subject category to show how the degree
of IDR has changed from 1995 to 2005.

In addition, Rafols and Meyer [46] built upon Porter et al.
[39] and Stirling [48] to develop a new set of indicators to
assess IDR at scientific level: diversity (it captures disciplinary
heterogeneity of the set of scientific knowledge areas), and
coherence (it measures similarity between scientific knowledge
areas). Moreover, Cassi et al. [49] or Solomon et al. [50] used
the Rao-Stirling index, a diversity measure that is computed
as the relative share of references citing two different scientific
knowledge areas and the degree of relatedness between these two
areas, respectively. The Leinster-Cobbold index, as employed by
[16], is a diversity index similar to Shannon or Simpson indices
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TABLE I
EXTANT APPROACHES TO ASSESS IDR AT THE LEVEL OF SCIENTIFIC AND TECHNOLOGICAL KNOWLEDGE

that also includes a sensitivity parameter (from 0 to infinity) that
controls “the relative emphasize that the user wishes to place on
common and rare elements” [16, p. 600].

B. Assessing Interdisciplinary Research at (b) Level of
Technological Knowledge

Fewer studies have employed patent data to examine IDR
drawing upon different technological knowledge areas. Some
studies use patent classifications (e.g., International Patent Clas-
sification (IPC)2) in order to operationalize technological areas
[51], [52]. Additionally, some studies have used technologi-
cal knowledge areas, to which the classification codes of the
patented invention can be assigned [53].

As depicted in Table I, scholars have employed (co-) inventor
or assignee analyses, coclassification analysis, e.g., based on IPC
codes, or cocitation analysis. Inventor analyses, for example,
enable the identification of experts relevant and necessary for
conducting R&D [7]. Coclassification analyses, a method that
categorize patents in IPC codes, were used to map technology
distance [51], [52]. Additionally, cocitations of patents were
applied to map technological knowledge areas and distance
among these [54] and to locate the relative technological position
of an organization’s patenting activity [55]–[57], or to identify
boundary spanning inventions [1]. Furthermore, some of the

2IPC is a hierarchical system of codes established by World Intellectual
Property Organization that matches patents with categories. The IPC structures
patents into eight different sections: i.e., from A to H, followed by a sub-
structuring into classes, subclasses, groups, and subgroups, ultimately leading
to>70 000 different IPC codes.

abovementioned studies (e.g., [55], [57]) have provided a way
to create visualizations of technological knowledge areas based
on cocitations, or based on co-occurrence of IPC codes in the
same patent [51], [52].

However, most of these studies focus on the individual’s
perspective of either an inventor or a company and, yet, neither
developed indicators dedicated to the assessment or monitoring
of the process of IDR nor did they analyze or visualize the
emerging technology network perspective as such. Also, these
studies lack the combination of visualizations with the creation
of indicators that can specifically be used to assess, monitor,
and visualize the degree of interdisciplinarity of technological
knowledge areas that are involved in the development of emerg-
ing technologies or the respective underlying technology net-
work. Consequently, most research has focused on the question
of how to best integrate (or recombine) different disciplines.

This article builds on extant work and further seek to elu-
cidate what is the degree of interdisciplinarity of technologi-
cal knowledge areas forming a technology network and what
technological knowledge areas appear most relevant and, thus,
ought to be integrated in R&D based on their centrality or
their potential bridging function while focusing on emerging
technology networks. Thus, we add to extant literature by devel-
oping interdisciplinarity indicators as well as applying network
indicators and visualization approaches that can be employed
to identify central and bridging technological knowledge areas
within emerging technologies. The availability of such indica-
tors and visualization approaches enables the involved actors to
not only assess and monitor IDR but also to identify and visualize
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the most relevant technological knowledge areas in emerging
technology networks—a necessary condition for knowledge
integration [19].

IV. DATA AND METHODS

This article draws upon patent data to assess, monitor and
visualize IDR at the level of technological knowledge areas in
a technology network. Moreover, to operationalize technolog-
ical knowledge areas, we refer to [53] who coined the term
technology area and developed the IPC-Technology Concor-
dance Table. This is a well-established classification system that
matches IPC codes (on subclass level) with technological areas.
More precisely, this article draws upon the IPC Technology
Concordance Table (version 2018), which is divided into five
major sectors, including Electrical engineering, Instruments,
Chemistry, Mechanical engineering, and Other fields. These
sectors are subdivided into 35 different technological areas based
on IPC codes. For example, the IPC subclass C12Q corresponds
to the technological area of Biotechnology. Following the logic
of [53], we will refer to technological knowledge areas as
technology areas (TA)—we, thus, draw on TAs derived from
[53] to operationalize the theoretical concept of technological
knowledge areas.

A. Interdisciplinary Research: The Case of Bioplastics

The case of bioplastics represents an example of an emerging
technology within the highly interdisciplinary Bioeconomy. The
concept of the Bioeconomy has been introduced as an important
part of the solution to the grand challenges [58]. It relies on
the application of research and innovation across knowledge
from different areas with the potential to trigger a transition to-
ward more sustainable economies by creating technologies and
products from renewable biological resources [22]. Examples
herein include biopharmaceuticals, biofuels, biogas, as well as
bioplastics, all of which can be used in agriculture, forestry,
fisheries, food and pulp, and paper production, as well as parts
of chemical, biotechnological, energy industries, or medicine
[22].

Bioplastics, defined as plastics derived completely or partially
from biomass [59], represent a case example within the highly
interdisciplinary Bioeconomy and require the combination of
technological knowledge from multiple areas like Chemistry,
Biology, or Materials Science [23], [24]. Applications of these
materials include replacement of plastic materials in a wide
range of industries mostly in the packaging industry in the
form of plastic bags and bottles. Other industries include au-
tomotive, catering products, consumer electronics, construction
and housing, horticulture and agriculture, medicine, packaging,
pharmaceuticals, personal care, or textiles [59]. In addition,
likewise other studies on IDR such as [42], [46], who draw upon
biomolecular motors as a case example, the research setting of
bioplastics qualifies as a relevant case as it fulfils the idea of the
basic definition of IDR: integration of knowledge from two or
more areas [3], [5].

