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Predictive Maintenance on the Energy Distribution
Grid–Design and Evaluation of a Digital Industrial
Platform in the Context of a Smart Service System

Philipp zur Heiden , Jennifer Priefer, and Daniel Beverungen

Abstract—The energy turnaround and the shift towards sustain-
able mobility threaten the stability of European energy distribution
grids due to substantially increasing load fluctuations and power
demand. These challenges can critically impact assets in the dis-
tribution grid—e.g., switchgears—intensifying the need to plan,
conduct, and manage the maintenance of such assets. Predictive
maintenance strategies that analyze assets’ current and historical
condition data have been discussed as promising approaches to-
ward that end. However, the extant research focuses on designing
and improving analytical algorithms or information technology
(IT) artifacts while not considering how a maintenance service is
cocreated by companies with IT. This research article posits that IT
and service must be aligned closely, presenting an ensemble artifact
comprising a digital industrial platform and a smart service system
for predictive maintenance on the distribution grid. The artifact is
evaluated by conducting a willingness-to-pay analysis with asset
operators, documenting their demand for condition monitoring
and predictive maintenance as an integrated solution, although
they still struggle with even getting the condition data of their assets.
Building on these results, we formalize the knowledge in the form of
design principles and implications for managing the maintenance
of critical assets in the distribution grid.

Index Terms—Design science research, digital platform,
distribution grid, IS design, predictive maintenance, smart services.

I. INTRODUCTION

C LIMATE change is one, if not the most important chal-
lenge humanity has to solve over the next century. A major

strategy to tackle the amount of carbon dioxide emitted into
the atmosphere is to shift the generation of electrical energy
from resources outputting greenhouse gases to renewables, e.g.,
wind power and photovoltaic. In the German energy market, this
transition is known as the Energy Turnaround [1]. In comparison
to fossil energy sources, renewables are distributed and inter-
mittent, forcing the distribution grid to change: The formerly
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unidirectional and centralized distribution grid has to become
bidirectional and highly decentralized [2]. As the mobility sector
increasingly builds on electric vehicles to reduce its emissions,
too, the demand for electrical energy also has to be satisfied
through the distribution grid [3]. Combined, this transformation
makes the distribution grid subject to increased load fluctuations
and power demand, stressing its central components [2], [4].
Recent studies document that the current distribution grid, thus,
becomes increasingly susceptible to failures and blackouts [2],
[5]—considered threats to our society.

Critical assets of the distribution grid having to adapt to
upcoming stress factors include switchgears in medium voltage
(MV) settings [6]. Switchgears are in use for up to 40 years by
distribution grid operators and, thus, need to be maintained to
function properly, distributing electrical energy into different
microgrids for long periods [7]. Failures of switchgears are
in 90% of cases related to aging [7], requiring sophisticated
maintenance activities. Maintaining critical, industrial assets can
generally be pursued by different maintenance strategies, mainly
categorized as reactive maintenance, preventive maintenance,
and predictive maintenance [8]. While reactive maintenance
operates assets to the point of failure or required maintenance
activities, preventive maintenance utilizes intervals based on,
e.g., operating hours before assets are checked, and critical com-
ponents replaced [8]. Predictive maintenance1 utilizes real-time
and historical condition data to monitor the current status of an
asset permanently and predicts its remaining lifetime [10].

Related research has already shown positive results, e.g.,
increased availability of wind farms [11] and even further opti-
mization models for predictive maintenance of wind farms [12].
However, predictive maintenance is mostly investigated from
an engineering perspective, focusing on the design of technical
components such as sensors and architectures, e.g., [13] and
[14], or improved machine learning methods and algorithms,
e.g., [15] and [16]. Especially within the energy distribution
grid, this focus shows a lack of integrating the management
of the technology and the maintenance strategies that has also
been observed in recent research [17]. The technical research
on predictive maintenance, thus, needs to be complemented by
a management perspective. We make use of service science as
a domain focusing on the management of services rather than

1In neighboring disciplines, predictive maintenance is also denoted as
condition-based maintenance [9].
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(technical) products [18] to take on this perspective on predic-
tive maintenance. In detail, we view switchgears as integrated
smart products—physical products, which utilize sensor data
to monitor their status and surrounding [19]—for their man-
agement from a service science perspective. These switchgears
would need to be enriched by engineered technology for data
collection, connectivity, and locatability to enable: 1) customers
(i.e., distribution grid operators) to monitor their performance
and status; and 2) service providers (i.e., asset manufacturers) to
analyze the data for product improvements [19]. When taking
such a service science perspective, the systems in which value
is cocreated through the management of the smart products are
defined as smart service systems [19]. We posit that combin-
ing the technical design perspective with the service science
management perspectives enables to consider the cocreation of
value combined with the holistic technology engineering and
management of predictive maintenance innovations. For this,
we aim to design a combination of a smart service system, man-
aging critical assets as smart products, and a digital industrial
platform—a class of digital platforms collecting, integrating,
and analyzing data of industrial assets [20].

We approach this design goal by adhering to the research
paradigm of design science research (DSR)–focusing on build-
ing, instantiating, and evaluating our ensemble artifact [21], [22].
We start our research with a prestudy, i.e., qualitative interviews
with distribution grid operators, to identify and analyze their
current service systems and problems, leading us to define the
objectives of our solution [21]. Subsequently, we construct a
smart service system and instantiate a prototype for a digital
industrial platform to manage critical assets of the distribution
grid utilizing predictive maintenance. We evaluate our design
by analyzing the willingness-to-pay (WTP) of distribution grid
operators to participate in the smart service system–focusing
on the value-in-use generated with the service [23], [24] rather
than the intention-to-use the platform as an information system.
Finally, we discuss the results by formalizing the learning of
our DSR endeavor and abstract our result in a set of five design
principles [25] for an ensemble of a smart service system and a
digital industrial platform [20].

Our results contribute to theory by applying predictive
maintenance—an established maintenance strategy—to a new
domain, i.e., central assets of the energy distribution grid, and
deriving design insights from our study. Therefore, this article
extends the technical understanding of predictive maintenance
to a holistic understanding–incorporating the management, i.e.,
value cocreation, of predictive maintenance strategies and ser-
vices. Additionally, we demonstrate that using a WTP analysis
serves as a suitable evaluation method for service design in DSR.
From a managerial perspective, our results contribute insights
on how to design and instantiate a smart service system and a
digital industrial platform enabling predictive maintenance and
yielding fruitful insights for distribution grid operators. Further-
more, our WTP analysis provides managerial implications for
offering smart service and smart products for distribution grid
operators. With these contributions, we answer recent calls for
research to investigate feasible revenue models and architectures
for platforms managing industrial assets [20], to transition to

predictive maintenance for central assets of the distribution
grid [6], and to design and engineer smart service systems [19].

