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Abstract— This article reports a novel ferroelectric field-
effect transistor (FeFET)-based crossbar array cascaded
with an external resistor. The external resistor is shunted
with the column of the FeFET array, as a current limiter
and reduces the impact of variations in drain current (Id),
especially in a low threshold voltage (LVT) state. We have
designed crossbar arrays of 8 × 8 sizes and performed
multiply-and-accumulate (MAC) operations. Furthermore,
we have evaluated the performance of the current limited
FeFET crossbar array in system-level applications. Finally,
the system-level performance evaluation was done by neu-
romorphic simulation of the resistor-shunted FeFET cross-
bar array. The crossbar array achievedsoftware-comparable
inference accuracy (∼97%) for National Institute of Stan-
dards and Technology (MNIST) datasets with multilayer per-
ceptron (MLP) neural network, whereas the crossbar arrays
built solely with FeFETs failed to learn, yielding only 9.8%
accuracy.

Index Terms— Ferroelectric field-effect transistor
(FeFET), ferroelectric memory, hafnium oxide (HfO2),
inference, neuromorphic.

I. INTRODUCTION

THE arrival of convolution neural networks (CNNs) or
ConvNets changed the paradigm of computing archi-

tecture in the present era. Built by LeCun et al. [1], the
early versions of CNN mostly found their application in
banking. However, the necessity of massive datasets and
computing resources sidelined CNNs from the mainstream
research roadmap of computer vision and artificial intelligence
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(AI). The researchers started to demonstrate interest again
in AI with the advent of AlexNet amidst the availability
of the ImageNet dataset [2], [3]. The colossal computing
resources enabled the users to create much larger CNNs, which
could perform more complex tasks that had not been possible
before.

Amid such developments in the computing world, another
evolution was brewing in the world of electronics. The rapid
advancement toward the deeply scaled and dense technology
nodes made the edge devices more available to the users,
which increased the real-time data generated by internet search
engines, social media, Internet of Things (IoT) devices, and
smart devices by many folds in recent times. The need for real-
time processing of this enormous amount of data produced by
the end-user devices has mandated a change in the computing
system. The latency and massive computing power required
by conventional Von-Neumann computing architecture for
processing such an enormous amount of real-time data make
them ill-suited for such purposes. However, it is worth noting
that the data processing centers furnished by high-performance
graphics processing units (GPUs) or tensor processing units
(TPUs) can run real-time data processing with much lower
latency. But their power-hungry nature makes them inappro-
priate for end-user applications. Therefore, the need for low-
power and fast real-time data processing has directed the
researchers toward an alternative route beyond standard Von-
Neumann architecture [4], [5], [6], [7], [8].

The scientific community is pursuing non-Von-Neumann
architectures by implementing deep neural networks (DNNs)
or spiking neural networks (SNNs) for data-centric computing
with higher energy efficiency and lower latency. Simultane-
ously, research on emerging non-volatile memory (eNVM) has
also accelerated the implementation of in-memory computing
(IMC) architectures. Hafnium oxide (HfO2) based ferroelectric
memories are of great interest among the scientific commu-
nity amidst many potential candidates like resistive random
access memory (RRAM), magnetic random access memory
(MRAM), and phase change memories (PCMs). This trait
can be attributed to the CMOS compatibility and scalabil-
ity of HfO2, which facilitates very large-scale integration
(VLSI) of ferroelectric memories with the advanced CMOS
process. The compatibility of ferroelectric memory with 28-nm
high-k-metal-gate (HKMG) technology, FinFETs and thin-
film technology have further accelerated the system-level
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integration of ferroelectric memories [9], [10], [11], [12],
[13], [14], [15].