B. Data Collection and Categorization

The data collection process (see Table II) consisted of ex-
tracting the patent sample and the cited patent sample from the
Derwent Innovation patent database.

1) Extraction of the Patent Sample: In the first step, we
generated an overall patent sample. We selected keywords based
on technology names of the field under investigation, i.e., bio-
plastics. This task was carried out in an iterative process whereby
different keywords and queries were tested by collecting infor-
mation from patent databases and validating the results with
an expert. As such, our search string3 included the following
biobased and biodegradable polymers: PLA, PHAs, PBS. The
sample was limited by the publication data and the time frame
between 1995 and 2015 was selected. We started our analyses
with the year 1995 since it represents the time where the market
and economic importance of bioplastics initially became visible
[60]. This search resulted in 890 INPADOC patent families. In
the second step, the IPC codes of each patent in our sample were
translated into TAs based on the IPC-Technology Concordance
Table [53]. In total, 1705 IPC codes (on IPC subclass level)
distributed into 29 TAs were obtained in our patent sample.

2) Extraction of the Cited Patent Sample: In the third step,
we focused on the backward citations of our patent sample to
demonstrate how the interdisciplinarity of TAs for the devel-
opment of bioplastics has increased over time and capture the
underlying technology network, which is formed by the integra-
tion of diverse TAs and, thus, builds the basis of an emerging
technology. Backward citations are previous patents (references)
on which the new invention is based upon. Backward citations
allow to trace back the origin of ideas and identify what ideas
are based upon, e.g., if a patent builds on knowledge from
a particular TA or builds upon the integration of knowledge
from two or more TAs [3]. This search resulted in 8979 patent
applications. In the fourth step, the IPC codes of each cited
patent were translated into TAs based on the IPC-Technology
Concordance Table [53] following the same process carried out
in the second step. In total, 23160 IPC codes (on IPC subclass
level) distributed into 32 TAs were obtained.

C. Data Analysis

The data analysis process, as depicted in Table III, followed
three main steps: 1) the generation of the matrices, 2) the calcu-
lation of indicators based on the matrices, 3) the computation of
different visualization approaches to depict interdisciplinary dy-
namics and relationships among TAs in an emerging technology
network.

1) Matrix Generation: In the first step, the matrices were
generated following two steps. First, we classified all of the
patents into four subperiods according to their application year in

3CTB=((bioplastic∗ OR biopolymer∗ OR bioplastic∗ OR biopolymer∗ OR
biobased ADJ plastic∗ OR biobased ADJ polymer∗ OR biobased ADJ plastic∗
OR biobased ADJ polymer∗) AND (poly ADJ (lactic ADJ acid) OR polylactic
ADJ acid OR polylactide OR polyhydroxyalkanoate∗ OR poly ADJ (butyle-
nesuccinate) OR polybutylene ADJ succinate)) AND DP>=(19950101) AND
DP<=(20151231)
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TABLE II
REPRESENTATION OF THE DATA COLLECTION AND CATEGORIZATION STEPS. SOURCE: AUTHORS

TABLE III
REPRESENTATION OF THE DATA ANALYSIS STEPS. SOURCE: AUTHORS

Fig. 2. Schema for patent citations showing how the matrices are constructed taking the example of one patent. Dotted arrows indicate where the technological
knowledge is originating from.

our patent sample:≤20004, 2001–2005, 2006–2010, 2011–2015
and over all time span: ≤2000–2015. These subperiods were
defined based on the phases of the innovative activity of bioplas-
tics. The starting year (1995 in our patent sample) matches the
time where the market and economic importance of bioplastics
initially became visible [60]. Particularly, the four subperiods

4The patents with the oldest application year in our patent sample are from
1994 (DE4420223C1 and CA2156718A1) but for a matter of simplification, we
will name ≤2000 the first subperiod of analysis along the article.

used for the analysis: ≤2000, 2001–2005, 2006–2010, 2011–
2015 correspond to distinct phases of innovative activity that
can be distinguished according to the descriptive analysis on the
evolution of bioplastics.

Second, we computed five citing-to-cited matrices corre-
sponding to the four subperiods (≤2000, 2001–2005, 2006–
2010, 2011–2015) and over all time span (≤2000–2015). A
depiction of the process of constructing the matrices taking the
example of one patent is shown in Fig. 2. For example, patent1
includes two IPC codes classified in two different TAs, and
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TABLE IV
LIST OF INDICATORS DEVELOPED TO ASSESS AND MONITOR INTERDISCIPLINARITY AT TECHNOLOGICAL LEVEL. SOURCE: AUTHORS

it cites a patent (Cited patent1) that includes two IPC codes
classified in two different TAs. Each row and column in the
matrix represent a TA. The number in each cell of the matrix
indicates how often each TA in our patent sample cites each
TA in our sample of cited patents. For example, we place a 1
in a cell of the matrix as TA1 cites TA1 and TA3, however, we
place a 0 as TA1 does not cite TA2. Therefore, these matrices
represent relationships among TAs, i.e., leading to the formation
of the emerging technology network, with 32 rows and columns
corresponding to the total number of TAs extracted from our
sample of cited patents. A higher value in a cell indicates that
this pair of TAs is highly cited, implying that patents rely on
knowledge from those TAs.

2) Calculation of Indicators Based on Matrices: In the sec-
ond step, with the aim of identifying the most interdisciplinary
TAs that are integrated in the development of the emerging
technology of bioplastic as well as the most central and bridging
TAs within the underlying technology network, we calculated
a series of indicators explained below (see Table IV). These
indicators consider 1) number of citations of a TA stemming
from the own TA (self-citations), 2) number of citations of a TA
stemming from outside the own TA, and 3) the number of sectors
cited (referring to technological diversity following [42], [46]).