The rest of this article is organized as follows. This arti-
cle summarizes fundamental properties of distribution grids,
followed by maintenance strategies and the basics of digital
industrial platforms in Section II. Section III illustrates DSR
as our research paradigm and justifies our research approach.
Section IV reports on the current situation and resulting design
objectives derived from interviews with distribution grid opera-
tors. Section V covers the design of the ensemble artifact of smart
service system and digital industrial platform. In Section VI,
we present a WTP analysis to evaluate our ensemble artifact.
We discuss our insights by deriving design principles from our
ensemble artifact in Section VII. Finally, Section VIII concludes
this article.

II. THEORETICAL BACKGROUND

A. Energy Transmission and Switchgears

European energy grids are divided into different voltage
levels. When energy is produced, for instance in a nuclear
power plant, the electricity is transmitted into the extra-high
voltage (EHV) grid. This part of the grid handles voltage levels
from 220 to 380 kV [26]. To be able to supply large industrial
customers, EHV is transformed into high voltage (HV) through
a transformer station. The HV grid manages 60–110 kV [26].
Here, power generation facilities, e.g., biogas plants, insert en-
ergy. Another transformer station then transforms the HV to MV
to provide industrial customers, offices, and service buildings
with energy. This part of the grid handles voltage levels from
6 to 30 kV [26] and is also powered by wind energy plants and
large photovoltaic systems. The provision of electricity to the
population in cities and rural areas is handled by the low voltage
(LV) grid, using 230 or 400 V [26]. Through a distribution
substation, the MV grid is connected to the LV grid. This LV
grid is only fed by houses with their own energy production—
mostly photovoltaic systems—and supplies charging stations for
electric vehicles, apartment buildings, and houses without own
production, trade, retail, and service facilities.

Within distribution substations, there are different assets crit-
ical for a continuous supply of energy. Switchgears enable to
interrupt electrical circuits through their key component—the
circuit breaker—and, thus, embody protective and control func-
tions [6]. The transformation from MV to LV is a key element for
providing energy to households. Thus, a failure-free operation
of the substations is crucial for grid operators. Zickler et al. [27]
investigated failures of switchgears and found 90% of failures to
be related to aging, while Zhang et al. [7] identified a decrease
of mechanical strength due to material fatigue under cyclic load
caused by thermal stress as the main factor to provoke failures. In
case of a switchgear failure, the part of the distribution grid being
supplied with electrical energy connected to the switchgear will
be shut down. Consequences comprise missing electrical en-
ergy for multiple households, industries, and potentially critical
infrastructure, e.g., hospitals.

To maintain their grid, provide the right spare parts for each
component, and be aware of the (geographical) structure of the
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grid, grid operators rely on different information systems. They
use geographic information systems (GISs) to manage location
information and enterprise resource planning (ERP) systems for
asset management and administration processes. Furthermore,
there are different tools for strategic management and some
grid operators use basic supervisory control and data acquisition
(SCADA) systems for their critical assets [28].

B. Maintenance Strategies for the Distribution Grid

Maintenance strategies have shifted from being a cost-driver
to enabling success [29]. Thus, a change from reactive to
proactive actions can be identified [30]. For maintenance of
assets within energy grids, three central maintenance strategies
can be identified: 1) reactive; 2) preventive; and 3) predictive
maintenance.

Reactive maintenance strategies operate assets until a mal-
function or defect occurs. Energy providers pursuing this strat-
egy neglect to plan or schedule inspections. Thus, assets are
operated for their maximum lifespan and replacement and spare
parts costs are minimized. However, it also enforces downtimes,
which occur more often and increase costs due to rapid re-
pairs [8].

Preventive maintenance uses scheduled maintenance activ-
ities based on predefined intervals, e.g., specific amounts of
operating hours or time intervals. This strategy aims to prevent
downtimes by replacing parts before an error occurs. However,
preventive maintenance is not able to prevent failures altogether
and provokes replacements before the possible maximum life-
time is reached [8].

Predictive maintenance is a sophisticated maintenance strat-
egy that is based on sensors that detect condition changes
and failures with the help of advanced signal processing tech-
niques [31]. Predictive maintenance is already one of the most
applied scenarios for smart service systems, especially in manu-
facturing contexts [32]. The implementation of predictive main-
tenance avoids downtimes by predicting defects before they
occur and also prevents unnecessary equipment replacement [8].
Condition monitoring—“a management technique that uses the
regular evaluation of the actual operating condition of plant
equipment, production systems, and plant management func-
tions, to optimize total plant operation” [33, p. 36]—enables
predictive maintenance by acquiring and processing information
and data that indicate the status of a machine over time [9].

Combining the advantages of reactive and preventive mainte-
nance by avoiding downtimes and using the maximum lifespan
of assets, predictive maintenance has been established as a
promising strategy for maintenance activities in the energy grid,
being mainly used in LV, HV, and EHV. On the LV grid, smart
meters enable to obtain individual data from the household,
which can be analyzed for load forecasting, abnormal detection,
consumer segmentation, and demand response [34]. In HV grids,
condition-based monitoring is used on transformers to identify
factors impacting their reliability [35] and to predict their current
status [36]. In EHV grids, predictive maintenance is used for nu-
clear power plants, as they are condition-based, highly advanced
industries equipped with different sensors, instruments, and

analytical methods to extend the time-to-failure [37]. Concern-
ing MV, predictive maintenance has not yet been applied for
central grid components.

Most studies on predictive maintenance in the field of innova-
tion and technology management focus on technically improv-
ing [38], [39], comparing [40], optimizing [12], or developing
predictive maintenance methods and algorithms [41]. Further,
researchers designed IT artifacts, focusing on developing design
knowledge on predictive maintenance-based systems [42], e.g.,
in the field of predictive maintenance through smartphones [43].
This gathered design knowledge [42] can be transferred to the
prediction of the future condition of components within the en-
ergy distribution grid: A predictive maintenance system “should
provide all task-relevant data in a comprehensive manner using
appropriate means to attract the user’s perception [...] of im-
portant information while keeping him receptive to the overall
status” [42, p. 4]. Thus, a system for predictive maintenance
on the distribution grid should be able to process data from
different sources, e.g., sensors, in real-time and enable storing
and processing of historical data. Since there are different areas
of interest, e.g., different plants or locations within the grid,
the system should prevent data overload and be able to switch
attention between different areas of interest [42]. Further, a
predictive maintenance system “must provide means to enable
the user’s understanding of current business situations [...] to
make decisions invariant of errant mental models” and “should
present the current status and possible future outcomes in a
comprehensive manner enabling the user to anticipate (near)
future business situations” [42, p. 5]. For the energy distribution
grid, the control center has the overview of the condition data
of the assets and about the incidents [28]. To make these data
more valuable, a predictive maintenance system should embed
the data in a situational context on the one side and a historical
context on the other [42]. Within the energy distribution grid, in-
tegrating these contexts enables decisions about upcoming main-
tenance activities, grid planning tasks, and analysis of historical
events.