However, the primary issue of system-level integration of
ferroelectric memories is the increasing variability with scal-
ing. The poly-crystalline nature of HfO2 and intrinsic defect
sites, which act as charge-trapping sites, creates a severe issue
in deeply scaled ferroelectric field-effect transistors (FeFETs).
The charge trapping sites may capture electrons or holes from
the channel side (CS) or gate side (GS), leading to infidelity
in program-erase (WRITE) operation. Quintessentially, ferro-
electricity in HfO2 is a crystal structure-dependent property.
The non-centrosymmetric Pca21 orthorhombic phase is respon-
sible for ferroelectricity in HfO2. Therefore, harnessing the
ferroelectric orthorhombic phase is essential for the stable
operation of ferroelectric memory. There have been several
attempts from a semiconductor process perspective to stabilize
the ferroelectric orthorhombic phase. Despite adopting sev-
eral stabilization processes, atomic-layer-deposited (ALD) or
physical vapor-deposited (PVD) HfO2 films show variability
in significantly scaled devices [16], [17], [18], [19], [20], [21].

In our previous work, we demonstrated a very effective way
to reduce the device variations in the READ–WRITE operation
of 28-nm HKMG FeFETs devices by shunting a resistor with
the drain terminal (1F–1R) [22], [23]. We observed that the
large variation in the drain current (Id) is mostly associated
with the low threshold voltage (LVT)-state current, which
creates erroneous output during analog-to-digital conversion
after accumulation. Therefore, we suggested to build a 1F–1R
structure to compensate the variation in Id of LVT-state.
We observed sufficiently high resistance (2 M�), the Id

variation was strongly suppressed. Furthermore, the Id vari-
ation originating from the random distribution of ferroelectric
domains is reduced by the large operation window of VGS.

This work, an extension of our previous work, focuses on
evaluating the performance of 1F–1R structure-based cross-
bar array for neuromorphic computing applications. We have
designed 8 × 8 crossbar arrays with FeFETs and the column
was terminated with a resistive element. The resistive element
acts as current limiter for the crossbar array and reduces
the variation of the bitline (BL) current (IBL). Finally we
have also evaluated the performance of the memory array
as synaptic core. The system level performance demonstrates,
∼97% accuracy for inference application.

II. EXPERIMENTS

The device considered in this work was fabricated in Global-
Foundries’, using their 28-nm HKMG technology on 300-mm
wafers. The FeFETs were fabricated by integrating 8 nm
silicon doped hafnium oxide (HfO2) based ferroelectric layer
with a ∼1 nm silicon-di-oxide (SiO2) interfacial layer in the
gate-stack of a regular metal oxide semiconductor field-effect
transistor (MOSFET). Fig. 1 shows the schematic illustra-
tion and the transmission electron microscopic (TEM) image
of the FeFETs under consideration. The fabricated devices
were programmed (WRITE) to non-overlapping binary states
using 500-ns pulses at the gate terminal. Before conduct-
ing READ–WRITE operations, the FeFETs were cycled by

Fig. 1. TEM image of the 28-nm HKMG FeFET devices and schematic
representation. After applying a positive and negative pulse, LVT, and
high-threshold voltage (HVT) states are achieved.

50 consecutive wake-up pulses. Each wake-up pulse consists
of one 4.5-V pulse followed by another −5 V pulse of
500 ns. The source, drain and bulk terminals were biased
at 0 V during the WRITE operation. A non-disturbing direct
current (dc) sweep with a step size of 100 mV was applied at
the gate terminal for the READ operation while maintaining
100 mV at the drain terminal and 0 V at source and bulk. The
WRITE-pulse applied at the gate terminal lines up the electri-
cal dipoles in the ferroelectric layer according to their polarity,
changes the surface charge density of the semiconductor layer,
conductance of the channel (Gch), and the threshold voltage
(Vth). Quintessentially, for n-type FeFET a positive pulse at
gate terminal sets the device to LVT-state and negative pulse
at gate terminal sets the devices at HVT-state.