The total interdisciplinarity technological area measures the
self-citations relative to the total number of citations. According
to this, a higher number of self-citations over the total number
of citations point to less interdisciplinary TAs. The total inter-
disciplinarity technological area is defined as follows:

I(i) = 1−
[

Csi∑
i C

]

where i is the focal TA, Csi is the number of backward citations
of the focal TA stemming from the own TA and C is the sum
of backward citations the focal TA draws upon. The ratio is
subtracted from one (1), hence, the closer the value of I(i) is to
1, the more interdisciplinary the focal TA i is.

The total interdisciplinarity sector is calculated as the ratio
of the different sectors that a TA draws upon to five (5), thereby

corresponds to the total number of sectors following the IPC-
Technology Concordance Table. The total interdisciplinarity
sector is defined as follows:

Is(i) =
[nsi

5

]

where i is the focal TA, and nsi is the number of sectors that
the focal TA draws upon. The closer the value of Is(i) is to 1,
the higher the number of sectors a TA draws upon, and thus, the
more interdisciplinary the focal TA i is.

In the final step, the total interdisciplinarity TA is multiplied
by the total interdisciplinary sector, yielding the total interdis-
ciplinarity index (TI(i))

T I(i) = I(i) x Is(i).

Furthermore, network analysis indicators were used to deter-
mine the central TAs within the underlying emerging technology
network that is built by the interlinkages of TA that are involved
in the development of bioplastics. A typical indicator to assess
the relative importance of a node is its centrality, which is subdi-
vided into degree centrality, closeness centrality, and between-
ness centrality [61], [62]. This article uses degree centrality and
betweenness centrality to identify the most important nodes. The
degree centrality of a TA explains the extent to which a TA may
be integrated in the network and is defined as follows:

Dc(i) =

∑n
j=1 aij

n− 1

where i is the focal TA, j is another TA in the network, and aij is
the sum of all citations that the focal TA receives. The numerator
is divided by the maximum number of TAs (n) in the network
minus one (1). If a TA in an (emerging) technology network has
a high degree centrality value, it has a strong power or prestige
in the network [63] and can, therefore, be considered as a central
TA.

The betweenness centrality of a TA measures the extent to
which a TA lies between the other TAs in the network. It reflects
the TA’s influence as a communication channel between the other
TAs in a network and is regarded as the extent to which a TA
serves as a bridge [61], [62]. Betweenness centrality is calculated
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as the shortest paths that contain the node, among all the shortest
paths between each pair of the other TAs in the network and is
defined as follows:

Bc(i) =
∑

s�=t�=iεV

σst (i)

σst

where i is the focal TA, V is the set of all TAs in the network,
σst(i) is the total number of shortest paths between TA s and
t that pass through i, and σst is the total number of shortest
paths between s and t. A TA with a high betweenness centrality
value has a strong possibility of acting as a bridge in transferring
technological knowledge within the network [62], [64], and it
can, thus, be considered as a bridging TA.

3) Visualization: In the third step, to enable the visualization
of the interdisciplinarity of TAs as well as the emerging tech-
nology network, different maps were computed. First, scatter
plots were created to depict the evolution of interdisciplinarity
by TAs based on the total interdisciplinarity technological area
(I(i)) and the total interdisciplinarity sector (Is(i)). Second, TAs
and relationships among TAs involved in the innovative activity
in the field of bioplastics were visualized by means of network
analysis. In doing so, the aggregated matrices constituted the
input for the computation of network maps using UCINET 6
[63]. These visualizations are based on citing-to-cited relation-
ships among the TAs derived from the IPC codes of our patent
samples. TAs are the unit of analysis and are presented as nodes,
which are connected by lines on the map. The lines represent
the citation relationship, which represents that a TA is related to
another TA. The evolved network of relationships indicates the
internal knowledge structure of the emerging technology under
examination, i.e., bioplastics. The most connected nodes are on
the center of the map and the least connected nodes are located
on the periphery.

V. RESULTS

A. Indicators to Assess and Monitor IDR Within Emerging
Technologies

1) Characterization of the Most Interdisciplinary Technolog-
ical Areas: This section seeks to assess and monitor the degree
of interdisciplinarity behind the technological knowledge of our
patent sample. In order to determine the degree of interdisci-
plinarity that each TA related to bioplastics has, we developed
and calculated the interdisciplinary indicators defined in 4.3.2,
namely the total interdisciplinarity technological area, the total
interdisciplinarity sector and the total interdisciplinarity index.
The TAs shown in Table V indicate the Total interdisciplinarity
technological area, the Total interdisciplinarity sector and the
Total interdisciplinarity index classified by sectors across time
subperiods: ≤2000, 2001–2005, 2006–2010, 2011–2015 and
over all time span: ≤2000–2015.

Table V shows the dynamics of interdisciplinarity by TAs
across time subperiods, identifying whether these have become
more interdisciplinary over time. Overall, according to the total
interdisciplinarity index (TI(i)), the three TAs showing the
highest degree of interdisciplinarity are: “Audio-visual tech-
nology” (TI(i) = 0.970), “Chemical engineering” (TI(i) =
0917), and “Pharmaceuticals” (TI(i) = 0.904). The first refers

to consumer electronics, the second to applications in pharma,
and the latter covers technologies at the interface of chemistry
and engineering, referring to apparatus and processes for the
industrial production of chemicals. Moreover, 11 out of 29 TAs
that are relevant for the development of bioplastics have become
more interdisciplinary over time, as the total interdisciplinarity
index (TI(i)) appears to increase across time sub-periods. The
cases of chemical engineering and pharmaceuticals are inter-
esting in that their TI(i) has increased to around 210% for
chemical engineering5 and around 104% for pharmaceuticals6

over the whole time period. Therefore, chemical engineering
and pharmaceuticals can be described as TAs characterized by a
rapid increase of interdisciplinarity, as many other different TAs
are becoming relevant (see networks maps in Section V-B2).