Combining the existing knowledge on predictive maintenance
strategies, e.g., [8], and design principles, e.g., [42], within
the context of the energy distribution grid, there is a clear
focus on technical aspects. What is missing, however, is an
integration of the management perspective into the design of
predictive maintenance artifacts. This integration is not an easy
task, since different groups of stakeholders are involved, e.g.,
asset manufacturers, distribution grid operators, repair service
providers, sensor manufacturers, and industrial customers, who
partly operate their own assets [28]. Thus, maintenance strate-
gies do not only need to be applied by enhancing components
and methods technically, but need to be transferred into the
contexts of the value cocreation. First, steps have been taken
to design and describe digital service platforms for predictive
maintenance of connected vehicles [44] and the capabilities
and solution scenarios of industrial IoT platforms [45]. Thus,
the relevance of digital platforms for predictive maintenance
has been discovered, but again with a more technical focus,
not gaining knowledge on focusing on digital platforms for
predictive maintenance.
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C. Digital Industrial Platforms

The concept of a digital platform—generally defined as a
“mediating entity operating in two- or multisided markets, which
uses the internet to enable direct interactions between two or
more distinct but interdependent groups of users (e.g., in the case
of a two-sided market: Buyers and sellers) to generate value for
at least one of the groups [46], [47], [48], [49]” [50, p. 513]—has
been discussed as an enabler for complex maintenance strategies
for critical assets [20]. The architecture of digital platforms
is characterized by multiple layers and modularization [51],
[52] that enable controlling the platform while maintaining
flexibility [53]. While a multitude of different platform terms
and concepts exists in the literature [54], two types can be
distinguished in platform research: 1) transaction platforms;
and 2) innovation platforms [55]. Transaction platforms, on
the one hand, match users and enable them to cocreate value
by exchanging information [55], e.g., Amazon, WhatsApp, and
Uber. Innovation platforms, on the other hand, enable innovation
through applications and services for third parties [55], [56], e.g.,
SAP and AmazonWebServices.

Digital industrial platforms allow to combine both types of
digital platforms [20], [57]. Pauli et al. [20, p. 183] define
digital industrial platforms as “platforms that: 1) collect and
integrate data from a heterogeneous set of industrial assets and
devices; 2) provide this data and additional technical support
to an ecosystem of third-party organizations who develop and
enable complementary solutions that 3) affect the operation of
industrial assets and devices; and 4) provide a marketplace to
facilitate interactions between platform owner, third-parties, and
business customers.” They aim to combine and integrate data
from industrial assets in business-to-business (B2B) contexts to
enable smart services for complementors [19], [20], [58]. There-
fore, digital industrial platforms act as innovation platforms
when enabling smart services, whereas they act as transaction
platforms when collecting asset data and analyzing or optimizing
asset performance [20]. Thus, they are able to connect industrial
assets and information systems of users of these assets [20], [59].

The layered modular architecture of digital platforms is also
represented in digital industrial platforms. A digital industrial
platform consists of the following four layers [20]:

1) device layer (with assets, sensors, and actuators);
2) connectivity layer (for connectivity protocols, gateways,

and technologies);
3) platform ecosystem;
4) application layer (for industrial application).
The digital industrial platform connects the platform ecosys-

tem with its manufacturers, software developers, and customers
to the connectivity layer and establishes the service layer as a
fifth layer [20].

Digital industrial platforms are characterized by four at-
tributes and peculiarities. First, the asset data stored and pro-
cessed on a platform are heterogeneous [20]. This fits to the
distribution grid and its variety of assets applied in substations
to enable a continuous energy flow, e.g., switchgears and trans-
formers. Additionally, assets are in use for up to 40 years,
thus, different product versions are simultaneously operated.

Second, digital industrial platforms are applied in industrial
B2B contexts [20]. The distribution grid with its multiple asset
manufacturers and product versions is a typical B2B domain.
Third, digital industrial platforms are based on multiple actors
cooperating to cocreate value for the operator of its assets [20].
Within distribution grids, these actors can include distribution
grid operators, asset manufacturers, sensor developers, and data
analysts. Fourth, service that is enabled by digital industrial
platforms intends to improve the use of the industrial assets [20].
In the case of the distribution grid, most assets are already
mature due to their long application range without major tech-
nical changes. However, maintenance strategies are still to be
improved and optimized based on the data of the assets. Thus,
applying a digital industrial platform in the context of the dis-
tribution grid seems to be a promising strategy.

III. RESEARCH METHOD

The goal of this research endeavor is to design and evaluate an
ensemble artifact for managing critical assets of the distribution
grid utilizing predictive maintenance. We focus on switchgears
as exemplary, critical assets because of their vulnerability to
aging and the need for maintenance [7], [27]. The ensemble
artifact should serve as a single point of contact for different roles
at a distribution grid operator. While control center agents use
the artifact to supervise the status of assets and plan maintenance
activities, distribution grid engineers use its data, insights, and
transactions to maintain and repair assets. Furthermore, distri-
bution grid planners build on the data and insights to plan and
optimize the future distribution grid.

The artifact to be designed classifies as an ensemble of IT
artifacts in the sense of Hevner et al. [21]. Therefore, we apply
design science research (DSR) as our research paradigm. DSR is
focused on designing and evaluating artifacts in organizational
contexts while using established foundations and methodologies
from the knowledge base [21]. DSR aims to provide actionable
and useful artifacts to solve relevant problems in their applied
organizational context, paired with scientific knowledge [21],
thus, characterized by “learning through building” [60]. Design
knowledge in this article is embodied in the form of design
principles–“prescriptive statements that show how to do some-
thing to achieve a goal” [25, p. 1622]. A set of design prin-
ciples depicts the principles of form and function of a design
theory [25].