The characterization of single devices was followed by the
characterization of 8 × 8 arrays. The layout, optical image of
the array, and schematic representation of the mini-array are
shown in Fig. 2(a) and (b), respectively. The gate terminals of
FeFETs are connected row-wise in a single word-line (WL).
The drains and sources are connected column-wise in bitline
(BL) and source-line (SL). The WL receives inputs for the
READ–WRITE operation. The BL is connected to the current
limiter. The arrays were programmed row-wise through the
direct access through word lines (WLs). The select lines (SLs)
and BLs connected along the columns allows the read opera-
tion to be performed along the column. The transistors denoted
by MSL and MBL are used as inhibit mode switches. The
FeFETs are characterized using a PXI-Express system from
National Instruments. The contacts of the memory array were
controlled by controlled by the pin parametric measurement
unit (PPMU) of NI PXIe-6570 and source measure unit (SMU)
of NI PXIe-4143. SMUs were used for conduction program-
erase operation, while the SLs and BLs were biased at 0 V.
The devices were allowed to de-trap for 2 s after programming.
The read operation was conducted by a slowly varying voltage
ramp with a step size of 100 mV at WL, while keeping BL
and SL biased at 100 mV and 0 V, respectively. The bulk was
also kept at 0 V. The read operation takes approximately 1 ms
to complete.

The row-wise WRITE operation was carried out by applying
a 4.5-V pulse of 500 ns at the WL, while the complete array
was erased by applying a 5-V pulse of 40 μs in the bulk.
Fig. 2(d) and (e) shows the biasing scheme for row wise
WRITE and bit-wise READ operation. The SL was connected
to the resistive current limiter. The BLs were biased to 0.1 V
through the wire named by V PRG

BL . NSL and NBL transistors
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Fig. 2. (a) Layout and (b) optical image of the fabricated memory array.
(c) Schematic of the memory array. The operating voltages along BL, SL,
and WL for carrying out (d) WRITE operation and (e) READ operation.

are turned on by applying 1.8 V at VSL and VBL to allow
access to SL and BL. During the READ operation VINH was
biased at 0 V to turn-off the inhibit transistors denoted by
MBL and MSL. MBL and MSL were turned on during inhibit
operation by applying 1.8 V at VINH. The inhibit operation
on WL was carried out by applying −0.3 V, which enabled
row-wise WRITE and cell-wise READ operation.

III. RESULTS AND DISCUSSION

A. Device Characterization

Fig. 3(a) shows the program-erase scheme used in this
work. Fig. 3(b) and (d) displays the two-level READ–WRITE
operations for 1F cell and 1F–1R cell, respectively. The
LVT-state current (ILVT) to HVT-state current (I HVT

d ) ratio
has been reduced for 1F–1R synapses. However, high I LVT

d
also increases the variation in the I LVT

d . The slightest variation
in the Vth of any programmed state induces a significant
variation related to the cell current of that state. Therefore,
even though the I LVT

d of the 1F–1R structure is reduced,
embedding the current limiter reduces the standard devia-
tion of the I LVT

d significantly [Fig. 3(c) and (e)]. Further,
the variability originating from the WL due to the random
variation in ferroelectric domains is suppressed by a large
operation window of the WRITE pulse. The drain was held
at constant 0 V during WRITE operation to ensure low static
power consumption.

The READ–WRITE characterization was followed by
endurance and retention characterization. Quintessentially, the
operation of front-end-of-line (FEoL) FeFETs with silicon
channels is limited by the WRITE endurance up to 105. This
limitation on WRITE endurance makes online training of the
neural network (NN). The WRITE-endurance characteristics
has been described in Fig. 4(a), and we observed a MW with
a stable behavior up to 103 cycles with an increase in degrada-
tion, which lead to a full closure of MW after 5 × 105 cycles.
Fig. 4(b) shows stable data retention characteristics up to 104 s
at 85 ◦C.

Fig. 3. (a) Schematic of the waveform. The devices were subjected
to wake-up by 50 pulses before the READ–WRITE. (b)–(e) Transfer
characteristics and CDF of I LVT

d and I HVT
d shows high variation in the

I LVT
d for regular FeFET cells. Although shunting a current limiter reduces
the ILVT

d , the variation is also reduced significantly.