2) Characterization of the Central and the Key Bridging
Technological Areas: To determine the importance that each
TA related to the emerging technology network of bioplastics
has on the overall network, we calculated the degree centrality
(see Table VI) and the betweenness centrality (see Table VII) of
each TA classified by sectors across time subperiods: ≤2000,
2001–2005, 2006–2010, 2011–2015 and over all time span:
≤2000–2015. For both cases, normalized centrality values were
calculated. Hence, the dynamics of TAs over time subperiods
are shown in Tables VI and VII to help identifying whether
TAs have been central (degree centrality) or acted as bridging
(betweenness centrality) over time.

According to the degree centrality index (Dc(i)), the three
TAs within the technology network showing the highest degree
centrality are “Macromolecular chemistry, polymers”, “Medical
technology”, and “Other special machines”. The first refers to
chemical properties of polymers, the second is associated with
medical technology, and the latter is associated with patents
referring to turning, drilling, grinding, soldering, or cutting
not focused on metals. “Macromolecular chemistry, polymers”
appears to have the highest degree centrality over all time
subperiods, with the exception of the period 2001–2005, when
“Medical technology” achieved an important position relative
to all other TAs. Contrary, the timely development of “Medical
technology” and “Other special machines” is characterized by
high fluctuations over time.

According to the betweenness centrality index (Bc(i)), the
three TAs within the technology network showing the highest
betweenness centrality are again “Macromolecular chemistry,
polymers”, “Other special machines”, and “Medical technol-
ogy”. “Macromolecular chemistry, polymers” and “Medical
technology” seem to play a very crucial role as bridging over the
time period 2001–2005, decreasing its importance after 2005.
Contrary, “Other special machines” gained higher relevance as
bridging technologies after 2006.

B. Visualization Approaches

1) Visualization of Interdisciplinarity Evolution: Visualiza-
tions of interdisciplinarity allow us to identify the most
interdisciplinary TAs that are involved in the development of the

5From TI(i)≤2000 = 0.305 to TI(i)2011−2015 = 0.946
6From TI(i)≤2000 = 0.353 to TI(i)2011−2015 = 0.722
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TABLE V
TOTAL INTERDISCIPLINARITY TECHNOLOGICAL AREA (I(i)), TOTAL INTERDISCIPLINARITY SECTOR (Is(i)) AND TOTAL INTERDISCIPLINARITY INDEX (TI(i)) , FOUR

SUBPERIODS: ≤2000; 2001–2005; 2006–2010; 2011–2015; AND OVER ALL TIME SPAN ≤2000–2015

Gray marked values indicate the top ten interdisciplinarity TAs based on the total interdisciplinarity TA and the total interdisciplinarity index in the particular time frame. Bold
values represent the TAs that have become more interdisciplinary over time. Hyphen indicates there were no IPC codes in the patent sample associated to that technological area
in the particular timeframe. Source: Authors.

technology network forming the emerging field of bioplastics
as well as their evolution over time. The visualizations of the
interdisciplinary evolution of the TAs over the four subperiods 1)
≤2000; 2) 2001–2005; 3) 2006–2010; 4) 2011–2015 are shown
in Fig. 3. These scatter plots depict the number of citations
stemming from outside the own TA (I(i)) on the horizontal
axis, and number of sectors that TAs draw upon (Is(i)) on the
vertical axis. The graph is split at the mean values for each scale,
I(i) = 0.50 and Is(i) = 0.60, thus resulting in four quadrants.

Quadrant I (High degree of interdisciplinarity with high sector
diversity) displays those TAs that have a low number of self-
citations (Csi ≤

∑
i C
2 ) relative to total citations (I(i) ≥ 0.50)

and that cite TAs from four of five different sectors (Is(i) >
0.60). The TAs located in this quadrant are considered as more
interdisciplinary than the TAs positioned on the other quadrants.
Quadrant II (Low degree of interdisciplinarity with high sector
diversity) shows the TAs that have high number of self-citations
relative to total citations (I(i) ≤ 0.50) and that cite TAs from



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

TABLE VI
NORMALIZED DEGREE CENTRALITY, FOUR SUBPERIODS: ≤2000; 2001–2005; 2006–2010; 2011–2015; AND OVER ALL TIME SPAN ≤2000–2015

Number between brackets refers to rank compared to all other TAs in the network in the particular timeframe. A gray mark-up indicates the top ten central TAs in the particular
time frame. Source: Authors.

four or five different sectors (Is(i) > 0.60). Quadrant III (Low
degree of interdisciplinarity with low sector diversity) indicates
TAs that have a high number of self-citations relative to total
citations (I(i) ≤ 0.50) and their technological knowledge (cita-
tions) are concentrated in only one or two sectors (Is(i) < 0.60).
Quadrant IV (High degree of interdisciplinarity with low sector
diversity) shows TAs that have a low share of self-citations
relative to total citations (I(i) ≥ 0.50) and their technological
knowledge (citations) are concentrated in only one or two sectors
(Is(i) < 0.60).

The TAs located in the “High degree of interdisciplinarity
with high sector diversity” quadrant show the lowest shares of
self-citations relative to the total number of citations and these
draw upon technological knowledge from four or five different
sectors (following the IPC-Technology Concordance Table).
Thus, these TAs are highly interdisciplinary. Technological areas
in Quadrant II (“Low degree of interdisciplinarity with high
sector diversity”) are characterized by having a high share of
self-citations relative to the total number of citations and by
drawing upon knowledge from four or five different sectors.
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TABLE VII
NORMALIZED BETWEENNESS CENTRALITY, FOUR SUBPERIODS: ≤2000; 2001–2005; 2006–2010; 2011–2015; AND OVER ALL TIME SPAN ≤2000–2015

Number between brackets refers to rank compared to all other TAs in the network in the particular timeframe. Gray marked values indicate the top ten bridging TAs in the particular
time frame. Source: Authors.