In this article, we apply the DSR methodology by Peffers
et al. [22]. Our research consists of six proposed steps (Fig. 1).
We start with identifying the problem and motivating our re-
search, describing that central assets of the distribution grid,
especially, switchgears, will be stressed harder in the future
due to increasingly flexible energy production and demand.
For our objective of a solution, we aim to apply predictive
maintenance as an advanced maintenance strategy to overcome
the stated problems. Ultimately, failures and blackouts of the
distribution grid caused by faulty assets should be predicted and
prevented through maintenance activities. To further investigate
the objectives and structure our goals, we interviewed six dis-
tribution grid operators of different voltage ranges (MV to HV),
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Fig. 1. Instantiated research process building on the DSR methodology [22].

sizes (<250 to >10 000 substations), and employees (<250 to
>1000). We interviewed a minimum of two representatives of
each distribution grid operator, lasting between 90 and 180 min.
We used qualitative methods to identify and map the distribution
grid operators’ maintenance and repair processes, acquired their
IT artifacts and status data currently available, outlined the value
cocreation network, and analyzed the major tasks, pains, and
gains [61].

The third step—design and development—builds on the in-
sights from the qualitative interviews to derive design knowl-
edge. Utilizing the objectives of our solution, enriched by
design knowledge, e.g., [42], we design an ensemble artifact
consisting of a smart service system and a digital industrial
platform. To demonstrate our design results, we implement a
prototype of our digital industrial platform by conceptualizing
systems integration and data models. As this research does not
focus on improving algorithms and data transfer between assets
and the system itself, we blackbox both the sensors and the
machine learning system. However, we are able to use exper-
imental data for the condition of switchgears in our prototype
implementation.

The evaluation—a central component of DSR studies [21]—
aims to validate whether the design actually helps to solve
the problems identified in the first step. Ideally, the proposed
smart service system and digital industrial platform would be
implemented at a distribution grid operator and applied over a
longer time period. Afterwards, downtimes and costs could be
analyzed to evaluate the success of the ensemble artifact and
maintenance strategy. However, such an evaluation in the form
of a field study would take vast amounts of resources (costs for
sensors, costs for proper implementation, training of personnel)
and be subject to a risk of early failures of the system—leading
to potentially drastic consequences such as blackouts.

Therefore, we make use of a willingness-to-pay (WTP) anal-
ysis to evaluate our designed ensemble artifact. A WTP analysis
generally aims to quantify the utility function of a customer
in monetary units—i.e., the willingness to pay for a service
or prodct [62], [63], [64]. Thus, it is able to determine the
value-in-use, i.e., “individual judgment of the sum total of all
the functional and emotional experience outcomes” [65, p. 120].
Value-in-use can only be determined by service customers [24],

[65], fitting to the WTP approach. The quantified benefit from
a customer’s perspective can also be assessed through the
technology acceptance model, allowing conclusions about why
individuals use a technology [66]. Here, perceived usefulness
describes the judgment of the performance benefit for the user
resulting from the technology, whereas perceived ease of use
describes the freedom or effort of (physically and mentally)
using a system [66]. WTP analyses have been applied to both
consumer goods and industrial goods [67]. While not yet applied
as evaluations in DSR studies, we posit that WTP analyses are
a suitable means to evaluate IT artifacts from a value cocreation
perspective because they enable us to determine whether a
service would be accepted on a market. In our case, we take
a management and service science perspective to investigate the
perceived usefulness for the participating organization, i.e., dis-
tribution grid operators using critical assets. Our WTP analysis
serves as an agile evaluation strategy so that we can evaluate our
service and artifact design before fully implementing IT artifacts
in organizations.

Estimating the WTP is a challenging task, since customers are
not yet able to determine the exact value of our designed service
and might not want to disclose their real WTP. As customer
groups differ drastically for B2B-relations in comparison to B2C
relationships, there is a catalog of different methods available
for a WTP analysis [62]. Due to the low number of possible
customers—only distribution grid operators and few businesses
buy switchgears—combined with an impediment to disclose real
numbers, we opt for a conjoint analysis to measure indirect
preference structures [62], [68]. We define different attributes
and levels to design the stimuli and perform interviews to gather
data for the preferences. To evaluate our findings, we determine
the impact on the decision for each attribute and perform a
market share analysis.

Finally, for discussion and communication, we incorporate
the learning of our evaluation by deriving a set of five design
principles [25] for an ensemble artifact comprising a smart
service system and a digital industrial platform for predictive
maintenance on the distribution grid. We already disseminated
our results to manufacturers of assets and the distribution grid
operators involved in both our interviews at the beginning of the
research and our WTP analysis.
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TABLE I
OBJECTIVES OF OUR ENSEMBLE DESIGN

IV. OBJECTIVES FOR PREDICTIVE MAINTENANCE

ON THE DISTRIBUTION GRID

Distribution grid operators have multiple tasks in their daily
business. The highest prioritized task of all distribution grid
operators interviewed in our study is to secure a permanent
energy supply to customers. This task includes fixing errors or
disturbances that hinder a continuous energy delivery, but does
not include maintenance activities. Operators are informed about
disturbances and errors either by voltage drops or by customers
complaining about failures in their energy supply. Currently,
distribution grid operators do not have condition data of their
central assets available, making them unable to directly locate
error sources and causes. Instead, they have to assess multiple
substations or assets locally.

The second group of tasks distribution grid operators uni-
formly reported are maintenance activities. The current market
situation for distribution grid operators shows that they are facing
ambiguity. On the one hand, their processes, information sys-
tems, and maintenance strategies are sound and they do currently
not face many issues with their distribution grids [7]. On the other
hand, the challenges distribution grid operators face—caused
by the transition to renewable energies and an increase in the
demand for electrical energy—combined with unknown condi-
tions of central assets require proactive actions. Subsequently,
we state the main objectives of the interviewed distribution grid
operators for future scenarios concerning maintenance on their
distribution grids (cf. Table I).

First, current maintenance strategies of distribution grid op-
erators are not based on actual data of critical assets, but based
on either waiting for failures (i.e., reactive maintenance) or
maintenance intervals recommended by manufacturers of assets
(i.e., preventive maintenance). The interviewed operators mainly
make the lack of condition data on their assets responsible
for their outmoded maintenance strategies, but assured us that
these strategies are common for distribution grid operators.
A reason for this lack of data is the operating life of these
assets—switchgears are in use for up to 40 years. To counteract
the problems distribution grids will face, therefore, a permanent

monitoring of condition data of central assets is necessary. In the
case of switchgears on the distribution grid, required data can
be collected by multiple types of sensors, i.e., current sensors
to determine the flow of electricity, thermal sensors to identify
overheating, air quality sensors to determine contamination
levels (e.g., from dust or soot), and camera sensors to identify
animal intruders (possibly causing short circuits).