Fig. 4. (a) Endurance characteristics demonstrate stable endurance up
to 104 cycles. The memory window collapses around 5 × 105 cycles.
(b) Retention characteristics measured at 85 ◦C demonstrates stable
data retention characteristics up to 104 s.

B. Array Characterization

Fig. 5(a) demonstrates the accumulated IBL versus VWL

operation from a single column of memory array. The accu-
mulation of the IBL resembles the mathematical vector matrix
multiplication or multiply-and-accumulate (MAC) operation.
The MAC operations can be quintessentially conducted over
the FeFET crossbar memory array demonstrated in this work.
We can observe a negligible leakage current during IBL accu-
mulation. The leakage current with all transistors in the erased
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Fig. 5. (a) MAC Operation shows accumulation of IBL for various stages
of cell activation. (b) Statistical plot of IBL shows stable MAC operation in
20 crossbar arrays.

Fig. 6. (a) Architecture of MLP-based NN. (b) Simulation of NN predicts
minimal loss of inference accuracy due to retention degradation over a
time of 10 years.

state was lower than 1 nA. This ensures leakage free MAC
operation. For statistical modeling, the MAC operation was
performed over 20 segments across 300-mm wafers. Shows
stable MAC operation over 20 different segments from the
crossbar array with a non-overlapping variation in IBL.

C. Applications to In-Memory-Computing

We have performed a system-level simulation of hand-
written digit recognition from the data set of “Modified
National Institute of Standards and Technology (MNIST)” to
quantify the efficacy of current limited FeFET-based crossbar
array in multi-layer perceptron (MLP) based NNs as synaptic
cores [24], [25]. Experimentally obtained device-to-device
variation and retention degradation of IBL have been modeled
for NN simulation. The architectures and the layers of the NN
are illustrated in Fig. 6(a).

The NN was trained offline for meeting the endurance
criteria of FeFET synapses. The inference operation was
conducted after the offline training of the NN was conducted.
Quintessentially the online training or the retraining of the
NN puts an excessive load on the hardware in terms of energy.

TABLE I
BENCHMARKING TABLE

Therefore, data retention capability becomes important to carry
out inference operation without frequent retraining. The data
retention measured up to 104 s at 85 ◦C has been extrapolated
to estimate the data retention up to 108 s. The extrapolated
data retention was used to gauge the inference accuracy for
MNIST datasets with MLP NN for 108 s. The MLP-based
NN achieves inference accuracy of over 97% initially and
maintains inference accuracy above 95% for 108 s without
being retrained.

IV. CONCLUSION

In this work, we demonstrate a high-performance current
limited FeFET-based crossbar array. The externally shunted
resistor acted as a current limiter and reduced the variation in
IBL. The MAC operation conducted on 20 numbers of crossbar
arrays demonstrates the stability of the operation. The high
on-state resistance and low variation ensure error-free MAC
operation using current limited FeFET arrays. Table I lists the
comparison of this work with other state-of-the-art works.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
Jun. 2017, pp. 84–90, doi: 10.1145/3065386.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 248–255, doi:
10.1109/CVPR.2009.5206848.

[4] T. Gokmen and Y. Vlasov, “Acceleration of deep neural network training
with resistive cross-point devices: Design considerations,” Frontiers
Neurosci., vol. 10, p. 333, Jul. 2016, doi: 10.3389/fnins.2016.00333.

[5] S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network
training using analogue memory,” Nature, vol. 558, no. 7708, pp. 60–67,
Jun. 2018, doi: 10.1038/s41586-018-0180-5.

[6] J.-H. Bae, S. Lim, B.-G. Park, and J.-H. Lee, “High-density and near-
linear synaptic device based on a reconfigurable gated Schottky diode,”
IEEE Electron Device Lett., vol. 38, no. 8, pp. 1153–1156, Aug. 2017,
doi: 10.1109/LED.2017.2713460.

[7] C.-C. Chang et al., “Mitigating asymmetric nonlinear weight update
effects in hardware neural network based on analog resistive synapse,”
IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 1, pp. 116–124,
Mar. 2018, doi: 10.1109/JETCAS.2017.2771529.