Three TAs (Measurement in subperiod ≤2000, Food chemistry
in 2001–2005, and Environmental technology in 2006–2011) are
located at the intersection of “Low degree of interdisciplinarity
with high sector diversity” (Quadrant II) and “Low degree of
interdisciplinarity with low sector diversity” (Quadrant III).
Thus, these three TAs are characterized by having a low share
of self-citations relative to the total number of citations and by
drawing upon knowledge from only two sectors. This might be
caused due to the fact that we have a five-year accumulation of
data.

Contrary, the TAs located in Quadrant IV (“High degree of
interdisciplinarity with low sector diversity”) display a low share
of self-citations relative to the total number of citations and draw
upon technological knowledge from only two different sectors
(following the IPC-Technology Concordance Table). This
indicates that these TAs appear to rely on knowledge generated
in only two sectors, turning to be less interdisciplinary.
Generally, it can be observed that across time subperiods,
TAs have progressed to the “High degree of interdisciplinarity
with high sector diversity” quadrant, implying that TAs in the
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Fig. 3. Typology to visualize dynamics of IDR at technological level: Total
interdisciplinarity sector versus total interdisciplinarity technological area for
bioplastics, four subperiods: (a) ≤2000; (b) 2001–2005; (c) 2006–2010; (d)
2011–2015. The color and shape of the nodes represent sectors based on the
IPC-Technology Concordance Table: Chemistry: blue and square; Electrical en-
gineering: Red and Circle; Instruments: green and up triangle; Mechanical engi-
neering: gray and diamond; Other fields: orange and up triangle. Source: authors.

technology network of bioplastics have become more interdis-
ciplinary over time. For instance, the TAs characterized by a
rapid increase of IDR based on the interdisciplinary indicators

(chemical engineering and pharmaceutical) are located in Quad-
rant IV in the subperiod ≤2000 and in Quadrant I over the
subperiod 2011–2015.

2) Visualization of Emerging Technology Networks: In
addition to the visualizations of interdisciplinarity by TAs,
technology network maps allow us to visualize relationships
among the TAs that constitute the structure of the technological
knowledge behind the emerging technology bioplastics, as well
as the changes of these relationships over time. The visualization
of the network analyses for the TAs over four subperiods: 1)
≤2000; 2) 2001–2005; 3) 2006–2010; 4) 2011–2015 and over
all time span: 5) ≤2000–2015 is depicted in Fig. 4.

The first period of the analysis (≤2000) shows a relatively
simple network visualization composed of 23 TAs and 5 sec-
tors. The core nodes of the map (the most connected ones)
correspond to “Macromolecular chemistry, polymers”, “Other
special machines”, and “Organic fine chemistry”. In the second
period (2001–2005), the network visualization indicates a more
complex structure due to the emergence of more nodes and
relationships among them, containing 31 TAs and 5 sectors.
The core nodes of the map are “Macromolecular chemistry,
polymers”, “Medical technology”, and “Basic materials chem-
istry”. However, “Organic fine chemistry” and “Other special
machines” lose importance in the network with respect to the
previous period.

The next period of analysis (2006–2010) shows a network,
which is slightly more complex in terms of relationships among
nodes, containing 32 TAs and 5 sectors. Specifically, the impor-
tance of “Macromolecular chemistry, polymers” and “Medical
technology” persists. In addition, “Other special machines”
gained relevance in this period, recovering the importance
achieved in the first period of analysis. Furthermore, “Surface
technology, coating” developed into one of the most strongly
connected nodes for the first time. These four nodes can be
considered as the central TAs in this period of analysis.

In the last period of the analysis (2011–2015), the technol-
ogy network visualization contains 32 TAs and 5 sectors with
more relationships among nodes. The core nodes of the map
are “Macromolecular chemistry, polymers”, “Other special ma-
chines”, and “Biotechnology”. Interestingly, “Biotechnology”
emerged as a core node of the map although our patent sample
shows a decreasing trend in the number of patents classified
in this TA, indicating the strong role of “Biotechnology” as
bridging TA. In addition, this might indicate that the patent
sample draws upon technological knowledge from outside their
own TAs.

Summing up all the years used for this analysis, the network
visualization contains 32 TAs and 5 sectors. The five core
nodes of the map are “Macromolecular chemistry, polymers”,
“Medical technology”, “Other special machines”, “Surface tech-
nology, coating”, and “Biotechnology”, which represent the
central TAs in the technology network leading to the emerging
technology of bioplastics.

VI. DISCUSSION

In this article, we operationalize the assessment of IDR
and emerging technologies by combining indicators with
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Fig. 4. Underlying technology network of bioplastic, four subperiods: (a) ≤2000; (b) 2001–2005; (c) 2006–2010; (d) 2011–2015; and over all time span:
(e) ≤2000–2015. The color and shape of the nodes represent sectors based on the IPC-Technology Concordance Table. Chemistry: blue and square; Electrical
engineering: red and circle; Instruments: green and down triangle; Mechanical engineering: gray and diamond; Other fields: orange and up triangle. The color of
the lines represents directions of citations. Blue lines: reciprocal citations; black lines: one-way citations. Source: authors.

visualization approaches that enable to assess, monitor, and
visualize a technology network. By drawing upon patents, patent
citations, and patent classification codes as proxies for tech-
nological knowledge areas, this article develops a novel ap-
proach that alleviates the ambiguities associated with emerging
technologies.