Identifying the current status of assets can decrease reaction
times in failures, possibly prevent outages, and reduce costs,
e.g., in cases where maintenance activities can be postponed.
However, condition monitoring serves as a prerequisite for pre-
dictive maintenance [9], [31]. Therefore, the second objective
for distribution grid operators is to be able to predict problems,
errors, and outages of their critical assets, i.e., transition to
predictive maintenance. Predictive maintenance requires pattern
recognition [31] by machine learning models and algorithms,
which can predict remaining lifetimes of assets and resulting
windows for maintenance activities [8]. Additionally, predictive
maintenance requires vast amounts of test and training data,
which (as well) is currently sparse [6]. With condition moni-
toring and eventually predictive maintenance, distribution grid
operators expect to improve their knowledge of conditions of
critical assets on their distribution grid, extend maintenance
intervals, reduce errors, and ultimately save costs while main-
taining a healthy distribution grid.

As a central aspect of both condition monitoring and pre-
dictive maintenance revolves around the collection of sensor
data, distribution grid operators need to easily store, access, and
manually inspect the data. The goal is to accumulate knowledge
on their critical assets. However, current knowledge about assets
and their history and peculiarities is only stored as master data
in GIS or ERP systems, or as implicit knowledge of experienced
technicians on the distribution grid. Thus, the third objective for
our ensemble artifact to be designed is to build a knowledge
base on assets of a distribution grid operator, including current
and historical sensor data as well as transactional data of main-
tenance activities.

Our interviewed distribution grid operators further raised
nonfunctional requirements, e.g., permanent system availability,
data and process security, and reliability. These requirements
are fulfilled by established SCADA systems [69] and do not
contribute new design knowledge to our smart service system to
be designed. One particular nonfunctional objective, however,
stood out with every interviewed distribution grid operator com-
plaining. Currently, information systems used by distribution
grid operators seem to lack integration to other information
systems, leading to redundant data sources and overlapping in-
formation. Therefore, the fourth objective our ensemble artifact
aims to achieve is providing a singular data source and storage
with an integrated suite of information systems and applications.
The main benefits are lowered search and update times for
gathering information.

V. DESIGN OF OUR ENSEMBLE ARTIFACT

Based on the objectives of a solution, we design and
instantiate an ensemble artifact for enabling and managing
predictive maintenance of assets on the distribution grid. We
start with focusing on assets of the distribution grid that are
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smart products in our smart service system [19]. Specifically,
we refer to switchgears as one essential class of asset, while
our conceptualization is transferable to other assets including
transformers and relays. We then describe the avenues for value
cocreation that are enabled by the smart service system. From a
technical perspective, we present the conceptualization and soft-
ware prototype of a digital industrial platform that enables data
flows and information management in the smart service system.

A. Smart Service System Design

Subsequently, we build on Beverungen et al. [19] to conceptu-
alize our smart service system. The central actors involved in our
smart service system are service consumers—i.e., distribution
grid operators—and service providers—i.e., manufacturers of
central assets of the distribution grid. In smart service systems,
smart products—using sensors, connectivity, unique identifier,
localization, data storage and processing capabilities, actuators,
and interfaces—take the role of boundary objects that establish
value cocreation among the actors [19]. In our case, these smart
products are switchgears, but could also be other components
that are digitally networked.

Different types of sensors can be used for condition moni-
toring, including temperature sensors for heat monitoring [72],
electrical field (D-dot) sensors for partial discharge monitor-
ing [73], and acceleration and vibration sensors for breaker
drive monitoring in switchgears [6]. As data collected by sensors
needs to be distributed in (near) real-time, switchgears require
connectivity in the form of a central BUS system for aggregating
the data and an internet connection to transfer the data to software
applications for analyzing the asset’s condition and predicting
maintenance activities. For assets in the distribution grid, con-
nectivity is the enabling technology to integrate condition data
with external data (e.g., weather, pollution), especially since dis-
tribution grid assets are often stationed in remote locations [19].

Many information systems used by distribution grid operators
already feature certain characteristics of switchgears as smart
products. Master data records of switchgears often have unique
IDs in ERP systems that enable enterprise asset management,
for instance, as equipments or functional locations. Similarly,
locations of switchgears (and other assets) inside substations are
often stored in a GIS to visualize energy grids and navigate tech-
nicians during maintenance operations. Combining locations of
assets with external information and knowledge can enable value
cocreation further [74]. For instance, data on weather forecasts,
animal populations, and (natural or man-made) pollution—all
impacting the lifetime of switchgears—can only be meaningful
if interpreted with switchgears’ location data.

Although smart products should be offering their service “lo-
cally and autonomously, beyond the full control of a central sys-
tem” [19, p. 10], we design switchgears to not incorporate data
storage and processing capabilities locally. Instead, data will be
send to an application system for storage and data processing,
to enable condition monitoring and predictive maintenance on
the level of the installed base. One reason for this decision is
that switchgears often remain in operation for more than 40
years, whereas Moore’s law predicts costs for storage and data
processing to decrease at much greater pace. Further, external

data can be integrated more efficiently and data analytics can
be performed on the entire data repository when using a central
system. The main actuator in a switchgear is its breaker drive
for breaking electrical circuits. Interfaces enable a switchgear
to interact with further assets in the distribution grid, mainly in
the same substation.

The resulting smart service system is depicted in Fig. 2,
contextualizing the broader smart service system conceptu-
alization [19] for our application scenario. From a technical
perspective, distribution grid operators deploy these assets into
their physical distribution grids, i.e., electrical substations. From
the perspective of value cocreation, the data gained from these
devices is then used to inform value creating activities of cus-
tomers [32]. More specifically, value is cocreated based on the
four capabilities of smart, connected products [19], [75]: Mon-
itoring, control, optimization, and autonomy. First, distribution
grid operators are able to monitor the condition of their assets to
derive insights about possible failures, risks, and reactive mainte-
nance activities. This capability relates with condition monitor-
ing as the first objective identified. Second, operators can control
functions of the product and, thus, inspect functions–e.g., in the
case of switchgears, distribution grid operators can break elec-
tric circuits remotely. Third, by analyzing assets’ performance,
distribution grid operators can optimize their use of these assets,
while asset manufacturers can optimize the design of their assets
based on hard field evidence. This capability aligns with our ob-
jective to implement predictive maintenance on the distribution
grid. Fourth, autonomy might even be possible in future scenar-
ios, enabling switchgears to react to state changes of nearby as-
sets or the distribution grid. Still, this capability is yet to be con-
ceptualized and implemented, as evidenced by our interviews.