[8] P.-Y. Chen et al., “Mitigating effects of non-ideal synaptic device
characteristics for on-chip learning,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Nov. 2015, pp. 194–199, doi:
10.1109/ICCAD.2015.7372570.

[9] M. Trentzsch et al., “A 28 nm HKMG super low power embedded NVM
technology based on ferroelectric FETs,” in IEDM Tech. Dig., Dec. 2016,
p. 11, doi: 10.1109/IEDM.2016.7838397.

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.3389/fnins.2016.00333
http://dx.doi.org/10.1038/s41586-018-0180-5
http://dx.doi.org/10.1109/LED.2017.2713460
http://dx.doi.org/10.1109/JETCAS.2017.2771529
http://dx.doi.org/10.1109/ICCAD.2015.7372570
http://dx.doi.org/10.1109/IEDM.2016.7838397


7198 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 69, NO. 12, DECEMBER 2022

[10] S. De et al., “READ-optimized 28 nm HKMG multibit FeFET synapses
for inference-engine applications,” IEEE J. Electron Devices Soc.,
vol. 10, pp. 637–641, 2022, doi: 10.1109/JEDS.2022.3195119.

[11] S. De et al., “Ultra-low power robust 3bit/cell Hf0.5Zr0.5O2 ferroelectric
finFET with high endurance for advanced computing-in-memory tech-
nology,” in Proc. Symp. VLSI Technol., 2021, pp. 1–2.

[12] S. De et al., “Robust binary neural network operation from 233 K to
398 K via gate stack and bias optimization of ferroelectric FinFET
synapses,” IEEE Electron Device Lett., vol. 42, no. 8, pp. 1144–1147,
Aug. 2021, doi: 10.1109/LED.2021.3089621.

[13] S. De et al., “Low-power vertically stacked one time programmable
multi-bit IGZO-based BEOL compatible ferroelectric TFT memory
devices with lifelong retention for monolithic 3D-inference engine
applications,” in Proc. EAI Eur. Solid-State Devices Circuits Conf., 2022,
pp. 1–20.

[14] M. Jerry et al., “Ferroelectric FET analog synapse for acceleration of
deep neural network training,” in IEDM Tech. Dig., Dec. 2017, p. 6, doi:
10.1109/IEDM.2017.8268338.

[15] S. Dutta et al., “Logic compatible high-performance ferroelectric tran-
sistor memory,” IEEE Electron Device Lett., vol. 43, no. 3, pp. 382–385,
Mar. 2022, doi: 10.1109/LED.2022.3148669.

[16] Y. Raffel et al., “Charge pumping and flicker noise-based defect
characterization in ferroelectric FETs,” in Proc. IEEE Int. Integr. Rel.
Workshop (IIRW), Oct. 2020, pp. 1–4, doi: 10.1109/IIRW49815.2020.
9312851.

[17] S. De, W.-X. Bu, B.-H. Qiu, C.-J. Su, Y.-J. Lee, and D. D. Lu, “Allevi-
ation of charge trapping and flicker noise in HfZrO2-based ferroelectric
capacitors by thermal engineering,” in Proc. Int. Symp. VLSI Tech-
nol., Syst. Appl. (VLSI-TSA), Apr. 2021, pp. 1–2, doi: 10.1109/VLSI-
TSA51926.2021.9440091.

[18] M. N. K. Alam et al., “On the characterization and separation of trapping
and ferroelectric behavior in HfZrO FET,” IEEE J. Electron Devices
Soc., vol. 7, pp. 855–862, 2019, doi: 10.1109/JEDS.2019.2902953.

[19] S. De et al., “Uniform crystal formation and electrical variability
reduction in hafnium-oxide-based ferroelectric memory by thermal
engineering,” ACS Appl. Electron. Mater., vol. 3, no. 2, pp. 619–628,
Feb. 2021, doi: 10.1021/acsaelm.0c00610.