A. Practical Implications for the Case of Bioplastics

The combination of 32 different TAs from five different
sectors forms the technology network of bioplastics. From a
microperspective, the scatter plots indicate that across time
subperiods, TAs have progressed to the “High degree of
interdisciplinarity with high sector diversity” quadrant, implying

that TAs in the technology network of bioplastics have become
more interdisciplinary over time. The total interdisciplinary indi-
cator can be used to quantify the degree of interdisciplinarity for
each of the TAs forming the technology network of bioplastics.
From a macroperspective, the network maps indicate that the
technology network of bioplastics has become more complex
over time. For instance, in the first period of analysis (≤2000),
only 23 TAs form the technology network, whereas in the last pe-
riod of the analysis (2011–2015), the technology network visual-
ization contains 32 TAs with more relationships among TAs. The
degree centrality and betweenness centrality indicators can be
employed to identify and quantify the TAs that are central to the
technology network of bioplastics resulting from interlinkages
between TAs.
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B. Contribution to the Foundations of Emerging Technologies

Emerging technologies formed by the integration and recom-
bination of various scientific and technological knowledge fields
within IDR [7], [11], [19], [20] are gaining importance for their
ability to foster technological innovation and open up new areas
of technology and science [8]–[10]. This potential has drawn
interest from various actors, including scientific and industrial
actors as well as (science) policy-makers [14], [18], [19]. As a
result, research efforts have focused on developing a variety of
indicators for the assessment of IDR that leads to emerging tech-
nologies, especially in the scientometric domain (e.g., [6], [39]).

Despite this broad interest, measures and indicators that can
both evaluate diverse TAs and help to make sense of their emerg-
ing connections in the form of novel technology networks—the
basis of emerging technologies—are still lacking in literature.
The majority of extant studies attempting to assess IDR have
focused on the level of integrating different scientific knowledge
areas measured, inter alia, in terms of research publications [6],
[14]. Given the aforementioned potential of emerging technolo-
gies for innovation, however, it seems evident that a mere assess-
ment of interdisciplinarity at the level of scientific knowledge
alone is unlikely to suffice. This underscores the relevancy of our
article by developing a novel approach that enables to assess,
monitor and visualize IDR and emerging technologies taking
TAs as the unit of analysis.

This article extends the work of [6], who propose a conceptual
framework for identifying IDR proposals, by developing a novel
approach able to operationalize emerging technology networks
formed by IDR. In contrast to [14], who define and detect
emerging technologies and to [18], who examined the concept
of technology emergence from the viewpoint of the philosophy
of science and complexity, our article focuses on characterizing
emerging technologies for their interlinkages between different
TAs that, potentially, form a technology network. By combining
[14], [18], our article is able understand the phenomenon of
emerging technologies both from a micro and a macroperspec-
tive. More precisely, this article elucidates not only the degree
of interdisciplinarity of the individual technological knowledge
areas forming a technology network (microperspective), but also
the dynamics of a technology network as a whole (macroper-
spective). Similar to [26], which indicate that research including
more emerging technological ideas has a greater impact on its
future citation impact, our article elucidates what TAs appear
most relevant within a technology network based on citations
patterns.

Our approach allows us to understand the phenomenon of
emerging technologies by scrutinizing emerging technologies
at the level of the emerging technology network formed by
interlinkages of hitherto-unrelated TAs. Triggered by IDR, these
different TAs are increasingly integrated and build technological
networks, ultimately resulting in the formation of emerging
technologies. Although scientific knowledge forms the basis
of emerging technologies, it is ultimately the new combina-
tions of technological knowledge, which potentially trigger the
emergence of technology networks and resulting emerging tech-
nologies. This novel approach enables actors to assess IDR at

the level of technological knowledge areas that are the basis
for emerging technologies. As a consequence, this article con-
tributes to mitigate the uncertainties, irregularities, and ambigu-
ities associated with emerging technologies [14], [18].

C. Contribution to the Foundations of Knowledge Integration

As IDR is becoming more significant as a source for emerging
technologies, there is growing appreciation of the need to man-
age and facilitate knowledge integration, especially between and
among the diverse actors aiming to leverage the insights of IDR
[9], [17], [19]. We see a particular challenge for the assessment
(as well as monitoring and visualization) of emerging technolo-
gies resulting from IDR, as such a task requires the identifica-
tion of the combined technological knowledge areas, i.e., the
underlying technology network forming the bases of emerging
technologies. Accordingly, this article seeks to complement
existing approaches by focusing on the involved TAs that form a
technology network. More precisely, such assessment supports
the learning capacity of the involved actors by enabling them
to better assess their current lack of knowledge and identify
partners with complementary knowledge at an earlier stage [19].

This article contributes to the literature on knowledge in-
tegration by proposing a novel approach enabling to assess,
monitor, and visualize emerging technologies by identifying
relationships among different TAs. Such an approach has the
potential to facilitate and direct learning processes for actors
involved in the development of emerging technologies, notably,
by identifying, which of the diverse knowledge areas are relevant
and providing insight on how to manage knowledge integration
across boundaries [19], [20].

Hence, this article extends the current understanding of
knowledge integration from a technology perspective and de-
velops an operationalization allowing to monitor the process of
technology emergence [7], [11], [19], [20]. Furthermore, our
novel approach explicitly characterizes emerging technologies
by assessing not only interdisciplinarity at the level of TAs
(microperspective) but also knowledge integration within a tech-
nology network (macroperspective) [7], [9], [18], [19], [36].
Here, we extend the work of [9] by applying the concept of
knowledge integration and recombination to the context of an
emerging technology network formed by IDR. This approach
offers a means to extend the current indicators by enabling
to assess and monitor the degree of interdisciplinarity of TAs
within an emerging technology network in order to specifically
facilitate knowledge integration [19], [36].