B. Digital Industrial Platform Instantiation

To support our smart service system and to fully incorporate
the objectives of our solution, there is a need for a central
information system aggregating data and information flows [76].
In detail, our third objective captures that our ensemble artifact
should enable building a knowledge base on assets of distri-
bution grid operators, including current and historical sensor
data, as well as transactional data of maintenance activities.
However, switchgears are only one type of a distribution grid’s
central assets, with others being, e.g., transformers, relays, and
cables. Additionally, our interviewed distribution grid opera-
tors stated that they apply different switchgear types and even
switchgears of different manufacturers—which is highly likely
due to switchgears lasting up to 40 years. Each type of switchgear
produces different data, some types varying only in detail, but
some systems requiring completely different machine learning
models to analyze resulting data. Thus, specific information
systems for single manufacturers or asset types would not satisfy
the requirements for a holistic predictive maintenance solution
on the distribution grid.

The concept of a digital industrial platform seems fruitful
to enable different types of assets to be analyzed by their
manufacturers using different data and machine learning
algorithms. Digital industrial platforms usually act as “inte-
gration middleware” [20], [77], bridging industrial assets and
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Fig. 2. Smart service system [19] for predictive maintenance on the energy distribution grid.

Fig. 3. UML component diagram of our digital industrial platform and related
systems.

different applications [20], e.g., condition monitoring and
predictive maintenance. As the central information system in
our ensemble artifact, the digital industrial platform enables the
presented smart service system by collecting, aggregating, and
analyzing data of different assets and information systems. An
overview of the digital industrial platform integrating with an
ERP and GIS system of distribution grid operators, as well as
with different assets, is outlined in Fig. 3 in an UML component
diagram.

The device layer as the lowest platform layer in a digital indus-
trial platform [20] will be taken by assets of the distribution grid
and their sensors. Both sensors and assets are heterogeneous,
fitting a central characteristic of a digital industrial platform [20].
The connectivity layer lies on top of the device layer and contains
communication protocols, gateways, and connectivity technolo-
gies in the form of a BUS system to pass the generated data from
the sensors to the digital industrial platform. The digital indus-
trial platform itself works as the service layer [20]. It connects the
platform to its ecosystem, comprising in our case manufacturers

of assets and sensors, software developers providing algorithms
and models to analyze the data, and distribution grid operators
as customers. The application layer is embodied by our service
for condition monitoring and predictive maintenance.

For demonstration purposes, we developed a prototype of
our designed digital industrial platform for the distribution grid,
named DigiGrid. DigiGrid was developed using Python, PyRFC
for connecting SAP as an ERP system, and ArcGIS as its GIS.
We further used Docker for server distribution and different
communication protocols, i.e., REST and JSON. DigiGrid was
developed in multiple iterations over 6 months and enables
three roles of a distribution grid operator to apply condition
monitoring and predictive maintenance: 1) control center agent;
2) distribution grid engineer; and 3) distribution grid planner.

The control center agent of a distribution grid operator su-
pervises the status of assets and plans maintenance activities.
DigiGrid enables control center agents to manage current service
orders and error reports from its automatic data analysis and
failure detection (cf. Fig. 4). Control center agents can also
inspect details of a service order and its referenced asset (cf.
Fig. 6). The main tasks distribution grid engineers have to fulfill
are to maintain and repair assets. Preparing these tasks can be
improved by having information about the current and historic
condition of assets available, as DigiGrid provides (cf. Fig. 6).
Distribution grid engineers can, e.g., show historic condition
data, view prognosis data for an asset, and compare the historic
data to other assets of the same type. The third role—distribution
grid planner—needs the data available by both sensors and
machine learning prognosis to plan and optimize the future
distribution grid. Therefore, DigiGrid presents a dashboard of
assets and statistical analyses of their performance (cf. Fig. 5).
As visualization through maps enables an easier understand-
ing of geographic relations, GIS maps are integrated into the
condition monitoring and predictive maintenance views on Digi-
Grid (cf. Figs. 4 and 5).
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Fig. 4. DigiGrid: Overview for control center agents.

Fig. 5. DigiGrid: Dashboard for distribution grid planners.

Fig. 6. DigiGrid: Details of switchgear data for multiple roles.

VI. EVALUATION THROUGH WTP ANALYSIS

To evaluate our ensemble of the smart service system and the
digital industrial platform, we decide to perform a choice-based
conjoint analysis (CBCA). A conjoint analysis is based on a
customer’s evaluation of a product as a sum of its individual
attributes [63], mainly used for consumer goods, but also for in-
dustrial goods [67]. Thus, customers are able to holistically view
a product or service, rather than reduce it to its functions [78].
The CBCA allows customers to hide their real price imagination
but show their preferences instead, making CBCA an indirect
method [64], [79]. Also named discrete choice analysis [80], we
applied a CBCA by conducting eight interviews with different
distribution grid operators and using the tool Sawtooth Discover
as recommended by Eggers et al. [68].

A. Design of the Stimuli

The first step to prepare the CBCA is to design the stimuli [68].
Here, different attributes of our service as well as different levels
of these attributes need to be defined to be able to design different
variations of the service in the next step. All attributes and their
specific levels are summarized in Table II. We included three
attributes based on three times intervals: 1) reporting (historical
data); 2) condition monitoring (current data); and 3) forecasting
of maintenance requirements (prognosis of future status). For
each attribute, we defined the status quo as the level 0. For
example, for forecasting, currently maintenance requirements
cannot be predicted. Subsequently, we define further levels based
on our service, delivering increasing value with each increment.2

For instance, for prediction, level 1 describes a prognosis of the
expected remaining service life per switchgear. The ultimate
level for this attribute is a prognosis of the expected remaining
service life per switchgear including the consideration of further
predictions, e.g., load fluctuations and seasonal changes. In
addition to the three attributes that are based on the use cases, we
use availability of geodata, ERP automation, and price structure
as further attributes. We take availability of geodata to get in-
sights on the operators’ WTP for GIS integration, whereas ERP
automation aims at integration of ERP systems. Thus, we cover
the two information systems classes used by all distribution grid
operators. Having a price structure in a CBCA is necessary to
determine the WTP [67], [79]. For price structure, we assumed
a price increase of 5% per level, increasing up to a 20% increase
of the usual asset price.