[20] M. Lederer et al., “Influence of annealing temperature on the structural
and electrical properties of Si-doped ferroelectric hafnium oxide,” ACS
Appl. Electron. Mater., vol. 3, no. 9, pp. 4115–4120, Sep. 2021, doi:
10.1021/acsaelm.1c00590.

[21] M. Lederer, D. Lehninger, T. Ali, and T. Kämpfe, “Review on
the microstructure of ferroelectric hafnium oxides,” Phys. Status
Solidi Rapid Res. Lett., vol. 16, Jul. 2022, Art. no. 2200168, doi:
10.1002/pssr.202200168.

[22] T. Soliman et al., “FELIX: A ferroelectric FET based low power mixed-
signal in-memory architecture for DNN acceleration,” ACM Trans.
Embedded Comput. Syst., vol. 21, no. 6, pp. 1–25, Nov. 2022, doi:
10.1145/3529760.

[23] T. Soliman et al., “Ultra-low power flexible precision FeFET based
analog in-memory computing,” in IEDM Tech. Dig., Dec. 2020, p. 29,
doi: 10.1109/IEDM13553.2020.9372124.

[24] A. Lu, X. Peng, W. Li, H. Jiang, and S. Yu, “NeuroSim simulator for
compute-in-memory hardware accelerator: Validation and benchmark,”
Frontiers Artif. Intell., vol. 4, Jun. 2021, Art. no. 659060.

[25] X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+NeuroSim: An
end-to-end benchmarking framework for compute-in-memory accelera-
tors with versatile device technologies,” in IEDM Tech. Dig., Dec. 2019,
p. 32.

[26] K. Seidel et al., “Memory array demonstration of fully
integrated 1T-1C FeFET concept with separated ferroelectric
MFM device in interconnect layer,” in Proc. IEEE Symp.
VLSI Technol. Circuits, Jun. 2022, pp. 355–356, doi: 10.1109/
VLSITechnologyandCir46769.2022.9830141.

[27] Y.-C. Luo et al., “Experimental demonstration of non-volatile capac-
itive crossbar array for in-memory computing,” in IEDM Tech. Dig.,
Dec. 2021, pp. 1–4, doi: 10.1109/IEDM19574.2021.9720508.

[28] T. Francois et al., “16kbit HfO2: Si-based 1T-1C FeRAM arrays
demonstrating high performance operation and solder reflow
compatibility,” in IEDM Tech. Dig., Dec. 2021, p. 33, doi:
10.1109/IEDM19574.2021.9720640.

[29] J. Okuno et al., “1T1C FeRAM memory array based on ferroelectric
HZO with capacitor under bitline,” IEEE J. Electron Devices Soc.,
vol. 10, pp. 29–34, 2022, doi: 10.1109/JEDS.2021.3129279.

http://dx.doi.org/10.1109/JEDS.2022.3195119
http://dx.doi.org/10.1109/LED.2021.3089621
http://dx.doi.org/10.1109/IEDM.2017.8268338
http://dx.doi.org/10.1109/LED.2022.3148669
http://dx.doi.org/10.1109/VLSI-TSA51926.2021.9440091
http://dx.doi.org/10.1109/VLSI-TSA51926.2021.9440091
http://dx.doi.org/10.1109/JEDS.2019.2902953
http://dx.doi.org/10.1021/acsaelm.0c00610
http://dx.doi.org/10.1021/acsaelm.1c00590
http://dx.doi.org/10.1002/pssr.202200168
http://dx.doi.org/10.1145/3529760
http://dx.doi.org/10.1109/IEDM13553.2020.9372124
http://dx.doi.org/10.1109/IEDM19574.2021.9720508
http://dx.doi.org/10.1109/IEDM19574.2021.9720640
http://dx.doi.org/10.1109/JEDS.2021.3129279
http://dx.doi.org/10.1109/IIRW49815.2020.9312851
http://dx.doi.org/10.1109/IIRW49815.2020.9312851
http://dx.doi.org/10.1109/VLSITechnologyandCir46769.2022.9830141
http://dx.doi.org/10.1109/VLSITechnologyandCir46769.2022.9830141


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