D. Contribution to Approaches to Assess, Monitor and
Visualize IDR

This article develops, first, an assessment of the degree of
interdisciplinarity of technological knowledge areas involved in
the development of an emerging technology. In doing so, this
article constructs three novel patent indicators, namely the total
interdisciplinarity technological area (I(i)), the total interdis-
ciplinarity sector (Is(i)), and the total interdisciplinarity index
(TI(i)). This is accompanied by measures of degree centrality
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(Dc(i)) and betweenness centrality (Bc(i)), which identify the
most central and key bridging TAs, respectively, within a tech-
nology network. Second, this article elaborates a novel typology
for monitoring the evolution of interdisciplinarity of TAs within
an emerging technology network across time. Finally, this article
develops a network-based approach to visualize the underlying
emerging technology network.

a) Assessing and Monitoring Interdisciplinarity: According
to our novel typology, technological knowledge areas can be
classified into four categories on the basis of the three novel
indicators. Applying this typology to the case of bioplastics,
we were able to provide an initial demonstration of how these
novel patent indicators could be applied to other emerging
technologies resulting from IDR. Furthermore, by adopting
technological knowledge areas as the unit of analysis, these
novel patent indicators contribute to previous studies that have
developed indicators to assess the degree of interdisciplinarity
at the level of scientific knowledge, i.e., via publications [2],
[28], [34], [39], [44], [56]. Specifically, the total interdisci-
plinarity technological area (I(i)) builds on the study by [2],
who construct an indicator that accounts for the number of
different knowledge areas cited by a given scientific publication.
Meanwhile, our novel indicator measures self-citations of a
TA relative to the total number of citations. Also, the total
interdisciplinarity sector (Is(i)) extends previous studies [39],
[46], [48] that have captured the scale breadth (i.e., number of
categories) of the knowledge base of a publication, by measuring
the number of sectors that are involved in the citations of a
particular TA.

Furthermore, the typology developed in this article is able to
further capture the degree of interdisciplinarity by combining
I(i) and Is(i) over a certain time period to explore the dynamics
that emerge from the interdisciplinarity of technological knowl-
edge areas. In this way, we specifically extend the study by
[39], who developed an indicator of interdisciplinary integration
based on publications that accounts not only for the distribution
of the cited references across different knowledge areas but
also for the degree to which those knowledge areas are closely
related.

b) Visualizing Emerging Technology Networks: In order to
support the assessment and monitoring of IDR leading to emerg-
ing technologies, we provide two different visualizations. First,
on the basis of the three novel indicators, TAs can be depicted
by means of a scatter plot in order to provide an overview
of the dynamics of interdisciplinarity over time. Second, the
knowledge integration of different TAs forming a technology
network can be visualized using technology network maps. This
contributes to previous studies [55], [57] that also explored
how to represent technological knowledge areas. Moreover,
the degree centrality (Dc(i)) demonstrates the TAs that have
had the highest importance in the development of an emerging
technology, while the betweenness centrality (Bc(i)) reveals the
TAs that have played a crucial role bridging and connecting
technological knowledge within an emerging technology net-
work that forms an emerging technology. Our article demon-
strates that the combination of different visualization approaches

(scatter plots and network maps) enables to understand the
underlying technology networks formed by IDR from micro
and macroperspectives. For instance, the scatter plots enable to
understand the degree of interdisciplinary of TAs involved in a
technology network (microperspective), whereas the technology
network maps enable to understand relationships among TAs
within a technology network as a whole (macroperspective). In
addition, our article uses familiar approaches to visualize new
indicators that support the interpretation of data.

VII. CONCLUSION

A. Theoretical Contribution

This article contributes to the foundations of emerging tech-
nologies [14], [18] by showing that knowledge integration within
IDR leads to interlinkages between diverse knowledge areas
which, as a result, link up to form a technology network, resulting
in an emerging technology (as illustrated in Fig. 1). Hence,
we consider knowledge integration as a crucial process within
IDR in order for scientific and industrial actors as well as
(science) policy-makers to benefit from the newly combined
and subsequently integrated areas of hitherto distant areas of
knowledge [7], [9], [19], [37]. This demonstrates the need to pay
closer attention to developments at the integration of two or more
knowledge areas. As illustrated in Fig. 1, knowledge integration
across different TAs forms a technology network, potentially
resulting in an emerging technology. Moreover, through the
combination of indicators with visualization approaches, our
article is able to provide proxies for operationalizing the assess-
ment of IDR and emerging technologies based on technology
networks.

B. Managerial and Policy Implications

Our operationalization of IDR makes use of a combination
of indicators with visualization approaches to demonstrate that
to conduct R&D in bioplastics, scientific, and industrial actors
need to integrate knowledge from a diverse range of TAs. Thus,
knowledge integration and collaboration with different partners
are crucial in order for these actors to benefit from the knowledge
of the different technological knowledge areas as well as the
emerging technology network [7], [9], [19]. Consequently, effec-
tive management practices are key to the integration of knowl-
edge across different technological knowledge areas [19]. In
light of this, this article provides numerous practical implications
for the diverse range of actors involved in IDR (e.g., scientific
and industrial actors as well as (science) policy-makers).

First, the novel patent approach offers actors larger oppor-
tunities for understanding, accessing, discussing, combining,
integrating, and managing technological knowledge in highly
interdisciplinary knowledge areas. In particular, this article is
useful for scientific and industrial actors as well as (science)
policy-makers that wish to identify and monitor: 1) the interdis-
ciplinary technological knowledge areas that are most relevant
for the development of emerging technologies, and 2) the most
central and key bridging technological knowledge areas within a
technology network. On this basis, this article can help actors to
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explore the knowledge integration, networking, and collabora-
tion possibilities between the different technological knowledge
areas that are involved in the development of emerging technolo-
gies. For instance, an increasing range of bioplastics products
is introduced in medicine (Dc(Medical technology, ≤2000−2015) =
0.06), or in manufacturing of machines to produce bioplastics
(e.g., drilling, cutting) (Dc(Other special machines, ≤2000−2015) =
0.052). Hence, scientists and R&D managers might want to
integrate in their teams or collaborate with experts from these
disciplines to be at the fore front of inventions in bioplastics.
Thus, such an approach to monitor knowledge integration is
crucial for scientific and industrial actors, especially given the
tendency to easily overlook opportunities that emerge from
processes of knowledge recombination and the emergence of
novel technology networks [8].