Next, we designed the choice situations. We included three
offers and specified 16 rounds of choices for each participant
(as recommended by our tool). For each offer, we combined
different levels of all attributes. Our CBCA additionally includes
a none-option, which means that the participants in each round
can either choose one of the given offers or decide not to buy
any of the offers—if they are not willing to accept any of the
three given offers.

For a WTP analysis, it is recommended to include budget
limitations [68]. Since grid assets are expensive goods and real

2The only exception of this increasing value with each increment is the
attribute ERP automation. Levels 1, 2, and 3 display different possibilities of
ERP automation, while level 4 combines all possibilities.
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TABLE II
ATTRIBUTES AND LEVELS FOR THE WTP ANALYSIS

Fig. 7. Normalized part values for all attributes and levels.

budgets cannot be assessed easily, we ensured to invite at least
one person with budget responsibility as an expert for the budget
limitations within the company. In most interviews, we had
multiple interviewees with different roles and knowledge.

B. Results of the WTP Analysis

To assess the WTP, we determined the attribute influence and
performed a market share simulation. First, our results indicate
that condition monitoring (26.3%) and price structure (25.0%)

have the highest influence on a potential buying decision. In
comparison, ERP integration (13.5%), reporting (12.6%), pre-
diction (11.4%), and availability of geodata (11.3%) have a
significantly lower influence. The normalized values (cf. Fig. 7)
allow to make assumptions about the benefits of each level for
each attribute compared to the other attributes. Noticeably, all
attributes except for ERP integration and price structure have
higher influence when increasing the service. For example, for
the attribute condition monitoring, the status quo has a value of
0, while the provision of raw data and the calculation of a health
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Fig. 8. Market share simulation for second level of condition monitoring.

Fig. 9. Market share simulation for fifth level of condition monitoring.

state as accurate as possible has a normalized influence value
of 0.9. This result indicates that this level has a high impact
on the decision and, thus, on the WTP for the service. For the
price structure, the values reveal a gap between 10% and 15%,
showing that the price of the smart service should not exceed a
price increase of 10% of the current asset price.

Second, we performed a market share simulation to make
assumptions about the probability of different configurations of
the service having a higher or lower market share than the current
product configuration without the smart service. We determined
a basic configuration, choosing level 0 for each attribute, i.e., the
current status quo. Then, we compared different configurations
of the levels against this basic configuration. Since the attributes
condition monitoring and price structure have the highest influ-
ence on the buying decision, we created a new configuration by
changing the levels of the attributes condition monitoring and
price structure (Figs. 8 and 9).

The results of the simulations show that the market share
decreases with an increasing price level in both configurations.
For level 1, which includes a provision of raw data of the current
state, the simulated market share value is 77.5% compared to the
basic configuration, which has only a market share of 22.5%. The

market share of level 1 configuration decreases with increasing
price and after a 20% price increase, the basic configuration
receives a higher market share. This indicates that the decisions
to buy a product including the provision of condition monitoring
raw data will be taken by most customers up to a price increase
of 15%.

For the highest level of condition monitoring (provision of
sensor data and calculation of a “health state” as accurately as
possible), the market share value is 82.2%, compared to the basic
configuration holding only a market share of 17.8%. The trend
between level 1 and the highest possible condition monitoring
configuration is similar from 0% to 15% price increase. How-
ever, when it comes to a price increase of more than 15%, the
provision of raw data and the calculation of a “health state” as
accurately as possible, including the identification of causes of
errors and anomalies, still has a higher market share compared
to the basic configuration. Thus, there is a higher WTP for a
more advanced condition monitoring configuration even if the
price is 20% higher than the current product price.

In most of the simulations, the biggest change of market share
regarding the price is between 10% and 15% compared to the
basic configuration. Thus, we found that there is a WTP for the
predictive maintenance service that is to be provided with our
smart service system.

VII. DISCUSSION: FORMALIZING THE KNOWLEDGE

We generalized the findings from our design project by ab-
stracting our results to the level of design principles [25]. Design
principles refer to implementer, aim, user, context, mechanism,
and rationale [25]. For our design principles, the operator of the
digital platform and the provider of the smart service are consid-
ered as implementers. We abstract the context to a holistic per-
spective on managing (predictive) maintenance of critical assets
in a value-creation network. Therefore, our design knowledge
is not limited to the energy distribution grid, but can also apply
to similar contexts involving assets that require sophisticated
maintenance strategies. The users of the design principles are
asset manufacturers and asset operators–instantiated by distri-
bution grid asset manufacturers and distribution grid operators
in the design of our ensemble artifact. Table III summarizes
the remaining attributes constituting our five design principles.
We outline our learning from the design and evaluation of our
ensemble artifact and the reason for each design principle as
follows.

Multiple manufacturers of different assets that require main-
tenance could provide their own information systems to asset
operators for managing assets [20]. However, digital platforms
connect actor groups for mutual benefit [46], [56]. Thus, a digital
platform can enable both sides of the market—including asset
manufacturers and asset operators—to cocreate value for mutual
benefit [46], [56], as framed in DP1. Asset operators can use a
single system for access and insights into their assets to enable
predictive maintenance. Asset manufacturers can gather data on
the application and usage of their assets. Thus, implementing
a digital industrial platform [20] enables indirect network ef-
fects [46], [50], i.e., manufacturers being attracted by a high
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TABLE III
DESIGN PRINCIPLES RESULTING FROM OUR DESIGN AND EVALUATION

number of asset operators and vice versa. The need for a digital
platform is also shown in our objectives, as asset operators
seek integrated solutions that enable knowledge management.
Further, Nadj et al. [42] emphasized that data from different
sources has to be integrated in predictive maintenance systems,
i.e., contributed by different asset manufacturers to a digital
platform. Also, digital industrial platforms allow for connecting
multiple stakeholders in a value-creation network [20] and our
WTP also shows that asset operators are generally willing to pay
a price premium for joining a digital platform.

In contrast to recent research on IT artifacts for predictive
maintenance [41], [42], [82], our research focuses on man-
agement and value cocreation across companies for predictive
maintenance. We conceptualized our smart service system by
building on the well-known framework of Beverungen et al. [19].
Thus, DP2 encompasses modeling a smart service system to
enable different actors to interact based on deploying their assets
as smart products as boundary objects that constitute a smart
service system. Asset operators can then monitor their assets’
conditions, while asset manufacturers can remotely optimize
their assets based on field evidence on how their assets are used
by multiple operators. The WTP confirmed that asset operators
are willing to pay a price premium for this service, thus, we can
infer that they intend to cocreate value in a smart service system.

DP3 refers to the distinction of three time intervals. Main-
tenance on asset-intense industries should be supported by
historical data (reporting), current data (condition monitor-
ing), and predictions on the future status of assets (predic-
tive maintenance). This distinction is already reflected in the

literature [42], [82] and serves as a key characteristic for pre-
dictive maintenance. Our WTP underlines the need for basic
reporting, condition monitoring, and predictive maintenance
functionality, as the first level of all three attributes providing
basic functionality had the highest increase in normalized part
values (cf. Fig. 7). Asset operators, however, do not seem to
be willing to pay much more for higher service levels, indicat-
ing that they need the basic functionality to be implemented
first.

DP4 refers to the need to integrate different application sys-
tems and data types. In our prestudy to determine the objectives
of our ensemble artifacts, asset operators already emphasized
the integration of multiple systems. Asset operators use ERP
systems for master and transaction data management, GIS, and
external geodata systems for distributed infrastructures—even
if they have a static location, such as switchgears—and machine
learning models and other analytical information systems to
analyze and interpret historical and current device data. As
for the data types, different assets generate a variety of data,
e.g., sensor data, transaction data from ERP systems, location
information, and other external data. Integrating information to
enable users to understand current and future business situations
was also considered by Nadj et al. [42] as a design principle for
predictive maintenance. Although the integration of geodata and
ERP automation were not among the most important attributes
in our WTP analysis, they still account for roughly 12% of
the price. Thus, integrating different data and different systems
was important for our informants and influenced their purchase
decisions.
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Integrating multiple data types (DP4) for different time peri-
ods (DP3) results in a vast amount of task-relevant data avail-
able [42]. Thus, DP5 argues that data has to be presented in
different degrees of complexity to enable user groups to de-
rive valuable implications for operating and maintaining assets.
Asset operators need a dashboard as a high-level overview of
their assets that is best displayed on an integrated map based
on GIS functionalities. For specific analyses, raw data has to be
available in more detailed views that refer to individual devices.
Our WTP analysis emphasizes the need for both raw data and
high-level dashboards, as level 1 is the most important for the
three attributes related to the time intervals, i.e., showing that
raw data is needed.

VIII. CONCLUSION

This article presented a design study for a combined smart
service system and a digital industrial platform to enable pre-
dictive maintenance for critical assets on the distribution grid.
Through a WTP evaluation, we were able to test the prototype
and extract feedback in terms of monetary promising services
and characteristics. Finally, we derived five design principles
for predictive maintenance that are not specific to the energy
distribution grid, but can also be applied to other contexts. Thus,
we contribute both theoretical and managerial knowledge to the
domain of technology and engineering management.

For theoretical contributions, first, we provide five design
principles that bundle the derived knowledge for predictive
maintenance of critical assets in a smart service system. Second,
we combine multiple streams of literature for new insights, i.e.,
service science [18] and predictive maintenance (as done in
different engineering domains, e.g., [13], [14], [15], and [16]),
by bundling a smart service system with a digital industrial
platform. Thus, we are able to extend the understanding of
predictive maintenance from a rather technical perspective to
an integrated perspective, covering multiple disciplines to allow
for the fruitful application of predictive maintenance [17]. This
theoretical knowledge answers recent calls for the design of
revenue models and service systems for maintenance on the
distribution grid [6] and the design of digital industrial plat-
forms [20], [83]. Third, from a methodological perspective, we
introduce the idea to use a WTP analysis as a means for assessing
the managerial value of an IT artifact. In our case, this evaluation
enables managerial decisions based on the (technical) design of
a predictive maintenance information systems architecture.

For managerial contributions, we provide practitioners with
an example how to design, instantiate, operate, and manage a
predictive maintenance artifact on the energy distribution grid.
The design principles enable to transfer the insights, while the
instantiation itself is most helpful for practitioners from the en-
ergy domain. Especially, managers and engineers of switchgears
can make their products “smart” and expect customers to be will-
ing to spend 10% to 15% more on them, as the WTP results show.

Still, we acknowledge that more research is required to es-
tablish a full business model for predictive maintenance on
the distribution grid. First, the question of which actor of
the value-creation network should take the role of the plat-
form owner and platform provider has remained unanswered.

Platform owners manage the core of a digital platform, whereas
platform providers control the infrastructure of a digital plat-
form [84]. If an asset manufacturer sets out to implement a
digital industrial platform, they would have the benefit of setting
higher entry barriers for competitors, but face difficulties of other
asset manufacturers joining the platform. Thus, other actors than
the asset manufacturers and asset operators might take the role
of a platform owner. Further research needs to elicit different
scenarios to propose suitable governance scenarios. Second,
we see a need to evaluate the ensemble artifact’s benefits in a
natural evaluation that goes beyond performing an ex ante WTP
analysis. Related research has investigated multiple strategies
to launch digital platforms in ways that overcome cold-start
problems [85]. Considering the distinct assets for industries, e.g.,
the distribution grid, focusing these efforts on a single domain
could be useful, combined with single target groups [85].

Methodological limitations of our study mainly refer to the
evaluation using a WTP analysis. First, we did not include actors
outside of the immediate value-creation network, e.g., experts
of price structures of MV assets, and did not expand our survey
to an international setting. While only eight distribution grid
operators participated in our WTP analysis, the results indicate
that saturation was reached, since the last interviews did not
provide any additional insights. Second, an evaluation of our
smart service system in form of an implementation of a digital
industrial platform for predictive maintenance in the context of
an existing value-creation network has still to be done, especially
with a focus on the artifact’s perceived usefulness and perceived
ease of use [66]. For this purpose, we propose conducting
multiple evaluation cycles following our WTP analysis [86].
Third, we did not integrate real prices in the survey, but referred
to percentage values instead. This decision was made to protect
data confidentiality interests of our corporate partners. Still,
performing the WTP analysis remained a sensitive issue and we
acknowledge that not referring to a realistic asset price might
have weakened the participants’ willingness to disclose realistic
data themselves.

We call on future research and managerial activities to im-
plement smart service systems and digital industrial platforms
to evaluate the proposed ensemble artifact in a natural context.
A natural evaluation can shed light on the artifact’s perceived
usefulness and perceived ease of use [66] as well as on other
business figures, including WTP, return on investment, and total
cost of service. Beyond carrying on this work, we posit that
introducing and evaluating the artifact in other contexts can
serve to triangulate and extend our design principles. We see
continuous work on these topics as a crucial contribution our
discipline has to offer towards successful climate action.
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