Second, as IDR is rather complex, as it combines knowl-
edge from two or more scientific and/or technological knowl-
edge areas, we, therefore, foresee a need for more empiri-
cally grounded approaches for science and technology man-
agement, as presented in this article. As a result, this article is
especially useful as a way for scientific and industrial actors
to identify potential experts with the required technological
knowledge to conduct R&D, e.g., related to bioplastics (see,
e.g., [7], [37]). For instance, consumer electronics technologies
(TI(Audio−visual, ≤2000−2015) = 0.970) build upon a wide range
of knowledge from different technological areas and sectors,
thus, scientific and industrial actors might want to integrate or
collaborate with experts from a wide range of backgrounds,
including chemistry, medicine, or manufacturing of machines.
Hence, these novel indicators can serve as a foresight approach
with relevance for: 1) scientific and industrial actors seeking
to improve their technological competencies by identifying
opportunities for knowledge integration across technological
knowledge areas [19], [65]; and 2) IDR institutions and funding
agencies that wish to better understand, monitor and manage
IDR and knowledge integration [30]. For example, the indi-
cators developed in our article could be applied in long term
monitoring studies such as the Bioeconomy Observatory, which
aims at enhancing the knowledge base for policy-making in the
bioeconomy by compiling and monitoring the process of the
bioeconomy at European level [66].

Finally, this article provides relevant policy implications in
light of the growing importance of IDR in science and innova-
tion policy [12], [13]. Such practices involve the use of policy
mechanisms to create opportunities for knowledge integration
[19]. Therefore, (science) policy-makers can use our novel indi-
cators and network maps to design and develop science and
innovation policies in highly interdisciplinary and emerging
knowledge areas. The degree centrality (Dc(i)) indicator can
help (science) policy-makers to identify technological knowl-
edge areas in interdisciplinary settings where public funding
may foster the underlying technology network of emerging
technologies. Similarly, the novel interdisciplinary indicators
and the betweenness centrality (Bc(i)) are useful to identify
technological knowledge areas that play a strong role connecting
technological knowledge areas (i.e., key bridging technological

knowledge areas) within a technology network. In this regard,
the provision of our novel patent-based approach can avail (sci-
ence) policy-makers to analyze how to foster IDR, for instance,
by specifying, which technological knowledge areas should be
made mandatorily integrated into research proposals. As such
to foster R&D on bioplastics, based on Dc(i) and Bc(i), calls
for funding might make mandatory collaborations from experts
involved in relevant fields such as medicine or manufacturing.

C. Limitations and Future Research

The limitations of this article are primarily linked to the data
used. First, we conducted this analysis using patent families
and cited patent applications, therefore including patents from
all patent authorities. However, there are differences between
patent systems when it comes to citations. For example, in the
US system, the patent applicant and his attorney are obliged to
present the patent examiner with a complete list of relevant prior
art for inclusion on the front page of the patent [67]. However, in
the EPO system, the initial search for prior art is carried out by a
designated searcher at the EPO, and should only include the most
important patent references. This implies that US patents might
be more interdisciplinary than the patents of other authorities,
as they include a higher number of citations.

A second limitation of our article is that we draw upon the
frequency of citations of prior patents as a proxy for techno-
logical linkages and, thus, for IDR as well as the importance
of a technological knowledge area. However, a high degree
of cross-citations might not necessarily reflect the extent to
which ideas come from different knowledge areas [68]. Another
limitation is that the IPC-Technology Concordance Table was
used as a basis for our analysis in order to link IPC codes
to technological knowledge areas and to derive the indicators.
Therefore, some limitations may result from the use of this table,
and more fine-grained indicators should be considered, e.g., by
looking IPC groups and subgroups.

Future research might investigate the particular effect of
patents that combine highly distant knowledge areas with respect
to their citation patterns [68] or the approval process to which
they are subject [10]. In addition, future research could benefit
by extending the current approach, e.g., by considering company
data or information on patent assignees to assess interdisci-
plinarity within emerging technologies. Future studies could
also consider the application of our novel approach to not only
other interdisciplinary and emerging technologies such as bioin-
formatics, nanobiotech, nutrigenomics, or artificial intelligence,
but also to technology networks, which are characterized by
a lower degree of interdisciplinarity (e.g., technology network
based on established disciplines like biology).

Additionally, as an extension of our approach, a multilevel
study could be highly desirable. Here, by combining the as-
sessment based on scientific knowledge as well as technolog-
ical knowledge, one could expect additional insights into the
evolution of an interdisciplinary technology network (indeed,
combining different data sources to access scientific and tech-
nological knowledge has already been done by, e.g., [69], [70]).
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Furthermore, this article might benefit from making use of a
wider range of proxies to assess interdisciplinarity (e.g., seman-
tic analysis and cocitations) and thereby analyzing differences
in their implications for emerging technology networks.

Finally, future studies might seek to elaborate on and extend
our indicators by entertaining a more qualitative perspective.
Indeed, if we compare our approach to that of [6], who used
research proposals in order to assess IDR, we specifically en-
vision the scope of IDR as an avenue of future research, e.g.,
to what extent the emerging technology is built upon narrow
(related) versus broad (very unrelated) interdisciplinarity? How-
ever, this seems to be a challenging task, given the need to resolve
the ambiguity around the notion of technological distance and
the difficulty of assessing whether certain technological knowl-
edge areas within a technology network are more related to one
another than others [6]. Hence, future research could build on our
patent approach by taking the broader context into account, e.g.,
funding schemes as political triggers for IDR and the commercial
forces that spark the emergence of technology networks, or
the relative impact of IDR featuring emerging technologies
compared to emerging technologies in general.
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